|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": 1, |
| 6 | + "id": "c9d42a09", |
| 7 | + "metadata": {}, |
| 8 | + "outputs": [ |
| 9 | + { |
| 10 | + "name": "stdout", |
| 11 | + "output_type": "stream", |
| 12 | + "text": [ |
| 13 | + "Downloading https://maxhalford.github.io/files/datasets/toulouse_bikes.zip (1.12 MB)\n", |
| 14 | + "Uncompressing into /home/jbris/river_data/Bikes\n", |
| 15 | + "{'clouds': 75,\n", |
| 16 | + " 'description': 'light rain',\n", |
| 17 | + " 'humidity': 81,\n", |
| 18 | + " 'moment': datetime.datetime(2016, 4, 1, 0, 0, 7),\n", |
| 19 | + " 'pressure': 1017.0,\n", |
| 20 | + " 'station': 'metro-canal-du-midi',\n", |
| 21 | + " 'temperature': 6.54,\n", |
| 22 | + " 'wind': 9.3}\n", |
| 23 | + "Number of available bikes: 1\n", |
| 24 | + "[20,000] MAE: 4.912763\n", |
| 25 | + "[40,000] MAE: 5.333578\n", |
| 26 | + "[60,000] MAE: 5.330969\n", |
| 27 | + "[80,000] MAE: 5.392334\n", |
| 28 | + "[100,000] MAE: 5.423078\n", |
| 29 | + "[120,000] MAE: 5.541239\n", |
| 30 | + "[140,000] MAE: 5.613038\n", |
| 31 | + "[160,000] MAE: 5.622441\n", |
| 32 | + "[180,000] MAE: 5.567836\n", |
| 33 | + "[182,470] MAE: 5.563905\n" |
| 34 | + ] |
| 35 | + }, |
| 36 | + { |
| 37 | + "data": { |
| 38 | + "text/plain": [ |
| 39 | + "MAE: 5.563905" |
| 40 | + ] |
| 41 | + }, |
| 42 | + "execution_count": 1, |
| 43 | + "metadata": {}, |
| 44 | + "output_type": "execute_result" |
| 45 | + } |
| 46 | + ], |
| 47 | + "source": [ |
| 48 | + "from pprint import pprint\n", |
| 49 | + "from river import datasets\n", |
| 50 | + "\n", |
| 51 | + "dataset = datasets.Bikes()\n", |
| 52 | + "\n", |
| 53 | + "for x, y in dataset:\n", |
| 54 | + " pprint(x)\n", |
| 55 | + " print(f'Number of available bikes: {y}')\n", |
| 56 | + " break\n", |
| 57 | + " \n", |
| 58 | + "from river import compose\n", |
| 59 | + "from river import linear_model\n", |
| 60 | + "from river import metrics\n", |
| 61 | + "from river import evaluate\n", |
| 62 | + "from river import preprocessing\n", |
| 63 | + "from river import optim\n", |
| 64 | + "\n", |
| 65 | + "model = compose.Select('clouds', 'humidity', 'pressure', 'temperature', 'wind')\n", |
| 66 | + "model |= preprocessing.StandardScaler()\n", |
| 67 | + "model |= linear_model.LinearRegression(optimizer=optim.SGD(0.001))\n", |
| 68 | + "\n", |
| 69 | + "metric = metrics.MAE()\n", |
| 70 | + "\n", |
| 71 | + "evaluate.progressive_val_score(dataset, model, metric, print_every=20_000)" |
| 72 | + ] |
| 73 | + }, |
| 74 | + { |
| 75 | + "cell_type": "code", |
| 76 | + "execution_count": 2, |
| 77 | + "id": "93b94267", |
| 78 | + "metadata": {}, |
| 79 | + "outputs": [ |
| 80 | + { |
| 81 | + "name": "stdout", |
| 82 | + "output_type": "stream", |
| 83 | + "text": [ |
| 84 | + "[20,000] MAE: 3.720766\n", |
| 85 | + "[40,000] MAE: 3.829739\n", |
| 86 | + "[60,000] MAE: 3.844905\n", |
| 87 | + "[80,000] MAE: 3.910137\n", |
| 88 | + "[100,000] MAE: 3.888553\n", |
| 89 | + "[120,000] MAE: 3.923644\n", |
| 90 | + "[140,000] MAE: 3.980882\n", |
| 91 | + "[160,000] MAE: 3.949972\n", |
| 92 | + "[180,000] MAE: 3.934489\n", |
| 93 | + "[182,470] MAE: 3.933442\n" |
| 94 | + ] |
| 95 | + }, |
| 96 | + { |
| 97 | + "data": { |
| 98 | + "text/plain": [ |
| 99 | + "MAE: 3.933442" |
