From aa1008384bfb1bee09b061e57dbda64dad06243b Mon Sep 17 00:00:00 2001 From: Fernanda Soto <156433287+FerSotoApse@users.noreply.github.com> Date: Mon, 23 Sep 2024 21:14:24 +0200 Subject: [PATCH 01/10] Add files via upload --- Score_study_borrador.ipynb | 6795 ++++++++++++++++++++++++++++++++++++ 1 file changed, 6795 insertions(+) create mode 100644 Score_study_borrador.ipynb diff --git a/Score_study_borrador.ipynb b/Score_study_borrador.ipynb new file mode 100644 index 0000000..4d5558c --- /dev/null +++ b/Score_study_borrador.ipynb @@ -0,0 +1,6795 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Accumulated and Performance Score Methods: A comparative approach\n", + "\n", + "Common game score systems consists in assigning points on individual players that in team scores are reflected as the accumulated (and weighted) sum of this points. A common practice is to assign players to random teams for equal distribution, wich will work well when teams don't represent any symbol that has special meaning to the players. The main problem that may cause negative environments and behaviors between players with this system is precisely when teams represent something meaningful to them (be it game lore, favouritism, etc.), causing frustration, discrimination and lack of interest, with latent desires of supporting teams in small collectives (group of friends) and freedom to choose (posibility to change to other teams).\n", + "\n", + "Here is developed a simple proposal to change the calculus of the main accumulative score system to a distributive (or normalized) score system for games where teams have a symbolic meaning to players, evaluating a team by its performances instead, recognizing pros and cons to consider before implementing:\n", + "\n", + "*Pros*\n", + "- give freedom to players to choose a side\n", + "- easy to interpret from evaluating point of view, e.g., 3 out of 10 players won highest score in the event\n", + "- easy to compare between teams, normalizing each team distribution separately\n", + "- balance escenarios in wich teams have different sizes to prevent leading to biased results with increment of negative perception from the player base\n", + "\n", + "*Cons*\n", + "- has a medium complexity not often used for user visualization\n", + "- needs additional explanation with a friendly user approach to avoid conflict if teams distributions (or sizes) are notably unbalanced (e.g. the largest team may not understand why a smaller team is favoured if no explanation is provided)\n", + "\n", + "Since is not common to find this approach in medium to large scale, it is expected to work in a practical escenario when users are actually playing in small groups (be it 3, 8 or 10 players in one event), then the expected perception will be 'Team A has more/less skilled players than Team B' rather than 'Because Team A has more/less players, is no surprise they would win/lose against Team B'" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "CPU times: user 3.42 s, sys: 0 ns, total: 3.42 s\n", + "Wall time: 2.27 s\n" + ] + } + ], + "source": [ + "%%time\n", + "import numpy as np\n", + "from random import randint, shuffle\n", + "import time\n", + "import datetime\n", + "import pandas as pd\n", + "import plotly.express as px\n", + "import plotly.graph_objects as go\n", + "from plotly.subplots import make_subplots\n", + "\n", + "# set import para bokeh (funciona como un seaborn interactivo)\n", + "#from bokeh.io import output_notebook, show\n", + "#from bokeh.resources import INLINE\n", + "#from bokeh.plotting import figure\n", + "#output_notebook(INLINE)\n", + "#output_notebook()\n", + "\n", + "# ignore UserWarning (basically for dataframe filtering)\n", + "import warnings\n", + "warnings.simplefilter(\"ignore\", UserWarning)\n", + "#import the_module_that_warns\n", + "\n", + "medal_order = {'medal' : ['gold', 'silver', 'bronze', 'not played']}\n", + "medal_colors = ['rgb(255, 222, 94)', 'rgb(169, 180, 195)', 'rgb(194, 144, 80)', 'rgb(0,0,0)']" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Creating simulated data functions" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Single player" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "def player_score(player_id = randint(10000, 99999), date = datetime.date.today().isoformat()):\n", + " \"\"\"\n", + " Creates a DataFrame with a single random player and scores for each event (game)\n", + "\n", + " **Parameters**\n", + " player_id: player unique identifier\n", + " date: date in YYYY-MM-DD (today by default)\n", + " \"\"\"\n", + " player = pd.DataFrame(\n", + " {\n", + " 'player_id' : [f\"{player_id}\" for i in range(2)],\n", + " 'event_date' : [date for i in range(2)],\n", + " 'event_game' : ['A','B'],\n", + " 'score' : [randint(0,3) for i in range(2)]\n", + " }\n", + " )\n", + "\n", + " return player" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "# generate a player with a simulated score for both game events\n", + "\n", + "#player = player_score()\n", + "#player" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Team with multiple players" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "# OPTIMIZADO\n", + "\n", + "# from the player function, a team can be created\n", + "\n", + "#team = player_score(datetime.date(2024,8,5).isoformat())\n", + "#team = pd.concat([team, player_score(datetime.date(2024,8,5).isoformat())])\n", + "#team = pd.concat([team, player_score(datetime.date(2024,8,5).isoformat())])\n", + "#team = pd.concat([team, player_score(datetime.date(2024,8,5).isoformat())])\n", + "\n", + "#team.reset_index(drop=True, inplace=True)\n", + "#team" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "# OPTIMIZADO\n", + "\n", + "# list with random players\n", + "#team_players_l = [randint(10000,99999) for i in range(5)]\n", + "\n", + "# build a dataframe from the list\n", + "# first player (with team_player[0] and date as optional)\n", + "#team = player_score(datetime.date(2024,8,5).isoformat(),\n", + "# team_players_l[0])\n", + "\n", + "# rest of players(from team_player[1])\n", + "#for i in range(1,len(team_players_l)):\n", + "# team = pd.concat([team, # dataframe con el primer jugador de la lista\n", + "# player_score(datetime.date(2024,8,5).isoformat(),\n", + "# player_id = team_players_l[i]) # concatena con los demas jugadores de la lista\n", + "# ])\n", + "#\n", + "#team" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "# for creating a team with simulated scores\n", + "\n", + "def team_players(player_id= [randint(10000,99999)], date = datetime.date.today().isoformat()):\n", + "\n", + " \"\"\"\n", + " Creates a team score data with a given list of players with random scores for each event.\n", + " \"\"\"\n", + " \n", + " # creates a dataframe with the first player on list (player_id)\n", + " team = player_score(player_id[0], date)\n", + " \n", + " # if more players on list, it will concatenate this new players (from team_player[1])\n", + " if len(player_id) > 1:\n", + " for player in range(1, len(player_id)):\n", + " team = pd.concat([team, # main dataframe\n", + " pd.DataFrame( # the other players\n", + " {\n", + " 'player_id' : [f\"{player_id[player]}\" for i in range(2)],\n", + " 'event_date' : [date for i in range(2)],\n", + " 'event_game' : ['A', 'B'],\n", + " 'score' : [randint(0,3) for i in range(2)]\n", + " }\n", + " ) \n", + " ])\n", + " # reindex de filas\n", + " team.reset_index(drop = True, inplace = True)\n", + " \n", + " return team" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "# try the function!\n", + "\n", + "# team with a single player\n", + "#team = team_players()\n", + "\n", + "# team with more players from list\n", + "#team_players_l = [randint(10000,99999) for i in range(4)]\n", + "#team = team_players(player_id = team_players_l)\n", + "\n", + "#team" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Describing scores" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "# lets try with a medal column to describe the scores\n", + "\n", + "#medal = []\n", + "#\n", + "#for s in team['score'].values:\n", + "# if s == 1:\n", + "# medal.append('bronze')\n", + "# elif s == 2:\n", + "# medal.append('silver')\n", + "# elif s == 3:\n", + "# medal.append('gold')\n", + "# else:\n", + "# medal.append('not played')\n", + "#\n", + "#\n", + "#team['medal'] = pd.Categorical(medal, categories=['not played', 'bronze', 'silver', 'gold'], ordered=False)\n", + "#team" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "# making a more fancy representation of scores: create a categorical column\n", + "\n", + "def team_scores(player_id = [randint(10000,99999)], date = datetime.date.today().isoformat()):\n", + " \"\"\"\n", + " Creates a team score data with a given list of players with random scores\n", + " for each event, and asigns score description.\n", + " \"\"\"\n", + "\n", + " team = team_players(player_id, date)\n", + "\n", + " medal = []\n", + "\n", + " for s in team['score'].values:\n", + " if s == 1:\n", + " medal.append('bronze')\n", + " elif s == 2:\n", + " medal.append('silver')\n", + " elif s == 3:\n", + " medal.append('gold')\n", + " else:\n", + " medal.append('not played')\n", + "\n", + " team['medal'] = pd.Categorical(medal, categories=['not played', 'bronze', 'silver', 'gold'], ordered=False)\n", + "\n", + " return team" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Creating teams from unique player ID" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Configuring input for user defined values" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Users in events: 611 users\n" + ] + } + ], + "source": [ + "# players id, unsorted, unique\n", + "# the player_base must be defined by the user to test escenarios\n", + "\n", + "#------------------------------- n players in player base\n", + "n_player_base = 611 #6114 #100\n", + "#------------------------------- max player ids: 99999\n", + "player_ids = [i for i in range(10000,100000)]\n", + "shuffle(player_ids)\n", + "#------------------------------- cuts list with indexing\n", + "player_ids = player_ids[:n_player_base]\n", + "\n", + "# amount of players by team (add streamlit checkbox)\n", + "input_a = 184 #1842 #27\n", + "input_b = 236 #2357 #12\n", + "input_c = 81 #810 #27\n", + "# input_d = len(player_base) - (input_a + input_b + input_c) # replaced by d_pl\n", + "\n", + "print(f\"Users in events: {len(player_ids)} users\")" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "# team name input for streamlit\n", + "#--------- for default teams\n", + "team_names_input = ['ThunderCats', 'Dog Patrol', 'Power Birds', 'Go Magikarp']\n", + "#--------- user defined teams example\n", + "#team_names_input = ['Daylight Prairie', 'Hidden Forest', 'Valley of Triumph', 'Golden Wasteland']\n", + "\n", + "# date input for Streamlit\n", + "#date = datetime.date.today().isoformat()\n", + "date = datetime.date(2024, 8, 15).isoformat()" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "# RANDOM IDS TEST\n", + "# for numbers less than 1000 it works fine, but larger number of n_player_base doesn't end the loop\n", + "# this is probably caused by reducing the probability of picking a not repeated value in iteration\n", + "# a posible solution can be create a list only using values in range() instead of using randint()\n", + "\n", + "#while len(player_base) != n_player_base:\n", + "# print(f\"Users in events: {len(player_base)} users\")\n", + "# player_base = list(set(randint(10000,99999) for i in range(n_player_base)))\n", + "\n", + "# with shuffle works perfectly!!!\n", + "#n_player_base = 6114 #6114 #100\n", + "#player_base = [i for i in range(10000,100000)]\n", + "#shuffle(player_base)\n", + "#player_base = player_base[:n_player_base]\n", + "\n", + "#player_base[:5]" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(427, 191, 110)" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# player leftover sequence\n", + "# useful to visualize when testing n players\n", + "\n", + "b_pl = n_player_base - input_a\n", + "c_pl = n_player_base - (input_a + input_b)\n", + "d_pl = n_player_base - (input_a + input_b + input_c)\n", + "\n", + "b_pl, c_pl, d_pl#, b_pl+c_pl+d_pl" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Streamlit checkbox simulation" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "# checbox: if cb_b == true, appears cb_c == False\n", + "# checbox: if cb_b == false, cb_c remains hidden\n", + "cb_b = True\n", + "cb_c = True\n", + "cb_d = False" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Team A: 184\n", + "Team B: 236\n", + "Team C: 81\n", + "Team D: 0\n", + "Total users: 501\n" + ] + } + ], + "source": [ + "# player distribution through all teams, sorted, rectified\n", + "# teams b, c and d must be unlocked in the app (if checkbox b/c/d marked (True): create team b/c/d)\n", + "\n", + "# team B n players\n", + "if cb_b == True:\n", + " if input_b <= b_pl and b_pl >= 1:\n", + " team_b = input_b\n", + " else:\n", + " team_b = 0\n", + "\n", + "# team C n players\n", + "if cb_c == True:\n", + " if input_c <= c_pl and c_pl >= 1:\n", + " team_c = input_c\n", + " else:\n", + " team_c = 0\n", + "else:\n", + " team_c = 0\n", + "\n", + "# team D n players\n", + "if cb_d == True:\n", + " #if input_d <= d_pl and d_pl >= 1:\n", + " if d_pl >= 1:\n", + " team_d = d_pl\n", + " else:\n", + " team_d = 0\n", + "else:\n", + " team_d = 0\n", + "\n", + "print(f\"\"\"Team A: {input_a}\\nTeam B: {team_b}\\nTeam C: {team_c}\\nTeam D: {team_d}\\nTotal users: {input_a+team_b+team_c+team_d}\"\"\")" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(184, 236, 81, 0)" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# users in each team\n", + "team_a_players = player_ids[:input_a]\n", + "team_b_players = player_ids[input_a:len(team_a_players)+team_b]\n", + "team_c_players = player_ids[len(team_b_players):len(team_b_players)+team_c]\n", + "team_d_players = player_ids[len(team_c_players):len(team_c_players)+team_d]\n", + "\n", + "# verify team lengths (from inputs and checkboxes)\n", + "len(team_a_players), len(team_b_players), len(team_c_players), len(team_d_players)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Render players dataframe and teams aggregated dataframe" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
player_idevent_dateevent_gamescoremedalteam
0779352024-08-15A3goldThunderCats
1779352024-08-15B1bronzeThunderCats
2459762024-08-15A2silverThunderCats
3459762024-08-15B3goldThunderCats
4938482024-08-15A0not playedThunderCats
.....................
997955732024-08-15B0not playedPower Birds
998727742024-08-15A2silverPower Birds
999727742024-08-15B2silverPower Birds
1000442722024-08-15A1bronzePower Birds
1001442722024-08-15B1bronzePower Birds
\n", + "

1002 rows × 6 columns

\n", + "
" + ], + "text/plain": [ + " player_id event_date event_game score medal team\n", + "0 77935 2024-08-15 A 3 gold ThunderCats\n", + "1 77935 2024-08-15 B 1 bronze ThunderCats\n", + "2 45976 2024-08-15 A 2 silver ThunderCats\n", + "3 45976 2024-08-15 B 3 gold ThunderCats\n", + "4 93848 2024-08-15 A 0 not played ThunderCats\n", + "... ... ... ... ... ... ...\n", + "997 95573 2024-08-15 B 0 not played Power Birds\n", + "998 72774 2024-08-15 A 2 silver Power Birds\n", + "999 72774 2024-08-15 B 2 silver Power Birds\n", + "1000 44272 2024-08-15 A 1 bronze Power Birds\n", + "1001 44272 2024-08-15 B 1 bronze Power Birds\n", + "\n", + "[1002 rows x 6 columns]" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# build DataFrame (no date input yet)\n", + "\n", + "#------------------------------------------ team A\n", + "#team_a_players = player_base[:input_a]\n", + "df_team_a = team_scores(player_id = team_a_players, date = date)\n", + "df_team_a['team'] = pd.Series([team_names_input[0] for i in range(len(df_team_a))])\n", + "# for accumulative sum method demonstration\n", + "df_eventplayers = df_team_a.copy()\n", + "\n", + "# builds a total_players list for df (team a by default)\n", + "total_players = [input_a for i in range(3)]\n", + "\n", + "#------------------------------------------ team B \n", + "#if len(team_b_players) > 0:\n", + "if cb_b == True:\n", + " #team_b_players = player_base[input_a:len(team_a_players)+team_b]\n", + " df_team_b = team_scores(player_id = team_b_players, date = date)\n", + " df_team_b['team'] = pd.Series([team_names_input[1] for i in range(len(df_team_b))])\n", + " df_eventplayers = pd.concat([df_eventplayers, df_team_b]).reset_index(drop=True)\n", + " \n", + " # appends team b players\n", + " total_players.extend([team_b for i in range(3)])\n", + "#------------------------------------------ team C\n", + "#if len(team_c_players) > 0:\n", + "if cb_c == True:\n", + " #team_c_players = player_base[len(team_b_players):len(team_b_players)+team_c]\n", + " df_team_c = team_scores(player_id = team_c_players, date = date)\n", + " df_team_c['team'] = pd.Series([team_names_input[2] for i in range(len(df_team_c))])\n", + " df_eventplayers = pd.concat([df_eventplayers, df_team_c]).reset_index(drop=True)\n", + "\n", + " # appends team c players\n", + " total_players.extend([team_c for i in range(3)])\n", + " \n", + "#------------------------------------------ team D\n", + "#if len(team_d_players) > 0:\n", + "if cb_d == True:\n", + " #team_d_players = player_base[len(team_c_players):len(team_c_players)+team_d]\n", + " df_team_d = team_scores(player_id = team_d_players, date = date)\n", + " df_team_d['team'] = pd.Series([team_names_input[3] for i in range(len(df_team_d))])\n", + " df_eventplayers = pd.concat([df_eventplayers, df_team_d]).reset_index(drop=True)\n", + "\n", + " # appends team d players\n", + " total_players.extend([team_d for i in range(3)])\n", + "\n", + "# all players in one dataframe\n", + "df_eventplayers#.head(3)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Accumulative Method\n", + "\n", + "This method will consider only a weighted sum of scores, the more players the team has, it will accumulate more medals, considering some players won't participate in both events." + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
event_dateevent_gameteammedalmedal_frequenceacc_w_scoretotal_players
02024-08-15AThunderCatsbronze4242184
12024-08-15AThunderCatssilver3876184
22024-08-15AThunderCatsgold50150184
32024-08-15ADog Patrolbronze6363236
\n", + "
" + ], + "text/plain": [ + " event_date event_game team medal medal_frequence acc_w_score \\\n", + "0 2024-08-15 A ThunderCats bronze 42 42 \n", + "1 2024-08-15 A ThunderCats silver 38 76 \n", + "2 2024-08-15 A ThunderCats gold 50 150 \n", + "3 2024-08-15 A Dog Patrol bronze 63 63 \n", + "\n", + " total_players \n", + "0 184 \n", + "1 184 \n", + "2 184 \n", + "3 236 " + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# accumulated, weighted scores (keeping dataframe integrity)\n", + "df_eventteams_scores = df_eventplayers.groupby(['event_date', 'event_game', 'team', 'medal']).sum('score').reset_index()\n", + "\n", + "#---------------- frequency (medal count)\n", + "acc_f = []\n", + "for i in range(len(df_eventteams_scores)):\n", + " if df_eventteams_scores['medal'].iat[i]=='gold':\n", + " acc_f.append(int(df_eventteams_scores['score'].iat[i]/3))\n", + " elif df_eventteams_scores['medal'].iat[i]=='silver':\n", + " acc_f.append(int(df_eventteams_scores['score'].iat[i]/2))\n", + " elif df_eventteams_scores['medal'].iat[i]=='bronze':\n", + " acc_f.append(int(df_eventteams_scores['score'].iat[i]))\n", + " else:\n", + " acc_f.append(0)\n", + "\n", + "df_eventteams_scores['medal_frequence'] = pd.Series(acc_f)\n", + "\n", + "#---------------- weighted scores\n", + "df_eventteams_scores['acc_w_score'] = df_eventteams_scores['score']\n", + "df_eventteams_scores.drop('score', axis=1, inplace=True)\n", + "\n", + "#---------------- drop 'not played' with filter\n", + "df_eventteams_scores = df_eventteams_scores[df_eventteams_scores['medal']!='not played']\n", + "\n", + "#---------------- reorder columns and values by categorical datatypes\n", + "df_eventteams_scores['team'] = pd.Categorical(\n", + " values = [i for i in df_eventteams_scores['team'].values],\n", + " categories = [i for i in df_eventplayers['team'].unique()],\n", + " ordered = True)\n", + "df_eventteams_scores.sort_values(by=['event_game','team', 'medal'], ascending=[True,True, True], ignore_index=True, inplace=True)\n", + "\n", + "#---------------- set medal column to categorical\n", + "df_eventteams_scores['medal'] = pd.Categorical(df_eventteams_scores['medal'],\n", + " ordered=True,\n", + " categories = ['bronze', 'silver', 'gold'])\n", + "\n", + "#---------------- adds total_players column\n", + "total_players.extend(total_players)\n", + "df_eventteams_scores = pd.concat([df_eventteams_scores, pd.Series(total_players, name='total_players')], axis=1)\n", + "\n", + "#---------------- team names list (for interactive data visualization)\n", + "team_names = [i for i in df_eventplayers['team'].unique()]\n", + "events = [i for i in df_eventplayers['event_game'].unique()]\n", + "\n", + "df_eventteams_scores.head(4)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Considerations**\n", + "\n", + "All previews data is autogenerated, so what happens with user data? Some requirements must meet in input data:\n", + "\n", + "- players have asociated relevant data, like resulting event score and other attributes depending on the nature of the game\n", + "- in many games, a team can be a faction, a country, class...\n", + "- for this score methods, a player score must be part of a batch first, and then compare globaly. For a global score alone, any score method is irrelevant (just sort your scores!).\n", + "\n", + "For this reasons, any new data must pass through a pipeline for this to look like this random sim data." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Performance Score Method\n", + "\n", + "Separates the individual scoring from team scoring, keeping individual in the accumulative method, and using indibidual resulting position to process each team score, normalizing each team's result distribution." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Team Metrics" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Team A, event A medals\n", + " N of players: 184\n", + " Not played: 54\n", + " Bronzes: 42\n", + " Silvers: 38\n", + " Golds: 50\n" + ] + } + ], + "source": [ + "# lets take a look on team ThunderCats (team A) as example\n", + "# we will always want some metrics from this simple numbers\n", + "# this is our purest information from a single team\n", + "\n", + "print(\n", + " f\"\"\"Team A, event A medals\n", + " N of players: {len(team_a_players)}\n", + " Not played: {len(df_team_a[df_team_a['score']==0][df_team_a['event_game']=='A'][['player_id', 'event_game']])}\n", + " Bronzes: {len(df_team_a[df_team_a['score']==1][df_team_a['event_game']=='A'][['player_id', 'event_game']])}\n", + " Silvers: {len(df_team_a[df_team_a['score']==2][df_team_a['event_game']=='A'][['player_id', 'event_game']])}\n", + " Golds: {len(df_team_a[df_team_a['score']==3][df_team_a['event_game']=='A'][['player_id', 'event_game']])}\"\"\"\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Competitors ratio\n", + "\n", + "To have a clear idea of how many players actually played in an event, in proportional terms instead of real frequency. The output requires more information to interpret, it may vary depending on user experience and posible issues during event execution.\n", + "\n", + "In general terms, an output may be related with user experience, but also a team output can be related with community interactions and social experience ingame or in outer ." + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [], + "source": [ + "def competitor_r(total_players, n_players):\n", + " \"\"\"\n", + " Proportion of players who have participated in an event. Outputs float, can be multiplied by 100.\n", + " total_players: player base\n", + " n_plyers: players who did/didn't participate.\n", + " \"\"\"\n", + " competitors_ratio = (total_players - n_players) / total_players\n", + "\n", + " return competitors_ratio" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [], + "source": [ + "# OPTIMIZADO\n", + "\n", + "# users, teams and event participation ratios (we use desagregated df)\n", + "\n", + "# general ratio\n", + "#for event in df_eventplayers['event_game'].unique():\n", + "# event_comp = len(df_eventplayers[df_eventplayers['score']==0][df_eventplayers['event_game']==event])\n", + "# event_compr = competitor_r(n_player_base, event_comp)\n", + "# print(f\"Event {event} participation: {round(event_compr*100,2)}%\")\n", + " # create a list of event competitors ratio (general event player participation)\n", + "\n", + "# create a list of general event partcipation by team (general team player participation)\n", + "# team ratios (team A by default)\n", + "#team_a_cr = competitor_r(len(team_a_players), len(df_team_a[df_team_a['score']==0]))\n", + "#print(\n", + "# f\"\"\"{\"---------------\"*3}\n", + "#Team ThunderCats participation: {round(team_a_cr*100,2)}%\"\"\")\n", + "\n", + "#if cb_b == True:\n", + "# team_b_cr = competitor_r(len(team_b_players), len(df_team_b[df_team_b['score']==0]))\n", + "# print(f\"Team Dog Patrol participation: {round(team_b_cr*100,2)}%\")\n", + "#if cb_c == True:\n", + "# team_c_cr = competitor_r(len(team_c_players), len(df_team_c[df_team_c['score']==0]))\n", + "# print(f\"Team Bird Power participation: {round(team_c_cr*100,2)}%\")\n", + "#if cb_d == True:\n", + "# team_d_cr = competitor_r(len(team_d_players), len(df_team_d[df_team_d['score']==0]))\n", + "# print(f\"Team Go Magikarp participation: {round(team_d_cr*100,2)}%\")" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [], + "source": [ + "def general_participation(df, n_player_base = n_player_base,\n", + " #n_players_a = team_a_players, n_players_b = team_b,\n", + " #n_players_c = team_c, n_players_d = team_d,\n", + " cb_b = cb_b, cb_c = cb_c, cb_d = cb_d):\n", + " \n", + " \"\"\"\n", + " General competitor ratios, or player ratios, by event and by team\n", + "\n", + " **Output**\n", + " List of general events player participation (competitors ratios) and list of general teams participation\n", + " (competitors ratios). Can access to individual values with indexing. Values can be multiplied by 100 for\n", + " relative format.\n", + " \n", + " **Parameters**\n", + " df: dataframe with main data\n", + " n_player_base: all player users\n", + " *kwards: other data related to teams and checkboxes\n", + " \"\"\"\n", + " \n", + " events = list(df['event_game'].unique())\n", + " event_compr = []\n", + "\n", + " # users, teams and event participation ratios (we use desagregated dfs)\n", + " #-------------- general ratio\n", + " for event in events:\n", + " event_comp = len(df[df['score']==0][df['event_game']==event])\n", + " event_compr.append(competitor_r(n_player_base, event_comp))\n", + " # can apply round(event_compr*100,2) for value in %\n", + " \n", + " #-------------- team ratios\n", + " #--------------------- team A by default, the rest defined by checkboxes\n", + " team_cr = [competitor_r(len(team_a_players), len(df_team_a[df_team_a['score']==0]))]\n", + " \n", + " if cb_b == True:\n", + " team_b_cr = competitor_r(len(team_b_players), len(df_team_b[df_team_b['score']==0]))\n", + " team_cr.append(team_b_cr)\n", + " if cb_c == True:\n", + " team_c_cr = competitor_r(len(team_c_players), len(df_team_c[df_team_c['score']==0]))\n", + " team_cr.append(team_c_cr)\n", + " if cb_d == True:\n", + " team_d_cr = competitor_r(len(team_d_players), len(df_team_d[df_team_d['score']==0]))\n", + " team_cr.append(team_d_cr)\n", + "\n", + " return event_compr, team_cr" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Event A participation: 77.41%\n", + "Event B participation: 80.85%\n", + "---------------------------------------------\n", + "Team ThunderCats participation: 46.2%\n", + "Team Dog Patrol participation: 47.46%\n", + "Team Power Birds participation: 60.49%\n" + ] + } + ], + "source": [ + "event_compr, team_cr = general_participation(df_eventplayers)\n", + "\n", + "# general ratio\n", + "for e in range(len(events)):\n", + " print(f\"Event {events[e]} participation: {round((event_compr[e])*100,2)}%\")\n", + "print(\"---------------\"*3)\n", + "\n", + "# team ratios (team A by default, the rest defined by checkboxes)\n", + "for t in range(len(team_names)):\n", + " print(f\"\"\"Team {team_names[t]} participation: {round(team_cr[t]*100,2)}%\"\"\")" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [], + "source": [ + "# estimating event competition ratios per team (team A by default)\n", + "# competition ratio (player ratio) is an indicator that will help if in an event ends in a draw\n", + "# also, will help learn if an event was succesfull or not and explain other phenomena\n", + "\n", + "def team_event_participation(df, n_players):\n", + "\n", + " \"\"\"\n", + " DataFrame with all competitor ratios by team per event\n", + "\n", + " **Parameters**\n", + " df: dataframe of a single team (no general playerbase)\n", + " n_players: number of players in the team\n", + " \"\"\"\n", + " \n", + " events = list(df['event_game'].unique())\n", + " event_team_cr = [competitor_r(n_players, len(df[df['score']==0][df['event_game']==event])) for event in events]\n", + "\n", + " # builds ratio data to append to main team dataframe\n", + " df_event_team_cr = pd.DataFrame({\n", + " 'player_ratio' : event_team_cr,\n", + " 'event_game' : events,\n", + " 'team' : [df.at[0,'team'] for i in range(len(events))]\n", + " })\n", + " \n", + " return df_event_team_cr" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Teams Event competitor ratios\n", + " \tTeam ThunderCats \t - Event A: 70.65%\t Event B: 75.54%\n", + "\tTeam Dog Patrol \t - Event A: 72.03%\t Event B: 75.42%\n", + "\tTeam Power Birds \t - Event A: 77.78%\t Event B: 82.72%\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
event_dateevent_gameteammedalmedal_frequenceacc_w_scoretotal_playersplayer_ratio
02024-08-15AThunderCatsbronze424218470.65
12024-08-15AThunderCatssilver387618470.65
22024-08-15AThunderCatsgold5015018470.65
32024-08-15ADog Patrolbronze636323672.03
\n", + "
" + ], + "text/plain": [ + " event_date event_game team medal medal_frequence acc_w_score \\\n", + "0 2024-08-15 A ThunderCats bronze 42 42 \n", + "1 2024-08-15 A ThunderCats silver 38 76 \n", + "2 2024-08-15 A ThunderCats gold 50 150 \n", + "3 2024-08-15 A Dog Patrol bronze 63 63 \n", + "\n", + " total_players player_ratio \n", + "0 184 70.65 \n", + "1 184 70.65 \n", + "2 184 70.65 \n", + "3 236 72.03 " + ] + }, + "execution_count": 25, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# first team ratios\n", + "df_aux = team_event_participation(df_team_a, input_a)\n", + "print(\n", + " f\"\"\"Teams Event competitor ratios\n", + " \\tTeam {team_names[0]} \\t - Event {df_aux['event_game'].unique()[0]}: {round((df_aux.at[0,'player_ratio']*100),2)}%\\t Event {df_aux['event_game'].unique()[1]}: {round(df_aux.at[1,'player_ratio']*100,2)}%\"\"\")\n", + "\n", + "# the rest of team ratios, concatenated to the first\n", + "if cb_b == True: \n", + " df_aux = pd.concat([df_aux, team_event_participation(df_team_b, team_b)],ignore_index=True)\n", + " print(f\"\\tTeam {team_names[1]} \\t - Event {df_aux['event_game'].unique()[0]}: {round(df_aux.at[2,'player_ratio']*100,2)}%\\t Event {df_aux['event_game'].unique()[1]}: {round(df_aux.at[3,'player_ratio']*100,2)}%\")\n", + "if cb_c == True:\n", + " df_aux = pd.concat([df_aux, team_event_participation(df_team_c, team_c)],ignore_index=True)\n", + " print(f\"\\tTeam {team_names[2]} \\t - Event {df_aux['event_game'].unique()[0]}: {round(df_aux.at[4,'player_ratio']*100,2)}%\\t Event {df_aux['event_game'].unique()[1]}: {round(df_aux.at[5,'player_ratio']*100,2)}%\")\n", + "if cb_d == True:\n", + " df_aux = pd.concat([df_aux, team_event_participation(df_team_d, team_d)],ignore_index=True)\n", + " print(f\"\\tTeam {team_names[3]} \\t - Event {df_aux['event_game'].unique()[0]}: {round(df_aux.at[6,'player_ratio']*100,2)}%\\t Event {df_aux['event_game'].unique()[1]}: {round(df_aux.at[7,'player_ratio']*100,2)}%\")\n", + "\n", + "# appends auxiliar df with competitor ratios (player ratio) to main team scores df\n", + "df_eventteams_scores = pd.merge(\n", + " left=df_eventteams_scores,\n", + " right = df_aux,\n", + " how = 'inner',\n", + " on = ['event_game', 'team'])\n", + "\n", + "# formats player ratio\n", + "df_eventteams_scores['player_ratio'] = (df_eventteams_scores['player_ratio']*100).round(2)\n", + "\n", + "# player ratio seems like duplicated data but its based on team, not on medals, helping on data visualization\n", + "df_eventteams_scores.head(4)" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [], + "source": [ + "# OPTIMIZADO\n", + "\n", + "# estimating event competition ratios per team (team A by default)\n", + "# competition ratio (player ratio) is an indicator that will help if in an event ends in a draw\n", + "# also, will help learn if an event was succesfull or not and explain other phenomena\n", + "\n", + "#event_a_team_a_cr = competitor_r(len(team_a_players), len(df_team_a[df_team_a['score']==0][df_team_a['event_game']=='A']))\n", + "#event_b_team_a_cr = competitor_r(len(team_a_players), len(df_team_a[df_team_a['score']==0][df_team_a['event_game']=='B']))\n", + "\n", + "# builds ratio data to append to main team dataframe\n", + "#df_aux = pd.DataFrame({\n", + "# 'player_ratio' : [event_a_team_a_cr, event_b_team_a_cr],\n", + "# 'event_game' : ['A', 'B'],\n", + "# 'team' : [df_eventteams_scores['team'].unique()[0],df_eventteams_scores['team'].unique()[0]]})\n", + "\n", + "#print(\n", + "# f\"\"\"Teams Event competitor ratios\n", + "# \\tTeam ThunderCats\\t - Event A: {round(event_a_team_a_cr*100,2)}%\\t Event B: {round(event_b_team_a_cr*100,2)}%\"\"\")\n", + "\n", + "#if cb_b == True:\n", + "# event_a_team_b_cr = competitor_r(len(team_b_players), len(df_team_b[df_team_b['score']==0][df_team_b['event_game']=='A']))\n", + "# event_b_team_b_cr = competitor_r(len(team_b_players), len(df_team_b[df_team_b['score']==0][df_team_b['event_game']=='B']))\n", + "\n", + "# df_aux = pd.concat([df_aux,pd.DataFrame({\n", + "# 'player_ratio' : [event_a_team_b_cr, event_b_team_b_cr],\n", + "# 'event_game' : ['A', 'B'],\n", + "# 'team' : [df_eventteams_scores['team'].unique()[1],df_eventteams_scores['team'].unique()[1]]})])\n", + "# print(f\" \\tTeam Dog Patrol \\t - Event A: {round(event_a_team_b_cr*100,2)}%\\t Event B: {round(event_b_team_b_cr*100,2)}%\")\n", + "\n", + "#if cb_c == True:\n", + "# event_a_team_c_cr = competitor_r(len(team_c_players), len(df_team_c[df_team_c['score']==0][df_team_c['event_game']=='A']))\n", + "# event_b_team_c_cr = competitor_r(len(team_c_players), len(df_team_c[df_team_c['score']==0][df_team_c['event_game']=='B']))\n", + "\n", + "# df_aux = pd.concat([df_aux,pd.DataFrame({\n", + "# 'player_ratio' : [event_a_team_c_cr, event_b_team_c_cr],\n", + "# 'event_game' : ['A', 'B'],\n", + "# 'team' : [df_eventteams_scores['team'].unique()[2],df_eventteams_scores['team'].unique()[2]]})])\n", + "# print(f\" \\tTeam Power Birds\\t - Event A: {round(event_a_team_c_cr*100,2)}%\\t Event B: {round(event_b_team_c_cr*100,2)}%\")\n", + "\n", + "#if cb_d == True:\n", + "# event_a_team_d_cr = competitor_r(len(team_d_players), len(df_team_d[df_team_d['score']==0][df_team_d['event_game']=='A']))\n", + "# event_b_team_d_cr = competitor_r(len(team_d_players), len(df_team_d[df_team_d['score']==0][df_team_d['event_game']=='B']))\n", + "\n", + "# df_aux = pd.concat([df_aux,pd.DataFrame({\n", + "# 'player_ratio' : [event_a_team_d_cr, event_b_team_d_cr],\n", + "# 'event_game' : ['A', 'B'],\n", + "# 'team' : [df_eventteams_scores['team'].unique()[3],df_eventteams_scores['team'].unique()[3]]})])\n", + "# print(f\" \\tTeam Go Magikarp\\t - Event A: {round(event_a_team_d_cr*100,2)}%\\t Event B: {round(event_b_team_d_cr*100,2)}%\")\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Team medals relative frequencies\n", + "\n", + "Lets estimate the percentage of medals won by each team in each event, since having only frecuency is not enough to compare between teams. With this we will have something like \"$n$ out of 10 players won $m$ medal\"" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [], + "source": [ + "# here are used 3 functions\n", + "\n", + "#----------- Medal relative frequence function optimizations (indirect use)\n", + "# medal proportion, by team\n", + "def medal_r(team_players, n_gold, n_silver, n_bronze):\n", + " \"\"\"\n", + " Proportion of medals won.\n", + " Team_players: int\n", + " medals (n_gold, n_silver, n_bronze): int\n", + " \"\"\"\n", + " goldm = n_gold / team_players\n", + " silvm = n_silver / team_players\n", + " bronm = n_bronze / team_players\n", + "\n", + " return goldm, silvm, bronm\n", + "\n", + "# medal proportion, by team and event\n", + "def event_medal_r(team_players_df, event):\n", + " \"\"\"\n", + " Proportion of medals won, counting from a DataFrame an filtering by event\n", + " \"\"\"\n", + " competitors = int((len(team_players_df)/2)-len(team_players_df[team_players_df['score']==0][team_players_df['event_game']==event]))\n", + " n_gold = len(team_players_df[team_players_df['score']==3][team_players_df['event_game']==event])\n", + " n_silv = len(team_players_df[team_players_df['score']==2][team_players_df['event_game']==event])\n", + " n_bron = len(team_players_df[team_players_df['score']==1][team_players_df['event_game']==event])\n", + "\n", + " gold, silver, bronze = medal_r(competitors, n_gold, n_silv, n_bron)\n", + " \n", + " return gold, silver, bronze\n", + "\n", + "#----------- Direct use in Streamlit\n", + "# build auxiliar medal df to concatenate with main df \n", + "def team_event_medals(df_team, main_df = df_eventteams_scores):\n", + " \"\"\"\n", + " Builds df of medal relative frequence by team and event.\n", + " \n", + " Parameters\n", + " df: team dataframe (not general)\n", + " \"\"\"\n", + " # builds auxiliar df with medal relative count (from team A by default)\n", + " \n", + " events = list(main_df['event_game'].unique())\n", + " aux_data = list(event_medal_r(df_team, events[0])[:])\n", + "\n", + " # creates a list of events based on medal colors (winning positions)\n", + " aux_events = [events[0] for e in range(len(main_df['medal'].unique()))]\n", + " aux_medals = ['gold', 'silver', 'bronze']\n", + " #for i in range(len(events)):\n", + " \n", + " for i in range(1,len(events)):\n", + " aux_events.extend([events[i] for e in range(len(main_df['medal'].unique()))])\n", + " aux_data.extend(list(event_medal_r(df_team, events[i])[:]))\n", + " aux_medals.extend(aux_medals)\n", + " \n", + "\n", + " df_aux = pd.DataFrame({\n", + " 'event_game' : aux_events,\n", + " 'team' : [df_team['team'].unique()[0] for i in range(len(aux_events))],\n", + " 'medal' : ['gold', 'silver', 'bronze', 'gold', 'silver', 'bronze'],\n", + " 'medal_relative' : aux_data})\n", + "\n", + " return df_aux" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
event_dateevent_gameteammedalmedal_frequenceacc_w_scoretotal_playersplayer_ratiomedal_relative
02024-08-15AThunderCatsbronze424218470.650.3231
12024-08-15AThunderCatssilver387618470.650.2923
22024-08-15AThunderCatsgold5015018470.650.3846
32024-08-15ADog Patrolbronze636323672.030.3706
\n", + "
