@@ -112,18 +112,20 @@ def performance_test_pico_tree():
112112 # benchmark", explains how to generate a scans.bin file from an online
113113 # dataset.
114114 try :
115- p = np .fromfile (Path (__file__ ).parent / "scans.bin" ,
116- np .float64 ).reshape ((- 1 , 3 ))
115+ p0 = np .fromfile (Path (__file__ ).parent / "scans0.bin" ,
116+ np .float32 ).reshape ((- 1 , 3 ))
117+ p1 = np .fromfile (Path (__file__ ).parent / "scans1.bin" ,
118+ np .float32 ).reshape ((- 1 , 3 ))
117119 except FileNotFoundError as e :
118120 print (f"Skipping test. File does not exist: { e .filename } " )
119121 return
120122
121123 cnt_build_time_before = perf_counter ()
122124 # Tree creation is only slightly slower in Python vs C++ using the bindings.
123- t = pt .KdTree (p , pt .Metric .L2Squared , 10 )
124- #t = spKDTree(p , leafsize=10)
125- #t = spcKDTree(p , leafsize=10)
126- #t = skKDTree(p , leaf_size=10)
125+ t = pt .KdTree (p0 , pt .Metric .L2Squared , 10 )
126+ #t = spKDTree(p0 , leafsize=10)
127+ #t = spcKDTree(p0 , leafsize=10)
128+ #t = skKDTree(p0 , leaf_size=10)
127129 cnt_build_time_after = perf_counter ()
128130 print (f"{ t } was built in { (cnt_build_time_after - cnt_build_time_before ) * 1000.0 } ms" )
129131 # Use the OMP_NUM_THREADS environment variable to influence the number of
@@ -142,11 +144,11 @@ def performance_test_pico_tree():
142144 # TODO The actual overhead is probably very similar to that of the KdTree
143145 # creation, but it would be nice to measure the overhead w.r.t. the actual
144146 # query.
145- unused_knns = t .search_knn (p , k )
146- # unused_dd, unused_ii = t.query(p , k=k)
147+ unused_knns = t .search_knn (p1 , k )
148+ #unused_dd, unused_ii = t.query(p1 , k=k)
147149 cnt_query_time_after = perf_counter ()
148150 print (
149- f"{ len (p )} points queried in { (cnt_query_time_after - cnt_query_time_before ) * 1000.0 } ms" )
151+ f"{ len (p1 )} points queried in { (cnt_query_time_after - cnt_query_time_before ) * 1000.0 } ms" )
150152 print ()
151153
152154
0 commit comments