|
| 1 | +class Solution { |
| 2 | +public: |
| 3 | + // Function to calculate the number of combinations using dynamic programming |
| 4 | + int solve(vector<int>& nums, int target) { |
| 5 | + // Edge case: If the target is negative or the input array is empty, return 0 |
| 6 | + if(target < 0 || nums.empty()) return 0; |
| 7 | + |
| 8 | + // Create a DP array to store the number of ways to achieve each target sum |
| 9 | + vector<int> dp(target + 1, 0); |
| 10 | + |
| 11 | + // Base case: There's only one way to make a sum of 0 (choose nothing) |
| 12 | + dp[0] = 1; |
| 13 | + |
| 14 | + // Iterate over all possible target values from 1 to the given target |
| 15 | + for(int currentTarget = 1; currentTarget <= target; currentTarget++) { |
| 16 | + // Iterate through each number in the input array |
| 17 | + for(int numIndex = 0; numIndex < nums.size(); numIndex++) { |
| 18 | + // Check if the current number can contribute to the current target |
| 19 | + if(currentTarget - nums[numIndex] >= 0) { |
| 20 | + // Handle potential integer overflow |
| 21 | + if (dp[currentTarget] > INT_MAX - dp[currentTarget - nums[numIndex]]) { |
| 22 | + dp[currentTarget] = INT_MAX; // Set to INT_MAX if overflow occurs |
| 23 | + } else { |
| 24 | + // Update dp[currentTarget] by adding the ways to achieve the reduced target |
| 25 | + dp[currentTarget] += dp[currentTarget - nums[numIndex]]; |
| 26 | + } |
| 27 | + } |
| 28 | + } |
| 29 | + } |
| 30 | + |
| 31 | + // Return the number of combinations to make the target sum |
| 32 | + return dp[target]; |
| 33 | + } |
| 34 | + |
| 35 | + // Main function to calculate the number of combinations |
| 36 | + int combinationSum4(vector<int>& nums, int target) { |
| 37 | + // Call the DP-based solve function |
| 38 | + return solve(nums, target); |
| 39 | + } |
| 40 | +}; |
0 commit comments