| 100 | + ] |
| 101 | + }, |
| 102 | + "execution_count": 2, |
| 103 | + "metadata": {}, |
| 104 | + "output_type": "execute_result" |
| 105 | + } |
| 106 | + ], |
| 107 | + "source": [ |
| 108 | + "from river import feature_extraction\n", |
| 109 | + "from river import stats\n", |
| 110 | + "\n", |
| 111 | + "def get_hour(x):\n", |
| 112 | + " x['hour'] = x['moment'].hour\n", |
| 113 | + " return x\n", |
| 114 | + "\n", |
| 115 | + "model = compose.Select('clouds', 'humidity', 'pressure', 'temperature', 'wind')\n", |
| 116 | + "model += (\n", |
| 117 | + " get_hour |\n", |
| 118 | + " feature_extraction.TargetAgg(by=['station', 'hour'], how=stats.Mean())\n", |
| 119 | + ")\n", |
| 120 | + "model |= preprocessing.StandardScaler()\n", |
| 121 | + "model |= linear_model.LinearRegression(optimizer=optim.SGD(0.001))\n", |
| 122 | + "\n", |
| 123 | + "metric = metrics.MAE()\n", |
| 124 | + "\n", |
| 125 | + "evaluate.progressive_val_score(dataset, model, metric, print_every=20_000)" |
| 126 | + ] |
| 127 | + }, |
| 128 | + { |
| 129 | + "cell_type": "code", |
| 130 | + "execution_count": 3, |
| 131 | + "id": "aa7a091c", |
| 132 | + "metadata": {}, |
| 133 | + "outputs": [ |
| 134 | + { |
| 135 | + "name": "stdout", |
| 136 | + "output_type": "stream", |
| 137 | + "text": [ |
| 138 | + "0. Input\n", |
| 139 | + "--------\n", |
| 140 | + "clouds: 75 (int)\n", |
| 141 | + "description: light rain (str)\n", |
| 142 | + "humidity: 81 (int)\n", |
| 143 | + "moment: 2016-04-01 00:00:07 (datetime)\n", |
| 144 | + "pressure: 1,017.00000 (float)\n", |
| 145 | + "station: metro-canal-du-midi (str)\n", |
| 146 | + "temperature: 6.54000 (float)\n", |
| 147 | + "wind: 9.30000 (float)\n", |
| 148 | + "\n", |
| 149 | + "1. Transformer union\n", |
| 150 | + "--------------------\n", |
| 151 | + " 1.0 Select\n", |
| 152 | + " ----------\n", |
| 153 | + " clouds: 75 (int)\n", |
| 154 | + " humidity: 81 (int)\n", |
| 155 | + " pressure: 1,017.00000 (float)\n", |
| 156 | + " temperature: 6.54000 (float)\n", |
| 157 | + " wind: 9.30000 (float)\n", |
| 158 | + "\n", |
| 159 | + " 1.1 get_hour | y_mean_by_station_and_hour\n", |
| 160 | + " -----------------------------------------\n", |
| 161 | + " y_mean_by_station_and_hour: 4.43243 (float)\n", |
| 162 | + "\n", |
| 163 | + "clouds: 75 (int)\n", |
| 164 | + "humidity: 81 (int)\n", |
| 165 | + "pressure: 1,017.00000 (float)\n", |
| 166 | + "temperature: 6.54000 (float)\n", |
| 167 | + "wind: 9.30000 (float)\n", |
| 168 | + "y_mean_by_station_and_hour: 4.43243 (float)\n", |
| 169 | + "\n", |
| 170 | + "2. StandardScaler\n", |
| 171 | + "-----------------\n", |
| 172 | + "clouds: 0.47566 (float)\n", |
| 173 | + "humidity: 0.42247 (float)\n", |
| 174 | + "pressure: 1.05314 (float)\n", |
| 175 | + "temperature: -1.22098 (float)\n", |
| 176 | + "wind: 2.21104 (float)\n", |
| 177 | + "y_mean_by_station_and_hour: -0.59098 (float)\n", |
| 178 | + "\n", |
| 179 | + "3. LinearRegression\n", |
| 180 | + "-------------------\n", |
| 181 | + "Name Value Weight Contribution \n", |
| 182 | + " Intercept 1.00000 6.58252 6.58252 \n", |
| 183 | + " pressure 1.05314 3.78529 3.98646 \n", |
| 184 | + " humidity 0.42247 1.44921 0.61225 \n", |
| 185 | + "y_mean_by_station_and_hour -0.59098 0.54167 -0.32011 \n", |
