33import pandas as pd
44from sklearn import datasets
55from sklearn import preprocessing
6- from ... evaluations . utils import MTL_data_extract , MTL_data_split , opts
6+ from ..utils import MTL_data_extract , MTL_data_split , opts
77from .test_data import get_data
88from sklearn .linear_model import LogisticRegression
99import os
2121
2222print (os .getcwd ())
2323print ('???????????????' )
24- df3 = pd .read_csv ('./cleaned_BRFSS.csv' )
24+ # df3 = pd.read_csv('./cleaned_BRFSS.csv')
2525
2626def normalize (X ):
2727 for i in range (len (X )):
@@ -30,41 +30,41 @@ def normalize(X):
3030 return X
3131
3232class Test_softmax_classification (object ):
33- def test_real_data (self ):
34- df4 = df3 [(df3 ['ADDEPEV2' ]== 2 )| (df3 ['ADDEPEV2' ]== 1 )]
35- # opts.tol = 1e-20
36- X , Y = MTL_data_extract (df4 , "ADDEPEV2" , "_BMI5CAT" )
37- task = [0 ]* 2
38- taskT = 0
39- for i in range (1 ):
40- X_train , X_test , Y_train , Y_test = MTL_data_split (X , Y , test_size = 0.998 )
41- X_train = normalize (X_train )
42- X_test = normalize (X_test )
43- for i in range (len (Y_train )):
44- Y_train [i ] = Y_train [i ].astype (int )
45- clf = MTL_Softmax_L21 (opts )
46- clf .fit (X_train , Y_train )
47- pred = clf .predict (X_test )
33+ # def test_real_data(self):
34+ # df4 = df3[(df3['ADDEPEV2']==2)|(df3['ADDEPEV2']==1)]
35+ # # opts.tol = 1e-20
36+ # X, Y = MTL_data_extract(df4, "ADDEPEV2", "_BMI5CAT")
37+ # task = [0]*2
38+ # taskT = 0
39+ # for i in range(1):
40+ # X_train, X_test, Y_train, Y_test = MTL_data_split(X, Y, test_size=0.998)
41+ # X_train = normalize(X_train)
42+ # X_test = normalize(X_test)
43+ # for i in range(len(Y_train)):
44+ # Y_train[i] = Y_train[i].astype(int)
45+ # clf = MTL_Softmax_L21(opts)
46+ # clf.fit(X_train, Y_train)
47+ # pred = clf.predict(X_test)
4848
49- c_t = 0
50- total = 0
51- for i in range (len (pred )):
52- correct = np .sum (pred [i ]== Y_test [i ])
53- sub = len (pred [i ])
54- task [i ] = max (task [i ], correct / sub * 100 )
55- total += sub
56- c_t += correct
57- taskT = max (taskT , c_t / total * 100 )
58- print ("accurcy for task 1 is {}%" .format (task [0 ]))
59- print ("accurcy for task 2 is {}%" .format (task [1 ]))
60- print ("total accuracy is {}%" .format (taskT ))
49+ # c_t = 0
50+ # total = 0
51+ # for i in range(len(pred)):
52+ # correct = np.sum(pred[i]==Y_test[i])
53+ # sub = len(pred[i])
54+ # task[i] = max(task[i], correct/sub*100)
55+ # total += sub
56+ # c_t += correct
57+ # taskT = max(taskT, c_t/total*100)
58+ # print("accurcy for task 1 is {}%".format(task[0]))
59+ # print("accurcy for task 2 is {}%".format(task[1]))
60+ # print("total accuracy is {}%".format(taskT))
6161
62- for i in range (len (pred )):
63- clf = LogisticRegression (random_state = 0 ).fit (X_train [i ], Y_train [i ])
64- s = clf .score (X_test [i ], Y_test [i ])
65- print ("SKLearn accuracy for task {} is {}%" .format (i , s * 100 ))
62+ # for i in range(len(pred)):
63+ # clf = LogisticRegression(random_state=0).fit(X_train[i], Y_train[i])
64+ # s = clf.score(X_test[i], Y_test[i])
65+ # print("SKLearn accuracy for task {} is {}%".format(i, s*100))
6666
67- assert c_t / total * 100 == 0
67+ # assert c_t/total*100 == 0
6868
6969 def test_soft_numerical_accuracy (self ):
7070 ult_thres = 0.5
0 commit comments