" + ], + "text/plain": [ + " event_date event_game team medal medal_frequence acc_w_score \\\n", + "0 2024-08-15 A ThunderCats bronze 42 42 \n", + "1 2024-08-15 A ThunderCats silver 38 76 \n", + "2 2024-08-15 A ThunderCats gold 50 150 \n", + "3 2024-08-15 A Dog Patrol bronze 63 63 \n", + "\n", + " total_players player_ratio medal_relative \n", + "0 184 70.65 0.3231 \n", + "1 184 70.65 0.2923 \n", + "2 184 70.65 0.3846 \n", + "3 236 72.03 0.3706 " + ] + }, + "execution_count": 28, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# teams medal relative frequency in each event, estimated by each team\n", + "# this way, it doesn't matter how many players are in each team, but how players performed in relative terms\n", + "# here is where the method unbias the results, since results are independent from player count in a large playerbase\n", + "# also, it considers players that actually participated in each event\n", + "\n", + "# builds auxiliar df with medal relative count (from team A by default)\n", + "df_aux = team_event_medals(df_team_a)\n", + "\n", + "if cb_b == True:\n", + " df_aux = pd.concat([df_aux, team_event_medals(df_team_b)])\n", + "if cb_c == True:\n", + " df_aux = pd.concat([df_aux, team_event_medals(df_team_c)])\n", + "if cb_d == True:\n", + " df_aux = pd.concat([df_aux, team_event_medals(df_team_d)])\n", + "\n", + "# appends relative frequencies to main team data\n", + "df_eventteams_scores = pd.merge(\n", + " left=df_eventteams_scores,\n", + " right = df_aux,\n", + " how = 'inner',\n", + " on = ['event_game', 'team', 'medal'])\n", + "\n", + "#formats float values\n", + "df_eventteams_scores['medal_relative'] = df_eventteams_scores['medal_relative'].round(4)\n", + "\n", + "df_eventteams_scores.head(4)" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "# OPTIMIZAR\n", + "\n", + "# teams medal relative frequency in each event, estimated by each team\n", + "# this way, it doesn't matter how many players are in each team, but how players performed in relative terms\n", + "# here is where the method unbias the results, since results are independent from player count in a large playerbase\n", + "# also, it considers players that actually participated in each event\n", + "\n", + "#event_A_cat, A_cat_g, A_cat_s, A_cat_b = event_medal_r(df_team_a, 'A')\n", + "#event_B_cat, B_cat_g, B_cat_s, B_cat_b = event_medal_r(df_team_a, 'B')\n", + "\n", + "# builds auxiliar df with medal relative count (from team A by default)\n", + "#aux_data = list(event_medal_r(df_team_a, 'A')[1:])\n", + "#aux_data.extend(list(event_medal_r(df_team_a, 'B')[1:]))\n", + "\n", + "#df_aux = pd.DataFrame({\n", + "# 'event_game' : ['A','A','A','B','B','B'],\n", + "# 'team' : [df_eventteams_scores['team'].unique()[0] for i in range(6)],\n", + "# 'medal' : ['gold', 'silver', 'bronze', 'gold', 'silver', 'bronze'],\n", + "# 'medal_relative' : aux_data})\n", + "\n", + "#if cb_b == True:\n", + "# event_A_dog, A_dog_g, A_dog_s, A_dog_b = event_medal_r(df_team_b, 'A')\n", + "# event_B_dog, B_dog_g, B_dog_s, B_dog_b = event_medal_r(df_team_b, 'B')\n", + " \n", + "# aux_data = list(event_medal_r(df_team_b, 'A')[1:])\n", + "# aux_data.extend(list(event_medal_r(df_team_b, 'B')[1:]))\n", + "\n", + "# df_aux = pd.concat([df_aux, pd.DataFrame({\n", + "# 'event_game' : ['A','A','A','B','B','B'],\n", + "# 'team' : [df_eventteams_scores['team'].unique()[1] for i in range(6)],\n", + "# 'medal' : ['gold', 'silver', 'bronze', 'gold', 'silver', 'bronze'],\n", + "# 'medal_relative' : aux_data})])\n", + "\n", + "#if cb_c == True:\n", + "# event_A_birb, A_birb_g, A_birb_s, A_birb_b = event_medal_r(df_team_c, 'A')\n", + "# event_B_birb, B_birb_g, B_birb_s, B_birb_b = event_medal_r(df_team_c, 'A')\n", + "\n", + "# aux_data = list(event_medal_r(df_team_c, 'A')[1:])\n", + "# aux_data.extend(list(event_medal_r(df_team_c, 'B')[1:]))\n", + " \n", + "# df_aux = pd.concat([df_aux, pd.DataFrame({\n", + "# 'event_game' : ['A','A','A','B','B','B'],\n", + "# 'team' : [df_eventteams_scores['team'].unique()[2] for i in range(6)],\n", + "# 'medal' : ['gold', 'silver', 'bronze', 'gold', 'silver', 'bronze'],\n", + "# 'medal_relative' : aux_data})])\n", + " \n", + "#if cb_d == True:\n", + "# event_A_fish, A_fish_g, A_fish_s, A_fish_b = event_medal_r(df_team_d, 'A')\n", + "# event_B_fish, B_fish_g, B_fish_s, B_fish_b = event_medal_r(df_team_d, 'A')\n", + "\n", + "# aux_data = list(event_medal_r(df_team_d, 'A')[1:])\n", + "# aux_data.extend(list(event_medal_r(df_team_d, 'B')[1:]))\n", + "\n", + "# df_aux = pd.concat([df_aux, pd.DataFrame({\n", + "# 'event_game' : ['A','A','A','B','B','B'],\n", + "# 'team' : [df_eventteams_scores['team'].unique()[3] for i in range(6)],\n", + "# 'medal' : ['gold', 'silver', 'bronze', 'gold', 'silver', 'bronze'],\n", + "# 'medal_relative' : aux_data})])\n", + "\n", + "# appends relative frequencies to main team data\n", + "#df_eventteams_scores = pd.merge(\n", + "# left=df_eventteams_scores,\n", + "# right = df_aux,\n", + "# how = 'inner',\n", + "# on = ['event_game', 'team', 'medal'])\n", + "\n", + "#formats float values\n", + "#df_eventteams_scores['medal_relative'] = df_eventteams_scores['medal_relative'].round(2)\n", + "\n", + "#df_eventteams_scores.head(4)" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Teams Performance ratios during each event\n", + "Event A\n", + " \tTeam ThunderCats\t - Gold: 38.46%\t Silver: 29.23%\n", + " \tTeam Dog Patrol \t - Gold: 34.12%\t Silver: 28.82%\n" + ] + } + ], + "source": [ + "# lets compare only teams A and B in event A\n", + "print(\n", + " f\"\"\"Teams Performance ratios during each event\n", + "Event A\n", + " \\tTeam ThunderCats\\t - Gold: {(df_eventteams_scores[df_eventteams_scores['event_game']=='A'][df_eventteams_scores['team']=='ThunderCats'][df_eventteams_scores['medal']=='gold']['medal_relative']*100).iloc[0]}%\\t Silver: {(df_eventteams_scores[df_eventteams_scores['event_game']=='A'][df_eventteams_scores['team']=='ThunderCats'][df_eventteams_scores['medal']=='silver']['medal_relative']*100).iloc[0]}%\n", + " \\tTeam Dog Patrol \\t - Gold: {(df_eventteams_scores[df_eventteams_scores['event_game']=='A'][df_eventteams_scores['team']=='Dog Patrol'][df_eventteams_scores['medal']=='gold']['medal_relative']*100).iloc[0]}%\\t Silver: {((df_eventteams_scores[df_eventteams_scores['event_game']=='A'][df_eventteams_scores['team']=='Dog Patrol'][df_eventteams_scores['medal']=='silver']['medal_relative'])*100).iloc[0]}%\"\"\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Performance score\n", + "\n", + "All new counts are put together, now we need the final performance score from medal relative frequence and build a 2 score columns for visualization purpose." + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
event_dateevent_gameteammedalmedal_frequenceacc_w_scoretotal_playersplayer_ratiomedal_relativeperformance_score
02024-08-15AThunderCatsbronze424218470.653232.31
12024-08-15AThunderCatssilver387618470.652958.46
22024-08-15AThunderCatsgold5015018470.6538115.38
32024-08-15ADog Patrolbronze636323672.033737.06
\n", + "
" + ], + "text/plain": [ + " event_date event_game team medal medal_frequence acc_w_score \\\n", + "0 2024-08-15 A ThunderCats bronze 42 42 \n", + "1 2024-08-15 A ThunderCats silver 38 76 \n", + "2 2024-08-15 A ThunderCats gold 50 150 \n", + "3 2024-08-15 A Dog Patrol bronze 63 63 \n", + "\n", + " total_players player_ratio medal_relative performance_score \n", + "0 184 70.65 32 32.31 \n", + "1 184 70.65 29 58.46 \n", + "2 184 70.65 38 115.38 \n", + "3 236 72.03 37 37.06 " + ] + }, + "execution_count": 31, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# first lets build the last medal scores using relative frequencies with the same weights\n", + "\n", + "perf_s = []\n", + "for i in range(len(df_eventteams_scores)):\n", + " if df_eventteams_scores['medal'].iat[i]=='gold':\n", + " perf_s.append(round(df_eventteams_scores['medal_relative'].iat[i]*300,2))\n", + " elif df_eventteams_scores['medal'].iat[i]=='silver':\n", + " perf_s.append(round(df_eventteams_scores['medal_relative'].iat[i]*200,2))\n", + " elif df_eventteams_scores['medal'].iat[i]=='bronze':\n", + " perf_s.append(round(df_eventteams_scores['medal_relative'].iat[i]*100,2))\n", + " else:\n", + " perf_s.append(0)\n", + "\n", + "df_eventteams_scores['performance_score'] = pd.Series(perf_s)\n", + "\n", + "# formats medal_relative after score\n", + "df_eventteams_scores['medal_relative'] = (df_eventteams_scores['medal_relative']*100).apply(lambda x: int(x))\n", + "\n", + "df_eventteams_scores.head(4)" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
event_dateevent_gameteammedalmedal_frequenceacc_w_scoretotal_playersplayer_ratiomedal_relativeperformance_scoreacc_w_score_totalperformance_score_total
02024-08-15AThunderCatsbronze424218470.653232.31268206.15
12024-08-15AThunderCatssilver387618470.652958.46268206.15
22024-08-15AThunderCatsgold5015018470.6538115.38268206.15
32024-08-15ADog Patrolbronze636323672.033737.06335197.06
\n", + "
" + ], + "text/plain": [ + " event_date event_game team medal medal_frequence acc_w_score \\\n", + "0 2024-08-15 A ThunderCats bronze 42 42 \n", + "1 2024-08-15 A ThunderCats silver 38 76 \n", + "2 2024-08-15 A ThunderCats gold 50 150 \n", + "3 2024-08-15 A Dog Patrol bronze 63 63 \n", + "\n", + " total_players player_ratio medal_relative performance_score \\\n", + "0 184 70.65 32 32.31 \n", + "1 184 70.65 29 58.46 \n", + "2 184 70.65 38 115.38 \n", + "3 236 72.03 37 37.06 \n", + "\n", + " acc_w_score_total performance_score_total \n", + "0 268 206.15 \n", + "1 268 206.15 \n", + "2 268 206.15 \n", + "3 335 197.06 " + ] + }, + "execution_count": 32, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# add total score totals to main team score df\n", + "\n", + "df_aux = df_eventteams_scores[['event_game', 'team','acc_w_score','performance_score']].groupby(['event_game','team']).sum(['acc_w_score','performance_score']).reset_index()\n", + "df_aux.columns = ['event_game', 'team', 'acc_w_score_total', 'performance_score_total']\n", + "\n", + "df_eventteams_scores = pd.merge(\n", + " left = df_eventteams_scores, right = df_aux,\n", + " how = 'inner', on = ['event_game', 'team'])\n", + "\n", + "\n", + "df_eventteams_scores.head(4)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Defining winners\n", + "\n", + "Now that we can see the difference between acumulative score and performance by normalizing every team, the final question is: *how can we tell if a team won gold, silver or bronze in an event?* Lets explore some ways." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Sorting values\n", + "\n", + "By observing the performance figure, can be seen the teams who won more gold, silver and bronze medals.\n", + "\n", + "By sorting the data jerarquically, considering as a first instance to define a winner one of the total scores (performance or accumulative), then the team that has a 'best quality' score (e.g. more gold than silver, or the one who made more kills and/or died less times), and if those don't suffice, a comparison between competitor (player) ratios (can be non participants or deserters).\n", + "\n", + "Its important to keep performance score in a relative scale already estimated, the same with accumulative score since it's in real scale." + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": {}, + "outputs": [], + "source": [ + "def event_winners(score_type = 'accumulative', df = df_eventteams_scores):\n", + "\n", + " \"\"\"\n", + " Shows the winners sorted by total score > medal score > competitor ratio (or player ratio).\n", + "\n", + " **Parameters**\n", + " score_type: choose 'performance' or 'accumulative' ('accumulative' by default)\n", + " df: main DataFrame\n", + " \"\"\"\n", + "\n", + " team_names = list(df['team'].unique())\n", + " loc_index = [i*2 for i in range(len(team_names))]\n", + "\n", + " if score_type == 'accumulative':\n", + " score_cols = ['acc_w_score_total', 'acc_w_score']\n", + " if score_type == 'performance':\n", + " score_cols = 'performance_score_total', 'performance_score'\n", + "\n", + " events = list(df['event_game'].unique())\n", + "\n", + " observed_winners = df[df['event_game']==events[0]][df['medal']!='bronze'].copy()\\\n", + " .sort_values(by = [score_cols[0], score_cols[1], 'player_ratio'],\n", + " ascending = [False, False, False])\\\n", + " [['event_game','team','medal',score_cols[0], score_cols[1],'player_ratio']]\\\n", + " .reset_index(drop=True).iloc[loc_index,:]\n", + "\n", + " if len(events)>1:\n", + " for e in range(1,len(events)):\n", + " observed_winners = pd.concat([observed_winners,df[df['event_game']==events[e]][df['medal']!='bronze']\\\n", + " .sort_values(by = [score_cols[0], score_cols[1], 'player_ratio'],\n", + " ascending = [False, False, False])\\\n", + " [['event_game','team','medal',score_cols[0], score_cols[1],'player_ratio']]\\\n", + " .reset_index(drop=True).iloc[loc_index,:]])\n", + "\n", + " return observed_winners" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
event_gameteammedalacc_w_score_totalacc_w_scoreplayer_ratio
0ADog Patrolgold33517472.03
2AThunderCatsgold26815070.65
4APower Birdsgold1346977.78
0BDog Patrolgold36218075.42
2BThunderCatsgold27915075.54
4BPower Birdsgold1396982.72
\n", + "
" + ], + "text/plain": [ + " event_game team medal acc_w_score_total acc_w_score player_ratio\n", + "0 A Dog Patrol gold 335 174 72.03\n", + "2 A ThunderCats gold 268 150 70.65\n", + "4 A Power Birds gold 134 69 77.78\n", + "0 B Dog Patrol gold 362 180 75.42\n", + "2 B ThunderCats gold 279 150 75.54\n", + "4 B Power Birds gold 139 69 82.72" + ] + }, + "execution_count": 34, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "event_winners(score_type = 'accumulative')" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
event_gameteammedalperformance_score_totalperformance_scoreplayer_ratio
0APower Birdsgold212.70109.5377.78
2AThunderCatsgold206.15115.3870.65
4ADog Patrolgold197.06102.3672.03
0BPower Birdsgold207.48102.9982.72
2BDog Patrolgold203.39101.1375.42
4BThunderCatsgold200.72107.9175.54
\n", + "
" + ], + "text/plain": [ + " event_game team medal performance_score_total performance_score \\\n", + "0 A Power Birds gold 212.70 109.53 \n", + "2 A ThunderCats gold 206.15 115.38 \n", + "4 A Dog Patrol gold 197.06 102.36 \n", + "0 B Power Birds gold 207.48 102.99 \n", + "2 B Dog Patrol gold 203.39 101.13 \n", + "4 B ThunderCats gold 200.72 107.91 \n", + "\n", + " player_ratio \n", + "0 77.78 \n", + "2 70.65 \n", + "4 72.03 \n", + "0 82.72 \n", + "2 75.42 \n", + "4 75.54 " + ] + }, + "execution_count": 35, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "event_winners(score_type = 'performance')" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Winners by methods\n", + "Event A\t\tAcc_w method\t\tPerformance method\n", + " gold\tDog Patrol\t\tPower Birds\n", + " silver\tThunderCats\t\tThunderCats\n", + " bronze\tPower Birds\t\tDog Patrol\n", + "Event B\n", + " gold\tDog Patrol\t\tPower Birds\n", + " silver\tThunderCats\t\tDog Patrol\n", + " bronze\tPower Birds\t\tThunderCats\n" + ] + } + ], + "source": [ + "# da winners! (from 3 teams or more)\n", + "\n", + "print(\n", + " f\"\"\"Winners by methods\n", + "Event A\\t\\tAcc_w method\\t\\tPerformance method\n", + " gold\\t{list(list(event_winners(score_type = 'accumulative')['team']))[0]}\\t\\t{list(list(event_winners(score_type = 'performance')['team']))[0]}\n", + " silver\\t{list(event_winners(score_type = 'accumulative')['team'])[1]}\\t\\t{list(event_winners(score_type = 'performance')['team'])[1]}\n", + " bronze\\t{list(event_winners(score_type = 'accumulative')['team'])[2]}\\t\\t{list(event_winners(score_type = 'performance')['team'])[2]}\n", + "Event B\n", + " gold\\t{list(event_winners(score_type = 'accumulative')['team'])[3]}\\t\\t{list(event_winners(score_type = 'performance')['team'])[3]}\n", + " silver\\t{list(event_winners(score_type = 'accumulative')['team'])[4]}\\t\\t{list(event_winners(score_type = 'performance')['team'])[4]}\n", + " bronze\\t{list(event_winners(score_type = 'accumulative')['team'])[5]}\\t\\t{list(event_winners(score_type = 'performance')['team'])[5]}\"\"\")" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": {}, + "outputs": [], + "source": [ + "# OPTIMIZADO\n", + "# observing accumulative score winners in event A\n", + "#acc_obs_A = df_eventteams_scores[df_eventteams_scores['event_game']=='A'][df_eventteams_scores['medal']!='bronze'].copy()\\\n", + "# .sort_values(by = ['acc_w_score_total', 'acc_w_score', 'player_ratio'],\n", + "# ascending = [False, False, False])\\\n", + "# [['team','medal','acc_w_score_total', 'acc_w_score','player_ratio']]\\\n", + "# .reset_index(drop=True).iloc[[0,2,4,6],:]\n", + "#acc_obs_B = df_eventteams_scores[df_eventteams_scores['event_game']=='B'][df_eventteams_scores['medal']!='bronze'].copy()\\\n", + "# .sort_values(by = ['acc_w_score_total', 'acc_w_score', 'player_ratio'],\n", + "# ascending = [False, False, False])\\\n", + "# [['team','medal','acc_w_score_total', 'acc_w_score','player_ratio']]\\\n", + "# .reset_index(drop=True).iloc[[0,2,4,6],:]\n", + "#acc_obs_A" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": {}, + "outputs": [], + "source": [ + "# observing performance score winners in event A\n", + "#perf_obs_A = df_eventteams_scores[df_eventteams_scores['event_game']=='A'][df_eventteams_scores['medal']!='bronze'].copy()\\\n", + "# .sort_values(by = ['performance_score_total', 'performance_score', 'player_ratio'],\n", + "# ascending = [False, False, False])\\\n", + "# [['team','medal','performance_score_total','performance_score','player_ratio']]\\\n", + "# .reset_index(drop=True).iloc[[0,2,4,6],:]\n", + "#perf_obs_B = df_eventteams_scores[df_eventteams_scores['event_game']=='B'][df_eventteams_scores['medal']!='bronze'].copy()\\\n", + "# .sort_values(by = ['performance_score_total', 'performance_score', 'player_ratio'],\n", + "# ascending = [False, False, False])\\\n", + "# [['team','medal','performance_score_total','performance_score','player_ratio']]\\\n", + "# .reset_index(drop=True).iloc[[0,2,4,6],:]\n", + "#perf_obs_A" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Comparative plots\n", + "\n", + "Resuming all results, a notable difference will be noticed." + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
event_dateevent_gameteammedalmedal_frequenceacc_w_scoretotal_playersplayer_ratiomedal_relativeperformance_scoreacc_w_score_totalperformance_score_total
02024-08-15AThunderCatsbronze424218470.653232.31268206.15
12024-08-15AThunderCatssilver387618470.652958.46268206.15
22024-08-15AThunderCatsgold5015018470.6538115.38268206.15
32024-08-15ADog Patrolbronze636323672.033737.06335197.06
42024-08-15ADog Patrolsilver499823672.032857.64335197.06
52024-08-15ADog Patrolgold5817423672.0334102.36335197.06
62024-08-15APower Birdsbronze15158177.782323.81134212.70
72024-08-15APower Birdssilver25508177.783979.36134212.70
82024-08-15APower Birdsgold23698177.7836109.53134212.70
92024-08-15BThunderCatsbronze494918475.543535.25279200.72
102024-08-15BThunderCatssilver408018475.542857.56279200.72
112024-08-15BThunderCatsgold5015018475.5435107.91279200.72
122024-08-15BDog Patrolbronze545423675.423030.34362203.39
132024-08-15BDog Patrolsilver6412823675.423571.92362203.39
142024-08-15BDog Patrolgold6018023675.4233101.13362203.39
152024-08-15BPower Birdsbronze18188182.722626.87139207.48
162024-08-15BPower Birdssilver26528182.723877.62139207.48
172024-08-15BPower Birdsgold23698182.7234102.99139207.48
\n", + "
" + ], + "text/plain": [ + " event_date event_game team medal medal_frequence acc_w_score \\\n", + "0 2024-08-15 A ThunderCats bronze 42 42 \n", + "1 2024-08-15 A ThunderCats silver 38 76 \n", + "2 2024-08-15 A ThunderCats gold 50 150 \n", + "3 2024-08-15 A Dog Patrol bronze 63 63 \n", + "4 2024-08-15 A Dog Patrol silver 49 98 \n", + "5 2024-08-15 A Dog Patrol gold 58 174 \n", + "6 2024-08-15 A Power Birds bronze 15 15 \n", + "7 2024-08-15 A Power Birds silver 25 50 \n", + "8 2024-08-15 A Power Birds gold 23 69 \n", + "9 2024-08-15 B ThunderCats bronze 49 49 \n", + "10 2024-08-15 B ThunderCats silver 40 80 \n", + "11 2024-08-15 B ThunderCats gold 50 150 \n", + "12 2024-08-15 B Dog Patrol bronze 54 54 \n", + "13 2024-08-15 B Dog Patrol silver 64 128 \n", + "14 2024-08-15 B Dog Patrol gold 60 180 \n", + "15 2024-08-15 B Power Birds bronze 18 18 \n", + "16 2024-08-15 B Power Birds silver 26 52 \n", + "17 2024-08-15 B Power Birds gold 23 69 \n", + "\n", + " total_players player_ratio medal_relative performance_score \\\n", + "0 184 70.65 32 32.31 \n", + "1 184 70.65 29 58.46 \n", + "2 184 70.65 38 115.38 \n", + "3 236 72.03 37 37.06 \n", + "4 236 72.03 28 57.64 \n", + "5 236 72.03 34 102.36 \n", + "6 81 77.78 23 23.81 \n", + "7 81 77.78 39 79.36 \n", + "8 81 77.78 36 109.53 \n", + "9 184 75.54 35 35.25 \n", + "10 184 75.54 28 57.56 \n", + "11 184 75.54 35 107.91 \n", + "12 236 75.42 30 30.34 \n", + "13 236 75.42 35 71.92 \n", + "14 236 75.42 33 101.13 \n", + "15 81 82.72 26 26.87 \n", + "16 81 82.72 38 77.62 \n", + "17 81 82.72 34 102.99 \n", + "\n", + " acc_w_score_total performance_score_total \n", + "0 268 206.15 \n", + "1 268 206.15 \n", + "2 268 206.15 \n", + "3 335 197.06 \n", + "4 335 197.06 \n", + "5 335 197.06 \n", + "6 134 212.70 \n", + "7 134 212.70 \n", + "8 134 212.70 \n", + "9 279 200.72 \n", + "10 279 200.72 \n", + "11 279 200.72 \n", + "12 362 203.39 \n", + "13 362 203.39 \n", + "14 362 203.39 \n", + "15 139 207.48 \n", + "16 139 207.48 \n", + "17 139 207.48 " + ] + }, + "execution_count": 39, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# main score df view\n", + "df_eventteams_scores" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Bar/Scatter comparative figures" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": {}, + "outputs": [], + "source": [ + "# BORRAR!!!!\n", + "\n", + "\n", + "# TEST FLEXIBILIZACION DE FRAGMENTO CODIGO DE GRAFICOS\n", + "score_type = 'accumulative'\n", + "score_columns = ['medal_frequence', 'acc_w_score', 'acc_w_score_total']\n", + "scale = 7\n", + "events = ['A', 'B']\n", + "#events = ['A']\n", + "#events = ['A', 'B', 'A', 'B']\n", + "\n", + "#l_test = []\n", + "#l_subtest = []" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": {}, + "outputs": [], + "source": [ + "# create an aux list o lists to flexibilize the code (indirect function)\n", + "\n", + "def marker_size(df, score_type):\n", + "\n", + " \"\"\"\n", + " Returns a list of lists to give marker size according to total scores. Use solely in score_figure function\n", + " \"\"\"\n", + " \n", + " l_aux = []\n", + " l_subaux = []\n", + " # first list groups total scores per event, all scores are in the same list\n", + " for e in range(len(events)):\n", + " l_subaux.extend([(df[df['event_game']== events[e]][score_columns[2]]).to_list()])\n", + " if len(events)<2:\n", + " if e == len(events):\n", + " break\n", + " elif len(events)>=2:\n", + " if e == len(events) -1:\n", + " break\n", + " l_aux.append(l_subaux)\n", + "\n", + " # empty list of lists for 2nd for\n", + " l_score_size = [[] for e in range(len(events))]\n", + " \n", + " # iterates through the auxiliar list to group scores by team, by event\n", + " # the result is list[event idx][team idx]\n", + " for e in range(len(events)):\n", + " # first and last indexes\n", + " first = 0\n", + " last = 3\n", + " \n", + " if score_type == 'accumulative':\n", + " l_score_size[e] = []\n", + " # mask for each team score\n", + " for t in range(len(team_names)):\n", + " #print(first, last)\n", + " #print(l_aux[0][e][first:last])\n", + " l_score_size[e].extend([l_aux[0][e][first:last]])\n", + " first = first + 3\n", + " last = last + 3\n", + " \n", + " for e in range(len(events)):\n", + " if score_type == 'accumulative':\n", + " l_score_size[e] = [[s/scale for s in sl] for sl in l_score_size[e]]\n", + " if score_type == 'performance':\n", + " l_score_size[e] = [[s/10 for s in sl] for sl in l_score_size[e]]\n", + " \n", + " return l_score_size" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "A\n", + "[38.285714285714285, 38.285714285714285, 38.285714285714285]\n", + "[47.857142857142854, 47.857142857142854, 47.857142857142854]\n", + "[19.142857142857142, 19.142857142857142, 19.142857142857142]\n", + "B\n", + "[39.857142857142854, 39.857142857142854, 39.857142857142854]\n", + "[51.714285714285715, 51.714285714285715, 51.714285714285715]\n", + "[19.857142857142858, 19.857142857142858, 19.857142857142858]\n" + ] + } + ], + "source": [ + "# BORRAR!!!\n", + "\n", + "#TEST (borrable)\n", + "func_test = marker_size(df_eventteams_scores,'accumulative')\n", + "for e in range(len(events)):\n", + " print(events[e])\n", + " for t in range(len(team_names)):\n", + " print(func_test[e][t])" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": {}, + "outputs": [], + "source": [ + "# creates a function to plot score data for each team\n", + "\n", + "def score_figure(df, score_type, scale=1, scatter_opacity=1, width = 900, height = 400):\n", + "\n", + " \"\"\"\n", + " Creates an interactive figure with subplots for each event and team. Can work for a single event\n", + " or many, as for a single team or many.\n", + "\n", + " Parameters\n", + " df: DataFrame containing all data features developed\n", + " score_type: set 'accumulative' or 'performance'. If 'accumulative', will plot traditional scoring,\n", + " if 'performance', will plot proposed scoring method based on medal relative frequency,\n", + " ignoring team size.\n", + " scale: set scale for scatter bubbles when score_type is 'accumulative' (1 by default). If score_type\n", + " is set to 'performance', scatter bubbles scale multiplier is 0.1\n", + " scatter_opacity: set a float from 0 to 1, changes scatter bubbles opacity (1 by default)\n", + " \"\"\"\n", + "\n", + " # score_type selector\n", + " if score_type == 'accumulative':\n", + " score_columns = ['medal_frequence', 'acc_w_score', 'acc_w_score_total']\n", + " elif score_type == 'performance':\n", + " score_columns = ['medal_relative', 'performance_score', 'performance_score_total']\n", + " #---------------------------------------- build figure\n", + " # team list\n", + " team_names = [i for i in df['team'].unique()]\n", + " # event list\n", + " events = [i for i in df['event_game'].unique()]\n", + " # subplots config\n", + " score_fig = make_subplots(rows= len(events), cols= len(team_names),\n", + " shared_xaxes = True,\n", + " shared_yaxes=True,\n", + " column_titles= team_names,\n", + " print_grid=False,\n", + " specs = [[{\"secondary_y\" : True} for t in range(len(team_names))] for e in range(len(events))])\n", + " #---------------------------------------- build graphs\n", + " l_marker_size = marker_size(df = df_eventteams_scores, score_type = score_type)\n", + " for e in range(len(events)):\n", + " for i in range(len(team_names)):\n", + " #----------------------- traces: bar accumulative score values per medal\n", + " score_fig.add_trace(\n", + " go.Bar(\n", + " x = df[df['event_game']== events[e]][df['team']==team_names[i]]['medal'].map(lambda x : x.capitalize()),\n", + " y = df[df['event_game']== events[e]][df['team']==team_names[i]][score_columns[0]].values,\n", + " name = 'Event '+ events[e] +'',\n", + " marker_color = [medal_colors[2], medal_colors[1],medal_colors[0], medal_colors[3]],\n", + " opacity = 0.8,\n", + " text = df[df['event_game']== events[e]][df['team']==team_names[i]][score_columns[0]].values,\n", + " textposition = 'inside',\n", + " textangle = 0,\n", + " textfont_color = 'black',\n", + " customdata = df[df['event_game']== events[e]][df['team']==team_names[i]][['medal_frequence','medal']],\n", + " hovertemplate = '
Total medals: %{customdata[0]} %{customdata[1]}',\n", + " ), row = e+1, col = i+1, secondary_y = False)\n", + "\n", + " #----------------------- traces: scatter accumulative total score values\n", + " score_fig.add_trace(\n", + " go.Scatter(\n", + " x = df[df['event_game']== events[e]][df['team']==team_names[i]]['medal'].map(lambda x : x.capitalize()),\n", + " y = df[df['event_game']== events[e]][df['team']==team_names[0]][score_columns[1]],\n", + " name = 'Team metrics',\n", + " mode = 'markers',\n", + " marker_size = l_marker_size[e][i],\n", + " marker_color = [medal_colors[2], medal_colors[1],medal_colors[0]],\n", + " marker_line_color = 'white',\n", + " opacity = scatter_opacity,\n", + " customdata = df[df['event_game']== events[e]][df['team']==team_names[i]][['medal_relative','player_ratio', 'total_players', score_columns[2]]],\n", + " hovertemplate = '
Medal distribution: %{customdata[0]}%
'+\n", + " 'Participation: %{customdata[1]}%
'+\n", + " 'Team players: %{customdata[2]}
'+\n", + " '
Team Score: %{customdata[3]}'\n", + " ), row = e+1, col = i+1, secondary_y = True)\n", + "\n", + " #---------------------------------------- fix category orders for 0 values\n", + " score_fig.update_xaxes(\n", + " categoryorder = 'array',\n", + " categoryarray = ['gold', 'silver', 'bronze'],\n", + " showticklabels= False,\n", + " showspikes = False)\n", + " #---------------------------------------- applies secondary y axis for subplots\n", + " score_fig.update_yaxes(\n", + " side = 'right',\n", + " secondary_y = True)\n", + " #---------------------------------------- config: title, legend, hover, template, fig dimensions\n", + " score_fig.update_layout(\n", + " title = f\"Event {score_type.capitalize()} scores, by teams, date {df['event_date'].unique()[0]}\",\n", + " barmode = 'group',\n", + " showlegend = False,\n", + " hovermode = 'x unified',\n", + " hoverlabel_align = 'right',\n", + " barcornerradius = \"50%\",\n", + " template = 'plotly_dark',\n", + " width = width, height = height)\n", + " \n", + " #----------------------- 'show' line (return for Streamlit)\n", + " return score_fig" + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + " \n", + " " + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.plotly.v1+json": { + "config": { + "plotlyServerURL": "https://plot.ly" + }, + "data": [ + { + "customdata": [ + [ + 42, + "bronze" + ], + [ + 38, + "silver" + ], + [ + 50, + "gold" + ] + ], + "hovertemplate": "
Total medals: %{customdata[0]} %{customdata[1]}", + "marker": { + "color": [ + "rgb(194, 144, 80)", + "rgb(169, 180, 195)", + "rgb(255, 222, 94)", + "rgb(0, 0, 0)" + ] + }, + "name": "Event A", + "opacity": 0.8, + "text": [ + 42, + 38, + 50 + ], + "textangle": 0, + "textfont": { + "color": "black" + }, + "textposition": "inside", + "type": "bar", + "x": [ + "Bronze", + "Silver", + "Gold" + ], + "xaxis": "x", + "y": [ + 42, + 38, + 50 + ], + "yaxis": "y" + }, + { + "customdata": [ + [ + 32, + 70.65, + 184, + 268 + ], + [ + 29, + 70.65, + 184, + 268 + ], + [ + 38, + 70.65, + 184, + 268 + ] + ], + "hovertemplate": "
Medal distribution: %{customdata[0]}%
Participation: %{customdata[1]}%
Team players: %{customdata[2]}

Team Score: %{customdata[3]}", + "marker": { + "color": [ + "rgb(194, 144, 80)", + "rgb(169, 180, 195)", + "rgb(255, 222, 94)" + ], + "line": { + "color": "white" + }, + "size": [ + 38.285714285714285, + 38.285714285714285, + 38.285714285714285 + ] + }, + "mode": "markers", + "name": "Team metrics", + "opacity": 0.5, + "type": "scatter", + "x": [ + "Bronze", + "Silver", + "Gold" + ], + "xaxis": "x", + "y": [ + 42, + 76, + 150 + ], + "yaxis": "y2" + }, + { + "customdata": [ + [ + 63, + "bronze" + ], + [ + 49, + "silver" + ], + [ + 58, + "gold" + ] + ], + "hovertemplate": "
Total medals: %{customdata[0]} %{customdata[1]}", + "marker": { + "color": [ + "rgb(194, 144, 80)", + "rgb(169, 180, 195)", + "rgb(255, 222, 94)", + "rgb(0, 0, 0)" + ] + }, + "name": "Event A", + "opacity": 0.8, + "text": [ + 63, + 49, + 58 + ], + "textangle": 0, + "textfont": { + "color": "black" + }, + "textposition": "inside", + "type": "bar", + "x": [ + "Bronze", + "Silver", + "Gold" + ], + "xaxis": "x2", + "y": [ + 63, + 49, + 58 + ], + "yaxis": "y3" + }, + { + "customdata": [ + [ + 37, + 72.03, + 236, + 335 + ], + [ + 28, + 72.03, + 236, + 335 + ], + [ + 34, + 72.03, + 236, + 335 + ] + ], + "hovertemplate": "
Medal distribution: %{customdata[0]}%
Participation: %{customdata[1]}%
Team players: %{customdata[2]}

Team Score: %{customdata[3]}", + "marker": { + "color": [ + "rgb(194, 144, 80)", + "rgb(169, 180, 195)", + "rgb(255, 222, 94)" + ], + "line": { + "color": "white" + }, + "size": [ + 47.857142857142854, + 47.857142857142854, + 47.857142857142854 + ] + }, + "mode": "markers", + "name": "Team metrics", + "opacity": 0.5, + "type": "scatter", + "x": [ + "Bronze", + "Silver", + "Gold" + ], + "xaxis": "x2", + "y": [ + 42, + 76, + 150 + ], + "yaxis": "y4" + }, + { + "customdata": [ + [ + 15, + "bronze" + ], + [ + 25, + "silver" + ], + [ + 23, + "gold" + ] + ], + "hovertemplate": "
Total medals: %{customdata[0]} %{customdata[1]}", + "marker": { + "color": [ + "rgb(194, 144, 80)", + "rgb(169, 180, 195)", + "rgb(255, 222, 94)", + "rgb(0, 0, 0)" + ] + }, + "name": "Event A", + "opacity": 0.8, + "text": [ + 15, + 25, + 23 + ], + "textangle": 0, + "textfont": { + "color": "black" + }, + "textposition": "inside", + "type": "bar", + "x": [ + "Bronze", + "Silver", + "Gold" + ], + "xaxis": "x3", + "y": [ + 15, + 25, + 23 + ], + "yaxis": "y5" + }, + { + "customdata": [ + [ + 23, + 77.78, + 81, + 134 + ], + [ + 39, + 77.78, + 81, + 134 + ], + [ + 36, + 77.78, + 81, + 134 + ] + ], + "hovertemplate": "
Medal distribution: %{customdata[0]}%
Participation: %{customdata[1]}%
Team players: %{customdata[2]}

Team Score: %{customdata[3]}", + "marker": { + "color": [ + "rgb(194, 144, 80)", + "rgb(169, 180, 195)", + "rgb(255, 222, 94)" + ], + "line": { + "color": "white" + }, + "size": [ + 19.142857142857142, + 19.142857142857142, + 19.142857142857142 + ] + }, + "mode": "markers", + "name": "Team metrics", + "opacity": 0.5, + "type": "scatter", + "x": [ + "Bronze", + "Silver", + "Gold" + ], + "xaxis": "x3", + "y": [ + 42, + 76, + 150 + ], + "yaxis": "y6" + }, + { + "customdata": [ + [ + 49, + "bronze" + ], + [ + 40, + "silver" + ], + [ + 50, + "gold" + ] + ], + "hovertemplate": "
Total medals: %{customdata[0]} %{customdata[1]}", + "marker": { + "color": [ + "rgb(194, 144, 80)", + "rgb(169, 180, 195)", + "rgb(255, 222, 94)", + "rgb(0, 0, 0)" + ] + }, + "name": "Event B", + "opacity": 0.8, + "text": [ + 49, + 40, + 50 + ], + "textangle": 0, + "textfont": { + "color": "black" + }, + "textposition": "inside", + "type": "bar", + "x": [ + "Bronze", + "Silver", + "Gold" + ], + "xaxis": "x4", + "y": [ + 49, + 40, + 50 + ], + "yaxis": "y7" + }, + { + "customdata": [ + [ + 35, + 75.54, + 184, + 279 + ], + [ + 28, + 75.54, + 184, + 279 + ], + [ + 35, + 75.54, + 184, + 279 + ] + ], + "hovertemplate": "
Medal distribution: %{customdata[0]}%
Participation: %{customdata[1]}%
Team players: %{customdata[2]}

Team Score: %{customdata[3]}", + "marker": { + "color": [ + "rgb(194, 144, 80)", + "rgb(169, 180, 195)", + "rgb(255, 222, 94)" + ], + "line": { + "color": "white" + }, + "size": [ + 39.857142857142854, + 39.857142857142854, + 39.857142857142854 + ] + }, + "mode": "markers", + "name": "Team metrics", + "opacity": 0.5, + "type": "scatter", + "x": [ + "Bronze", + "Silver", + "Gold" + ], + "xaxis": "x4", + "y": [ + 49, + 80, + 150 + ], + "yaxis": "y8" + }, + { + "customdata": [ + [ + 54, + "bronze" + ], + [ + 64, + "silver" + ], + [ + 60, + "gold" + ] + ], + "hovertemplate": "
Total medals: %{customdata[0]} %{customdata[1]}", + "marker": { + "color": [ + "rgb(194, 144, 80)", + "rgb(169, 180, 195)", + "rgb(255, 222, 94)", + "rgb(0, 0, 0)" + ] + }, + "name": "Event B", + "opacity": 0.8, + "text": [ + 54, + 64, + 60 + ], + "textangle": 0, + "textfont": { + "color": "black" + }, + "textposition": "inside", + "type": "bar", + "x": [ + "Bronze", + "Silver", + "Gold" + ], + "xaxis": "x5", + "y": [ + 54, + 64, + 60 + ], + "yaxis": "y9" + }, + { + "customdata": [ + [ + 30, + 75.42, + 236, + 362 + ], + [ + 35, + 75.42, + 236, + 362 + ], + [ + 33, + 75.42, + 236, + 362 + ] + ], + "hovertemplate": "
Medal distribution: %{customdata[0]}%
Participation: %{customdata[1]}%
Team players: %{customdata[2]}

Team Score: %{customdata[3]}", + "marker": { + "color": [ + "rgb(194, 144, 80)", + "rgb(169, 180, 195)", + "rgb(255, 222, 94)" + ], + "line": { + "color": "white" + }, + "size": [ + 51.714285714285715, + 51.714285714285715, + 51.714285714285715 + ] + }, + "mode": "markers", + "name": "Team metrics", + "opacity": 0.5, + "type": "scatter", + "x": [ + "Bronze", + "Silver", + "Gold" + ], + "xaxis": "x5", + "y": [ + 49, + 80, + 150 + ], + "yaxis": "y10" + }, + { + "customdata": [ + [ + 18, + "bronze" + ], + [ + 26, + "silver" + ], + [ + 23, + "gold" + ] + ], + "hovertemplate": "
Total medals: %{customdata[0]} %{customdata[1]}", + "marker": { + "color": [ + "rgb(194, 144, 80)", + "rgb(169, 180, 195)", + "rgb(255, 222, 94)", + "rgb(0, 0, 0)" + ] + }, + "name": "Event B", + "opacity": 0.8, + "text": [ + 18, + 26, + 23 + ], + "textangle": 0, + "textfont": { + "color": "black" + }, + "textposition": "inside", + "type": "bar", + "x": [ + "Bronze", + "Silver", + "Gold" + ], + "xaxis": "x6", + "y": [ + 18, + 26, + 23 + ], + "yaxis": "y11" + }, + { + "customdata": [ + [ + 26, + 82.72, + 81, + 139 + ], + [ + 38, + 82.72, + 81, + 139 + ], + [ + 34, + 82.72, + 81, + 139 + ] + ], + "hovertemplate": "
Medal distribution: %{customdata[0]}%
Participation: %{customdata[1]}%
Team players: %{customdata[2]}

