|
| 1 | +import AcceleratedKernels as AK |
| 2 | +using KernelAbstractions |
| 3 | + |
| 4 | +using BenchmarkTools |
| 5 | +using Random |
| 6 | +Random.seed!(0) |
| 7 | + |
| 8 | + |
| 9 | +# Choose the Array backend: |
| 10 | +# |
| 11 | +# using CUDA |
| 12 | +# const ArrayType = CuArray |
| 13 | +# |
| 14 | +# using AMDGPU |
| 15 | +# const ArrayType = ROCArray |
| 16 | +# |
| 17 | +# using oneAPI |
| 18 | +# const ArrayType = oneArray |
| 19 | +# |
| 20 | +# using Metal |
| 21 | +# const ArrayType = MtlArray |
| 22 | +# |
| 23 | +# using OpenCL |
| 24 | +# const ArrayType = CLArray |
| 25 | +# |
| 26 | +const ArrayType = Array |
| 27 | + |
| 28 | + |
| 29 | +println("Using ArrayType: ", ArrayType) |
| 30 | + |
| 31 | + |
| 32 | +n1 = 3 |
| 33 | +n2 = 1_000_000 |
| 34 | + |
| 35 | + |
| 36 | +println("\n===\nBenchmarking mapreduce(identity, +, dims=1) on $n1 × $n2 UInt32 - Base vs. AK") |
| 37 | +display(@benchmark Base.reduce(+, v, init=UInt32(0), dims=1) setup=(v = ArrayType(rand(UInt32(1):UInt32(100), n1, n2)))) |
| 38 | +display(@benchmark AK.reduce(+, v, init=UInt32(0), dims=1) setup=(v = ArrayType(rand(UInt32(1):UInt32(100), n1, n2)))) |
| 39 | + |
| 40 | +println("\n===\nBenchmarking mapreduce(identity, +, dims=2) on $n1 × $n2 UInt32 - Base vs. AK") |
| 41 | +display(@benchmark Base.reduce(+, v, init=UInt32(0), dims=2) setup=(v = ArrayType(rand(UInt32(1):UInt32(100), n1, n2)))) |
| 42 | +display(@benchmark AK.reduce(+, v, init=UInt32(0), dims=2) setup=(v = ArrayType(rand(UInt32(1):UInt32(100), n1, n2)))) |
| 43 | + |
| 44 | + |
| 45 | + |
| 46 | + |
| 47 | +println("\n===\nBenchmarking mapreduce(identity, +, dims=1) on $n1 × $n2 Int64 - Base vs. AK") |
| 48 | +display(@benchmark Base.reduce(+, v, init=Int64(0), dims=1) setup=(v = ArrayType(rand(Int64(1):Int64(100), n1, n2)))) |
| 49 | +display(@benchmark AK.reduce(+, v, init=Int64(0), dims=1) setup=(v = ArrayType(rand(Int64(1):Int64(100), n1, n2)))) |
| 50 | + |
| 51 | +println("\n===\nBenchmarking mapreduce(identity, +, dims=2) on $n1 × $n2 Int64 - Base vs. AK") |
| 52 | +display(@benchmark Base.reduce(+, v, init=Int64(0), dims=2) setup=(v = ArrayType(rand(Int64(1):Int64(100), n1, n2)))) |
| 53 | +display(@benchmark AK.reduce(+, v, init=Int64(0), dims=2) setup=(v = ArrayType(rand(Int64(1):Int64(100), n1, n2)))) |
| 54 | + |
| 55 | + |
| 56 | + |
| 57 | + |
| 58 | +println("\n===\nBenchmarking mapreduce(identity, +, dims=1) on $n1 × $n2 Float32 - Base vs. AK") |
| 59 | +display(@benchmark Base.reduce(+, v, init=Float32(0), dims=1) setup=(v = ArrayType(rand(Float32, n1, n2)))) |
| 60 | +display(@benchmark AK.reduce(+, v, init=Float32(0), dims=1) setup=(v = ArrayType(rand(Float32, n1, n2)))) |
| 61 | + |
| 62 | +println("\n===\nBenchmarking mapreduce(identity, +, dims=2) on $n1 × $n2 Float32 - Base vs. AK") |
| 63 | +display(@benchmark Base.reduce(+, v, init=Float32(0), dims=2) setup=(v = ArrayType(rand(Float32, n1, n2)))) |
| 64 | +display(@benchmark AK.reduce(+, v, init=Float32(0), dims=2) setup=(v = ArrayType(rand(Float32, n1, n2)))) |
| 65 | + |
| 66 | + |
| 67 | + |
| 68 | + |
| 69 | +println("\n===\nBenchmarking mapreduce(sin, +, dims=1) on $n1 × $n2 Float32 - Base vs. AK") |
| 70 | +display(@benchmark Base.mapreduce(sin, +, v, init=Float32(0), dims=1) setup=(v = ArrayType(rand(Float32, n1, n2)))) |
| 71 | +display(@benchmark AK.mapreduce(sin, +, v, init=Float32(0), dims=1) setup=(v = ArrayType(rand(Float32, n1, n2)))) |
| 72 | + |
| 73 | +println("\n===\nBenchmarking mapreduce(sin, +, dims=2) on $n1 × $n2 Float32 - Base vs. AK") |
| 74 | +display(@benchmark Base.mapreduce(sin, +, v, init=Float32(0), dims=2) setup=(v = ArrayType(rand(Float32, n1, n2)))) |
| 75 | +display(@benchmark AK.mapreduce(sin, +, v, init=Float32(0), dims=2) setup=(v = ArrayType(rand(Float32, n1, n2)))) |
0 commit comments