| 186 | + " clouds 0.47566 -1.92255 -0.91448 \n", |
| 187 | + " wind 2.21104 -0.77720 -1.71843 \n", |
| 188 | + " temperature -1.22098 2.47030 -3.01619 \n", |
| 189 | + "\n", |
| 190 | + "Prediction: 5.21201\n" |
| 191 | + ] |
| 192 | + } |
| 193 | + ], |
| 194 | + "source": [ |
| 195 | + "import itertools\n", |
| 196 | + "\n", |
| 197 | + "model = compose.Select('clouds', 'humidity', 'pressure', 'temperature', 'wind')\n", |
| 198 | + "model += (\n", |
| 199 | + " get_hour |\n", |
| 200 | + " feature_extraction.TargetAgg(by=['station', 'hour'], how=stats.Mean())\n", |
| 201 | + ")\n", |
| 202 | + "model |= preprocessing.StandardScaler()\n", |
| 203 | + "model |= linear_model.LinearRegression()\n", |
| 204 | + "\n", |
| 205 | + "for x, y in itertools.islice(dataset, 10000):\n", |
| 206 | + " y_pred = model.predict_one(x)\n", |
| 207 | + " model.learn_one(x, y)\n", |
| 208 | + "\n", |
| 209 | + "x, y = next(iter(dataset))\n", |
| 210 | + "print(model.debug_one(x))" |
| 211 | + ] |
| 212 | + }, |
| 213 | + { |
| 214 | + "cell_type": "code", |
| 215 | + "execution_count": 4, |
| 216 | + "id": "a06bc18b", |
| 217 | + "metadata": {}, |
| 218 | + "outputs": [ |
| 219 | + { |
| 220 | + "name": "stdout", |
| 221 | + "output_type": "stream", |
| 222 | + "text": [ |
| 223 | + "[20,000] MAE: 20.198137\n", |
| 224 | + "[40,000] MAE: 12.199763\n", |
| 225 | + "[60,000] MAE: 9.468279\n", |
| 226 | + "[80,000] MAE: 8.126625\n", |
| 227 | + "[100,000] MAE: 7.273133\n", |
| 228 | + "[120,000] MAE: 6.735469\n", |
| 229 | + "[140,000] MAE: 6.376704\n", |
| 230 | + "[160,000] MAE: 6.06156\n", |
| 231 | + "[180,000] MAE: 5.806744\n", |
| 232 | + "[182,470] MAE: 5.780772\n" |
| 233 | + ] |
| 234 | + }, |
| 235 | + { |
| 236 | + "data": { |
| 237 | + "text/plain": [ |
| 238 | + "MAE: 5.780772" |
| 239 | + ] |
| 240 | + }, |
| 241 | + "execution_count": 4, |
| 242 | + "metadata": {}, |
| 243 | + "output_type": "execute_result" |
| 244 | + } |
| 245 | + ], |
| 246 | + "source": [ |
| 247 | + "import datetime as dt\n", |
| 248 | + "\n", |
| 249 | + "evaluate.progressive_val_score(\n", |
| 250 | + " dataset=dataset,\n", |
| 251 | + " model=model.clone(),\n", |
| 252 | + " metric=metrics.MAE(),\n", |
| 253 | + " moment='moment',\n", |
| 254 | + " delay=dt.timedelta(minutes=30),\n", |
| 255 | + " print_every=20_000\n", |
| 256 | + ")" |
| 257 | + ] |
| 258 | + }, |
| 259 | + { |
| 260 | + "cell_type": "code", |
| 261 | + "execution_count": null, |
| 262 | + "id": "9bbc8b4e", |
| 263 | + "metadata": {}, |
| 264 | + "outputs": [], |
| 265 | + "source": [] |
| 266 | + } |
| 267 | + ], |
| 268 | + "metadata": { |
| 269 | + "kernelspec": { |
| 270 | + "display_name": "Python 3 (ipykernel)", |
| 271 | + "language": "python", |
| 272 | + "name": "python3" |
| 273 | + }, |
| 274 | + "language_info": { |
| 275 | + "codemirror_mode": { |
| 276 | + "name": "ipython", |
| 277 | + "version": 3 |
| 278 | + }, |
| 279 | + "file_extension": ".py", |
| 280 | + "mimetype": "text/x-python", |
| 281 | + "name": "python", |
| 282 | + "nbconvert_exporter": "python", |
| 283 | + "pygments_lexer": "ipython3", |
| 284 | + "version": "3.10.13" |
| 285 | + } |
| 286 | + }, |
| 287 | + "nbformat": 4, |
| 288 | + "nbformat_minor": 5 |
| 289 | +} |
0 commit comments