Team Score: %{customdata[3]}", + "marker": { + "color": [ + "rgb(194, 144, 80)", + "rgb(169, 180, 195)", + "rgb(255, 222, 94)" + ], + "line": { + "color": "white" + }, + "size": [ + 19.857142857142858, + 19.857142857142858, + 19.857142857142858 + ] + }, + "mode": "markers", + "name": "Team metrics", + "opacity": 0.5, + "type": "scatter", + "x": [ + "Bronze", + "Silver", + "Gold" + ], + "xaxis": "x6", + "y": [ + 49, + 80, + 150 + ], + "yaxis": "y12" + } + ], + "layout": { + "annotations": [ + { + "font": { + "size": 16 + }, + "showarrow": false, + "text": "ThunderCats", + "x": 0.11222222222222222, + "xanchor": "center", + "xref": "paper", + "y": 1, + "yanchor": "bottom", + "yref": "paper" + }, + { + "font": { + "size": 16 + }, + "showarrow": false, + "text": "Dog Patrol", + "x": 0.47, + "xanchor": "center", + "xref": "paper", + "y": 1, + "yanchor": "bottom", + "yref": "paper" + }, + { + "font": { + "size": 16 + }, + "showarrow": false, + "text": "Power Birds", + "x": 0.8277777777777777, + "xanchor": "center", + "xref": "paper", + "y": 1, + "yanchor": "bottom", + "yref": "paper" + } + ], + "barcornerradius": "50%", + "barmode": "group", + "height": 400, + "hoverlabel": { + "align": "right" + }, + "hovermode": "x unified", + "showlegend": false, + "template": { + "data": { + "bar": [ + { + "error_x": { + "color": "#f2f5fa" + }, + "error_y": { + "color": "#f2f5fa" + }, + "marker": { + "line": { + "color": "rgb(17,17,17)", + "width": 0.5 + }, + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "bar" + } + ], + "barpolar": [ + { + "marker": { + "line": { + "color": "rgb(17,17,17)", + "width": 0.5 + }, + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "barpolar" + } + ], + "carpet": [ + { + "aaxis": { + "endlinecolor": "#A2B1C6", + "gridcolor": "#506784", + "linecolor": "#506784", + "minorgridcolor": "#506784", + "startlinecolor": "#A2B1C6" + }, + "baxis": { + "endlinecolor": "#A2B1C6", + "gridcolor": "#506784", + "linecolor": "#506784", + "minorgridcolor": "#506784", + "startlinecolor": "#A2B1C6" + }, + "type": "carpet" + } + ], + "choropleth": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "choropleth" + } + ], + "contour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "contour" + } + ], + "contourcarpet": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "contourcarpet" + } + ], + "heatmap": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmap" + } + ], + "heatmapgl": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmapgl" + } + ], + "histogram": [ + { + "marker": { + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "histogram" + } + ], + "histogram2d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2d" + } + ], + "histogram2dcontour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2dcontour" + } + ], + "mesh3d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "mesh3d" + } + ], + "parcoords": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "parcoords" + } + ], + "pie": [ + { + "automargin": true, + "type": "pie" + } + ], + "scatter": [ + { + "marker": { + "line": { + "color": "#283442" + } + }, + "type": "scatter" + } + ], + "scatter3d": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatter3d" + } + ], + "scattercarpet": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattercarpet" + } + ], + "scattergeo": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergeo" + } + ], + "scattergl": [ + { + "marker": { + "line": { + "color": "#283442" + } + }, + "type": "scattergl" + } + ], + "scattermapbox": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattermapbox" + } + ], + "scatterpolar": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolar" + } + ], + "scatterpolargl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolargl" + } + ], + "scatterternary": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterternary" + } + ], + "surface": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "surface" + } + ], + "table": [ + { + "cells": { + "fill": { + "color": "#506784" + }, + "line": { + "color": "rgb(17,17,17)" + } + }, + "header": { + "fill": { + "color": "#2a3f5f" + }, + "line": { + "color": "rgb(17,17,17)" + } + }, + "type": "table" + } + ] + }, + "layout": { + "annotationdefaults": { + "arrowcolor": "#f2f5fa", + "arrowhead": 0, + "arrowwidth": 1 + }, + "autotypenumbers": "strict", + "coloraxis": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "colorscale": { + "diverging": [ + [ + 0, + "#8e0152" + ], + [ + 0.1, + "#c51b7d" + ], + [ + 0.2, + "#de77ae" + ], + [ + 0.3, + "#f1b6da" + ], + [ + 0.4, + "#fde0ef" + ], + [ + 0.5, + "#f7f7f7" + ], + [ + 0.6, + "#e6f5d0" + ], + [ + 0.7, + "#b8e186" + ], + [ + 0.8, + "#7fbc41" + ], + [ + 0.9, + "#4d9221" + ], + [ + 1, + "#276419" + ] + ], + "sequential": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "sequentialminus": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ] + }, + "colorway": [ + "#636efa", + "#EF553B", + "#00cc96", + "#ab63fa", + "#FFA15A", + "#19d3f3", + "#FF6692", + "#B6E880", + "#FF97FF", + "#FECB52" + ], + "font": { + "color": "#f2f5fa" + }, + "geo": { + "bgcolor": "rgb(17,17,17)", + "lakecolor": "rgb(17,17,17)", + "landcolor": "rgb(17,17,17)", + "showlakes": true, + "showland": true, + "subunitcolor": "#506784" + }, + "hoverlabel": { + "align": "left" + }, + "hovermode": "closest", + "mapbox": { + "style": "dark" + }, + "paper_bgcolor": "rgb(17,17,17)", + "plot_bgcolor": "rgb(17,17,17)", + "polar": { + "angularaxis": { + "gridcolor": "#506784", + "linecolor": "#506784", + "ticks": "" + }, + "bgcolor": "rgb(17,17,17)", + "radialaxis": { + "gridcolor": "#506784", + "linecolor": "#506784", + "ticks": "" + } + }, + "scene": { + "xaxis": { + "backgroundcolor": "rgb(17,17,17)", + "gridcolor": "#506784", + "gridwidth": 2, + "linecolor": "#506784", + "showbackground": true, + "ticks": "", + "zerolinecolor": "#C8D4E3" + }, + "yaxis": { + "backgroundcolor": "rgb(17,17,17)", + "gridcolor": "#506784", + "gridwidth": 2, + "linecolor": "#506784", + "showbackground": true, + "ticks": "", + "zerolinecolor": "#C8D4E3" + }, + "zaxis": { + "backgroundcolor": "rgb(17,17,17)", + "gridcolor": "#506784", + "gridwidth": 2, + "linecolor": "#506784", + "showbackground": true, + "ticks": "", + "zerolinecolor": "#C8D4E3" + } + }, + "shapedefaults": { + "line": { + "color": "#f2f5fa" + } + }, + "sliderdefaults": { + "bgcolor": "#C8D4E3", + "bordercolor": "rgb(17,17,17)", + "borderwidth": 1, + "tickwidth": 0 + }, + "ternary": { + "aaxis": { + "gridcolor": "#506784", + "linecolor": "#506784", + "ticks": "" + }, + "baxis": { + "gridcolor": "#506784", + "linecolor": "#506784", + "ticks": "" + }, + "bgcolor": "rgb(17,17,17)", + "caxis": { + "gridcolor": "#506784", + "linecolor": "#506784", + "ticks": "" + } + }, + "title": { + "x": 0.05 + }, + "updatemenudefaults": { + "bgcolor": "#506784", + "borderwidth": 0 + }, + "xaxis": { + "automargin": true, + "gridcolor": "#283442", + "linecolor": "#506784", + "ticks": "", + "title": { + "standoff": 15 + }, + "zerolinecolor": "#283442", + "zerolinewidth": 2 + }, + "yaxis": { + "automargin": true, + "gridcolor": "#283442", + "linecolor": "#506784", + "ticks": "", + "title": { + "standoff": 15 + }, + "zerolinecolor": "#283442", + "zerolinewidth": 2 + } + } + }, + "title": { + "text": "Event Accumulative scores, by teams, date 2024-08-15" + }, + "width": 900, + "xaxis": { + "anchor": "y", + "autorange": true, + "categoryarray": [ + "gold", + "silver", + "bronze" + ], + "categoryorder": "array", + "domain": [ + 0, + 0.22444444444444445 + ], + "matches": "x4", + "range": [ + 2.333420934014389, + 5.666579065985611 + ], + "showspikes": false, + "showticklabels": false, + "type": "category" + }, + "xaxis2": { + "anchor": "y3", + "autorange": true, + "categoryarray": [ + "gold", + "silver", + "bronze" + ], + "categoryorder": "array", + "domain": [ + 0.35777777777777775, + 0.5822222222222222 + ], + "matches": "x5", + "range": [ + 2.042262111908157, + 5.9577378880918435 + ], + "showspikes": false, + "showticklabels": false, + "type": "category" + }, + "xaxis3": { + "anchor": "y5", + "autorange": true, + "categoryarray": [ + "gold", + "silver", + "bronze" + ], + "categoryorder": "array", + "domain": [ + 0.7155555555555555, + 0.94 + ], + "matches": "x6", + "range": [ + 2.5, + 5.5 + ], + "showspikes": false, + "showticklabels": false, + "type": "category" + }, + "xaxis4": { + "anchor": "y7", + "autorange": true, + "categoryarray": [ + "gold", + "silver", + "bronze" + ], + "categoryorder": "array", + "domain": [ + 0, + 0.22444444444444445 + ], + "range": [ + 2.333420934014389, + 5.666579065985611 + ], + "showspikes": false, + "showticklabels": false, + "type": "category" + }, + "xaxis5": { + "anchor": "y9", + "autorange": true, + "categoryarray": [ + "gold", + "silver", + "bronze" + ], + "categoryorder": "array", + "domain": [ + 0.35777777777777775, + 0.5822222222222222 + ], + "range": [ + 2.042262111908157, + 5.9577378880918435 + ], + "showspikes": false, + "showticklabels": false, + "type": "category" + }, + "xaxis6": { + "anchor": "y11", + "autorange": true, + "categoryarray": [ + "gold", + "silver", + "bronze" + ], + "categoryorder": "array", + "domain": [ + 0.7155555555555555, + 0.94 + ], + "range": [ + 2.5, + 5.5 + ], + "showspikes": false, + "showticklabels": false, + "type": "category" + }, + "yaxis": { + "anchor": "x", + "autorange": true, + "domain": [ + 0.575, + 1 + ], + "range": [ + 0, + 66.3157894736842 + ], + "type": "linear" + }, + "yaxis10": { + "anchor": "x5", + "autorange": true, + "overlaying": "y9", + "range": [ + -142.55236177224447, + 341.55236177224447 + ], + "side": "right", + "type": "linear" + }, + "yaxis11": { + "anchor": "x6", + "autorange": true, + "domain": [ + 0, + 0.425 + ], + "matches": "y7", + "range": [ + 0, + 67.36842105263158 + ], + "showticklabels": false, + "type": "linear" + }, + "yaxis12": { + "anchor": "x6", + "autorange": true, + "overlaying": "y11", + "range": [ + 19.913556465205872, + 179.0864435347941 + ], + "side": "right", + "type": "linear" + }, + "yaxis2": { + "anchor": "x", + "autorange": true, + "overlaying": "y", + "range": [ + -43.11828380240105, + 235.11828380240104 + ], + "side": "right", + "type": "linear" + }, + "yaxis3": { + "anchor": "x2", + "autorange": true, + "domain": [ + 0.575, + 1 + ], + "matches": "y", + "range": [ + 0, + 66.3157894736842 + ], + "showticklabels": false, + "type": "linear" + }, + "yaxis4": { + "anchor": "x2", + "autorange": true, + "overlaying": "y3", + "range": [ + -111.53376394597754, + 303.5337639459775 + ], + "side": "right", + "type": "linear" + }, + "yaxis5": { + "anchor": "x3", + "autorange": true, + "domain": [ + 0.575, + 1 + ], + "matches": "y", + "range": [ + 0, + 66.3157894736842 + ], + "showticklabels": false, + "type": "linear" + }, + "yaxis6": { + "anchor": "x3", + "autorange": true, + "overlaying": "y5", + "range": [ + 12.159411694935368, + 179.84058830506464 + ], + "side": "right", + "type": "linear" + }, + "yaxis7": { + "anchor": "x4", + "autorange": true, + "domain": [ + 0, + 0.425 + ], + "range": [ + 0, + 67.36842105263158 + ], + "type": "linear" + }, + "yaxis8": { + "anchor": "x4", + "autorange": true, + "overlaying": "y7", + "range": [ + -38.04577611319182, + 237.04577611319183 + ], + "side": "right", + "type": "linear" + }, + "yaxis9": { + "anchor": "x5", + "autorange": true, + "domain": [ + 0, + 0.425 + ], + "matches": "y7", + "range": [ + 0, + 67.36842105263158 + ], + "showticklabels": false, + "type": "linear" + } + } + }, + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6QAAAGQCAYAAAC5y61PAAAAAXNSR0IArs4c6QAAAERlWElmTU0AKgAAAAgAAYdpAAQAAAABAAAAGgAAAAAAA6ABAAMAAAABAAEAAKACAAQAAAABAAADpKADAAQAAAABAAABkAAAAABUH4gHAABAAElEQVR4AeydBXwUxxfHX5y4EmIQ3K04xaEULdAChULx2p96CxXqLS2lUC81irZoS3G34u7uLkFC3OX/fhP2cne55O4gRvLm87ncyuzs7Hf3NvPmmY23t3c6SRECQkAICAEhIASEgBAQAkJACAgBIZDPBGzz+XxyOiEgBISAEBACQkAICAEhIASEgBAQAoqACKTyIAgBISAEhIAQEAJCQAgIASEgBIRAgRAQgbRAsMtJhYAQEAJCQAgIASEgBISAEBACQkAEUnkGhIAQEAJCQAgIASEgBISAEBACQqBACIhAWiDY5aRCQAgIASEgBISAEBACQkAICAEhIAKpPANCQAgIASEgBISAEBACQkAICAEhUCAERCAtEOxyUiEgBISAEBACQkAICAEhIASEgBAQgVSeASEgBISAEBACQkAICAEhIASEgBAoEAIikBYIdjmpEBACQkAICAEhIASEgBAQAkJACIhAKs+AEBACQkAICAEhIASEgBAQAkJACBQIARFICwS7nFQICAEhIASEgBAQAkJACAgBISAERCCVZ0AICAEhIASEgBAQAkJACAgBISAECoSACKQFgl1OKgSEgBAQAkJACAgBISAEhIAQEAIikMozIASEgBAQAkJACAgBISAEhIAQEAIFQkAE0gLBLicVAkJACAgBISAEhIAQEAJCQAgIARFI5RkQAkJACAgBISAEhIAQEAJCQAgIgQIhIAJpgWCXkwoBISAEhIAQEAJCQAgIASEgBISACKTyDAgBISAEhIAQEAJCQAgIASEgBIRAgRAQgbRAsMtJhYAQEAJCQAgIASEgBISAEBACQkAEUnkGhIAQEAJCQAgIASEgBISAEBACQqBACIhAWiDY5aRCQAgIASEgBISAEBACQkAICAEhIAKpPANCQAgIASEgBISAEBACQkAICAEhUCAERCAtEOxyUiEgBISAEBACQkAICAEhIASEgBAQgVSeASEgBISAEBACQkAICAEhIASEgBAoEAIikBYIdjmpEBACQkAICAEhIASEgBAQAkJACIhAKs+AEBACQkAICAEhIASEgBAQAkJACBQIARFICwS7nFQICAEhIASEgBAQAkJACAgBISAERCCVZ0AICAEhIASEgBAQAkJACAgBISAECoSACKQFgl1OKgSEgBAQAkJACAgBISAEhIAQEAIikMozIASEgBAQAkJACAgBISAEhIAQEAIFQkAE0gLBLicVAkJACAgBISAEhIAQEAJCQAgIARFI5RkQAkJACAgBISAEhIAQEAJCQAgIgQIhIAJpgWCXkwoBISAEhIAQEAJCQAgIASEgBISACKTyDAgBISAEhIAQEAJCQAgIASEgBIRAgRAQgbRAsMtJhYAQEAJCQAgIASEgBISAEBACQkAEUnkGhIAQEAJCQAgIASEgBISAEBACQqBACNgXyFlz8aSPtH+U3N09sm1x29YtdP36tWz3Pwg72j/agdzc3OnI4UN08uSJB6HLudrHpwcMojdGvE2dHm1LYWHXc6Vte3sHGjxkKF26dJFWrlieK21KI9YTGDRkGL362pvUvl1Lun3rlvUNyBH3TeCF4S/Rc88PpxbNGlFsTMx9t5ebDZQpE0otW7Wm0qXLkKOTE50/f44WL5xP4eHhWU7j4OBAbdu1p9p16lBCQgLt37eXNm3cYLJei5atqFq1GhQQGEi3b9+iPbt3maxrfHCNmrWocuUqtGrVCqtZWdo/nBP/057o1ZsqVqxEKSkpdOL4MVowf566LuM+WbrevcfjdOrUKTp65LDJQzp3eYycmLGpcpzPf+zoEVO7ZJsQEAJCQAgIgfsm8MALpO+O+oAqVqqcLYhhQwYUuEDa/+mB9M6o96kjC1RXLl/Otq+mdgQGBtHvf0wlW1tb2rBhPQ3s39dUtSK9zdnZmXx9fRUDay80O/ZOTo70wUef0n/r14pAai3UXKyvu7c2eW+ssWXbblrP9/v9UW/n4hU8+E25OLuo35eNjY3VF5Pd78vqhkwc0LFTF/pt4mS159bNm2RrZ0c+Pj701lvv0vD/PUcb/lunOwoC3MRJU6npw83owoXzhGsaMfIdmj1rBo16ZySlpqbq6i5ZvpqqVq1GycnJdO3aVQoJKa3eLevWrqbnnhmitusq6y1AGJ37zwKeHHSjNi0fprNWCO/W9K9Jk4fptz8mk4ODI23dspk8PD1o0KAhPCn3Fg3o14dOnDiu1yvLFuvUqUvf/fAzjf/qy2wF0tFfjFXPgakWf/rxOxFITYGRbUJACAgBIZArBB54gRQUMHvbr09Pk0CioqJMbs/PjY6OjuTh4XlPAlX3x58gDBShxYM2uGRJf7p580Z+dv+BPld27OPi4qjFw40oPj7+gb4+6bzlBNw93MnFxcXyA6SmWQLZ/b7MHmhBhWtXr9Cbr79C69etYS3mbfUerFa9BguF8+mnn3+lh2rXYO1hsmppxFtvU9Vq1al71460f/8+ta1T5670868Tad/ePUow1U45h4XUvbzt0MEDSlCFsDjyrXcI2vohw56l33/9Wauq+w4pXZqmTZ+ptKkQSK0tlvYPlhsQRsPCwqjHY50I7ykUaIqXrVxD47/5nh7r0sHi02Mi9NFHO1LZsuUs+v8D1m+89nKW9uU9mQWJbBACQkAICIFcJJD3aolc7Gx2TaXwTDcGLKY+mAXHrPlfM+dS48ZNszRRvkJFta/dI+11+0qUKEHvffAxrV63kY6eOEvLVqyhvk/11+3XFiZP/YuG8gAG7f45Yw4dOnqSNmzeTgMGDtaqUPceT9BAnt1G+fa7n9S50Bf0yZLyRM/eBLPjn374luxYQ9CDBdTsSr36DeiPydNp6/Y9tHnbLtasTqHWbdrpqmPwCK3BwiUraO/+I7Ro6Up64823yNfPT9V5sm8/1T8MivQLZuzR54qVKuk2d32su9oWFBysNI0bt+ygHbv30+djviIcD03Gl199rfqx/9Bx+vb7n8hVbyCHOmgT5zQuX43/ht56Z5TxZoP1KlWq0qQpf9J/m7Yp7tt27qXpM2bTw82a6+rlxD49PV31W58nBntjx32jO15/YeTb79KEX35Xg2JtO7jMmPU34fpw7Rj8BgQEartz/A4NLcsaiwkEbvsOHqPFfC9wDmiC9Yu5ewrOX3/7g+J84PBx1R8cY1y0ZxUayWefe4F+/X2Sun6tniXPPLT0T/V7mhYsXq6uGX2fOGka6f92tPas/fby9qLPPv9S/X72HjhKP/z0i4Ep/rivv6Nx47812ezb775HP074zeQ+beO0v2aRm6sbwVQTzx0+aFO/WHI/X339TfW72bX3IB08coLWrNuk7huEGv2i8W7WvAXNnvuvekb/+XcRNW/RUlWDeeTceQvoyPEz6j3Ttt0j+ocr4SEvWLu5u9OYseMJv5fDx07RrDnzqG69egbnxool15nT70tr0BKmWl3j7wMH9tM/f89R73Xsw28W5qZLlyxWE3zB/O5BwXvlyT79aDWb0WrCKLYvX7aEDh86SEOfeQ6rujJ50kRlzqtpTaOjo+jnCT+q/dVZ4DUuXl5eNP3PWbRp0waaPjVDY2tcJ6d1a/qH3yeepfPnzuqEUbR98eIFOnnihDJbzulcxvu+/GI0tW3dnJqzObYlJSkpWZlDwyRa/yMCqSX0pI4QEAJCQAjcK4EiIZCau/jDhw5Rw0aNqT/7IhqX3k/2oYdZODx44IDahYE5BLahw56hs2dOsyD4nTIVg6Dy3AvDDQ7HYPPFl16lmXP+JgwkVq9aqXxwYPoEvycU+DJp/8wx8ImIuKM+EJTNleo1ahIELwzKDvJs/qmTJwkCqqnSq3cfwoC3XLlytHTpYjb12kS1atVhAetrVR39gwA6/MWX6eKFCzR37iyKjIigl199ndq3z5hxx7EYsNvaGpru+ZUsqbbrD7qhMUDdRYtXUOcuXWnvnt106eJFgr/nxElTaOWa/6hVqza0e9dOxRH9HsIaCK3gHDge5zQu9es3pJq1ahtvNlgvy8c9VK8+azkO0p/Tp9KK5cuoQnmeXOCJAWxHMccewmulypnm3vBPxcQDJin0C6772ef+R+E86YFBMQp4z5zzD5UJDaUpkyfS5k0blf/a4mUrDQRv/Xa0ZX//UjR/0TJq0vRhpf2Z8ec0Hvzdpv8Nf5nq1H1Iq6bOkdM99fb2pqU8WdKhYydatXIF9+MPwr36mwUdYwEHzyqEoOWr1tH7H36iJkTw3KNY+sxj8gKTDHe4r5Mn/a4mSjCAf+31Ebo+3+vCvPmLqR37/x1g7Rb85SDsYIJBK9euXlWTF9VYC6ZfMJny3PP/M2uWHxkRSWl875ISk3S/wejoaF1Tlt7PDh06ESbAVixbStOnTaGzZ0+rd8D3Pxpq1bR3wzQWZFDWrlmtXAt++32ymtj4ccIvlJaaRmtWryR/f3/eNlFN5GgdygvWuM+LeDKhD08CHWRhb9aMvyiGzU6bNs06OWbJdZr7fVnKVLtmS7/xG0llv0rNn7w0m9xC832YfeyNyyEWSCuxSwcm83Iq2u/uyhVDlwr4VGLi6+atm/TWiNdzaiLbfdb0D/8jdu3aQY888qia7NTMqIOCgtQ7Ec9dXhdMXJrjldd9kPaFgBAQAkKgeBEoEia7VapWo01bd5q8c++89SZt2bxJzZbDhAsagpi7A1FofHo83pPWrVurM4N9lge3EAI7tm+jTIHR6M8TfiBoWF5+5TWaNmUSJSYm6s6FAcSggf3UTDw2BgYG0Zbtu+nxJ3rRxg3/santMsJgAv5HH34wSgltuoPNLECIg8kWZvpR5v0zV/miVuXrhZmyVjCD/+HHn6qBDHxMtf5hMNWHBSwUCDsYzA8a0E/5TWrHwreoRAlnbdXq71kz/6Lvv/taBd7AwdD6ILDI+HFf0s8//aBM4jCogsDRvEUr+unH760+h6kDwLZhvVoGvmE/fv8Na3720RPMHmZ61rL/e85seunl11jo76V8rbTzdumaEexj9uyZahPMryHUof3hLzyrE1IhGC/kAf+gQUPVM6Mdb/zd9bFuShP6ZM8etGPHNt1uCMcpySlq3ZJ7OpwnQ6CR7dyhHR07dlQd9+vPPykN5ofsHwtGCIiilXosqE/gewJBCmbfmibc0md+4OAhSggdMuhprUnVBiYW7rdAQzXxt1909xOmhnhmMWkAP7rZs2eoyZO+/frTRx+8pztd7yf78uDZniDU51ReeekFthY4oXgbmyRacz979+qRJZjNe+9/pCaroK3WD7aDd8PT/Z7U3RtcCzSSlfn90unRdroAZZi8goVFfdZsa89DXrB+5tnnqQIHyXl22CA1gaHxgvALjah+seQ6c/p9WcNU/7zmlmGlgffYMp50g0CMgkkYFO29rlbu/kGQJrznvfnewA81u9Ktew+1a+H8f3VVcNyPE35V1h49unXJ1rdUd0A2C9b2D++UiX9MpY8+GU3w0Z0zZxb1Y8sETEz+wO+4vCyY3Dp19hKlpaWpd8SSxYuUdY7+c52X55e2hYAQEAJCoHgSKBIa0vj4OGXKBXMu40/0XR/SOSxMQEMA4UIr0FAFBQXT3DkZgga2Q3uA4EH6Ah+2r2QNHAZZMLXUL1vZnBZmYVpBkIxzZ89QcEiItumevpV5LmuJIIxqfkTz//1HDRSMtaSPstbG09OLvvtmvE4YxUkhmGomZhi4Y7CLID76BWZx2iBYf7ulyxBu9IUeRKtEmT51ik64gFYR2+s3aMiBOgzNgS09j3E9aJ01kzvcEwz2oZWKjIygsuXKG1e3aB0RPMGiZ88nDUxze/Z6UkU4RpRjFEQ9hnbyN/Y10zSm2A7tHrQ2tWrnrN3VNOZlyxtqh6EBP8emeiiW3FMMojfys6oJozgOg3RMmpQrX4FqsIZdv/zNA9qvx4/VTb5o/neWPPOYVEC/fXx9DUxp0Qb8zu63zPt7ru5+oq1pUzJMI3FfUa5euUIIYoOJHv1IoNBoI5Iq7t29FmvuJwQcFGjk6j5UT5kr472CYvzc4d2gf29gLYCyZfNGnTCKdW1702YZmsq8Yg128J2ENt1cseY6TbVlDVNTx5vaBuY/sWk2tLowRdUKfosomoCqbdffptXR36ctY1ISLgh4l+lHMf+YBcKGjZrQ4IH91XtFq2/qu0PHzkqjCRcO7aNZeWjntrR/EKyvsv8sfFxvcQTgUe99yJYYZZVWW3vnoQ+wtNDOpX3ru4uY6mdO21atXE4/fv8tjf70I/UNi5dhbO48edoMg99cTm3IPiEgBISAEBAC90KgSGhIYYL6/LNDc7z+7du2qhQfEC7mzMoQQCHY3bxxg9atzRhQQ1gKDg5h7ZUfwY9Nvzg4ZKAKZAFWf9CiX0dbjuIBhZNTxiBV22btN7SJJdmUb8XypUqri+NjYmNo587thEBHX44ZrYRTbC9XPkMAyy4sPwbwgaylXbUq79ObaMKznZ3hXAe2wxTMmaNfJidHotv3VSCwv/7mSGXWCq00Csz4bFirceb06Xtue+7sWconE5MV21iggGkyzL0/+jBTK1fursALP0Hj4unpwayDjTcbrK9mM82Rt96lr8Z9y2bMz9A2fjahzdQX7Cy5p6VKBSh/OoPGeeXsmTNqU2jZsoQJB63oD2a1bdY887NnzqDX3hih/GUhCEO4+Xfe3zlqnrTzWPuNiZ2kpCRlcaAdO3PGn9Sm7SOE6KsLF/yrTJ5xL8Z8/qlW5Z6+rbmfMKP/6JPPWJuZObmimd/b2+f8OsX14B7Y2Rqaj2q/GUwqoWCSI7dZ4/cSyoFtMDFnSbmf60T71jC1pD/Q5v86cbJKufLsM4NVJF3tuKioDNNrvF+MizZ5ERVpOrgdfHrhO759+1b67JMPdYfD5L0vayX79e1lcC5dBZ6g0S8QBI0tBUZ/9rGarLS2f/A5Rr81LTVcCD5nNxC4jVSrXl1nIVC6TBmlRdXvR2xsrHJh0N9m6TKsifTLN19/RZr2vx2bEEMrLUUICAEhIASEQF4QyHkElRdnLKA2Mciby6ZPME+DkIGchzDh/Wv6VJ2Gz9XVVZl3QeOydMlCkz09ftc00uTOuxvT2dyJG8qpitl9PTkHHQqCxpgq0BzBbxHF1cVVfWuaN7Wi9weaBU3rorc5TxbVtZtoOS2dmeRi+ZIDs/RirS9MhqE5PnP6FN25c0cFoLqf02DQ9clnXxAmLiCQQqsEQWLBv/N0zSJaKwo0CampKbrt2kLEnQht0eQ3TAdbtmjC5sGvKuFK025Aizx08NPs4xhh9p7CJxj3NDExw2xR/0QJCRmRg535vpsr1jzz334zTmmQh7/4CvtIt1G/H/iPfvrxBwZRTM2d09L90LzDbFIrmDiCBrpf/6eVQNqv/wCVtmPN6lValXv6tvR+wtwVpucwd4Y/IfJcXr58iU2B22b7OzXuUHo2vwN9TTuOyW3Wrq5uyjrBlFmrcR9z4zotZWp8blPrmDRBQLHmzVvS66++pPxx9eshjygKfhPGxYXf6SgIeGdcMOmE9yv8TIcNGah+51odTA5AKMT9NlXWb9iiJhfKh2ZMho188zUy/r1peXWt6R9cOxCU7IP33tGZhiOWQf+netPM2f+wj/vTSjuMdz0sNtq0ytCqa33M7v2r7bf2ew5bDyF2Qo2aNUUgtRae1BcCQkAICAGLCRQbgRRE4IPz+hsjVWCgC+fPq3xy8M/RCgQBmHzC1HXhgvna5lz7trUw1yKiMsJkE6bDG9avMzg/hJB3OPcqtLuaQKqZK4Zw8ngIZsYFglpUVKTKt2e8T38dfkMo8CmFEJaXJS0tIzjQvfivQtvTiQMpIVAMcgxaUixlD23VksULlQkfBoU9mTNS7uC50Mr5cxnmoYjoicHivRQIBjA7xAepfBD59vn/vagCD0ETaO6e4llFG5p2WL8PmoYWJnfmirXPPPw58YGgCBNpRMaFphqTPdrzY+6cluyHDy0mUjQTZhwDARUa7JfYl7suB7bBhNKPHH3alOY3u3PoC7haHUvvJ7Rm6NP/nn9GCQPa8Xn1nZus8fuHEONfqpTZ7t7LdRr/vixlaq4zMIdGLlJoMl9+8QWeKFyU5RBo01EqV6mSZR+2QTDUzNO1Cq1at1VRyBHcafCg/jrhT9uPyYZ3384arAv96NK1G0F7eCMsTKuuJkZ0K0YL1vSvYcPG6uhLly4ZtILf1rZtW1QwMgitMPOGCfC9vn8MGs9hRbuvmm97DlVllxAQAkJACAiBeyaQqX645yYenAPhhwYhDsJcz95P6iLA6l/Bju3blY8gzKGMC3yBNH8x4305rUMgRNHSq+RUF/s6sUkiZvvhzzPpj98NPn9M/I02/LdeadY0jcA+Hjyh9OnzlPrW/6MJLKgDsyvjtCIYoMP0EwW571DK3zUBViv8pzQLurldMEBEoAzjc0EQcffwyPF0HrwfkW8RsVi/QKOhn1oG+6xlj2Ng1ohcgwisA1/MORxQR7/s4sEgNFrwrzJVNOam9mEbfF4xsaAVaNx+YMEKg06YSqJYck93796poulCy6lfHuvWXfkdZ2fCrV8Xy5Y88zCH1L8u9BWWBIgsjcBKCBqjFQRnGjh4KGsO22mbrP7u8XgvdcxO/j3qFwQ3AvtffpvEQrGNMm3V35/TMp4FmOMbF0vvJ6Klohg/d6baND6HNet5xfoYW3cg8rWxH7fxe8ma68zu92Up05y4QEuJtEqNOb3SsCGDTAqjOB4CJwQ0XJsWqAvb8a6rW7ceLVu2BKu6Ap/RyVM5PdaWTTTw6b5ZhFFUxEQIJoaMP4gmjrJ44QJlnaFWzPyxpn8XLpxXrT3+RM8srbZmIRolL4RQBF4yNVnTsXMXdc4DB/apb/kjBISAEBACQiAvCBQJDSn+mb4w/CWTfJYvXWLgA4QARj/9/LvycYKZlXH5/LOPadXaDZx8fQGbzY1XQZKQlgFmVMgniui7VzkFhTXlyJFDahAN7ewEjjLrxLP+V65cotOnsmoz0S4EZsyqa8FOjM+1eNECeqT9o5zuozMtmD9PRZSFqSmipaampSqNHvzZkBC9Q6fO1Kp5Exoz+lOVImTO3wto3FdjVF67ypWrqBx9s3jgNZuTxe/cvk3185PRY1RkRWiDunTtrtKKGPchN9Z3sN8WNMFInYPAUAgGNHTYc0pwNw4qpX8+DIKhCUYaE/jzIvhHlSrVaPDQYUrYu3L5sq66texxIAadaH8w+3deZk0FojTrF/QVzxFS3EAIhh8ltJXQXEB7co0DkozMIUUE7hMCniD4EMzuEPm571P91IBQCzqFKMHm7unX48aqVD6Tp/5JY7/8QmnB8eygD0hXpAkL+n03tWzJM5/IGvP1G7eqFDcQRK9fu0ZVOdopgmWBh2aeiPYHDBhMg4YMI1O/L1Pnx7YXX36Fr3cJwQcO5ujIlwu/Wvj26RfcD+SDhPABbdmNG5laKv16ppbxnMD/FIGQ8NxgIgZBwyy9n0jHgev64stxNPOv6XwKGzUh8KSJiSBT57d0GyZk8oL1FE7Vg3ytUzhIzfRpk3nSxZ3T6zyeZeLAmuvM7vdlKdOcmMBXt0HDRsokH+mVMMmhXy5fuqjz/5/B9wO5jsd/8x1N41yhmKyDv7M9W1Po+82WKROq8v/iecVz3NvEvVvKFhKmTHz1z23tsqX9Q8ArBOaD9v/V108rqx4H9p/txvcJ/4P+nD7VIJKzuX4gIjECkfndzTUdWjZUWTZgUgcaeK08zkI6TOBn8f8BTGQhPRLyCyMyM/4PrV9nGAxPO06+hYAQEAJCQAjkBoEiIZBCQ/Mum7GaKqdPnTQQSGF+CQ2Hg4OjMs00Pgamkt26dKBPRn9BYznnojZrjIEycgZGRpkOjmHcjv46oqciKM4gFmjn/JNhCozQ/qYEUmihmj7cTGlFjf3KtDYRFAdmxU+wnykEUpQRb7zKQu4V1to9z7lGX1HbYGaKgRAKtCP9+vRS1/X7H1PUNvzBYAM+VCgQAseNHUNvjnyb/pg8XQmn8Nv74vNPVaRHVSkX/3w++hOV8/Otd0apViFAjfniU3r++eFmz/LKy8MJOR0RdAMFJom//jxBBXzSP9ga9vrHwZQb0S3ncr5WU/dh1DtvczTlc/S/F19SQpl2LBjCrzWnAgG3GQtd3/0wQVcNA+D3R73Nz1imP6S5e4rctEjjg0H4/IVLVVvQPP/w3TcqFY+ucTMLljzzaRyMZ+2aVQbPF5pFIKZR775lcAaYNUL7jcBDlpaaNWvTkKHP6qojpciIN7JOGKECIl5DIMXg3JryFQvt0EzDRxiWDng2IJCiWHI/Fy9aSDCpVNrfu9oqCMww34QAnVsljt81ecEa/a9YsbJKn4MAPHiucf3QAkIY0Yo115nT78sSpto5TX1jsgcFftz4GJd1a1frBFJMCiEK+tvvvqeri2dwyOABasJKO9bRyVE9A5jERFoVU2U/TwbltkBqaf/gKjFs6ED65NMvVLwDTGJm+IonqlRS3349zlSXs932Jj+XiHislT59+3Mk+f5qNTQk03wb7y08D9r7FBVgBYH/Lwj2ZOodqLUp30JACAgBISAE7peADZuhZjjz3W9LRfB4DIgwMw+/QmiErPFVyw4HTIGhTbNUe5VdO9lthwANE1toSq+xJtdUn2HuGhgYSFdZC4u+GBeYzcKs9Bz7SkLQy8sCf1Atoiyiw2IQZGmB6WGlylVUdUw8mPN7zSv28AH1ZS3E5SuXTfLM7nowgEZ6oJiYaHWv9NPn6B9j7p5iwIp7Dk2rJRz02zZeNvfM434hYjOeIWiijZ8PaB137jmgBs9jx3xu3HyO6+AIHhd4Uiin3wdydgYHB1Pb1s1zbC+7nTDr9vP14wmcy7qAZvp1zd1PpNtAYDT8vjT/QP3jc2s5r1jj+iuUr6B+38iVml2x9jpz+n2ZY5pdH6zdDmYVKlRUE3aa+au1beRlfWv6h7y2SCUEX1GkEssuaF1u9hfvsQCeFIUACtNgU6lqcvN80pYQEAJCQAgIARAQgVSeAyEgBHKNAEyGkUajedMGVpu2W9KJKlWqKpP6j9niYMrkPyw5pMjWyWvWRRacXJgQEAJCQAgIASFQqAjYFqreSGeEgBB4oAnAXHf1qhV5IowCDHzaoCma98/fDzSn3Oh8XrPOjT5KG0JACAgBISAEhIAQMEdANKTmCMl+ISAELCYAs+Fk9oODj3NeFAQkQl5HRPct7iWvWRd3vnL9QkAICAEhIASEQP4QEIE0fzjLWYSAEBACQkAICAEhIASEgBAQAkLAiICY7BoBkVUhIASEgBAQAkJACAgBISAEhIAQyB8CIpDmD2c5ixAQAkJACAgBISAEhIAQEAJCQAgYERCB1AiIrAoBISAEhIAQEAJCQAgIASEgBIRA/hAQgTR/OMtZhIAQEAJCQAgIASEgBISAEBACQsCIgAikRkBkVQgIASEgBISAEBACQkAICAEhIATyh4AIpPnDWc4iBISAEBACQkAICAEhIASEgBAQAkYERCA1AiKrQkAICAEhIASEgBAQAkJACAgBIZA/BEQgzR/OchYhIASEgBAQAkJACAgBISAEhIAQMCIgAqkREFkVAkJACAgBISAEhIAQEAJCQAgIgfwhIAJp/nCWswgBISAEhIAQEAJCQAgIASEgBISAEQERSI2AyKoQEAJCQAgIASEgBISAEBACQkAI5A8BEUjzh7OcRQgIASEgBISAEBACQkAICAEhIASMCIhAagREVoWAEBACQkAICAEhIASEgBAQAkIgfwiIQJo/nOUsQkAICAEhIASEgBAQAkJACAgBIWBEQARSIyCyKgSEgBAQAkJACAgBISAEhIAQEAL5Q0AE0vzhLGcRAkJACAgBISAEhIAQEAJCQAgIASMCIpAaAZFVISAEhIAQEAJCQAgIASEgBISAEMgfAiKQ5g9nOYsQEAJCQAgIASEgBISAEBACQkAIGBEQgdQIiKwKASEgBISAEBACQkAICAEhIASEQP4QEIE0fzjLWYSAEBACQkAICAEhIASEgBAQAkLAiIAIpEZAZFUICAEhIASEgBAQAkJACAgBISAE8oeACKT5w1nOIgSEgBAQAkJACAgBISAEhIAQEAJGBEQgNQIiq0JACAgBISAEhIAQEAJCQAgIASGQPwREIM0fznIWISAEhIAQEAJCQAgIASEgBISAEDAiIAKpERBZFQJCQAgIASEgBISAEBACQkAICIH8ISACaf5wlrMIASEgBISAEBACQkAICAEhIASEgBEBEUiNgMiqEBACQkAICAEhIASEgBAQAkJACOQPARFI84dzoTzLoCHDqFWrNoWmb8+9MJyaNH04z/pjY2NDwSEhVLpMGXJwcMiz80jDQkAICAFrCAwcPJRat2lnzSFSVwgIgSJCwN7egby8vO5rXNK23SM0YODgIkJELqM4EhCBtIjd9QuXw8jcZ8Pm7eqq/zf8JXqk/aOFhsCrr75BLVq2yvX+hIaWpanTZ9DRE2dp6/Y9tHnrLjp55iJN+2sWdejYyarzBQUF0ZdffU2VKle26jipLASKMoGhw57VvXfOXrhKu/ceohWr1tG4r7+jevUbFMillyoVoOsT3onHTp6j/zZupXdHfUAeHp5W92nEyHeoZ68nrT7OkgOef344PdqhoyVVpY4QKFIE9N8d5y9dp/2HjtOCxcupV+8+D/R1Gr9/zl28RkeOnVbvRWPBsVXr1nTg8Anq0rXbPV9zx06d6ZnnXrjn4+VAIVDQBOwLugNy/twlMHLE6wYNvvXWu3Tr9i2aPGmibntMdLRuuagvNGnysBI84+Li6KMPRtHBA/vJ09OLatepQy/87yX6+JPPaeWK5RZj8PL2oaf6PU3Lly6hUydPWnycVBQCxYHAu2+PoKioKPL186NKlSrTEz1705N9nqKXhj9HixctLBAE//w9h9asXkXuHh7UqFFjgiVG7Tp1aUD/PpSSkmJxnx7r3oN2bN9K8/6Za/ExUlEICAHLCODdERkZSX4lS6qJn6+//YFc3dxo2pRJljVQSGvNnTNLvX/s7OzI29ubnuzbj0Z/MZZiYmJo/r//qF6fOX2avvryCzp65HAhvQrplhDIewIikOY943w9w9zZMw3O9wIPvq5euULG2w0qFeGVd9//kBITE+iJ7l3o3LmzuivdsWMbLVwwn0bxfilCQAjkDoF1a9fQ9evXdI19Pe5LmjVnHmtKv6fTp07RsWNHdfvya+HY0SO0fNkSdTq8B8Nv36bn//ci1a/fkPAekCIEhEDBE9B/d8ye+RctX7mWYDX1oAukJ44f40nvZTrAS5csUlrghjw5pgmk58+fowk/fa+rIwtCoDgSEJPd4njX9a+Z/Soff6KXMpGBSSvM7Jo+3Ey/Bk2fMZv6PtXfYBtmMefOW0DNmrfQbYcf1B+Tp1OVKlVp4qRp6qW7fdc+evX1N3V1tIXKlauodg8fO0V79h0mzIY6ODpqu3XfoWxu+/sfU2jnngNs0nKc/po5l6pVr6Hbj4Vff59Ew555jgIDg2jUex+qOuhvq9ZtqW7dh+jnCT8aCKPawTduhNFrr7yordLLr7ymrn/vgaPqXCtWr1cDV1vbjJ8J+jJu/Leq/nsffqyuHwzwjwWlx+M9af6iZeq6YRo8Zdpf4hemyMif4krgzp07NHhgf4qOjqLPx3xlgKF27To0c/Y/6re2bcde9Q6ABsG44Pf+54w5ytwNpsAwA8Y7CZYK91K0QWD1GhnvEfit43e8bededY5NW3fSV+O/Ue8Trf3vf/xZrbdt2173u3/51QxrFO29Bz+wwUOe4ffVVPruhwnaoWTpdeoOkAUhUMwJJCYm0jKeRIKlhb9/KUUDZvZjx31Dm7ftokNHT9Kcv/+l+g0aGpD6beJkevGlVw224RjjMQh+36+9MUJXz5HHHm+/+x6tWbdJmfbjfz80mfolu3GGfh1LlqEZTU1Nodu3bumql69QUb1XataqrduW0/lcXFzo08++ILw3jxw/Q3P+mU/Vq9fUHastyJhEIyHfDwIBEUgfhLuUh32EOd1INuvdtWM7Tfjxe3Jzd1cvff1TNmjQiEJKl9bfRE5OTtS4cVPy9fXVbS9TJpTatm1H/y5cqgagP0/4gTA7+Mabb1GNmrV09SpWqkSLl60i+Fh89814+ubrjIEqAg0h8JBWUG85C8glS/qremPHfK7M7v5dsEQdq9Wr+1A96suD0zXrNiqf2PT0dPLw9GQNSIbv2t9sMmNJKVuuPO3auYOg1fn4w/cVE/ibvfjSK+rwmNgY2rtnt1o+dPAAbdrwn/rgHwt8yzBohTbm/VFv08TffyFbNtHp0/cpS04tdYRAkSUAjSm0AnXq1lXvDVwo/ErnL1pKySnJ9MF779CPP3xLjZs0Ve8FZ2dnHYvqNWrS4qUryZMDfnw5ZjSNGzeGMEHUokUrFZxMV9GKBQw+UWLZjB8lODiE7oSH06SJv9God9+iGX9N5/dYezWhpCrwH7wXYPaPa9F+93i3oeC9h4m5pStW0yuvvUGurq46H1VLr1M1JH+EgBDQEXBydCL8L4+Lj1PBfhbw+6JV6zb02y8T6N23R/IYI4b+/mcBPdysue6Y1NRUNcGubcDYAWOcIUOfJXv7DINA/P6f6PkkRdyJUNXwPpk991/lXrBy5TI1SY3f9pdjxxtMxGc3ztDOZck33IXeensU3eIxA1wJtOLG7wyMpzx53KKV7M6H/s5kq5NeT/alefPm0icfvU97du+igIBA7VD1LWMSAxyy8gAQEJPdB+Am5WUXYbL23LDBlJCQoE6zZ88unnmcTxAGYWJnbUngmc3OHdrRhQvn1aF//P4r7dpzUAmKRw4fUttGvfeR8t3q8Vgnio+PV9swCOzYsbP6B6Q28J8PP/6Mrl29Qk/06KrbvmzpYtq7/wgNHDyExo0do1VV/7D69e1FB9hHVCsTfvldCca32UTPkvLm6xmCp1YXmpRSAQHUvkMnHjB/p2Y0Z82aweceSovY3HfDhvVaVXr/w08IZjej3hmp2zZl8h/KH0a3QRaEQDElcGD/fh4UOijfTQh3sGQ4eeIEDR7QT/fb3rjxP9q4aTsNHfacznzto48/ZUEwlnryOyA5OVnRmzNrZpZ3haVYMeH25lvvqPfO5k0b1GHwCTX2C7165TL9OOE3FZX7yuXL9Nef0+jZ5/9HR48eVu8C4/M5OjrQn9OmKGEWg2itWHqdWn35FgJCgKhq1WrU56l+ymcbMS+GDH2GypWvQI+0bUlnTmeMS5YsXkiYnH7/g4+pc8dHFLYtmzdR5y6PKV9NWGcgaOHZM6cptGw5Zfm1aeMGghYSk99bt2xSx0Cwg6a1Y/s2OpcCmNh6sbXG/158mWbz/3yt4DjjcYa2L7vvUe9/RO/wxDYESfiRomCy/gq7Upkrps4HQfMhnoR//tmhtGL5Ul0TfqxNbswxM7SCAEkyJtFoyPeDQEAE0gfhLuVhHy+cO6cTRnGa03df9tCK3pNAygKmJoyivbS0NDp79gw1bJhh1goNKGY0N7J2URNGUc+4YDazGddbtnQpdev+uMHuyzxYRMAU/QKthb4win1uHBABWg1rSh0OdtKUzwuTYh8fH6XZxTWYK4cPHSSEXYcZEIRV+KtiYHrr5k1zh8p+IVDkCURFRapr1FIbQHP49bixOmEUOy9fukR79+6hxk2bKoEUg7f6/B5avow1qXeF0XsBhQEnzOq9+feMgS5Ma98e+Ybyrdfag7l/8xYt6aF69cnPrySVvmsRAisOCKTmSmREpBJa9ethMGnJdeofI8tCoLgS+PKr8TxRncrWT6XU/92zZ87QWyPeUDhgVg/rI00Y1RgtWriAPvnsc2XZBcEVAinGGA0aNqLVq1ZSx05dWBM5lxo1bqwEVQiksJy6eeMGnTx5QjXTqlVr9e6pzK5G+GglMiJCWT/gd6y9f0yNM7T62X1jYhv+sSjQzsLabNCgodSpc1fq0qk9xbIJb3bF1PnwnkJ/NupNiJs6XsYkpqjItsJMQATSwnx3CqBviQmJ6qyaeUtudAHaV7zUUWBWApO8bVs359h0QGCgGjjWql07i7kwNJ5hYWE5Ho+dZ/gfGnL7IVJfTi991MUgFf8Qe/PgFeYvR44cVjOrzuyrUZZnV82VyZN+V9rQVzgIw+tvjORIo5E8szqTfuGZ0HA2B5QiBIozgerVayjhE78tCH8QNm/eyjpZExZ2nX2hMnw7YZ2A98bu3TvvC10am/ElJibR8aNHVXRsaD+uXr2qa7MbR89F0CWY3sNi5Pixo7z/MsFcWN+FQHeAhQuWXqeFzUk1IVCkCSQnpyhriM2bTxCsixYvWqATBGFWb+p9gTgQKCG8/zib2UIjiAkkTIDv3LGDtaIP03tshn/z5g0OYPiRcqeBNnTr1i06ljC5d3N3o8GshTUu+/fv4/GKC/cjY0LNeL8l6xCk4bKgX9awsAw/1Ucf7agLbKS/P6dluBYd4H6Zm2yXMUlOFGVfYSQgAmlhvCuFsE/3K6BqZmxw6EcJ4n8gORVEwsQxf02fSn9M/C2nqtnuO3V3BrQ5+3eZS+3ShLUyEEbfGvk6wSRQKwjeZFIg5VlY/RLBs6kw14U/bD3WsrRp+wgNHDSEB9+BnPLief2qsiwEihUBvDvwe4DFBSZnELAEpSYLfMYJVLy8vJV/FfbDrxPF2BpCbbTiz7/z/s72HQIzuk9Hf0mbN22kF54bqhsAQ8MCvzPtvaWdzoYMf/fadlPft29nBC0xd52mjpVtQqC4EYAvOXy0TRX8lmrUyIxDodWBxQUKUttpZcvmjcoiAjnWTxw/riy2YL6L/OHwU1dWC+PHatUJbafA97RbZ922vF6A8JyakqL6Aw2qNQWa4IoVK5k9RMYkZhFJhUJGQIIaFbIbUhi7Awd/zPbrF/3AI/rbzS0j2ibMWLWAQ1p9aExseHCoFcz+nWNTX/hBYNBoXLTAJMbb9dcX8Qwr/sFhZtTd3UN/l1qG9kWL1FmrVh21bf3atQb1oDnVL3GxsWoV5sD6ReOBa1u1cgUHXRihZj5bt2mrX02WhUCxIoDf7hdffkUI0PHV2M/Vtcfybwhm/TA90y/w70TgI/hposCk//Spk9SUzfUQVVIrwSEhJiNya/ut+UZbiOyLQaxmlofjTU3A4bePPlpaLL1OS9uTekKguBI4ylrGkv7+KoK/PgO8Q2B+q+8as5nNdmtxBG9kD0DMCRRYLMFn/NnnXlABEbduybTQOnTwINXkoIvlWPNoXCwZZxgfY8k6XAjseKLu5InjllQ3qINxUVBwsEFgR1QwHqvImMQAm6w8AASyjvQfgE5LF/OXwMqVy+lRDuzTvccTKo0Kgnv8Pc/QBMWaHv3551Tlq4WIlPDZRGhyRNJEdEp9E7lPP/lIzWb++vtk9Y3BIzQtYzj6HYIEmCsw08Wsa+mQ0rRq7X8qYh6i/SKaHdIzLF+5jmBii4J/eCjvvveBOhf+0X3x5Tjq//RAtV37c4X9VzFDOXDQYJV+Bv0PCgpSaSlGcLAUrMP3tEmTh6ndI+1p39692qHyLQSKPAH4UXd9rDs9PWCQSqOwZdtujjTdn97hCRpM1GgF0bUr8Cw/3gFI64C0Bz9N+JVNdB3p158naNXY4mAcB1irTEgf9dnnX9Ivv/1Bq9duVKa8+u8K3QFWLly7eo0iIu6o33n7RzuoFC3PPPs8n2eSakn/HNBqtGjZSqWTQtA3pHMxVyy9TnPtyH4hUJwJwEoK1lUff/q5iu8AyyXkEoYf5nffjjdAA2ETk834rS5bukS3b+mSxRznoT1dunSRLl28qNv++2+/0J074TT1z5nKzxQ+ntCiov1FPC6531KF/dbhy4pgS0gl88FHn9KkKdOVP+zcubOtbh4B1mC5gdQ1GMsgvR3S5j3Rs7dBW0iVJWMSAySyUsgJiMluIb9BhaF7C+f/S71796EffvpFdQd+GmPHjM6SHsbSvv7CeUHLl69Ib454W32gSfiGTWjgG6Ff1q9bQ8OGDFBR9OZzKhmtILDBeA6IYknBIBgR+PCPbPQXY9U/KhyXwukmtm/bRtOmZgw8N/y3jr7mPiDYAF7sCGSECHaYYYX5nlagRRnx5mu6nKXYPmRQf47Yt5l9UIbx9ozchPBjQVCFb3lALUUIFBcCmCzCbwcmcjCF27TpP5rx5/QsAcdgRou8gu+Mel+9A8AHA8X+T/Wma9cy/Tvhe/XcM8nUjyeGGrDvFwKRPNG9i8r3Gxl5735d2v3Ae+DF/z1H77z7vsqhjO2nTp5kH7aJun5pdfFbdnV1U4NJDHiRtsE4MrdWV/u29Dq1+vItBIRAVgLw7+7Xp6dKrbaa07uhwPQfqaAQoV+/wF8U7wmkgEFARa1gLIDfuxZdV9sOq61ej3dTY4Sffv5NFwk3MjLCav9OrU39b6SdwQcFQvV1fr/N/OtP+vWXn9Tktn5dS5ZxbSN5DIIJc8TIgHCKiMNrVq+iSpUr65qQMYkOhSw8IARs2FwpM0b9A9Jp6Wb+E4BJbbny5VVEXkTDzI2CHKbIE4bIvinsT5FTgcltQGAAhV0PU+Y3OdXNbh+uoXTpMmTvYK8CH5iK8guzl6rVqnEEzstmgxHBjDmec6TBVwMF2hRoe0qUKGEQaTi7/sh2IVDcCcA0tnz5CpwTNNaiaLbgBe3Inn2H2edzGEfgzdSA3C9LaGxTeMIJ5sQ5FQjSbm6uLDhfy+Jjmt1x93Kd2bVVmLfDRBvvdDt7O35XX1dCgXF/fTk9BaxXtFRj+vtxPCIbI7iVJdHN9Y+V5eJBABZJ+A2ePn1aCZi5edWYaCrNQY5gno9n0NiHPDfPdb9tIRc83lnQ9kKoNlVkTGKKimwrrAREIC2sd0b6JQSEgBAo5gQQARP+Vvv27WUB55rynXr/g49VBNzWLZoSrCukFA4CMHke/833LISmKUEBg/mXX3yBo51uVx2EKeQfk6eTJwsTrizQL+T0WB9/+J5OaEW8APgbQ7uO4FZvjXjNwMy7cFyl9EIICAEhIATygoAIpHlBVdoUAkJACAiB+yYAc/l58zMCk2iNIccvTNZ27dyhbZLvQkAAfnfxHIzuGKfNQXmX/fwbcVRTLXrp739M4UB1Z2nMF5+peAFLl6/m5dEcAX2ZSs21a89BZZaJVBuYhJg6bQY1qFcrx3zVheCypQtCQAgIASGQCwTEhzQXIEoTQkAICAEhkPsEdu/aSfXq1qAKHPQIpvBwF7h48YJZE//c74m0aI7A3j27DaqkpKao+4WNMIVEkLf27VqrOtBsL1m8iAO9dFUCaRv2hYMPMYRRFEw2IMckAtPoB8NSO+WPEBACQkAIFDkCIpAWuVsqFyQEhIAQKDoEENAEHykPBgEt0jJ8RT96f5TqtJ9fSZWWAr75WkHE8oaNG6vVgIAA5bev7cP3lStXOG6AYbox/f2yLASEgBAQAkWHgG3RuRS5EiEgBISAEBACQqAgCQQEBBJyIPp4++hyJXp4ZOSBRmRUrSCoEfxJUTw9vbIEOUJdz7vHacfItxAQAkJACBRNAiKQFs37KlclBISAEBACQiDfCcyc8Sf97/lnOK3FBPr+p5/V+aOiMqKAOjo66voDE2yk1kDBt5NTCd0+LGTsv//UPgaNyooQEAJCQAgUSgIikBbK2yKdEgJCQAgIASHw4BJADkikcEEqrVu3bhJyOAeHlNZdEKLuXufUMChIoRMcEqLbhwXs189Ja7BTVoSAEBACQqBIERCBtEjdTrkYISAEhIAQEAL5T+Cxbt0JOSJRkHd14KAhtJ/T9aSkJCthdN3a1dS3bz+139XVlbo+1p3zyC5V6//9t46Q4qfuQ/XUeqPGTQh+p5s3bVTr8kcICAEhIASKNgEJamR0f5HUG/9AkQtNv8AnxsXFhW7fvq2/WZaFgBAQAkWegIO9LTnyB992NjaUlJrKQkY6JaakcvL4In/5coEWEKhcuSp9/e2PFBFxR/mQXjh/nl55ebjuyNGffkxTpv2lBFF3D3daumQxrV61Qu2PjYmht0e+TjNmzqWbN28QAiKNeONVSfmioycLQkAICIGiTUDykPL9tbOzo9ffHEn9+g8kjK5gatTriW7qzmOm9/MxX1HHTp0pjnOshbNA+szQQWJKVLR/F3J1QqBYE4Dg6eJkRyF+LlSvgg+FlnIlH/dM/z/AiUtIpbCIBNp35g6duBxJcYmpFJuQUqy5FfeLh3luYFCgEiRv3bxpEgeCHkXHRBOEUOOC/7eBrGW9yhF2U3nSQ4oQEAJCQAgUDwIikPJ9Hv3FWKpevQZ9PX4sbd2yWQmoKSkZA6tu3XvQy6++Qd26dFD/ZD/+dDT5+pakl198vng8IXKVRZoAAodAG4EBYLoJVZetra3yAwsLu05paWlZWIjlQBYkD/QGJwdbCvB2pq6NgqlCkJtV1xLDwujSHVfo6MUoio5PtupYqSwEhIAQEAJCQAgUXwLFXiCFz8umrTupZ4/HdEm59R+HX377g44dO0o/fPeN2lytWnVauGQFVa1U1uQAXf9YWRYChZnAjxN+o06duygTOQie//w9h8aNHaPrcpeu3eiLL79S5uteXt701ojXdEnqxXJAh6lILNjb2pCXmyP1bRVK5QOtE0SNAaTyvMXM9efo1NVoiokXjakxH1kXAkJACBRGAlWrVqWKFcuTLbF1QnoCsXMGd9OO0siR7B092ELwFh0/cYrCwsIKY/elTw84gWLvQ9qwURPlF9qRB+bvjPqAYmNjaeqUP2jTxg3q1iIx95rVq3S3+fLlyxye3om8fXxUsnYP/1DdPlkQAg8Cgbg7YZSSnMDP9Up65+03lelc2bLlaNXaDbRg/jw6dfIkubq50bivv6N+fXqqiZqGjRrT1GkzqEG9WspSoHOXrlSvfgNq0vAhneXAqPc/EsuB+3wA3HwCydbe0DT2Pps0e7htajw1KOfCWtFAs3UtqYBIeYM6VKUz12No9oYrlGjLAi77nUopmgQSYyMoMVbSsxTGu1vCzZscXTJywBbG/kmfCgcBf/+SVKdmVXKwjSOHNBY207Ka0xPdJteQkhRY5lG6eTuSdu05kCedT0mMo7hI0+b+eXJCabTQECj2AmlwcIjyVTl/7hytX7uWatepQ5Om/ElP9uqhIgQiMbd+Mu/ExAR185DQ+/atW5QcH11obqZ0pHAQcHBwIP+SJcnf35eTw3upAB/2Dk6qc+nprD5i09gEfo6iIqMo7OZtTolwm7Q8fflxBWlpGb5ZCxf8qzvd+fOs0Tp5gpo3b6kE0jZt2tGlSxd1VgO7du6gGzfCqEXLVkpL2qlzV1q8aIESRtHInFkzleUANK2mTHt1J5KFHAkk8z9j2+TEHOvk5k5nuxTqWM+fGlb2ofS7z0VutV/e35lefaws/bDwJEUnO4hQmltgC1k7qSnQokgpjARS+V0iY5TCeGcKT59CgoOpfu2qZJN4hig1nHK0aUm6xFrTS+TrGkrNG9WmTVu2cxDQ3PX1TuWgolKKJ4FiL5DCb+7QwYM0e9YM9QTs2LFNhZ7v1KmLEkgjIyPJMJm3s6qnJfSOjw4vnk+OXHUWAqVKlaIK5ctyUI5gSk64TQ42sWSTeoPSoxIoOV1v0GZjR/Y2JciH/Tc9SntQxdAalJCQSGfOnueAWmcLRKDzYwG6GvtR79+/T11XQEAA+5VeNrjGK+xnCosBFHOWAwYHyorFBPJT0+TmbE+PPxxKNUI9WBjNcRhicf+NK7qwsved3pVpzJyjdDMyYzLPuI6sk5q08vb2JnzcOCWKs0sJZYnj7u5J0dGRalI0Li6BYjgQUEREhDKjj4+PF3RCIEcCmODCR4oQMEWgJP/fr1W9EqVE7mFhNMpUlWy2HSEn+9JKkP1vw6Zs6shmIWAdgWIvkF68eIEQUIImBgAAQABJREFUuMi4lHAuoTYhMTcSdGsFy9CYamlhvALKa7vku5gS8PHxphrVKpEbj74d0m8QpVzkRHzarCGeo4xnyTSeWN4cS57uXuRb8iFq+HArOnn6nBJOTde//60x4VcpJSlTOEBkzAk//0Yrli+lfXv5HxMXT08vFpIz62AbnntYDKCYsxxQleRPoSXgxFF02z8UyMKoZ7708fXHq9LYv49QZKzMfmvA3d3dKZi1E2XKhCiBND0lhr21+GObRA52ceRoh3fINTafT6UkZ1tKdneg1JJu7N3lTzb27hTH7iWXLl8lTBRFR4uljsZVvoWAELCMQL16dckm6YyVwmhG23Ypl3jcUoUqV65MJ9nNJy8LYlYg6rapwIs5nddcUMacjpV9+U+g2AukWzZvVGldWrVqQxs2rFfCZ+vWbenll15Qd2PlimX0CkfZ/f3Xn9UAvU/fp2jliuU6LVZ8tOQlzf/HtvCcsVbN6lSubBmyTbnMmtAwFQLg3noHnw3WSNo6U9nAECrpVY327j9E0NDndklLzdSG4YX91fhvOJG9A735+iu6U8ECwMnJUJBGRF6tP+YsB3QNyUKhIwB3zhplvahFzZL51rcSjrY0pH0FmrzqDEXFFW+h1N/fnypXqkB+fr6UnhxODvy7d2XfLVdPe6oQ6kYVyriRn7cDubpk/nuOjUuhW3eS6czFGDp94RbFcrAoByfWpJb3oapVKxNSrJw8dYbN6nlCTIoQEAJCwAyB0NBQ1nKmkE3KLTM1s9/tkHaZqlWrQufY5S05OW/e64hnsXT5ahr55msE1yGtvP3uezT8xcwxC7ZjDD+wf19VJaegjFob8l24CGT+xytc/cq33sD8aeSbr9K33/9E4eHhFFq2LP34w7e0bu0a1Qck727JwupOduCOiY5R+dOGDOqv619+mtjpTioLBU4Aga2aNmlEnhyvJT1qB6Wm59bLOI59NG6Ti30ANW/SgHbu3EkIpJUXBbOOX3/7A8E8d+DTfXX+oDjXtWvXKDgkxOC0sA6AxUDG/pwtBwwOlJVCRcCDNflPty1rcZ+Q7Sc8OoE8YQHAaWG0kpKSTndiEqmEox25u7CPqJlSxt9FaWS3Hbv3AZCZUxTq3Z6enlSzZg3y9fYk+/Qwsk3cT+5u9lSvuic1qRvIk0KZbI0vBMIpPqHBztS2aUlKTEqjnQfv0L4jVyk69iL5e/mTT+MGFH4ngg4dYk10HkxkGfdJ1oWAEHhwCcC9yJHuM3hQWiylJUcSslVcuHAh12F8NnoMPdHrSXJjodRUmTN7Br337tu6XZoG1VxQRt0BslCoCBR7gRR3Y/WqlbR+XR3+UQWrwC36porIRwrNkRubV7m5utH169cK1Q2UzuQ/AVf28WrZohmVsIsgu9QredIB25TrLOly9NMG9cjJ0ZFNeM/m6nns7Oxo0tQ/KZHNcgc+/ZRB4C6c6L//1tH4b75X/tT79+2lRo2bsEanJG3etFH1w5zlQK52VhrLNQJ2nN6lY33LoulGxCTRtJUn6OTlCHIp4UDt6gVTx4YZ7gsz1pyiTYeuqVQxSO1SLtCdhnerQc5OOf9L6d2iDB25EFnstKSVK1diYbQWpSVeIvuUg+Tuak91qvlSq0Z+93RvnVjj3KKBr/qs23aTDp8MZ8E0jPw8Aqldu3Z0+PAhNqM7dU9ty0FCQAgUfQJeXj5E8afv+0IdbaN4Uts/TwTSD95/l/DZvisjtoVxZ1M5x5gpzay5oIzG7ch64SCQ8+ihcPQxX3oBwRP+pNmVGPbRwUdK8SYAQQ7CqLN9OJvp5vHkRGoka1KOUa1a1SmVI6CeP5/982ntXXF2cSGYpqOcPHNRd/i5s2eodcuHVSqYt0e+TjNmzlV5Sn39/GjEG6/qtKjmLAd0DcpCoSLg6epIjav6mu1TUnIafTFjL9Wr5EdPtavEGrgS/AxmHla5tBd1b16O3ErYU6Kqu4c2H7pO7RsYatUzj8hcaljZl9YduI5g00W+2LB9dKNGDcnfz5VsEw6SbVo8lfRxogE9ypBzCbtcuX5oTJs+5EN/LbhIN8L5nZQQQVUqhZKXlxft2rXbar+rXOmUNCIEhEChJpCcFEMZsf/vr5s2aXH8rimY9IeNeaIcE+fIeLF48UI6fOiguhhzQRnv74rl6LwiIAJpXpGVdoskgWbNmlIJ+6i8F0Y1evyyt08+RfXr1+fAJTEqZ662636+MbkSGlIqxyYWLVxAy5Yu4ajBQRxx94oKKqAdIJYDGokH67tZdcv8RqH9ZPdi6tOmoi6FqB2va6Vhlcx2HNjUNDUtnXw9DX2OtbrG310aBdGuk5zqqIj7ksKsv0XzZuTiyAGKUk+SnZ0NVSjnRr07mRfajZmZW4dw+2zfcjRn6WU6dzmWnFKPU4BvGWrbtg1t3rwliwWEufZkf9Eg4OodQM4e5iegisbVylVYQ8AnqDLZxFsTWTeb1m1LcEDH6uQXmuHOk00tizcnxUVR1M1LZuvv3rVTRRyHRWN1zhAwf+FSgjsdrLjMBWU027hUKBACIpAWCHY56YNIAP5f3h4OZJdyLn+7jyTVnCOsUcP6tHzFqnw9NwTPSxczNajGJxfLAWMihXfdlbWZLWpkCpI59fT4xTsUwhFdJy0/Trc5bVGgjws91jSUvN0N59SX77hIxy5FUM1yPlS7vOUDX09XhyItkMKsv1XL5uRke0eZ9UNTWqOSBz3W1jJz6ZzuTU77+nQJoUVrr7IJbzQ5pl8kuxLB1KZNK9q4cTPFxUn6j5zYFcV98ZE3KUFS0xXFW3vf1xRxPYQnytg16H6LnQvF3jpJd67kjouAytVuQZ/WrllN+GglISGe+vTNEEjNBWXUjpHvwkVABNLCdT+kN4WUAMzfKleqpMzuCqKLiITnaOdGdevW4VyhBwqiC3LOB5wAgg/Z29tYdBXh0Ynk7uxADWr6cdAie/pv/xX6dt5B+nBAA7JnTZ9WbkTEc8TxdLrFOUYTklIJuU0tKXXKedOlm0VTQEKwsKZNG7MwepuF0Qyz/tKBznkujGrcu7ULooioi3TpWpwShp3t0lV/1q/foIsOr9XN7W+4NCAfMwIE6sdi0D8PzP9jOZ+qqf2SpkGf1P0vp7GrB+EjRQgYE7B14CjfKcZbrV/ndqKjIik1RS/XuvWt3PcRYdfDKDS0rGrHXFDG+z6ZNJAnBPSMsPKkfWlUCBQJAjU5vQslsxlJemKBXY9D2hWqUKFCthHnCqxjcuIHgkC5UqYjFWbX+aY1A6huRT+qWsaLnulSnSB8Xr4Za1B9UIcqNOLJOiyk2tKyHZb7ONer6MMBkHLHh9KgQ4VgBT6jLg4QBjOEUQ83B+Uzmp9dG/h4GcJ5UexSr5KrUwI1adI4T7vwRM/edPDwCVq4ZAXt2L2fJk/9iyB8agVRulesXk9Llq5SUes/+/xLNmPOfAaQpmHfwaM0a+482nvgKD3aoaN2qHwLASGQywRSIIzaWvc/wVQXktM52GfYfUbrNdWwmW29evchF46FgeJXsiT17NVbF3QRQRnLlAlVQRmx3zgoI7ZJKXwERCAtfPdEelTICPjxoMrP14f9RnPBvOV+ro1Ty6QlXqaqVSrfTytybDElEOTrbPGVl/Ryptus9dQKtKC2nJAoOcW0tiXA20WZ9mr1zX17sbDkoO+Uau6AB2R/1apVOa1LCTaXzfCBcuQ0OV3aBORK7xFREvlHLS2dWwUQzo/imHaR++XMOUurWnq41fWuXr1Cj3XtSA3r1aamjeoR8hYPGDhY186HH31KG9avo6aN66n9LVq0pEfad1D7tTQNgzjid+sWTenZYYPo2+9+Imdny59Z3YlkQQgIAbMELly8RCk2lrtZmG7QjmwdS9IVjjGRFwVp6TC55e9fin6bOEUtwwIFpSengzl89BRt2babNm/dRXv27KKpUyapfbDA0IIy/rdxK02aMt0gKKOqJH8KHQHL7KsKXbelQ0Ig/whUKF+ObFPD8u+EOZzJLvUGlQmtR/sPHCT4d0oRApYSKOlp6P+Z03ENKpekfzaeoZZ1glQk3W1Hw1S+0dL+bmz2SbTx4FVqViNA5SVFephdJ25Qa65rTbHlFDRFqXh7e3NwjWoGZv2lfJ2ofGlXs5f5zR9H6XaEofXFEx3KUP1avhTHQuiiNZcoPDJJCfFpHJ64c5tgKh2Yc7sVQl3Jn89/+Xq8Or9T+gXuX21OXXZdBQMx2ykrK2zftlV3BPxVEVykbbtH6LtvxvNzwmmDHmlP7du1VnViY2NpyeJF1LlLV0IKKUnToEMnC0IgXwicOnWaKlbkCaF0zgvN+UTvpaTah9DFCxfzzD8dKRezK0/16Unu7h5UkrWjyI8eH5/xntPq5xSUUasj34WLgAikhet+SG8KIYGg4GAeZBYSv03WkqYmhlNISAingTlfCGlJl+6HgJ2DE9kgvG0eFC/3EsSNW9Ryg6ql6PTVKHp/8k7lQwoh6IXuNamEE/sdsbZ08+Ewmv3fWZWHNCouiZpUK0Xt6pfm9i0XMu3t7Mm+CJnt1q5blyeuEJ2YJXZbRzZJtqEuCGJkCROuM7hnRSof6q67P0pgZ5zrt4eplDvDB2RoN3cfvEWrNl2nYX0q6upmt9CpVSDNXHKF4hORYyeN0rl/dR56iLZs3Z7dIVZvT+OJsbTU5CzHtWzVmv3dM/IHIoexvb0DR+u+rKt3hZcbNs4wI5Y0DTossiAE8oVAYmIiHTx4mGpWr8gWFMf5nKlWnTfd3o81rN50+Mgeq47LzcrR0VGcfSD7SMHmgjLmZl+krfsnIALp/TOUFoowAQyUUpOiyS7dcod9RNR0dbEnFydb8uWcgz6ejpx70JGQHoOnI1nTkUy37yTRnYgkCo9O5pQMqYS8j5YWB5tICgosJQKppcAeoHpuPoFk78CCYx6UlDQ7srN3tLjl/o/WoJ5tqlIMp2fx9ShhIFd9NKQpJSSnUhRrR73cnHSmoRY3zhXtHJ3J092yqL/WtFsQdf1L+lFQ6VBySjnCp8/wm3RzjKWSnH/UkmIL4dyRzZj5Y1zS0u3I0dGRUAfF38+NomM5D/LddeP6+usBpezJw92ZbJwyfK0w6HTyKk+VIpLpxk3WjORCiYu6RfH80S/DnnmOKlWqTC+9+Lza7OHhob4xCNYKghp5eniqVUnToFGRbyGQfwTOnj3L7wd3KlO6EkfcPcvDE8vGOel2vpTuWIG2b9okKaXy73YV+TOJQFrkb7Fc4P0Q8PHxIXsbTrtiQfF0d6DAkiWoYW0fKhNkue9TVEwy7T8WSQf4k5CYxsKpmZnK1Eh24ucgS1KKHIHIsPN5dk32japRanKmX6glJ4J4xO6hlJaS9Tjs83WDRjSJ27WkNcM6DukJFHYZM/O5X+Bn5OyCgB3pPBHEqZoc7Fmzy3HJkhOVhjedt8fwzHo6a35zo9St3IYSb++h5NRwXXNNmvkzN8vAoN7GHVdo/xEH8vNyonpsqut6N2JxozpeNPWf0/TnvCRqWtePNuwMo7ZN/Sxuu3KoA23YkZkjMM0ukfzZ1O3Yvrxh36FjZ3rltTfo6X596NbNjGAnUVEZWgwI1ppQCh9TpGdAkTQNusdGFoRAvhLYf+AAxwaozhNINcku+SLZpBpOLhl0xsaJUmyDKJncafuGDbmWF93gHLJSbAmIQFpsb71cuCUE/Pw4mBFF5ljVjbWhD9XwopYNMyNK5niA0U5Ew8Sx+Fy4EkfLN7CPF2tOU1OzGSxzpN8i5n5nRERWhYD1BCDslHB2pbIVKlH9Rs0pICgk20ZgynXm1DHau2ML3Qm/RVGRd+5ZOEVKKDc3Z7JNyhRGEUG4dpUM7V+2ndDb0bC2L2vG7VRalqOnImnXwds0fEAVNpG2Iy93R57ociF3V3tasPoSa6ptKKiU5RNe9ap70c794Wy2mzHRZZt6m7y8SxP6HRGRIRDqdeW+Frt170EffTxaCaOHDma6Ody6dZMnA5IpOKQ0nT1zWp0DUXfhz4oiaRoUBvkjBAqEwJEjR+nGjZtUi7MJuHuEkE3KHZ6I57Rc6RnvjHQWRJPS3MjR2YfOse/pkaPbJYZFgdypon1SEUiL9v2Vq7tPAi7ObD6ZdsNkK67OdlSOA5Z0f8S6YC4mG7u7MTTYhV7oV56On42m1ZtvsEmkaQ2LKY1VTu3KPiFQVAnYsTbUy8uHHu3ak8qWr2TRZUKDWqVaLfXBAds2raPd2zZSTEz2/kjZNVy2bFkewGVoArU6jo625FwiM6WJtj277xaNSul2NX2oJH098SidvRhD1St50pJ1l5QA+kizQBaaidZsuUoTZ5+id16oZWBGrWvAaMGF31NO7D6gCaTYbZNym9MilMlVgbT/0wPpxZdepb59nqBTJ08a9ALC6Lq1q6lv3370xeefkqurK3V9rDuN+fwzVQ9pGsZ/871K07B/315J02BAT1aEQN4TuMnWDOs4VzHM65FL2NvbiyNluyqLkuiYWNaGnuGJo80iiOb9rSi2ZxCBtNjeerlwSwiUKMH2iklZ/SrgI9qjfRCVZQEyL0rV8u6Ez/T5F1WUzKymhRJhNy+4S5sPFgEPL29q2bYj1arbkHNa2rLvtgu5ODuxAMafu/6YCMiEQEwoCBSE3JepqfDbTqbYuASOEBlPTVu0VZ8Vi/6mE8cOUVysZWb6aDMkOIjs009hUVecWCC914I+uvD7JeGuRvPMhWjq2ra0ao6Vo9S6cQCb4IZR2K14CihpmaZUS/+i9ck+PZxKl67IQU0Oapvu+7tjpy6sAQ2hNes2GbTVsX0bOnbsKI3+9GOaMu0vJYi6e7jT0iWLafWqFaqufpqGmzdvqPylI954NUvkTIOGZUUICIFcJwDzes3EPtcblwaFQA4ERCDNAY7sEgL2DhwExkge9WJf0SG9yvLA13INyL2SRIL7VZtu0P7jEWzylhn4yM7BsmAp93peOU4IFGYCMFstFRBMA597lbw8PTg4jhu5ubpQfEIiJSalcNCfBAqPiOHotJm/Gf3rcbC3Y99Sew7G5Eju/i5qOTI6hnr07k8njh+hRf/MUD6m+seYWvb09GQhl/cks3mbXtH8P/U2ZbsYzulewjnAWQWOsAuB8zQLoLfCE6hsSMZv3N/PmfYfDaeqFTyUQH38bCQL23YcLM3yND4uxtpaTvNgx07A0Ibk1uBzQP8+2V4jdly8eIHatWlBAQGBFB0TTRBC9YukadCnIctCQAgIgeJFQATS4nW/5WqtJJDCwUY4HIruKF8OOPJCv3K69fxYeLSFvxJ+t+67rRNKU5PvLW9YfvRXziEE8pIA0odUqFyVhj7/Cvl4eyoz1tj4BLp87RZBG2pJSU5J5UAeqRTHAixFEzmycArNaungAI6M60OhZcvThG8/pygzPpZ+fuw3nprVD9PVxfLJqhT2Ff9nxQU2xEhTZr6IuN390dLkw+8alG7tQnhS6ip9N/kYa07Z/JZ9Tft3K8eRdy3XwsKiw7jYpEUT+p9bAqlx+9mtX79+Lbtdyhzw0sWL2e6XHUJACAgBIVA0CWT9L1U0r1OuSgjcE4GkxHh27ueBYXoKa2Ds810Y1TrdvIEvp99Iob1HIlTwlXSyfMCrtSHfQuBBJwDNaKMmD9PgZ4crQTQyKo59I41MGO7hIpM4yFFSdAoHE4vl4EHOVLFCOfrki29ozCej6EZYRuAdU80iMJCDLQu1RorYmFjLTer9fUvQ28/XpJjYZBaS08ibNZ/QlGoFgmnfx8qpfRBaTQmXWt3svvHuMC4IWgINrxQhIASEgBAQAgVNwPIp1oLuqZxfCBQAgbj4eI4A4qBSMAzpWTbXegBFDgIWWajQUeft2LIUhQRk+IzZ2uVNrspcu0BpSAjkAYGHm7WgZ154mSdnEunG7chcEUaNuxkdG09Xw8I56q0TffjZl1SxUvaBkjzYVNgmnd8RRgUpoKwpEEDdOdo2hE99YVS/DeQxvhdhFG2Y6g/67eWVkR9U/zyyLASEgBAQAkIgvwmIhtRC4s7Ozmwu5SJ5lyzkVVSqhYdHUICXK7V72Jk83Cz7ucC8DkFH9Eulch40uGcFtenwyQhayOkbXErYs89bCj3eoQxVq2iZpuLpHmVowl8X6E4K+7ZKEQLFhACi4rZr15469+hD129FcFAiI5WkFRzS2K80MT6OnDnSK882ZXtkRFQsOTs50lNPD6VF/86hAwf2Z6mL/wuWJpPPcnBBb0hPItX/gu6HnF8ICAEhIASKPQHLRtjFBFO5cuVp4ZLlNH7cWJo+dbK6agyEPh/zFXXs1JmjMcZR+O3b9MzQQRz+OjPReDHBUywvMzz8DnnWD6FaVawzC2zAie27PZIRGRPgNK1HIpvc/bviIg3tXZFCAl0472gsTf/3DKdwqEkODuYNFpB/tHmj8vTn0hySVxfLOyUXXVQJIEXIww83o8o161JUnKW/w3TasHaFiqbb9tGuOjSHD+6h44cPkKubOyWxqW+jpi0oMKSMbr/xAsyBnT1LUtUatcieAyHt2bPHoAoi9hL7oj6QhXMMqv4/kJ2XTgsBISAEhEBRIiAC6d276eHhSb9OnEzRURzhQq907tKV6tVvQE0aPqRC0H/86Wga9f5H9PKLz+vVyr9FRzbbcnO25+iR6eRWwoG1bHbK7JMzHlACCzuRcclky9JPXGIKrxf+gZK3tzcFBQWp4BrwZ8IAKYUHeE6smUjggCNI5WBjY8v5AaMpPDycrly5QmFhhtrHvKQfFXmTenWpwadAknfLtTIZ6SWyal9OnotkHzFHJYyi36HBrspUD5E1LdWS1q1dlqbM34bDpQiBPCVgy6FYnZzdOCKrE38cOcprpu9ySnIipfInmf2skxMNo8zmVqeQvqVZs2bk4ORK/kHlLG52365tHMU1mko4Z6ZlunLxHJ06fpQ6d3+SXFzd6PrVy7Rt83rq0r03OTplbwIPbWy5ynW4vSh6iLWr+/bt0/XDyYk1pCmWBVLSHVRoFtLJqQT3X4oQEAJCQAgIgQImIAIp3wAIQT//OpEm/fE7dWJNqH7p1LkrLV60QJcPbc6smaxFXcEDM1uC6Vd+FBcO8Y8w/zXKelLjKn4U7Gt+EHEzMpF2nbxN+8/coYTkVIqJzxrUIj/6nt05ypUrR5XYN8vR0YkF52TOCZhKN8OjWNmQlakdqwWhqfbyKUn+/qVYk2hP586fp9OnTrHQmpDdKXJle+lSTuTpgvQEHE0z5YbFbZ67HEPzVl7gyQMH1q6y0F0q457Bb9TT3dDcFmlksN3iYu9Dj7V0ol177fj6C/+kg8XXJRULBQFndx9yZa2gs5u3EkJTEmIpNSWR0lJYO8laNZT0dBsWZjjlib0T2Ts6k42tPSXGRVJs5C3+3OS6VjzPOVx106ZNKTXdlqPeZu/HaXz4mZPH1ARWNdaonj9zUrf7+rUrFBRcRgmj2BgQFMKRdV3o5o3rFFy6rK6eqQVXdw9KIUfyLxVANWrUoCNHjqhqSUkJvPXBLei/FCEgBISAEBACBU1ABFK+Ax99/BmdPHmC5s6emUUgDQgMojWrV+nu0+XLl1XSdW8fH7p96xZh8JZXxZ6SKcjbgXo0DaEA7+xn8E2d39/bnro0duVPGYqOT6aF26/S6WtxlJTGt1yzHzV1YB5vK1M6hGpUr05JrAWNT0imO7EwwYOpqi3ZOjhwXkDTHYAOAnni8bHnT5lyVahmnXoslJ6mI0ePmT7oPrfa26bQy4Mrs/bnFjm4lyabNMvMZMuGeHDwEUcWom3o+s0EmjjnNA14vLzKM4iAoI6O9jyAzzTPhYCdkJRusC3brjuUYuEgihrVcSdvLxeKiM0GWLYNMMO4aEpLzR2BIYfTyK57IODkiryWmVrIe2gi20NseeINgqOpAg2oh28QfwIphYWUpJjbFH39JKUmWZZeyIY1qY6u3uTm6Ud+IVUpPuo2Rd2+SvExd0ydTm1D0CBnd45gnU2pW6c2uXr4UmxCEpUtXyWbWoabw65foTOnT1C7Do/RlUvn1W9K44nzpaTEGfCFoBkXF2uwzbDFzLUq1WvT3p1bCd9JabZ0+fIVFtg5h6kdBwZK50i7egWc9X/jersKZNGW++NQws3w3Bw9PNXW5b7/hyUnxVMKa8mlFD4CDk4uPGFk3dih8F2F9Kg4EUjlycykeENLxeJ0/cX5Wk2PTooRkQEDB/NgpzwNGdjf5FV7cuLwxMTMwUZiYsaMsieb+EIgdXB2N3nc/Wy042AT7g7J1LdlBQryMa8NNXcuD1c7GtCuPA/sUuiv/y5SWBQr+2zz959UiRIlqHatGpzA3oMjZCawMMpSJQuhdvfwzxLCaUxiGiWEx1FQmfJUumwFOnDwMN1i/97cLK52MKP14sEWp1pxL8MCc0kGZ/4cVfmYqnodceC8gXsO36GKrOF2VubWmBPIFEjhgubCmlT9bXqHGyymO5amxDsnuK4dNa5bktbuTuKBr3UCTHJCnAikBlQLzwoGkLb2eaNzw3Ni/KzY2rHlgX8Z8ixZmuLuXKXIK0f5edcTQvWe05wopaelUmL0LfWJuXGaXLwCya90FUpm4TbixkVKjI3Mcrgt5xN1cDb9HiodEkxBrLW8dSea3NxY4IPztJkSHRVFu3dspdaPdGQTX0SrzTD3144NLVeR1q5aTMeOHCRvH1+KioygO3fCKSC4tEXt+wcG8+DeiWJ58qhBwyYUFbuRtaa2ZM+aYkrll6pegcm+Jb9nvUPydBHCcRbBxM6dJx9s7/t/WBrfexFI8/T23XPjmGjKizHKPXdIDhQCZgjYsPuHCKRmIBXR3cVeIP3f8Jdp1arl9Oprb6pbXK58BWWOi8HN/H//ocjISNZoZQ4QS9z1uYnkwQxK1I0L6ju3/iDyarOa/tS+XkagjTQ2lcutwrIQPftIMO07fYc1ppc5QEj+aMl8fX2pQc0alJgURxfPW6ZltPSao1kB48KD2rrVyrJv1x06d+6cpYearVebc3+mwkyRS+ydM+TqVZFsUmG2a53PmKuzDQvLbPKYmkLuLrYUfgcCYaYJ9W1ed3fxNtimTmr0B8JoSvxt1nBmMOzW2puWr9vHXLOaORsdKqsPCIGY8Gt51tPUZBc2pc2cvHDzKkU+wZU4/+ZNunVqizLLza2Tx96+QPiU8Awk/5BKFH0njMKvnuHmM387SfExFHUrLMsp4TdarlFtCrt6iZ/tZKpYvhH3O/P3kuWAuxtOHzvEkdCd6cypDIuJiHDW8kZF0MG9O6hGrYfo/+ydB3xb5bn/f9be8t4rceLsvYEsQkIWuwVKW2ih/be3A1oo7aW0hUKB3g7ovt3AbRnl3rZsQsIKZTQhmyRkOct7D0mWNf1/3uPIlmxZOrIlW46fJx9F0jnved/3fCUfned9VirFq69YtRYnjh1GQ10VMrKypX5Fplk5/Yth1MoUtDTUwOPQo6wwA7VnjkObS39/3tDrms9rjfr3PNh5JGK7uI45O/otClCSptq643H/DUvE/LnPoRHoIg8F8WBhAkyACSQ7gT4zTbLPNEHz++1vf00xRI2SFVRYQrspLlQk1fGei4ES2XQLi2gF/ZyI16Jda2v8L/IWgxo3r51IymhuYLiEPM+blIY7rpmGVGPs7p6xTig7OxsrVqyQrLMddvmJT3qyP0a3ioj5dDq7UN/UjhkzZ6K8vDzWKYZtr6Qbz/XLc3r3eVytZO1pR7empHfbYC/2HmyBx9OjJNpJ6d93qEVy1xXtJ5da0NLuRiW5Tws5U+WAw+FFWXEUSztZM6DOQ2d7n8JdWmhEqqVvsUTqkP9jAjIIZBZNRVpuCex1R2BvrIirMho8fFd7LVpP7yFXfDUKpyyCRoZHydSpU+lv2iUpo2o6Ljs3P7jLQV/nkaUzJycPKrIEi4dw1RVXEPE6IFm0f9nyNVi++lKKB82nv1MXJVTr+zsPtBvsOT0zW9olapUKBVeM4e0Ob+UdrI9k2e7t1tOCa6hlN1nmxvNgAkyACQQIiBwiKYOEmmVkZkJ44IUTkeslj8LuxDNL8hMY9xbSQHmXwEe1cNEibN/+JiUyek7a9OqWl3Hrbbfj97/9jZRA57rrP4FXt7wS94RGaSYNvnL5FKRRcfSREDOZS799/Uw88s8jqG1JTPyPhdxzRYbM5jY7ueiGt/QqyW1PQ4GjFksqRDxXWloGDFSSQaQOFjd7DocNdlsH2tta0U7udV5a6Xe7e6yWwZzcHo80jlBIfT4fKiqENWboYjaoKBkRueIFiaPtBLk2zkOKmm5KPYMnONp7uAX/3HoWFkpW5HD6MHtKKpbNI3dfEq1GgavWFeGx/zsBMy0ICIX16vXFkUu+kHtut6YMnW3HyOoSylHURq0PNc4EzVjeS3GxFhd7wa2/iH05lMilvr4u7Hee6/P2J5bc75XkDpxdQlmj6XvUemYvTbbPYpmomfv9HtgbjkNnyUVB+UI0nDkER1v4vx9R4mUihVDUNvQs+Im4V5ERV44IxTVYeT1z6jhcXU5MpeRGAemm64r4rrsoGdqHez/ApPLplJwp/M1M4JjgZ4s1tfetw+mG8P7wpfgxFn9IfSkmqqvdY03uPSl+wQSYABNIIgJGkwkvvbINd97xNXywc0fvzIRx6I9//h8KA7NSGS8jnnv2n7j3e3f33sds2nw5HvzhjyTjUWpqGr75ja9h66tbeo/nF8lHYCz+jo4oxZdefAErVq7Gzt37STGyw0alBD57U/h406FOTFhGv3RZ+Ygpo4F5qsgKeOfHpuG+Jz6k5Djxdd8VFs5lyy5AW0fnAGVUKJpanRZ5BSUomzwFesPgN5zWtNCkUSKz8ZmTx3Dm9Al0UV3YYOVUWLZbabzZs2ejg1yuGxsbA6ca87OC2Jj7Lw50+2Gn+E1z5hxKcEQuhL6WsP3efO0kdFH2JaFsWmmhoX990dlT0zCzPBXtNo9k4Rxk4e9c36SMaqfA5WyiuIqB55OXpcPx0yIL8NDlnu/fLx18z3fvDukk0gWd6/OGoBoTb0RSn9yyOeRu2ozO5rMjPueujjoqE9OFrMLp5+Irjw6Yw6RJk9Bh66SyVj0eBvFODPT6q8+jy+kki7AHZVOmY+bs+QPmEGmDWDgLiLDiGvUa6frlt5FS2z2GMtam6GjBTyOV0gqcTzyfhWXbQ4uE4URYNBx2e9gM6dEWwML1x9uYABM4Pwnc/4OHcPXHrqU8AgPvEb93z33Y/uYbeOjB+yEWMoXSesnaS8lg9DIpqCb8+Kc/ww3XXYN9+/Zi0eIleOzxJ7Bw/qzeihnnJ7GxfVZsx+73+X32pk8h2GrqpdilO75+Ky5YuhBXX7kZl16yCjVUCzNeYqSY0U+uLkVGv1IgQ+lf3MO12FxUQqXnZk5uH7deMRVmSqoTT1m4cCGVa6DkQ5191ldhmRB1AectXIq1G6+mLLkLIiqj4eYjblgmTJpKiUs244IVa8ltLoPK9vStq7g9XrSQRXbRosXDctMQpWbCic9jh73lMLr1k8kXkErBDCI6rRKZlBm5vzIaaC6Snoh6pBGV0RQ1unVT4e7qoPivPlfdQB/iOT9bvnUn+Djx+pK166SFlps+c0v/Xb0X9Js+9QmsWr4Mn7/lJjzys19RUqaeJFvB9XmXLZ6PDz7YIdXnHdARb0gKAiIus3TqfHjsTaOijAYgeJxtlDjpIDLyKWFbQWFgc++