8080@deprecate rqaentropy dl_entropy
8181
8282"""
83- determinism(x::AbstractRecurrenceMatrix ; lmin=2, theiler=0)
83+ determinism(x; lmin=2, theiler=0)
8484
8585Calculate the determinism of the recurrence matrix `x`, ruling out
8686the points within the Theiler window of size `theiler` and diagonals shorter
151151 laminarity(x; lmin=2, theiler=0)
152152
153153Calculate the laminarity of the recurrence matrix `x`, ruling out the
154- points within the Theiler window of size `theiler` and diagonals shorter
154+ points within the Theiler window of size `theiler` and lines shorter
155155than `lmin`.
156156"""
157157function laminarity (x:: ARM ; kwargs... )
@@ -165,7 +165,7 @@ _laminarity(vert_hist::Vector{<:Integer}, npoints) = _determinism(vert_hist, npo
165165 trappingtime(x; lmin=2, theiler=0)
166166
167167Calculate the trapping time of the recurrence matrix `x`, ruling out the
168- points within the Theiler window of size `theiler` and diagonals shorter
168+ points within the Theiler window of size `theiler` and lines shorter
169169than `lmin`.
170170
171171The trapping time is the average of the vertical line structures and thus equal
@@ -182,7 +182,7 @@ trappingtime(x::ARM; kwargs...) = vl_average(x; kwargs...)
182182 meanrecurrencetime(x; lmin=2, theiler=0)
183183
184184Calculate the mean recurrence time of the recurrence matrix `x`, ruling out the
185- points within the Theiler window of size `theiler` and diagonals shorter
185+ points within the Theiler window of size `theiler` and lines shorter
186186than `lmin`.
187187
188188Equivalent to [`rt_average`](@ref).
@@ -194,7 +194,7 @@ meanrecurrencetime(x::ARM; kwargs...) = rt_average(x; kwargs...)
194194 nmprt(x; lmin=2, theiler=0)
195195
196196Calculate the number of the most probable recurrence time (NMPRT), ruling out the
197- points within the Theiler window of size `theiler` and diagonals shorter
197+ points within the Theiler window of size `theiler` and lines shorter
198198than `lmin`.
199199"""
200200nmprt (x:: ARM ; kwargs) = maximum (verticalhistograms (x; kwargs... )[2 ])
@@ -229,10 +229,17 @@ The returned value is a dictionary with the following keys:
229229* "LAM": laminarity (see [`laminarity`](@ref))
230230* "TT": trapping time (see [`trappingtime`](@ref))
231231* "Vmax": maximum length of vertical structures (see [`vl_max`](@ref))
232+ * "VENTR": entropy of vertical structures (see [`vl_entropy`](@ref))
232233* "MRT": mean recurrence time (see [`meanrecurrencetime`](@ref))
233234* "RTE" recurrence time entropy (see [`rt_entropy`](@ref))
234235* "NMPRT": number of the most probable recurrence time (see [`nmprt`](@ref))
235236
237+ Notice that in the case of empty histograms (e.g. no existing vertical lines
238+ less than the keyword `lminvert`) the average and maximum values
239+ ("L", "Lmax", "TT", "Vmax", "MRT")
240+ are returned as `0.0` but their respective entropies ("ENTR", "VENTR", "RTE")
241+ are returned as `NaN`.
242+
236243The keyword argument `onlydiagonal` (`false` by default) can be set to `true`
237244in order to restrict the analysis to the recurrence rate and the parameters related
238245to diagonal structures ("RR", "DET", "L", "Lmax", "DIV" and "ENTR").
@@ -268,6 +275,7 @@ function rqa(x; onlydiagonal=false, kwargs...)
268275 " LAM" => _laminarity (vhist, rr_v* length (x)),
269276 " TT" => _vl_average (vhist),
270277 " Vmax" => _vl_max (vhist),
278+ " VENTR" => _vl_entropy (vhist),
271279 " MRT" => _rt_average (rthist),
272280 " RTE" => _rt_entropy (rthist),
273281 " NMPRT" => maximum (rthist)
0 commit comments