@@ -14,7 +14,7 @@ function Butterworth(::Type{T}, n::Integer) where {T<:Real}
1414 poles = Vector {Complex{T}} (undef, n)
1515 for i = 1 : n÷ 2
1616 w = convert (T, 2 i - 1 ) / 2 n
17- sinpi_w, cospi_w = Compat . @inline sincospi (w)
17+ sinpi_w, cospi_w = @inline sincospi (w)
1818 pole = complex (- sinpi_w, cospi_w)
1919 poles[2 i- 1 ] = pole
2020 poles[2 i] = conj (pole)
@@ -43,7 +43,7 @@ function chebyshev_poles(::Type{T}, n::Integer, ε::Real) where {T<:Real}
4343 c = cosh (μ)
4444 for i = 1 : n÷ 2
4545 w = convert (T, 2 i - 1 ) / 2 n
46- sinpi_w, cospi_w = Compat . @inline sincospi (w)
46+ sinpi_w, cospi_w = @inline sincospi (w)
4747 pole = complex (b * sinpi_w, c * cospi_w)
4848 p[2 i- 1 ] = pole
4949 p[2 i] = conj (pole)
@@ -94,7 +94,7 @@ function Chebyshev2(::Type{T}, n::Integer, ripple::Real) where {T<:Real}
9494 k = one (T)
9595 for i = 1 : n÷ 2
9696 w = convert (T, 2 i - 1 ) / 2 n
97- ze = Compat . @inline complex (zero (T), - inv (cospi (w)))
97+ ze = @inline complex (zero (T), - inv (cospi (w)))
9898 z[2 i- 1 ] = ze
9999 z[2 i] = conj (ze)
100100 k *= abs2 (p[2 i]) / abs2 (ze)
@@ -140,8 +140,8 @@ function _ellip(init::Number, landen::Vector{<:Real})
140140 end
141141 w = inv (winv)
142142end
143- @inline cde (u:: Number , landen:: Vector{<:Real} ) = Compat . @inline _ellip (cospi (u / 2 ), landen)
144- @inline sne (u:: Number , landen:: Vector{<:Real} ) = Compat . @inline _ellip (sinpi (u / 2 ), landen)
143+ @inline cde (u:: Number , landen:: Vector{<:Real} ) = @inline _ellip (cospi (u / 2 ), landen)
144+ @inline sne (u:: Number , landen:: Vector{<:Real} ) = @inline _ellip (sinpi (u / 2 ), landen)
145145
146146# sne inverse
147147function asne (w:: Number , k:: Real )
0 commit comments