zKAfVGeRNQbm3e/fF+qJkwmSsXrc55LDlq9ZJGXiv+PinSRldQPvC/52HHBT0RtQrVZGyFRAnJYrzU01onyLUmyKwP1mffYp0qulck5DpLV6yFO/v2DOgb2HR2LLtTbz40lbpunP/Az+USq4FGooFsL0HDuOpZ/6OPfsPY92l6wO7+JkJMIFxSOC737kLM6aWQYTOBYtY8FpzyVr87W9PSZsdDgdefOF5iPsSIatXr0Fl5VlJGRXvhWW1oaEey1esFG9ZkpTA0H/tk/SEEjUtu82Gurr4JhwRCTKWUwKjyQVR4gf7nVR9qxO3/eodvLmvTzF+/3A9bvv1O3jwiT345u/exy//eVB20qJUsgRefVER9No+xa7fkDG9zcujDJtZWWQB7IsZFYqoKJewbtPVKCieEFN/gzW2kBvGijUbsHjZihC3PnFDK8rKCEvpUCWSouileFJ70wH4KclQt3rgTfVQxww5TplKSu9MsgK3oHMQZVS0z0zXhhwWyxtRzmjxgjn44x9+Rx7Soa6b0S7o4erzXrp+w7AWAWKZO7eNjcDixYvgFd+llsrYDkxAaw8tsHTUHsGceQsofrNvUaegoECKBw+uRawarA7UEOelpaR0eoNxiEf3HEb5c3uPd5Lrr7g58it6Ykt7dyT5C58iA2fOxtdKLpL/vbn9XTz9zD/Cnn3AorFsyXyIRazly1dIFg3ROGDRGGwBLGyHvJEJMIFxSSAzM4vK6qnJOFTVe/7V9DqX7j2F5ObmhuwT26rJkCTKOLIkL4H4aCDJe34Jn1n/MgqxDJhGVtF183v+gOQe1+ny4r+fP0TKo1ilFzdGPTdH6WYd7v7kAuSmG+AiC+mvnv0Qb+2rweUXlMrqes6ENOw40oyj1cNz/xSDzZo1h2InPefc8ihukmK0LiLLhFHEhiZARDmGtXlX4b23X6NSPA2UmKqbLLNulJVNwsmTp8jNOvZzUikjr9V43R2wNe6HwVpGZR9mIMVDF0ZfvyyWQzrXFIoXpSRaqixKYFQR1k03uFu3R9Qv7UvaErxvsNfd5HosYnQjSbQLerT6vJH65n0jS2DWrFkwaFLIMnoGWoprTgbxONvRUdOMhQsXYMuWV6UpiYUsjzc2747RPhcfXWuaW1phMZHngJ+spHG5BiT4rGixy0m1XYcT0hBuhiJ8YvXKCzFv/gL84Y+PhTQJWDTWrlklbQ+2aAgXu0gLYBz3FYIypjfmzEL6jerJXxDTgdyYCYwSAVEirK3uZMTRRX4SIcElGbtocVDEkwqxUqy/eB8soq0oO8iSvARYIR3mZ5MlEoQMQfxdbfj0ikyqDdfjAimnCz8pEU9sO4HrN1+IM01eTJkskoTkQ2tMped2qcyAVNS+y4Elc5zYebAypv5vunQafvZSJbmJZsiZTtg2udlZSM+fiMaWDpgMPug1Kly0ck3YtvHeuPziDTj04T5y7yBLtkK4uxqweOV6HDgYe+KO/LR2qmUY/bNxOU6RJTMHOvN06WY0xVNPz0Mo6kyJi6DOJYtrHtX0a4GzndyCKRlMtDnk5qYiq2RgfEUktq21FfDQdySSRLugR6vPG6lv3jc4AVN6XlzrkGZlZmDGnNlopwRGCiW5iNPfRbKIjzwN9GkF5OWwEfs+PISJU2ZLdUf1qr7vs3CPVVCGxWQRUbdVYzBD1d1nJVUZdfCQC77GMhM631FpqkpVCvFOnnmLZFZ6S481uktRjppj1bBkl8QFq8vRFrbObHDng1k0Fi1ZIjWLtgAW3Be/lk/A1lQF8WBhAucTAZEjRIjwyggopSLTbqAco3jWUnhFsPTsj4fRILhXfh1PAsnzixnPsxrBvhpOHRjSaKU5RhRYM6kweZ9b62AdiRsbU1oudp3xYuO6VVhcZsSL7xyBytOGrlYfPUiJpH8KhQpKtV7KVmvOmYSrJ0yl2plUQ5MyWgpFNZpoyShYZO7CrmNDOyfR/9SiFaitPEGB41ROITsXSy9YDq9nYFbcaHMZ6v4pU6dDQRbA40cpk2eLD3lZaWg+e6g385rcfrPVFnhcffGvkY7zuE4T49PQmgqgMxbSTT9ZH73NlPiIFFM/fb7dg9RQVJDCqzChW5lGmXszyBpaj67m3ZT4Rb5FVyiWDad6boIjzTHWfdEu6NHq88Y6HrfvIeChouAKKkUSL5laNg+2mo9oAcJGRvE0+i4mjwWy2++T5pZVPB+5mVS3kxIeuZyhCyXdZNkFWSGTRYR3gUiI5Pf1caQUSVBQLoBOiidVag1I8bZQXKmWePe1Ge35S+XM3FTWTJVBbtFunDx+JG5TCtRqjtQhWzQi0eF9TIAJxEKgqalRSppWUFiEkxUnpENFjHpdXZ30WhglCgpDw6nE/v6xqLGMyW0TT4AV0sQzHjCCVq3AFctC/1gGNKINIglQas4EKjVShL0Hj6Ot/gzmpRspKQjV3mysQpfCCFfqwJvXg6dacKqiGdetmw+9Lhvp05ZRAfoqtDdWRlVML19agONVNrSTy2usIhKnpFMZhOq6ZlisaVK9v1j7iEf7ydNmkktaJ2XjPS7FpBXShenMmTPx6DpiHy57NcRDpU2FhqzMKm0xWUkMpARQORU/8aQFA3SLzJNUU0uho5vWLkn5dDua4HEeoRvYgWVXIg6YwJ3RLugjWZ83gaeZdF0Ld6V4yeTJk+GljLrOxlNSl93kUppM3zGh2Llp4aqDFObyiSXoaG+hBF6hC3Q6HcVnkuKaLCIUOx8t7nmCFtk8rhSkmzLxr3+9T5nFF0HtqiK9n7Jjn8sUnAxz91NWcA+x9Wgn4YMd78NpaxnRabFFY0Rx82BM4LwmIDJ4v/H6Nlx//Q148IH7pCy7my+7Ag89cL903m+99QZ+8vDPMXfefOzbuwci0Zrw0njnX2+f11zG+smxQjoKn6BOrUJJduTEGsIimpE3kVyhWqle4B68+96HKMkxY8/xHqtdu4NWu+u7oaHyKpMK+/ziT9fZsPd4E9YvLoGaLHT2RhslMjkLfWoBCqcuRUtNBSmnlYOetYlW+o16JSmkgzYZdIeIAeukrLo6cpVdtXbToO367xClXJydDil7ZX83C9FW7BdWVpHhUq7MnrcYto52uDo7qI5mzogopIG5eV1t5HbbFng7Jp+jXdBHqj7vmISXJJOeOnUKHLWHk2Q2g0/DZatHekE5LdKIn6MhXHgG73pE9oiEYOIGqaGhga4zVSimclaU73xExo5lELeyFGdpfmKeIy1s0Rhp4jxePAmIsiIlpaUQi9sGyjTvoeoLooSziu7lXJREsbqmmkrRnZbKzcVz3PHe108f+QUuouRnWVnZ+N0fHpUWAi+kihei+sUP7rsXjz7+VwhF1GwxQ5Ro3LZ1i4RMlJX61p1fxxNPPkOx8g0Qpaa+cfttXPIlyb9QrJCOwgc0qaAvRirc8BmF5TCY02GrPw53Z0+B+Nll5NJJyYp6hTzZFGRBFeVDAlJR0wGRbVcoo1mpfdlX/T4PHM2n4bI1wkKuvHqTBfVn6EZ1kMQ2C8sz8Pz7VYFuZT+npacjRanGXEpUIld273wXp8h9TEeZL92uLqTTKtaFK9dS5koN1Rgl9+F/v0s162xUHkAhTVeUjEnPzJbV/QUr1uDtbS8hK1tee1mdnkeNNm66DKIGqdncs6AhMud+7zt3UR2vV6Q6gZEu6CNRn/c8Qj3ipzJhwgR4u+y0MCLf/XvEJxk8oMdBJYXIpXiMinSDSnPft28/3TxdAr8yN6nORMynk6I2xPxGQ9iiMRrUecx4EJg+YwamTZ1KVQMclKzRTbXOQ0N5NBTnnpObj7KJZTh16hT2798Xj2G5DyIgSi4OJmfPnsGa1cspo24eJa60SfcswW2ff+5ZvPzSi8jLz5dKNfp8yeNpEzxPft1HgBXSPhYj8kpFpV6WTulJLhFuwJwJs6nyng+tp3fT7r7YqekloTdr9S1OFJKVdWJ+T+baj860YX9FEzYtKYHI3htOvG4H2ir3w5g5AQWT5qPu1IcUDzXQNXfBpHS8vrcODoqJikUySCE1mFORTRdnuZKdk4fZcxdCrdFSnKcX2156FqdOHEM5ud0e2r9Hctdbu/FKqbsKUlz37dmJi/vVFhxsrJQUBUonTUFz7cnBmozr7S+/9AJdsF8YlEGkC3qgPq/JbIbJaIp7SaRBJ8U7ZBGYQKv5XsfIW8JkTS5MIz9dm9SmbKgplb+HXHnHmojM3gHZsWMnLlxA1ywVaYAUSz7a0k0Zu/0qJf6947mETkWEbLz97g5pMTEtjbK279qH7eQ6981v3C6NyxaNhOLnzhNA4IILLqTwIytq6psRXI4qeCg3eUeIh83hJMU0DytTU/Huu+9IVrzgdvw6MQQilWMU9ymVcS5vlZiz4F4FAVZIR/h7YNKrUZYf3kKaO3EOZWh1wdZwIuZZCVddW6cH/7e9IuTYq1dMRIalz1oqdjqaTsGQXoy8sjmordg/QCk161XQqZUxK6Tiwj1v0YUh40d7U1QysbeJktyPu+GneIAePsJVV2wLiMj86nTEZvEpmVhOsbOxW3sDY47352gXdFGfVzxYkoeAwWCQXJhaTx5KnklFmYnIpNtNnhxanRYe+9hTSFVBmYBFvOSRw7tw+dorqCgXZYrzNkY5+wTuVtHip6aE5vMC7EMofxXLzES2yyUL5w56CFs0BkXDO5KQwLILLqAEkWY0t8m75/DTolRrhwMWox4XXngRtm9/KwnPiqfEBJKXACukI/3ZDOImm1U0FSmU8EauMnrp4tCkSBuWFMV0JiKuVEhO6QzUnNg74Fi1im6kYpTCQoqdIqvkUOTIwf2or68h94oi5BcVS11MnjoDb732Mt55ayvKp87E4YN7MXv+4pi7nzFnAZ7959+lOK+YD+YDmMAYIyBipp0do2+ZiwWbX1hFvS7oyMqWaMUplnnJbRtw2Q20b29rhr35Q5jSp9MmBWXepXJQIyzdVEYK6gLYWw5Rwqjk+T6wRWOEvwg8XMwEppKLroVqWra0h2b9ltNRB1lKrWYDZs+ejQMHhl6xQM5Y3IYJnE8EhqY9nE8ERvhcVBQL2V9Ss4uhNZhgqzvWf1dC30tKKWVfzCiYNGAcizG2eoU6nR4z58qPHe0/oM3eQTGifroZtfVmsDSQpTQtPZNiywz44N//QqfDQe8z+h8a9X0pxXYYiC8LExgPBHKoFnBKDKWDkoGJSFqWQtciNdWVE9nFx5qogjw5AnP3ujuoBuQBiifNQrdmQmDziDx3a8rgT8mgBHYHKLN6x4iMyYMwgfOBgPB2mDZtGuwi6HqIYieltKysTMr+OsQu+DAmMO4IDNSOxh2CkT1hvbbPBVWMrNLokZZXBltt/GtJyjkzW91RGK3ZMFhCFT2RbTcW0VJRYp3eSDeTsRzV13bR0uVYdckmStKkxOEDPUkB9ux8T1JAFyy5CJuuvBbCvff1LS/QQX3xWn09DP7K5fKgqHTi4A14DxM4jwikUyy3qDs6lsRLtVcV9Gsk4sjVlCRkrIlaE37OPm8nOhr3UlwsXbUM8+iCn57YU6P+u/Vz4fb6SBndBz+Nz8IEmIB8AqUUfy8USrdn6ElwfOS+K2JKhVLKwgSYgDwCrJDK4xS3Vup+FtL0vAkU03ma6lGGZm6L24BROhJWyc7mM0jNJnfbINHE6LI7acoMKYhfRQrlcMRMbjKOzp6YjfraaqSlUQyUJCmYPnMuXJSJt72tJ/Ow3HGUdKe7kBTe4HhUucdyOyYw1ggIz4Ixk133HFxRf1QtxZF6ERyPORbYC68XnygDEUEcbcfgaKuAT1UIv3YqoOwr1RXhMPm7qD+/tpz6L4Kj/SQ6247LP5ZbMgEm0EugoKBwWMpooCNnlwcFBQWBt/zMBJhAFAKskEYBFO/dWk2fwqY1WKgESxrVCa2M9zAx9dfVUU+WzW6I2qcB0WnkfzVEiRZR99NNZgAVZXOUL92oOP4R/L6ecjZdzk5UnjlJZRN65mFNTcPpU8fJlbfHIlpTfZb6V8NEZWtiETUlaMorKIbpXHmTWI7ltkxgrBHocsYe9zTa5+h0dEBkaRXeD2Nt4UiUfWhra4uK0NPVjI6G3ejqbIGfXHi7ddPRrc6h42K5ZgYNk0KJoFQ51M8M+NUTqN826n8XWceTJ140aLb8kgmMCQIWqmnpcg8/sZrIvKunmqUsTIAJyCMQm1+mvD65lUwC1swCONtqZLZObLOutlpYMvNhb62LeSCtXofc/EJ0UYFoFSl/cMnvouLYEQjXXD3VIRUKacnEyRDJjIQIV939VObl5eeeoeybOslyctGqtVAGZbSMNpKG2nrJfU2IUGZZmMD5TsA/JuutdcPZaYOelNKQestj4MMSpbyqa+Vn0nU5qiEeGn0W1LpMqI2l6PZ2UFI7O1J8tJjQTRfQbirHRUnueiWFrl0pVM6LHt1KM7pTKDxCbYXH2QiPrRpuemZhAkxg+ATEwpjP3z78jqgHoZSyMAEmII8AK6TyOMW9lUjcYUjNQcupnXHveygduuxNMGaVQa3Vw+OK0X24x8CJLkr7n2q1wAa5x6dg3aarSGH0kDLqlJIXBSubRpMZF6xYQxZUn1SbUKvVxXxqOp2GXIB7khOYLalobho7tRljPlk+gAkQgW5KDjQWxd7WCD2Vo0oRwaRjSHRaNWpra2OesVAiJUWSfgvU2jQo1WbKKZAJhVJH8bSU3EnRt4DW7fdQTWY3XQtd5I5toxCPKrpOf0gfdmzx9DFPkg9gAuOcgFKpkhbERXiTTmeAhu5DRMy4SJchFrtdXU5pMR2KFLhpUV7czwREMdSkGoEO+JkJjCMCrJCO0odtsGbB09lKSSdoJTxJxONooeRGmVS3MzYX4sANpM3eidzsTClLZsDNVs6pSW645r6br/7HKCiDpTZMFsv+7cK9FzeLLa097nRWKtbOwgSYQHISsLc2UMbvyUB7DC4Wo3wqWroxFbV629uHYVEhpdLT1SI9Rvl0eHgmMO4JdHV1Sa62KVTCLpfK0BVPmAQL1UCXI3ZbB86eOYGaqrO0aOSNyZtLTv/chgmczwRYIT336aaRsiIUn+amprCft4gFEAXnm5vjE58jYkc9ncO4iQk7y+FtdJOCbDDnxKyQBiyXfj8lSHJ2wUguvPZOuVbS4c050tGiFIO4YRSKshCTyRqpOe9jAucFAQWt6I9FcXU5pORAukEy1ibjOYkFrzNnTifj1HhOTIAJxEhA5JnQ6U1YtHwZFKrY4z/F8dNnzpcePncXTh7dD5Go0daRXPd6MWLh5kxgRAiMzTuXOKLJz8/H0//7T2RmZkluozU11fjpT36EN994TRpFZHx84KEfYf2Gjejs7EQLKaSfu/kmctEaXuynqDva2ZhccT9eKhVhyp4UM11RqiEgrW0dyMnKSAqF1GTUoa3D1psUqYtueFmYwPlOQKEc3Nsg2c+9taWJEr0FMmsn92zVlMDNYjKgoqIiuSfKs2MCTCAiAZGjIienAJd97AYUFRVT6JEZjS3Dq9+bTfWgTaYLkUGVFF569mlUnj4JJ+XJSEbRUhLLVIuaMp0rUJxvQFGeHqnktSa2eX3daLd7UdfYhTM1nWhsdklx/q3tbo4YSMYPcwzPadwrpCIG4L57v4vXX9smfYw33/J5fPs73+tVSDdu2oz5CxZi6aJ5dDFx4t77fkD778FXv/yFYX3sov6ozz36VsTgk/B5XUMqSm+hbLgBsTs6kZmRBqNB1xu7Gdg3ks/COirdLJ7qcz+2WPvmOZJz4bGYwEgS0GhEtloR4TT24gs7ybNCoXVDT7Hfzq7kCWcI9/nptRocP34cHk5cEg4Pb2MCY4KAuH9Zs+4yTKWyckLaaRE7i+5hhnMN0qhV0vHVtfVkcTXgmk/cjLOnKvDCP55ER3tsZesSBVGtViAzVYOZ5VZsvjgXs6bI9yDzev14c0cjnt1Wg6YWNynvYyfMIlE8ud/hExhb2SOGf74DemhoqMdr27ZKVjQR9yhel5dPodIj2VLbDRs344Xnn5WUUbHhb089iUvXb6CkE8NDJ6wYfkpUkWziD7J2DnVujU0tsJoNFOMvbopHR8T4LWSt9USpDzg6s+NRmUDiCNgojkmtMydugAT2rCZ3ucOHD8OkF0p18ooIBRAeGGKuLKEERHhLRkZG6EZ+xwSSjIBILJmTV4DPfenOXmU0MMXG5hayDhrpHmZo93jPVvMAAEAASURBVHlpVhNZEilHCIUxBaR4Qhm+fMd3UUqVBER42GiJVqtEbpYWX/vMJDzxyGLc9R9TYlJGxbxVZElde2EOfn3vPPz5hwtw2cV5yM5I7mv2aPHmceUTGPcW0v6oVqxchZrqaooV7Yklzc3Ll5TUQLuqqiqpXl5aeroUb6qirLSxiEJBFyK6yHVLF6qhXexiGS/WtlIyIppfCs1TJWW1ja5UinMKJDYS43VSprlOymyblmpGS7st1ikMu72IYdXQDWMVrU4Gz0uck1Kjk2UFFj8Y4gcr2UWcX6zfQZ/Hde77l+xnN/7mp1RrQ76zQyHQTjHT6aYMSpjWk126tw/p+5w81xzx3VWqqJTJOUmhRTqd0YqK02eRTguCaalWdFObFMpemTRCDEWMbqpFj4+OHUUKzT9cFSpxrUmm60fP9Ty23yq5zP206Of3eaSyXIkIb5E7D243kICCSp2N1ZjygWcTvy3CoFBSOhEf/+QtYTvtoGuojtx4MzOslBSxAz7KsCtXMtOsVMfUTeFCVMaJxukvN9z8Zbzw9ydx/NhhKUtv//2Je9+NTIsC120qxJVr8+I2jMmoxu23lEv93fero9h3pAO2zqF753T7fZQQKrm9Y+IGjzsKIcAKaRCOyeXl+NZdd+Nbd97Ru7JltVjgonImAXG5em7yrBSoLhIgWbNKArtkPau0dukmTPxIJOMPhVDExE2icCm2ZJrppmrgBbX/iaq1xpAbS7G/geIvSovzYO1O6U0q1P+4RLwXlovMjFRUVtcPmJNKrYMlo1AWd7XWQWUYkn/FT0nnFOt3sKPxLJWMSM5YlkR8J8ZSn6b0PKrlG3t5o+Bz7PJpqYRTLlL8fdctsT/ZrjkqWhzSByUO0VLsqMunoutOMcUqtWPl8unktksuvIrk+ZkSDIX3jHAnbrb5B/3bU2k9SXX9UNP13JplCf6axO11Z0cTnPRIVHhL3CY6DjsSyRN1pvRxeOaDn7KfyrLk52Xh6utuHLwR7WlusyOLFslyczIl5TJaCIFIcJZqptwglKW3obljwP1H8GBXXvcZvPriPyj+/BToQhG8KyGvld2dKC8CHrx9akL6D3T6/a/PxgFSSH/0xwrYvamkkMduCXZTLhNbU3WgS34eRwSS55d+lKHn5OTi0cefwH//+ld46cXne2cj0vlrNH2r+Dpdzypze3tPKZHmqiO9beW8yC620uqPUGq7aVU5+VaBhIVUzM/TZUdLtbyanSbNZHgpo1x/OXOmkpTSAnjcyhGJJxVxG6kmHaqrayirnb3/dEgJc6C19sSA7eE25BksYc8pXNvR3OYlxbK56uhoToHHjiOB9vrTw+7N3ngKEws2wN5SS331rVT7vQV0zRl293HrwNPVCbu9L57KpzDixJEd9H3uSRL0ur0O6y7dACWdgztJXO/1GiW8znZse/lF+Kg+8mDimZiTVNcPN13Pm6vqB5tuXLaHC2957sUtUnhLsOtiXAbjTmQRcLQ1QDxY+ggUFJfi8quulfX3KeoL2ylxmVGnRapRS9chqjvq9tDffo/FVEkWUI2mJ15U3H80NjWiTaZX2Jp1G9H81z/i5PEjFDIm3wLbdybyXqVZ1fjYxkKyjBbJOmd5vQ7eavpEDR57cBpuvW8/Pqog6zIlRWJhAnIIsEJKlIqKi/HEU/+Lv/7lcfz2N78K4Say6RYW0dLSORGvhcW0tbXvRiqwL5ZnocApyBKZTHVIxfyV5OITL/FQHa6q6joUFeRK8aQ2R+KSOOkowUhGmhlNTa2UlGCgMhqvc+J+mEAiCQgLqbguDFfs7hSkF82Es10opT0irHspivj9fQf6HeqzZCG19MS6CitoRulM7KtogiW7ROrSSfcxJ89UY/X6NMni4BtlbVrclGrVKWQBOAEjeVpEEpU2JaKFJNKxidgnebyc4xrv/l2ONrgc7YgW3hLvcbm/0SegVqsxadIkFBUWwGA00qKvExqdgRa1hYeAGnV1dTh58hTq6xO7GCKXhDU1HTd+7la5zbF317/x/P89AbVWS5bSHCxcvAQbN18Ng8kk9bFn53vY/sZWiFCu06dPS9vKp87EZ7/4NVljXPupz+E3jzyA9tb4lBPsP2gWxXV+9cYyXLQgs/+uhL//xffm4J6fHcaOAy1wuxOncGdkZsJht0PUj2UZ2wTGvUJaNmkyKaPP4GcP/wRPP/XEgE/z1S0v49bbbsfvf/sb6Qt/3fWfwKtbXul16R1wgMwNwrKl0ppoxa1F5hGJb6bS0A8JubPEU5wUT3qmqhYFedkUY6REa3v8lUWzUQ+RRKCmrhEdtvj3H08e3BcTiERAa7DGHBMcrr/G1k5kTZ4In6svhlvENA43GVu4sYa6TUHBlxpVz42dLq2A4s3pb1dtgJ4eAamqqyeX/y7kZKZSNkcblSAY3CoZOCYRzwaKS8+kBa9DHx1DF91c6c2R3SCVKge5SMfurpaIuYs+RRiG3mxMSPciJl0opNHCWxIyOHc6agRKS0sxd+4cdNma4Gk/g5a60FqbYvHLTO7CC+bNIg+pcuzdtx8dHcMrpTKckzUaTbjsmhti6iKVMvB++fa7kZmdS55ebvzPH39JVtB2rFl/mdTPu+/9Gy5vCj731f/s7VdOmFNvY3oh4lif+cvvKftuj9dd8L7hvBaW0dtumoQL5o9egrHvf206vv+Lw3hnd/OQLKVvv7sDJSWlIRi+eefXpeSiwjj0xz//D113rDCajHju2X/i3u/dHdFzJaQjfpN0BMa9Qrpw0SLkUeKi//rxw9Ij8An98heP4Cc/+iG5776AFStXY+fu/bCTsmOz2/DZmz4ZaDbk565Om5QJ0+1IIoWUMnO6OuP/g+FyuXH6bI1UnzQvO42URicczuGvZmnohtZqMUjJQ05X1tCCQWjM3JA/HD6QCYwSAXtrLSmNw1dkOhrOoDjbJClwHkePN4ffn0Yuu9Fjwkfq1H1uF8Vi9vzNqtNKsX/3DnS0hF4PlZQgpIHqNXs9FmSlU9x+K62E0/VkJMVMLnsWkxanKASho6MNImZSlAuLJJ4SIy3ujew8I83HS5arjoaeRH2R2g1ln+dc+bJo4S1D6ZuPSU4Cc+fMRkF+LjqqDsIbtOgVPNtuqiLQ1UGWUXroUwuwevUqvP/+v9HQMAouxLQYVzZlOopKJgZPMerrCZOm9LZRU+jWpPLpOHL4QK9CKnaKRT4leZ8MVbJI2Z01bxHef/v1YRs6AnOwGFW45eMTYlJGXW4fWtvcdJ+mp3uqQE99zzaHh7zP3LQwp6WET/LP955bp+Or9+3DoWNDu7e86dM34N133u6dSCBU4nv33Iftb76Bhx68H0ayzr/0yjZcsvZSMhi93NuWX4wtAvK/VWPrvGTPVpRxEY/BxEuxS3d8/VaYzGZK828iF5Q+F7jBjpGz3UmxU3oqmIzmM3Kaj0gbtSENjo7huSIPNlERQ1Rb30grpgZkZWZQnVIt7JSJt9MZuxKpJVcgUXLBQKUhmlra0EwPFiZwPhAQlqZ4yb49H2DmtHK4myulLrv9lLW2O7IiFa+x5fQjvDHcpJDqUgtRV1OJ6jMD47vN9HcuSlE1URkGESqRRwlG7A4F2mwOOUMMq42oZZxm7bEqnqTMvyIEwU8WWo9TuIdFDj/we6ms1yhZc8OdtI/yFThtocp+uHbD2Zao8JbhzImPjT+BmTNn0t9hBmxV+2R37myrlrJ+L1u2FNu3v422tpH9zRauupuuvF72fAdrePzoIRQW031bkJysOIa/P/UoWenMmD1vMfILi4P2ynu54uINOLR/N9pah/83qqSs5CsWZ2Hjqlx5g1Oru3+yB2+8V4eMVC38lEdk88WF+NKnexIg2ewe3PKf76Km3knKqI6SPblw09Vl+Nz1k2X3//Bds3HTN3ehrjF2Q4SXfif613oWruJrLlmLtWtWSXNwOBx48YXnpcRqrJDK/liSruG4V0jlfiJ2m40spH3ub3KPG6yduDlQFk2hbLYGCjQf/Yynws1ER6UiGioTmyDHRunUxcNC7mOirEM6udoKpdRFN3vihk9YHsQFMVjU5OqrFu5954pNi+W7trZ2VNfW0YpiaNvg4/g1ExjPBM6ePYvS0hLJOiFuCJNRFCodxWMWY8ebb0adns3uoGtFF/JzsyQXXlGaIVrmy6idDtLAbKIwAKpDKEo+NFBdZZboBBIV3hJ9ZG4xGIGekmzD97gI9J9DcZSTysrQTsporNmvPZ3tcFNM+8KFC/HmW30Wr0DfiXyeNXeh5Ek1nDHe3f4aGurr8ImbvtDbl6gpaiBDhVCQamlR7bc//yFu+n+3kiV1WsxDLVuxFq+9/OyA+59YO8rJUOGOz/WUYZF77IrFufjOV+bQIr8KlbUOXPfVt7FhVREmFpvoc07BF26YiouXUi4QZQoOn2jHjbe/gyvWFiM7U15GeA0lg7v95nI89Lvj6LBHXhQVCZ7EImRAPv+F/8Bll1+JU6dO4pmnn0QLedFkZmZRCJiaSjRWBZpRMssqLFqypPc9vxh7BFghHcXPzNHWCK01D97GilGcRc/QOksOOklJjncM6WAn1kEWDvEQ9UJNBooboxgtK90EqkjxFJl+hRuMcM0IPIvMdsIlt6aurdfNb7C+eTsTYAI9BA4c+BAXX3wx3J0ja5GQy1+fUYpjx49DuHvKEXFNqKREaRYqr5CdmQ6j3itl8HbGyY3XZNBBxKSLFXkRZjDS7sFyGCRrm0SFtyTr+Y6FeemtWdBb4hdDuGTZQsBRSx5OJihThMeAFypSUjQqBYUH+GGg0idCxGuxVOyjBWOPt+c1KKbU4+tCRsE0zF6yEpVVNVLbRP+n6nZTYrQrhzXMoQN7yD10G275yjdhzcju7WsGWURn9L4DdAYz9u7+AFNmzgvaKu/lwgtWYe+eXfAq5Cl54XrVpdhx9+fzYy45temSPlfm0mItJk/MwO7DHZhclgErWU0vXdUT6y/G1FJ9Vit5jqSl0XdALX+xY+mCXCyeZ8euE5qI5WDcFDbW0djj1fPkE39BFy1CqskYcen6jbjhk5/GpvVrYaFyjEKCSzKKpEYinpRl7BJghXQUP7v2pioUTVsGZ8tZurDHN5lQrKelS8tHU9XxWA8bdns3KZotbroZJYsnCxNgAvElIFzjDhw4gPIyccORXJY+XVohWu3dOHToUMwnLZKXiUc6eVmkpppBaS2khaquLg95W8i/lirI20LUD9RSlm4jhQA4yS24vrGZ3IJH32slZiijfECiwltG+bTG9PCO1jqIRzykmLLl6ygJY2r3aZROJoUkxiRZwoO9ptmJ6o6DKLKk4cPKj+ClUJ5ESxlZK0UM9VDlwN4P8MI/nsZnvnArcrKzI/ZlIGWtgSylQx0vNycb+3a9P9SpYsmcdEwpUQ+rvEtLWxc+OtaAO26eFNJPFVlO//HqWew/3IK7vlgOlcJD++Vfa8VJffWGXHL/3Y36ZnmhWsFVLx798x/xr/d24sKLlmP/vr0SI1GSMaCU6oh9oBzjkAHygaNKgBXSUcQvSr90NFXCkFECe8PA+KmRmpqBbgzdFBOV6BijkTofHic2Apw2PTZeY631iRMnyKJIMfDzyY2r81RSTF9nySbvEC12vjm8BBQttJAlHgaDniybBlJQhYuZgqwyXrgpBEDUCxTx64EoAOF+JvarlAoKA1BKimgXKaEijKCxqZnKE8R2g5UUMJNsEvEOb0my0xt307Ea1SjMNOCWaxYhJ80AR1PqkBiIpNNF2Xp6gDKAz4a56yS27KKa4bSI5PYkRjEVHleLyfI4VNn53na89dor+PyXv4Hs3LwB3ez54D3MmrMQIuGRw9aBPbvew+KlKwe0k7th/uILcOTgvqgx6uH6E1l1v3hDaHxruHaRtgnL9rd/vA+rl1GipSlpIU1tnWQ8aBfhVX6qnDC0GH7hEjx/Zhpe2R77IolY8GppboaZfsuaqN6r8GIpKCzCyYqee2eRdVeUGWIZuwRYIR3lz66l5iSKpi+DxkE3Q+eyYY7klFQaI4xZE1B9bNdIDstjJQEBTpueBB/CCE1hz969+Mz6qUjLmQx7/ch7QgSfps6cDXNOOXY//QyczqFbLoL77Ox0QjyEdVO4d4m6xBq1RnqtIbeyFFJCU+gA4fLrJTdDh8srFbgXYQBCYWVhAkwglICO4v4KMvS4YXUp0kwa5Galw2NvDG00xHdupw0LJqdJjx1HmrFtby1abPHPSm00miHiPIcqBw/sRWtLEx754XdDurjtW/dS3d1C7CWF9B9PPw4LlYdxUI6ROfMXY9mKi0PaxvImJ7cAOr1hSAppbpYOJQVDL+3UTe7VP/jlAcrj4ce9t80ZMO1pZam0fS6FSHix6ebXsGhOxgCldcBBYTZ85upi7PqwBY0tkT/v4uISlE6YgH+9vV0K41q+YiUmTS7Hjn+/Lymjb7y+DddffwMefOA+Kcvu5suuwEMP3B9mRN40VgiwQjrKn5QI4G6uOkZxFeVoO7uXXHcj/5HGe7qmnElorj4O8QPBMr4IcNr08fV5nzm6DxkLF8GcOwW2usQmLxuMrI5i5o2Zpag9uY8ySiYmo7dIjiYeZA4ebBq8nQkwgQgEUk1qbFxUgIWT03tbKai0SXCymd4dQ3ghatcGZMnUDIjHo1tP4li1jSxwkZPeBI6T8ywsl8ORm7/4tYiH3/Klb1CMI5Wxs3dISqmaFsGGK2aKg2xrbY6pG7UqBddtLIzpmODGwpPk3p/vRyO50v7y3sW0oDe4amA0qMgTRYe6BueQFNKsDB1SLZqoCqlwwf3pI78gZdOEdgo9MZAHzLfuvB1nz56Rpv6D++7Fo4//FUIRNVvMUonGbVu3BJ8Wvx5jBAb/1o2xExnL03W0N0KtJZezvHLKXndwxE7FnFsOl5OSC1EsK8v4IsBp08fX5x042/rTB5FZNBWpRXNIKT0Gnyc+FspA/5GejZTASEOZvGsr9vECWCRQvI8JjCIBYQ39yuVTyCrak6AoEVMRbvP95bPrJuKN/fXYfqABNmd8XOezc/P7DxP39zq9nqya+rj1W1hcisozJ2PqL4Nqg4pSL0MRUang6z/YBa1agV/cs4gSTYYmKvqoghJJOn2YNyNDqk/6zq56Kt/ixIzyobluizluopI0P3sscpjasWNHsXjBHGRlZVPdUx2qqipDvFmEYrpm9XLkkiu1zW6jRQH7UE6fj0kiAqyQDvPDyCmLLZuaTtsCldYwYFR7exO0xlSklS6AreYjdPvjt0o4YDDaIJRRP5RorTkcdj5agxXZE3IjZkML9KujGBN1mHMK7E+WZ43egqySmVBQuvBooje3SosE0dqN9n61zoRYv4OtNcep3piF06aP9oc3SuM3VR6BNbuYrjXz4WiogLM9sXE3Kq0JpuwyeCnmp4pCAxJ9bRslrDwsExjzBHLI8vWta6eHPQ+f1y1lb43HGpZCpQ07xsVzcpBq0OD5HZXoINfQ4UpeQfFwuxjx43PyY7d0mo1Dv5V3dvnw3u4G6Twv+NgrvedbUmDC3/97FbkP+/Dtn+wlpdRLcfpqSvzmw3dvnYX8nIH3sb0HR3mxakkW/ufZsxT/H9kjUFRcaGioj9hbXV1txP28c+wQGPq3eOyc45iZaXPNCWTkl8FaNBu22qPwJaA+aQopYxZy2RMB4Y2Vh8cMG55ofAlw2vT48hxrvbU3nEWXrZVCBSZBbcpEV1sNxbDHNwuvkm46RSZdvTUHLbUn2RNjrH1JeL7jikCGWYs7Px5eGRUgnPZ2GE1WdHWEKggiBJuSVUsPOcBEzXOVbvBYx/kUW+qmWO+XdtbA0TU8pTQzO1fOlJKqTVp6JsW+a+geLbKyFjzpxbNDExAF74v2Wrjg7np+86DNhGX0lUcvQWt7F2Uy9yEv20CJ4URE/tDFYlZDpxloJR96j3zk+UCAFdJhfor1FT3pp+V2k15spZTgg9cFqz/1IaxZhcgomkXJRyrQGceC9lpzlmSp6GiqRmtd5GybLipi3XBKXvITHSUN8LiSP17L7exA4xl5LtFZ5RY6p5FzZ5T7/enfztNlR31F7PGAHR0dUlecNr0/0fHz3kVx4zUn9sKUlkvJjiZCn1ZAimktXPamYUEQFlFR11j0J7KIVx7ZQa7BfTFjw+qcD2YCTCDuBNLNGnz1iimIpGd0djQhPXcCVQRQUpKZHg+uLsq4+sJ7p3Hx3AJkUNbsgLy5pwan620hisuVF02AyNgrrg3OjsgxkkunZpKF1IPX99ZT7dKhJR0Tiq9OFz9X2sC5JfpZrzdCSSmJ5VavEosBInNtIkWMIeJG4ylCKa1p6Ipnl9zXGCfACmkSfoDtjVXootXIdLKWppoz4WytopvEyBfwSKeh1qfSzWE+uapSjawzh7m8SyRY42Qfp00fJx+0jNO0t9ZBPEypOTBn5Enu/C57CzxkMfV02aLGmaYoVFDrzFAbUqEx0o0R3QjaW+vReOgdCDc/FibABJKXgIES2FyxrAgWspRFElGmTiilYqGpk2qnH61sx6HTLaQ4hv8bXzYzF1OLrAO61JPXRAOFDUSTdfPzcKzKhpN1Q4sNVFFZJ3+CQ5+incNQ9nu9HikruNxjLRTrW5w39hTvkgIDjlRwMk25n/N4aBf5CjQeCCTpOQrrhUj+YUzNRirFexkzJ8JFrjJdtsaoN4jilIS7nIaUWVFiASlKtDWeha25JknPlqc10gSEyzanTR9p6sk9nr2tHuKhVGthtGZCb0qHIbMECqWarjlu+L2uXssIXVRogUsjXWdSFEpKUtQhufS1nT0CV2eP9T25z5ZnxwSYgCBQlmfCrNKBimM4Oi11p1E4ZRG8XR2YUgR6WPHMdvkJeES5p057Ky24t4brfsC2z60vw4//7yO02sMrvQMOCN5AZj21ps9qG7wrmV+rKKxKQddUuaKhZEQiqdFYkwzr8DMSj7Vz5vlGJsAKaWQ+o77X0dYA8dBRwiNTWg4s+dPpBlFFbr92yQ2u2ydW03pWAhVkqVDQzaSoLUpXNMktponqnDptQ7eujjoAnkDCCHDa9IShHdMdC/da4dYvHixMgAmcvwRERt0bVpfKPkGv24nGsx8hq2g6OmoPw93ZNuixOz6qxwf0MBvUWDQ1B1OmzkCKWoem03sGPab/DlELdQm5727dXQs/JbhhGUhguPGcA3scmS3CZZeFCQQTYIU0mEYSv+5ytEE8hKg0Omj0Jqjo4q6k1TStwQRPp41qhHXC29FK1gr7mIjpTGLc42JqnDZ9XHzMfJJMgAkwgbAEplFOC1HuIxYRZepEfGZWySw4GkUuioEW0uWz8yiLe0/im8pmyuJaqULZdAOaK/bHMpTUdt38XOw82oQW2xCspDGPNvYOcMexbutInr3PxwsMI8l7LIzFCulY+JT6zVHEcogHCxOIBwFOmx4PitwHE2ACTGDsEEg1arB+Yd6QJixc+92UUC8tbyJSSxZAn6Gh+pUu8trqQjdlyNWRVVSpMVBMeQbmTcrE0+/9Awd2tyM/c2ilQuZMTMObVKOUZSABg16+e+/Ao0dvS7qVLaSjRz85R45taSw5z4FnxQSYABNgAkyACYwhAgoKKxHZRMOJ2JeXR4n46Dmc6PV6ZGQMnq0+3DG8LZRAKmXWNemGbpNwdzkgqgK899776HL7qcRTMayFs5E5eRlsmhIqJ5UFh70Nb2x9GUePHEGWdehZWi+akQ2znhWY0E+Q3zGB84vA0K9G5xcHPhsmwASYABNgAkxghAjc8/37pZHu+e7dISNu2nw5Hvzhj9Da2orU1DR88xtfw9ZXt0htVCoVHnjoR1i/YSM6OzvR0tyMz918E2prOWFfCMQob0QZj8Xlw1Po39pXg7f216CutRP3/eY5FGYZ8cXLZ0gj3/2nnXCRK6mFyrx0ODy4ZdM0qq0ZfnEhylSl3WmUSVYk70HyV2KTczrchgkwgTAEWCENAyXcJrEiazBQDAT9ALIwASbABJgAE2ACsRO4ZO06Ujh/jOzsHDz+2J9COjCaTPjxT3+GG667Bvv27cWixUvw2ONPYOH8WXA6ndi4aTPmL1iIpYvmSe/vve8H+PZ37sFXv/yFkH74TWQCwtq4cFJ65EZR9q6amw/xCCcP3LIYdqdXUkrTzNqI9U3DHR9u29RCC9493BhuF29jAkzgPCAw9CWr8+Dk5ZyCWJH9rx8/jH9/sBcvvrINL9FDuBKxMAEmwASYABNgArEReG3bVixeMAd//MPvqIxQaGKT1avXoLLyrKSMil4/2LkDDQ31WL5ipTTIho2b8cLzz0rKqNjwt6eexKXrNwzq2isdxP8NIKBSpvQmHRqwM04bTHoVMizxUUbFlOZSHOlYzSgbJ6TcDRM4rwmwhTTKx8srslEA8W4mwATiRsCUnifV94xbh0EdKdUa6jt56tWJTOGW7MygGQ58qdFTJnGad7KImIuearRqLJHXclXaFMqAnjzzVmn0xLokIRhdlP3d5WiPS9+5ubmoqa4K6au6uhq55xaBxbNQaANSVVUFrVaLtPR0NDc1BTbzcxQCBu3Yu/XLStXBoFVKltcop8e7mQATGIMExt5VaYQhh1uRfe7FLdKKrN/vH+HZ8HBMgAmczwQ8rk4oqA5oIqTbb0a335eIrofUp9/rgcfpiXisX6egOSfPdVbwk7KceyNz9PuMZP2L3Cbiicd5p8h86nE64txrT3c+b085jvLyKVi5anXYMdo7OvDM00+G3Re80WpNRVdXaAZ5l8sFq8UiNRPP4n1AXK6etlaLlRXSABQZz+mU0GisicWgglZFCim8Y23qPF8mwARkEGCFNAqkaCuyxrTcKD2E7lZpuqFQJn+2OCVZUgypOVRvrKeWWOhZhL4L1EMN3Zp875RqOidrFlIU4TM7Bs9YfE5KZfL/eSjIChPrd7DL1oLATWTwOfPr0Scgrg2KRH3vqHagnL/nEaNAGVQVFBIRUVKUSTVnwU+hUNG8I19DRDvxL2lEQfNOkMVWcU4h1ep0yMzMCnvKymif87mj2tvbyOIZmo1VR/22t/dYYMWzRtOnTOl0eulIcRzLQAIagwVq7cBSK6kW+g6PgfuQ/mek1OphVKX13xz2PX3l6Tecys9QrfaxJOJvRWu0AuqBn1u481DrvGPiXqX/3IW3Sbh7Fx8tyHbZW/s35/fjgECUu4FxQCDKKUZbkRUudrFIA4XMPLS1Z0U5luNGvm0mzDKT8NlpwfIPf/rzyE9xCCOaMwtlHVVL2fyu/c5YuCiqEOt30EP141ghlfU1GPFGBksmVHTTlQj5n92i1yS69uiKqOxE5DMVNsZku7boUqMvQn5wOtmuHxl0nYjMeqh77S21cDvt+PDAfukx1H7EcbW1tSgoDL1GFxYV9WbRFdl0xfuAiNfCYioy8rIMJKAlhVQswvaXo/axch8SOvMU6wSYQjdFfPf8y1si7k/WnWpTJuSq0SLx8Ni4V+lPWx323kW4/7NC2p/V+HjPCmmUzznaiqz4MWZhAmOJgM+TRErJWAI3AnPt7GhKnIV0BObPQ4w/AmKBK17y1ltv4CcP/xxz583Hvr17sHjJUsnq+s6/3paGeHXLy7j1ttvx+9/+RnLtve76T+DVLa+Aw2fCfwKuzg74feziGp4Ob01GAsJCyjI+CbBCGuVzj7Yi62iti9ID72YCTIAJyCPgJIWUhQmczwQ2broMogap2dwTFyryNHzvO3dJiqXDbse37vw6nnjyGTQ2NiAjMxPfuP223qy6L734AlasXI2du/fDbrPDZrfhszd98nzGNaxzc5NCKh4sTIAJMIFkJ5CSlpYWmnc92Wc8wvO74sqrpBXZTRvWSiuy37//AaSnZ3LdsxH+HHg4JsAEmAATGB8ERLm1vPx8yrhbDR8lZOovJrMZJqMJdXXsodSfDb9nAkyACYxFAqyQRvnUAnVI1667NGRFVvxQsjABJsAEmAATYAJMgAkwASbABJjA0AmwQiqTHa/IygTFzZgAE2ACTIAJMAEmwASYABNgAjIJsEIqExQ3YwJMgAkwASbABJgAE2ACTIAJMIH4ElDEtzvujQkwASbABJgAE2ACTIAJMAEmwASYgDwCrJDK48StmAATYAJMgAkwASbABJgAE2ACTCDOBFghjTNQ7o4JMAEmwASYABNgAkyACTABJsAE5BFghVQeJ27FBJgAE2ACTIAJMAEmwASYABNgAnEmwAppnIFyd0yACTABJsAEmAATYAJMgAkwASYgjwArpPI4cSsmwASYABNgAkyACTABJsAEmAATiDMBVkjjDJS7YwJMgAkwASbABJgAE2ACTIAJMAF5BFghlceJWzEBJsAEmAATYAJMgAkwASbABJhAnAmwQhpnoNwdE2ACTIAJMAEmwASYABNgAkyACcgjwAqpPE7cigkwASbABJgAE2ACTIAJMAEmwATiTIAV0jgD5e6YABNgAkyACTABJsAEmAATYAJMQB4BVkjlceJWTIAJMAEmwASYABNgAkyACTABJhBnAqyQxhkod8cEmAATYAJMgAkwASbABJgAE2AC8giwQiqPE7diAkyACTABJsAEmAATYAJMgAkwgTgTYIU0zkC5OybABJgAE2ACTIAJMAEmwASYABOQR4AVUnmcuBUTYAJMgAkwASbABJgAE2ACTIAJxJkAK6RxBsrdMQEmwASYABNgAkyACTABJsAEmIA8AqyQyuPErZgAE2ACTIAJMAEmwASYABNgAkwgzgRYIY0zUO6OCTABJsAEmAATYAJMgAkwASbABOQRYIVUHiduxQSYABNgAkyACTABJsAEmAATYAJxJsAKaZyBcndMgAkwASbABJgAE2ACTIAJMAEmII8AK6TyOHErJsAEmAATYAJMgAkwASbABJgAE4gzAVZI4wyUu2MCTIAJMAEmwASYABNgAkyACTABeQRYIZXHiVsxASbABJgAE2ACTIAJMAEmwASYQJwJsEIaZ6DcHRNgAkyACTABJsAEmAATYAJMgAnII8AKqTxO3IoJMAEmwASYABNgAkyACTABJsAE4kyAFdI4A+XumAATYAJMgAkwASbABJgAE2ACTEAeAVZI5XHiVkyACTABJsAEmAATYAJMgAkwASYQZwKskMYZKHfHBJgAE2ACTIAJMAEmwASYABNgAvIIsEIqjxO3YgJMgAkwASbABCIQUCgUyMnJRX5BAZRKZdiWGZmZ0Ol0YfeJ4/Py8iGeWZgAE2ACTGD8EOCr/vj5rPlMmQATYAJMgAkkhMDadZdi74HDeGXrG3j2+Zfx3o7dWLxkae9YhUVF2LLtTbz40lbs3L0f9z/wwxClddPmy6Xjn3rm79iz/zDWXbq+91h+wQSYABNgAuc3gZS0tLTu8/sUYzu7rKxseL0etLa2hhyo1+thMBjQ3Nwcsp3fMAEmwASYQPIQSElRwGyxSlY2a1o6TCYLjCYT/H4/7LYO2Dra6bkdHo8bnQ5H8kx8jM9k/oKFcHZ24qOPDktncte3v4vFS5fhqss3Su9//8dHcerkSTz04P0wGo146ZVt9PoHeHXLy9Ln88HuA7jhumuwb99eLFq8BI89/gQWzp8Fp9M5xsnw9JkAE2ACTCAaAVW0BuNhv3At+vodd+KGT94IdHfj5MkKfOzqy6VTV6lUeOChH2H9ho3opB/bFlJIP3fzTaitrRkPaPgcmQATYAJjgoAlNQ0ZmdlYfMFKTJw0NeqcvR4v9nzwLvbv2QEHKapOZ2fUY7jB4AT27N4VstPr86KqslLaplarseaStVi7ZpX03kELAS++8Dw2btosKaSrV69BZeVZSRkVDT7YuQMNDfVYvmIltr66RTqG/2MCTIAJMIHzlwArpPTZfv/+BzF9+gx89ctfwHvvvhPiRiR+MMXK79JF86SV2nvv+wG+/Z17pLbn79eCz4wJMAEmMDYIGI0mlJVPx6Wbr4GKFB+5olKrJOVVKLBNjfV48e9PoqmpHh63W24X3C4MgYvXXILNl11BiwOZuOc735ZaZGZmQaVSo6a6qveIanq9aMkS6X1ubm7IPrGxuroauRRPysIEmMDIEcjPz6c47lykplogFpJAPpTCS6GxqQU1NTVoa2sbucnwSOOKwLhXSMUf3ydu+CSuufKy3tVZr9fb+yXYsHEzXnj+2V63ob899SSee3GL5A4mXMBYmMBYJiCSi4gbxxq6+esm74D+EkhSUl9fJ7k89t/Pruz9iQzvfUbhVKi0+uF1Mk6O9rqdsBg0uOraT5NbrnlYZ51XOAGfv+1uHD92GK9veQHQWiBcf1miE7C31MLRWtfbMDc3D+K6kE7u0iLB0enTp2CxWKT9Lpert11XVxes5FotxGpNhXgfLKKt9dxxwdv5NRNgAvEnMGHCBMyYPhUpcEGd0gFFdz0poz5pIJNFizSzFZMnlaK5pQ2HDn00IKwt/jPiHscbgXGvkC5avFSKC12/cRP+k2JehCvRY4/+Ef96e7v0XRArtK9t29r7vaiqqoJWS3+c6elobmrq3c4vmMBYI/DLX/8OG+h739jYIC2w/N///g0//q+Hek9DJBl58Ic/kn54Uskd8pvf+Fqv+xy7svdiiuuL5qojce3vfO1Mo9Fixuz5WH/5x6VT9Lji425bWlKKz9zyH3js94+ggRZhwi3SnK9M43VeTz7xF4iHuH78/Fe/kbyLOjo6pO41Gg0CSqlYDGtv77G2iGetNjTzbs/+9nhNi/thAkwgDAHxW75k8SJkpBug6T4N+Hr+VkOa+h1QoYX2nUV2ah6yV6/C/v0HUFFREdKM3zCB4RAY9wppQUEhfD4fTp86hTdffx2z58zBnx79C6792JXYt3ePtEIb+AEVoF2unlVcsbIrFNK0/MnD4c/HnmcE1OQGmJuTjYK8bFDCMFpt7IbfR9+Zbi8UKi29JgtBdwpSlDpyhzGgw9aG2vom1NOjrX1kbr5szVXwupy00PIq/vNbd8Bht6O0dAK2vr4dz/7z72QlOiYlGfnxT382aJIRdmVPzBfXklUMpVqbmM7Pk14V9Lckkt4sWrYiIWek0gBf+Np38b9PPoq6+kb6W5XvBjzcCXX7ffB53VArfdAKbzm/FykKFVyeFHh8CihpcimK8OVUhjv2UI/vsjXDaaOb1X4icjEIC6lw1W1qaqQkUh4UFBbhZMUJqaXIultX12NZra2tpX2FIT2I/ZyrIQRJzG8M1ixojakxH8cHjB8CKy5cDJPWCZX3DJ204dwj0vmTJ5WiEUsuWom0vAmoOCmOi594uuwQXhcs44/AuFdIxQr4hwcO4OmnnpA+/R073sfcefOxYcMmSSFtJyVBrOoGRKfrcacLrOw6WvkPJ8BmPD8L17IpUyahIL8QXncLrSaeha/1IODvi0fr7+DtS1FCozCiKN2KgswidDpzcPz4SZw9lwgkUTx9lF1UyHPP/qN3COFWd/zYUVx00QpJIY2WZIRd2XvRxfWFs6OJFA52FR0MqlKRgkVLl2PBomXwUzb0RMo1134Kj/7uYfIgqCH33ZSEDdXd7UdxfhotYqVj6fwCzJ2RhYIcC7kh62gRy0Dn2Qm7vQvV9Tbs+bABO/ZWo7quBZU1rUnhVhy4nlx2+RXYvesDKc5MWF1uvOmz0m+oyFov5I3Xt+H662/Agw/cJ2XZFXGmDz1wv7TvrbfewE8e/rn02ysWgkW5GBF3+s6/3pb2839DI+Dq7KDfI85SPDR65/9RixfOh9pXD2/7KfQFqsk5b/JsUDShJG8mGqpP0cISuffGSfyUDI1lfBIY9wrp2bNncPkVVw749HX6HvchsUIrVmoDIl4Li2mgLIxKw/FeATbj8Vmr1WDmjGnIpyQAKZ4aKNwfQkkWHEmEXqHoW8wIz6eL2pMFlX4UtIZUzJtTjukzpuPg4aNxvcgHj+3zuOAjS0ywZGZlYRol9hIlF4RESzLCruzB9OL3Ol6up/GbUfL0JJTCshlzcOHKSyieOfT7m6hZ3vT52/Crn3xfKhUT7zEKCgowrbwIG9ZMw/IFVqhSyO2424mUbvKi8FN2WhctYdFLcRmxqBWwFOswtSQLN1xeDJdXj3f3tOOVN47iyLEzlABo9LO+l5dPxU8f+SUlPWmVYkjPnD6NW7/6pV5sP7jvXjz6+F+lhEdmixkvvfgCtm3dIu0XXhrfuvPreOLJZ6QQAhHX/o3bb+vN3dDbCb+IiYB0rafrPQsT6E+gkDwS0q10/9p5EEO7mnYhxXsUM6dNxtlTFf27j+t7scAlPBljDaGIlgMjrpPkzoZNYNwrpO++87ZU1mXlytXYvv1NSflctepifPUrX5Tgihppt952O37/299ISReuu/4TlKb+ld4EL+xeN+zv4JjtoCA/D3Nnz0CKrwFKz4fCv67n7pHso0OSbju0oIc2A4sXzUdNbQP27icra7ylX7IW4VL369/8DlteeQl79+yWRouWZERYhCO5ssd7ytwfE7BQ4psrr71RNgg3LRw6Ox0QtUiHIx//5C14+vHfUdmv4dcsFTdWkyZNwoJ5UzB3qg5rFqvopo6sC56z0adIcVwBO61YLl0zV4uLF07E1veLcOBYF/bsO0YeFselG7foncW/xU9/8l/4+c8eRh5dF0VWzqbGxpBBxOLvmtXLabErDza7TQoVCG7w/HPP4uWXXqTj86Uka+IGlIUJMIHEEJg+bQrFjA5zIctH3mDKNJSVlSUsnlTUkBY1i++842tSOagAjW/ddTe+9OVbA2+lZ3EPf+Mnr5deR8qBEXIQv0kaAkO8c06a+Q97IiKF9Z133IZHfv4rtLS0oKS0FL/8xSPkXvSa1LdYxV1ByurO3fupmLpd+iH97E2f7B3X1lTV+5pfjB8CM2fOQFlpJrytO8m62Y74Og+KeKzjSNeXYfHsSXjn3fdDlL94UhYriD/6ycNSnNcdX++7uEdLMhLNlT2ec+S+mIAoP7Bu49WyQJw4cgjP//Mp2ChRjkKpwlfu+A4locsMOba5qQG/fvgB6vNKLL1odci+/m9y8gpRXFqGI4cP9N8V0/vJkydjBnk/ZJgd+MxmN0x6OymiMXUR2pgsqSmeOly6ELhghgaPqwspbGAyPvroKI5RHPhoiHDPrTwbWbmuqxs8zEVkuI92/GicF4/JBM4nAiLrtU5H3lseca8xPNFQsqPS0uKEKKT3/+AhXP2xayl8wRR2kn97+gncfde3evcFLKhCiY2UA6P3AH6RVATGvUIqPo1tW1/Fm2/MQX5+gVSMOzj9vPiBFDfqJrMZJqp3F+nHNKk+WZ5MwggsmD8PhfkZUHuOkFW0L0Y03gOqvBVU1qIAa9aswttvv0txZHQDG0cR1pqfPvILyT33xk9dH+IeFy3JSDRX9jhOk7tiAkjPzMakqTOikqg4fgRP//UPWE81SWfPWwwNZUSnP9KQ47rIevfXP/8GOipNIlcu+9inUPXw/fQ3aJN7SG87kdxsEcVqGXV+TM0/i2vXC4ttfK8bZr0bX6GEw397pZLKNRSipLgQu/fskxZZeyfCL5gAE2ACRCAnJwcp/tivZWHh+dqoZumUsLuGu/G737kL4vHvD3pCifr35/P5pWRp/bdHy4HRvz2/Tw4CIjyFhQgIxVO4FAUro8Fg7DYbK6PBQMbp67lz51DykVSovR8lVBkN4FV6q6Gj5AHLl18olRsKbB/us1KpxJ8e+4sU63Xjpz4hlTsK7lMkGSkuLpGSjIjt/ZOMCFf2K664ilZZe2Kt+7uyB/fFr5nAcAioyDp6yYaBcf7h+nztleewYPFFWEiJj3qUUdEq4OhKf7KUxO7Jx3+LiygONSc3P1wXYbeJxZuSibFnVBdW0dVUIsGqa8Gs0rpzymjYIeKy8boNGZhVUgurvhWrVq2EGJ+FCTABJhBMwGg0QKWg3BVxkW54XMMPZxjKVJZQ8jORDO2ub38XM2fN7u0iWg6M3ob8IqkIsIU0qT4OnkwyExCFo0uK86B2Hx7RaSq8ddCplLhg2RK8+dbbcRlbbzDQDevFUl/HKvpc7E5RqYZVKy6Q4rsiJRmJ5soel0lyJ0yACOj1BsllNhoMH2VnPHPqhNT28T/8Ah63G5OnzsSKiy/tzZL74j+elhTRBUsuwsEDe6J1GbL/wpVrcfTwh7R4Kc/PdtGihcjNToXCuR+FOQpctbYkpL9EvblqbT7a/0GJjur3Y8rkUlitFuza1RMbnqgxud/kJGBKz4fBGuqunpwz5VmNJIGyGQtpkYwy5bqptlQcpNtQjuwJw4xHPTcPkRm6vf501Fnt+mAnJVBrk4xI0ykh4z+fewkinE5k5o6WAyNq59xgVAiwQjoq2HnQsUbAarViPrnqpjgP0tRHPtmGsJRajJMwa9ZMfPihmMPwRFj8SwpzInYSKckIu7JHRMc740ggv6BYVm/tlN1VWEBFvOlFq9bRjYoTrzz3DLqcnbh089XY8e5blGinHp/5wm2y+uvfKCMrB3qDkTLu0o1cFFmx/CJYzSnQ+j6CxaTGjVdPiHJEfHd/5uoS/OovlPnSdhR52RNxwQVL8d57/47vINxb0hNwtNbB0UZJs1iYQBCBMxlalAoHEYpBj4d41KloPHMoHl1RH6EhFoN1+vpr2yAeARHX++uu71FIo+XACBzDz8lFgBXS5Po8eDZJSmD+/DlUguEMlWMYHdcUgUXtP4tJZbOpzl8tmpubR4RUtCQjQrEVD5bzj4CCyqyYDWqKfVQiJ1WHTKsWaSYtRC3QdocbrXYPGtqcaLa54XR54fJQluk4SwplhJ45d6HsXkVpmIvXbaZkRkrpmG6/H688/7+SQrr99S2YPmsuXn/1eWlfU0O9pMCK2tJzFy6VNUYG1caMppAuv+hCKqcAKjR/Ehoq17Jpda6svgON7A4PFMTYoA/9efYQXzc9jIbQ7YHj+j9vWJGLv2+tppvOk8hOn0A1hi/AO++8178Zvz+PCYgatzLv789jCnxq/QmI0kze3GyoxPcjDqJU6ajIwMgv1AdPvZ5qoZaUlEqbouXACD6OXycPAXm/bMkzX54JExhxAkVUe9Zi1FJ5BrI4jKZQAiWFt1Kqe7r97XdGcyY89nlMwEJKaH66HhfOyMKMEtKsZEhHpxev7a3DR2fbSVF1w0+WyniIlmKUCwpLZXWVmpZBipyCakQ3I4OSIAXE4+lxsRWuuy5aRQ9ICil9CoWyV3kNbI/0XFBUitMnjw/aZOHCBUi1KCRlVDTKJkvExCLjoO0DOwSu19+twc4DzeReDGSm6fD563viP/3+bjz3WiUOH2+HRqWAgRTST181UbK8Bo4P91xWYpTGr65z0nxOId1SBpGQbfeeveGa8zYmwATGCQGxoO3DxKEWqAulpLRSDgp76LYRePexj19HZaJeoHJcnRB11K/52Mfx1JN/lUYWOTBEbOncefOxb++eATkwRmB6PMQQCLBCOgRofMj4IjBjxjSoh1uvK07IRM3CVOssZFLh+Kampjj1yt0wAcCgVWFCrhGfXjNBUnxiYWIhJenqCwsBeryxrx7/OtRAVlR5sZaRxlFR7LSRMpzLEaGMTp81D2+TJfSq626UYkj3fPA+yimOVEj/8i6nKd60nDL3zp63SE73UptIiZBEAqHcbCu0/qNSWwNZluVaR194vQp1DZ24flMpJhSbQwrAHzzWhsoaB775/2aQO7ICL71RhVe2V+M6ahtNNqzIwRPPVZIF2weNvwL5edPQQfMU9UpZmAATGJ8EWltb4fNTTlNSJkXZuuGINyUDlZXkiZEAEVUALlq+AllZ2fjdHx6ljLpuXLh0oZSE9BoqB/OjHz8MYQ3NoPuh55/7Bx579E/SLBxUkSBSDowETJW7jAMBVkjjAJG7OH8JZGdn0805nZ+3NWlOUtXdiPLJZayQJs0nMvYnkmrS4KZLKGlXdnRrXrSzvXhuDsTj8W0n8VFVh+RmGu2YwfYrFbH9RG2+6jr85U+/xo/v/090OhwoKp2IjVd+fLDuY96emt5jhfWTK3CwZGRkQNQmVnb11SoVlszMNFF2JrK0k8vzrg+b8P+uL0dhnkFqLFyPA3L4eBtmTUmTlFGxbcGsDPz2iWOktFL+4L5mgeYhzzmZOipXppIUUrFD6z9JcehzpGuHuCllYQJMYHwSOHr0OGZMLYYGw1BIFbRYqEzDkSPvJgRicG30/gN84rprYDZbSFnNIqW0JqRsnWgbKQdG/774fXIQiO3XPjnmzLNgAiNGYOLEUqgxMvGack8qxduAvPzFUKl2SyuFco/jdkygPwERDzox14T/2NzjHtp//3De37R2IrYfaMBr+yixSpd3SF2lkNUzFrFY0/Dl278jxXkqSJkVBdIHk5s+f+tguwbdrtZooVJr4HaFlkwQMeYKD8WYd7t6j507jawPMuR0tUOKCz10og2v/qsGWrKCLp2fhUklPZbhdpsHUyb29ZVq0cDj9aPT6ZUVTzptkgWNOxt7ZkLzS3GfxsIF87DttTdkzC62JqKclKhx2NLSMmgJNWHNEBaMcCXWhJU7JycX9fV16K/0xzYTbs0EmEAkAhUVFSgtKYKSap2LpIlDEY+yGAcPHhy1v1WbrQPiMZhEy4Ex2HG8fXQIxPZrPzpz5FGZwKgRyMvNQ4qvZcjjq0XMl14pWSlSLWop7stIyUq0GkVU68bgg/rhdbUgLy9v8Ca8hwlEIaBUpmDOxLSEKKOBoVfOzsZ1K0pgNaoDm2J67qslGtNhMFtSIyqjsfXW11qpVEEkewqW8vJy6NQ+ijFv6N2s1yoxq7xPiezdEeZFWwfFhlOt1IxULdZckEsuuyb89Z8nUVnbKbUW7rYqVd+Y6nOvRSIpOTJvuhViPgER89Rp/HGvUXr1NR/HgYNH8dyLW7Bj1z78+bG/Sq50gXELKRZ/y7Y38eJLW7Fz937c/8APIRTYgGzafDn2HjiMp575O/bsP4x1l64P7OJnJsAEEkDg3zs+gDclC35VbInXxFQ8qnJUVjeiouJkAmbGXY5HAmwhHY+fOp+zLALp6enwebugpGRCckVFCqiObv4Kc/WY/f/bew/ANs7z/v8hiUVM7j1Fau8tL8myZFuW5ZVlZzjOapL+0jg7adPEdu2sZjX/NE3SNG3iNLYTp0k85D3iLctLkq29KFHcEyAxCYD8P89RIAEuHECABKTvY0M43L333nufAw/3vM+ax+4knNREFNGxIhkzO7p9dKTBScdOO8nFSWE83uDYZpN+1mT0U1FRAcdunJm0DTaAwFQE6krN9KHLaqZqkpBtS2ps5PaV0QO7msg7oP47HsvBxcXVbMrmhD/84kRIer2OgsEgBYKDHCs1yOresMi7KEESmyolYjxezhDs9XJSDje/j1o31R5bo9HQwgXzSRs4HLGLjiecZCJKjciYykqMtIZdcUVqKswcM+rmJEZ2qmQXXlEmg8HRJFEDgeHlbI75VSNmdh3W6zNH3HZlHz010+JFi6ihoSFhXhYtLc10zY5tdPLEcb4ORvr1//yObv7wR+gnP/6hMszbbr+Tnv/bs/Td79xFJpOJHnnsKdp6+ZX0xOOPKpMHP/jRT+gD7Ia3d+8eWrtuPf327ntozaql41zx1Jwz2oAACEQn4OKwhueff5E2bFhHRp2BNEG2lA5Fif3nuNOBzEpqbGylvftGQxSiHw0tQGBqAup+0abuA1tniICWLRqmbC2XXtBRHr8KbQYqzjMoad2z2NbdbvdRl8NHnQ6vkulS3OQG2LULEh8BqT2aOaQue5yUYqitMNIFK/OVzJbRjijJScpZaZXXZRfwDCU/Y+7a001v7bdTvysQkdRkor4ygv1UWFA10SasA4GoBOQe8untc6O2S1SDdfPzqYPvTS+806EoiYnq18QKqNVqJqvFzG60Un7GTw6nmwZ6+6O6kWlYMdVpNaTT6bhmqLjZE19sAABAAElEQVTHDlG/00W9jj5OnqHO+lhfX0+DfvagGBq2ZobOSzwg1EoeW0bfOTy+tmng7L3bZtHymEYnxey8POx5of7nW7LzRsigm4I8bhn/4cORynREuxg+vLprtKSMZL6UAvWXbdmqKKRSG3bL1svp8i2XKj3Kg/DOhx+i7VfvUBTSzZu38ORao6KMSoPXX9tNHVyW55KNm+jJJx5X9sE/IAACiSfQ19dHTz75NK1Yvpzm1K2kQV87Z9/l+5GUuBs6ex/MzKahTDP5h/IoMKSj/ezB0NjYmPjBoMfzmoD6X7TzGtPsnbzEeNlMOqovM9MlS4qoPD970sEM55Ic3dzDyTJeOtBJ+072kpOVU4k7gqgnkMMKaVYmW02mMOqI9aK2ykRXbyrhB9sxD33qD8VugJygdFW+8nprfy+9+GYPOVkxVWYbJuqHfyyMpsnj4ybaBetSn4ClgON5NNET4UznTLRBJ33i8uQfZ+wYr7uwlo53BKhv0Dp206SfdUYdx2yO5yGKaH6uTbF0Ot1e9jboi1B0M7icSxa/phKxM/r4nugLDFC/e0BRTk3ZJppbkE99/S7q7nWMU0xlLMacIjLQcN/L11zAiYI4Y21wtMyMHNNqDXA5GXU/r3Nrc2nns6108oyH6mssJArniTNuJYuu9LFkfgH97dU22rihnBXRDNp7yMHJSPL5e6Kuf2U8NhM5g5EuxEae4Fy2ej212UeVXWkbq3idvSSvsbJx06UjCmYB12/VaLTU0tw00qyZl9euX698LikpidgmK5ubm6mktGykPRZAAASSR2Dvvn107PhxkjJ3lRVl7LVgUf5m5Yg+r5t6OAnamTPHoYgm7xKc9z2r/0U771HNLABx4zKzNfTK1aV04aKCuA6eZ9HRtfwQI693TtnpoVebh2sEijkOEpWA2WKijKHJA+bFFfe9V1WosohGPVhYg1VLckleDz/TSkdOOsnnn0gjHmIrKiYYwrCdE4s+l4NEmUqWyHdmZQ3Xp7Rq2II4uRWwsd1Jd/3+jXHD+PfPXsLxh6Pjk2SzP/nL24oy+NUbV4xrP3bF+zeW0i8eaSDf4GgfY9uEf87W5kaMU8/WzML8HI7B5tyQbAl1e2J3sw3vP3zZx7GaPp+P7H397P5roNrKEurqtVNX96j1UpgNeJ2KolpaWkIDri7KGGwP70ZZztZLoXh1f58GXQZdf0UF3f/ISXbz1VAPK4iXbiimuTVmpY/Fc610tMFO3/vFPoW9nvl/+F1zVPcvAzLoSBl35ECdFNDkkcWQSR2dZ5MeRTZQ9Sk4MP4afPwTn+QY1Xn0D5/5lNKH1To8CSF8QyJJjWzWYSXZZssZl+RI2trO7hfaB+8gAALJIyCeC+IxkSivieSNFD2fiwSgkKbgVZUEIGvm5dPVaxM3O7y0Jofk9crBLnqGs15K8XrI1AS07M5HQ+OVQbFa13Kx+xuvrpi6g2luvWZLKVWWOei5VzvI5Rk/jsHg5ArFNA+N3WeJwIBHnYt4vMOzsavujRfPZWVm/PcpvM9B3m7QZtCP//6i8NXEoZcR+973zHG2JLrIyl4c0fqUjop5Eqc8J5MOnVFXaiDIk0KDHAsqkptjpeLCfFYYXawoJi/ztWR3tTucnL3RzfHfJqqpLKO29k5Wfr3KWAJsLfB5PVSQU8+mg2YKsPvrWOnvZ04xTBgtmGPhOqOL+NwGyGLWKi65of0lh9K7rqxkZblcmZyy8naR0Paxx57oc7/Ty4nQxo9z0N/IE2o2OnPq+ES7xbXuym3b6dbPf5E+9IEbqeusoitugSLiHh1SSg0c6+twDCv78q5nJT5chrer+56E74dlEAABEACB9CMQv49h+p1rWozYatTSp66am1BlNPzExdr61fcuotLc7JFEH+HbsTxKIEMhFGlNloRF65bnJV0ZDY1CSke8b0el8pAaWod3EIiXQD2XeIlFNOzWGf4K3/e5vS0cs+6lbeurYsoYffW6ioisr+F9TrZcXlrEyqGV2jp6qY8tozMhkgyp297PcaUeqiwvURTi8OOWsptp1tCo9TR8m8R9xiqZPNEl8aQSHzqRSGKikDI60fap1k02Hg31cbbu4ql2jWnbtdddT9/57vcVZfSdt/eN7NvV1clWZT+VV1SOrJOsu21tbcpnKW5fXhE5wSfbpb4gBARAAARA4NwnMPEv37l/3il3hpIlsrLQSHd8aCmVSKKiJIrUufvKexfSstocftjEV2Ay1PIARRzeHxIpk7FqcY6ShCi0bibeywoN9KFrK0myZYZLMl07w4+D5XODgCg6ly6PrnzojVYqqqijjZs2U0NwDp0Zqie3cS6V1C6j0ppFVFKzmAYtdZSVv4C+84+foA2brqbNW66ggsoFZLIVsnI69T2lLJ+z4E6idI0lLRY1sVBKn+3sOjsQmHmvABdbRts6eynHZqXS4kJliDk5OfzOltuwuqNjx54Wnwc9HL8+RMPnM70Rf/BDH6Z//Kdv0k03vovClVHpVe6lzz7zFN100weUg0iW3R3XXEePPfqI8vm5556lqqpqWrFylfJ53foNJHGnkhgJAgIgAAIgcO4TiHzCPffPNyXPUFyy5pZZ6NNXswvYDIoUrv/Ti430+pFudjuLtATO4DBS9lAut4cohy0dZ70b59daaPOG4QfS6Q6aK05wNl0/Wdg9W65/NMnL0dF1W8voz080k5dj3UQykxhrGG082J5+BIxs3Z8sKZpWn02WvDIy5xazW2qAsrrbaXWZnzT2Q1wSxUNvneml6hILXbykhBz8vX38tUa6al0VOc+8QV3NTvJ2erkO5wqyFZRRce1Sctk7qa+7mTz9E9fwXcLhA5JwbSrR6/VcjmCD4qbq4CRDsyn+QJC6evo40YeJVqxYQe3tbRxfnlz36hk7X87YLQqp3T6xtVftOLZddbVi5Xz62Rcjdtl2+WY6dOggfevOO+g3d/9eUUQtVgs9svNheurJ4Qy6LqeTvvaVL9A9995PnZ0dSv3SL3/xcyj5EkESH0AABEDg3CUAhVTltc3Olhp3RuruTnzskrjPzrQyGjrt915SpTxgHmyc3VgdmTGXMivCWKwi8oAkcUcysy4lBJz8wNLLWd5mUvo4uUmglLND8kELcvV0wxXqYnqffLGFnt8dmehkbq2VPvLuOmX4+4/a6cGnznC9RA3XPgzQDVdW0cL6yAyYE51nDZeVuXh1Pj3/Gru/DRo5FosVZggIqCQg95mxojPw311RFZmsBeRxtFFf834KDLhJbJxLK+SbLy8TVRRy3cjdpznBWgkdOt1LFs5+e6xp+J7R3e/l2EcvvbR7L62cW6DU+TTYiim/tJYGi2uor6uZnPbIv4eV9Xm0+3A3+blO6GRy8cUXK+WQZlsZDY1PXHi7elxUWFREeXm5pMnoCG1K6/esDE4uxPfe6crNH7xxyi4aG0/Tls2XUElJKbtB95MooeHy0IMP0KOP7KTSsjLOuNus1JEN345lEAABEACBc5cAFNKwa1tbO4ce3PkY/fAH/0q/++3/KFuk8Pm3OSZm21XbFcWohxXST3zsloTFtkgCo1uvnx82iuktSnmXQbZ2SiyqWvnEtjr67v0HqdPuVbtLQtoVFhZSbW0tFfEDXkZmJg0M+JWxD3HspsRTGc3DmRmlJIoUstdxLTuZEJD6V2fOnOG2kz/MJmKAYjEYpGqu/aqh918TGd8UrX8pcn/t1tF4qZAV1DcwSH95vJE+9t56quCi96ebXfS7v5ygf/z0EpLapNFk/Yo8Oni8j1p6TNTdmfjJkWjHx/b0JVDBIQHhkltSSzlF1eTqbqTuk69xkpyzrgDhjc4um/QaTlo0REF+VRWZIzLtZsmXm/8Xl3YR6cdjb1FeenMhK7wVZM4rod7Wk+TzcLYflipWcKVWp98z8d/wunXr2QVAw5l0U2/Sxd7nprqachp0d5F78iTcynmmwz9ZGQMkE64zJW1trZMeKsAu2Wf4/g4BARAAARA4vwhAIT17va2cfv6X//U/1M9WsXCRwt2rVq+hDWtXKu5Dd9z5Lfr6N26nz55NZx/eNtZlE1vIbtxYTeOKlkfpqL3XQ9+55026/uJa2ryiXGnd5/bTrx89RA2t7FbG/dpMevr0tYspl7NqqpFPXVVPP3voCNnZHS/ZUldXR/Vz53LsUqbijtfjcHGN1MkfhkPjyeJ4Vz27Fi5YuIjd5lbSqdOn6OCBA4oVNdQmke9dXV2k1VtpwRxbzMlERKEOPaCHj+log4NybTpFGZX11eUmJWHR8dP9qqykso9Yan/1gIYzfzbIRwgIqCJQnj+skBpMNiqomEdBtoT2NLxOwcBoKY5QR02dLrKxFVRcyiVZ7NsNPVSUY1TqYJYVGEleITnW1EeegQCtqM8PrRp59zk7SV7ZORVUNm8N9bQcJ0fnGa4RyvpmaJZmpPXwwsKFCyk3L4/kvmDNSW48/ZhDq/ooSvkQ+9xbzQbye3XkH0jzjOVDfvZMyVN17mgEAiAAAiAAAskgAIWUqWZlZdHPf/lf9N+//hVdxZbQcLlq+w56+KEHRmJZ/njfvWxFfZwteJnTttDVFJtoQaX6IvEyLjdbQH/x4AHOUhl56e579hhlc326H376QkXB/d2TR+gPvO7vWSlVI1KzdNXcfHqWS8IkS4qLi2n58hVcMD6LXFyI3hvjg1yQ3fvcbi9Jjk2txsuucyV0dU0N7d+/n45zQedEizx0Dnh6aNvmhUSBrpi6b2hycrznaaWW7NL5uVRWPGyB6HP6ycaswyWHM3LKerWSY9VRbXUpPfDIq2p3QTsQIPkbtxZUUF5pHTk7TpC3b/K/dbvTR0++cYb02izFa0FqIl+2KjYvgXDkHnsT+d09ZC6sI73JSp2nD06okObn59OCBQuUJELh+6faskTcD/gHlDqakkE2rYUVUgPH60JAAARAAARAYLYIRPcRnK2RzeBxb7/jLjp69Ajd/4d7xx21pLSMmpuaRtY38bIk25AZ/OmIPODdvKU2pi7EQ/WXOw/SljVsbciPLN9w4FQPXbi4hB8gM5UkOVesqaR9J7qVGCy1B9mxrowtq+pdfdX2K+2WLVtG4obn8w9xKQVOghKjMjr2WGJRdXCdwE5ONFJfP48u2bhRuS5j2033c0mek4Y0BTF1I1bP1UvyqbzIpEwg/Od9R+kEW0BFPJyQSMf1HcNFMh17vNEtxCP78HiuvMjMkxIx7DOyMxbOVwJ5pXPIll9G9sY9UyqjwmdJbR595MoFdO0FNfSeTXV0wyW1k94b5lZYaccF1VGxSmyqo/kdyhgMUGn9KtIbxitBcp/oZctoYIrY0qgHmoEGWq1ecV8WV2WzOfJePAOHT/ghjCZLwvtEhyAAAiAAAiCglkCkmU3tXudQu5s//BGqmTOHPvrhD054VjaufRcq5C0NfL7hOEsbu/h2s0tncd3KCfebaqVksZxrc5LRFNuDzH3PHKPqsgLavHoO7T/tIo3eqLzkWGazhbJ02SOfi7lUSIbGQE5/FltGxj/4TTa+y9fX0/PHhyhTm5iYIrE+r1m5lAyGbOrlgvZa2xAn0Ig8uvDI4GjNDGJXOH5YlVi1DHZ5HX7nORN27ZWyD0FukZU1XmGWQhCF+ZX0nrnL6Y09b3NR+8QEdmkCPfS+bbnM1cYZNXkCIhiZhCPyLEY/LZpXSItGP/K5N9Gew/00ry6f3XON1NEdpCzNqJV0MEPD1y87Yl3Y7uMWh7IrSB9o4YyWRaTNjz3rb2/LMbb8qjuXcQfHiqQSyK9YwH/DifnbCx/okoVctqXESv0dR/nvSr5/0e8JWdxBji56u/DjqFn29jaRMb+atu+4lp578yS5uayKSEVZCRVXz6Eurv3JFVYU0WYOkoaVv1SRLG2AjFzaxsBJoLRGLkcz5OU4XIlt72UFdTQeVqP3qf57nolz0+qMZC3KnfhQmQbyZhbF9VsmHTp7WsnVO7m1feKDYu1MELCwR4R8XyEgkC4EfC4H2dtOpstwMc4EEjjvFdK//3+fpSeffIw+9/kvKVhr59Qp7rj9nOH1r3/5P3I4HErW1xBzUaxEHI7hFPntJ/aENql+N3OSnKs2LqKAT32BdylC39zWTbe+a5myn58zrMr+oT7W1Fnp90+8zZkL5yhudocbe8nP24MD0k69Je3C+mx65rX91OucflyUJITatGkTuXtbqZWtmWNFb+B6hHoDVVTW8KuWsjnT7mTi83qpo72Fmk43cJyvnXwDPn6wHn0AlHyfJqOBFlbl0ssvc4Kmzum70VWVGSmLkxo5e0/x2Aq4rMXEJSwmG3NovdEwRJ1dHo7VG+D4XrYQ9ziV5dD2rm4nmZfaItaFto171+TzNQ1yMpVmnpgw0E/vjv37N65PrEgZAt1NhxM+lsWLF5Pe3029p09Sjjk1nGL624+St0tDc9iV/fnnXydJZrOi/kpqbjgS4T1hzcmlgH98jGvCIansMMhjcTs6OQ5WS/rBVuLMRkot5yDfjyQreEgCeSr/nkM7JPndz9bpvg4e70SSZaMeT5Di+S2bqDusSx0C/V1NJC8ICIAACKQ6gfNeIf3lL/+DrVaj7kqi5ATYHTQQGI7pa21tYWWpcuQ6yrJYTKdTgkRiPSXxUCzy+OuNtKKugB7edUrZrb3XTUMnhjhuVEMbFhXT9RfVKpl1dx/qYAU6k0o4AYm4guaYRi1xao9XYNMnRCG96KKLOHOJVnGtDR07gxOZ6Fmpr5u3kObUL2DLZ6T7aqjd2HdRXivZeiIvkY62Zjrw9h5yu/pHygO4OL5U6ntecOGF9PxzzymTCWP7ieXzhhXDFgWfq4kMpmLKyBIraXSldM/+HloyP0fJmuvkZFN7D/TQmmXDCV/m1ljpz5xl90yrmyoly26Ti+s8BqiuavQ7ONUYh7QVXJ7jlNJk28Ziuvsvp5mv+vjTqfrGtnOPgGSxrqmqIGfrfhoqL+ITTA2FVEh7eji5kbaU1q9bR6clsyp7QXh5Ai0dxM8KtD5L7q086ce/GVKuSspEcY7hdBh+5BjZQ8PrTR2lP3Jw+AQCIAACIHA+EIhNKzoHiYTKu4RObc3atTxj/zdOZPSgsuqJxx+lWz/3RfrVL3/OP9peuvGm99MTjz82rYRGy2oncZ0KDWKC9yvXVirxh6FNosdlSSZXTq4kIm9bV1coL/n8h2ePc8KkHCWeVD7HIhcuKqTjLf2KchfLfuFtV62SGDGj4qYbWm/INipKaP38cIfW0NbY3otKyklenWw13ffmbr42HuWaiPsfY6H16zfQU089qWTDjK3n4dbZhiy64uLikV3djgYy5c6lDClbwUlAppI9B3vor082kpWTFbnY8rCMldMLVg67TUmpixuuqKTf/t9xJYOpKKzv2lalquTLkK6GM3r2c2bP4QRLBn0WJyPJgkI61cU4j7dJLV/5O+w59RYNBaf+zs4WJi97H1iKF3J8+Trq7k0fN3Kvz08mUzYHEdiV+2QgGFSUUrfbNVso4z5ucEjHk2LjPVji7hA7ggAIgAAIgECMBM57hTQar0d2PkwbN22m197cR85+p1LQ+6O3fDDabpNuN7B1dN28YWvZpI0m2BAq7xLadLy5jxazYrt2wbCiI96roqTKSwrWv3qonT5z3ZJQ85jel1TnsLVVRw5XfG67FRUVVFJaSl1nHzAzM7M4I24xrbvoUh5fYi00hcVltHX7DXTwnT3U2HCca5n6yMmW0hyrkVauXEVvvfVmTOceaiwK6Zyq0Rhfv6+HfO42VrLrKMM7tVvlx95XT152kxZl08Zld8bWF122IJeWzMtRFEnJmCvXLKpoi2go08o1I9+KaFpSqKf2ruEYvIgNMXyQjNFiqQ7yQ/VYkW3FxSXU3t424SSM1C8U65DUh4WkFoFVK1dQf/sJdvFObSVp0NVGxXMXcWy1WBjTQ2RycojjwUN/ulL7Wf4O0lIhpWz2Jhme5EoUfS3XjPb7J54EyS8o4NASTmzHDMdKtPvN2Pb4DAIgcO4TkPAveT6RygdjBfeTsUTS93NitYP05TAy8o/e8iEKt5pKbNOXvnArXbhhDb3r+h105dZLqaW5eaR9rAsGLqNQmJP4JB3tdg998RevKK+7nzhCn9qxmOZWjMkepHKwUiNQlZI0QX+SxGjlypXU7+IYT755aLU6ds9dQOsvvizhymj44RctXUkr117ICYQMyuo+p4fKysuolBXjRImn7zTHs3HSJf2cqF2K5bIg1zBOGQ3tKHVKpR6pKs4cNyrWUZf9KFtnI2/IJQXD5xvqN5732//lLrrtjjvH7Xo1J53Z8/ZBuu/+P9Nb+w7SFVduG2kjPxD/+oMf06uv76Gdjz1Fj/CrlDNSQ1KDgJRO0WUNkdfRkhoDmmIURqOF+u3dZLGqc1ufoqsZ2+RhF9ehzNEJK6lNKnWS5f6XdpJlIbt9OCdCIsa+jr1Tdu2OnDiTfiXc5fGn/kY7H3lSmeC969vfi+A11f0mEeNCHyAAAulHwMRZzJ/+24u0Zu26iMHjfhKB45z4AAupysvo7O9nC+n0Z/DlwSVe0egMZLTkK3X8/vVrq0lrMHFNz+FLWMPd/nbNZaQd8nHmR67xyZnKPP09NOCNzzpi5hhXexyJjaSovW8gwBbCARIX3cVLV1F5VU28pxzTfsWl5XTRpVfSKy88TR52nXO6fUpNw9bWSZJ5TNF71iSaorP3EFnyl1CWni2lvhNT9JCgTaKMGurJ2b2fAuyuO1aK8uNXSLdefgV953s/oCK2Xt/92/+O6Fp+BH7wo5/QB258N+3du4fWcsme3959D61ZtVSpybv96h20avUa2rB2pfL5jju/RV//xu302c98KqIffJh5AjIps2jRIk5iNF4pmPnRRD+iycYWM/57zSAdu8Ga2H00vntW9CMlroVHMgNz7CVlcBwp329FpFSNjkuCedxp5P6amc2eD+x4nACFVKfT0ROscFbX1FLPBB4Tt91+Jz3/t2fpu9+5S7nOMom19fIrOQTmUYp2v0nclUNPIAAC6ULgrm99l971nvdNWFoL95N0uYrqxwkLqXpWCWkpLruxiiWvlMrqV1LFvHVksrDVc8BJ7q6T1NPwOnUceZFfL1DX0Rco2L6HBnpPUtBrZ/cxE5XMWU7l89aQlVO/xyrx1CMV68DcuXMVl1ktP5wsXjZzymjo/EycoGrjlquUMjOS5Eg4FBePxoKG2kV7Zy/jSaWflUM2lLKldD4/kMavEE56gLMbhnTlNKTlLL9db3Om5IktGEX5klglPnmaY2zXrV5Ov/6v/xznCrN58xY6c6ZRUUal99df200dHe1c73WTcrCrtu/gOOsHFGVUVvzxvnvpym1XKRmqlQb4Z9YIzK3nCYyeFnbVTQ/FyGCysqs9ex4EvIqiMmvgYjywo99FQ5LoLEz0fN9LJwmQldra2hIy5AGuLb1500X07huuGdefuPBu2Xo5/fGP9ynbZNJh58MPkUxsiUS73yiN8A8IgMB5ReCb3/gnWrygjiS5aLjgfhJO49xZhoV0mtcy1hpfFjNX05ygluZEwxBFNKe4moI+J/n6O6m/9dC4ZhlhmpPYXoN+r/Ly9XNMUNcp0plyycR1yPLK6rlUwRmydzSO62OiFTlWE9cvk5qfoSipiVpFrquprqYAWzmkhqm46VZW10U2iPNTkOuUiuu0lIhRI9nZJtpwyRbavYuVdK6xt2TFWup/dbeaXUfaWK3BEevzyMqwBU/fcY4hq+Tsu8uJ/MzU3xG2dZqLmSZ20S0nLhfJJXMO8DsnajprCR/bM1dpjLnOnM9l5xIzE8d3hfovKSlh1/Sm0EflvZld1UvOuuXKuyi0IWlqauLro6fcvDylPm9oPd5jI6A32Vipn2I2JEp3Mim0ePlK6jn5BukMoy6lsluGEiscf99RDh3z5iyNloxWM2m4fnKmxqfk/83iuqe2vEK2Mg5n281i1/Dp8Ih5UFF2EIZZ7KmSwRl2vWwYzcyrJM3AcLmXTPaq0LPXisvLdZUzNQrvKN3N2OZMHo92zPdBDj6kqaHOngOUbYlUrGMZmF8pLTZ8vSbbr6CgkDR8vcPvKc18f1m7fr2yS7T7zWT9Yv3UBOR+ostOH1f4qc8GW88HAgG+n3j6ps5JgfvJuflNgEI6zeuaFWPRdp/fqSSQmeqw8oBWUDGXM+hmkZPr9fndUmUzPhlw9ZK8vHoTmbgYvTl3LXU1HeUEPcMPUZP16vYNshLEMY78AKZW5tTVkS8wSPn88DFvwRK1uyntJN70hWcfUwLXL7tieIZ9aGiQ3tj9EjU1nuISNhp+2DPQJZuvpGy2ekaTnLwCZQzHjx2mco4jzTaZ2QoztRIW3qfZxA+Vk7jthtpJOZigv48f5mooM5vrlPrZ0qCiLExo/3HvGXq2iHIcpraQJyDOkPQvMtU4TEYtl87Qj+tqyhUqEkvZbDnjko5IuSOb1ap0Le/yOSQ+33CCEpvVBoU0BCWOd63eyMpZ/Fa2ObXV5POw+6tk4GbFKVyUhGIqrn34Pslclsk0o6WABnlMmWe/w/Jdt1hzaCAg02vy3eefKEmbnSIiDEWRzsjKIJcvwK77VsrK4KzpXI9URKvXsYJtYCU6g8eu/t6Z7NOT+7iMK0I4djSQYeISX17STkNpGeSZswDXxZ5KrGfvG+H3DElqJPcLkWj3m6n6xrbJCQzxtZHauRAQSBcCg2yAiCa4n0QjlJ7boZBO87rFWnS6ospGg4HhmKOJDm3OLaaCygXk7m6kPq7Tlyjxexxkb3qbDNYSKqlZTD2tJxWL6WT92wyD7PbHCpZKEeuYhmOp+lweuuTSy9mqF/2mEt71ntdfoX6HXYk7De175vRJ6mRXjR3Xv4+TX2hozxu76K3XXqYLLrksfNdJl6tr5tCZhmPcxxkyawfpdMuwgjfpDmEb/HnWqFZEaR4MdLNy382z0IVksFSyEs8KJa/LEMX07ENqWLfjF+WBOytn2PVPk8NKaDN5O1+locHJvyPhncjDRqzfwfD9J1t28LUYa5GW2ESHY3hyRN4lZiwkBq4tKyL7QeIn4OxpjX9n3jNvcS31txxQJqHGdjQY5AkPjhdMFQkMeGkw00lOexf5WCkKidaYw5NwdsUrQpuTy/fL2O4loX6S8S73pgE3l17yD/99Np8eogKbgbICZxPdDWh4dr+L7wt8n4/xHpiM8Yb6DPJvjqcvcmLTx1m7j554jfo6ToeaJe29r294AlTuGSGldPh+Mny/iHa/SdrAzvGOBzxOkhdk+gQko7wkSSzgLNE69uSQSSeZVOnp6WGX0ta0iH2fPoXU6AH3k9S4DokeBRTSRBOdRn/WgkrKLaoiRxPHKLICmQzx9rVRwNtH1tKFPNOvY8U0MYl55CbtZYtZ/YLFMQ/7xNFD5HT208IlK+jUiaMj+5853UBVtXWKMior59TPp6cefYCXxHqi7sF69fqL6K1Xn1N+RE6fTt6D14Cnk3/4O9kKYVWUU61+HltR+M8ryAlahvhhe0gsrhqO1RQrLa/PYHdods2lTB0nK3KwAtHFD7oHz54bv82yyA9sOZfvCRfJaheK5ZB3+RwSWZYHzd7e3tAqvM8wAZkUsrLFqadLvkfpIRrOwi0lU8JFlCc5F3HTT3Xp7O6hwoJ6nnziGKdBroU8Jgt2yo4/UyzxOXTixK4ZGWJXV6dSBqa8opJOnjiuHFPuGaH41Wj3mxkZJA4CAhMQEGucJImTXBRuj48CfL8a5ARmctcyWgxkzcmjhbxdEoMdPHAAJdAmYJjoVbifJJpoavSXOj5FqcFj1kYhiYdyCisUK2aylNHQyQU42Ym9cS+7muZQXmli4jytNhtptAaqrZsfOoyq9462Fjp+9CBdwGVhZMYxXKSmn2RfDImR3W6lFpWPSy6olWyjmX8w8ik3l93qZkACHE/mdpwgR8frbHnYQ05Ho5Lx18vufb6BQVbaBzkRkJvcTo4J7jlI9taXlQy6A1zjdFjRnoFBqjjEc889S1VV1bSCa7mKSCkHidt46cUXlM+SGfO6624YKbNz403v52yZj01Yq1TZAf8knYDE4XmcaTYhIG7xY11bBwMj36ukQ5vmAUSZbu/spkBW9TR7mtndfVROhw4fmTGlX2qSPvvMU3TTTR9QTlSyKe+45jp67NFHlM/R7jczSwdHA4FhAnUchrR161Yymm3U2mkne7+bnOwF5uZnECn9JIkTHbyujbdpOHfGRRdfTAsXLgK+JBPA/STJgGepe1hIZwl8+GGNXPYgt7iGHM3vcLzH1LE44ftNZ3loKMiufQfJWrFEiTFxdDVNpzvKzcmhuvmxxY06+/vojVdfok2cFVfDWRjHin+AE51wnFlIxG1XxM9uqhJPqlYWLFlNRwIzwzV8TJKMSF6TZcgNbzsby9uvvoakBqnFMhwXKplzb+OsdqJYSuH6r33lC3TPvfdTZ2cHxwUX0Je/+LmRrLqP7HyYNm7arNQTdPY7qZ8t3B+95YOzcRo45lkChYUFNORLjmdFciFHTkQNBv0cixk9Tjy5Y1Lfe2dXD9//qjlpTyHvxK76KS5DmiJ2Ncyko0dHvVESMWSxar/w8m6l9rRMAO5+Yy89zxNbX/3yF5Xuv3XnHfSbu3+vKKJSc1buIU89+biyLdr9JhHjQx8gEAsBsYrW1NRSe5edBiStfhRxciI28RKrrqlhl14t7du3L8oe2ByNwI/+7ad08SUbqbCwiP7zv36jhEpctGGNMpGG+0k0eum3HQrpLF8zSTRRVLWI+loPs+Iys/X35MHP2XaMcquWk5eTHEVLdDQVqpzcfM6qO4c8XH9UrYirrslioYaG4Qcje083x2E4af/bb3L90pVKnMbg4OBId5JtV0TL8RuxiJSgMfKMPCSSwKOPPEzymkweevAB3r6TSsvKODtms2KdDrUVd8ovfeFWMvP1M7Pluq1terGPoX7xHj+B3BwbBeyn4u9gNvYUF1eeHIsQXicJzTScYTddpKm5g+pqazh+fGbv4THzkcRpuhp685XnY9412g7isr9+zYpJmzU2nqYtmy+hkpJSZQJLlNBwmep+E94OyyCQbAJVVVVUO2cOddud/Ls3+gwS7bhSi7jH4eLfzHIlpvT48WH39Gj7YfvEBOQZYzLB/WQyMum7Hi67s3zt8svmkruniWMIZ2dmPcAlZZztJzir77xpkZByH8Ew5VFNZ6XllRyXUUoatoLKS6yhYiuRZRHJputiy1tIZFnKWshMfKySqBI0sR433duL4nmmsTFCGQ0/J2d/P5TRcCCzuGwycyIuLvuUThLg5EBjXfVl/IPsmh/yiEiH83F7PNTW3j1cmziFB+zLnEPvvLNfScQyW8OUyauxymhoLNHuN6F2eAeBZBGQGpcrV65kV1xPTMpoaDxSMaDP6aHly5ez9xFK7oS4JOsd95NkkZ35fqGQzjzzkSOKq66OXU/dPY0j62ZjQRIdDQUHyMZxrPGKWEe50EFMuxeVlNECTmQUepVXVrEl06x8lpIJFVU1dLrhuPJwKh03HD9C5ZU1vBTbcWTfyupays42yiIEBM5JAlLiYYjjL9NJRCHNmqi0FFtNZfIpnaSrh0tsBTLJl1mbksMWZbS1rZeOHTuWkuPDoEAgFQjMmzePXJy8yBdDmbix4/YHgmR3OEn6goAACKgjAIVUHaektMotruXyLmeS0nesnXq4xExOSU2suyntJfFQWXn1hJaOuDo8u5MoufkFRfTg/91DO//6B+pob6UVq9bF3KXUNpSYU51efdxpzAfBDiAwywSGYvRQmOXhKof3efojygeFj2lCRTW8QYotazVZ1NLSRr19gzSoTS2lVMbT2xekN958M8WoYTggkFoEJG7U61Nfs3yy0bs46VFlWCb6ydphPQiAwDCB9AnSOceuWLYljxU44vp7XSlxZn4v19bjUjOS7bcvxgRHiqstWzOma8+orp1L8gqJKJLrLtxEAc7Q6OdSENnZ8cWBiktggGcsjewC7LDPjmt06JzwDgLJIhDkmPB0Ez/XIs3kG2FWVmakexy7vcl6Ka2QLiKJTKQm4Wuv7aYNy69h9916yvDNfgzZkH4uOZyN9NJLr6QLSowTBGaNgNx3pmMdDQ1cYk99A+pzaoT2wzsInK8EYCGdpStvyS0hr6N9lo4+8WG99lay5pdOvHGKtZJ4yMczilrtdFXSiQ8iGXjjVUalR51Wo2TJs3AmYAgIgEBqEfC4HGwlTf+50cyMIa5BODzBeOCd1/ieE6RB/QKOMIg95j0hV4iPO2hYzOPw06EDsIwmhCk6OecJJFKJDATUJ0Q658HiBEEgCoH0fwqIcoIpuZktf6bcIuo+fjKlhjfgtpNFoyONLjumcek4662kO7dY4rNgxnSwOBrrWKH1svuMhZO+QEDgXCWQmZmet3OXo4uyc0q5pFD4lcngmrZBLlGaPnOmRg4L6OjoGDkJt/0o6U0VlG1dQRkDDVyvanTbSKNkLWiLlGy63r7T5HM1Jeso6BcEzjkC4bHr8myj0fCEOGfpz+FSRrl5BUqyxVDCtUGxgno9PBHVwd5XvUoSxiAnAvT5hpPLiZcXBARAQB2B9HyCUXduKdsq25RDfq+TH7hSLwGJuO1mm2OzJEpWOrfHS9kGHWVyMqJBLtmQSqJn60tndx+ZrbZUGhbGAgIJJZDFD07pKC5HN+WVSoxjWIZgfpALskKq4f/SQbL1OqVGbz9nnQ4XUQYDfgeZbOy+a+AwjYFGTiHsDm+S2OVMI8evVrKrs4ZcXW9z1uXI8ST2YOgNBM49AlKJSsJ7yiqrqWbOPCXRYrSzLC6rGGni9bip8dQJamw4QZlplpht5CSwAAKzQCA9fu1nAUwyD6k32cjP1shUFL87doVUb8jmuoFD5HR5yJitJykQnSqikTIxHNvl4rGlVUBaqgDEONKGgPwNZrCVNN0y7fq8LhrwuJR7h5uzWyrCE1sSg5UuP1Dicnzq5MTxosGBfurr3EMGcwW/FhEF7ZTh57q9gwmsWZppoiEth1tk5ZK3vxFW0bT5q8VAU4WAjuuVW6w5dNGmLVzs3Bz3sAyczX/ewqXKKyPgob1791Av11gXSyoEBEBgcgLp4w81+TkkZEsuu2PkFxRM2ld2djbl5+dPuj2WDXqDiYIDqXlzCgy4SauPrTxKaBbQ7ujnmcVZipea5AKYTAbq6x8uwJ7JiVMgIHCuEnC7XZSlTc9M0vaOM2TKHrXwyj0lGEw9D5KJvjsavq9YzUY6ffr0RJtH1nmdTeRof428HvaO0c/j+M5FrESWxB9jyjGisr/0I/1Jv/b2V2ddGU3kb+UIPCyAQBIJ5OTm05U73kOfvPUfqYpLxGUmyNW2vKKCPvrpL9I173o/u/zmEVx4k3gR0XXaE0iXCeikgS4rK6M//OmvVFBQyD/oHk7b30w/+uH36W/PPq0cU6PR0Le/+33adtV2crvd1NPdTZ/42C3U2toS95g0OgMN9Ie5p8XdU+J3HPR7KYvHF4/0O11UXJhHivuaLzWyy5mzDdTYzNYICAic4wR67XbKM1go4BuegEmn0+3rbafCirmKN4PPH+AHwizOjJ0eCqnc7xoaGsjPyYOiyRDXV/U6zygvrSGfhl9lXFk5yJZTvm5DHsoY4t+GQbEUh4c+8GRapoGGJEFSBsf4Z7EFJ4OTtXm7yc9uwX5+n21Jxm/lbJ8Tjn9uE9CyVVRqm7/3A58gDSc/FJHnGLMpm/qc03OtN/GzRyhb79wFS0heD97/Ozpx/DBbS1Pr+U+ny6Rci5aznWdQdbmRKkuNZLNqKdeq4/vwIDn6/dTW5aXGFjd19w5wzpBB6nUMwOns3P7zmPGzO+8VUikHcucd36Rnnn5Kgf+xj/8dff0bt40opNuv3kGrVq+hDWtXKjFCd9z5Ld5+O332M5+K+2JlZLFbXYrO/gcDPr4xx2/l7O5xkM1mIU8KKKQ2i5GvmZcTDKSGchz3FwY7goAKAp2dXZRfX8Ut03MCpqvlBOWWzKGuvgzODJsef7OSWTzHZqZXXn5BxRWKbCJKZEiRzGIXwSytiV/8npXPuibH4/PvRGYWx4QG3IobdpCV1EEufxX02/nVxK/UmnhIxm9lJDF8AoHEEcjmONE1Gy6hiy+9IqLTXnsflZcWT1shtZqzqaMrcqLouvd9mN587SV6+bmnOQFSX8RxZ/qDVptBhbl6WlhvpWsvK6WlC9Tn2OhjBfWVPd301ydbyM6KaScrqRAQmC6B814h7ehop6efenKEoyzfdsddVFhYRJ2dHXTV9h308EMPKMqoNPrjfffSgzsfV2rkSbmTeETHLrvnakBjr6OPZ9bMygyjxJTOlkipF5vVRA2nm2drCDguCMwogba2Nlq5YgV5ZjCZayJP0NHdSjlFlWTijJadvemRjMfI1tGDhw5xFu/pWTxEuRxWMFOrFFgs1zcZv5WxHB9tQUAtAZPZQpdefjUtW7lu3C6SoNHpclEeTzT1OOKb9MnhZyApH9M/gZV19bqLycqxqo8//Gdy9jvGHT/ZK/RsDc1h6+fN11fT9ktL4jqcla2p2zaWKC+XO0C/uPckvflOL7V3n80BEFev2Ol8J3DeK6RjvwAbN11KLc3NI/XkSkrLIhTWpqYm0uv1nP47j7q7ukiXHVvwu8x6+73sCsLJRzIoBWMaldgJHhmPT1GcVcRSKDP5maM1SDu6eqm6spRd2ILknyW3u1y20nZ125UxZJ4dm5yTlicD1MRxSFr3dCg5kcHnFut30O/zsMWFXQQhKUfAnFfGt4bRWMpYB+jP1JOtdC4NuHrH7Sp/pxmZ8fc9rsNprpDQhWyrJaIXp6OHqpcuJbuvgbKzstlbQ8s8UudnShjqjBbSDHHpLnbJM+izqGXfYbIWVUech0afQVls5UwVkVJeY8eYqLENuPvYBbmXov1WJup46Ec9gSz2dkrX7NvqzzK2lpK86NIt22j5qvWT7tjeKc8wZay4mcne7yIvx+fruaxTqNzLRDv6OdRgYMDLYUuFSoK202da+Dlq9LkofJ/5i5bzvU1Hjz38f4oXV/i25C0PUqEti95zVSldf3lZwg5jNuvoK59cwJUWgvT9Xx2ld465yDkNW8Qgew8GmCPk/COQOr/0KcB+7rx59LV/+mf62le+xCVZhq2fNquVXT5HZ31C9aVsXEJEFFJTLmc2jEE0Ona/kqT8nHxE4jVTTSQpitwQ5IfMmFvCylt0pVkedsIfogeCXCDe7qSC/Bxq77IrGXhn8jzzWBkNcsZRe78nYlxZ/ANgtBUprnDRxqPRe/jHJ3Ue3icbrzz0xvod7O/mUhSslEJSj0C2NV/V93OykXfZPVRTOofjEY+MayITMZkpVNdTFE2dJnJCLyvbRv3uAcrlBCBincjMHFTiScedzCytkAkguXdr9QYq4vvb62/upWxL3rjRZGlcfB0nfhgd13gGVsh9IjtJdaLloVsU0mi/lTNwmjjEGAJ6o5Vr4cZWxm1MF6o+WsxcpzPHxopYNonCJ/k2nC43dbLLauhZSlVHyW406Kfly1fQSrZSRpOWjh5yOTpoz+u7yO0TZdNPBUXFtO6CjWTgygIhaWtpore4jWTRtXKY0DXXv4+a27s53juLnz8mvwfMXbiMnByvuuuVl2iQ48GTKVkclz6foznu+vx80mQmpzaqxaylu764jPYd6aN//dUJcgZtqp4fx563lER09qRn2MnYc8Hn2Agk968gtrHMauvi4hL6zd330C/+42f0yM6HRsbicDiUG2xoRehG5HAMl23pbTkW2qTqvaTKRjKjLA82g8HU87vX6E1cgqGf/D4X2VvV+f5ZDXPHzWh1dHjZ/hukPCvHUXTPnFtKDrvpZgwFSGYnx4rf5+Ysl1ygXoX4zFauHzg6EaFil1lpEuBszbF+B2dloDioKgLyQyxWuHjlkKOd5pRfSX7+XgTHfH8HB638cJg6lvEgx4l6ByLLX2WaS+iVl56n0tISfugz8t/gUErVa5aSOgG+j1iyM2nvm7vp9ImTE16qwICO4z2jJzmacOckrAzw5KezJzkxa/IAKRLttzIJp4UuoxBwOzpJXsmS6upqmje3jv9WDeTn54YhfxdlDfLkhzbIYU/ZtKR+KZ1pPE2HDh+hvr7kfP9iObfauvl0wUUbxz2vTNSHpFQ709hEF2/cQnPq5lCvvZ8ef/QhOnrwbVq8bJWyS0dbC72x63nacOHFtHjxEnJ7B6i1XZ6b1Cl9S5evpIZjB+jgO3t54j6+ELCJxh6+Ttxzb7iqgt5/TSVPVA4Qp01Jqiyeo6fffmchfe6ufXT4RD/Xk+bCrhAQUEEg/icfFZ2nS5PKqiq6574/0e//92765c9/FjFsyaZbUcl/yGdFlsVi2ts73iUu1Cbau49r7mVzrapUlCydkTM3JqY+XltHN5UUFbAlga3JHBMWjDPmVi2nXI75kBIMZ1rSNw5L7bmi3blJwNPXNe0Te2fv61RWwDFM9si/g6FBrlXJClWqiCikPtfopI82O4cVUD8devsNOnogizZv3kzmnAKeuEvyE1QMQGQs7KFGJ4/sp3379k26Z9BfnFJla2RywsWZjJMpyfitTOZ40Xf8BKS0z9o1q8nMZd4GHFLOaOLnIXeHhpN+ldBll22mI0eO0iGOt54tsdpy6KZbYktGWVs/n3x8+znecIZsFgvNr6/nmqIdVFacp5zGsbd30aqVK6mqpo6a2zo5+6wYGdQpoyEO177nQ9TU2EAO+8QMQ+3ieS/I09OtH66ji9cUxLN73PtkshX2329fQbf95AC9tq+Xk9QlR9mOe4DYMSUJRPfHTMlhJ25QdfVz6U9/fpB+/rOfjlNG5ShPPP4oXXfdDcoMoHy+8ab387rHpuWG4nU5SGu0SXcpJzIurzPSajGdQbZ1dJGLXXeKC3KUcjDT6WuyfbNYCS3Ms7Jr3xA1NrXyg2DqPMBONmasB4FkETh+/Ljixp2lk+Rp6SMaaykd5odWEfkb3rVrF+m4DIEtSa6m8ZCR+0x3d+eUymg8/Z4L+yTjt/Jc4HKunYPNZqOtl11GeXoOOeo5THk6Dy1mz68NCwpo05Ji2sivCxcW0ur6PKot4jhxfycFO/fT/NpSRXmbDR5S3mXjlqviPrTEh3b19NI99/yO9rx9kI6fbKQjx07Sf/Bz48u7XqUffPcO+tmPv0PPP/N4XCFKV137vgg34LgHGrajWEY/f8vMK6NhQ6A7P7+YNqzIU8rJhK/HMghMROC8t5CuWbuW3cPK6F9/8GPlFYL07z/9N/rh97/H7rsP08ZNm+m1N/dxRjQnZ03rp4/e8sFQs7jefW4HxxZIsgEDBQOpFUeqM+WR5/ThuM5rsp06u3uVjHNiLXV5fFzTyj0thT78OFIvLIcfWHvtDpLjQEDgfCcgGV/FElFTUUnu9sT+LSeLrcFaTP5gJp04cWLkEC7OdPkKK6WXbbuO6+Hx33hfYjw3Rg4Qw4KWY8HycizU3t5Oe/bsiWHP86dpMn4rzx966XGm+TYj7dh+KdVanFSkzSSNplz1wPvddmovr+ZJpkHau28/eTnp4UyJhXN+LF2xdlqHe/n5p6m9rZXe/+FPKv2IRXOIc1VoOfGalI7xcgzpYw/ez/Xs3XTljnfFdCyxxOYXFlPzmVMx7TdZY4tJQx9/by1duFq9ZdQ3EOTnqAFOypTNsZ/je+53+cnRN0AFXCrGYFCvOtzxuUX02X/ZSweOzb7L9vizwppUIqD+W5VKo07gWKSMi7wmEynO/qUv3Epmdtcwm8zUxjekRIiL3en0lkJy955JRHcJ6UPGM+DiGndc6y7R0seZ6qQMTElxAZUV5VI/Lztd3rjdeE1GA1n4FQwO0pnmVvJ4R13/Ej129AcC6Ubg8OHDVF5WStk5ZeSxj4+nTqXzyeSJOWNBLb38yq5xwxrg0gni9VBaUqh4QdhZKfUnOwhqzCiMBp2ijEqN5dY2dXH1Y7o4Lz4m67fyvICX4ieZZ9HTgkorffLGyxWF0tkZ+3OQxcil2LI6af3NG+nVeQa678l3qKfPR25WhJIpWk5muPGy+K2jMrYD7+yhZ5/cSR/7+y+QyWIdGa4kirvsih0jCcyGOCzpsYf+FLNCKh1u3X4d/fHuXymK7cgB4lgQd9lL2EX36s0lqvf+5x++Rc++0kb5OXoaZCV7x2UV9P9uXqDs3+/008f/8WVqafewMmrghJU+uuVddfSJm+aq7v/HX19Gt3z1DWrrTLwBJr+ADR1O57RLb6k+GTRMGoHzXiFVS9bZ388W0sTVxuvnmnvFtUtTSiGVh1d7Z5NaJDG3k2x7LZwoSc+1+/I4I195Sb6iSHp8fo7L9U9ZIiaLs4MaeD+9XqO8DwwEFItoP2epg4AACIwn8OZbe2jLli2cRM3BuSxS9+/EkF9LR44e47rPEydfESuE3Dfy83KolCez7H3uaRetH09r/Bq550iSNL1eSy0cHyZZQyHRCST6tzL6EdEiWQRMbAmrL7PQjRurycquuhaO6e4+uTvuww0G/eTqbqSVyxZSqZnjxRv76E8vNlKf268oQnF3PMWOJjYmLFyyYooWU296e8/r9PBf/qAoo+UVo+WdcnI5IzrfI3p7uym/oGikEz/HwccjZWw9NprN01ZIC/N09OW/mxfTEC5ZV0z//JllnCVZQ02tLrrxsy/QVZsqqLbKzAk4iT75/vl02QUlfL4ZdOi4nW7+4kt07eWVnB/EoOo4Wramf/4j9fTdXx5hDzn1fF54eTdVV9dEHOOrX/mCYkSSfC6//p/fcXZvG5k4y/ODD/yV7rjtnxGyFUErvT6c9zGks3W5fEomWzdl28pmawgRxxVXXZ7mI2eSE1/IQX0c+N/a3knHTp5mF5B+TkSUwTc2K1WWFlBpYS4VcZyWJA2QeK2SwhyqYMVVPhtYGfW4PYrFpLGphd2nU/chOwIuPoDALBCw2+305ptvkrFoHmVk6WZhBNEPacir4Zp1AVXJTrp77NTQ2EI6bZYSk27M1kc/QJwtrGYjK795XOrBRyc4oQmU0ThBYre0JZDL2btu3lpLt/DLoMska34peRzibTG9rKleRyvXODcrdc4XVlnptg8uoYsWFZIov8mQ+nmL4u72tVeep8cf/jP93We+TOHKqHQoyuiipSvpBY4bFfGzN4eUf5m3YInyOZ5/VqzewO6yE/jLquzMZtHSNz6zUGXr0WbbNpYryqisqSg1UW2lmXbvG54gNBu1tPWiUkUZle1ZrJSa2dptZbfgWGTd8jxauSgnll2Utrfc/AGqr60Yef3pj39Q1t92+530/N+epQvWr6IL1q2iSy7ZSFsvvzLm/rFD6hCI7RuVOuM+J0bS03qSSthK6u1rS1rKb7WgjPnVZG9vVNs8Ie3E3dbu6FdeCekQnYAACEQQOHXqFBmNRqqpnM8POjNXfiliEJN8yM6rJKfXQLteen6SFuNXy2SWuPBaOW48Py+XRHGUuHSX2zvtuHSJE5VQADO/XMrEV8vZrJnjx4E1IHCuEmB9g0rzjPQP184jPVu2QmK0FlBf8/7Qx2m9D7h6lfq9oYz+N1xUQVVFJtr5ejM5nIkLGTJwNYM1G6LXHJ3sZPa/vYez6nbRv33vmxFNPve1O6iktIJ23HAj/e9//wf94K5/JDfHvFfWzKHt1783om0sH1asvoBeZyW4vz++eMuFdRZaPHfUpTiWY4fa9ti9dOxUHy2eF6k8iuX0L0800r6DPfTNW5fHFEca6vvLn5jLFtY+au9WH2IV4PJZY63OEre7ZevldPmWS5WuJd/Azocfou1X71ASkYaOh/f0IgCFdBavl4/rkTq5RpipcA45O47P2kiM+VVcl8vH1tG2WRsDDgwCIJAcAgcPHiS9TkuW9cso03mSy6io//NqMQAAGyBJREFUd5lKzoiITDwBltnspV3PPRuXi5XEpMvLxEnNcm1WxYvC7fFyeYGgokQOcFbMaCIWDp1Ww2yGwwCkZJSjz8k1jHs4CdvsM4o2fmwHgWgEMjXamOoas7MS1ZcY6ONX1o3rWhIxBgYkBnBUSR3XSOWKINc512VbuELKaF+r5+VTcV423f3MKXJ4pmeFDQ0j22imvILi0MeY3z/+/7445T42dtv9hy/fRv1clz4ziye0zHxO0xADTx7KNdPos2PuxWbKZNfaumlZWAPBIfr6j/bRZReW0bIF7DUXJk4PJz3q8xNHS1Fjizuu45jY2rpqaT499UoPX3v+sk0gQ1wrW0qCheTvPvX3dM2111NDw0m6/w/3Uk9PDxUUFHJCLQ6laG4KNaNmXl67fv3IZyykHwEopLN8zbqbjlLFgvVk4FpdXsfMK4TiqmvMraAzh+OPC5llhDj8NAkgKcA0AabB7nv27qP+TVUcE7SU+toOc0zp7MVDmgrrKEtvold3PcMloabndu/i5GjyEuXSwtbS7GwDx6ebFQVc4szFCyO8/rE8A0lbDVtDJUZULK5iDe3g/ADSDwQEziUC2eZcMpgjFYvJzm8wOEBVVh99bOtonGR42wwajEm5Dd93/DJnp9UbudJAZChBdYmOPrFtPt39t2bya9WNe3zfo2usHBM59hijWxO3lJM/GkM63V4ra+dRa0fsFQMqcvrYrTU37sMPDg7Rd/5jHztka+muL62lLJ6sC5clC4pIXi53gLZ/7GnasKqMli6I/Xgfv7GeDpw6Sa6AObz7keUBbz/1dzUrn++95385a7GXMxlr6Mpt2+kDH7yZrt52OVmtw1Zgn2/U0irZ5SWeFJK+BCK/cel7Hmk98o7TB6l83moaDPg4y23sN6J4T16jN5O1ZD51NB7kGanRP+x4+8N+6UUASQHS63pNd7TtZ45TnimD8qpWskfGCSVUYLp9xrK/Rmdkb5A6dr/iGPLje1gZTNw9RxKmiXVTXhAQAIFhAi57B8lLjVQUGOmWTQv4WWDiTKhBdp0UpXWs8J8eT/KMXTv82esLko4nfzg9RYSIl0aQn3cmOlaxNYOuX2uje545Tv0cXz4dqd1wyVmr7nR6mdl9C/Lzaf9bu2I6qEaTQf9ww4K4z1Um7u74//Zxokgf/eQba0iTGeC+JmbPqTyIq/9QU3MvLZwTuyU3j43IerJz6EVT1HP85c9/NtLmN//za3rxldfooosvoX17h0tv6bi+bOh3xGAwkIMt1ZD0JTDJbSR9TygdRz7ACY7aT+0nW/li0hljn3GK55w1bKGwli+inrYGcju64ukC+6Q5ASQFSPMLGMfw+7qaqPXEXjLklJKFJ6Oy2A1vJkS8MHKrV3GIQhd1nD4QV/H4mRgnjgEC5yOBPIuOPnPN1JlZs7Tj7xVtPR6679lj45C1dLlp567T9PRbTfTXlxroqTeaWAEddcMVt9SpJsHncWbfixYVsTI7vUfUopKycWNL9RXFpeUxu8NKbdBN6wvjOjWxjH7hW29wdt8g/fT2texlEmmnOnTCTm/t7+Z79nD3L73RzuVbPONiTGM5+PZLS2JprrSVslI93d1k4azJXV2dSlxpOdfaDolMsLe1zbyXYej4eJ8+gchv3vT7Qw9xEhClsL3hHaUUTH/78aS67+rM+YpltIvdhRE3GucFS/PdkBQgzS/gNIbv4zIwTUdep9ySWsqtWcOlp5rI09PEDxyJrwcotY0NXE5qkB8mWo69SZJdHAICIJA6BAy6LLpuQ0VEAqOJRufnuE+twUp+bx9bSon+78UTSrmWbN5/rPxtbzOtX1hM9eXDrpWP7m6kw012WlwzPOGu0Vu5jN7U3mBXrC7hfRx0qj1+t/6cnOm7/Y49t2R/tuXksouqTsnwrfZYlhgz3ob362FF9JU3h63oF77nsZFN1eVm+vMvLlUU1a//cA952FptMWnJw1bvb966lCsfsJk0TtnMyvP/PtBIPfbxFvdQl1VV1VRTW0svvvC8MoF5ycZNVD93Hu1+dZeijD77zFN0000foO98+07OJWCiHddcR9/99l2h3fGehgSgkE7zohXVLoupB73BTuK6NpEMeDmW6dQhKqiYS3qO7XR2NnCGdfaHSaCYCmpIby0mUUa9rr5Jx6LLtlJhdRHnHIg+Q2kw6TkeJHbXjQSelqquJIlCQdVCdh/SRm1vMDvS4py0BhPF+h3sbT3BBa5tSAoQ9VtwbjfoZe8IJ7vz5RRVUf6cdezC265MhAWmGV+akZHFMfHFfJ8p4gdXdqXl2sYzUU7q3L5a597ZSSyvlLgIBsdPhMi24uISam9vmzB7cnZ2tpI9upstJpDpEajm7LZLayMzqk7Uo9vRTTLBJAqpuOC+79I6au/10NNvRrpeiiVNrG5SHiQkOfyM4PIMJwqT+4PeUkAdzcdDmyd9v3nLHPrpg4fJ4Yo9yVgWJxkyGE2T9p2qGyRZT5aGH8050aRaWbssfs86E5dweeOhHZMeauXifHrsN1up1+HluvFBLofFiZfCru2kO06xwcrlaaSU0FQiLrg/+refsrJpJgeXMDOajPS1r3yRGhtPK7t968476Dd3/15RRC1WCz2y82F66snhEjxT9YttqUsACuk0r03G2OCIKP0pNaZG79PjWvs4oLuFXerySmv5IXEtubmItMfeOq5drCv01kIy5lXxPc5NLcffYvcZnpmaYhwyTlFGVZ2fki1tis5iHWzS2vM58Y+hmnNSrlPSxpHIjuU6jZ+hnuoIcm5ICjAVofNnm9/ros7GQ2TnCSVLXhlZK5Yo1ky/u5fkFeD7xURxY+GEMjhTZpYum7TZPLNvtJHBkq/ErXW3NJCnHwpDOCssjxK4/V+GrRm3f/OfR1fy0tU7rqXvfO/71NvbSzlsLfrqlz9PTz4x/KCp4Qf1b3/3+7Ttqu3kdrsVF75PfOwWam2V+piQWAnY2OL1wc01qnbr626myoUXsEfFGb5HTG7ZkseB1fOL6Ll9LdTdx5lzc7Opw+6mLasqlONk55aTy9ExpctuaEC5Zi0tqsqhXYeGa2KG1qt5l+cXr2f2krepGeNEbfxKJuNR9+aJ2oSvU3gviV8hDe9rsmU5Rl6OYbLNca0XpbSlY+J4Zenw6NEjtG71ciosLOISMwZqauLvnQQsnxVRTLdsvoRKSkq5Jj0npXMif0CITbq+QyGd5pXraHg7ph7yKy38kFcQdZ/2hv1kMOWwW101PyQuo4H+TvLxKxbrhaRpN7AiqrcUKQqoJE9y96l7QJSSNJ2nT0YdpzTIrqnjcaV+hkqJ1e06c0jVORXNNZPfl/rnJApFR8P4GJ6pTnKIre59fX1KEyQFmIrU+bNNvus9bDmXl95oJaM1n7Jzq9hFTywMQ0qyjKHBAA3xg+gQz2Rl8iSITISIIpqlNfA9zUUel50cXS3UevIddrEafXA4fyjiTNUQ2Hr5Faxw/oCKiorp7t/+d8QuJrOZfvCjn9AHbnw37eXEJWvXraff3n0PrVm1lF0GPUqdwVWr19CGtSuVz3fc+S36+jdup89+5lMR/eCDOgLl+UYyj4kZnGxPKfni6GgkM5ep62s9PFkzZX1xDpdjMuvJ7fXTM2/1UE2JhYxcXkkSKZoKqqnp8KtT7h++8YYLKujwGQf1xlifVCZepQ5puolWZ+D7q/pHcysr7ZWlqe+hNvY6VJcb6fCJqUM4htjc3tHRPnbXiM9tbdM32ER0iA+zRkD9t37WhpjaB5aaSbGI/IHJA54a8XLG3dYTvaRnV1NLXinZKpYqimWArahBn5NnGD1svQgoD4YyDuUBkR8O5aavMVj43aRYKjrFPdc5dbzG+PEMsbewunPjloqP//g+Um1NDOekXKdUG/9E41F/TuF7hycFOHli2HUKSQHCCZ2/yzIZJa9eajh/IeDMk0bg6aeeJHl947Z/UcrvhB9o8+YtdOZMo6KMyvrXX9utPJBK/JhYSa/avoMefugBRRmV7X+87156cOfj/ACfGWE9kW2QqQmYDRq6ZkP51I3GbJUJq9I5y8lcUEvOronvD2LE2rn7NO3YUE35Vj2t4VIh4tb72gkHbb9yLXU3H4tpslcyyFYWGmNWSMcM/Zz9KImfJKlRukmeLbLkT7qNH+NNPIGpnbgTfzz0GAcBSQTS1XyUTh94iWM/j5DHza4JOjMZ2IJhLp5HuVX8A8Hv2XlcbN6Qw0HoXupuOUGn3nmeOtkiGLsyGscgsUtaEfD7/RRKCiADDyUFeOzRR9LqPDBYEACBc4dASUlJRLF7ObPm5mYqKR3OlirvzWHlIpp4Wa/XU25e+iWvme2rJsmMiuNww2zjigCZep4kL5mnhMCMPY9Oh0ep/ysWUhGjPouWLZhD/dpa6uP6kpLpO1a5dFkxxxzGFpoS6zHStX1mVjqES42na2OXXQgIhBOAhTScRhose10OTkbkSIORYoipTgBJAVLvClkLq9gFNjmz3Vk6veJemypnLa7BuWXDisZkY9KzO6GGXdhSRTTM0JRbQtkZU/90ag1B0iTpOsbDQsveMrllc+PZNeo+Xo4T9vT30Lx582nTpZsnbO/gEIH7/3DvhNvCV9pswxOq4eukzqDNOpytVd5DdQeljc83HINms9qouwvly8K5RVteWRefEi+eU5KHoqBiHuVxngvDiSBlanQjcaU2o07xATvR0keL6jl7r62Uurq5tF3z2+QojZ48aaJx1xSbWLHVkHdAndfWRH2cq+t8acrE70dYx7n6nYz3vKb+VY23V+wHAiCQ8gSQFCD1LpGnr4td75PjuDIYqOaHxtizVSaLkp+z+bocU8cQ6TPzU2rMws/HsbID7GEwlQT9NrYSTd1mqv0TvU1qPrp6kzORGfQPJ7jRc+KRgoLCCYeuZA2dcEvkSilsr9dHTkAMF7wfHrvD4SCJew+JwTAcOyf7QdQTEGvj+gX56ncY01KUiY98426y8ARCVfUcevR4DpXkZNLGRXmUyxMxNxjr6ECThxoO+ehkw24asDfRuzfWjeklto8luQbq6VefeTa23tO3tcmYnpbjgtzRv+P0pY+RJ5IAFNJE0kRfIJCGBJAUIHUump+z2iZLhji4Kxm1RuMdr9QmHfC4ptx9MGDl2MDUsYpIlkdJ7iIluqaSwaCJY/BTxwIwyAmpBjzJzUL5ztv7SF7TkdbWViqvGM7GGupHYttDWXTlXT6HRJbFYioZeSHqCZg4fjTPEr9CoNVm0g8/fUHYAVuU5ZYTTcq79LySjaFSrmXdWhPHCi8Iaxvf4pIaGx1sTM6kSnwjwl4gAAKJJJCcqfhEjhB9gQAIgAAIgAAInPMEnnvuWaqqqqYVK1cp57pu/QbF6vrSiy8on594/FG67roblDIQsuLGm95PTzz+GBIaKXTU/5MpdTxmQKSsjCQlSoTUlVpIz4owBARA4NwkAAupyuuKQtwqQaEZCIAACIAACExCYPvV15DUILVYhuNCJXPubd/4J0WxlFqCX/vKF+iee++nzs4Oyi8ooC9/8XMjWXUf2fkwbdy0mV57cx85+51K/cGP3vLBSY6E1ZMRkPqe6SY5Jp0SR+o76yKebuPHeEEABKYmAIV0aj48u4dC3FEQYTMIgAAIgAAIqCLw6CMPk7wmk4cefIC376RSTnjVwhl2g8FRl+0Au3l/6Qu3ktliIbPJTAg3mIzi1OstnHgo3UTLltYZMuymGxqMFwTOCQLwf4hyGbdfvYNChbgvWLeKXn99t1KIO8pu2AwCIAACIAACIBAHAVE8zzQ2Riij4d04+/uhjIYDiXHZbEjPRDgZ0EhjvNJoDgLpQwAKaZRrNVEh7iu3XaUU4o6yKzaDAAiAAAiAAAiAQEoR6HUOZ0ZOqUGpGIw/kDqJwlQMF01AAARiIACX3SiwpBD30089OdIqvBC31D0rrls5sk3NQlvPSTrdPeqCpGaf2Wjz8hEnFdUu4xIU0WdSXa7OkSyIszFWtcd86flnqbB6CddMix4/4xxopgMnU/9H+4e/ORPzd7C35VjSM26qvSZoF0kgv2IBafTDpSwit0z/06+eOk4fu2LO9DtKQA/vnOZsmToLf3fnTdlbxkA/PffskzR/4ZIp283Uxp1/uY+sRdVk0059jZ7efYS2b02d+8czu/tjvk+oZersaeWSMm1qm6PdDBKwFFSQ0Ta+FM+hpiNp8RwSjuq1oz1kzS2g7NKS8NWTLg/5vXT/Pb+h93zgo5O2ScUNyj2msILMxerqUeuGOunOnzfQu7eVp+LpTDqmH9/dNOE9yedykL3t5KT7YcO5SyAjNzd36Nw9vemf2bPPvUQ//tEPaOfDDyqdSQ20YyfP0OaNF9LJkycm/IOa/lHRAwgkjwAU0uSxnW7PyVRIpzs27A8CExGAQjoRldRYN5lCmhqjwyhAYDwBKKTjmZwva2AhjXKloxXibj+xJ0oP2AwCIAAC6gh0Nx1W1xCtQAAEQCAKgf6uJpIXBARAAARSnQBiSKNcIRTijgIIm0EABEAABEAABEAABEAABEAgTgJQSKOAQyHuKICwGQRAAARAAARAAARAAARAAATiJACX3SjgUIg7CiBsBgEQAAEQAAEQAAEQAAEQAIE4CSCpkUpwKMStEhSagQAIgAAIgAAIgAAIgAAIgIBKAlBIVYJCMxAAARAAARAAARAAARAAARAAgcQSQAxpYnmiNxAAARAAARAAARAAARAAARAAAZUEoJCqBIVmIAACIAACIAACIAACIAACIAACiSUAhTSxPNEbCIAACIAACIAACIAACIAACICASgJQSFWCQjMQAAEQAAEQAAEQAAEQAAEQAIHEEoBCmlie6A0EQAAEQAAEQAAEQAAEQAAEQEAlASikKkGhGQiAAAiAAAiAAAiAAAiAAAiAQGIJQCFNLE/0BgIgAAIgAAIgAAIgAAIgAAIgoJIAFFKVoNAMBEAABEAABEAABEAABEAABEAgsQSgkCaWJ3oDARAAARAAARAAARAAARAAARBQSQAKqUpQaAYCIAACIAACIAACIAACIAACIJBYAlBIE8sTvYEACIAACIAACIAACIAACIAACKgkAIVUJSg0AwEQAAEQAAEQAAEQAAEQAAEQSCwBKKSJ5YneQAAEQAAEQAAEQAAEQAAEQAAEVBKAQqoSFJqBAAiAAAiAAAiAAAiAAAiAAAgklgAU0sTyRG8gAAIgAAIgAAIgAAIgAAIgAAIqCUAhVQkKzUAABEAABEAABEAABEAABEAABBJLAAppYnmiNxAAARAAARAAARAAARAAARAAAZUEoJCqBIVmIAACIAACIAACIAACIAACIAACiSUAhTSxPNEbCIAACIAACIAACIAACIAACICASgJQSFWCQjMQAAEQAAEQAAEQAAEQAAEQAIHEEoBCmlie6A0EQAAEQAAEQAAEQAAEQAAEQEAlASikKkGhGQiAAAiAAAiAAAiAAAiAAAiAQGIJQCFNLE/0BgIgAAIgAAIgAAIgAAIgAAIgoJIAFFKVoNAMBEAABEAABEAABEAABEAABEAgsQSgkCaWJ3oDARAAARAAARAAARAAARAAARBQSQAKqUpQaAYCIAACIAACIAACIAACIAACIJBYAlBIE8sTvYEACIAACIAACIAACIAACIAACKgkAIVUJSg0AwEQAAEQAAEQAAEQAAEQAAEQSCwBKKSJ5YneQAAEQAAEQAAEQAAEQAAEQAAEVBKAQqoSFJqBAAiAAAiAAAiAAAiAAAiAAAgklgAU0sTyRG8gAAIgAAIgAAIgAAIgAAIgAAIqCUAhVQkKzUAABEAABEAABEAABEAABEAABBJLAAppYnmiNxAAARAAARAAARAAARAAARAAAZUEoJCqBIVmIAACIAACIAACIAACIAACIAACiSUAhTSxPNEbCIAACIAACIAACIAACIAACICASgJQSFWCQjMQAAEQAAEQAAEQAAEQAAEQAIHEEoBCmlie6A0EQAAEQAAEQAAEQAAEQAAEQEAlASikKkGhGQiAAAiAAAiAAAiAAAiAAAiAQGIJQCFNLE/0BgIgAAIgAAIgAAIgAAIgAAIgoJIAFFKVoNAMBEAABEAABEAABEAABEAABEAgsQSgkCaWJ3oDARAAARAAARAAARAAARAAARBQSQAKqUpQaAYCIAACIAACIAACIAACIAACIJBYAlBIE8sTvYEACIAACIAACIAACIAACIAACKgkAIVUJSg0AwEQAAEQAAEQAAEQAAEQAAEQSCwBKKSJ5YneQAAEQAAEQAAEQAAEQAAEQAAEVBKAQqoSFJqBAAiAAAiAAAiAAAiAAAiAAAgklgAU0sTyRG8gAAIgAAIgAAIgAAIgAAIgAAIqCUAhVQkKzUAABEAABEAABEAABEAABEAABBJLAAppYnmiNxAAARAAARAAARAAARAAARAAAZUEoJCqBIVmIAACIAACIAACIAACIAACIAACiSUAhTSxPNEbCIAACIAACIAACIAACIAACICASgJQSFWCQjMQAAEQAAEQAAEQAAEQAAEQAIHEEoBCmlie6A0EQAAEQAAEQAAEQAAEQAAEQEAlASikKkGhGQiAAAiAAAiAAAiAAAiAAAiAQGIJQCFNLE/0BgIgAAIgAAIgAAIgAAIgAAIgoJIAFFKVoNAMBEAABEAABEAABEAABEAABEAgsQSgkCaWJ3oDARAAARAAARAAARAAARAAARBQSQAKqUpQaAYCIAACIAACIAACIAACIAACIJBYAlBIE8sTvYEACIAACIAACIAACIAACIAACKgkAIVUJSg0AwEQAAEQAAEQAAEQAAEQAAEQSCwBKKSJ5YneQAAEQAAEQAAEQAAEQAAEQAAEVBKAQqoSFJqBAAiAAAiAAAiAAAiAAAiAAAgklgAU0sTyRG8gAAIgAAIgAAIgAAIgAAIgAAIqCUAhVQkKzUAABEAABEAABEAABEAABEAABBJLAAppYnmiNxAAARAAARAAARAAARAAARAAAZUEoJCqBIVmIAACIAACIAACIAACIAACIAACiSUAhTSxPNEbCIAACIAACIAACIAACIAACICASgJQSFWCQjMQAAEQAAEQAAEQAAEQAAEQAIHEEoBCmlie6A0EQAAEQAAEQAAEQAAEQAAEQEAlASikKkGhGQiAAAiAAAiAAAiAAAiAAAiAQGIJQCFNLE/0BgIgAAIgAAIgAAIgAAIgAAIgoJIAFFKVoNAMBEAABEAABEAABEAABEAABEAgsQSgkCaWJ3oDARAAARAAARAAARAAARAAARBQSeD/B1iFAZdJOOx5AAAAAElFTkSuQmCC", + "text/html": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# scatter bubbles at 70% of its size\n", + "score_figure(df_eventteams_scores, 'accumulative', 7, scatter_opacity = 0.5)" + ] + }, + { + "cell_type": "code", + "execution_count": 45, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.plotly.v1+json": { + "config": { + "plotlyServerURL": "https://plot.ly" + }, + "data": [ + { + "customdata": [ + [ + 42, + "bronze" + ], + [ + 38, + "silver" + ], + [ + 50, + "gold" + ] + ], + "hovertemplate": "
Total medals: %{customdata[0]} %{customdata[1]}", + "marker": { + "color": [ + "rgb(194, 144, 80)", + "rgb(169, 180, 195)", + "rgb(255, 222, 94)", + "rgb(0, 0, 0)" + ] + }, + "name": "Event A", + "opacity": 0.8, + "text": [ + 32, + 29, + 38 + ], + "textangle": 0, + "textfont": { + "color": "black" + }, + "textposition": "inside", + "type": "bar", + "x": [ + "Bronze", + "Silver", + "Gold" + ], + "xaxis": "x", + "y": [ + 32, + 29, + 38 + ], + "yaxis": "y" + }, + { + "customdata": [ + [ + 32, + 70.65, + 184, + 206.15 + ], + [ + 29, + 70.65, + 184, + 206.15 + ], + [ + 38, + 70.65, + 184, + 206.15 + ] + ], + "hovertemplate": "
Medal distribution: %{customdata[0]}%
Participation: %{customdata[1]}%
Team players: %{customdata[2]}

Team Score: %{customdata[3]}", + "marker": { + "color": [ + "rgb(194, 144, 80)", + "rgb(169, 180, 195)", + "rgb(255, 222, 94)" + ], + "line": { + "color": "white" + }, + "size": [ + 26.8, + 26.8, + 26.8 + ] + }, + "mode": "markers", + "name": "Team metrics", + "opacity": 0.5, + "type": "scatter", + "x": [ + "Bronze", + "Silver", + "Gold" + ], + "xaxis": "x", + "y": [ + 32.31, + 58.46, + 115.38 + ], + "yaxis": "y2" + }, + { + "customdata": [ + [ + 63, + "bronze" + ], + [ + 49, + "silver" + ], + [ + 58, + "gold" + ] + ], + "hovertemplate": "
Total medals: %{customdata[0]} %{customdata[1]}", + "marker": { + "color": [ + "rgb(194, 144, 80)", + "rgb(169, 180, 195)", + "rgb(255, 222, 94)", + "rgb(0, 0, 0)" + ] + }, + "name": "Event A", + "opacity": 0.8, + "text": [ + 37, + 28, + 34 + ], + "textangle": 0, + "textfont": { + "color": "black" + }, + "textposition": "inside", + "type": "bar", + "x": [ + "Bronze", + "Silver", + "Gold" + ], + "xaxis": "x2", + "y": [ + 37, + 28, + 34 + ], + "yaxis": "y3" + }, + { + "customdata": [ + [ + 37, + 72.03, + 236, + 197.06 + ], + [ + 28, + 72.03, + 236, + 197.06 + ], + [ + 34, + 72.03, + 236, + 197.06 + ] + ], + "hovertemplate": "
Medal distribution: %{customdata[0]}%
Participation: %{customdata[1]}%
Team players: %{customdata[2]}

Team Score: %{customdata[3]}", + "marker": { + "color": [ + "rgb(194, 144, 80)", + "rgb(169, 180, 195)", + "rgb(255, 222, 94)" + ], + "line": { + "color": "white" + }, + "size": [ + 33.5, + 33.5, + 33.5 + ] + }, + "mode": "markers", + "name": "Team metrics", + "opacity": 0.5, + "type": "scatter", + "x": [ + "Bronze", + "Silver", + "Gold" + ], + "xaxis": "x2", + "y": [ + 32.31, + 58.46, + 115.38 + ], + "yaxis": "y4" + }, + { + "customdata": [ + [ + 15, + "bronze" + ], + [ + 25, + "silver" + ], + [ + 23, + "gold" + ] + ], + "hovertemplate": "
Total medals: %{customdata[0]} %{customdata[1]}", + "marker": { + "color": [ + "rgb(194, 144, 80)", + "rgb(169, 180, 195)", + "rgb(255, 222, 94)", + "rgb(0, 0, 0)" + ] + }, + "name": "Event A", + "opacity": 0.8, + "text": [ + 23, + 39, + 36 + ], + "textangle": 0, + "textfont": { + "color": "black" + }, + "textposition": "inside", + "type": "bar", + "x": [ + "Bronze", + "Silver", + "Gold" + ], + "xaxis": "x3", + "y": [ + 23, + 39, + 36 + ], + "yaxis": "y5" + }, + { + "customdata": [ + [ + 23, + 77.78, + 81, + 212.7 + ], + [ + 39, + 77.78, + 81, + 212.7 + ], + [ + 36, + 77.78, + 81, + 212.7 + ] + ], + "hovertemplate": "
Medal distribution: %{customdata[0]}%
Participation: %{customdata[1]}%
Team players: %{customdata[2]}

Team Score: %{customdata[3]}", + "marker": { + "color": [ + "rgb(194, 144, 80)", + "rgb(169, 180, 195)", + "rgb(255, 222, 94)" + ], + "line": { + "color": "white" + }, + "size": [ + 13.4, + 13.4, + 13.4 + ] + }, + "mode": "markers", + "name": "Team metrics", + "opacity": 0.5, + "type": "scatter", + "x": [ + "Bronze", + "Silver", + "Gold" + ], + "xaxis": "x3", + "y": [ + 32.31, + 58.46, + 115.38 + ], + "yaxis": "y6" + }, + { + "customdata": [ + [ + 49, + "bronze" + ], + [ + 40, + "silver" + ], + [ + 50, + "gold" + ] + ], + "hovertemplate": "
Total medals: %{customdata[0]} %{customdata[1]}", + "marker": { + "color": [ + "rgb(194, 144, 80)", + "rgb(169, 180, 195)", + "rgb(255, 222, 94)", + "rgb(0, 0, 0)" + ] + }, + "name": "Event B", + "opacity": 0.8, + "text": [ + 35, + 28, + 35 + ], + "textangle": 0, + "textfont": { + "color": "black" + }, + "textposition": "inside", + "type": "bar", + "x": [ + "Bronze", + "Silver", + "Gold" + ], + "xaxis": "x4", + "y": [ + 35, + 28, + 35 + ], + "yaxis": "y7" + }, + { + "customdata": [ + [ + 35, + 75.54, + 184, + 200.72 + ], + [ + 28, + 75.54, + 184, + 200.72 + ], + [ + 35, + 75.54, + 184, + 200.72 + ] + ], + "hovertemplate": "
Medal distribution: %{customdata[0]}%
Participation: %{customdata[1]}%
Team players: %{customdata[2]}

Team Score: %{customdata[3]}", + "marker": { + "color": [ + "rgb(194, 144, 80)", + "rgb(169, 180, 195)", + "rgb(255, 222, 94)" + ], + "line": { + "color": "white" + }, + "size": [ + 27.9, + 27.9, + 27.9 + ] + }, + "mode": "markers", + "name": "Team metrics", + "opacity": 0.5, + "type": "scatter", + "x": [ + "Bronze", + "Silver", + "Gold" + ], + "xaxis": "x4", + "y": [ + 35.25, + 57.56, + 107.91 + ], + "yaxis": "y8" + }, + { + "customdata": [ + [ + 54, + "bronze" + ], + [ + 64, + "silver" + ], + [ + 60, + "gold" + ] + ], + "hovertemplate": "
Total medals: %{customdata[0]} %{customdata[1]}", + "marker": { + "color": [ + "rgb(194, 144, 80)", + "rgb(169, 180, 195)", + "rgb(255, 222, 94)", + "rgb(0, 0, 0)" + ] + }, + "name": "Event B", + "opacity": 0.8, + "text": [ + 30, + 35, + 33 + ], + "textangle": 0, + "textfont": { + "color": "black" + }, + "textposition": "inside", + "type": "bar", + "x": [ + "Bronze", + "Silver", + "Gold" + ], + "xaxis": "x5", + "y": [ + 30, + 35, + 33 + ], + "yaxis": "y9" + }, + { + "customdata": [ + [ + 30, + 75.42, + 236, + 203.39 + ], + [ + 35, + 75.42, + 236, + 203.39 + ], + [ + 33, + 75.42, + 236, + 203.39 + ] + ], + "hovertemplate": "
Medal distribution: %{customdata[0]}%
Participation: %{customdata[1]}%
Team players: %{customdata[2]}

Team Score: %{customdata[3]}", + "marker": { + "color": [ + "rgb(194, 144, 80)", + "rgb(169, 180, 195)", + "rgb(255, 222, 94)" + ], + "line": { + "color": "white" + }, + "size": [ + 36.2, + 36.2, + 36.2 + ] + }, + "mode": "markers", + "name": "Team metrics", + "opacity": 0.5, + "type": "scatter", + "x": [ + "Bronze", + "Silver", + "Gold" + ], + "xaxis": "x5", + "y": [ + 35.25, + 57.56, + 107.91 + ], + "yaxis": "y10" + }, + { + "customdata": [ + [ + 18, + "bronze" + ], + [ + 26, + "silver" + ], + [ + 23, + "gold" + ] + ], + "hovertemplate": "
Total medals: %{customdata[0]} %{customdata[1]}", + "marker": { + "color": [ + "rgb(194, 144, 80)", + "rgb(169, 180, 195)", + "rgb(255, 222, 94)", + "rgb(0, 0, 0)" + ] + }, + "name": "Event B", + "opacity": 0.8, + "text": [ + 26, + 38, + 34 + ], + "textangle": 0, + "textfont": { + "color": "black" + }, + "textposition": "inside", + "type": "bar", + "x": [ + "Bronze", + "Silver", + "Gold" + ], + "xaxis": "x6", + "y": [ + 26, + 38, + 34 + ], + "yaxis": "y11" + }, + { + "customdata": [ + [ + 26, + 82.72, + 81, + 207.48000000000002 + ], + [ + 38, + 82.72, + 81, + 207.48000000000002 + ], + [ + 34, + 82.72, + 81, + 207.48000000000002 + ] + ], + "hovertemplate": "
Medal distribution: %{customdata[0]}%
Participation: %{customdata[1]}%
Team players: %{customdata[2]}

Team Score: %{customdata[3]}", + "marker": { + "color": [ + "rgb(194, 144, 80)", + "rgb(169, 180, 195)", + "rgb(255, 222, 94)" + ], + "line": { + "color": "white" + }, + "size": [ + 13.9, + 13.9, + 13.9 + ] + }, + "mode": "markers", + "name": "Team metrics", + "opacity": 0.5, + "type": "scatter", + "x": [ + "Bronze", + "Silver", + "Gold" + ], + "xaxis": "x6", + "y": [ + 35.25, + 57.56, + 107.91 + ], + "yaxis": "y12" + } + ], + "layout": { + "annotations": [ + { + "font": { + "size": 16 + }, + "showarrow": false, + "text": "ThunderCats", + "x": 0.11222222222222222, + "xanchor": "center", + "xref": "paper", + "y": 1, + "yanchor": "bottom", + "yref": "paper" + }, + { + "font": { + "size": 16 + }, + "showarrow": false, + "text": "Dog Patrol", + "x": 0.47, + "xanchor": "center", + "xref": "paper", + "y": 1, + "yanchor": "bottom", + "yref": "paper" + }, + { + "font": { + "size": 16 + }, + "showarrow": false, + "text": "Power Birds", + "x": 0.8277777777777777, + "xanchor": "center", + "xref": "paper", + "y": 1, + "yanchor": "bottom", + "yref": "paper" + } + ], + "barcornerradius": "50%", + "barmode": "group", + "height": 400, + "hoverlabel": { + "align": "right" + }, + "hovermode": "x unified", + "showlegend": false, + "template": { + "data": { + "bar": [ + { + "error_x": { + "color": "#f2f5fa" + }, + "error_y": { + "color": "#f2f5fa" + }, + "marker": { + "line": { + "color": "rgb(17,17,17)", + "width": 0.5 + }, + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "bar" + } + ], + "barpolar": [ + { + "marker": { + "line": { + "color": "rgb(17,17,17)", + "width": 0.5 + }, + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "barpolar" + } + ], + "carpet": [ + { + "aaxis": { + "endlinecolor": "#A2B1C6", + "gridcolor": "#506784", + "linecolor": "#506784", + "minorgridcolor": "#506784", + "startlinecolor": "#A2B1C6" + }, + "baxis": { + "endlinecolor": "#A2B1C6", + "gridcolor": "#506784", + "linecolor": "#506784", + "minorgridcolor": "#506784", + "startlinecolor": "#A2B1C6" + }, + "type": "carpet" + } + ], + "choropleth": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "choropleth" + } + ], + "contour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "contour" + } + ], + "contourcarpet": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "contourcarpet" + } + ], + "heatmap": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmap" + } + ], + "heatmapgl": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmapgl" + } + ], + "histogram": [ + { + "marker": { + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "histogram" + } + ], + "histogram2d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2d" + } + ], + "histogram2dcontour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2dcontour" + } + ], + "mesh3d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "mesh3d" + } + ], + "parcoords": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "parcoords" + } + ], + "pie": [ + { + "automargin": true, + "type": "pie" + } + ], + "scatter": [ + { + "marker": { + "line": { + "color": "#283442" + } + }, + "type": "scatter" + } + ], + "scatter3d": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatter3d" + } + ], + "scattercarpet": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattercarpet" + } + ], + "scattergeo": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergeo" + } + ], + "scattergl": [ + { + "marker": { + "line": { + "color": "#283442" + } + }, + "type": "scattergl" + } + ], + "scattermapbox": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattermapbox" + } + ], + "scatterpolar": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolar" + } + ], + "scatterpolargl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolargl" + } + ], + "scatterternary": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterternary" + } + ], + "surface": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "surface" + } + ], + "table": [ + { + "cells": { + "fill": { + "color": "#506784" + }, + "line": { + "color": "rgb(17,17,17)" + } + }, + "header": { + "fill": { + "color": "#2a3f5f" + }, + "line": { + "color": "rgb(17,17,17)" + } + }, + "type": "table" + } + ] + }, + "layout": { + "annotationdefaults": { + "arrowcolor": "#f2f5fa", + "arrowhead": 0, + "arrowwidth": 1 + }, + "autotypenumbers": "strict", + "coloraxis": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "colorscale": { + "diverging": [ + [ + 0, + "#8e0152" + ], + [ + 0.1, + "#c51b7d" + ], + [ + 0.2, + "#de77ae" + ], + [ + 0.3, + "#f1b6da" + ], + [ + 0.4, + "#fde0ef" + ], + [ + 0.5, + "#f7f7f7" + ], + [ + 0.6, + "#e6f5d0" + ], + [ + 0.7, + "#b8e186" + ], + [ + 0.8, + "#7fbc41" + ], + [ + 0.9, + "#4d9221" + ], + [ + 1, + "#276419" + ] + ], + "sequential": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "sequentialminus": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ] + }, + "colorway": [ + "#636efa", + "#EF553B", + "#00cc96", + "#ab63fa", + "#FFA15A", + "#19d3f3", + "#FF6692", + "#B6E880", + "#FF97FF", + "#FECB52" + ], + "font": { + "color": "#f2f5fa" + }, + "geo": { + "bgcolor": "rgb(17,17,17)", + "lakecolor": "rgb(17,17,17)", + "landcolor": "rgb(17,17,17)", + "showlakes": true, + "showland": true, + "subunitcolor": "#506784" + }, + "hoverlabel": { + "align": "left" + }, + "hovermode": "closest", + "mapbox": { + "style": "dark" + }, + "paper_bgcolor": "rgb(17,17,17)", + "plot_bgcolor": "rgb(17,17,17)", + "polar": { + "angularaxis": { + "gridcolor": "#506784", + "linecolor": "#506784", + "ticks": "" + }, + "bgcolor": "rgb(17,17,17)", + "radialaxis": { + "gridcolor": "#506784", + "linecolor": "#506784", + "ticks": "" + } + }, + "scene": { + "xaxis": { + "backgroundcolor": "rgb(17,17,17)", + "gridcolor": "#506784", + "gridwidth": 2, + "linecolor": "#506784", + "showbackground": true, + "ticks": "", + "zerolinecolor": "#C8D4E3" + }, + "yaxis": { + "backgroundcolor": "rgb(17,17,17)", + "gridcolor": "#506784", + "gridwidth": 2, + "linecolor": "#506784", + "showbackground": true, + "ticks": "", + "zerolinecolor": "#C8D4E3" + }, + "zaxis": { + "backgroundcolor": "rgb(17,17,17)", + "gridcolor": "#506784", + "gridwidth": 2, + "linecolor": "#506784", + "showbackground": true, + "ticks": "", + "zerolinecolor": "#C8D4E3" + } + }, + "shapedefaults": { + "line": { + "color": "#f2f5fa" + } + }, + "sliderdefaults": { + "bgcolor": "#C8D4E3", + "bordercolor": "rgb(17,17,17)", + "borderwidth": 1, + "tickwidth": 0 + }, + "ternary": { + "aaxis": { + "gridcolor": "#506784", + "linecolor": "#506784", + "ticks": "" + }, + "baxis": { + "gridcolor": "#506784", + "linecolor": "#506784", + "ticks": "" + }, + "bgcolor": "rgb(17,17,17)", + "caxis": { + "gridcolor": "#506784", + "linecolor": "#506784", + "ticks": "" + } + }, + "title": { + "x": 0.05 + }, + "updatemenudefaults": { + "bgcolor": "#506784", + "borderwidth": 0 + }, + "xaxis": { + "automargin": true, + "gridcolor": "#283442", + "linecolor": "#506784", + "ticks": "", + "title": { + "standoff": 15 + }, + "zerolinecolor": "#283442", + "zerolinewidth": 2 + }, + "yaxis": { + "automargin": true, + "gridcolor": "#283442", + "linecolor": "#506784", + "ticks": "", + "title": { + "standoff": 15 + }, + "zerolinecolor": "#283442", + "zerolinewidth": 2 + } + } + }, + "title": { + "text": "Event Performance scores, by teams, date 2024-08-15" + }, + "width": 900, + "xaxis": { + "anchor": "y", + "autorange": true, + "categoryarray": [ + "gold", + "silver", + "bronze" + ], + "categoryorder": "array", + "domain": [ + 0, + 0.22444444444444445 + ], + "matches": "x4", + "range": [ + 2.5, + 5.5 + ], + "showspikes": false, + "showticklabels": false, + "type": "category" + }, + "xaxis2": { + "anchor": "y3", + "autorange": true, + "categoryarray": [ + "gold", + "silver", + "bronze" + ], + "categoryorder": "array", + "domain": [ + 0.35777777777777775, + 0.5822222222222222 + ], + "matches": "x5", + "range": [ + 2.406515505239481, + 5.593484494760519 + ], + "showspikes": false, + "showticklabels": false, + "type": "category" + }, + "xaxis3": { + "anchor": "y5", + "autorange": true, + "categoryarray": [ + "gold", + "silver", + "bronze" + ], + "categoryorder": "array", + "domain": [ + 0.7155555555555555, + 0.94 + ], + "matches": "x6", + "range": [ + 2.5, + 5.5 + ], + "showspikes": false, + "showticklabels": false, + "type": "category" + }, + "xaxis4": { + "anchor": "y7", + "autorange": true, + "categoryarray": [ + "gold", + "silver", + "bronze" + ], + "categoryorder": "array", + "domain": [ + 0, + 0.22444444444444445 + ], + "range": [ + 2.5, + 5.5 + ], + "showspikes": false, + "showticklabels": false, + "type": "category" + }, + "xaxis5": { + "anchor": "y9", + "autorange": true, + "categoryarray": [ + "gold", + "silver", + "bronze" + ], + "categoryorder": "array", + "domain": [ + 0.35777777777777775, + 0.5822222222222222 + ], + "range": [ + 2.406515505239481, + 5.593484494760519 + ], + "showspikes": false, + "showticklabels": false, + "type": "category" + }, + "xaxis6": { + "anchor": "y11", + "autorange": true, + "categoryarray": [ + "gold", + "silver", + "bronze" + ], + "categoryorder": "array", + "domain": [ + 0.7155555555555555, + 0.94 + ], + "range": [ + 2.5, + 5.5 + ], + "showspikes": false, + "showticklabels": false, + "type": "category" + }, + "yaxis": { + "anchor": "x", + "autorange": true, + "domain": [ + 0.575, + 1 + ], + "range": [ + 0, + 41.05263157894737 + ], + "type": "linear" + }, + "yaxis10": { + "anchor": "x5", + "autorange": true, + "overlaying": "y9", + "range": [ + -15.742750642673514, + 158.9027506426735 + ], + "side": "right", + "type": "linear" + }, + "yaxis11": { + "anchor": "x6", + "autorange": true, + "domain": [ + 0, + 0.425 + ], + "matches": "y7", + "range": [ + 0, + 40 + ], + "showticklabels": false, + "type": "linear" + }, + "yaxis12": { + "anchor": "x6", + "autorange": true, + "overlaying": "y11", + "range": [ + 20.709839011606142, + 122.45016098839386 + ], + "side": "right", + "type": "linear" + }, + "yaxis2": { + "anchor": "x", + "autorange": true, + "overlaying": "y", + "range": [ + -2.828692003948653, + 150.51869200394864 + ], + "side": "right", + "type": "linear" + }, + "yaxis3": { + "anchor": "x2", + "autorange": true, + "domain": [ + 0.575, + 1 + ], + "matches": "y", + "range": [ + 0, + 41.05263157894737 + ], + "showticklabels": false, + "type": "linear" + }, + "yaxis4": { + "anchor": "x2", + "autorange": true, + "overlaying": "y3", + "range": [ + -18.01833530455349, + 165.7083353045535 + ], + "side": "right", + "type": "linear" + }, + "yaxis5": { + "anchor": "x3", + "autorange": true, + "domain": [ + 0.575, + 1 + ], + "matches": "y", + "range": [ + 0, + 41.05263157894737 + ], + "showticklabels": false, + "type": "linear" + }, + "yaxis6": { + "anchor": "x3", + "autorange": true, + "overlaying": "y5", + "range": [ + 16.22597181008903, + 131.46402818991098 + ], + "side": "right", + "type": "linear" + }, + "yaxis7": { + "anchor": "x4", + "autorange": true, + "domain": [ + 0, + 0.425 + ], + "range": [ + 0, + 40 + ], + "type": "linear" + }, + "yaxis8": { + "anchor": "x4", + "autorange": true, + "overlaying": "y7", + "range": [ + 2.643318112633189, + 140.51668188736681 + ], + "side": "right", + "type": "linear" + }, + "yaxis9": { + "anchor": "x5", + "autorange": true, + "domain": [ + 0, + 0.425 + ], + "matches": "y7", + "range": [ + 0, + 40 + ], + "showticklabels": false, + "type": "linear" + } + } + }, + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6QAAAGQCAYAAAC5y61PAAAAAXNSR0IArs4c6QAAAERlWElmTU0AKgAAAAgAAYdpAAQAAAABAAAAGgAAAAAAA6ABAAMAAAABAAEAAKACAAQAAAABAAADpKADAAQAAAABAAABkAAAAABUH4gHAABAAElEQVR4AeydBZxU1RfHz7LdwS5s0d3dXZKCioSgtKDYEgoG2ISKfwMJBURakW5B6e4O6Vpqm+3d//nd5Q0zs7O7MxtsncNnmZn37rv3vu978+aee+JaeXp6JpGIEBACQkAICAEhIASEgBAQAkJACAiBJ0yg0BNuT5oTAkJACAgBISAEhIAQEAJCQAgIASGgCIhCKjeCEBACQkAICAEhIASEgBAQAkJACOQIAVFIcwS7NCoEhIAQEAJCQAgIASEgBISAEBACopDKPSAEhIAQEAJCQAgIASEgBISAEBACOUJAFNIcwS6NCgEhIASEgBAQAkJACAgBISAEhIAopHIPCAEhIASEgBAQAkJACAgBISAEhECOEBCFNEewS6NCQAgIASEgBISAEBACQkAICAEhIAqp3ANCQAgIASEgBISAEBACQkAICAEhkCMERCHNEezSqBAQAkJACAgBISAEhIAQEAJCQAiIQir3gBAQAkJACAgBISAEhIAQEAJCQAjkCAFRSHMEuzQqBISAEBACQkAICAEhIASEgBAQAqKQyj0gBISAEBACQkAICAEhIASEgBAQAjlCQBTSHMEujQoBISAEhIAQEAJCQAgIASEgBISAKKRyDwgBISAEhIAQEAJCQAgIASEgBIRAjhAQhTRHsEujQkAICAEhIASEgBAQAkJACAgBISAKqdwDQkAICAEhIASEgBAQAkJACAgBIZAjBEQhzRHs0qgQEAJCQAgIASEgBISAEBACQkAIiEIq94AQEAJCQAgIASEgBISAEBACQkAI5AgBUUhzBLs0KgSEgBAQAkJACAgBISAEhIAQEAKikMo9IASEgBAQAkJACAgBISAEhIAQEAI5QkAU0hzBLo0KASEgBISAEBACQkAICAEhIASEgCikcg8IASEgBISAEBACQkAICAEhIASEQI4QEIU0R7BLo0JACAgBISAEhIAQEAJCQAgIASEgCqncA0JACAgBISAEhIAQEAJCQAgIASGQIwREIc0R7NKoEBACQkAICAEhIASEgBAQAkJACIhCKveAEBACQkAICAEhIASEgBAQAkJACOQIAVFIcwS7NCoEhIAQEAJCQAgIASEgBISAEBACopDKPSAEhIAQEAJCQAgIASEgBISAEBACOUJAFNIcwS6NCgEhIASEgBAQAkJACAgBISAEhIAopHIPCAEhIASEgBAQAkJACAgBISAEhECOEBCFNEewS6NCQAgIASEgBISAEBACQkAICAEhIAqp3ANCQAgIASEgBISAEBACQkAICAEhkCMERCHNEezSqBAQAkJACAgBISAEhIAQEAJCQAiIQir3gBAQAkJACAgBISAEhIAQEAJCQAjkCAFRSHMEuzQqBISAEBACQkAICAEhIASEgBAQAqKQyj0gBISAEBACQkAICAEhIASEgBAQAjlCwCZHWs3CRtu2e4pcXd1SrXH3rp10+/atVPfn1h3655WYmED37t2ji//9R7du3cyWLltbW9Pw196gXi/0JT8/PwoJDqEG9WpRfHxctrQnlRYsAv0HDqa33h5B7do0p/t8L4s8eQKvDH+dhg4bTs2a1KfIiIgn34FUWrS1taVmzVtQpUpVyJefPffv36ODB/bT9m1bTR6B8q3btKPqNWpQdHQ0HTl8yGTZ4sVLUPMWLalYseJkZ29Ply9folUrltGDBw9M1qu/sUrValS+fAXauHG9xazM7R/aw2/Xc8/3oLJly/GzNp7OnjlNy5ctVeel3x9L3nd75lk6f/48nTp5IsVhpUuXoRo1a6XYrm1A20lJSdpHeRUCQkAICAEh8EQI5HmFdMzYj6hsufKpwho88KUcV0j7vtiP3h/7IXV4qjXduH491b7q7zB1XomJifT3po00euTbFBwcrF880+8HDX6ZRo4eQxvWr6MZ038mLy8vHpgkZrpeqUAIgICjoyMVLlyYClllv1PGzt0H6J9/NtOHY98T+HoEnByd1DWwsrLS22re24w8w8yrmWj1uk1UsWIliouLUxNugYHFqFChQrRl8yYaOmSg2q7VBQVu5q9zqFHjJnTlymXCOY0c9T4tWjifxr4/ihISElTRDh070/SZs9T7e3fvUiGecMMzbTQ/44a/OpS2/rtFqzLFK5TRJX8uJxcXF2rVvDFdtEB5N7d/aLRhw8Y0/ZdZZGtrR7t27iA3dzfq338gvTtyNL3UpxedPXsmRd/S21CjRk367vup9PWkCSYV0qbNmtNnX0xItZpVK1fIJGSqdGSHEBACQkAIZBeBPK+QAswZnlXu06u7SUZhYWEmtz/JjXZ2duTm5q4GWZa0e/rUSer+XFc1iMdgpVGjJvTRuE9owaI/qWP7NpZUlW7Zrt2eVQOYoUMGpFtWCgiB3EzA1c2VnJyccnMX81zfMvoMM+dEF7MyeejQQTp+7KhSKKHUjRr9PsGqPpAnymZMm6qrZuTo96hipcrUrUsHOnLksNresVMXmjptJh3mOqCYQm7dvEEj3nmT/tnyN1tc7xOU8EqVq7CiuYx+nDqNalWvYlLxCixWjH6bu0BZaaGQWirm9s/GxlYpo0FBQfTM0x3p4cOHqilYdddu+Ju+/vZ/9HTn9mY3jwnPp57qQCVLljLrd6ZXj2fpnAmFVzxizEYuBYWAEBACQiALCWS/uSILO5taVfE8s45Bh6k/zLpjNn3egiXUoEGjFFWULlNW7WvTtp1un4ODA33w0XjatGUbnTp7kdau/5t6syurscyaM49gWUS9v89fTMdPnaOtO/bQS/0G6Ip2e+Y56sez3pAp3/2o2kJf0Kf0BLP9cK0LDw9TltU//1hMfy39kypXqUrFihfXHW5Of7s83U217e7uQXXq1qNPPvuC5sydT5hRn/HLbKrAFgpvHx9d/2Bh0KRrt2for+Wr6eTpC/T3lu0E6y3c0vRFYwFL2MtDX6FpM35l5flTVURr2z8gQG3btnMv7T1whL74ahJhYAbLxYRJ39CO3fvpyPEzNOV/P5Kz0WDwrXdG0Mo1G2j/oWN07ORZ1Y9R741J4a6t9SOta6Lf79p16tIvs+bSrj0HVftg0bKVobIPS8b8hX+ovqHfGPz6+vrpV5Pq+xIlSrLF4ifCOR8+dppW8Tmg37AWaoLBPqw8K1avp0NHTqrzfHfEaCrs7a0VUYy+mfK96uPRE2dUf9B3Y9HO39R1QFlzzgXWqRf6vEjLV61T54y+z/z1N9L/jhi3a+5nD08PZaHB9+TQ0VP0/Y8/G1zDyd98R5O/nmKyuvfGfEA//DTd5D5t42/zFpKLs4tyAcX3DH+oUxNzvisoa+n91qRpM1q05C/1DPjzr5UESxSkU+enacnS5XTyzH/qedK6TVu1Xfsvu1i7uLrSVxO/pt37DtGJ0+dp4eKlVLN2ba1Z3as552nOM8yc+0rXqNGbWb/OVG63mnUTz7upP/2gSlVmJVITPBN69upDm9iNVlNGsW/d2tV04vgxGjRkqFaUjh49Qnhe4jcBAjdUuLCuWb1KTQ4G8LPIWDw8PGju7wtp+/atNHfOLOPd6X62pH/4fkLxvnzpok4ZRQNXr15hRfGscjFOt0G9AhO+/Jxat2xKTdkd2xwJDQ1VrstwX9b/M+dYKSMEhIAQEAJCIKsJ5AuFND0oJ44fp3r1G1Dfl/qnKNqjZy9qzMrhsaNH1T4MWKEYDBo8hGM2L9CP33+n3L0mTv6Whr4y3OB4DEJfe/0tWrD4D+WSuGnjBrLnWKXPv5yoYpdQGDFOUVFR6jgMtEJCgtUfFOWMSFxsrDrMlhU5iLn9xcw/4rQ+Hv8pLV22ihXsF6kBK1p+/gEUGhJCcAfGn9a/mJgYVf+wV19TSkAst/vz1B/YkrFfKZwY4GIwrQlYYPC9buMW+vDjT5TCDa4Qre2Vq9ZzmS506OABunb1Kr3I12Pmr7Npw9//UosWrejA/n2K+XPde9BAto7oS/v2HQkTD+vXrqG5v82mixcvKPb/++Gx9QTlzbkmWr3P9+hFUB5KlSpFa9asYre57VStWg2aOPkbrQihzILFf1LxEiVo9qyZtGP7NhW/tmrthhRKs+6gR2+KFClKy1aupYaNGitLzfzff+PB3316dfgbujguDEyhaCN+9+qVK7RkyUJ1Pd546x1q1y7ZQuLp6UlreFKkfYeOtHHDeu7HL2ry4A9WdIwVnLSug7nnAmUYEwTB3NdZv84gxGFDMXj7nZHGp2jxZ9x7bTj+7yhbtxAvB2Vn7vxFunpu3bxJPXv34XjCyrpteAPlfOiwV9N1vw8NCaVEVj5iY2J193J4eLiqy9zvCgpber/9xooMZPPfm1QIwfQZs+inn2fwd+dnSkyAq/0GKlKkCG+bqSZhVGH+LztY4zxX8mRCL+Z4jBWzhfPnUQRPbMHDwljMOc/0nmHm3lfGbaf1WYtzvHHjcYhDMXblheX7xInjKQ49zgppOQ7dQCx8WoJ6EzhWMyjotkExPLd/nf073b13l0Mi3jHYZ+4HS/qH34L9+/dS27ZPqUlNzY3a39+fqlarrp5z5rabkXLghPtERAgIASEgBIRAbiCQL1x2Yd3bvmufSZ7vjx5BO3dsV7PocO2C5SDi0QAVCtUzz3anLVs20927d9TxL/Ogt0KFitShXSvlCoyNU3/6nmB5eePNt+m32b+SpqxhHwYW/fv1UTP0+Ozn50879xygZ597nrZt/ZdjMtcSBhmIS/r4o7FKEUO5jAiUl05dnlYz2kjQAbG0v+hH757PKeUPSTRsbGxo/bo1bNFpQceOHaHXhw/TdQ0WUygha1avpNc47kpLdrFr506CIgh2fy39Q1e+du069NOP3yuFETxh/dSXhQvm0f+++0Yl78B2WI6QnOTryRNoKh8HCwkGZlBa0J8ff/if7vAezz+TIrnIBx+OU5MEsLDqJypJ75qgUlhDoJxjUNivb2/dNcXAFImdIHCzhnKNazj8lZd15//73Dm0ggf8/fsPUveGKmzivy5Pd1WW0J7dn6G9e3frSpQrX56V63j1GcoplK/+L/WhfznuURNYrh0cHNXH4TzpAYtsJ3bTPn36lNo2beqPyoL5MVuhcZ/hWmpi6jpYci79BgxUSujA/i9qVapriQmNzAosXzM5RlmzhsHVEAwaN2mq4ugWLZpPUMZ79+lL4z76QNdcj569WdmwISj1acmbr7/CFu6zive7b79hUNSS74ql99uLfXrqrg3OBRM25fk50vGpNnTu3FnVDyTYgSdFHbZsa/dDdrAe8vIwKsNJcl4e3F9NYGgQoPzCIqov5pxnWs8wS+4r/XbTew+vDMiKZX/piuJ5BNGe37od/AaeJHiee/KzADGjpqRsuXLqu7aWJ5+gZGuC4374aZryQnima2eDmFWtjDmvlvYPz5SZv8yhcZ98TojRXbx4IfVhzwRYdr//37fmNJnhMms4bhcCV2GEhuA3DvkJRISAEBACQkAI5ASBfKGQRkU9NJnAAUDDH8WQLl60QCmJnVmhW7xwgWINy5U/WwjHsaKoCawKW7f+o1NGte0b1q2lli1bE1wwtQEm9u1i6xHcxTRBFtxLF/+jgMBAbVOGX6E8YxALRRSJPuAKjIyRiI2CNRNiaX8HsOKjn3VYX5Ex7ihm72GRQAyXpoyizIrlf6kkTcqVV08h/YMHUt98PVFXjXE8Eiyb+u0hkyZca+fOma1TUNAOtg8YNES5BWuWZC0rKPqDgT5cXrUZ/pKlShsopOZck6fY4gr35e++/VqnjKLjmGzQ3PXaPdWeYJ2cbnT+sO7BwlKtenXduZp6o1nGS5YupVNAUO78uXO64lC0oJzoK6PYCZdDTcB5G9+TmjKK7RhQY3IElswq7MKtX97UdTD3XDAhgH57MV+4FEK5h+BaIh4vs7L0jyW6a426fps9y0AhvXnjBiHhDCZ0vvz8U921gcs8sq5qEzEZ6Ycl3xVL7zf9awNLP2Tnjm0Gzwpte6MmTdQ1zy7WYIeYTFjT0xNLztNUXebeV6aOTW0bJrrg5o/nhf6zFt9FiL4yqdWhbUMZUwopnhs/srs3LMVwb9WX8awQ1qvfUMVyhoaG6O9K8b59h04UEBBgsH3fvr3qN8DS/kGxvsmxrnbH7CjyYSSN/eBj9Vyf9vNPBt+RtNo06IgZH65du6aeb7dv36b4hHj1e4bnC8IWXhk6WE1OmlGNFBECQkAICAEhkKUE8oVCClfHYS8PShPMnt276Nq1q9T9+Z46hRSuoXfv3OFsjskDbcRFBgQEsrLjreLb9Cu0tU1GBRdX/UGSfhntfRgPNOztM+8OVZITVMCioskVzio5aMCLyi0Q2zLSX80ypdWZ1muJkiXV7v94uRl9gdJ4+dIlNZjR325J3TgOs/MQa+vHrr/4jO2Iq3TkDJpxcaHYpOJmx33yGVuX6uniVzVlFVbe9MT4mpQqXVodAutAalKKFV0I4jKNxd3dTbk7G2/X/7yJ3TRH3RtDkyZPYRfkIbSb70FYMzXFDtZYP7aeb9y4Tv8wg/coU7Sor4p9M9jBH7AMEATXSV8hNXUdzD0XXNtFC+bT2++OVHG+UISh3MASbmqgrzqQif8wgQN3cHgWaLJg/u/UqnVbQhwzJj8wcYT+f/XFp1oRi18t/a4gTjuj9xvOB9fAupCh+6h2v2MiBJIdrOGKWYKfG5iAM0cyc56o39z7ypy+oAxib5HQZ8+eXfTZJx8bHBYWlux6jWeDseB7AgkLTZnEDp4a02bOUsu4vDxkgMrOqx0Pl/febJXs0/t5g+3afnbZ0L3FG0wKGnsKfP7ZeKWQWto/xByj35qVGvkMvuBwD4SHVKpcWechkFabBp0z4wOePdrzRyv+4/dTVKjFiFHviUKqQZFXISAEhIAQeKIE0h/JP9HuZF9jGPwtYZcouK0hphFrIcKFd97cOTqrnbOzs3L7giVmzeoVJjtz5pHLpMmdjzYmwXrJbmCZFcSwvv3maxTLsZNXWRmNjIw0qDKr+mtQqd4HWBUgMTGP3du03dHRUeT4aL+2zdJXxcnEQYlGy83A/RBuvHADRnwX1h28fv0au2a2Vsl2TFSRYpPxNXF2clZlNCtmigN4A7K1Qj7/dBwrGPHqvf5/WKs1LYEC17xZQ3r9jbeUcoUEWPiDBRgTC7CQaVay1OqBdRxlUrsGOM6c62DJuUz5drKy4A1/7U220LdS3xO4bn86/iNdFtPU+puR7bCaw21SE0wQwQLdp++LSiHt0/cltRxIZlwKLfmuZMn9ZnQPa+eG55C+ZDVrZ07oBOXblFurfrt4nxXnacl9Zdy+8WdMPCB5FuJBBw/spyYq9MtgfVIIvhPG4sTPboiWxEjbDxaI5W3atDm989brusk8bT8mB6AU4vliSv7ZulNNLpQukTxhMmrE2ym+b9q6upb0D6ETSEr20Qfv60IR8Lzv+0IPlUW99wsvKksunk9ptWmqz5Zuu8lx24iNx+8hvE40a7Ol9Uh5ISAEhIAQEAIZJVBgFFIAQmzOO++OIlhGr1y+rNaZQ9yOJiGc3AcuW3DbXLF8mbY5y14tXYMRFhV9y5dxR7K7v0g8BIH1CtZZfYGlWNuvvz073sOKAeX41WFD6KSJhCYZaVNz/QxkF+j/Lpw3WQWswBBk9MRgMSMCxQAugvjz8SmiEkIhURQSQMESGBYWqtyxU6sb1xh16FsQtbK4BhBzroOl54J1EfEHRRGJkrB24TsjRqlJHc1dXOtHZl4Ry4tre+nSRV01UFCXLFpIr3PMds2atdRA+Qe24piy/OoOMnqjr+BilyXfley434y6Z/AxK1njfoISU6RoUYM2TH3IyHkaP8Msva9M9QPbWrRsrbJ9IwnTgP59dUqafnlY0yHlK1TQ36zbBsVQP0wAyhXWIoXV9Y3XXlGx8MYHYnJrzHspk3XhmM5dutK330yiO0FBusO0Pug26L3R9pnTv3r1Gqgj4UKrL/hu7d69UyWFg9IKN2+tXv1yWf0e3xesOx0fn5DVVUt9QkAICAEhIATSJfDYLJFu0bxfAPFpmAmGQtq9R09dVlf9M9u7Zw8hLkp/WRVtP2KEtLhFbZs5r8HBwaqY/jIe5hxnTpns6K/W7gG25EGe7tpN26RekZQHiZ8OHDCdSMqgcBZ8QPZKCDIA6wtcqzMqh3kgCunV64UUVWjK334eDMKiNXjI0BRlsEErZ3Inb0S8MaybmsDC+z0rVhh0wlUSgn60afuUwTIw2I4BIlx1IeAM5QFWPn3BdcGkRVpux1p5c88F7pD654W+wmMAGaSRWAlJYzRB/Gu/AYNUnK22zdLXZ559Xh2yj793+oLkRmD/8/RfmYWVciPW35/We3zfTN0b5n5XsuN+M9VfS1jjOwfWxksSmar3NHtxIGs1rIP6Yvz8seQ8U3uGmXtf6ffD+D1iRmfN4aWXdm6nfi/2NqmM4hgonFDQcG76CdMQT16zZm1au3a1rmpYPrFUEzKJDx7Y36QyisKYCMHEkPEfMoFDVq1YTkjGZo5Y0j9tgu/Z57qnqLolK+eQjE6CpahQbwMyfxsLWDVq3JTzMJw0UOiNy8lnISAEhIAQEALZRSBfWEiR3fCV4a+bZLRuzWoD696SxQt4YfQZKvYJrlDG8sVn42nj5q28gPpymvLt1ypZEpZrgHsV1hNF9l24OFkiJ08eV4NrWGd/4syx9jxzf+PGNbpw3rRlzpK6s6O/WvuwHmAZizffHkGIwdy+9V+lqH/62ZecHCTcYMF67ZjseEUm3P68DMyXEybTgnlzuQkrpaD1NKFMmtv+YY6LRLZNZF5NSEzgTLrreJBroxaXb9+xE7Vo2lDFheF+wfI0cOtDHCWslbBcwHpyixOSjEpjiQjUjSUckHwIll0kqer9Qh+lbGpJjL7ixD1Y0mXxH8tp8qSv1DqE5ctXUGsqLuSB8qKF8+mbyRPV0jCz5vxOEyd8qayqmFRBH7AskaYspHXuSLxlzrm4urnRP9t2qSVuoIjevnWLKnIWYCifqENzT4QSgPU94ToNt3dz5bU33mTuq5X7ObLRYv1VxNUiZlBfrrPlCOtBQvlAluc7dx5bqfTLmXp//NhR5SKNREiI94Ziv46VFXO/K9lxv5nqp7mscexLLw1Q3wFTzyzjumf/iuVmptPs3+ZzYqBZ7AniysvrPJtCmbXkPFN7hpl7Xxn3UftcvHgJtU4v7ivcbz1MfKfXrFqhc8Wdz99/rFP89bff0W+8VijcdxHvbMOxs/pxs4j/rVuvPi37K3nJJijz+nKd8wlouQP0t2f2vbn9Q8IrrIsKN9m33rmgvHewlFdXvk74rfmdv1P6mcPT6xcydSMRmfejtYtLlCyhPBswqQMLvCabtiRPLmFiFkoxcia8+fa7alLpjdeGacXkVQgIASEgBITAEyWQLxRSWG7GjP3IJLgL588ZKKRQPGBps7W1o9U80DEWuHJ27dyePvn8S5rIGUw11z/Eb2ItwdCwlEkzjOsw/oysquM+/oCXCRlIi/9MdgVGyv+sUEizo7/6/X+Dl9FAog0ooZq17wyvH/n8s13NUoT068ro+1UrVxBc3JSF6JH1AAoM3Omg0GRURr77Fk8M3GAL6DBeB/RNVQ1ctjGo1GTs++9x1uRL9OprryulTNsOBulZTrDcUBNWur77/iftMDWw/nDse7olFmDN6tPreXW/zfhltq4cLEGIpYMcYwULy8JgEL5sxRq1Da6J33/3rVpGR20w4z9zzuUh3+eb/95owARVIxHK2DGjda1AmcT9gEyosKKaK1WrVqeBg17WFceSIiPfTTkxhALIbA2FFINzS2QSK+3o2yd8z8KjAd8/KKTmfley634zPgdzWeM4uJBCQUGSp/QE/S9btrxaPgcJeKCU4PxhBUQ8riaWnGdazzBz7iutTeNXO3s7da0wqYjlT0zJEZ480mJDMSmEpWbeG/OBysSM8uAycMBLhIkITTCBBEHGYfwZy5bNm7JFITW3f0h8NXhQP/rk0y9VXgNMVuKeRbgIlmCZ8s1k4y6n+XkEPwfh2aNJr959OQN7X/WxROBjq+jWf/9VGYwxwaQJMv0OHTJQTQho2+RVCAgBISAEhMCTJGDFbqiGWTaeZOu5vC0MaoqXKKHcImEpsiSGLbVTgyswrGzmWLVSqyO17dnRX60tuIuW4SyQWC7AEmuVdnxWvMLdDAmpbrGFOivjqjDpgOV0YClF3aldZ8SAwjJ4/cZ1s5LGaOeMATSWAYJVGfUjRtKUYJkVPz8/usmxcrhHjAUDVvQTllZMtGBQm1FJ71yQrRUZgNGnG9evK6usfltYbgaulg3q1lRx1/r70nuPtsHjCk/+pPU9QIZpLLHRumXT9Ko0ud/ZxYW8C3vzpMP1FMzN+a5k1/1m3Nn0WMPCu+/gUaWoTPzqC+PDU/2M8y9Tugy7pV7SLd9jqrCl55nWMyy9+8pU+xnZBmZ4HkGB09xfM1JPdh1jSf+wjjKWrkIyISwZllaitazoL1y5sdwZXLgRxqK/DFhW1C91CAEhIASEgBCwlIAopJYSk/JCQAjQ9l37eJ3N7fT+6BHZQgMxynCdH8+eBbNn/ZItbeSVSuGejaVQmjaqa3G4QF45R+mnEBACQkAICAEhUHAJFCq4py5nLgSEQEYIwEKG2L852agoDnl5mLIULf3zj4x0MV8dA3fdTRvXizKar66qnIwQEAJCQAgIASGgERALqUZCXoWAEDCLAJI/Yb1LxNtmlyAhEdZ1RHbfgi5w0Y5j92y4p4oIASEgBISAEBACQiC/ERCFNL9dUTkfISAEhIAQEAJCQAgIASEgBIRAHiEgLrt55EJJN4WAEBACQkAICAEhIASEgBAQAvmNgCik+e2KyvkIASEgBISAEBACQkAICAEhIATyCAFRSPPIhZJuCgEhIASEgBAQAkJACAgBISAE8hsBUUjz2xWV8xECQkAICAEhIASEgBAQAkJACOQRAqKQ5pELJd0UAkJACAgBISAEhIAQEAJCQAjkNwKikOa3KyrnIwSEgBAQAkJACAgBISAEhIAQyCMERCHNIxdKuikEhIAQEAJCQAgIASEgBISAEMhvBEQhzW9XVM5HCAgBISAEhIAQEAJCQAgIASGQRwiIQppHLpR0UwgIASEgBISAEBACQkAICAEhkN8IiEKa366onI8QEAJCQAgIASEgBISAEBACQiCPEBCFNI9cKOmmEBACQkAICAEhIASEgBAQAkIgvxEQhTS/XVE5HyEgBISAEBACQkAICAEhIASEQB4hIAppHrlQ0k0hIASEgBAQAkJACAgBISAEhEB+IyAKaX67onI+QkAICAEhIASEgBAQAkJACAiBPEJAFNI8cqGkm0JACAgBISAEhIAQEAJCQAgIgfxGQBTS/HZF5XyEgBAQAkJACAgBISAEhIAQEAJ5hIAopHnkQkk3hYAQEAJCQAgIASEgBISAEBAC+Y2AKKT57YrK+QgBISAEhIAQEAJCQAgIASEgBPIIAVFI88iFkm4KASEgBISAEBACQkAICAEhIATyGwFRSPPbFZXzEQJCQAgIASEgBISAEBACQkAI5BECopDmkQsl3RQCQkAICAEhIASEgBAQAkJACOQ3AqKQ5rcrKucjBISAEBACQkAICAEhIASEgBDIIwREIc0jF0q6KQSEgBAQAkJACAgBISAEhIAQyG8ERCHNb1dUzkcICAEhIASEgBAQAkJACAgBIZBHCIhCmkculHRTCAgBISAEhIAQEAJCQAgIASGQ3wiIQprfrqicjxAQAkJACAgBISAEhIAQEAJCII8QEIU0j1wo6aYQEAJCQAgIASEgBISAEBACQiC/ERCFNL9dUQvOp//AwdSiRSsLjsjeokNfGU4NGzXOtkasrKwoIDCQihUvTra2ttnWjlQsBISAELCEQL8Bg6hlqzaWHCJlhYAQyCcEbGxsycPDI1PjktZt2tJL/QbkEyJyGgWRgCik+eyqX7keROn9bd2xR531q8Nfp7btnso1BN56611q1rxFlvenRImSNGfufDp19iLt2nOQduzaT+f+u0q/zVtI7Tt0tKg9f39/mjDpGypXvrxFx0lhIZCfCQwa/LLuuXPxyk06cOg4rd+4hSZ/8x3VrlM3R069aFFfXZ/wTDx97hL9u20XjRn7Ebm5uVvcp5Gj3qfuz/e0+DhzDhg2bDg91b6DOUWljBDIVwT0nx2Xr92mI8fP0PJV6+j5Hr3y9HkaP38uXb1FJ09fUM9FY8WxRcuWdPTEWercpWuGz7lDx040ZOgrGT5eDhQCOU3AJqc7IO1nLYFRI98xqHD06DF07/49mvXrTN32iPBw3fv8/qZhw8ZK8Xz48CGN+2gsHTt6hNzdPah6jRr0yquv0/hPvqAN69eZjcHD04te6PMirVuzms6fO2f2cVJQCBQEAmPeG0lhYWFU2NubypUrT89170E9e71Arw8fSqtWrsgRBH/+sZj+3rSRXN3cqH79BgRPjOo1atJLfXtRfHy82X16utsztHfPLlr65xKzj5GCQkAImEcAz47Q0FDy9vFREz/fTPmenF1c6LfZv5pXQS4ttWTxQvX8sba2Jk9PT+rZuw99/uVEioiIoGV//al6/d+FCzRpwpd06uSJXHoW0i0hkP0ERCHNfsZPtIUlixYYtPcKD75u3rhBxtsNCuXjD2M+/JhiYqLpuW6d6dKli7oz3bt3N61YvozG8n4RISAEsobAls1/0+3bt3SVfTN5Ai1cvJQtpf+jC+fP0+nTp3T7ntSb06dO0rq1q1VzeA4+uH+fhr36GtWpU4/wHBARAkIg5wnoPzsWLZhH6zZsJnhN5XWF9OyZ0zzpvVYHeM3qlcoKXI8nxzSF9PLlS/TTj//TlZE3QqAgEhCX3YJ41fXPmeMqn33ueeUiA5dWuNk1atxEvwTNnb+Ier/Q12AbZjGXLF1OTZo2021HHNQvs+ZShQoVaeavv6mH7p79h+mtd0boymhvypevoOo9cfo8HTx8gjAbamtnp+3WvZZgd9sZv8ymfQePskvLGZq3YAlVqlxFtx9vps34lQYPGUp+fv409oOPVRn0t0XL1lSzZi2a+tMPBsqodvCdO0H09puvaR/pjTffVud/6Ogp1db6Tf+ogWuhQslfE/Rl8tdTVPkPPh6vzh8M8MMCeebZ7rRs5Vp13nANnv3bPIkLU2Tkv4JKIDg4mAb060vh4WH0xVeTDDBUr16DFiz6U33Xdu89pJ4BsCAYC77vv89frNzd4AoMN2A8k+CpkBHRBoGVqyQ/RxC3ju/x7n2HVBvbd+2jSV9/q54nWv3/+2Gq+ty6dTvd9/6Nt5K9UbTnHuLABgwcws+rOfTd9z9ph5K556k7QN4IgQJOICYmhtbyJBI8LYoUKapowM1+4uRvacfu/XT81Dla/MdfVKduPQNS02fOotdef8tgG44xHoPg+/32uyN15ex47PHemA/o7y3blWs/fvthydSX1MYZ+mXMeQ/LaEJCPN2/d09XvHSZsuq5UrVadd22tNpzcnKiTz/7kvDcPHnmP1r85zKqXLmq7ljtjYxJNBLymhcIiEKaF65SNvYR7nSj2K13/9499NMP/yMXV1f10Ndvsm7d+hRYrJj+JrK3t6cGDRpR4cKFdduLFy9BrVu3ob9WrFED0Kk/fU+YHXx3xGiqUrWarlzZcuVo1dqNhBiL7779mr79JnmgikRDSDykCcqtYwXZx6eIKjfxqy+U291fy1erY7VyNWvVpt48OP17yzYVE5uUlERu7u5sAUmOXfuDXWbMkZKlStP+fXsJVp3xH3+omCDe7LXX31SHR0RG0KGDB9T748eO0vat/6o//LAgtgyDVlhjPhz7Hs2c8TMVYhedXr1fMKdpKSME8i0BWExhFahRs6Z6buBEEVe6bOUaiouPo48+eJ9++H4KNWjYSD0XHB0ddSwqV6lKq9ZsIHdO+DHhq89p8uSvCBNEzZq1UMnJdAUteIPBJySS3fghAQGBFPzgAf06czqNHTOa5s+by8+xdmpCSRXg//BcgNs/zkX73uPZBsFzDxNza9ZvojfffpecnZ11MarmnqeqSP4TAkJAR8Dezp7wW/4w6qFK9rOcnxctWrai6T//RGPeG8VjjAj648/l1LhJU90xCQkJaoJd24CxA8Y4Awe9TDY2yQ6B+P4/170nhQSHqGJ4nixa8pcKL9iwYa2apMZ3e8LErw0m4lMbZ2htmfOKcKHR742lezxmQCiBJi78zMB4yp3HLZqk1h76u4C9Tp7v2ZuWLl1Cn4z7kA4e2E++vn7aoepVxiQGOORDHiAgLrt54CJlZxfhsjZ08ACKjo5WzRw8uJ9nHpcRlEG42Fkq0Tyz2al9G7py5bI69JcZ02j/wWNKUTx54rjaNvaDcSp265mnO1JUVJTahkFghw6d1A+Q2sD/fTz+M7p18wY990wX3fa1a1bRoSMnqd+AgTR54ldaUfWD1af383SUY0Q1+ennGUoxvs8ueubIiHeSFU+tLCwpRX19qV37jjxg/k7NaC5cOJ/bHkQr2d1369Z/tKL04cefENxuxr4/Srdt9qxfVDyMboO8EQIFlMDRI0d4UGirYjeh3MGT4dzZszTgpT667/a2bf/Stu17aNDgoTr3tXHjP2VFMJK68zMgLi5O0Vu8cEGKZ4W5WDHhNmL0++q5s2P7VnUYYkKN40Jv3rhOP/w0XWXlvnH9Os37/Td6edirdOrUCfUsMG7Pzs6Wfv9ttlJmMYjWxNzz1MrLqxAQAkQVK1aiXi/0UTHbyHkxcNAQKlW6DLVt3Zz+u5A8Llm9agVhcvrDj8ZTpw5tFbadO7ZTp85Pq1hNeGcgaeHF/y5QiZKllOfX9m1bCVZITH7v2rldHQPFDpbWDu1a6UIK4GLrwd4ar772Bi3i33xNcJzxOEPbl9rr2A/H0fs8sQ1FEnGkEEzW3+BQqvTEVHtQNGvxJPywlwfR+nVrdFV4szW5AefM0AQJkmRMotGQ17xAQBTSvHCVsrGPVy5d0imjaObCo4c9rKIZUkhZwdSUUdSXmJhIFy/+R/XqJbu1wgKKGc1tbF3UlFGUMxbMZjbhcmvXrKGu3Z412H2dB4tImKIvsFroK6PY58IJEWDVsERqcLKTRtwuXIq9vLyUZRfnkJ6cOH6MkHYdbkBQVhGvioHpvbt30ztU9guBfE8gLCxUnaO2tAEsh99MnqhTRrHz+rVrdOjQQWrQqJFSSDF4q8PPoXVr2ZL6SBnNCCgMOOFW78nfZwx04Vr73qh3VWy9Vh/c/Zs2a061atchb28fKvbIIwReHFBI05PQkFCltOqXw2DSnPPUP0beC4GCSmDCpK95ojqBvZ+Kqt/di//9R6NHvqtwwK0e3keaMqoxWrliOX3y2RfKswuKKxRSjDHq1qtPmzZuoA4dO7MlcgnVb9BAKapQSOE5dffOHTp37qyqpkWLlurZU55DjfCnSWhIiPJ+wPdYe/6YGmdo5VN7xcQ24mMhsM7C26x//0HUsVMX6tyxHUWyC29qYqo9PKfQn216E+KmjpcxiSkqsi03ExCFNDdfnRzoW0x0jGpVc2/Jii7A+oqHOgRuJXDJ271rR5pV+/r5qYFjterVU7gLw+IZFBSU5vHY+R//oGFtP2TqS+uhj7IYpOIHsQcPXuH+cvLkCTWz6sixGiV5djU9mfXrDGUNfZOTMLzz7ijONBrKM6sL6GeeCX3A7oAiQqAgE6hcuYpSPvHdgvIHZfPuvZSTNUFBtzkWKjm2E94JeG4cOLAvU+gS2Y0vJiaWzpw6pbJjw/px8+ZNXZ1dOXsuki7B9R4eI2dOn+L91wnuwvohBLoDzHxj7nmaWZ0UEwL5mkBcXLzyhtix4yzBu2jVyuU6RRBu9aaeF8gDAQnk/WfYzRYWQUwgYQJ83969bBVtTB+wG/7du3c4geE4FU4Da+iuXTt1LOFy7+LqQgPYCmssR44c5vGKE/cjeULNeL85n6FII2RBX/5mZRlxqk891UGX2Eh/f1rvEVp0lPuV3mS7jEnSoij7ciMBUUhz41XJhX3KrIKqubEhoB/izz8gaQkyYeKYeXPn0C8zp6dVNNV95x/NgDbl+K70lnZpyFYZKKOjR71DcAnUBMmbTCqkPAurLyE8mwp3XcTD1mYrS6vWbalf/4E8+PbjJS+G6ReV90KgQBHAswPfB3hcYHIGCUsgVVnhM15AxcPDU8VXYT/iOiHG3hBqowX//bX0j1SfIXCj+/TzCbRj+zZ6Zegg3QAYFhbEnWnPLa05KzL83mvbTb3ev5+ctCS98zR1rGwTAgWNAGLJEaNtSvBdqlLlcR4KrQw8LiBY2k6TnTu2KY8IrLF+9swZ5bEF912sH444deW18PVErTih7njEnnbtpNuW3W+gPCfEx6v+wIJqicASXLZsuXQPkTFJuoikQC4jIEmNctkFyY3dQYA/Zvv1RT/xiP729N4j2ybcWLWEQ1p5WEyseHCoCWb/LrGrL+IgMGg0Fi0xifF2/c8reYYVP3CYGXV1ddPfpd7D+qJl6qxWrYba9s/mzQblYDnVl4eRkeoj3IH1ReOBc9u4YT0nXRipZj5btmqtX0zeC4ECRQDf3S8nTCIk6Jg08Qt17pH8HYJbP1zP9AXxnUh8hDhNCFz6L5w/R43YXQ9ZJTUJCAw0mZFb22/JK+pCZl8MYjW3PBxvagIO33300Vwx9zzNrU/KCYGCSuAUWxl9ihRRGfz1GeAZAvdb/dCYHey2W40zeGP1AOScgMBjCTHjLw99RSVE3LXzsYfW8WPHqConXSzFlkdjMWecYXyMOZ8RQmDNE3Xnzp4xp7hBGYyL/AMCDBI7ooDxWEXGJAbY5EMeIJBypJ8HOi1dfLIENmxYR09xYp9uzzynllFBco8/lhq6oFjSo99/n6NitZCREjGbSE2OTJrITqnvIvfpJ+PUbOa0GbPUKwaPsLR8xdnvkCQgPYGbLmZdiwUWo42b/1UZ85DtF9nssDzDug1bCC62EPzgQcZ88JFqCz90X06YTH1f7Ke2a//d4PhVzFD26z9ALT+D/vv7+6tlKUZyshR8Ruxpw4aNqU3bdnT40CHtUHkVAvmeAOKouzzdjV58qb9aRmHn7gOcabovvc8TNJio0QTZtcvwLD+eAVjWAcse/PjTNHbRtaNpU3/SirHHwWROsFaesHzUZ19MoJ+n/0KbNm9Trrz6zwrdARa+uXXzFoWEBKvvebun2qslWoa8PIzb+VXVpN8GrBrNmrdQy0kh6RuWc0lPzD3P9OqR/UKgIBOAlxS8q8Z/+oXK7wDPJawljDjM76Z8bYAGyiYmm/FdXbtmtW7fmtWrOM9DO7p27Spdu3pVt33G9J8pOPgBzfl9gYozRYwnrKiofyWPSzIrFThuHbGsSLaEpWQ+Gvcp/Tp7roqHXbJkkcXVI8EaPDewdA3GMljeDsvmPde9h0FdWCpLxiQGSORDLicgLru5/ALlhu6tWPYX9ejRi77/8WfVHcRpTPzq8xTLw5jb1595XdDSpcvSiJHvqT9YEr5lFxrERujLP1v+psEDX1JZ9JbxUjKaILHB15wQxRzBIBgZ+PBD9vmXE9UPFY6L5+Um9uzeTb/NSR54bv13C33DfUCyATzYkcgIGewwwwr3PU1gRRk54m3dmqXYPrB/X87Yt4NjUAbz9uS1CRHHgqQKU3hALSIECgoBTBbhuwMXObjCbd/+L83/fW6KhGNwo8W6gu+P/VA9A8AHA8W+L/SgW7cex3ci9mrokDjqwxNDdTn2C4lInuvWWa33Gxqa8bgu7XrgOfDaq0Pp/TEfqjWUsf38uXMcwzZT1y+tLL7Lzs4uajCJAS+WbTDOzK2V1V7NPU+tvLwKASGQkgDiu/v06q6WVtvEy7tB4PqPpaCQoV9fEC+K5wSWgEFCRU0wFsD3Xcuuq22H19bzz3ZVY4Qfp07XZcINDQ2xOL5Tq1P/FcvO4A8Cpfo2P98WzPudpv38o5rc1i9rznuc2ygeg2DCHDkyoJwi4/DfmzZSufLldVXImESHQt7kEQJW7K70OEd9Hum0dPPJE4BLbanSpVVGXmTDzArBGqZYJwyZfeM5niItgcutr58vBd0OUu43aZVNbR/OoVix4mRja6MSH5jK8gu3l4qVKnEGzuvpJiOCG3MUr5GGWA0IrCmw9jg4OBhkGk6tP7llO9wq0Xf8gFsqcAuCO6W5S+tYWr+Uz98E4BpbunQZXhM00qxstqAB68jBwyc45nMwZ+B9bAHJLClYbON5wgnuxGkJFGkXF2dWnG+liDFN7biMnGdqdcl2IVCQCcAjCd/BCxcuKAUzK1lgoqkYJzmCez4SrBnHkGdlW5mtC2vB45kFay+UalOSV8ckps5FtuV/AqKQ5v9rLGcoBNIkgLT5kHEffWBQbtvOvVSiREmDbVrSJwywv/hqErsidVLZ/pCEasig/gbWLYMD5YMQyAABZMBEvNXhw4d4MuqWip368KPxKgNuy2aNCN4VIkJACAgBISAEhEDeJiAuu2ZeP7EEmQlKiuUZAshCCLcfWHU112Xjzvd/qY9K+KJt16yonTp3UXE2DevVUslnxn/6uUoe9cZrklFYYyWvmSdQpGhR+va7Hwwqwhq/w195WZRRAyryQQgIASEgBIRA3iUgCqnetUOWtRWr16n4xLlzZqk9YgnSAyRv8xUBxJzg78OPP+EMfdYmzw0xN/rZR7VCSCaBdeI0t2cslbNi9XqVERkxhCJCICsIHNi/j2rXrEJlOOkRXOERLnD16pV0Xfyzom2pQwgIASEgBISAEHgyBAo9mWZyfyuISZg2cxaFh4UbdFbfEtSofm3av3+vsgQZFJIPQiCfEkBG5YmTv6VXhr+usgdrp+nL8bNI3KTJdX6PmBZPzjAsIgSykgASmuzbu4e2bf1XJSlJL948K9uWuoSAEBACQkAICIHsJyAKKTNGspup02bSr7/M4OxshutCmbIEte/Q0eTamNl/uaQFIfDkCCyY/zthXVasBdm27VO0fNU63Xqu7m5uKsuh1puYmGj11p0ndkSEgBAQAkJACAgBISAEhIC5BMRll0mNG/+ZShO+ZNEC6shJWvQFliC4NWqibwnCzL21jZ22S16FQJ4gkJgQz9kD03ernTb1R935zJ71C23ftY+aNG2mlsPBkhv6i4Y7ODiqskiVL5JxAoU4y7MV/xMRAnmFQGJiAiXxn0juI1CokDVZ8Z+IEMgrBDA2wRhFpOARKPAK6Uv9BlBJXs5kYL++Jq9+WpYgKKSeAeVMHicbhUBuJRAadJnioi3LTgo3SWTSdXV1VaeFtSKxgLgmeI914bD+pEjGCbj58LJEdg4Zr0COFAJPmMDDkDv0MPTuE25VmjOHgKO7Dzm6FTanqJQRArmCQOzDMAq7mzVLC+aKE5JOmE2gwCukrw5/gzZuXEdvvT1CQSvFa+JhXcbwsDC1KHJ6lqB7V06aDVsKCoG8QgDLbZQsVYq2b9uq1mJr1rwFlS1Xnvbu2a1OYcP6tfTmW+/SjGlT1dq0vXq/QBvWryNJaJS5Kxxy67/MVSBHC4FcQADrOZpKhpZe1/DbW7QorzfNa0DKsyQ9Wunvjwy+TfgTEQJCQAjkdgIFXiGdNu0ncnVJtvrgYiVxhtD4+ATdgstiCcrtt7D0L6MEOnV+msZ98pkuLhTx0h9/OEYplsho+s2U78nZ2YVCQ0LIydmJ3hv1rspwivbWrF5FzVu0on0Hj1JEeASFR4TTwP6mvQwy2j85TggIgbxHoH6DhjT155lUt3Y1g86/N+YDGv7amwbbtm79h/r17a22de7SlZehmqS8LDw8PGn0yLdp44b1BuXlgxDISQK2dnZka8t/HFpBVlY86RKb/Bcbm5PdkraFQL4gYOXp6ZmUL84ki05i9m/z6J9/tpC27Eu3Z55VlqDOHdspS9Ann33B2Ua9SdZbzCLgUk2uJWDFP7g+PkWSl9u4fs2kxcKFXXhdWGm9fftWrj0P6ZgQEALZTwAx5Rs2/UMlSpZS7v2mFNLChQvTB2Pe03UmKSlJLeHj7OJC+w8eoz69utORI4epXv0GNOe3+Uqp1ZaW0h0kb4TAEyCA+FtHJ2ce7xWmshWrUPESZciD718nJxeD1qOiIinkwQPOOn+Zzp06Qffv3aaohw9JW7PboLB8EAJCIFUCBd5CmiqZRzvEEpQeIdmfXwlgsHjnTlCapxcRHs4WUsOlktI8QHYKASGQLwnEspWoVYsmVKt2HZr5yxyT55iQkGjSlbdVqzZ07dpVpYziwP379qpnD0IFxEpqEqVszCYCmGQtUjSA6jduTqXKVky3FUdHZ3IMcCa/gGJUt0EzVf7a1Yu0b8e/dOvmNQ7/Ck23jtxUoHjx4lS+XFnCUogJCbEEi5WVlTXdvnWLTp85S2EcziYiBLKDgCikRlQH9n/RYAuSuYx4500SS5ABFvlgAQHkTPVwtyNnR2sK9HOkMsWcqZi/ExUtbM/xylYUFZVAdx7E0NWbD+ny9Ui6ciuKrfGJFB4ZZ0ErUjQ/EHB086ZC1vJYzg/XsqCcQ1x0BMVGRZh1ug3Ynffrb//HVqR7tGrVCjpx/Jg6ztfXl27euG5Qx40bNwhZ7kWEwJMg4OjoRCVKl6Onu/clG5vMPYOLFS9NxfqUVt1et3IJnT11nK2mliUSfBLnbNxGk8aNyNPTiRzoDlHUWdKtC2llR/4+PhQQ2IaOHjlK/128aHyofBYCmSaQuW9dppvPOxWIJSjvXKvc0lMfL3vy87Gnbu38qU3TUuTg4k92DpzxMIkVzcSo5FeeeeTAZaJC9vznxAmEEnhwd59C7l+lVZuu0Lpttyk4LI5C+E9ECAgBIQACXl6e5OnhwTHeTrz8ko1aKig2Lo4nsmIplC0YIcEhFM1Zr3OTHNi/j0I4Hj06OpoqV65Cy1asUXHnO7ZvI3d3D7Vdv7/I2o0s9yJCIDsJ2HA8qA8n0urWox95sntuVkvHrj2pRZtOtOKP3+nm9asUG5u7vpfa+TZv3pS8XBPJJuGMtunxa1IsWSfcIIp+QFWqVFDxs//9Jwn4HgOSd1lBQBTSrKAodQgBPQLurrbUtE5herN/WbKzdyAn99Jka+9OFBdEVlEnWAFN/QfJqpAL2dv7kG+JJvRSr2L0fKfLFHQvmr6ddZ5OXQijyIcJei3J2/xGICrs3hM5JRcHG07MUYis2ULv6mRLbvwXFRtPjqzchLFlPjwqjuITOb6PXSwjomRNuCdyUdJpxN/fn0qVLE5Fff0oPjacrRdRZGPF6/7yJJYS9sBI5GdPvLcXWduVosiIMLp46QpduXLVpJtsOs1l+e7Nf28i/GkSHR1FvXr3JSikWL/Ynp+V+oLEashyLyIEsouAPa+fXbdBU2repmN2NaHqdeI8Cy8MeJX2795GO7duynXW0ooVK5K7izUro5fS5sAT6XZ0gWrWrEnwYMDkkogQyCoCopBmFUmpp8ATcHexpSrl3WjcGxU5E5812bI11NmD16mNv0tWDw+Zxycxgqxi2P0t9gbZOxTnOmqRte05mjjagS5ei6RJM84p197oGFFMzQMqpTQCUDrdnW2pTtnC1KBiYbK31TlkaUVSvOI+23vuPh268IDCHsapPw4tFnmCBBDTValiebK3I7KlezypdYjskkxPEuCKcjF2tyNys3OnqhX9qVrVqnT+/AU6cTJ3LVEWdDuISpQoid7SLY5PCwgMVO+1/7C2MbLciwiB7CDg7OJGnZ/pRWXKV8qO6k3WWa9RcypWvCT9sWAW517IPbGY5cvz5Hn8OZN9TrExkRM2Rd+gsmXL0okTPMEuIgSyiIBk2c0ikFJNwSbg5WFHY1+tQLWreCoQ9k6+5Oheiqyi2a0lITjDcJJsfXkUGkgRD06yVST5B2zJ2uu0cNU1Cg0XN94Mgy1AB0IRrV+hMHWodXE7jwAAQABJREFU609sEM2wQBFdu/8m7WcFFcqpSPYSwFqedevWJh9vD7JLZHe5jD5HrOwprlAAJZAr7T9wkNf4TDtRWWbPSktqZJxl9/kevWjtmlX0kDOQenM82uIlf9HCBfPol5nTCVl2Dxw6Ti8gy+7hQ4SlY2Yjy26tqhxjz9q1iBDIQgLuHl7Uu/9Q8ipcJAtrNb+qyIhwmj1tCic8Yg+HXCBdOrUlh8TTZGNtxZPphVRuC+S3wM8FO8qwF0aSWo88nqOLYmMTKcnKhSISS9D69RtyQe+lC/mFgCik+eVKynnkGIFSgc704/ga5MhukBA7Rx920y3Lyugpfpo/zHy/bApTkl1JCrt3lBLjkwdncN/9aMopCg6V9c8yDzh/1gBX3BqlPei5xsWy/ASXbLtKJ6+EsGuvaUtdljdYwCp0d3enJo0bkp11GNnEX82as7f2ogTb0mwpPcUW0/NZU6deLfb29rRt5161TiMvJ6ey5G79dwuvJ/quKrVw8VJCUiNYQwt7e9PKFX/R2PdHq2VfUKBrt2foqwlf0927d9R+HLdu7Wq9FuStEMg8AbjP9nppKPn6G1rkU685SWXKTeTwBTdeHxfLoRlLaEgwr9XtrO59432pfQ4LeUC/zfw+Ry2lOBd3Fxt6/tnmVL3EPapU1pW8PTmfRSoSE5NItzmE6MiZMLocXJUnlf6kqGjx1koFl2y2kIAopBYCk+JCQCNgzbOJVdlFd8oHNbRNnCHVntx8arPbLbu/JGSdS06SrT8lWHlQOCulmkSxMjDw/YN0537qMalaWXktWAS83expaMey5O2e+uAis0TuhsTQzPUX6F6Y3H+ZZal/vJeXFzVr1oTjuW6QVXwWWzMLOVKcdRk6d+EKnT5tInmJfkey4b2rqxuvbeyjXHFNWT6R3dSPY2VvcnyarOOYDReggFeJSZMOT/egytVrm0Xi9Ikj9OfCOexZYsW/7dZKGe3dbyiV5Gy8kP/On6E/5/9KVrxmKWKi69RvrNyAzaqcC127cpGWLpz9xGNK7dgK6uNlR893CFRJFz18KvKYhb25LBGXRnT66EZawN5ae488oLu8UoCIEMgMAWtHR8fxmalAjhUCBZVA5bJu9L+PahqcvrNHeU42EsoDybsG2/EhiuPxwiPi2C2Gk8mwMmssWKMPZfBjYSxWieFkZePFrjJ2lBCXrOjCtaZLa1/OxBsks5TGwAroZ9xXVUp40JvdKpDTI4t9dqFw5vqbVS1C1+89pOCI2GTXruxqrIDU6+TkRC2aNyPbJCijvPRCVgvHnlonhZKnT1lOdJRIwcEZDyfISNeQYRRtYjk1U5KYmEhhnMgIayCLCIGsJGDNy2nVqteYGjRpZXa1WKoF65F26taTmrV6Slkz9+/ZQfUaNqNodiWf/v1Eav90d+rRZxDV5/jQ1csWkyuv31nUL8CsNtzZ4prEPrE3rl+hxITstzQiiZ03Z/8fM6wCJ10sRxXLuKp+2rsEmhyzpHoSvCJAopUbx7TfoUa1ClOPjoFqDHIjiJesYyuqiBDICAFRSDNCTY4p8ASKetvTrxPqGnCwsXPlpV0CeKbxrMF2uLRMnXeWNu/khaUvhNLm3bfVj1CpYi6q3EO2dC5df4V2HLhLp86F0oHj96motwO5u6r0JLq6rJI4q6ZzWYqOuK7bZsOZUpvX9abNu+5QNMd2iBRcAg521tSokje90LLEE4VQu6wXRfI9HhQSxVl5RZHIDPxmzRqTs20IFYq/nZlq0jk2gZXSCPItVp3u8XqgiOkUEQL5nQCWFurJrrqWCGJNXdiqr8nFC/htT6KqNerQlUsX6OihfdTrxSFsIS2k3HWRdfYqb8d+c6VYidJ05sRRzoodbu4hGSoHV9wXugbSp29V4fXQnQzqcHQrTVaIUU8lWZpBYf6QZFuUYmP4eR/zOAa2bjVP6tTSjy5cDqcHHEokvwXG1ORzegREIU2PkOwXAkYE8GD//qMa5OJsmKTa0bUEWVMYwZqpLwk8SPdws6MenUpS4zo+VK6kKy1efZnqVffmzJnWtHH7TbaMJtLgnmWpTjWOF2XrwM6Dd6l21cL61fCvACeSKeTMVlJbtpI+bgP98CvqSAdOBFMsWz1ECh4BzHzXL1+YnmuS9fGi5tCsWMyNQtj6f/N+FPJfiGSAQCVeesG/qCvHjF5J9Wh7e2tydrRRVo5iPKgsX8qVqnHYQAW2dAT6OvK6nXbkyGXgf4HJqlSfB3iW8J+ndwm6ePFSqu3JDiGQHwjY2rF7Klsx3VgpzYicOXWc/tm4hh7cu0Mdu/UgJydnigwPp4P7d1FLXjIGCikkJPgeXTh7WllQLWmnZJnydOLIgVQ9Byypy1RZrIn+3YfVqXFtb1O7uf82VMiO42PNSZzGSdLIoRw9DD3PE+uGng72doWoXdOiysvrzMXw1J8/JnshGws6AcMRdUGnIecvBNIhAHfafs/xWoA+hmvm4TBbTmZk9fBxjKdWlQMPEKuWf/xDiHgUbMPAEYKZRCgUmvh48fp74aaTFVnF3+ekSUUpJtJwOYTm9bxp9+H7tIHdd0UKHoHyAa7Uvan5yujD6HiK4D93Zzuzln8xhyjaRzzp2etZFzttTrv5oQyHzlDlypV5SZcjKU7HiRVQB/tCSvGsXdWTXbGTnxspCprYcO5SBHtcBNP9kFgK4wkDfYFLsKO9m1q+4cKFC/q75L0QyFcEihT1p4BiJTN8TmGhweziHkuRkREUzi7lhb2LkF9gcfL09KYFc6ZRPXbrjWb33v27t6sMtZY25OnlTbCUnj+btUszIVNu1XKu9J1RaJFx/6LCLpGNdw2y4oz+VnGPPbCMy3EBSrJnL63wa7oEiynK8IYenQKpQmkX+uzHM+rZY6qMbBMCxgQkqZExEfksBNIgULqYM/3yVZ0UJaxtncnVixMDRB1LsU/b8ICTwOw7dp+uXo+gxnWL6JTUoPvRNOfPC2zhcKZGNb1p674gZSmtXjF5CRnt+ORXHoy61KPgm9sNNz/61OP1PfIDYJJM/t3o6WJHH/WpatYJRrISOnHRYboXEk0efFxoZCx1qF+Mnm5UUh0/cdEROn/9sRuWVumHL9alkr7JLubattReP11wgq2lpidUUjumoG+vXr0alS5uaB2157WMA9jq2b55EfJyN3TfzwivrXvv0eFTIRSpnxnZ2pWirUrT6tVrM1KlHCMEcj0BR0cndtV9mfwDMx/KACvmmuWL6b3xk9V5Y9mWrZvX092g27yEjDeF8Wc7O3vO4vuyxVweRkTQL1O/ZtfdrJnQQzLgBjUK05cjq5jVF6tCtuTiVYUTOMVSoTie8E6MNDguyaYILyEQSNGRt1ghNS/z9/XbD2nUV8cpSBIvGrCUD6YJiIXUNBfZKgRSEHBytKZRQ5Kz6xnvtLblwbrRA9y4DBIWRfL6jXFsEb2nl5HOg2NF/XycyJVdb5dvuqYy+fmzC65pSaCkhGjTu3grkgtMX3RR3CZTJZS/diBx0aD2Zcw+KRjiu7LyWbucD8/kE12+HUGfzztATav6kaerPY3sWdMgoUzYw1gaN2c/Lw1gvkI0mPszbc15jis1dOcyu5MFsGCpUiXJJu60OnNbdrX1ZAW0e3t/wvrGWSUtGngT/tb8c5vOX4ngZxFfn4RwKmQTS4GBgXT9ehqWkazqhNQjBJ4wATt7hyxRRtFt7yJFKZQtpEhAhKy7rm4e1OXZ3o/OKIkmjB9N7Tp2y9AZOvFavG4eHlmmkFYs7Wq2MooOx8ZEcyzrTvIpUpJ8fHnZOs4cnJSIsUYhsrJ25nXQgykm+Bzdvn1LJWZEeEB6EujrxH2oSiO+OkYhYYYeGukdK/sLHgFRSB9dczfOjIa107AGmqkkD3CpQgbE+/fvP/G7BO6c9uwqiuys+EOMYRxnZEVsYkxcgmS3fEJXpAxbRyuUeZzgQL/ZQoX44ZyYtlUooKgTde9QgrCW16QZJ6hMCRcq5udMq7dc49gxR2rbxE8pkn/vvEkzF52n91+pxsqpfivJ75OSUm+nZ+dAVmpvqrXCUh4pW/IbgUocuxlQOLXJi5Rn62hvQ3Ur+Oh2QCnFNicHW7WNHy8sj2+6DfuvUYNKRQlWWHMF/akQ6EaHLjww95ACXc7X15dzibA1IjFKufHXr+FFTesaxY9nIaHOrXzV82HxmusUERnPmTLvU/HiopBmIWKpKhcRsCTBkHG3jx3eTyVKliV3HhsiA/SeHf9ScXathTIKwbZC/BDFmGwLx5ha8/aadRsaV2P25xq16tOt61fNLp9awcI8kfXTJ7VS251i+8RpJ2j5xqvkU5jDhcK2UxUOMZo0pg658FrWkETOBDx9wVn6awMmzImK+7On2ITGKeoxtaEUj5te7VOavptzIcOrAWA5KCwDBc7GgjWNI9m6jIRSxoJrU7SoLwWxBRvXSiR3EyjwCikyry1dtoqKFS+ublofnyI07ecf6X9TvlFXDl+EL76aRB06dlKK6gNWSIcM6q/WUcuuS4s4RUc7GyrFLpzVSnpQyaIu5OFsm0I5iYtnS1t4DF28FUHHL4fQ7QdRyiqRwA8PkawlgGD9wT1LpVqptY0TzyLyaN6MSUB7jgfDgz6EM9FBIf3vSjgv35Ic/4eHfcsGvrR1bxAF3YsiX5+UyoZVobTXlmzVyIcW8tpgIvmbgCvHFr7QsmSGTjKIXXa3H71JF26GUv/2FU3Gkd4LjaZdJ2/TpwPqWdxGH+7XuRthFKHvHmpxLQXjAD8/X7ItFE7O/Mx/jq2ixf0NM2BmBwVfzuL9Vv+yNPevq3T9TigVKWKey3d29EXqFALZRcCeraN1GjTJcPV3bt+kPxbMUkmM4mJjVexor5eG6OrbunmdihvFGqQlSpah4W+PZaU048NqLEuzbcs6ehhp6C6ra9CMN1BGJ4y27Ptcu6oXvdq3PLmxt1Z0TDz1H7GTVv59jfp0La1anDT9JJ2/FMrWzlpUl5MxWqrcIdHRyXNhtPpfKIaWjU+d2XK8Zt0mGjXibdq/b6+OQGCxYvTLrLmcyM2dnF2cacXyZTT+4w906xd37tKVvpwwSS0z5cHL64we+TZt3LBed7y8yX0EMv7NyX3nkqEe4Ys15dvJtH7dGnUjV69eg1at3UhLFi1USmenzl2odp261LBeLcJC3uM//ZzGfjiO3nhtWIbaS+0gKCKwQlRky0LLGkUJC9unJ7Y2VuTn6aD+mlROzp4G5XTL0SC6cf8hx4eZoR2l14jsVwRcXWypekX3VGnEs4XD1sZez7b0uOiNoIcUy0uylAx0UZMKZy+GUggnLQpkZRRSxNuRjpx6wGuCuamECGd4P7LvermbvgeS0rHE9mIr6aott5T143Ev5F1+I1C5uAfH+2TsrKLYnTYsKpbi4hN5IguDn5TZF1fuvkxNqvgqV15LW4HltXJxd9p39sl7lFja15wu7+PtRe5Od6l/t5Lk5vJkf5KRoO2vDTfpxI3sXwMxpzlL+wWPgL2DIysrpr2azKHRlt1vWz/Vhd10gzlzrB056y0Bg+ObtmxH1WvVIyQlgjUuK8TBwSnDCinGka0b+1CZ4ubF+2v9bdfUX3vLk5PWBKMGwoggmBhfvukqL3PXWFlOsc062ZUGb82WtweVo91HHtBdvXCl9A7+7POv6Lnne5ILK6XG8vG4T2nrP1voqy8/I2dnZ6W0tm3XnjasX8vX3IUmf/Md9enVnY4cOUz16jegOb/Np7q1q6lxvHFd8jl3EHiyv36545wNehEeHkZrVq/UbYtnt4AITucdGpqc2KNjpy60auVy3U28eOECWrF6vXr4WDpLpGvE6I2roy01qexDT9XxNdpj+cfSfi6Ev1geaC7ZdoXOXA8nZNQUyRyBymWTF5BOrZakhBj2dDT9w4cF6BevuUxxrJQiuy6uzbPti6k4MdTXtU2gWvrlu1mneSbWWv0g9O1aipMjmP6BS89C6sbKs6uTjSikqV2sfLAdsaNdGwZk+EyQoGhQh4q83FACjZ6xmyoV96Qy/o/v35v3HtKhc/foi0H1M9xG+zr+dII9Nx5yGyKpEyhaxIv6dSZWRjM4u5B61WbtgVU2fJ1ZRaWQEMhTBDw8M+/6DvdcKJymxJaVVGTczUrxCyhGD+7fzVCVnhzX+Wof83MKGDcyZ+kFOnD0HjWq7UPN6ief12GeLEdM+5Y9t+mHuWdUlu9eXUpRA07AaKkMe6EUTZx+lidCzbOSfvThGMLfnv2HDZqytbWlNm3bUbs2LdX2SLYor161kmBAgkLaqlUbunbtqlJGUQCW1Tt3gqhZ8xZiJVXEcud/BV4h1S5LyZKlqE/fl6huvfo0auQ7ujhSXz9/+nvTRq2YSvxgb2/PDygvus+Lits7p2410x2UyhsH6wSqEOBML7QonkqJjG+Ghe2ltmUpmC1xc/+5QkGhHGvKwekilhOwogR6mpXGQhzkn5okJkSxy64rW0BTMi7FcX7vv1pdJTTCuoAebP3Wt2wV9nTkBavLKGsV9mOdwVSFM+FZWdul2Rcc26x+UVrxTzArySkHuXHRkZyUQSYpUmWcgzvsHNmKnsZ9pnXNxT6BnBzNj+vUjjN+RaIudxdHCuZYQv12V+y+Sq1qFeN7NaXLuHEdqX32cuM1M50cKIHDHkRME3CyT+QlEoqTh2uo6QJGWzGMi2DPF7i9ubJHjf5zxKioRR/7PxtIS1e60Z2QlM+L9CpKiI2h+LiU8VvpHSf7s5+AjZ0jWbPSVCCF4w39Aorr4j3zCgNf7vP5C+dNjiXSOgeMU158NiDdsUFaddwMiiFehI5jzGPpYRTWT7emO/djeU1jGyrBS4s1q+dLpy+E0ogvD9GMLxvpVgpIq079fciTMW/lTbr1IPXnDMYmGKOkJd7ePtwnW7p547qu2A1+X69BA/UZcfn6+7Dxxo0bhPG8SO4lICOFR9fG1c2NZ7q8CcpmmTKPZ5jceXtMDFu/HkkMZyKDwG8dCqmjq+UzcAjMto4LpecbB1KV4o+tEo+ayNKXwu429M4zlWj9oSDacz6CkpANVsQiAq62kVS3GrvkpK6P8iLzsawo2pAVx5KSykxn2AQev64upl1wtZKwiPL63WmLrRdnuwtN90e2TRNf2rQ/npJMxJsmxMUYKKRwNbJixRVJA4wlvaQAOZnsy7iv+eEzJris2fU7LcEPdrUS1jzwsPzxfSUonKI5EVr5QA/lXn7s0n0KYWW0jL+nrr7Lt8PVWqIDOlbWbUurP2ntq16mCO2/goyUlvc1rXrzwz7rpGh6vp07leAwDYpIOZFlfI5neCC4dMNV9V21trZS169X55J8fLLrv1YeuTvm/nWB1zcmGtKrrLY5zVcra3v6cXwtGj7+FEUmpO0NYlxRdESwKKTGUHLJZ1fvAF632rLrmUu6nuluJPAkSZGAEuk+TzPdUBZX4Mt9dvHyJ1t7y2LJHRJuUQ9+HmRGxr1TVx3+/qRDNHfFNXpnUCWysbWnqhV9qHun5GdJvZp+dPpiFG098IBqVLHcOvxav4r0zbxgSrIxPRaNj42m+9eSM46ndi5uPC6H6I/NkdQI43IIcsMYJzlCWYznRXIvARklPLo2x48dpRHvvEkurq60d99h2rFjOx0+dFCl+LbT0xIcOCYBorn0hty++KgG81/cOaHNq90qUGEOIE+If6zsml+D5SXbVfcgP/4u/rH9GoVHSWypJQRtvew5/XkssadtmhIVfpNjPz3JKuFamuUyszPJ1oOiIm7zADA2zWpK+dlSfGQQhbOykZ6M++QzVWTcRx8YFE0rKUBOJPsy6Fw+/RB+70a6Z4YEWw3KVMrQs+Mhx8HPWH2KomPZwsrZdWNZOX2xTVnydOYJiUfPoj/+OU0tqxUhRxvO5J3J51ON4g6cPOkst5POlyfds85/Bcpylu1eHcoy42h+ZqT/PXXkeYqB3UvqEp1t2HaT1rL3y7A+5Q3grN5ynR4ER5ELLyNlridEUlwkuTom0TMt3dSyUfGcwV0k7xMIvnkh759EJs7AoVkTiot5mIkanvyhbq4uFHLzvMWJg7q19edzjcqSDvsXtqLL1+6r+op4WtHVaw8M6gbTyDC2ZGagvTqV2Gsm4irdzcTapGFhyWu1YmyuKaUODpwh+FGoHV6R0Epfkveb54mif5y8f3IE0p+WfXJ9yRUtIX707r27al02dOjWrZuEbF6a4D2+AMHB7A6ZASni7kAf962mlNEMHJ6pQ6pyxt4hHcqQhwVLOGSqQTMPhnXO0cmZA9FdVQICN57d8vYpSoj/wDYX/nPioHUoQTkhNrwuoDkS8/A2ka0fu8lmUz+t3SnJyo5io+6k2x0bztSM9QzTkrbtnqJ9B49S/wGDUxTTkgL0f/EFatmsEb08uD9N+e5HgkUUop/sq1H92rR//16V7CtFRbIhywk4cNIJ71QSXqXXWPlAd5o8rBF9MbgBjepVk74d3oQa8rIu+vJujxr0TNOS+psy/D6QE3Y5cfZYEUMCzhzj/cGrFZI3Kjf/tNwvkosV46UW9LNuI4eKB8d26cveI/foQUgsNef4r9Sd4vSPePTeKnl5h+4dA7gNw4GcidKySQjkegJYgsXVPeMhVTl1glYcWoVkTJYIclP07fp4nGrJsXD/X7ruCideZJcKlnsPomnTjttUo7Kn+ly/emEKuhtFew4lx7XeuvOQdh+6Qw05zjSjUiONBJHm1HmPx+hxcXEUEPj4nDE2v32bx2Ast27d4n2BBlVhP8bzIrmXQIEfKVTjrLrOrAzt3btbrXHUuk1bCggI1AVDI0D6zbfepRnTpioXgF69X+Cg6XUWz17hFnBjy+j7vSqbfTfEc+B3cEQMOXA8qOuj9aD0D8aSCons/ot6zZVinDmtf9vS9Mv6Czm6cD1+LBwdnaiofzGqUbs+FS9ZmpVS0y4cOLf4+Hi6ffMaHT6wm65eusDXIooXcn4y1mVPd/P4JsZzn1gptbMNJKvYy+ZeErPLJdkVo6iwq2aXL5ROgBlio/H34cefsLJvOCBOLynAk0j2ZfaJSkGLCCCs2J2XkeLZE4uOy3hhsbYZs8Oi9ZqrbRI/N6wKsRKYmHbclFYHsnSfOBuiltR5uvXjQddFXj5qHyckGdq7PJ26kJyUTzsm3ddCjwfAbw8sRx9+e4KXf8i4VRtJRzBgNCWybqApKrItqwkg50OiiTCUrG4nq+tLSuIQh3R+u43bdHXmSUr25MqoLOM1SCfPPElFeB3S+8Ex1LFlACEcAIKlYD5+qzp9/N0Rjim1peu3omhQz7K8VrLhRKYqbOZ/z7Tzp3/33uVxXcZ+G/Bs2bJ5E/Xu3Ye+/OJTlWW3y9Pd6Ksvkr29/v13C3397f+oZq3adOTwIarfoCEh7nTH9m1m9lCK5QSBAq+QOrFS9MPUaWqdqbCwUH51UusdXbuaPPBfs3oVNW/RSlmSIsIjKDwinAb272vxtcKagW90NXStSquS+X+fp+3HbylrJhTPUn6uNLxrFbWI/QNee/TrxUco7GEc2bEVzIuT5HRrXIqqlfZKq0rdvhJFnKhz/QBasfsaxTxhVzqlhPoFUNNW7akYLzBtrsA6Gli8lPrDMaHB92n39i104dwpCufrlp3iwplvzZWosMtk61OLyMaHrOIzlinPVFtJdiXZTTfGLOuodryJfEbarnRf00sKkF6yr3QbkAIZJmCTgZT7GW4sCw60zqLlEDLSFUx82drZc2y2HbvdJ7LrcCxPZMXy5GPGla2M9EP/GE8e1L0zsKxuU3xcBNkV4sk4MxXSsIg4lQDt4UNeuoffe3nY8yAympbzuoEDupdhV7VCurrNemPFzzfrxwpp7SoeVJjrvBGUMfc/DP6m/jxTLbGg3z4sFLJuoD4ReZ+tBHjiLS/Gricnl7PsO1ylfMYtwVB+501pxkmM4tVzxMfLgRw4i7u+NK/vS+tmF6HbbCn15v1ImpkZqVyWc7bweqlB99I2Knwz5Xtq2qw5+fgUoekzZ/MkVyw1aVhXGSg+/3Q8zf5tHkERdXVz5dUyVtGmjcnrjEZGRNB7o96h+QuW0N27d1R+mJHvvqVbLSMzfZdjs4+A4V2Xfe3k2pphGa1fp4a6YaGcIlOXfnIXWOa02FIXZxd2CbhlcC4evukrVTac5OaZeh5UxMv8gOpKpYtS95YVyNnBlmI4ePHLeQdp95lgalcnkAdXVtTnqSpUvXRyQqXNh67Tsl3XqWZ5dhc1U5pU9afbYUl09Eaiytpq5mEZL5YYR4W9PKnLs73Izc0j4/U8OrJwEX/q0v1FZdXetH4lK6ZnKD7JWiX8yHTlRhVE84DRxoJMhTGRl8nZqyoR8l/FZ8y126ALdn6UWMiLYu4ftagfDmz597ALMKgKHyIe3OTESGlnxUwvKUB6yb5SNCobsoyAE7tn5SVxcrCm++HZ32O4/js5J7v4ly5fiUMtSijXfzdeFF3LkI1EF2G8puBdXvD+yqXzdPnieQ7BiKZojq19UuLKa436F32sAMZFB5OtizdPYAWZ1YV6vDA9/k6cC6Elay7T6GFV2TJ6n9cttiMs0QC5fTeagsNiafOuW9SygS+vG5iGA28hN0qIMXxOPcsWjB/n/WdWf7RCUPo3bPqHSpQsxctWpFx/VtYN1EjJqxDIWgK1Kmd+TOXERhMnzvKemmDt0QBfwwRqqZU1Z7sdhxWlJxh7pyZXr16hNq2aka+vnzIUQQnVl5UrltPaNavJz9+fM+7eMBjX65eT97mHQIFXSHEpkPX23t20rVmILcWfsUSFp/zh1S+DussWsaUqxZzZzTf9xBXasXXKJvvv4xiMJeLj48iTBzL47OpYiKqV5HjCR/UhNnTh5jMUEv6Q3JwNY4q0+ky9PtuwKJ1cdIoiHmbfbQBLhBPHHXZ8ujuVLldRdcMSDqb6bbytbfvO1LBRM1r+x+8UFBTEacuzVrxLO1nk+hMbxRnk7p8iZ08+36TLRHHmDTRN9TrJrjjHjbpTxL0T3AfTLnCmjsM2d17X8A4nJjAWcxKdpJcUIDQ0VFmdtLqNk31p2+U16wnwIyVPSXb3F/HlXoWLUJ0GTalyNfZOSEOQ2MLBwY+KFPWjKjXqqJKYdNyzYwsdO7SPIiPD2RPBsu9ZGs2Z3NWhua/B9rgYViI92Xsmlica2F3PXPH2tFdJy7CIfYVSbvycffwchxEdHhLKmp6GLoq2kmy8OdTA0MX3uQ4BnGXzKoWFm88iNjaWWrVoQrVq16GZv8wxOA1ZN9AAh3wQAllGAN/zquXMN3ZkWcOZrMiHn1/X2P03s2JsJNKvD892zdtRf7u8z50EHv+C5c7+5fpexUSm7S7q4mhL/VqXYeXR/IGG/kmv23uVTv+fvfOAc6O69v9vV71v77vede+4F8A2xoArJaFDwIEkLy/JPxBKwiMFCARIaCF5SR7pkIQeCGAMxqZ324ANGDA27tu7VtJq1f/nzqL1FpWRVtJK3nP9kTWauXPvne+sRvfc0450YuoYCwmhOSHb+WR/C0XJVJE2VRHyeP/2Bm+fQaYY/3xpP6UISPwsV6QMqSCz3Isv+67UbTL9OcSk9KKv/zde2fwsPtj+VkL9S/0+FS0ExHb/XN3NNLF1SEJpttqALE89meTFEO1PBDBSV9BChBuO1h20aBJb/wK4j8510QQ7nhItKECig33FM8Zj8Zwsybw1sgRh1otFp8h10omN8H/vn+M0UWMTGrlS8kE//eyLyWQr/gmZEJaWkAuBeO35bBe2PP8f2CmKo/DPT3QxUt7X1csGCqRiYdHjbKEgZCX0nKgL2+XH5DdaVaaHhXy6RGoXEcCootQABZncjR1jkl7Bk4Wm1EEmeMsWRvHzyiLfVVU+uQLsCZ7a9y40rjaHDNNm4hTNBJrzBvZh5Q0mkFACIsZIaRF9jzOslIgxf5phg+bhJpUAC6RJxQtJk6lWxj95bO500uSDNLhWMiujKGjGfqvgYuj1rd144o39WH/apLiSpAtNa55JQwnRI5twxopJTX5bM2bPx2lrvxrrqcOqv/y0dZQMuxKbN/4HDnvXsNoa7sk+Eki7mt+HzlwNjXEGaUrbyCyvlSRFsYgRYrIrovMKQZT8TwM0UeyxkY+viNw7AiVaUIBEBvsagctL2y5zSseRz+NRc85QA9VoOiES3mdK0egtKBwzJmHDFb7USsr7u+6s88mnPHHtigFOPW6e9Nr2DqX9en8bfRcF5/if34MvWhdoouAaQ4Vnn7sN2twp1BNZNITxb23r9JGf6D7oyL/LQ+l6hO/oeWvHU57FoVYxYl82vUId6z+mgLaGomu2kCvA0CBXxy+ogv09ivkZJYeso6MJjs7IViCcN7A/dd5mAokjoNVmQ0TZzbRSOIwgTJl2rTxeeQRYIJXHKa5aOWQ+e+6SqrjODZ60fmVvaoD7NnyK57YewnknjQseogi8bvz2qY+wmiYO8ybFH4L7qydU4u+b9yUswJHQXCxecjKOX3Zq31hTuTF5GkVOJn/fp//9r6QHPJJzXSLQUY+9jhKUF9GrDErdFLLM6yatgkuKrhnw03sWRcjLptyh7i64bU0xBS+SM4ZQddasPR0iB6nJ1DtBFpFzb/jp9VIU6WhBARIV7CvUuEbzvo66vVEvP7/SQn8nMWjbo7aY3AouRyeZjh9OSCciuNmEydNx1nnfltqLJw+enIHMnjMP48aOw7/+/nsKoNYu5xRZdWZMNIfM3SeuI1vVQEHqhJb0YMi2TlqYjyXz8yQzWpUqC8Yvo6sLS4jBZeZEI8Qr1LG+ugozuQFoYWvbFVIInj1RiYee/Liv+nA2OG/gcOjxuUwgPAE5vpjhzx65IwW5QxfSRm403HM6EGCBNIl3oZxy8CWqlOTq0dB+NC1AC2k0f/3vD3HSzHKsWlA5rG4mlpsoeq8iIQKpMNOdQn5csQijwmfLTtpMkXc0VHF2O2ji5IfBZAp1OOS+yupxWHX6OdjwxINSup6QlVK4M0BBnVyOOumVwm4jdvXcxg3k9L8hbJ1IQQGiBfsK2ygfYAJxEtBS0LmFJ5yE45eeEmcLsZ0mgiF996qf4l9/+x3qDh8kSxUZ5qtRuijKp4WnMMXZdUiK0J2lpOAcwpIiRBHmublkSjvsQtYYAXUNpZE6GFIYFe1XluoohVU2RSYe/nX3zxu4f98X0vA5b6CEgf9jAsMioByGBd6wOh7mycpIgdaG2TafnpkEooe5yszrGvFRizRSJ82M4r8TZpRi3vPqznoyy+qdCHSSJnT7580YX9Yb2ruhrRt3UNqX1QvHDFsYDQ5hauXwo7SJtsopsuWaM88PNhv1/ZF//Ak/v/77+ONvfoVf3vRDydQ2eJKDgkj97b5f445b/ge///Wt+L97byeN58DgG8G6od7HT5pGE9iTKccmr7uE4iNnXzAoQP/I0/3PE4G+IgUV6F+Xt5lAvAR0FBhtxaozUiaM9h/n1y7/fxg3gcxpRfSQYZbyEn3YFsSilaNjNwKaGrKWkL/4FrbBCAcC6nFwOdsiWmKInISJMgXsnzdQDMtAPv8iXcPzz22URilcBKrI/FrkDRSF8wZKGPg/JsAEmMCoIcAz9STdahHMaFxp+BDa0boVOUgfeeULKQ+p1eHGoinFOHlObxL0L+q70GHrwQMv7JZewbbWLarGWSdWBz/G9H7i9EJs39MKzzCCG1ly8iiwUG8AI7mdTyHz2q+cfynlzqOEzK3NuPdXN2LW3EUoolDeG558CBqKivnjm++GitKuPPnoA3jmyYdx8de/I7d50tSegtrD+7Fv727Z53BFJsAE0oeAWFCat/gkzJy9QNaghMWF2+2kdABlFAlaRVo+FflBZkvR1MXCitvtoWcN+U2qtZQKQJ7275yLv4H7//hrNNQdkTWGcJUK8yJrN4XJfrd1H/TmichykSZR8jcP11p8+wOaiVIeP2fXgagNaNTy16w1Gg1ef2ur9KzOzc3F1vd24jUSNH907dVSP5w3MCpursAEmAATGLUEWCBN0q0X/qPxFhFo82eXzJWCGAlhNMeogaZfzqYlM0ogXoksJblamCh6Z7vNFVezKvIbPXXNWTTxi825/ri5C/v6yy8oQnFxGeUU/VQSSPfs/gTnfe2b0gRHVFqy/DT89o6f05YICCRfW3HW+evxx3tvI7Pg+CLOir65MAEmkHoCQis5ccoMnHhSdH90JT173n5tE7zkj5mTk4PdH25D1dgJlApmHvwkpIq2dn+6E/VHKE+wXk9PkADyCopROXYS+WUedYcId5Vf//ZV+N87b6L0X/EHS3N0R4+W7e6mAEEU2MiQO5VyGZNPcRjz3XDjDLs/W0dmumNJILeju7PXbDZs3S8PxBJ93eVyYeG8WWGb5LyBYdHwASbABJjAqCfAAmmS/gTGl8WvHQ0OSYTz1qYwmqZOQ5JwnDJbAU3sRLCR4RQHTfQa6o+gsopM1qiIFff+6QSEj6kwIbV2dMJCK/Byi4j4O2v+Yrz5yma5p3A9JsAE0oCA2ZKLM8+9JOJIhKBZkJeDgvwcikq9GLmFpVIaKyE4btrwb+QUlMNsyaFc003Y9u67lCbmAtKcauHqceK1zc9Iz62imkq0tHXA2jUwufrgjs++4DI88cjfQuakHlw31OfCfHkLlW5KA+Pz9sCQM54W+XKQ5a4lITX+SOgBVSlAOY2Fz6jLQW3JLEa9Ah2RM5vJbOlotUgm/kEXgaO1eYsJMAEmwARGAwH59jijgUYCr7GywJDA1lLTVL45vlxWGq0Oq888b1iDFDlKH3rgT5g2cw4qq8dKbc2atxjP/ucRfPj+Vny2aydeePZJaX92HM7wS5avgokmpVyYABPIDALCjF+Y80cqer0O46oroCXT/vqmdpjySvpyKhsperQQaJsa6qQmxDMmi5z7s7N6rTjEc8vposTp9Y3o6HIgj4TairJiKMi8N1wpIx/5iZNnhjuc0P0+jw1dLTvgIo0vDLNIu1lNvqUx/K5kqSjHaAkCuuPghRG21p0xCaMJvRhujAkwASbABJhABAKsIY0AZziHyhIYYXc444jl3CJL+AiQkdqRTG1LyyNViXIsQFqHByiKpRfnXnx5X93T1n4FYlK584OtpNHQIL+wWApQZDLHJ1jOXXACXt3SG0SjrxPeYAJMIC0JlJRVUk7hqrBjy7GYUFSYj45OOxzOodpDoQHt7GhDfkGh1EZhcQkK6Bmy+bn/0MLXbDgcdhSXliE3rwDOHrf0yjEbMHZMBQmpTRSdO7T7wsrTz8ae3btIS5pg1WGYK+3VajZAoy+BWj9eMjWGz4YsP5mzBDxfvsgUWOQxziINbLYeAYWJPubA09MCV+c+SjXTEaZ13s0E4iOgVmaTm48KIvJzjlGNPHqZ6bOP8qaL0tblQie5HHU5PBChKbq63WTxFF9ffBYTYALHPgEWSJN0jw2azEObY6AV9RiLMJc7YRhpGEQqhccf+hv8ZIp79XU3wmIxS0KnVqOGi4KPlF9wEdwuMVl04dEH/46x4yfHOMKj1ReduBzb33kdDvYlPQqFt5hAGhLQUx7hM8/9WtiRFeTnIsdsQnNrJ6Ul8Q6pJ0z93379ZVSQ+X8e+aaLkpWVjZLSCjShDgf27UFLU6OURqb/yZ2kKfWSJnVMRSlqSSh1dJN2MkSZM/94vPHKJilQUojDCd/l97ngtB2SXko1PSPppVBZSJurJa2vEERJq0sLeqKe19MNb3cD+dJ+Rq6oQ9kkfHDc4KghoNcqpXgWx9Xk4vipBSgwy1/E/uhAJ7Z+3or6th7Ye0hIHUYAxVEDnC+UCYwiApknNSXp5oiogCIgT1tr6PxvIu2AngJhtLW1yRpBJiYrzqXgSbEWg9GE8ZOnxXqaVD9Ay6WvbHoS8+fOwSkrz6AIvxQBkyaXLqcL3U63lPdPQfdEmOP1OG0oL8nHylVr4+pLnCQmpBYy4WOBNG6EfCITSAmBwqISiGdLqJKbY4bFZERzWycJj6Gi5Aaw7e03SFj0kcC5rK8JESF3P0XbXnXG2bQviwTSBhIqN0M82wspmFqw2B09JNgFUE7mu4cOU+5gWhgbXE6gIEsffvAurJ2p1zyKSLzixYUJpIqAjuJZVBcbcObiChTlxOfaM7MmB+IlyjuftWHzB/WkNfWw1jRVN5H7YQJpTmDUC6RlZWV45PH/oIDMunqcTtTX1+Huu+7AKy+/KN06kXLg1tvvwKrVa9Dd3Y12Eki/efl6NDTUR7y1mZj0l5SdMRcRaCieotNqKMG7CeJ9/4GD+M29d/Y1YzJbKJfpeZRz1IqXX3iG9mdDRekbjicNZ824sdBpVKQZaY8agKSvwX4bU2bMRn3d4X57eJMJMIF0IiCsLhaccFLIIYnnRXFhHhpbQgujYpFr69uvwunoxrIVa0iDePQnTviSWnLzqN3eB11hcSkJoiVoaqwfIJCKjrvJIkNpU6C0pAgHSSgNVQpIaB4JgTTUWHgfE0gGAY1SgcIcDS49ZSxpQ+UF5JIzjsVT8iFeb+xqwSsfNkmmvXLO4zpMgAkcuwSO/lofu9cY8cq8Xh9uvulneOnFLVK9y7/xLfz4pzf0CaRr1q7DnLnzsGj+bDhJYL3p5l/Q8Rvx/e99O2K7mXgwm3xBYi2Tpx8X6ykQvl8lRQUUvdGOU06/MOz5JrMZp6w6C2qahIo8pKK0d9pIIFVTVM1cStquRVNLaI12uEZnzlmId15/kRYXoqd5CNcG72cCTCB5BAxGI8ZPpJQnIUpJcQHarY6QZrrkTCmZ0QohdNmK1WTxMjA4kYVSwez/4nOKrtsj5Tf2eNyS2e7YcRND9EQ+b/ZuymFqRiGZB4sIvIOL8EkXGlchBHNhAscaAeEPunpeGRZOjm/RWQ6PJZT/XLz+tnk/dh+x9gUkk3Mu12ECTODYIjDqBdLm5ia8uOVoOhCxfcNNt6CwsAgtLc1YvWYdNjzzlCSMilv/6MMP4elnNyGbkoUK/8fRXFSUcH7ipNjMdfNyLMjNtZAg2QkX5QaMXLJgMA0123OST6mr1Yu8HCPKSgpR39gSuZl+R4X5r8iZChZI+1HhTSaQPgTMOUKLObSIhSxyDYXdEdqv00vm/g11tdKJjz/0174GghYXNeMnwWaz4SWyutDq9PC43Zg6fRbKv0wz1XdCvw0r5SctK86jxTOblHKq3yGMI6HZYDSnLLhR/755mwkkk4AQRq84cxLyTInTikYa7+WnjSUT3ka89lETnO7ouXojtcXHmAATyEwCo14gHXzbli47iUw668hXtFfzVkJRGPsLrLW1tVJ+zNy8PMnf1FRQMbgJ6XO2MjUP8pCdx7lTQWPW5xRBvMspiiw/8ijnn9xiNOhJ0M8nbYMVHorEl93PnE5uG/3rtXd1ozDPguKiIrS2d/Y/FHFbpTHAFENaHqU6i5jEHvAp4iBScLD3Oi1Deuq2Uo5DT+gIokMq846UEpDz/VNpvMik54tSo6fvm1kWx4Dfh8nT5oR8BhUWCO2oPexzQ03Pkwu//p2I/YhUUuLl7LZDpzdGrCsOirgrNooUWlRYQIto7UPqGyjid5Zm6KLZkIq0w+/z0nVpMupZotaZ6N5F1pC5urvgpheX9COgMVgg7qHsQn7X+Ro3fnDWBNmnJKriqgVVKCuyYMP2ZvQEdMNuNgt+6bsmdz4z7A4T1ICYa2hNFNNEK++Zqda5MuqZEsSkoMwJoebPXreT8iW3Bavx+ygiwAJpv5s9YeJEXHf9T3DdD6/p035ayGzU5To6eXe5etMLWMjPUQRACjexz0QzLhGZ0u8VaQTkmaApVQqqKk9LLDTKxYW5aOugyUtUzWi/mxJls72zC8UFORQEyRk2IubgJvQGA7rbhk4uB9cLfg741Rlplicm9z5PiNVmmfcseP38njoCcr5/AX9WRv09hv07DIFVCG2VY6qHPFdMRj2lk/DTs9gd4qzYd+l0BtnPORv5owotaVNL2xDuuXn5sB0+ImsAfvo+iudlJv029N67o79/oS5U1OGSngTk3L/gyMXfZpHBjyvPnDhif6MzxlAE6awAHn+rAa6AvIXx4PgHvwsPJPFdkztHGXz+SH2WxkxZB3zkUiCn9D5X5M3Z5LSXsjqklAg1fxa/AVxGJwEWSL+878UU3OLvDzyI//v977DxWRFIp7dYrVbKgXn0wailZOqiWK29GjmhbQpVAr7KULvTep94EPTYh/pKhRu00pIjrfqHO95/fyFN3EQKBSE4JrKIh7EQSoWmVJjjySkq8i0Ld99Cne/zFsi+zlDnj9Q+r6eHrlMek5EaI/c7kICc75+XFsMCvmjm7gPbHclPYtLRbZWnQVOSdiCXAg8NnpQY9Vp6fnTTQmHqhR/RZ3d3Dww6Dbps9gEoxYJlLM8Sv69oyLUNaDDNPnhc3XR9iX1mp9klHtPDcTvtEC85xaRT4crTZ8h+tgiPpU6HC0atinytB/pri/683gA67C5oKUKvyFcqt0wu12PlrFw8+dZhWryWt+Adqm3hmiOeI4OfJaHqptM+MV4XZRXotst7Znp12oy7RsHb53XH9OxMp3vEY0kOARZIiWtlVRUefPhx/OufD+C+P/xuAGkRTbei8qhwKbaFxrSjQ77gNqDBUfhBRZGKhf9XQ3NymHVTmhgxYRV5CTu7ogtgak3s6W1G4W3jS2YCKSegpoBlOj1pLwcVPU26mtvkTdAGnZqQj8Jv3aDXDRFIzTm5CWmfG2ECI0lACIxXnDFJ9hDe+bQJD720l3KSKkjw9GNcuQXrV06C8D0V5cEX9+KNjxuQY1TD7vSiptSE754xjQISyptyLpiYhyMtDkoP00KLULKHxRWZABPIYALyng4ZfIHRhj5u/AQSRh/DvffchUcefnBI9Rc2PYcrrrwaf7rvD+ih6IznX3AhXtj0fJ9J75ATRtEOEdBDTjGbjXA4e6SE83Lqx1NH5A60kNArRyAVWhguTGC0EtCZ8mDMKYbORP6PlJvX63GSVoT8G1UayYRK+KcqlFoydfPBaeuEvZMCjdjkm7gPh2u476YwY/OQGdtIFY/bS8yGCspGQwz+eSM1eO6XCUQgoFJmY+WcUuTHkNYl16TBjy+ei9I8HQUn9ON3T32MV3fW4Yzjq6WeJlbm4MwTa0h7qpSO3/bg+3jz40acOi90zI1Qwzv7hEp8UWdDU2evm1SoOryPCTCBY4fAqBdI582fj1IKXPSrO++RXsFb+7+//TXuuuOXZL67AUuXLce29z+kaIp22Ow2XLb+4mA1fpdBQAQzEgJjMovIG1iQZ+Lox8mEzG1nNAELBWAzF1ZIJnkuexusFKDNR8JouKJQ6aA25iO/dCyyKiais/kwbG314aonZH8493Uf+RuNZPH6fBCWHoNLtkIxeBd/ZgIZRaDIosXxUwtiGvNkEjiDRUPmulOrcvHRgXYSSHv3zp9UGDxM35ts8v8OIJ/6ibVcfHI1/vDsXvSkQeRdJeVkzbWYJUsJNeVFF/mMvbSQZ6f0UJ3kGpPI2BixcuL6TOBYIDD0F/ZYuKoYrkGkcRGvcMVLq/LXXHUFjJR+xGgworGxIVxV3h+GgEhm39YR3ZQ2zOmyd/f0uCFM++wUhIQLE2ACvQQ0egsKKsZThA8f7E1fwOOUF5FaCKvOjlrppdLlwJxfCXNeKVrr9kJEVk1GUYYQ+kQ/Il/0SBYRUClUUVOkSC5MIFMJaMi/88LlY4Y9/E8OtaOmZKi1wPNbD+OzI52YXpOHmWPzY+6nokCPmmIjtWGN+dxEnmAhKy+RO91BvuRddidZa/T65SopHoWe3IXGVlegmaJwt3eO7DgTec3cFhNINYGhnuipHkGG9GengDksjMZ3s4SpnT+c6iO+JkOe5SFfFjXlRuXCBJhALwGhFS0dPwsuayNpRHfJFkYH8xNCrLX2Y7i6Gqm92TAXHPWrH1w3GZ9VqpFfOxWRwrkMn0A+pe8R+aC5jDyBMjK5Fa/hlBffr0V9WzdWzq8a0kxzp5PcmwJotfbEreW8eHk1RMClkSoi/kVhQZ6Urk6knepxe6SI31LUb8p93EH7Gik+hqhXkM8+5SN1n7jfzCfAv7CZfw/T/gr8IplfCgolVICCViy5MAEmAOQWV5PgWI7OwzvR09WUECSinc5DO2EpKENuSU1C2pTTiIcmfiNd/GG0pCM9rnTpf/qMmThU2zTkZTD25nsVAQE3bXkFz27cLLnA3HLrL+l5zSbPI3X/tBSQ6Cvkpzmc8sHeVjz7ziFc8ZWZsBiGCo0i0NG15x0HoUl8buuhuLrSaxUozx+e0BxXx3SShoKslRYXUp7zLkkQDdeOmxbdW8kKLC+HTHoNIzPWcGPj/UwgUwjw7D1T7lQmj5PyiqWiBGgllrUYiSUteAofa+aaWK7Jbi2HhFGDJV/SanpdjoR253U7qN2PYMgpQE7x8M395AxupBeasrOyKAAUJTbkEpFAV5cV42sqBrwc9l7zxhtuvBmvvfIyFi+cg8UL5mDJkqU45dSVEdvjg8kjIFK1VAxD0Nu2uxn/enEPfnDOcagu6V10CDfaklw92rrijyOxdEYx/Qal/vuXl2uhQIkO8g+NviAm/Mw7u7oloTQcB97PBJhAeAIskIZnw0cSRCCbInmmoogJo/D55SKPwHXX/2SINuMfDz7Sd/LadWdgx0ef4uHHnsAHH36K01au6jvGG+lLQETQzSmsRFf9Z5SfTl5y9Vivxk95UG31u6mfKujNsQVEibUvUX+kBVIlafJGMspvPMxG6hyPx4P+LzEOFblSrDjlVDz66MPSsBwOB57d8AzWrF03UsMc9f1OrbLEzeC1Dxvw5Bv7ce25s4YIo8KQ4NWd9fQ30Ot33Wl3Y/vnzRhfFn9/kysphgdF7E11MRsNkt+o3H7tlGvdaBgajVvu+VyPCYxmAqn/ho9m2nFcu0qjp/QMuVDrjFDTdrai1yzG53HD3WOn4CKUQNnWltaJkUV0ulQUFfXjcLBAGgvrRx95ED+5/rq+U0R6DVGEmd2dd9+Li84/Gzt37sD8BQtx/wMPYt6cGXA6w0dm7WuIN+IiYKSgQSLtSqSi0rqpTuhgOlnZChSOmQorCYviXmZlDzWji9R2LMdEAndby34UjZmOI59vQ8AfOvCQUmuAuUieb5UIsqJQDb1+FQUPEvmDhRZiJIqGgqW5aYI9eGwiVY4ht3TI/lBjFEK8gu6bIsr9DXXuSO1T681074oidu9ydMLl6A3motPpcdc9v0E3CZzvv79dEjp9dM8KCgohUvrU19X2tVVH2/MXLuz7zBupI6BUZOGEaUcj4cba8wd7WyS/0Bvu3zbg1BvXzyfzWoOUg/SRV76Q8pBaHW4smlKMk+dUDKgb64dCitLb1e2J9bRh1Rdm+rE+c1zkY8qFCTCB2AmwQBo7s5ScoTfnI6eoCiqazLkoB6DPZUNP91HBU0yEFGo9Rb0skiagjs5mdDYdkoTUlAwwhk5EhEw1BSWRY/YSQ7NDqmo0KsoVmxyN0JDOjpEdPp9f0mYMvpzly1fgyJHDkjAqjm3fthXNzU1YsnQZNr+waXB1/pwgAh5XN7I9roit+Y2KsMJfHvl19lib4HGkJm+o29YKtz6XnlWVaK/fF3LcARLEPM7I1xQ80Z+tp2sbGtG2mzQPGvJ588ownQu2lch3rVpJKb8cQ8YmhHBhEu33Rr8+P9UNBPKk/K6JHFsy2/J73XTvIk+wfVRHlPa2Vvzuf++l9zYUFhbhpzf8nBayFuGnP74OZnNvzmqX6ygnkdfbYo5fa5bM6z7W2zbrVcPyy7zqnJkREf3skrlSECMhjOYYNfTdHb6V1PRqC/Y1JD9af/8LY1eV/jR4mwkklwALpMPkq9SEcWCP00xVSYJmfvkEqLV6dLcfRldda8gRemniCnRIx7Kb90NrKULphLNsnmkAAEAASURBVDmwtzeirf6LkOdE25lFYxaCbpbMaJJZZMYmp66DNGoiNLrHllhftv7XoyGTMK8Qrmg1PtqYhBYp7H3r3+iX26J+JvqPZWcrQ16njwSe4KR/4cJFkkajrbUVGzY8jV0ffyRddUlJyQBththZV1eHEvIn5ZI8AkFNU6QefDkWun9DLQFU9Cwy5ZWgbd+7KRV67K37kV+zAFbKU+p1D9WeC2sOp01emhgtTVyF5nVwsVqtFMXSQkKheO6ltohJqY4Wu2rrumhsAzW0YqyxpMDx+0qHtJHaq4mtN6+7h+7d0HsaqpX6+nrce89dfYdef/1VPPTIv3HTDT9BV1fv/Ver1QgKpSLSrtUqLwVRX6O8kRACqUjrqyVrB606zPwojquYVGGG8OVORcT+4PDicRsfCV/X4Hj5nQlkMgEWSId59yyFoYN6xGOWpTPmoqBqEno66mE90itUZivk3KKApBVx29thKKhBxaQFaD70KYIr13IvUZiTGcn8TKmWF5JfrVXJMj+zO90oL6HJpOPo6rjcMcmtZzYZ0U1aGDncxcQ93H0L1Z9KTe2SoJ5pRWjXLYXFQ4bd1XIYQhP33vZt6OzsJK1yD6ZOnYb/PL0Rl62/GG++8Toslhxpf/+TxUTS8qWmo/9+3k4PAqa8Mjg7GyjNwlCBLpkjFFo0Z2c9CcOl6Gjcn5SurF12FBXmQ5jle1Kck9RIi2ldNjuE6SkX+QSaGhsl31ENmVq3trZIlhjlFZXYv6/3t01E3W2kOlxST8BCGtJMK3lGtaRpdbpT9z2UcptTHvXuHnlzF7EwLoIrckkdAZFGSgROE/MYLplNQI60k9lXmOTRt9XuDtmDzzMn5P5wO3WmPPLFmoLOuk/htofWioY7N7hfBDCx1u+CIb9Kaqtx/4eksZD/JfV6nKTlOBhsLuq7urxKVvt2GkO3SQ89BSWwUVLpRBfxIyBMgg4faZZynkVr3+20I9x9C3Wuu7xA1nWGOnck97m6rXSdtWGH8NKLWyBewdLT48T5F/QKpEJzodEMXJjo1Whw4u8gr3R7N+YWk0XFrhEZVg/lOTWXT0+aQCouqqOjC2YjRevsTJ3ZntDImCiNw5F6Fpyi/WEtW7YcBw7sx+HDh6R0Lt/6r//Gjg/eJ7/+XsuYl1/aggsuuAi33XozpcYwYN3pZ+L2W2+J1iwfTwIBYbKbaUVEBRbpY4DUCaQd1i6KmmuRLZCajFrKSyrPGiTT+I/EeF9/ayvGjKke0PWPfngVHn34IYgFrb/87R+S2b+Bgk89/dR/JGsMXjgcgCujPgzfsD+jLjc9B6smTVbxmGnorP0kbmG0/5U52kgDZm9BYdWU/rtHdLu1rQO5ZgP9oCQ+wJHFrEdLa7ssYXREIaR5502NTTCRplmUhoYGlFdUDBix+AFoaKgfsI8/pAcBtc5EZroUgMOdepNWQUD0K/oX40hWaevogEatgkGXOmsFCz2zbCRQ9cjUkCTr2jOh3XHjx+PFV97A9g8+wvs7P8GcufNwzVVX9A39FzffJEXaffvd9/Hu9h145+23sGUz+6P3AUrhhkmXmboIEYwplUVYZoigRjn0HIhWxGKZgsz72zt40TYaq1iOr7/kogFppB5/9BHpdE4jFQvFzKjLAmka3KeC8okQQqTb0Zaw0Yj2QBrTvNJxCWtzOA05aULX0tpJq429As9w2up/rhByRaqX9k5elezPRc72OeeeT769eqlqQWEhzj7nXMlcV+x49dWXUVU1BrNm92r6F5CvqYiUKcx5uaQfAa3BTMFnRnYi5HF2QUNRWZNVRADoppZWmhwapYlfsvoJtqsnUz3hO9rc0h7cxe8RCPztr3/GtMnjcPZZp2PF8hOxdvWp2L9/X98ZQnO6YvkSfPWsdVhEeUj/50fXsBl0H53UbnSn0Ow1kVeWSv/R4LjrGpokV4GCXJP0HtwffBeL7HkWE3RaNWqpLpfEEvB6B6aREpGPOY1UYhmnS2uZuUyWJHpKpVL6gQymvujfjU6nkybvbRRBMJFF+F2JGELOzrpENiu15aCUDHk182HvaKTou8kLKCR34G0dnfQgUaAgz4zW9uELkBYyAxbRew/VstZO7j3oX+/sc87DHXfeI2lDhR/GM08/ifv//tfevx3yybiOTGMefOgxtLQ0Qxy/9uorOeVLf4BptC3SQvko2utIFp/LTgKpEZSFKmlFBDXSaW3Ip8lhc1vyBHAtaWLFc0qY6ooJEBd5BET+USF4RiqNjQ2RDvOxBBIQaeNCxYTIt+gp+F/mTf9MJgPcMoMuiuBC2RSQUF4cjsjQj9Q3ozA/F6VF+XBRpG+ROUDME0VKOyGIdpAbQX1Ti9TIcPvLJgFXWM35s+TdH6U6QNeYeMuzyESGfzSb0kAJV7XBxUcCqNt51C3jW9/+Dk4/4yzJHeCxRx5Ce3s7p5EaDO0Y+SzvL/4YudhIlyHyLm58fgt+eM0PpBQXwbpCSL319juwavUadHd3SyHtv3n5+oSZLorULvbmo6vIwX4T8S7y3nW31cJSUIGW2s8T0eSw22hsbkNJcQFKCnPJtMUGN2k3Yy3CryvHIrQkWThSJyaMHEQgVoai/oWUY9RkMlOKhkLp73lwftFnnn4Kz218FqVlZRRxt461GfFATtE5Sspt6elJnoAm5zJEcCOVNkdO1WHVaSbz/JKiAhTlW6SFrURrTbSkFS3Ms6CBJpgOR+J93od18XwyE4iBgAjGpwphRp9Npq8ienymlWyFmq5HXuTeLHIhkCLkyxRgo7FoJVNc8QpXokX3D3fe4P1izAoKLKnKHpqPeXBd8Tlb2UNZADLwXtJ1hvrbzKKAi0GB9KEH/4keZw8pMpRYuWoNLrr4EqxddSqnkQr1h3AM7GOBlG7iLb+4HV8lbZGRhNLBZc3adZIvzKL5syXt0E03/wI//umN+P73vj24asyfRVRdIECmdskLfd9jrUfe2IVordsjrejFPMgknNDY1IrcHDNNKvPRRRoPEejIJ1MLYdTrYDbppJyAtSTcchkeARul4xCvcEWYQx85TObfXNKaQLZCFTJdSioHLVKgDFc7IHe8jc2tFHU3D8UFOWSubyetReRcmXLbNVIAo/wcE2rrm6RnjNzzuB4TSEcCPfYOiNfg4i0plpU7d/B5I/3ZQ5qzrvZmWcNQUYohkWlApJ3KpCKlyepqo8ix4X+X+1+PKVsbc0aF/ueP1LYIuNnVHNma4r4//K5veH//21/wxtvbcMKJS/Dhzh3Sfk4j1YfnmNggY1EuP/vp9ZLvS6iALavXrMOGZ57qM1UU0b1WrlpNpiDDR6e3FMBFieWTWUQKCDf5lunM+cnsJua2O8jnc9/BI6Td9KGitADCP8NA6RWECa7QgAaL8M8Qvlx5pBEtL86DVqNEQ2MLmlgYDSLidyaQRgRSZ60gfDuFG0BxYQ6E+f5winjOiGeQkQImHTxcx8LocGDyuUyACTCBBBOQYoWQy5zJZBqQRirYDaeRCpLI3PfhS1WZe+2yRl5SWoa6fqkzamlb5FXLzRtq+y6rwX6VtAYLvBQIJNnF12OD6Cvdiod8MYS29PMvDkh5/jQkjIpJoRBQx5QXSa8Smmzqdb3J1A/VNuAwvRzdbEaXbveSxzOyBHxknp8q7WS4KxX9x5r7OFxbcvd3Wm04cKhOMt8vL84nwVRE8pb/syZSRolAa2UleRCB1/YfqpXe5fbP9ZgAE2ACTCDxBERQxaXLTiJz5F4FxZKlyzB+wkRsffcdKadxMI2U6DmYRur55zYmfiDcYsoIsMluFNQWsxku19GkyC5Xb15Pi9mCtlYyPS2bELIFhWpgDsdQldRaExxkUiL8IpJZhG+X1lSMaGNSqjwwFVZCKWPsYrxqvSZkwIR4rsXu9MAe1XRZQf0N31dCRQEDwt23UGNXaT3EJHWpJkKNIZ59IuJpblnJkFNt5FfsdbFQPwRMGuwwF1bR9zTy35pa1z3kuyySsat0ItJu8he4wmES/fsCWUPGJvyEcsuKw502YD+lKo75meKjFhpbrWQ94ZRcASrKLXC7PXDRy0PBRzweUaNXcyssW1QUiEQEIxG+oqJ02Rw4cKSJfKT9MfctAsbIfWYKYV2p0mXUs0RLbiW5ZQPTP0nQ+v3XQ1GsnDaORNwPSdps6i2F0BiG+nUrtb4h39O0GXSEgWhoYT1XG/nvse90sg4Tv9uhgjr11UnDDaVaA0NOMdRmmc9MvSOjnilB5EoKuBVqHubpscPe3gCR9/zuX/+WhE0jrJ2d0Bv0FGjx6r6gaSKN1N8f+JeUz9hkNmHjsxs4jVQQboa+s0Aa5cZZrVYIO/Vg0Wp7Heqt1l6/T0dH6IiBfu/QH4FgG8F34bzu8/QKuMF9yXj3eVwQV+Cn6GWRiohu1tPVKjvYgV5VFLXNSP2N1DHBI9x9CzUmn5simJIGKtOKEDodIYIwZJpPTaZxH854ndL3L7KGz0sTlsHfZaetA0ZLHgLkxzlSJVuphaOzbcjYfO7Qf4ehxqkgc6zB1xaqXqh93fT86qacoaIYyNdcryMXAIqWqzdq+lbZ/SR0ikBqTkcPWluc6HENz78slmdmgPzkfb7MepZ4KDq7oyPyIgc/T0L9NabHPld3F+UIHrr46Cs2x/09G8kr81DAG4fNLmsICjLDF9/PeJ8nsjpJQiUxXld3Z5+bWLQuTLTIlonzE7839DxMxCIQZc+ez7Fg7nEUdLFIEk5ra4WL19GI58E0UiUlpeRiYSOfW3l/F9F48vGRI8ACaRT2wq9U2KYHi9gWGtMOStIuitsZ+ksQCIhV+WjFT+v2R79g0WrHe1wkrO99RR6TGLMnBs2Z35sn+YDGO66ROk888MLdt1Bj8vu1EJPJTCviRyqW68y06zsWxysmXNGK36eg7/PA77LT3kY5h2tS8jwJNz4VaeSdtSJ42sCxxfJ985EQKfzKh1tsNDkRr2SXAI01lmemqJ9JzxKh1XU7hwo0yebK7SeGgFh8Fa/BJeAzDPmeDq6Tjp+FsCb371EENRLznkQ8T1LJQghdXrdL9m+3z5uZ8xO/zxf1GkVqnebmyLldOY1UKv86k9tX5KX45PadEa2/sOk5nHnmV6QVGjHg8y+4EC9sen7ASk28F+KnlfrsFOQCE75dIgUMFybABI5NAiJioRAeVLqR8RVX6XKkaJZiHFyYABMYXQQ0wiy/ZCxKamaiaurxKBwzDSLHeiamlhldd46vlgmkDwHWkNK9EHbqJy5ZKpkG/PHPfyefIzdOWDSPkh97Jbv0pcuWY9v7H8JOpiLCNOCy9Rcn5A56yVxXodbD3xPZJGq4nSnIb4knisOlyOczgfQm0EV+NwbyO/JQVO1UF62lBDbqnwsTYAKjh4BY7C6snAwRr6DH2gSPvRluWyMUFBfDmFOAvLLxaG/YB1tb/eiBwlfKBJhAXARYICVs11x1RVh4QigVx43k22Qk5+pEmgf0OKxQUmAjT5IFUqXWKDt3V1gQfIAJMIG0JmBrrUNu8QlQduhpASq66W+iLkalNVPglDw0Hvw0UU1yO0yACaQ5AYVShZKxs+Dp7kD7gd1DR9vVCKXGAEvxRKg0OrTX7xtah/cwASbABL4kwCa7Mv8U7DZbQoVR0W03RSdUG5ObHzQrKxsaUwH1xVEQZd5qrsYEMpKA8JfqpETj+vwxKR2/Pr8SHU0HJH+tlHbMnTEBJjBiBAqrppIw2o7utoNhx+B1OWCt/RgGivYrXlyYABNgAuEIsEAajkwK9ndbW3vTAGiMSetNmNJ1W5vZhzRphLlhJpA+BKzNh5Gl1ECXU5qSQelzyimQkgLWliMp6Y87YQJMYOQJ6C0FNHdRkTB6KOpgApR+xdGyn4KujY1alyswASYwegmwQDrC976z5TBpNCqTNgp9biVNFmuT1j43zASYQHoRaDnyOYxF45Me4EhNZrr6wmq01H6eXgB4NEyACSSVgDGnCC7yGZVb3I52tqCQC4vrMYFRSoAF0hG+8UKzkKXQQGsuSvhIDAVjKWdXK4SvKhcmwARGBwG304bmg7uQUz4dwr8zGUW0ay6biuZDn5APfG/uz2T0w21mHgGdTof8/OS6omQelWNrxBq9BW7KlRlL8TiTG7wxlrFwXSbABNKPAAukaXBPhLO/sWgCBQBInOmuzlwCocHgQAJpcIN5CEwgxQQc1hZJc5lTNRNaU2IXu0R7ot2Ww5+RO0Briq+Mu0tXAkqlEr+68x68u30Hnn1+CzbSq7S0LF2Hy+MaBgERpEiY4sZSFBSRlwsTYAJMIBwBFkjDkUnhfqe9A61k9mYpm5YQjYaWhFFDYY2kvRBJ6bkwASYw+gjYOxrRsG8n9AXVMBaOJQBZw4IgAqQJU2ARNEm06+iUb7I3rI755IwgsGbtOsyZOw+L5s/G4gVzsH37Vvz4pzdmxNh5kLERcJNVRDb5qsdS/BR0jQsTYAJMIBwBFkjDkUnxfjF5bG/cT5qH48h8tzju3g00+dTlV6Fh/0dwkekeFybABEYvgR57J2o/3wavPwt5NQugz6tEVpYiJiBZ2UrpPHG+1x9A7Z7tEO1yYQL9Caxesw4bnnkKTqdT2v3oww9h5arVyM7maUZ/TsfCtnADUuksMV2KShtb/Zga58pMgAlkPAG2oUijWygSy3tcTuSXj5fMbZ0ddbJzlGqMBZIgKvy56ve8B5/XnUZXxkNhAkxADgFTQTkUUTQPam1P1DqD++poPIjurnaYC8pQNHk8erpaKGVDJ7y0aBUqZ6lCracJpwkqfU5v2igyzW0mE1230y4JtAqlfKFWRXmQc0oKBg8p5GetKpuid8ameQnZUIp2KtUamPLpnskYs8/roWvT0kudotENvxuNIYfuXeSIzT1k4SNeJWSe++KWzX2d1tbWQqPRIDcvD22tbNrdB+YY2HB0NqOgfAKcnXWyrkbMT/wxmvjKapgrMQEmcMwQYIE0zW5lj6MTdSRQmgsqYCmdjIDXBRGhztNthc/tlB7qWbTinK1Q0SRIRxNGC+UyLZAEUDHpFD8UXJgAE8hMAmqtiXzJdREHn630USA0+QJhsDE35QRsrdtLOUMpV6k5Hzp6bujJtF9JCe6FsCSEKrGQJZ4tPg89d0hY7RbuBA0H+xa44uk3m9rXGORpRxQBN7KyY7+24DWm+l1oj1U6I1QafdSuvZ4e6doy6fqE8Bzt3nlc3dK1W8xmuFyuPg4uV8+X+y0skPZROTY2nJTX3EWLU8bCcbC37It4UWKeYiwaJy1oRazIB5kAExjVBFggTdPb39VaC/GSJo4mSq9QQBNHtY78NtQUTMAn5RUV2lSxMm0lzQVH0k3TG8nDYgIxELC11UYVyAqLegXGGJodUDUobHY2HRywP1kfPD12dDbLM/E1G40k/B4VapI1pkS16yMh09ZWR2ap0YXogN9Pgv4YemWO9Yr4Xelsi3zvfO7e+2W1WqFWH9X+arW9CytWa+TzE3UvuJ3UEmg5shsl1dNhKp4IR+uBkLnO1fpcGIsn0Pf/MIQQy4UJMAEmEI4AC6ThyKTJ/u6uNjK1a0uT0fAwjkUC+QUFcNjt6Onp1Wgci9eYKdckTGKjFZ/XIi1KRauXLsf9pH11OeSlfPBqVDSx9aXL0KOOQ4zVI+OeBRsSZot+WlDMlCIWL1yOXp/QaGNuaKhHReXRnNpiW2hMOzo6op3KxzOQgFgYb9j/IbkYTUD+uEVkvtsIr8smLc4EKICa2pBL1hZqtNV/wZZbGXh/echMINUEONpAqolzf0wgTQiICeOmLa/g2Y2bse39D3HLrb+EIg5T0DS5HB4GE2ACI0jghU3P4cwzvwKtViuN4vwLLsQLm54nAZyjq47gbUl6123kBnDks3dpUZPynauMUOhy4QsoSCtaiyO7t7IwmvQ7wB0wgWODAGtIZd5Hkexbr9ejrY21lTKRcbU0J3DDjTfjtVdexu233QKDwSDlDTzl1JU0iXwuzUfOw2MCTCDdCGx8dgOWLlsuLW7ZbXbY7DZctv7idBsmjycJBLwU38LWJl71SWidm2QCTGA0EGCBNMpdFsm+b739DqxavQbd3d1oJ4H0m5evhzBP4sIEMpWASqXCilNOxakrTpIuweFw4NkNz0DkEmSBNFPvKo+bCYwcAa/Xi2uuugJGkwlGgxGNjQ0jNxjumQkwASbABDKKAAukUW5X/2TfIr/aTTf/Qkr2/f3vfVs6U00RFkOVWHP9hWoj1fvEmFUU4VNuFMhsEtblBPNI9XVE6y9boUS4+xbq3GyKpCkiG2daUVC01FDXKYJhFRQUStFV6+tq+y6rjrbnL1zY95k3mAATYAKxErDbbBAvLkyACTABJsAE5BJggTQKqVDJvp9+dpOU7Fv4xuSWTQjZgoLy02VaUardMBVWyUphIK5Now7Iyr+XbhxUWkPY+xZqrCptV0blRgxeg1pvpuvMDX7se++o3wszpWgQpX+aBhHUyGKWl56jrzHeYAJMgAkwASbABJgAE2ACwyDAAmkUeNGSfYu8faFKIBA9L12o80ZyXyAQkEK3h7umwWPzKxUI0L9MK4EApV8Ic99CXYvgIl6ZVqQ0EyGuMysrG11dvVFPRZqGoFAqgpFwioaRvcs6cwFFpoz8WFbSQpDIFZopRaHWwpAr73mo0mqgoLylmVJEjlWdKZ/ScUUfs9/npaBhanpFvr/pdO1i8c6QG3mRSqT1kRMdOp2ua7SMRSxKhsqRq6D8spn0DAneLyXl+4329xism50F+q5RvnYZ383gOenwriDLMyn3r0ruM1M8VzLnmRJkLP4GDbklwY997yKyt0hnyGX0EcjKzc3NvJl2Cu/Ty6++iXvuvpP8656WehUT+L37j2D50uOxf/8+FI+bncLRcFdMYPgEhIY0QLkeP9tzAKedchL27/tCavSH112PiopKXPn97w6/E24hLgL5FZOhJLN5LkwgUwjY2xvg6GjMlOGOqnGaCiqgtxSOqmvmi81sAi6R+7hxf2ZfBI8+LgKZt6wS12XGf1K0ZN/ix5gLE8gkAj6PmzTEHrz80hZccMFFuO3Wm6Uou+tOPxO333pLJl3KMTfW7q7WqBrSY+6i+YIymoDQkHJJTwKu7i6yevKm5+B4VEwgBAGhIeUyOgmwQBrlvkdL9s0rw1EA8uG0JfCLm2/C3x/4F4QgajKbINI2bNm8KW3HOxoG5iSBlAsTYAJMIBEE3CSQihcXJsAEmEC6E2CT3Sh36MyzvoIrrrwaa1efChH05ee33Iq8vAIEo+xGOZ0PM4G0J1BSUirlDHTYWdOR9jeLB8gEmAATYAJMgAkwgWOMAGtIo9xQTvYdBRAfzngCnC8w428hXwATYAJMgAkwASbABDKWAGtIZd46TvYtExRXYwJMgAkwASbABJgAE2ACTIAJyCTAAqlMUFyNCTABJsAEmAATYAJMgAkwASbABBJLIDuxzXFrTIAJMAEmwASYABNgAkyACTABJsAE5BFggVQeJ67FBJgAE2ACTIAJMAEmwASYABNgAgkmwAJpgoFyc0yACTABJsAEmAATYAJMgAkwASYgjwALpPI4cS0mwASYABNgAkyACTABJsAEmAATSDABFkgTDJSbYwJMgAkwASbABJgAE2ACTIAJMAF5BFgglceJazEBJsAEmAATYAJMgAkwASbABJhAggmwQJpgoNwcE2ACTIAJMAEmwASYABNgAkyACcgjwAKpPE5ciwkwASbABJgAE2ACTIAJMAEmwAQSTIAF0gQD5eaYABNgAkyACTABJsAEmAATYAJMQB4BFkjlceJaTIAJMAEmwASYABNgAkyACTABJpBgAiyQJhgoN8cEmAATYAJMgAkwASbABJgAE2AC8giwQCqPE9diAkyACTABJsAEmAATYAJMgAkwgQQTYIE0wUC5OSbABJgAE2ACTIAJMAEmwASYABOQR4AFUnmcuBYTYAJMgAkwASbABJgAE2ACTIAJJJgAC6QJBsrNMQEmwASYABNgAkyACTABJsAEmIA8AiyQyuPEtZgAE2ACTIAJMAEmwASYABNgAkwgwQRYIE0wUG6OCTABJsAEmAATYAJMgAkwASbABOQRYIFUHieuxQSYABNgAkyACTABJsAEmAATYAIJJsACaYKBcnNMgAkwASbABJgAE2ACTIAJMAEmII8AC6TyOHEtJsAEmAATYAJMgAkwASbABJgAE0gwARZIEwyUm2MCTIAJMAEmwASYABNgAkyACTABeQRYIJXHCTqdDvn5+TJrczUmwASYABNgAkyACTABJsAEmAATiEaABdJ+hGpqxuKjTz7HpV+/vG+vUqnEr+68B+9u34Fnn9+CjfQqLS3rO84bTIAJMAEmwASYABNgAkyACTABJhAfARZIv+RmNltw35//BluXbQDJNWvXYc7ceVg0fzYWL5iD7du34sc/vXFAHf7ABJgAE2ACTIAJMAEmwASYABNgArETYIGUmCkUCvzhvj/jr3/5E/bs2T2A4uo167DhmafgdDql/Y8+/BBWrlqN7GxGNwAUf2ACTIAJMAEmwASYABNgAkyACcRIgKUqAnbjTbeQIPo5HnvkoSH4Ssg8t662tm9/LW1rNBrk5uX17eMNJsAEmAATYAJMgAkwASbABJgAE4idwKgXSC+59OuoHjsWt95yU0h6FrMZLper75jL1SNtW8jElwsTYAJMgAkwASYwkIBKpRq4Q+YnYXkkYjSwBZJMYFyNCTABJnCMEBj1Aul3vvt97N/3Ba78wTW4+pofoWbsOKxYcQq+8tVzpFtstVqhVqv7brdWq/tyf2ffPt5gAkyACTABJsAEgAULF+GdrR8MQXHd9T/BodqmAa9/PPhIX721687Ajo8+xcOPPYEPPvwUp61c1XeMN5gAE2ACTODYJqA8ti8v+tXdd9/vYTKa+ioG/H54vT56eaR9DQ31qKis7DsutoXGtKOjo28fbzABJsAEmAATGM0ExMLtC1tewZjqGrS3tYVE8egjD+In11/XdywQCEjbBqMRd959Ly46/2zs3LkD8xcsxP0PPIh5c2b0xW/oO4k3mAATYAJM4JgjMOoF0n/c/7cBN3Xe/Pl47bVXKJDR09L+FzY9hyuuvBp/uu8P6OnpwfkXXIgXNj0PPwmuXJgAE2ACTIAJMAHA7XZj+bITMHvOXPz5L/eHROLz+eHx9C729q+wfPkKHDlyWBJGxf7t27aiubkJS5Yuw+YXNvWvyttMgAkwASZwDBIY9QJptHu68dkNWLpsOba9/yHsNjtsdhsuW39xtNP4OBNgAkwgZgIqjR5ZHME7Zm58wsgR8Hnc8HndsgawkMx577rnN2hrbcWGDU9j18cfSeeVlJSgvu5o8ECxs66uDiKoIBcmwASYABM49gmwQDroHl+2/msD9ni9Xlxz1RUwmkwwGoxobGwYcJw/MAEmwAQSRUBnLoBCpUlUc9wOE0g6gR5bG5y29qj9vLd9Gzo7OyVLo6lTp+E/T2+UFnfffON1WCw50v7+jQjXGBFUkAsTGEkCGo0WOr2eAm0pYCT3LpMlF3qDAVlZgLPbCau1HQ6bTXLzEkEve75METiSY+a+mUAmEmCBVOZds9MDR7y4MAEmwASSRaCr5XCymuZ2mcCIEnjpxS0Qr2Dp6XGSC8zFEAKp1dpJ6dS0wUPSu1arpf3WAfv4AxNIBQE9KR/E3+O0GbNx3LzFMNOCiZwiBNOPdm7Drp3vke9zNxxkUZeJpbCwEHmU2lCn00K4eXd1dZEJfTMcDkcmXg6POUMIsECaITeKh8kEmAATYAJM4Fgh0NTYhDFjqqXLaWhoQHlFxYBLEwEERVBBLkwgVQSE5nPchKlYdsoamOJI7WcgS7rFS1ZIL4fdjrde24zduz4kQS4zBNPi4mLMmD6VBFFK2+TthFrpp3gpAXjKKjB79iwcOiT8vHfC5/Ol6pZwP6OIAAuko+hm86WOLAGFQgHxwC8qKiRTNBO0Oh1MJgtsNqsUSbK1tQ0tLa30ahnZgXLvTIAJMIEEEzjn3PPx3MYN6O7uRgFpYM4+51w8/NC/pF5effVlybd01uw52LnjAyl1TEFBoaQ9TfAwuDkmMISASOdXXlmNM8/9GjRfpvYbUinGHSJy9Glrv4pTVp+FZ598CAf27UG3wx5jK6mrPm7cOEwnYVThOYhs75cm+F5AQUMQLzgPoayoHPknL8dbb7/D2tLU3ZpR01NWbm5ub9z1UXPJfKFMILUETLRqOn78ONRQOgSPuxOqLDuyA91AgKJNZlEq4ABFbM7WwAcDvAFKQZSlxr59+7Fn717yS6FfBC5MgAkwgS8JCFO6/Px85FjM5NOmh0qlJv+2bHgoVZnwaeu02iRfTWFil8rnh0ajwetvbZXGQ/MKKUruayRo/ujaq6WRP/zoExBBjYQ2NL+gAM88/SR+/D8/6hvjGWeehdt/eRctyDVLx8V5zz/3LN93JpBUAsIcd+1ZF6B63MSk9tPcVI/H//UXdJF5eroVEVRs4cL5UHk+A/zOiMPzKUph6zHjxZdejliPDzKBWAmwQBorMa7PBGIgMH36NEycOBF+Vx2UftJ8BmREo8w2wI1CWpbMxce7PsGBAwdi6JGrMgEmcKwRyMnJQXX1GFSSWWt2lg9ZARuUIH+uAC1YiYUt0LpyFukxslTwZ+nh9ZOgqs1FE02CDx48gtra2rRAYjKZIfzThCmuM0TwF6VSidKyMoq4W8dmgWlxx47dQWRRVKLS8ipc+l9XIIv+pao8+s8/4eC+vWQKmz5mrytPOxUGZSOy/dGDkwlOruxx2L23AXtp0ZwLE0gUARZIE0WS22EC/QiIJPGLFi1ArkkJlf8IzRd7+h2VuZltgkdRjcO1jdixY6fMk7gaE2ACxwoBYV0xbdoUlBQXIdvX0jth9JN1hZwiBFRFHtyBfLg8WbS49Snq69knUw46rnNsExBWBRMmTyMT3UtG5EI3bfg3PvnoA7gpKu9Il9LSUsybMxUa3275Q6FFc4e/Gs9v2iz/HK7JBKIQYB/SKIBG8rBOo4RWnQ0lmWOZDSoYtUqY9SqKehZAV7dHelkdHgo/ngWb00MmW2T6yWXECQjTtWXLlkCvIi2Gr1e7Ke6RydD7ddPrFNK2nu6nSBQvFmedTh9sDi963BREgO6vnbbht5Ew+wkqS6sp4t8CvPvuthG/Nh4AE0h3Auov0zQIn22j0QwDpWowkmZOBOIQUS9tXZ2S33YWmcs7bF1pq4kbP348Zs6cAbgbkO3aETv2AGlgvC1Qg16qHMybOwNtpGXd/t77cLtlWGrE3iOfwQTSnoAwb584dQbOOPviERvrqtPPgVqtwXvvvkHPn5F1yxEuAFk014ip+B00fnVMp3BlJhCNAAuk0Qil+LiJBE4heM4am4vjpxbAQNtySovVhTc+acYnB620Gu5Dtyt9zEHkjP9YqnPCCYthUHVBgwZoaSGhokSLOVNzUFNpkHWZIsz6J3ut2PmZFW2dbji6D6Aor0aKcseaUlkIudIoIyClaaBgJJOnzsTs+YthycmTRaD28AG8v/VNHDm0X8qD6XG7ZJ2X7ErCn6uk0ILsnl20MCVTIxppUD6KmEmvorwqnHbaKXj77XfR3i7PPC9Ss3yMCWQagfKKMTEKowFaxLLCT4vH5pxcSQEw+JpFRF0NpSkSJudyy8krT0dneys+/+xjuackpZ7RoIdaQQtUMcrFfl9kX9OkDJYbPaYJsMlumtxeE4XZnlGTgzXzyqDXSjHN4h5ZU2cPnn67FodaHHCyYBo3x3hOFKHRa6rMKDbUYsXiIowbI08IjdTXjk868fr2NnT6puDDj3azT2kkWHxsVBHQ6fSoqhknRbI0U8L64RQRBfOl559CR3ublOR+OG0N59xlS09ErhlQenutK4bTVqhzA8pCBNQ1ePPNt6TcgqHq8D4mcCwSEKlc/t+1N8q+tM927cS/H76f/LazkE0WF8LS6YJL/wvVYydIbezbuxsvvfCMtO0U0aMLinD+Jf8FpUq+YPqn//0l2iiQ10iV+fPno6qILO3IJUCRnUXWFNkUJI2ul150uZJ3rY8WyQMi/QtZ4Xk8fuGxDpdiKjZs3DJSw+Z+j0ECLJCO8E0VGtCpVRZceNKYhI9EmPP+86UDqGtzSlrThHfADQ4gUFiQj9WrlmHtggZMrNYPOJaID+985MZbn+Tj8X9vhNsjAplwYQKjk4BIzVBUXIKzL7wcOv3wF336U9y35zM8v+FxyZzX70+tG8RSEkbzzH4SRg/1H1Lit8m31K8Zj9deex1tbW2Jb59bZAJpRsBI/tgXXfZdiuBcLHtkhw/ug5pccEpKK6RzhO/nAQpI9J0fXC99vu2Ga7D2zHNx3NxF0ue//t89mDpjFhafeLLsPoTbwP1/unfEou/OmzMNx00txLSqdkwZZ0J+rhoqJUX/D1Ec3V7UNTmxa48NBzum4PEnnkYPKz1CkOJd8RBQ6HS6m+I5kc8ZPoFCiwbfWTcRCyfnD7+xEC1o1QosmJSPohwtDjTZSShN7eQqxJCO2V0mowpXfOsUfP0MHQrMyfHPqixWYPHccrTZlPhifz35noh1Si5MYHQREBPLVevOxsmrzpRSjCT66vPyC7Hg+GWSQNrW2pwyH9PZs44jM10dVDFqRsXkUUVajZiCdgbI3C7gQkn5JCnZPSe6T/RfEbeXbgSmzZyLmbMXxDQsYfov/M+DZf8Xn9NmANOPmyu9v/bi85g2YzaKSsqkKnWHD5IG0Y3xk6YGT4n6LgReDy0wHz74RdS6iaognhnFBRpcdnY1rr58PE5cTJZdxV0wUpwLoSUNV4T2ND9XgymTx2D+rBKceJwf3RT/orPLg+6e5LmJCVNoETslVBEppAK0cBgqxZXwFy4pKaXcx46w54dqk/eNDAEWSEeAu5K+8FOrcnDFmZNk+4gOZ5jFuVosmlyAjw9Y4XDF6CgwnI5Hybk5ZhVuvWYOTj15LrJcyQ2DnkUpHo5fPJvSyNTj8wN20pTyIsMo+TPjyyQCYoJ42X9fhTLyA0t2EZNKYeJ35NABeJNskVBeXo4pU8ZTHsA9dFmhJ15iomjQK1FUoMWU8SbMmmzBiXPzsWh2PuZMy8Hc6TkYU65HIU0YteT24XIHJBPDcAtXWeSbmq3QwGQpprQwdcnGye0zgREjIAKbXXz59+Luf/enH+OVzRvRTgtUq0kjqpesMrIo2KAWTz3xIHyUL1zkAd6x/R2sOeMcaMmVIJZSVT0WH2x/m/KUJ2cxOzgWks+QZ1HjqsvG45pvTpQ0on6fG0pNDj0LtLKDG/k1E+C01UKv8eCEuQU4d00F2jpcaG5zU2DGxAqmBqMRL2x5BZ/s+lhKBxW8lorKSjxGGtrLL/8Wvvf9K1BWXoHXX3ulT/Bcu+4M0uA+hbWnn4Err7oW+/d/QfndUyf0B8fJ7/IJyDd0l98m14xAQKdRYNGkApy+qDxCrcQfEtrS/zl/Ku57bi/21dvhI38ALsMnUJinwe9vmoWKqvEUFCAFpm8U3U7kHbzoK9MxpsKAu/6yV/ohGP6VcAtMIH0JCN+tkrIKfP3bV6V0kDNmzZeE4A1PPoiuzuQltJ913AyofMJMd+gCk1jwKi3UYvGcfOk9EoC8HDUmjzX1VRELVu/sbMfHu62SBkP4f/UvCu8RFBdOR5nI/ckpYfqj4e1jhkAW5sw/flhX02XtkDSfDocdNquVzH6LpPYqq8ehmLSjVjr+5v1/xLSZs0mjmhNXX8tWrMELz/47aRYZBXlqrDupFJd+dehiXnfnPpgLjyNhjnxJvZH9WQNk6u912eDpaR1wnVd/YyK+eb4HN/z6U1ost9GC2MBnzYDKMj/c8ovb8dVzzqNo6cYhZ9xw48147ZWXcfttt8BgMGDj81twyqkr8cKm5yiyuhF33n0vLjr/bOzcuQPzFyzE/Q88SOltZoTMfzykcd4xIgRYQ/oldjOthAvVvjC3EOYTgwuZNsNisQzrj1lNZhLLjyvGmvm95h2D+0jF53kT8nGw0YHWrvSIJpmKa05WHwXka/GPu+bDbFJBZxoDhZ8E0njyjcY6wGwtTVvVKMl1S5PPrR+2kx/H8B/+sQ6D6zOBVBEoKCrBN757baq6G9CP0MpWVNXgi88/SYoGY9KkiSjKV0HhaxzQr0GnxOLZeThndQVpRM19aaMGVIryQaHIQjVpTRccl4cS0qw2trok143+1m+KbB9y8qtJe7A/Smt8mAlkHgELRcY9+6LLhzXw8soxmDFrHvSk+fzPY//AiSedJqVr+c2vbsTXvvE9LFi8FPMXnYh333oNDXWHMXnazJj7EwtuH36wDa6exEevzaeFql9eOx3LKdBiqBIIeOF1d0FlqAGydcgic37QvgFFmQO/moRRjwuOTmHJMbRoSPGxalkJCbbAF4eGb8H1yssv4Q+/+y0uuPBiPP/cs30aUpVKhXvu/S2u+9G16Ohol+bsBQWFmEcBmjY9vxErV67G5ClTcdcdv5QGWV9Xh3PPOx+HDx9iLenQ25Y2e0a9htRiycET/9mAyqoqNDU1orCwCPf93+/wm1/fLd0kYbt+6+13YNXqNWSH3o12CgDxzcvXo6EhtgTjYoV/Zk0uTptTKvvme70BdNhdlIuU8lZSOphElf9aMx6/fOxTNFM0Xi7xEcglrcWvf3IctKTxFkWhosAqTnvExkTEY6fTSxNLleTzFbFyhINZpCVVqnv9jmeS2d73LxmPu/66R/LliHAaH2ICGUlAmNtd/p2rZY9d+BIJjYZGo5NWymWfGKFiWXkVVqw8Ay9sfIImjIl9bgqBVOU9auov8hSPrzLi9BXyfysiDL3vkIj4PW5MDT79ogsvvd2CLvuXC69k2aFRF6GiooJMd2v76vNG5hNQafT0W6HN/AuJ+woCKC6rInPUxEx1i0rLYbOTlRLFnm2sr4OPJK+S0kopAq+JFq4WUTCjV17cGHd/4ydPJ9PUj8jUPnRQoVgxZAX8GFehxP/eOCPqqX5fN+xtH0JrqoJaT/VJWwo/PeuyaI4jFsG9PXB1N8DtbJGuN1KD68+uweTxObj7r/th64mNvY9Mn91OW6TmKZpxIaXYUZGAevR5VUfb8xculM4rKSkZcEzsrCOhtKR05JRBES+ID0oEYvtLOQahiSiKv77nTmlVRQR2mDnzOGx4bjMee+RhSehcs3Yd5sydh0XzZ0va0Ztu/gV+/NMb8f3vfTsmGhUFOly0fKipRLhGHnxxL974uAE5RjXsJMTUlJrw3TOmQafpvWU//stWEigHrqStXzkZS2aUhGtywP4fnDWZhNJP0NU9VBs8oCJ/GELARI7/V10+AeUlur5jWdmUJFo8wEMUJzn7/+mRPei0uiVh1EaR6pbOL6LVyt57VU9R637/z91DzrzhiuNoohjih4l+JLIpqXawnLSoEF8ctuOx52rJsZ9NsYNc+D3zCRiMZkqj8C0oZE4on/73g1KyeRMtNDrJvE5oNi+myJpasnAR5a5f/BgiUFH/cvYF6zFv0ZL+u0JuT6NAJo2NdXhfSmafGD8p4TsKPz3H/b2LWUZaeDx9RQnGysxZHHKgUXZOJW3r5HFm/PM/hyhiZo/kc6VCC6rHVLJAGoVdph1WqDRQ6UyZNuyEjddP2rz5i5chSzhPxlE+2rEdY6rHw5KbK+Uh3frW6xhTM54WoFXILyqVBMePdr4n5T4WWsHPd3+C8srquPubu3AJ9uzZiywlzSeGWQI+L2aOA267ekpMLfXYDkO8wpUsIaDKKItmFdCivQE/unM3bJ6hJrfhmshydUcVSM3m3kBTLtdRS78eWii0kKWjKELRJD73L6Ku5cvz+u/n7fQhMOoFUhuF3N74bG8eKXFbvCSU2m028gno9RdavWYdNjzzVJ+p7qMPP4Snn91EOZooqqHMlAC5JFSKaLqxlImVOTjzxBoYKS2MiI5724Pv482PG3HqvIq+Zq48eyamVB3NvSfyRsktWhJ0LlpejX+8uB/dHLZbLjYpL9eK4wtx4ryCGM8pxbQJOdL5dU3d+MM/P8fcGfkwU3ReUXQUhOT67wxcxRTmdiELrZ4qlAMf8N88rwY7P7VK2o+Q5/BOJpBhBIRVyYxZc1FMWgm5Zey4SThtzVlSKhjhfvH7u2/F+1vfwgknndLXxGXfvhLjJh6dpCkov6DcIrSkwnS3vbVF7ikR61VWlkOFDqlOjlmNb51XDXWoRaiIrcR+UPxUrCdfsk2vN+Kjz7soIEsH+cKNJ62DMmS0yth74DPSgUCPvQPiNVqLiJBbNaYaPnoWxFMajhzEIw/cJwUxEgGHhO/o+Zd8U2pPq1Hj3Iu+jjdefgGvv/ic5PtZVlGFNaefE3d/+flk+eRzoqu9IZ7hDjhnYo0Rt1wxhwIuybt2j8dHQYl6IFwFcigDRCJKaQHNa75ViZ/c/QmsttAL9vH009XVJZ2mVqsRFEq1Wm3fvF3M30XAqf6l97i1/y7eTjMCo14gDd6P6uoaXHTxJWSDvgA/vPYqyTxXHBMq/he3bA5Wk1aQNRSmOzcvj1baW2Euiqz1DHhdOG2WmXwPjmrT+hqLsLFw2lHBU6ugpbdsFfkZmZGt7H1QKFRqyo+llV4Rmol4aPIYDSaMsWN/OyV8zpY/KYvY6DF+0JDdhau+MW3IVYoV2KwwWhw9RcacOeXoA15M+vR6Df1NaMj0hZJQ04RYmBSp1DLNsqkvH/mqKgatot5y7Sx89+efwemLHOGvu6OJ/ECOrh6KxRUx+Q+V+kEcK6Z8j8KcPdQCjPCt1uv1nMtwyF9EfDuMeaX0HR/+6ri83gO06u+jkPk+ZFNk1+wsH/wBBfknU0J0eh4kysxN3liG1lIG3Dhl7dlDD0TYM2vB8X1Hs8mkS3wn88n/VDwvRRHvwoxRrY38HelrJMTG6edciqf+/TAC9EwebqmeOB3Kno+QbzDj8nOqhttczOevWV5BWoN2bNvlgJOeS2OnzEZj00ANcrRGXY5OuBw80YvGaSSOa425ZH55NG3JSIxhJPs00kJv8LsfzzhWnnEuTl37VVgpoJn4fe6fAka0N3POQullJ8WGiKwrftuHW4pKq5Cl6dX0xduWLsuKP91GUf/pd11O+dV9u/DUlsMozCOhjgRHsXh+x/VzICw2+pfDDQ58/do38Z2LJ1Nk3chz3+B5MyjDw/cunYL7Hqd5BwYKicE6/d+9pCHttkZe8GulBUER66W8ohL7v4ycK6LuNjY2Sk01NDTQsaNzaLFTHI/V1a7/uHg7+QSG/+1J/hhT0oOJVPkin5EQNseNIzuHL4tQ8QdXYMQul6t3Ii9MA4RA6oli665XuLFoYpU06Qu2Gcv7pm2H8dnhTkwdk4MZNTl97Yi8Sy9sO4htnzagKFeHE6eXwqgb+PCQ08/5J5Thjic/h8ufqkmwnFGlZ51sepxefindy8BQc72A30uDJrOgwYEA+l1KW6cb733UikO1DnzltAryI6Xq5OMh8mu5KVT6E88fhMjzVVVmwIxJuSQU9Dt5wCYJDT5hajdwHPkWBeZP1eHFd60RTYb8JID0Lzf+/Bbp440/+0n/3RBh02/75R0UNKADORQY4kfX/gCbX9gk1UmUb/WADvkDPPRjnE1mZskqQvjUKv0Qlv/VRQaU5OlQSmmhzLRoItKKiOjbVjIpb+zokV4HmyhaojcLTi8tnKRy0Yr+tpeuPF3KLxcPi1dJY7F/725MIE3o5Kkz+toRz803Xn6egoe8i4LCYsxbeCL0hoHWBtH6q6AAJ7kWM5qaYxPcQrXrd3dDl91J+QBrpGdBqDr99wmzQLvDQ4tDAbKuUA95RngpN7GNJpRCyypSxMgpx8/JgZ1cNz74opnSkCmi/qYNblOuBmbwefw5+QR89CyJNkdJ/ihGroe88vF93/14RyGEuhwy2RVFPD9CFcOXz5Bwx0OdE25fcXEp6muPkO+mPGFycDtmnQ+3/mAS7RZzi8FHQ3+eTWmj/vui8VKAxh5yMVp/7Vt4evMhXHRmTd8JNvI5/+Gt26VnhPgdGTz/6KsYYuO0E/Oxa08nttDcRJonhagT3CV8SKMVIYy+/NIWXHDBRbjt1pulKLvrTj8Tt9/aO5d59dWXcdc9v8Gs2XOwc8cHWLBwkeR3+uYbr0drmo+PIAF5v1gjOMBUdf3xRx/imquuoBUwE7Zu24E333wDOz54n0wArPTjflRY02p7NZ1Bk16nrT3sEFWk/TpzRTU9xISwEl9pbLORCZUHLR12ClrjJqGz95adOK0IIrmxmEDu2NuM13Ycwc8umdvnYyq3Ny0JRZNKtdi6u1XuKaO2XnmxDisW50lapcEQfB47FCAtqD+8eYyT7p+NglS5PV40tzohfLlE0WuzyKe0UJpA2mhiuPGVIzhwxIYzThm4whfsM6DQUdh1R8hxXH1ZNd75YKusVDCnnHoaCZx3oqioGA/c/9dg89J7tLDpifKtHtApf0iapkkERcs1qLFkeiHmTsiLSLokR4VJZUGLjt7AOu/tacfru5phJWHI5ow+YYjYgYyDIjLmjOPm0N94fM/O1uYGyVStrbWRrF1spMXvFTrnLTyeFoLUkjXAJx++j3ffeBn/75qf9fmYyhiaVGXFyrV46P774KSE68MpqkAHLv1KediJbv+2d++z4olNh6V5qjDnF9PV89fWSOmfRL0NL9VKC14mcgNwUrL6ilI9Ljyjpi/wWv+2Bm+fenw+mmgR4lCtn/ILhv9NG3wef05vAmKBS7xGa8mVfD/je4aMFLOcXPJ/j9PMWsiwqxeXkQ86BSEi6xe5ZcWX0XfFOSqyyBMCX3G+uq8NsQB23e3bcMG6Srz8trCW8vYdk9vHD9bT3OT9d9HSHn6ONLitu3/9W5y4ZKkUbPSPf/47jcuNExbNk9wKfnHzTfj7A/+CEERNZhO53m3Als29C+YOux3X/fAqPPjQY2hpaZaUTddefWWf693gfvhzehBggXTQfRD+oy1kDiAiDgqBVKj4hao/WMS20JgKrVG0IoTH6dXx5aQKtr1+pVjpAu7b8Cme23oI553Uq71dteDomFbMqcD1f35X0qTOmSDftzHYx9nHV2L3Eas02Qzu4/eBBMQE8NKvhjep87isZFVtRpYvfHS48mI9zl41hv5+/LjjT7so4qURlaUGWExqnHx8SV+HE8aY8bfHv8C6k8tJKzV0lTSQbaRJRkNf/cEbc2m1c/ObTYN3D/ksTNHF66c3/JxMjRQDji9fvgJHjhyWcniJA9u3URCt5iYsWbpM0pImwrd6QIf8ISkERITummIDLlhWTZG643/cz5uYB/ESAumjrx/CoSYy8SStfrLKtJlzh9X0V89fL50vhMZXNj+HtWedJ31eevKqvnaPX7oCd978P9i39zPKHzinb7+cjaKScojFyeEIpCajEmuW5pJZXGTztOB4hG/XN84bj5LC3sWCF16vJx/QOnz7oolSlWrKS3zKCSXkj66kiZsf//fg53h/Vxslrg+d6iHYbvD9a2cU4WBT5Ejhwbr8zgQygUB+QXEmDHPAGAtJQxpvEX7o/+/S8fGejvuf+ALvfdhKOY8LsWTB0efG3X/5BGOrTLRI3iuQxtvB/2/vPODjqq98fyRN7+qSJfeGwRh3m2KIYxzAQEgChBbCJptN9r3NI5v+ScISlvSQtrt52WxIQkjo4dFs00xPAtgOxfTibvU2kqY36Z1z5ZFG0mjmzsyd0Yz9O/6M5869//sv3ztzdc//f8pnL5/Lzz7vsc+6uqVbWSSaSiSFy6aNG5R0jR6vh0QJTZSHHnyAHt6+jRolxzJH2E3mkpRYHtvTTyD7J5Tp77smPTiZo+paLVbaufMFNkEYpg9uOpuamppHH8Qlye61X/gS/ebXv1Kidl12+RWcePeRUX86a+V09A/iAABAAElEQVSYIpHYITGLXLvYyn5YmZvRJtYT355R46D2PjbnS1KfWNI57RYKxcqSHo/XMdU7P7NSlctBUbU+jFNVdAzvd5hCdO6ZTVOOMBZ2U7l1ESukIz4MUxbkA2ZO62C3GWnAO0Szk5hBOu1GxY8vNlTOiuIEu90yNtMz8Cpt9L0pI49+8uJ5tPPNMBsY84ptEgnyCkg6M7t0YdPT+VYnaRa7CkhAJlDqnCb65Ka5VM8muVqJk1MWffa8BdTa46fbnz6o5DMWM1EtxciK3qmsLGohkr+0m1dLk4n4R0tKmYnRGJOVTbZv2Yo19OyTjyQ7pGrfskVOWjLfShRWp5DOZFP+ROHuc/CRMesdMfOPi9w3eFGDKh3J7wHxcuPe+e/fx8+fTQ8/Uk4BnjTLRSRPoKyyJBNxjZGHx2Tc0/msJ6sP+0AgGQExtXU6x34TycoU4z6r1a5YcchqYCbCBnl05YfHFioyOTdetqXdz1Z3RO1dAfL5ouxfbqB7Hz5Ih9t89B/Xr40Xy/p902lsjXXfYWrp4MjiGklHR/L7u1QvKcCOHD6sUUuoJt8EJjzt5ru54qtfEh3/169+TW+8vZde2PUy/fw/fklf/fK/jn6JxQzg1VdfoV0v7aHnX3yJ1p96Ov3g+zemHYie1YHTl3DEtCxEzCOe3dPGs0gjDwUDvjDtfq+bFjSNOLp3DwTozYPuUf+ANw+5FWV1UXP2jvAr53PS4yzN47IY4rhTFL8LNgHRlQ+zuUgZv1hpYy3ZqCsjUZZFJytjn7KJvo/jKsnzhxl1Yw9+yZoSk12lf7rJ5pASVffAEe/o9Xp3/6ASOKC5YSSwyvsHPdTXP+I3KA+Rf3upi2bxymmylC/D+joK+1npZd/TqWQmp6Mx6nJbvUoXNj2Vb/VU/cL+whCQCNpnskn/Vy9Zoqkymtj7phoLfe3SE2kDtyPJ0LUUI0dLNCSkNVJbt0wo7nz+GQ7YNWKi5xkcoNc5bcOcOQuVKvp6u2kvp2WIy953ORdzZzvNnT9yPL5f7fvqU8/MOqicy67nqNqLs/ITe3c/m+4+coja+KFx8+mTV1Oe3dVJt/JKx8I5dlrM6V1UCz/Az59ppgVsuZGLiL/WCztfnlSFWBc9uuNp2rb9ceXv6Xe+90OeVBv77ojP+iuvvUV33vP/6OU9b9GHzhlbzZ5UGXaAQBoCkioqosIfMU01BT8cCYd4IjrzhYyaKiNdfM7Uk+ZqBnLd55fRf393PbdfRrfcu1c55db79tHsJhvdzKnr/ueOdxXl9K9/76JHnmlRU+WkMv98xTx2IzjuVY9JXLCDn/WPdwiyMrp21SmKjbkop5JcN3FpX2ZY4r6lNnZcnzgb43MnXxFz8UqCzShRLJPPEqfiLn7zz7xymG7f8baSh1QU0vVL6ukDy+qV+oLBEP1u++sUZJM5q6SF4fdPbFpA1WwClk170pc1/ODy6K5D5AsWxt9CZi8tVis5eAZz4eKltPikk6mysoYjxyb/Sno4jPf+ve/QO2/uUR4i/ey7lYmPRCreao6dfdli/l6kZuMfPEwWB0fIm7DiEQpF6K5tBykSHlL8ucI80XDR5iZy2Tk4Ea+kd3X76E/3vc8mgBKsaFiZlbzsgtmTFfAyEw3rGsjf9xKXS92XkxcY6ckXkn831Yw3Xdj0dL7VatpAGe0J2Dmw2UWnNdPK+YVZGbhwfRPNrLXS/c8f0cy3VPL+ZSu7n/8Lbb3vLr6vuEgU0hWr1/Nq6weV6mTF7p47b6Ew56czs1VMmB/8Lr78k1RVXZtVc6I0m/lvRvhooLtMKjltZTVH2ZZ7XfL7Xaq6Bjm4iExW+jn4lGxXucavgsrklvwN6R+MsHtA7Gg7qWqMH6vgSbMh+so/LaLP37CHPGyenYlIrIXHWOGcPWcu9fX2Tjr1+m/fSM8+/RRP6H5HCUKy/ZEddPbmc9ji6GFeqbbRTT/9BV152cXKBPCatevoD7feTqtXngy/r0kksUMNgTJ2d5HIt6Umer6vSOT9TGX9KZMnwzOtI15+NltjHOTgiyKf/Nh88vG9Ji5imSEB8HSyJJuFnLZqJN1dMCGHaBbV4JRjkEDmfw2PQQgys97TndpsSnxL5aVW5CEtW5EfvAQoEoVTlFEXm3caOfpqXJpqrHTT505VjsmDSTWb5iVxNYwXV/Vu0JcpbfiCqopnXUhuthKwZC2vLpyyar3qeiTRvZSPn3Ng33u0869PUycnqvf7xvsOqK5UZcFqNos7bUX61e5woJtD7NeRztDESmnraO1zmm309c8tJR8HgwmzUlrJOb5YHx+VU1fV0lpOIj3gCSurTVNFxxw2zKKQt4XNddObu5x9ej09s7NHCXo12lAGG+nCpufiW51BN1A0AwIyCXb12fMUn9EMTsu56HK2rnBw0KTbnjpA/Xy/ylXmZLliKZNcn//KvymR0CUNg8Ph4lQNY5YN9Q0z6Jv//hNFURVzuKpq8bdP+CFm0XG73ckpITILAlTjMrDf57yR1niSKVNZs6yG5CVRK+/ZfpC+xveWRPnoh2YpH+/aeoCe3dlJ531A5apJuYkn3QLs126h5gYTvb0vM4U0zHkaN551Oq1YuYpu/u0fErvEJoh62nT2Ztq86QPKfp/PR9u2PkQSHE0U0nQ+6+MqwwcQAIFxBIzGCrrqopHf/bgDKj6IRd79jx2mCzc1s2VKBfX0BWnHXzvoki0j9V26Zc64Wl59y634mG7eMGPc/kw+LFvspCeezz1KeSZtomzxE4BCmqdrNKchN7Mn6ZYEJDEZ4tEux3dUFBoXh/3XUkTx7WOlKB8iplmuqmo694JLaNbcBTk3MXf+Ija1W8S+SB7a9sBd1Hr4AIV45SMfIuYrdqu6n4rP/R456zhAikTbjY5Ncsj1UnJ6TTFhKz5/E1c6EscybJjJyiWn3xg8mLh7yu0T5tkVX1Uv+4FkI+nCpqfzrc6mTZzDpuqOGp4dV/ddS+SlpyBdyQ8I82fYE3dPue0PRcnLEyRO6/jJrvgJIQ6KE+ZE6RKdV40saHbRlWylcQcH2olkoWTF2xjiJO4z2cS2IguTtXgdFj7Xwn5YU4mrShRRbaS+aRbfM308wTQ2YZiu5oaGGLkcI4poucHOk1eZr4ZIG7XVFr6Gw5JBVlmxmNhubbWVI1oGVafrGa6w0nDYo/imX3HRPPrhb1s4j2v66x8JeikcSD0pWFNTq5ghtrEFUlzEGmnNunXKx3Q+6/Fz8A4CIDCZgN1aQWKym63c//hhuunmNznXvUmJ0C+TWJedPyfb6tKe95HNM3jCvJu0jj+QtmEUKGoCmT/5FPVwiqdzkuOv1KTBZaL97epXgdWOTwILbNh0Lp28fI3aU1SXk6Akl33in6i99TA9dO9t5O7rVYJTqa5ARcFMQrYMD0XI636XbFUnjay9JCilKppKWmTY0ExD5ZwrsOe1pMeT7XQ69JwWKPXqz5bzLyTJQWq3j/iZSeTc66/7hhK0K13YdPGtPvOsjYovmNfj5XQ2HvrUNVcl6wr25ZlA+VCIzl5eTYuaplbC4l0Qk/wf3fUK9QwER90Bzl0zky48dY5SRNJI3fbEe5xKqkfJiWs3c9TGjyylSg60lU6k/Q+eXE07XnPz9zW7yTKJ9uxyaWd6lq7PuR53VbLlBFvYqF1oFZeKizaNrVgORXysAPJ1SxGdO97H197tV3IUi/+pXKedr/Yoq5liPie+57s5x/HKpdWKH76Y277+rpvWseWFaqlwUCzSrhQ/a001/fI2duGIpFdI1dTv4HzeIok5vSWokeTzFknns64Uwn8gAAJJCSxdmH38EInkf9vPN3BawSgro0GqrTKx+9DUqsEvrs/9Oe7EhQ6egDdQV+9I7Iykg8LO447A1N+64w6FtgOWaJSlJjUcUU1LERO62rpG+sQ/fp4kUEk+pZFXKj73hW+y/9gd9C77mU4V4TGbPrhYuctEoqF+8va9SVbXYk5cz1FxE8x3M6mHlydo2DCXHz51rIy+nnE+23JZlk0hD2/fymHRt05ZIlXY9HS+1VNWigMpCQQGe1IeT3ZwxfwqOo1NoFT5j3PwsAvWNtHKhbW8ckZ0sMNL373t73TakhpF6dz9ThftPdJLP/jH1YoJ/11P7aW7n3qXPnvBkmRNT9p3xhIn7Wvtoz37s/NftvHkiCRcj0VzC8o1qWN52mEy6sk/MGYJka4ZuZecuWrJqD96KNDLZvqcLmqoP92p1NHtpXu371csHySti1hUfHzLiK+56MS7Xu2irU8cIgfnIRXLiFNOrKR17FemKhhcuUUpFw6O9aPKxv7tWV7HiYMZHBxUdomfaVwpNfHfhHg+73Q+6xPrw+fpJyCKjIN91mWNXqy5ZFtSE0U5pYfcW/p5UkSsMETE4qJQ8Smmn0zhe3AK33dzFfFpt5hzt+xT2w9Dghua2nNQ7tgmAIU0T9dXosSWmjg1NAHWcXCieQtPoIuv+HRBMVz4sSupjvN4vfDcUxwMY8QpP9cOOPkBL1MRpXSw+2VWSheSzryMyiKtbMLbq7qaYV09Ea+MhgNd/MD7turzEgvKhECuki5seqa+1bn2B+ePJyATX1dvmjN+Z4pPZqOOVi+uHS0hD46yz2Ia+Y6/zNG81yzmyLlHHxZOP7mRvn87B9EaXqLaT/2as+fSDbd5adCfmQ+idEr8+UtJdOwbmYlI5Gx9woOY/L6NlpM49cvhtNWcfVojbVzfQIOeCNdRNuICcPQs+an/y9WLOcDdECujYVZKDePaSVf5sK6G7zXjJ0PWr6iid/ZrYzHTw7m9ZZKwqXkm7d+3V+mORN3t6BiZuEjns56u/zheGAJ6DmRjZn/FWWwBdtqJNbS4iSdTVPyZ8XBQnJf29nG2gF5FSfXwahxEGwLCX3wyS03q2MRYy/QvpTZ+9HcyAX4cgeSDgNy0j1eRSLknr1hbcGU0znvd6Rtp8/kf5UiO6U0Y4+ekevdl+cdTMd/te4sk+m6sooGGzctpWN/MIeq4X2UT5oLK+MG2opJXROfQsGUVJw1ykIdXWf0D+1N1LeUxeWiFHLsEZAX87BUNWQ2wsz9I9z67n+548n265pwTRhVQtzdM1Uf9G6XiGs5jKYHT4isdahvbtLyBH1Qz//5lk+5FbZ/yUc5iyWxFYUbd+JgAMTbZjUXZbI0VQjUi5rmVHGRN8UdPcoIovNWcdzZR6U1SbPIufQMrpONXelee5FKlbEyubPIeUUafenIHXX75lcpBK0dYv+DCi+iRh7crn8Vnfdas2bR8Bfvfs0jqGPE7/etfnlM+47/pJaDn3Gsz2Gf5HzbPoxs+cTJ9+kPz6IRmdcqo9Nxu0XGWgJFUVN+4bCltXtHI/uuZTeZML4HibV1Wpxvr8muBlo/RN5Rgn/PBAXWOEZjwVDx2AFvHHwFJIaOFLFi4hM698BLVVUX5YcXrHSTFHyvJWbJKJ6kVLJx2R62ctGylcs6Tjz7EM/O5BWoSR/9cRB705FWht5PBXEN64ywOXMMPphwIpYzNckWGOQhSLOqjCJvMhQOvsvll7gGaxDywvSv3enIZO87NHwF5yDv9xLHVzkxaCrAv6WAgrCibHX1iSTCiEPk42JFOEv8eFf3R9AMSBEki6aqVDUtr6ak9HRwJPPNVUrVtTFVOx322Ws2cYsnIUXb1ZJBUUkd1Y4koGeE8pZJyQNJn+QMBxQV0qrq03l9fM9kXN+g5wpYUc6ksOn6FUuu2p6pPondHgr3sPyrfgzFpqud8xvywG+TUMWrEyLyf+9tOVoYNnMKrknb+/VV6lhXNr33lS8rp373xBrrl1tsURdTusJP4oe94/FHlWDqfdTXto4z2BGQCRAKbXXrGLFoya8QPONdWJE/yeWsaldcDz7fQq/vdWVlT5NqPY+V8k6lcSSdXauOpzSEIU6mNFf1VR0AbDURdWyh1HBCorWugj13xKdUjveuPv6E3X3uZbDb2HeN/K9ecRh/i1U0Rv99LD9zDgYp6e0in17HSRnT+Rz7OUTjnqap/BdfV3dVOr+x+gf2j+ORplljEQwF5TXM/0HzpE5DFx7OXN2Y9EIkC/ulzT6AAKxtf+80L/LBZyRF6HWRl891obOy3Ej7qyyn7M5UPntJAD7xwpGAKn91moUqXk30sjWyuL8p2lP0VebIrIZeVrCpL4CRRnhx2Kwf+0nG+TT+53QOseOU2caWGT1PD+BVSOScS6qNomNNFsfVEWaRFTTXalWHfUdI3kt+9a1KdshIryoNahVR8Q9etXj6pnviOw4cP0aaNG6ihoVEJgiZKaKKk8llPLIftwhCQCepT2bd8y5oZeWvwI5wzeeMp9fT7x/dRa0+AXQNKy2Q/b2AyqLhUfTGrOagRBAQSCWT+lJF4NrZBIIGA5Be9+jPXJuxJv7nkpFPoo5d9kh8QOdx4Txf94kffpuWcb7SOH1qefHSrEvzjX758nVLRrheeo0e23Uuf/fzX0ld8tMSHzr+YOtpaqfXIQdXnoCAIFDsBWa08/SR1Zp6pxiKuBQ6LgfoGQ6yQkhLYqJcj8MalZzDISls5BytRvzoaP1dWSZ98tSPvqx9Oh42qq1yK4uv1B6m335NaCQ6Prdoqq6kWE81sYqUswOf2ufOqmFZzIKJk4hvcT87aVZwuipW02FhgoWRltdwnQdMC3PZwLLkyLvkNiX1WtZSOjpFIvsnqTOeznuwc7NOegJ1/71ezL/iCRvVWSdn2Qkx3v/jRE+juZw/RK/vcFGYXAYh6ApKWrhQlXRaAUhwT+pwbgTHbrNzqwdnHOQHxGz3trM0ZR9M9ZdU6RRkVfNU1dVRfP4P2vveWQjPGKxy6hHyEdRyxd8DdlzHpj3z8arLa8v+HNeOO4QQQyJJAtYo0LMmqlqi677b0jypsr+3vpV5PkOY0jPhbr1hYQzs50m6Yo2KK/O2NDlqxgCPyZvnMU23P3yy45DZuaqxXlNFBT4A6e/rJxwppJoss0ViMBjiPaGsnm6yyOe+cWU2cz8+VDJ0m+wa9yZU7UQh9/e/TsJGtP3LI45pJJ4eN89l82U8hX9uUp8W/B1MWwIFjjkAV/2a/esmSgiijifAuO2s2nbd6BmnlOpRYN7ZBAASKnwBWSIv/GpVED8X/U1Y2cxGfZ5Da247QzFlzlWpOPfOD9Pv//jn96Xe/pNPOPJue2bGdzrng4oybcHAe1BOXrqTdLz6X8bk4AQSKkcDy+ZVZdUtMcG/e9jYFwzGysBluOBKjfzhnMdVyDmKR1Yvq6M2DffTV/3leib5rYlP5//Oxk7NqS05asaCKDnSO903MurKEE60WMzXW15Kf/UA7urVZURz0+nmVNERVThuZOSVJa0cnm/pra0JYWzW1gh4J9lDAYyCz7QQqC73Hq6X+hBFruxlPJ+Vzv5GyYpulgtiaGXKcEKji6MzXXbF02kZ7Fgc+EquNh15sIb9K3+Vp6ywaBgEQ0JQAFFJNcR6flRnYH2vLhy/NafBDvFJxx62/IQlGFPcRFSV3RvMscjhcdP/dt3IAoHJOGzArq3bO3vIRevutPeQdxNNVVgBxUtEQEHO65fOyU0gXNTvpps+dqpjRijIqEXUl9UtcOKvDqG9pkI9X5pgKaukcFz32UrumOQjFV1RWRnvcg4oCGe+7Fu+yYtrVN0Auh1Ux421p62S3AXVBfbRof2S1sozMdlFK9+fBfLecV2Hns5/wMOdKTq2MajEe1FE6BOS+8hVeGVUrEpah3xciG6eMSuXHKJNfkoO0iq061ATeXru4Wrk/Pf5yxzh/drX9QjkQAIHSJACF9Oh1k6iA5WwC1tuTPNKh2Wwmi8VCvb29pXml89hrURybZ7OpWdYyTNvuv4sa+SHzk//4v0kSppvNJnp8+4N01gc20vLVp3GQkgBtvf/P9Ov/+BF98zs/5T9smdsQnnzKanrhL09m3UucCALFQEAC39o4iXm2Ij+dkZQLU/uFyiqFFqmrXOwfpqvI/Lc61dgs7O/ZPKOeuntZGeXV0XxJ/6CPXBz0SNo6dGRqk9Z8tB/ytXKU7ZCSw5iiHVQWbtGmGV01p5WaxVG8ezmd1D5t6kQtxwQBMZP9x3PncxArdenqXnirU0kZZdRXUJR9Puc3OTl91OJxkbjfPOimO596n/o5lZSObf6/9YlVo5YY6aBJOqvWHj/tOaCN9UO69nAcBEBg+glk/1Qz/X3XpAczZsygu/58v5LzLMhKTxsHwPnpT35MTz/1hFK/jn0jv/eDH9O5523hqK9+6mOF9DOfvoba2wv7kKLJYPNRCT/dijlttmKzWuj1l5+nlcuX0dozPshR9sqU2XuPN0jd3d20ev0GjsBro5rqSvrMZ/8XdbYeoK7ONqpvaMq4yTM+cA699vJO8vk4cAgEBEqUQCY+kkUxRI2sXit4+bapoY56+jx5VUbjzPrZt1TMd2c01FJbx/gcnfEy+XoX893Bbg9ZnPNIx/mLy6L89ybSlV1z5XbOf9xIw2UW8vfvU1K8ZFcRzjoWCUhql43L6mlWLUdcVimVvNr5zatWUWOVmULsb/7LB16nZ15tpQ+fNkep4e1D/XTz9rfo4jPn05rFtZznuIJj6Gcm13DO0+/c8QZJbmQICIDAsU8gwVjr2B9sshFG2afqxhv+jU46YT6tWrGU7r/vXvrmddePFt1y/gW0ctVqWr9mBZ26lv0Qd+/k498ePX68b4iyuGTp8owxWHgFdHZzI735ygscWGOYFixdR/0cmET8uLz+gPLSGVlZfX0P9bJpXltnH7311tu0cNESWrdmDTntmQcpktQxNrs2udQyHjBOAAGNCJgNpTWPaJJIrRpIQ10t+djH08fRcAslfQNeJUWMyzkS9KlQ7Uo7skrq7XubvP17KUqVNGxZxSucs4kqVPSljKP56utp2HQSDbGJbsA/QANdu6GMFvIClkhbYpb/weX1GfX2hJkuRRmVk4z6cjqR00a9fXhsNfOhFw5yFPAG2nByg7LqKlYZ2QRGu5wDHUn9EBAAgWOfQGk92eThenR1ddITOx4frVm2r7/hO1RbW8crdF103pYLaOtDDygmo1Lo7jvvoAe3Pcp+V+VFkdtytOPTtGG3Z+7LVlXppFpe8ezp7afX3hiJqPvue++MjsDucNKWiz5Oq9adQXte3kUPP3iPEr1XVquXrjqdldaAElnTYjVTe4YrFyectJw6O7C6PQobGyVHQHJDlpKYeHUkV5GcoSajgdq73blWlfH5Ax4/1dVU0SCvmE5HPuNoyE0eflXorWQw15LeNJfK2YWEYhz0aEiUc3bmU4Sf+ssM/OQvAarKOL8pp9DwHYESepQO3iYTMHBKp0s38CRHjvLmoT6aezRSt/gn723tp3n8+T/ve4PTuETppDnVdM7qmeP81dU0ubDJTk3VFtrP0cEhIAACxzaB414hnXh5zzzrA9TW2sq+oiO+pA2NM8YprC0tLcqMeWVVleJvajAnX6krK8v9IWxi3/L9WfqsN5qprFxd34eHh2jJshX8R0Zdeel/bU0l2a1WTtEwoAQsuOKaz005LFFMz/jAZiUXaSQSVXxLpbBECu3qG6RKzj84e2YTHWntmLKOiQdWrD2dXtr9AkcXTZ5+YWJ5+VxermMmpaUESL8rKjjYRJLvZyQUoOGhwgVqkb5A1BHQs1VAuu8axwdhH2r1vzl1LeevFMc0Sfo9TNZiBad5SnY/qamuJo8vyMcK/zsM870nGIrwJFoV+66OV4jlXqn2njnMUWCkfLrrm4yL7BuKBSjoPay8piqTbH+27UldFToDX7vU37VYJEyxKMwqk7Gf7n0VeiNfw6l9xevtZSSBznKRJ15uoXZ3kD574cnKfanfF1DeDUY9fWhNLQX4BvDnZ/ZRgE17Lz5jXsZNXfnBefSfW/dRMJqZL7qkhZJAiMnuJxl3ooAnyD1OZzBmcM8sz/qeUsBhTWpKYrYkez4ZikUpGi6cFcykjmHHtBGAQpqAfuGiRfT1b3yLvv7VL4/OhDsdDgqFxoJnhEIjPxQnK0sSAMla2ZhQw9hmeYo/AmOlimtL/nCZHDWk04+kgEjXu6FoiBafdAqpHWuVy0F2NrXt4SiWPImqPJyla0OO6/ghTsd/WCdKP6+UVrIp3czmGZyiQZ2Pl51TwFhsTtLzP7VSYYgqyp3a8sVSTseTC1YOODVRPL0tFGWlFFJ8BMz8+5OHyFRSb/Or/s2lqqdQx2qrXRRkRVuNsFX9pLHZ2BJCHl4C4Yjqe4aatjIp4w2EqaG2ivoGvePynGZyzxSlraLCUFL3Er3JyvcQa0pUQU8vp6vJPD90ykpxUBMCRouDjFZX0rrKeILjo6dXTfq9JS08xc6X3++hh3e30RcvXcUTxCPfk3Id/73kZ4mLTl/A3/WRCaQyntS997l9dOkH1P/djTdZW6mnhmobdYczdLcZGumH2ueTeHvT/S79NVpcbOiQ/LpN7J/e5Cupe0q8/+U6Y9Ln50jQy64K7fFieD+OCEAhPXqx6+sb6JZbb6f//r+/pO3bHhr9CgwMDJDBwGZQR8VkYlMploGBEX8Jd9v7R4+Mf4tFVPj5jD9l2j9FI0HydB9R3Q+zxUoup0vVbJaVHypddjPnDOzllVHtVud6evuotspBlVz3xNWLqQYSEn+q/vErHVOVlf2RmbUUjYxNSqQqW0zHQv5BcnOQLkjpEBjsPpy2sw0znRTj32ouYrK5yGRx8oOPnfQGVvj4IUhnMCm/5Vg0wu8BCgW8FPT184rcmG9YNm1GAh7V38PKqppJ9xNrtZM8Hi+vwqm3asimn6nOkbb9Ph+J/+4g9yUuMpOfyT0zGjGX1L0k6HWTGwH84pe75N79A90cUTn5ZK1E2p5TU5f1vWTXO11019N76dqPLqPmKv1oPU5TGclkdSdbMdUfzW8sfz8lUn629631C6z0pyf38mQQz2SrFD0/t0m7pbbaFg2zn3x/J/m8g6pGamng+3YJPp9EQ37+u5D8+VnVwFHomCMAhZQv6cxZs+j2O/9Mt/3pVvr1r3457iJLNN3mmTNH98m2rJi63eoVmtGTj7EN8elUK+KD5R7waaqMxtuWehvrqtikz09BFakgrFZ7RgppvB28g0ApExCF01HdRLaqejb/ZLMonpiJBvooPBDkz2HFvE0e+MrZ1LuCy5qMdrJVLqIKXt0Y5BlrD7+m4+FO8o62tCdPx1XI6yEBlSSYWqJCWsj20RYIaElgfmP2k+bP7mmnR3Ydoq9cupxm1Iy3fpBF0RULa+mxXYfp6s2L2MVmiF58s4P9SDOPNxEf7/J5nIv8bzryBKZvUireF7yDAAjkh4B6jSI/7U97rfMXLGRl9B76xc9+Qnfdefuk/jz26MN07Re+RL/59a9Y2QnSZZdfQY89+sioSe+kE46nHSpzgUqESkmina/omLLiOsABR2oqXfzg2pn2Chg5nywEBI4XAqJgVtbPIUdNE/ndbTTY8gYrlhwQZwqJRQIcCEdm57uUEjqDhYzORpp5wnoa7G2lvvb9BfNBtljMFGZT3aEMVkamGFbOu0Pcj0pnavPVnBtBBSBQAALlHPL2tCU1Wbf08vvd1MMTWdf/Yde4Or59zRqaWWulyzYuoP/7wBv0jd+9yH/3ozS30UH/cNaCcWUz/VBpN0AhzRQayoNACRE47hXS1ZxCpJEDF/3opp8pr/i1+6///Dn95Mc/ZPPdrXTmWRtp10t7yMumWh6vhz51zVXxYsf1u0p9lKpcTlYYp34A1gKilwMpNDVUk56d0CQAUiqxsqkxBASOBwI2Vz1VNy2kkKeLevfv5JXQzFcYRHmNdnNQEvcRslTOVBTTvra9nI4k/eRProzNHFlXFMFiEJn4mo4ou8UwdvTh2CLgtOhpXmPygIxqRvrFS5alLCapZK77xEolh6iOlV87t5ernDzHRYe7fLlWg/NBAASKlMBxr5BKGhd5TSVRDln+5S9ey/kr2XzNaqOODjhbx1lZremDDBj5gVJmYwOh/EZhlBUUMalzcF7UXndqnzeJvAcBgWOdQFXjfLK56miw/W2KBAZyHu4QB+XxsmJq8PVRVeMCTj9iIXfHgZzrTVWB0WSkCJv8FYtEOMI3BARKnUAmvpi5jFUUU61kCfvOP7K7la0ltKoR9YAACBQTgeNeIVV7MbweD6+QetQWR7mjBGxscicpEwohwWCYrBYTK6SFaA1tgEDxEqhpXkRGs5X6j7ya1apoqpGF/W6lXvuME5VgSL0t76UqntMxHTukicluscgQnoZzvhTVNTUcsIUDZrELDGR6CNgt2imKhRpBFZvsGjincVDySE2DSP70Ss4UIMln4hNTep2kRCqj/oFBzh6QeiJ8GrqMJkGgpAhAIS2py1V6nZUVjlAaE1qtRiX5Aqtc2ZshadUP1AMC00lAVkaNvHo50PJ63rohpr+DXL+DlVJpr699X17aklyCw8P5ta7IpONYnJma1tKTl9H2R3ZMKnDiCfMVBVQCAv72938kSZlmtVnpwQfupxuu/xbnmZ4eBWNSR4+jHU5L6T36mQzlpOcJqiAV9vsiFl5NjfVKDmR3P0+kTJggM7CbkIMDr83h73Qrx7BI5zJ0HH3NMFQQyIgAbBczwoXCmRLQcyTeoVhhTO7Ex0v+eEBA4HglYK+eQVZnDQ22vZ13BMPDQ0o70p60mw8pthXJQpk65oNlIeocHBygBXObx71kNVTk+m/fSM8+/RSdum4lnbp2JW3YcCadvfmcQnQLbUwgYDPn7tM5ocqCfKyoKPzf96bGBoqxZUQ3p7GZqIzKoGUivMc9qPi6N89oKAgHNAICxyIBKKTH4lUtojGJSUshHyrhH1pEFx9dKSgBg8mqBDDydr7Pq4qFWUWQdqS9Gg6cpNMbNR+vrJ6VqY2epnnrkyuswITXZCgT9kQiEV4lGnvJYb1eT5vO3kx3332nUtrHOV23bX2Itpx/wYSz8bEQBIKRwtwftB5LoYNtV1e5lEnu/sH0wZQkcKOsjtbXVms9bNQHAscFgdKz2zguLsv4QRpMNjKYbaQ3cgL7ipFLJonaI0EfJ64f4ITxxWPSNr7nVFBlVNpGFMyJVyC3z+Xl5VRf30CdnR1gmxvKvJ/tqp9N/t4jR1O25L250QYkRYy/r4WqZsynrkNvje7XYiPCQeV0ip+WFrXlXkeFJFmETEnAbLbQT372H+RnhfOll3YrSqdMKtTU1PJ11FNba8voua28vWbdutHP2CgcgUpr6fmQCh2LsYI47XjBRDIE9PDKqFoRpbS5sYY6u3vVnoJyIAACRwlAIS3Sr4KsNkjeQCunbZAVgggnsY9FgzTMCezFq15nMJDF1ki1M0+gSMhPHncnDfa08miKy8tJHiiVh7gCxCURTkW0mFKk36yxbn39G9+i//0v147t4K1nn32aPnnV5cq+8y/4MH3/hz8mt9tNLlclfe0r/0qPP/bouPL4oC0BO//mK3SpVxoNpuCkMgaznSz2auo78Hee0S+8OV6gv4Oq5qwks72GwoHxwd/0PKHmalCX89CkLx+30ipBbe02E/mCBbiBqLiUJvbNTVwJ1hmMbK7M10zF6rBMIur0Jn6VjjJgtLr42jWmJBP0uklefb099Mv/+gW/91JtbR1dd/2/05q16+m6b36dHI6RiOyhUGi0LglqJP6kEBAoVgKxoRjHwFB/74lxwnV/AMG6ivV6ol/FTQAKaRFen8rGeeSqm00BXnXwcMqGaGjEB2eqrhqsVWS115GskLjbD5Cnr22qogXfHwqHFXMtDrWb97YluEC4RE2R8g5nigbuvut2+tY3vj56NO4jZ+X0OTf99Bd05WUX06uvvsIPluvoD7feTqtXnkyBQGC0PDa0JRBii4eyconcOLXE2P9raGh8rl1HzQwK9LcWzFR3Uu/YdDfQ30b2qnrqPjI+zHUsGqKAR92yhp6/d4lj8/q8VF1pp2F+MJxuMbDZaTgcGte/oViUgjxZWJ7mmknfh/lhdSjm5Nf0j0Uty2g4wNcudQ7pGDMRaWtro1/87CejVT/33DN0x133KoGLBgdHVpkMPJEaV0pNJhMNDCAy6SgwbBQdgUgWzxPxCLxFNxh0CASKnAAU0iK6QGKaWzd7CcVCPurbv4tXRNUpcWHOCygvvdlFjuqZZHFUUdfht4viIS7As4XVleaCUDYYdFCWMiQd44BT4u81UTZu3ERHjhxWlFE5tnvXTurq6qQNZ56FVdKJsDT8HA6knnySpmJR57jfdoWOrSUc1dTz/ruskBYmgFiyIYtCWj1/PSuk74zr3xCvDIZ86szeokZWthMUthBvx3iZ1MBmu8kCiiTrR772mYw68ni84/onfY2ouGbxPomyPVQEynW8P+neY5EQX7vsJqA6OzqUyUij0Ug9Pd3KfaapeSbt37dXaVai7nZwGQgIHEsE4pO6x9KYMBYQKAQBKKQ5UnbwSmYyKU9jdjfxHJPNRfVzlpK3ax8FBzqVw2UZmt5FWZEdbHuHrDVzqGnRGuo8+CY/zKn3L63QcR7PykY2P1NnUqZnf6F0ZQOcM8xiNZPOE+CE1vl9WLZaLdTbN5C2Tzr2xZ3quk28LvJZcMhDf6mJTHA46qomddvP5t3RyIhZ0bp16xWfr96eHtq69UF64/XXlPINDQ3j/L1kZ2trKzU05iea6qROYodqAmZ7FYW8vdO3Onq0p5IKRvphddaS162dojHA+Z/NZtO0K6QWs5Fa+sav/qq+SMdBwbPO2kgHDuynw4cPsZtGBf3TZ/+ZXnn5JZIARiJPPbmDLr/8Svr+924kq9VKF1x4Ef3ge985DshgiKVKQPIgZyrF5POead9RHgSmkwAU0hzpRyb4S8Wry8TETKJj1s8+ic1z36OQpyteRdbvvu79ZKmeRXWzTqC2va9yPer8SqXPotQOqVyZHbLoFTO0VB2VlgcGvWS3GEkc/vMlRoOeKtiBVFYw0skwm9lNdd2SnTs0ZJ72h/1k/Uq3TxSESGDyKnt8hebvu3dRf3+/kqD+xBNPovsf3E6fuuYq+utfniOn0zUpcb2Y2jmP+oKlaxvHC0dALCIivuJQlCK+fvYjrdRUIe0f8HAakUoa5PuH+GhNh9gsJiWCZjCkfoJvOvo5nW3OX7CAbv79rYoZrp5n8VpbjtD/+Zd/Hu3Sd2+8gW659TZFEbU77LR921ba8Th80kcBYaPoCJhMBqrgwH6Z3HfMbBEAKRyB6poaJc+x+KRDSpsAFNIcr1/A05e0huEJPl5JCx3dKYqjp+M9Cg5qt6rg6zlAtroFnI5hvmJCl6r9+DExJwv51ZnWyTkxB/t7sXKXTnp7+2j2rCZ+oPRldGNPV2/icZvFyqujblX9keAiU123xDrj27Fo7Tgzvfj+Yn+PsrldgFeXppInn9hB8opLMBigyy4fUUjFt8toNMUPKe8jPl8D4/bhw/QTkAjcPg3vHbmMKBry8AppQy5VTDo3yia7blZKHXYLv6efcJpUgQY77DYzdXYhcmYqlL//3c30pz/+gRrZisLn95FYXSSKrJxu2riBGjhIksfrUR4iE49jGwSKjUBfv4eDqplJTdoX6bvco/yIsaDZZXzubztp9uw54+r72le/SHffeQeJyf9vf/9HJTCa1WalBx+4X/FXl6jekNIkkLk9QmmOs2h7XdU4X/EZ1VIZjQ/W27WXjFYH2ThS73SKrCq4+wf4xmHJSzdsbBIs6Un63FCWcgHc2dFJdrtNqaK9vZ2ampvHVSd/ANrb28btw4fpJ6A3mCkWzp/1QSYjjHEQHElPpbX09rrJyquUZmPhTeddDiuFgmHy+oqDsdZstaxP/NFF8ZyojCa20dHRDmU0EQi2i5ZAj9x32FRf7j3pxMKrqS67lbq6ky9SpDsfx5MTuObqK9lCpnn09ee771IKXv/tG+nZp5+iU9etpFPXrqQNG86kszefk7wS7C0JAlBIEy6TTqebMgm72Wym6mptEx5L+gBn3Szydu9L6IW2m/7ewxy2P7mfq7Ytpa5NbtJ6DkzisGmrlJrYVLfaZaeOzu7UHcDRSQQuufQyslhGrkdNbS1dfMmlirmuFHzmmado1qzZtHzFSuW8texrKrkExZwXUlwEJIhGYmTa6eyd9CMfQT2iPOvdxbn9RDksL2BuJ1GAxVy3swero9P5vULbIDAdBGS1raWtU1E0nbz6OZXIc01NlZNa2zs50v/kIIFTnYf96QlE2aJNJrriL8k1r+eI55vO3kx3332nUoH4qW/b+hBtOf+C9BWiRNESgMnu0UsjaS62P7KDvvrlf1UiisavmCip3/vBj+nc87aQ3+9Xcqx95tPXaLJSJHlGA+5WNgfN3w0s7O0hS2Uz5zOtI19/V3xY0/Le1tFNs5oalQdWT5aRGxM7Lmle5I9AW0cXBQqQViax7WNh++JLPk4/vuln/F1uJ/HDeOjB++gPt/xOGZrP66Wvs2nM7XfcQ93dXcrxr3zpC4hiXIQXvryiuG7j+eqP+JJKxFZJA9OdQbL6bC+Zge/90lZ7Z4/iP5ptPTgPBKaLgJjz69iCYqKUs49vWUXh8xVP7Eemn3UGE1mcI1Y86c4t53ztci/K9X4U4tQvh1kpraupopkz6tgkN0QyQSYiOdZl0ioUjtCh1k5OaRTOuT3pr5HzSg9XqPNF1RljObeZjmU+jivR4TkA3kSRQJyS/iwu//S5/0UXfvgjSsC0e+66g/r6+pTJcZ1OPy7wYmtrC61Zty5+Gt5LkEBxPclME8DvfPcH9DF+OLexUjpRZMZl5arVtH7NCuVh/IYbv0vfvO7bHKzhcxOLZvzZWtmg5BnN+MQMT5BASRZ79bQrpHKzPtzaTs2N9cqNXK1fRrLhyqpFFa+MtvPKqARNgmRO4ArOMWq3OziJfa0ywTIxv+hDDz5AD2/fRo0zZvCNv5Xgm5E540KcIT7RxSRq/Mqz7W9nVw81z6inmkoH9bjV+7tn2p4y2SVtsMmex6suh2qmbaA8COSbgOQ0rmBLrIlSVlY+pTXYxLLF9LmMozcnG0+yPpbRkDJGGWuuEo0O8cR3D0+IcYotk5FX6Eas6YJsyu9mP9Pg0QlxLdoqYwuQMp4MqxhmjVqFlJeHSvJasqlL0muZmLrsjtv/REFOHSi8zzl3C1151dV0/rmbyXE0uGI8p7FgkqBGTodTBTEUKVYCUEj5yvzbdd9QXi/ufmXSdTpvywW09aEHRleGxJn6wW2PKj6LYjqQrRh4BoyXRikanDroTLZ1TzxPUjFUzmaz3SMTjxT+syilBw630Iz6OmqodSmRM/18U1crsmrhsHMaGf7DdLilnWcrEVlNLbtk5TyeQY5MPPWDfTQapSOHDyc7FfuKhECuKwBaD0MegvMpYkI3o6GW6qqd/DDopYjGQSwkvUslr8J09/SRrMpCQKBUCchKU+JqU3wcMZ7UGcogJVz8vOl+jwR85OnrUdUNvcHAae8iGaW+S1exn5n5ffmdAJc+Bz1u9rOe+u9yYj8dOpMyzsR9pbAdC4fI09OSsqu//tUvR4/f8vvf0l+e30Wnn7GB9rw68qxu4GscV0pHgi72j5bHRukRyH3qqPTGnFGPJe9ia8vYj6aFt8VsrLKqKqN6JhaWVC+SYqUQImlcMklDk+8+DQ0NUwv7WvT09rNyySlvalyKb6kom8lElE9ZEa1h87m6GifntfPT/kMtUEaTwcK+445AjHPKVugnm+VNBwjph/Qn3yLm/3IfqK+r5KAj6QOOqOmPrEyIj6oEJulgM10oo2qooQwIgAAI5J+ATI739fayVZedenq6FZ/SpuaZow1L0MWOjo7Rz9goPQLJNYDSG0feeix5F+MzMNJIKDTysCWmARJJsIbzhyaTiiR+G4nljLZKTg/Ktv+6wkSNFDOIdH3SGaLkapyX1Ockse/xbaOpgnQ5RNT0h9k3o72HlU0zm0tbqM5pVxKqS5oHo0HHfhlRXgkdmTMRvw2fP0DtPQOKD2ou7Ros9imvW3xsie8Gc4CZaPPQm1hvvrdN1koe56xJzQx0HqRIsDCTIZMax46UBFwcdTvdd81oHhz3W5Y/1Hqri4a9I35NKRvI80GjrYqkP4n3GoPVyd/DsQeHVF0wlsdU31Pc3iCF2UilpspFktfS4w1QMKze2iKxHxKp28Evsbho6exjH7EhVf2Q+5Dae2aM0zDpDZa01zexX9O9bXbUUI3BkbIbfo5N4B9AULmUkKbpoLgFmR2TgzHqzTyJleYZZZq6nLJZk72KauyulGXiB4djYeW3lsuzQryuQr7rjAGyVzeRuVrdPdNsHCipe0qcpZ4XZZI9P4c59eBg9xElqOKcuXPpL889qzzzbTjzLFqwcBHtfPEFRRl96skddPnlV9L3v3cjWa1WJb/xD773nXj1eC9BAlBI01y0gYEBErOAuJhMIysRkqdRxN36fvzQuPdYeNm4z5M+sLlvjFcuh/jhrRAi6RjERCKVxMJBGuw6otofwcCrx3JOrjLAdQz0u3OtRvX5YvYz1XVLVkmksZJXfVKzS3bedO+TnLLu1skzhvn08ZvuMZd6+4Pdh4k9iFIOo67JOu637O/vIRMHLwlGO1OeV4iD5TrOwzfQM65/kYCHv4fq+uZy8W8tg3vKoNyz+vvJxZNZVS4n2S16kjRTAXYDCEemvrfKaqhE6JbE95KuQc5pYT9pvz+z+5ncU9XeMyX6cDS8sKTuJUGvm9ydqa/dELueQIqTQIAnCoJJcqVHXNXjfqPF2fvJvQr5+tlMX93khwS9kd9nJveTyS0Wfo/02dffwabB6iaNTbU8zhJ8PomGAvx3Yf8kwHEfUjHB/enP/5OVTRs/H/aTxWrhQItfUtJKyUnfvfEGuuXW2xRFVCYkt2/bSjsef3RSfdhROgSgkKa5VpJ3UUwB4iLbsmLqdo8oUBIRLLmk8y8domH+x46kyU/XfG/6tqQ/mUT8HWalOh8pHjQf+oQK5YY39XWbUJg/SvnSHGcso3FOHjn2FJrAkIoARcNDMik2dt8IeHrIUb103L5C9zvenoEtP/q6XhvXF7lPqP29iXKTzW/N3c+TL/yysrWFna0tqtgHVK+voDBbW8T4JW4Cki1G8hVX8MvAyqishorVRXd3jxIlMz6GTN7l3pDRPZOvWzbjy6RPWpYVVw+1107LdlGXNgSUyYJkEwb8vU28h2jTWv5ryeRewj9z5RmrlH5vQlD6O8R+8Wp/d8PD5SV1T4l/S9I9h7333ru0dtUpHHSxjicOTdTScoTv42N/9yTf8aaNG6ihoZGtYzzIbRwHW8LvUEjTXLzHHn2Yrv3Cl+g3v/6VEsXrssuvoMcefWTcDyNNFUkPy81Gx76ohZLyEgzxXig2aAcESplAiFcgY5w6ysAm2mFf4SwNJjIzWNlcl/1Hw8H8Bv2Y2G7iZ1Ew5UWEvKGJXLANAvkkYGZTWiun8DCYLCQBG4McTCno7Scvm3NH2ToLAgLZEBDlvKsrtYVGR0d7NlXjnCIkAIWUL4qYBZyx4UxlJuZ/br6F7dPDdPr61YovlJgBnHnWRtr10h7yerzKTMynrrkq50sZCfrJYnPmXI/aCnTsuwQBARA4Ngl4+jrI5mycVoXU7JpBAz1txyZgjAoEQGASAYPJRtXNCxWrgzBH8w/08YtXXyU2hsniosqGtdTfdZjcHQcmnYsdIAACIJBIAAop0/jyF69NZDJuWwJ0yHEbR/aysS27VrMxYQ4qozelDhYxriM5fNAZbbyiCz+fHBDiVBAoagKDHD7fWdtMRls1SZqnQou0W64zktc92We50H1BeyAAAvknYLQ4qGHeKeTvO0Ied8ukBkPeHlZQj5C1bj7pOfhj16E3J5XBDhAAARCIE0DalziJNO9ej0czZVSaioT8iimLwcLRdvMs0oZ/sPAPqXkeFqoHARBIINDXvp8sVbMS9hRu01I9h/qwClI44GgJBKaZQO2sE8jffYACSZTReNckcONg21uk01VQZf2c+G68gwAIgMAkAlBIJyEp3A6Pu5OM9tq8N2h0NpCnF6Z0eQeNBkBgGgn42F8r6PeQrW5hQXsh7YnPmLQPAQEQOPYJOOtmUYwn1QOD6iwifKy4uhrmUkWB0twd+1cAIwSBY48AFNJpvKaDPa0ciKSKTXfteeuF+HXJaqwEPoGAAAgc2wS6j7xDFezXZalsKshALVUzqcJoIWkXAgIgcHwQcFQ1plwZnUghFuEcwQOdZKusn3gIn0EABEBAIQCFdFq/CMPU176PLDVz8tKLCr2JrFy3u+NgXupHpSAAAsVHoPPAG2R0zmCltDmvnZP6jfZ66jwI37C8gkblIFBkBCr0RoqGMoumHQkMcgReW5GNBN0BARAoFgJQSKf5Snj62jnfVJQVx3ma98RWv4AGOMJdyD+ged2oEARAoDgJSJqF9n2vksFWS7ba+XnppK12HhnY3aB9/6vsCx/MSxuotDQJmM1mqq6uLs3Oo9eqCJRXZB4Pc3goQhZHjar6UQgEQOD4IwCFtAiueechdvo3OzUNSGJvWEzhUIjcnQeLYIToAgiAQCEJiFLaxkrpcLmeXM3LNIvoLZHBpT6pt/X9l6GMFvKiFnlbOp2OfnTTz+jF3a/Qtkd20HZ+NTbOKPJeo3vZEMhuEqqMfc37s2kO54AACBwHBKCQFsFFHuaULB3795Ce/UltdQty6pGY6Tqbl1IsNkTdh9/OqS6cDAIgULoEhmIRNqd9gwbdXeSYsYRs9Qsp23zEcp7cm+xcj9QnZrpy34KAQJzAlvMvoJWrVtP6NSvo1LUraffunfTN674dP4z3Y4hAWXkFVejNGY1Ix7EywgFfRuegMAiAwPFDAAppkVzrWDRMbe+/RLHhMnLNWsHmdpmbPEkAo0o+1z/YT11QRovkyqIbIDC9BCRH6ZG3X2SLiTA5Zy5TVjjF/7OClcxUIsfNXM7ZfLLyCofD1ML1SH0QEJhI4LwtF9DWhx6gQCCgHLr7zjvonHPPo/JyPGZMZFXqn/0D3WR01GU0DJOjnnx8HgQEQAAEkhHI3BEgWS3YpwmB4eFhZVXT5qonV/1sfhhsorCnh0KebpLVjmQis5SSOkZu9uGgj326XoPPaDJQ2AcCJUDAZKukdP5ZOn0ZlVXoMxrNMJd2sz+5vKzOWjLbq1jJbKZynZ6GIiFe7Yzwton92YOsQOgUZVUmyYIeNw30do49SJaVc9uZKRgSAMXCbaoRvdGcdvxq6ilUGeGn5ppJf4Z4Rbmcr1u661uovqtpR88RlC3O1IFoJIp7hP/2NLB57hM7Hh+ttqWlhYxGI1VWVVFvT8/ofmyUPoH+7iPUvGgNhb29qoIbWWvmkt/bxyukiPZf+lcfIwCB/BCAQpofrjnV6u3vJHlZXXVk41dV9WxWSKPKw2LcTK6MHxrFjG54eIhXRHuVFVH4Z+SEHSeDwLQTsPJklI6VslSiM/RxPr/MFNLE+uQ+IS934s4027m0p2Olxl5TlaaFkcP64XBJ5SqUvIoWvkeL4pZOopGgMrZcWKZrQ+vjEhXVXpH62nk5MJ8opE6Hg0IctyAuodBIsCunwwmFNA7lGHmX693T+h5VzTiRBtvf4es/OOXILFWzSG+p4kBrL09ZBgdAAARAAAppEX8HJNE8ks0X8QVC10BAYwIBXkWoCBpS1hpzRZUJqpSFiuhgjFdgxcRPjViMvGLLk2+lImK5EvS6FYUsXZ9lXEMxQ0mNLxIK8IRn6msnK6QiAwMDZDCMfXdNppGJlYEBBLJJ990oxeOe3ja2rBiiGjbpD/S3Uoi/J9HwmI+o5FgXK68hNs9o3/cKT6gnt/IqxbGjzyAAAtoTgEKqPVPUCAIgAAJZEfDzJFQ6iXBE7iE2py0VibLC4umZegUlcRy6qhp+cC2dscUiYVJzzeJjjEVdLwtAqQAACx9JREFUJfVgLiaWnp4Rn9D4GKZ6b29vo+aZM0cPy7asmLrdmazFj56OjRIg4HV3KNYWjppmsjeewFZbJpKAR2K5FfIN0mBvO0lqOwgIgAAIpCMAhTQdIRwHARAAARAAARBISeCxRx+ma7/wJfrNr39FwWCQLrv8Cnrs0UfYd3Yo5Xk4WNoEJAVMX9te5VXaI0HvQQAEppMAFFKV9CXZt8Viod7eXpVnoBgIgAAIgAAIHB8Etm/bSmeetZF2vbSHvB4vebwe+tQ1Vx0fg8coQQAEQAAEciIAhTQNPkn2/b0f/JjOPW8L+f1+6mOF9DOfvobEPAkCAiAAAiAAAiBAFI1G6ctfvJZsdjvZrDbq6ICpJr4XIAACIAAC6ghkFr9fXZ3HVCkk+z6mLicGAwIgAAIgkEcCXo8Hymge+aJqEAABEDgWCUAhTXNVkew7DSAcBgEQAAEQAAEQAAEQAAEQAIEsCcBkNw24dMm+6+evSFrDb3a00jkrG5IeK9adv3uilaqaF6vKqSdjiAXcJWm6/M7bb9JU1y3ZtXnpnb305v7SifwpY9jz9gD5I2Ye54JJQ3K3vc8Jyr2T9mPH9BOobuZIlWnykHb07qdDvbHp76zKHrR7ylT/3soiXnrwvrtp7akbVNY+vcXuveuPqu+Zkof0hzcforo61/R2WmXr/+/RVtJbq/na1aY8Q/KQ+jjaKqT4CNg5+q3FOfn6/fXdd2nZwtK5hwjZXe9xSiyzi7+PJ6gCPcy/t3tuv4UuufJTqsoXS6Ft991JjtpmstUbVXXJMNxNN/7qAF18bpOq8sVS6Ge3tiT9uxDyDVB/x/5i6Sb6UUACZZWVlZwlCjIVgaee+Sv97Kc30batDypFJM/a+/uP0MYzT6P9+/cl/UFNVRf2g0AxEIBCWgxXIXkf1Cikyc/EXhCYHgJQSKeHu5pWp1JI1ZyLMiAwHQSgkE4H9eJoEyukaa5DumTfnZzwGQICIAACWhDobXlHi2pQBwiAAAhwDtkW5QUUIAACIFDsBOBDmuYKIdl3GkA4DAIgAAIgAAIgAAIgAAIgAAJZEoBCmgacJPu+6KKPkslkUkoi2XcaYDgMAiAAAiAAAiAAAiAAAiAAAioJwGQ3DSgk+04DCIdBAARAAARAAARAAARAAARAIEsCCGqkEhySfasEhWIgAAIgAAIgAAIgAAIgAAIgoJIAFFKVoFAMBEAABEAABEAABEAABEAABEBAWwLwIdWWJ2oDARAAARAAARAAARAAARAAARBQSQAKqUpQKAYCIAACIAACIAACIAACIAACIKAtASik2vJEbSAAAiAAAiAAAiAAAiAAAiAAAioJQCFVCQrFQAAEQAAEQAAEQAAEQAAEQAAEtCUAhVRbnqgNBEAABEAABEAABEAABEAABEBAJQEopCpBoRgIgAAIgAAIgAAIgAAIgAAIgIC2BKCQassTtYEACIAACIAACIAACIAACIAACKgkAIVUJSgUAwEQAAEQAAEQAAEQAAEQAAEQ0JYAFFJteaI2EAABEAABEAABEAABEAABEAABlQSgkKoEhWIgAAIgAAIgAAIgAAIgAAIgAALaEoBCqi1P1AYCIAACIAACIAACIAACIAACIKCSABRSlaBQDARAAARAAARAAARAAARAAARAQFsCUEi15YnaQAAEQAAEQAAEQAAEQAAEQAAEVBKAQqoSFIqBAAiAAAiAAAiAAAiAAAiAAAhoSwAKqbY8URsIgAAIgAAIgAAIgAAIgAAIgIBKAlBIVYJCMRAAARAAARAAARAAARAAARAAAW0JQCHVlidqAwEQAAEQAAEQAAEQAAEQAAEQUEkACqlKUCgGAiAAAiAAAiAAAiAAAiAAAiCgLQEopNryRG0gAAIgAAIgAAIgAAIgAAIgAAIqCUAhVQkKxUAABEAABEAABEAABEAABEAABLQlAIVUW56oDQRAAARAAARAAARAAARAAARAQCUBKKQqQaEYCIAACIAACIAACIAACIAACICAtgSgkGrLE7WBAAiAAAiAAAiAAAiAAAiAAAioJACFVCUoFAMBEAABEAABEAABEAABEAABENCWABRSbXmiNhAAARAAARAAARAAARAAARAAAZUEoJCqBIViIAACIAACIAACIAACIAACIAAC2hKAQqotT9QGAiAAAiAAAiAAAiAAAiAAAiCgkgAUUpWgUAwEQAAEQAAEQAAEQAAEQAAEQEBbAlBIteWJ2kAABEAABEAABEAABEAABEAABFQSgEKqEhSKgQAIgAAIgAAIgAAIgAAIgAAIaEsACqm2PFEbCIAACIAACIAACIAACIAACICASgJQSFWCQjEQAAEQAAEQAAEQAAEQAAEQAAFtCUAh1ZYnagMBEAABEAABEAABEAABEAABEFBJAAqpSlAoBgIgAAIgAAIgAAIgAAIgAAIgoC0BKKTa8kRtIAACIAACIAACIAACIAACIAACKglAIVUJCsVAAARAAARAAARAAARAAARAAAS0JQCFVFueqA0EQAAEQAAEQAAEQAAEQAAEQEAlASikKkGhGAiAAAiAAAiAAAiAAAiAAAiAgLYEoJBqyxO1gQAIgAAIgAAIgAAIgAAIgAAIqCQAhVQlKBQDARAAARAAARAAARAAARAAARDQlgAUUm15ojYQAAEQAAEQAAEQAAEQAAEQAAGVBKCQqgSFYiAAAiAAAiAAAiAAAiAAAiAAAtoSgEKqLU/UBgIgAAIgAAIgAAIgAAIgAAIgoJIAFFKVoFAMBEAABEAABEAABEAABEAABEBAWwJQSLXlidpAAARAAARAAARAAARAAARAAARUEoBCqhIUioEACIAACIAACIAACIAACIAACGhLAAqptjxRGwiAAAiAAAiAAAiAAAiAAAiAgEoCUEhVgkIxEAABEAABEAABEAABEAABEAABbQlAIdWWJ2oDARAAARAAARAAARAAARAAARBQSQAKqUpQKAYCIAACIAACIAACIAACIAACIKAtASik2vJEbSAAAiAAAiAAAiAAAiAAAiAAAioJQCFVCQrFQAAEQAAEQAAEQAAEQAAEQAAEtCUAhVRbnqgNBEAABEAABEAABEAABEAABEBAJQEopCpBoRgIgAAIgAAIgAAIgAAIgAAIgIC2BKCQassTtYEACIAACIAACIAACIAACIAACKgkAIVUJSgUAwEQAAEQAAEQAAEQAAEQAAEQ0JYAFFJteaI2EAABEAABEAABEAABEAABEAABlQSgkKoEhWIgAAIgAAIgAAIgAAIgAAIgAALaEoBCqi1P1AYCIAACIAACIAACIAACIAACIKCSABRSlaBQDARAAARAAARAAARAAARAAARAQFsCUEi15YnaQAAEQAAEQAAEQAAEQAAEQAAEVBKAQqoSFIqBAAiAAAiAAAiAAAiAAAiAAAhoSwAKqbY8URsIgAAIgAAIgAAIgAAIgAAIgIBKAlBIVYJCMRAAARAAARAAARAAARAAARAAAW0JQCHVlidqAwEQAAEQAAEQAAEQAAEQAAEQUEkACqlKUCgGAiAAAiAAAiAAAiAAAiAAAiCgLQEopNryRG0gAAIgAAIgAAIgAAIgAAIgAAIqCUAhVQkKxUAABEAABEAABEAABEAABEAABLQlAIVUW56oDQRAAARAAARAAARAAARAAARAQCUBKKQqQaEYCIAACIAACIAACIAACIAACICAtgSgkGrLE7WBAAiAAAiAAAiAAAiAAAiAAAioJACFVCUoFAMBEAABEAABEAABEAABEAABENCWABRSbXmiNhAAARAAARAAARAAARAAARAAAZUE/j/V93ItwulELwAAAABJRU5ErkJggg==", + "text/html": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "score_figure(df_eventteams_scores, 'performance', scatter_opacity=0.5)" + ] + }, + { + "cell_type": "code", + "execution_count": 47, + "metadata": {}, + "outputs": [], + "source": [ + "# TEST CODE (borrable)\n", + "\n", + "#acc_fig = make_subplots(rows=2, cols=4,\n", + "# shared_xaxes = True,\n", + "# shared_yaxes=True,\n", + "# column_titles= team_names,\n", + "# print_grid=False,\n", + "# specs = [[{\"secondary_y\" : True},{\"secondary_y\" : True},{\"secondary_y\" : True},{\"secondary_y\" : True}],\n", + "# [{\"secondary_y\" : True},{\"secondary_y\" : True},{\"secondary_y\" : True},{\"secondary_y\" : True}]]\n", + "# )\n", + "\n", + "#hover = ['
Medal distribution: %{customdata[0]}%
'+\n", + "# 'Participation: %{customdata[1]}%
'+\n", + "# 'Team players: %{customdata[2]}
'+\n", + "# '
Team Accumulative Score: %{customdata[3]}']\n", + "#---------------------------------------- build graphs\n", + "#------------------------ TEST CODE (2 ITERATIONS)\n", + "#for e in range(len(events)):\n", + "# for i in range(len(team_names)):\n", + "#------------------------------------------------------- accumulative sum values\n", + "# acc_fig.add_trace(\n", + "# go.Bar(\n", + "# x = df_eventteams_scores[df_eventteams_scores['event_game']==events[e]][df_eventteams_scores['team']==team_names[i]]['medal'].map(lambda x : x.capitalize()),\n", + "# y = df_eventteams_scores[df_eventteams_scores['event_game']==events[e]][df_eventteams_scores['team']==team_names[i]]['medal_frequence'].values,\n", + "# name = 'Event '+events[e]+'',\n", + "# marker_color = [medal_colors[2], medal_colors[1],medal_colors[0], medal_colors[3]],\n", + "# opacity = 0.8,\n", + "# text = df_eventteams_scores[df_eventteams_scores['event_game']=='A'][df_eventteams_scores['team']==team_names[i]]['medal_frequence'].values,\n", + "# textposition = 'inside',\n", + "# textangle = 0,\n", + "# textfont_color = 'black',\n", + "# customdata = ['bronze', 'silver', 'gold'],\n", + "# hovertemplate = '
Total medals: %{y} %{customdata}',\n", + "# ), row = e+1, col = i+1, secondary_y = False)\n", + "\n", + "#----------------------- NO DESCOMENTAR\n", + "# acc_fig.add_trace(\n", + "# go.Bar(\n", + "# x = df_eventteams_scores[df_eventteams_scores['event_game']=='B'][df_eventteams_scores['team']==team_names[i]]['medal'].map(lambda x : x.capitalize()),\n", + "# y = df_eventteams_scores[df_eventteams_scores['event_game']=='B'][df_eventteams_scores['team']==team_names[i]]['medal_frequence'].values,\n", + "# name = 'Event B',\n", + "# marker_color = [medal_colors[2], medal_colors[1],medal_colors[0], medal_colors[3]],\n", + "# opacity = 0.8,\n", + "# text = df_eventteams_scores[df_eventteams_scores['event_game']=='B'][df_eventteams_scores['team']==team_names[i]]['medal_frequence'].values,\n", + "# textposition = 'inside',\n", + "# textangle = 0,\n", + "# textfont_color = 'black',\n", + "# customdata = ['bronze', 'silver', 'gold'],\n", + "# hovertemplate = '
Total medals: %{y} %{customdata}',\n", + "# ), row = 2, col = i+1, secondary_y = False)\n", + "#----------------------- FIN BLOQUE \n", + "\n", + "#----------------------- traces: scatter accumulative score values\n", + "# acc_fig.add_trace(\n", + "# go.Scatter(\n", + "# x = df_eventteams_scores[df_eventteams_scores['event_game']=='A'][df_eventteams_scores['team']==team_names[i]]['medal'].map(lambda x : x.capitalize()),\n", + "# y = df_eventteams_scores[df_eventteams_scores['event_game']=='A'][df_eventteams_scores['team']==team_names[0]]['acc_w_score'],\n", + "# name = 'Team metrics',\n", + "# mode = 'markers',\n", + "# marker_size = l_marker_size[e][i],\n", + "# marker_color = [medal_colors[2], medal_colors[1],medal_colors[0]],\n", + "# marker_line_color = 'white',\n", + "# customdata = df_eventteams_scores[df_eventteams_scores['event_game']=='A'][df_eventteams_scores['team']==team_names[i]][['medal_relative','player_ratio', 'total_players', 'acc_w_score_total']],\n", + "# hovertemplate = '
Medal distribution: %{customdata[0]}%
'+\n", + "# 'Participation: %{customdata[1]}%
'+\n", + "# 'Team players: %{customdata[2]}
'+\n", + "# '
Team Accumulative Score: %{customdata[3]}'\n", + "# #hovertemplate = hover[0]\n", + "# ), row = e+1, col = i+1, secondary_y = True)\n", + "\n", + "#----------------------- NO DESCOMENTAR\n", + "# acc_fig.add_trace(\n", + "# go.Scatter(\n", + "# x = df_eventteams_scores[df_eventteams_scores['event_game']=='B'][df_eventteams_scores['team']==team_names[i]]['medal'].map(lambda x : x.capitalize()),\n", + "# y = df_eventteams_scores[df_eventteams_scores['event_game']=='B'][df_eventteams_scores['team']==team_names[0]]['acc_w_score'],\n", + "# name = 'Team metrics',\n", + "# mode = 'markers',\n", + "# marker_size = df_eventteams_scores[df_eventteams_scores['event_game']=='B'][df_eventteams_scores['team']==team_names[i]]['acc_w_score_total'],\n", + "# marker_color = [medal_colors[2], medal_colors[1],medal_colors[0]],\n", + "# marker_line_color = 'white',\n", + "# customdata = df_eventteams_scores[df_eventteams_scores['event_game']=='B'][df_eventteams_scores['team']==team_names[i]][['medal_relative','player_ratio', 'total_players', 'acc_w_score_total']],\n", + "# hovertemplate = '
Medal distribution: %{customdata[0]}%
'+\n", + "# 'Participation: %{customdata[1]}%
'+\n", + "# 'Team players: %{customdata[2]}
'+\n", + "# '
Team Accumulative Score: %{customdata[3]}'\n", + "# ), row = 2, col = i+1, secondary_y = True)\n", + "#----------------------- FIN BLOQUE \n", + " \n", + "#---------------------------------------- fix category orders for 0 values\n", + "#acc_fig.update_xaxes(\n", + "# categoryorder = 'array',\n", + "# categoryarray = ['gold', 'silver', 'bronze'],\n", + "# showticklabels= False,\n", + "# showspikes = False)\n", + "#---------------------------------------- applies secondary y axis for subplots\n", + "#acc_fig.update_yaxes(\n", + "## anchor = 'free',\n", + "## overlaying = 'y',\n", + "# #title = 'team inner-relative score',\n", + "# side = 'right',\n", + "# secondary_y = True)\n", + "#---------------------------------------- config: title, legend, hover, template, fig dimensions\n", + "#acc_fig.update_layout(\n", + "# title = 'Accumulated Event scores, by teams',\n", + "# barmode = 'group',\n", + "## yaxis2 = dict(\n", + "## anchor = 'free',\n", + "## overlaying = 'y',\n", + "## side = 'right'),\n", + "# showlegend = False,\n", + "# hovermode = 'x unified',\n", + "# hoverlabel_align = 'right',\n", + "# barcornerradius = \"50%\",\n", + "# template = 'plotly_dark',\n", + "# width = 900, height = 400)\n", + " \n", + "#----------------------- show line (return)\n", + "#acc_fig.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## \"Conclusions\" (and hipothesis)\n", + "\n", + "After reviewing the calculus and impact of accumulative score system in the escenario wich players are placed in teams with symbolic value, posible solutions are proposed, allowing players to choose freely and estimate winners based on performance, calculating scores by normalizing each team instead of considering all the players without data processing. It's expected to reduce negative impact on the perception from user experience and community perspectives.\n", + "\n", + "Since is not commonly applied or seen, is suggested to do a test event with any of these approaches and observe the impact on players." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.0" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} From f60d802dc18268bcbb7c4e7ed8bd84ebf2a30618 Mon Sep 17 00:00:00 2001 From: Fernanda Soto <156433287+FerSotoApse@users.noreply.github.com> Date: Tue, 24 Sep 2024 10:30:50 +0200 Subject: [PATCH 02/10] Create pytetst.yml --- .github/workflows/pytetst.yml | 25 +++++++++++++++++++++++++ 1 file changed, 25 insertions(+) create mode 100644 .github/workflows/pytetst.yml diff --git a/.github/workflows/pytetst.yml b/.github/workflows/pytetst.yml new file mode 100644 index 0000000..badd8ae --- /dev/null +++ b/.github/workflows/pytetst.yml @@ -0,0 +1,25 @@ +name: test + +on: + push: + +jobs: + test: + runs-on: ubuntu-latest + + steps: + - uses: actions/checkout@v3 + + - uses: actions/setup-python@v4 + with: + python-version: 3.7 + + - name: Install dependencies + run: | + python -m pip install --upgrade pip + pip install -r requirements.txt + + - name: Install plugin + run: pip install pytest-github-actions-annotate-failures + + - run: pytest From f5d3ea0db107c0946a84491629e7e4a07f7c8ba9 Mon Sep 17 00:00:00 2001 From: Fernanda Soto <156433287+FerSotoApse@users.noreply.github.com> Date: Tue, 24 Sep 2024 10:33:00 +0200 Subject: [PATCH 03/10] Update and rename pytetst.yml to pytest.yml --- .github/workflows/{pytetst.yml => pytest.yml} | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) rename .github/workflows/{pytetst.yml => pytest.yml} (93%) diff --git a/.github/workflows/pytetst.yml b/.github/workflows/pytest.yml similarity index 93% rename from .github/workflows/pytetst.yml rename to .github/workflows/pytest.yml index badd8ae..d1c784e 100644 --- a/.github/workflows/pytetst.yml +++ b/.github/workflows/pytest.yml @@ -12,7 +12,7 @@ jobs: - uses: actions/setup-python@v4 with: - python-version: 3.7 + python-version: 3.10 - name: Install dependencies run: | From e4777777c75b8a50360fddecefab6ec20de7a4b7 Mon Sep 17 00:00:00 2001 From: Fernanda Soto <156433287+FerSotoApse@users.noreply.github.com> Date: Tue, 24 Sep 2024 10:46:26 +0200 Subject: [PATCH 04/10] Update python-app.yml --- .github/workflows/python-app.yml | 5 ++++- 1 file changed, 4 insertions(+), 1 deletion(-) diff --git a/.github/workflows/python-app.yml b/.github/workflows/python-app.yml index 1168bd9..8e13482 100644 --- a/.github/workflows/python-app.yml +++ b/.github/workflows/python-app.yml @@ -20,7 +20,7 @@ jobs: steps: - uses: actions/checkout@v4 - name: Set up Python 3.10 - uses: actions/setup-python@v3 + uses: actions/setup-python@v5 with: python-version: "3.10" - name: Install dependencies @@ -36,4 +36,7 @@ jobs: flake8 . --count --exit-zero --max-complexity=10 --max-line-length=127 --statistics - name: Test with pytest run: | + pip install pytest pytest-cov + pytest test.py --doctest-modules --junitxml=junit/test-results.xml --cov=com --cov-report=xml --cov-report=html + pytest From 885203ee9913cf2e1f0d85232ed1fcb1a934fa1b Mon Sep 17 00:00:00 2001 From: Fernanda Soto <156433287+FerSotoApse@users.noreply.github.com> Date: Fri, 27 Sep 2024 11:59:02 +0200 Subject: [PATCH 05/10] Delete .github/workflows directory --- .github/workflows/pytest.yml | 25 ------------------- .github/workflows/python-app.yml | 42 -------------------------------- 2 files changed, 67 deletions(-) delete mode 100644 .github/workflows/pytest.yml delete mode 100644 .github/workflows/python-app.yml diff --git a/.github/workflows/pytest.yml b/.github/workflows/pytest.yml deleted file mode 100644 index d1c784e..0000000 --- a/.github/workflows/pytest.yml +++ /dev/null @@ -1,25 +0,0 @@ -name: test - -on: - push: - -jobs: - test: - runs-on: ubuntu-latest - - steps: - - uses: actions/checkout@v3 - - - uses: actions/setup-python@v4 - with: - python-version: 3.10 - - - name: Install dependencies - run: | - python -m pip install --upgrade pip - pip install -r requirements.txt - - - name: Install plugin - run: pip install pytest-github-actions-annotate-failures - - - run: pytest diff --git a/.github/workflows/python-app.yml b/.github/workflows/python-app.yml deleted file mode 100644 index 8e13482..0000000 --- a/.github/workflows/python-app.yml +++ /dev/null @@ -1,42 +0,0 @@ -# This workflow will install Python dependencies, run tests and lint with a single version of Python -# For more information see: https://docs.github.com/en/actions/automating-builds-and-tests/building-and-testing-python - -name: Python application - -on: - push: - branches: [ "main" ] - pull_request: - branches: [ "main" ] - -permissions: - contents: read - -jobs: - build: - - runs-on: ubuntu-latest - - steps: - - uses: actions/checkout@v4 - - name: Set up Python 3.10 - uses: actions/setup-python@v5 - with: - python-version: "3.10" - - name: Install dependencies - run: | - python -m pip install --upgrade pip - pip install flake8 pytest - if [ -f requirements.txt ]; then pip install -r requirements.txt; fi - - name: Lint with flake8 - run: | - # stop the build if there are Python syntax errors or undefined names - flake8 . --count --select=E9,F63,F7,F82 --show-source --statistics - # exit-zero treats all errors as warnings. The GitHub editor is 127 chars wide - flake8 . --count --exit-zero --max-complexity=10 --max-line-length=127 --statistics - - name: Test with pytest - run: | - pip install pytest pytest-cov - pytest test.py --doctest-modules --junitxml=junit/test-results.xml --cov=com --cov-report=xml --cov-report=html - - pytest From 56851ff5cc260db9b3d5e246d6c8493d6b1bb457 Mon Sep 17 00:00:00 2001 From: Fernanda Soto <156433287+FerSotoApse@users.noreply.github.com> Date: Fri, 27 Sep 2024 11:59:18 +0200 Subject: [PATCH 06/10] Delete ReadMe.md --- ReadMe.md | 20 -------------------- 1 file changed, 20 deletions(-) delete mode 100644 ReadMe.md diff --git a/ReadMe.md b/ReadMe.md deleted file mode 100644 index 3352240..0000000 --- a/ReadMe.md +++ /dev/null @@ -1,20 +0,0 @@ -Streamlit app in development! (Stay tunned) - -# Resume - -Common scoring systems in games consider only the accumulation of points, generally weighted or based on a base score and then accumulate according to actions. This works fine when teams have the same size or scores are individually, but it doesn't work for teams, factions, play styles that have a special meaning or preference in a player base. - -An observed practice is assigned players randomly to each team, trying to balance in quantity terms. In a player preference/special meaning escenario, this can lead to frustration and socially harmful environment within a community that translates from quitting events to even leave the game, with the desire of having freedom to choose. - -Since preferences are subjective, players elections will be naturally unbalanced, creating larger and smaller categories (factions, play styles, etc.) where in a general event category A can win/loose to category B mainly because of active players quantity, but not always for players quality... - -# Libraries - -## Data generation and manipulation -- Pandas -- Numpy -- Random -- Datetime - -## Data visualization -- Plotly Go Figures From f67b051a9e10b47fd61f78a33c4e6326c1c7d319 Mon Sep 17 00:00:00 2001 From: Fernanda Soto <156433287+FerSotoApse@users.noreply.github.com> Date: Fri, 27 Sep 2024 12:36:23 +0200 Subject: [PATCH 07/10] Add files via upload Actualizacion en funcion marker_size --- Score_study.ipynb | 1710 +++++++++++++++++++++++---------------------- 1 file changed, 874 insertions(+), 836 deletions(-) diff --git a/Score_study.ipynb b/Score_study.ipynb index c8e8f3e..f65e3d7 100644 --- a/Score_study.ipynb +++ b/Score_study.ipynb @@ -25,15 +25,15 @@ }, { "cell_type": "code", - "execution_count": 48, + "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "CPU times: user 24 ms, sys: 0 ns, total: 24 ms\n", - "Wall time: 18.3 ms\n" + "CPU times: user 14.1 s, sys: 0 ns, total: 14.1 s\n", + "Wall time: 10.7 s\n" ] } ], @@ -60,6 +60,7 @@ "warnings.simplefilter(\"ignore\", UserWarning)\n", "#import the_module_that_warns\n", "\n", + "# visualisation category config\n", "medal_order = {'medal' : ['gold', 'silver', 'bronze', 'not played']}\n", "medal_colors = ['rgb(255, 222, 94)', 'rgb(169, 180, 195)', 'rgb(194, 144, 80)', 'rgb(0,0,0)']" ] @@ -80,7 +81,7 @@ }, { "cell_type": "code", - "execution_count": 49, + "execution_count": 2, "metadata": {}, "outputs": [], "source": [ @@ -113,7 +114,7 @@ }, { "cell_type": "code", - "execution_count": 50, + "execution_count": 3, "metadata": {}, "outputs": [], "source": [ @@ -156,7 +157,7 @@ }, { "cell_type": "code", - "execution_count": 51, + "execution_count": 4, "metadata": {}, "outputs": [], "source": [ @@ -203,7 +204,7 @@ }, { "cell_type": "code", - "execution_count": 52, + "execution_count": 5, "metadata": {}, "outputs": [ { @@ -237,7 +238,7 @@ }, { "cell_type": "code", - "execution_count": 53, + "execution_count": 6, "metadata": {}, "outputs": [], "source": [ @@ -254,7 +255,7 @@ }, { "cell_type": "code", - "execution_count": 54, + "execution_count": 7, "metadata": {}, "outputs": [ { @@ -263,7 +264,7 @@ "(427, 191, 110)" ] }, - "execution_count": 54, + "execution_count": 7, "metadata": {}, "output_type": "execute_result" } @@ -288,7 +289,7 @@ }, { "cell_type": "code", - "execution_count": 55, + "execution_count": 8, "metadata": {}, "outputs": [], "source": [ @@ -301,7 +302,7 @@ }, { "cell_type": "code", - "execution_count": 56, + "execution_count": 9, "metadata": {}, "outputs": [ { @@ -351,7 +352,7 @@ }, { "cell_type": "code", - "execution_count": 57, + "execution_count": 10, "metadata": {}, "outputs": [ { @@ -360,7 +361,7 @@ "(184, 236, 81, 0)" ] }, - "execution_count": 57, + "execution_count": 10, "metadata": {}, "output_type": "execute_result" } @@ -385,7 +386,7 @@ }, { "cell_type": "code", - "execution_count": 58, + "execution_count": 11, "metadata": {}, "outputs": [ { @@ -420,25 +421,25 @@ " \n", " \n", " 0\n", - " 49099\n", + " 16803\n", " 2024-08-15\n", " A\n", - " 3\n", - " gold\n", + " 2\n", + " silver\n", " ThunderCats\n", " \n", " \n", " 1\n", - " 49099\n", + " 16803\n", " 2024-08-15\n", " B\n", - " 0\n", - " not played\n", + " 1\n", + " bronze\n", " ThunderCats\n", " \n", " \n", " 2\n", - " 71855\n", + " 92610\n", " 2024-08-15\n", " A\n", " 0\n", @@ -447,7 +448,7 @@ " \n", " \n", " 3\n", - " 71855\n", + " 92610\n", " 2024-08-15\n", " B\n", " 3\n", @@ -456,11 +457,11 @@ " \n", " \n", " 4\n", - " 12218\n", + " 99898\n", " 2024-08-15\n", " A\n", - " 3\n", - " gold\n", + " 2\n", + " silver\n", " ThunderCats\n", " \n", " \n", @@ -474,47 +475,47 @@ " \n", " \n", " 997\n", - " 10599\n", + " 92635\n", " 2024-08-15\n", " B\n", - " 2\n", - " silver\n", + " 3\n", + " gold\n", " Power Birds\n", " \n", " \n", " 998\n", - " 53895\n", + " 31884\n", " 2024-08-15\n", " A\n", - " 0\n", - " not played\n", + " 2\n", + " silver\n", " Power Birds\n", " \n", " \n", " 999\n", - " 53895\n", + " 31884\n", " 2024-08-15\n", " B\n", - " 1\n", - " bronze\n", + " 2\n", + " silver\n", " Power Birds\n", " \n", " \n", " 1000\n", - " 44262\n", + " 16706\n", " 2024-08-15\n", " A\n", - " 0\n", - " not played\n", + " 1\n", + " bronze\n", " Power Birds\n", " \n", " \n", " 1001\n", - " 44262\n", + " 16706\n", " 2024-08-15\n", " B\n", - " 3\n", - " gold\n", + " 0\n", + " not played\n", " Power Birds\n", " \n", " \n", @@ -524,22 +525,22 @@ ], "text/plain": [ " player_id event_date event_game score medal team\n", - "0 49099 2024-08-15 A 3 gold ThunderCats\n", - "1 49099 2024-08-15 B 0 not played ThunderCats\n", - "2 71855 2024-08-15 A 0 not played ThunderCats\n", - "3 71855 2024-08-15 B 3 gold ThunderCats\n", - "4 12218 2024-08-15 A 3 gold ThunderCats\n", + "0 16803 2024-08-15 A 2 silver ThunderCats\n", + "1 16803 2024-08-15 B 1 bronze ThunderCats\n", + "2 92610 2024-08-15 A 0 not played ThunderCats\n", + "3 92610 2024-08-15 B 3 gold ThunderCats\n", + "4 99898 2024-08-15 A 2 silver ThunderCats\n", "... ... ... ... ... ... ...\n", - "997 10599 2024-08-15 B 2 silver Power Birds\n", - "998 53895 2024-08-15 A 0 not played Power Birds\n", - "999 53895 2024-08-15 B 1 bronze Power Birds\n", - "1000 44262 2024-08-15 A 0 not played Power Birds\n", - "1001 44262 2024-08-15 B 3 gold Power Birds\n", + "997 92635 2024-08-15 B 3 gold Power Birds\n", + "998 31884 2024-08-15 A 2 silver Power Birds\n", + "999 31884 2024-08-15 B 2 silver Power Birds\n", + "1000 16706 2024-08-15 A 1 bronze Power Birds\n", + "1001 16706 2024-08-15 B 0 not played Power Birds\n", "\n", "[1002 rows x 6 columns]" ] }, - "execution_count": 58, + "execution_count": 11, "metadata": {}, "output_type": "execute_result" } @@ -604,7 +605,7 @@ }, { "cell_type": "code", - "execution_count": 59, + "execution_count": 12, "metadata": {}, "outputs": [ { @@ -644,8 +645,8 @@ " A\n", " ThunderCats\n", " bronze\n", - " 38\n", - " 38\n", + " 48\n", + " 48\n", " 184\n", " \n", " \n", @@ -654,8 +655,8 @@ " A\n", " ThunderCats\n", " silver\n", - " 47\n", - " 94\n", + " 49\n", + " 98\n", " 184\n", " \n", " \n", @@ -664,8 +665,8 @@ " A\n", " ThunderCats\n", " gold\n", - " 51\n", - " 153\n", + " 48\n", + " 144\n", " 184\n", " \n", " \n", @@ -674,8 +675,8 @@ " A\n", " Dog Patrol\n", " bronze\n", - " 59\n", - " 59\n", + " 53\n", + " 53\n", " 236\n", " \n", " \n", @@ -684,10 +685,10 @@ ], "text/plain": [ " event_date event_game team medal medal_frequence acc_w_score \\\n", - "0 2024-08-15 A ThunderCats bronze 38 38 \n", - "1 2024-08-15 A ThunderCats silver 47 94 \n", - "2 2024-08-15 A ThunderCats gold 51 153 \n", - "3 2024-08-15 A Dog Patrol bronze 59 59 \n", + "0 2024-08-15 A ThunderCats bronze 48 48 \n", + "1 2024-08-15 A ThunderCats silver 49 98 \n", + "2 2024-08-15 A ThunderCats gold 48 144 \n", + "3 2024-08-15 A Dog Patrol bronze 53 53 \n", "\n", " total_players \n", "0 184 \n", @@ -696,7 +697,7 @@ "3 236 " ] }, - "execution_count": 59, + "execution_count": 12, "metadata": {}, "output_type": "execute_result" } @@ -782,7 +783,7 @@ }, { "cell_type": "code", - "execution_count": 60, + "execution_count": 13, "metadata": {}, "outputs": [ { @@ -791,10 +792,10 @@ "text": [ "Team A, event A medals\n", " N of players: 184\n", - " Not played: 48\n", - " Bronzes: 38\n", - " Silvers: 47\n", - " Golds: 51\n" + " Not played: 39\n", + " Bronzes: 48\n", + " Silvers: 49\n", + " Golds: 48\n" ] } ], @@ -826,7 +827,7 @@ }, { "cell_type": "code", - "execution_count": 61, + "execution_count": 14, "metadata": {}, "outputs": [], "source": [ @@ -843,7 +844,7 @@ }, { "cell_type": "code", - "execution_count": 62, + "execution_count": 15, "metadata": {}, "outputs": [], "source": [ @@ -895,19 +896,19 @@ }, { "cell_type": "code", - "execution_count": 63, + "execution_count": 16, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Event A participation: 81.34%\n", - "Event B participation: 80.36%\n", + "Event A participation: 81.01%\n", + "Event B participation: 81.18%\n", "---------------------------------------------\n", - "Team ThunderCats participation: 51.09%\n", - "Team Dog Patrol participation: 56.36%\n", - "Team Power Birds participation: 49.38%\n" + "Team ThunderCats participation: 58.15%\n", + "Team Dog Patrol participation: 49.58%\n", + "Team Power Birds participation: 56.79%\n" ] } ], @@ -926,7 +927,7 @@ }, { "cell_type": "code", - "execution_count": 64, + "execution_count": 17, "metadata": {}, "outputs": [], "source": [ @@ -959,7 +960,7 @@ }, { "cell_type": "code", - "execution_count": 65, + "execution_count": 18, "metadata": {}, "outputs": [ { @@ -967,9 +968,9 @@ "output_type": "stream", "text": [ "Teams Event competitor ratios\n", - " \tTeam ThunderCats \t - Event A: 73.91%\t Event B: 77.17%\n", - "\tTeam Dog Patrol \t - Event A: 80.51%\t Event B: 75.85%\n", - "\tTeam Power Birds \t - Event A: 75.31%\t Event B: 74.07%\n" + " \tTeam ThunderCats \t - Event A: 78.8%\t Event B: 79.35%\n", + "\tTeam Dog Patrol \t - Event A: 73.31%\t Event B: 76.27%\n", + "\tTeam Power Birds \t - Event A: 82.72%\t Event B: 74.07%\n" ] }, { @@ -1010,10 +1011,10 @@ " A\n", " ThunderCats\n", " bronze\n", - " 38\n", - " 38\n", + " 48\n", + " 48\n", " 184\n", - " 73.91\n", + " 78.80\n", " \n", " \n", " 1\n", @@ -1021,10 +1022,10 @@ " A\n", " ThunderCats\n", " silver\n", - " 47\n", - " 94\n", + " 49\n", + " 98\n", " 184\n", - " 73.91\n", + " 78.80\n", " \n", " \n", " 2\n", @@ -1032,10 +1033,10 @@ " A\n", " ThunderCats\n", " gold\n", - " 51\n", - " 153\n", + " 48\n", + " 144\n", " 184\n", - " 73.91\n", + " 78.80\n", " \n", " \n", " 3\n", @@ -1043,10 +1044,10 @@ " A\n", " Dog Patrol\n", " bronze\n", - " 59\n", - " 59\n", + " 53\n", + " 53\n", " 236\n", - " 80.51\n", + " 73.31\n", " \n", " \n", "\n", @@ -1054,19 +1055,19 @@ ], "text/plain": [ " event_date event_game team medal medal_frequence acc_w_score \\\n", - "0 2024-08-15 A ThunderCats bronze 38 38 \n", - "1 2024-08-15 A ThunderCats silver 47 94 \n", - "2 2024-08-15 A ThunderCats gold 51 153 \n", - "3 2024-08-15 A Dog Patrol bronze 59 59 \n", + "0 2024-08-15 A ThunderCats bronze 48 48 \n", + "1 2024-08-15 A ThunderCats silver 49 98 \n", + "2 2024-08-15 A ThunderCats gold 48 144 \n", + "3 2024-08-15 A Dog Patrol bronze 53 53 \n", "\n", " total_players player_ratio \n", - "0 184 73.91 \n", - "1 184 73.91 \n", - "2 184 73.91 \n", - "3 236 80.51 " + "0 184 78.80 \n", + "1 184 78.80 \n", + "2 184 78.80 \n", + "3 236 73.31 " ] }, - "execution_count": 65, + "execution_count": 18, "metadata": {}, "output_type": "execute_result" } @@ -1114,7 +1115,7 @@ }, { "cell_type": "code", - "execution_count": 66, + "execution_count": 19, "metadata": {}, "outputs": [], "source": [ @@ -1184,7 +1185,7 @@ }, { "cell_type": "code", - "execution_count": 67, + "execution_count": 20, "metadata": {}, "outputs": [ { @@ -1226,11 +1227,11 @@ " A\n", " ThunderCats\n", " bronze\n", - " 38\n", - " 38\n", + " 48\n", + " 48\n", " 184\n", - " 73.91\n", - " 0.2794\n", + " 78.80\n", + " 0.3310\n", " \n", " \n", " 1\n", @@ -1238,11 +1239,11 @@ " A\n", " ThunderCats\n", " silver\n", - " 47\n", - " 94\n", + " 49\n", + " 98\n", " 184\n", - " 73.91\n", - " 0.3456\n", + " 78.80\n", + " 0.3379\n", " \n", " \n", " 2\n", @@ -1250,11 +1251,11 @@ " A\n", " ThunderCats\n", " gold\n", - " 51\n", - " 153\n", + " 48\n", + " 144\n", " 184\n", - " 73.91\n", - " 0.3750\n", + " 78.80\n", + " 0.3310\n", " \n", " \n", " 3\n", @@ -1262,11 +1263,11 @@ " A\n", " Dog Patrol\n", " bronze\n", - " 59\n", - " 59\n", + " 53\n", + " 53\n", " 236\n", - " 80.51\n", - " 0.3105\n", + " 73.31\n", + " 0.3064\n", " \n", " \n", "\n", @@ -1274,19 +1275,19 @@ ], "text/plain": [ " event_date event_game team medal medal_frequence acc_w_score \\\n", - "0 2024-08-15 A ThunderCats bronze 38 38 \n", - "1 2024-08-15 A ThunderCats silver 47 94 \n", - "2 2024-08-15 A ThunderCats gold 51 153 \n", - "3 2024-08-15 A Dog Patrol bronze 59 59 \n", + "0 2024-08-15 A ThunderCats bronze 48 48 \n", + "1 2024-08-15 A ThunderCats silver 49 98 \n", + "2 2024-08-15 A ThunderCats gold 48 144 \n", + "3 2024-08-15 A Dog Patrol bronze 53 53 \n", "\n", " total_players player_ratio medal_relative \n", - "0 184 73.91 0.2794 \n", - "1 184 73.91 0.3456 \n", - "2 184 73.91 0.3750 \n", - "3 236 80.51 0.3105 " + "0 184 78.80 0.3310 \n", + "1 184 78.80 0.3379 \n", + "2 184 78.80 0.3310 \n", + "3 236 73.31 0.3064 " ] }, - "execution_count": 67, + "execution_count": 20, "metadata": {}, "output_type": "execute_result" } @@ -1322,7 +1323,7 @@ }, { "cell_type": "code", - "execution_count": 68, + "execution_count": 21, "metadata": {}, "outputs": [ { @@ -1331,8 +1332,8 @@ "text": [ "Teams Performance ratios during each event\n", "Event A\n", - " \tTeam ThunderCats\t - Gold: 37.5%\t Silver: 34.56%\n", - " \tTeam Dog Patrol \t - Gold: 30.53%\t Silver: 38.42%\n" + " \tTeam ThunderCats\t - Gold: 33.1%\t Silver: 33.79%\n", + " \tTeam Dog Patrol \t - Gold: 33.53%\t Silver: 35.839999999999996%\n" ] } ], @@ -1356,7 +1357,7 @@ }, { "cell_type": "code", - "execution_count": 69, + "execution_count": 22, "metadata": { "scrolled": true }, @@ -1401,12 +1402,12 @@ " A\n", " ThunderCats\n", " bronze\n", - " 38\n", - " 38\n", + " 48\n", + " 48\n", " 184\n", - " 73.91\n", - " 27\n", - " 27.94\n", + " 78.80\n", + " 33\n", + " 33.10\n", " \n", " \n", " 1\n", @@ -1414,12 +1415,12 @@ " A\n", " ThunderCats\n", " silver\n", - " 47\n", - " 94\n", + " 49\n", + " 98\n", " 184\n", - " 73.91\n", - " 34\n", - " 69.12\n", + " 78.80\n", + " 33\n", + " 67.58\n", " \n", " \n", " 2\n", @@ -1427,12 +1428,12 @@ " A\n", " ThunderCats\n", " gold\n", - " 51\n", - " 153\n", + " 48\n", + " 144\n", " 184\n", - " 73.91\n", - " 37\n", - " 112.50\n", + " 78.80\n", + " 33\n", + " 99.30\n", " \n", " \n", " 3\n", @@ -1440,12 +1441,12 @@ " A\n", " Dog Patrol\n", " bronze\n", - " 59\n", - " 59\n", + " 53\n", + " 53\n", " 236\n", - " 80.51\n", - " 31\n", - " 31.05\n", + " 73.31\n", + " 30\n", + " 30.64\n", " \n", " \n", "\n", @@ -1453,19 +1454,19 @@ ], "text/plain": [ " event_date event_game team medal medal_frequence acc_w_score \\\n", - "0 2024-08-15 A ThunderCats bronze 38 38 \n", - "1 2024-08-15 A ThunderCats silver 47 94 \n", - "2 2024-08-15 A ThunderCats gold 51 153 \n", - "3 2024-08-15 A Dog Patrol bronze 59 59 \n", + "0 2024-08-15 A ThunderCats bronze 48 48 \n", + "1 2024-08-15 A ThunderCats silver 49 98 \n", + "2 2024-08-15 A ThunderCats gold 48 144 \n", + "3 2024-08-15 A Dog Patrol bronze 53 53 \n", "\n", " total_players player_ratio medal_relative performance_score \n", - "0 184 73.91 27 27.94 \n", - "1 184 73.91 34 69.12 \n", - "2 184 73.91 37 112.50 \n", - "3 236 80.51 31 31.05 " + "0 184 78.80 33 33.10 \n", + "1 184 78.80 33 67.58 \n", + "2 184 78.80 33 99.30 \n", + "3 236 73.31 30 30.64 " ] }, - "execution_count": 69, + "execution_count": 22, "metadata": {}, "output_type": "execute_result" } @@ -1494,7 +1495,7 @@ }, { "cell_type": "code", - "execution_count": 70, + "execution_count": 23, "metadata": { "scrolled": true }, @@ -1541,14 +1542,14 @@ " A\n", " ThunderCats\n", " bronze\n", - " 38\n", - " 38\n", + " 48\n", + " 48\n", " 184\n", - " 73.91\n", - " 27\n", - " 27.94\n", - " 285\n", - " 209.56\n", + " 78.80\n", + " 33\n", + " 33.10\n", + " 290\n", + " 199.98\n", " \n", " \n", " 1\n", @@ -1556,14 +1557,14 @@ " A\n", " ThunderCats\n", " silver\n", - " 47\n", - " 94\n", + " 49\n", + " 98\n", " 184\n", - " 73.91\n", - " 34\n", - " 69.12\n", - " 285\n", - " 209.56\n", + " 78.80\n", + " 33\n", + " 67.58\n", + " 290\n", + " 199.98\n", " \n", " \n", " 2\n", @@ -1571,14 +1572,14 @@ " A\n", " ThunderCats\n", " gold\n", - " 51\n", - " 153\n", + " 48\n", + " 144\n", " 184\n", - " 73.91\n", - " 37\n", - " 112.50\n", - " 285\n", - " 209.56\n", + " 78.80\n", + " 33\n", + " 99.30\n", + " 290\n", + " 199.98\n", " \n", " \n", " 3\n", @@ -1586,14 +1587,14 @@ " A\n", " Dog Patrol\n", " bronze\n", - " 59\n", - " 59\n", + " 53\n", + " 53\n", " 236\n", - " 80.51\n", - " 31\n", - " 31.05\n", - " 379\n", - " 199.48\n", + " 73.31\n", + " 30\n", + " 30.64\n", + " 351\n", + " 202.91\n", " \n", " \n", "\n", @@ -1601,25 +1602,25 @@ ], "text/plain": [ " event_date event_game team medal medal_frequence acc_w_score \\\n", - "0 2024-08-15 A ThunderCats bronze 38 38 \n", - "1 2024-08-15 A ThunderCats silver 47 94 \n", - "2 2024-08-15 A ThunderCats gold 51 153 \n", - "3 2024-08-15 A Dog Patrol bronze 59 59 \n", + "0 2024-08-15 A ThunderCats bronze 48 48 \n", + "1 2024-08-15 A ThunderCats silver 49 98 \n", + "2 2024-08-15 A ThunderCats gold 48 144 \n", + "3 2024-08-15 A Dog Patrol bronze 53 53 \n", "\n", " total_players player_ratio medal_relative performance_score \\\n", - "0 184 73.91 27 27.94 \n", - "1 184 73.91 34 69.12 \n", - "2 184 73.91 37 112.50 \n", - "3 236 80.51 31 31.05 \n", + "0 184 78.80 33 33.10 \n", + "1 184 78.80 33 67.58 \n", + "2 184 78.80 33 99.30 \n", + "3 236 73.31 30 30.64 \n", "\n", " acc_w_score_total performance_score_total \n", - "0 285 209.56 \n", - "1 285 209.56 \n", - "2 285 209.56 \n", - "3 379 199.48 " + "0 290 199.98 \n", + "1 290 199.98 \n", + "2 290 199.98 \n", + "3 351 202.91 " ] }, - "execution_count": 70, + "execution_count": 23, "metadata": {}, "output_type": "execute_result" } @@ -1662,7 +1663,7 @@ }, { "cell_type": "code", - "execution_count": 71, + "execution_count": 24, "metadata": {}, "outputs": [], "source": [ @@ -1705,7 +1706,7 @@ }, { "cell_type": "code", - "execution_count": 72, + "execution_count": 25, "metadata": {}, "outputs": [ { @@ -1743,53 +1744,53 @@ " A\n", " Dog Patrol\n", " gold\n", - " 379\n", + " 351\n", " 174\n", - " 80.51\n", + " 73.31\n", " \n", " \n", " 2\n", " A\n", " ThunderCats\n", " gold\n", - " 285\n", - " 153\n", - " 73.91\n", + " 290\n", + " 144\n", + " 78.80\n", " \n", " \n", " 4\n", " A\n", " Power Birds\n", " gold\n", - " 119\n", - " 57\n", - " 75.31\n", + " 128\n", + " 54\n", + " 82.72\n", " \n", " \n", " 0\n", " B\n", " Dog Patrol\n", " gold\n", - " 344\n", - " 156\n", - " 75.85\n", + " 358\n", + " 183\n", + " 76.27\n", " \n", " \n", " 2\n", " B\n", " ThunderCats\n", " gold\n", - " 287\n", - " 132\n", - " 77.17\n", + " 304\n", + " 171\n", + " 79.35\n", " \n", " \n", " 4\n", " B\n", " Power Birds\n", " gold\n", - " 126\n", - " 69\n", + " 118\n", + " 66\n", " 74.07\n", " \n", " \n", @@ -1798,15 +1799,15 @@ ], "text/plain": [ " event_game team medal acc_w_score_total acc_w_score player_ratio\n", - "0 A Dog Patrol gold 379 174 80.51\n", - "2 A ThunderCats gold 285 153 73.91\n", - "4 A Power Birds gold 119 57 75.31\n", - "0 B Dog Patrol gold 344 156 75.85\n", - "2 B ThunderCats gold 287 132 77.17\n", - "4 B Power Birds gold 126 69 74.07" + "0 A Dog Patrol gold 351 174 73.31\n", + "2 A ThunderCats gold 290 144 78.80\n", + "4 A Power Birds gold 128 54 82.72\n", + "0 B Dog Patrol gold 358 183 76.27\n", + "2 B ThunderCats gold 304 171 79.35\n", + "4 B Power Birds gold 118 66 74.07" ] }, - "execution_count": 72, + "execution_count": 25, "metadata": {}, "output_type": "execute_result" } @@ -1817,7 +1818,7 @@ }, { "cell_type": "code", - "execution_count": 73, + "execution_count": 26, "metadata": {}, "outputs": [ { @@ -1853,56 +1854,56 @@ " \n", " 0\n", " A\n", - " ThunderCats\n", + " Dog Patrol\n", " gold\n", - " 209.56\n", - " 112.50\n", - " 73.91\n", + " 202.91\n", + " 100.59\n", + " 73.31\n", " \n", " \n", " 2\n", " A\n", - " Dog Patrol\n", + " ThunderCats\n", " gold\n", - " 199.48\n", - " 91.59\n", - " 80.51\n", + " 199.98\n", + " 99.30\n", + " 78.80\n", " \n", " \n", " 4\n", " A\n", " Power Birds\n", " gold\n", - " 195.10\n", - " 93.45\n", - " 75.31\n", + " 191.05\n", + " 80.61\n", + " 82.72\n", " \n", " \n", " 0\n", " B\n", - " Power Birds\n", + " ThunderCats\n", " gold\n", - " 209.98\n", - " 114.99\n", - " 74.07\n", + " 208.22\n", + " 117.12\n", + " 79.35\n", " \n", " \n", " 2\n", " B\n", - " ThunderCats\n", + " Dog Patrol\n", " gold\n", - " 202.12\n", - " 92.97\n", - " 77.17\n", + " 198.89\n", + " 101.67\n", + " 76.27\n", " \n", " \n", " 4\n", " B\n", - " Dog Patrol\n", + " Power Birds\n", " gold\n", - " 192.18\n", - " 87.15\n", - " 75.85\n", + " 196.67\n", + " 110.01\n", + " 74.07\n", " \n", " \n", "\n", @@ -1910,23 +1911,23 @@ ], "text/plain": [ " event_game team medal performance_score_total performance_score \\\n", - "0 A ThunderCats gold 209.56 112.50 \n", - "2 A Dog Patrol gold 199.48 91.59 \n", - "4 A Power Birds gold 195.10 93.45 \n", - "0 B Power Birds gold 209.98 114.99 \n", - "2 B ThunderCats gold 202.12 92.97 \n", - "4 B Dog Patrol gold 192.18 87.15 \n", + "0 A Dog Patrol gold 202.91 100.59 \n", + "2 A ThunderCats gold 199.98 99.30 \n", + "4 A Power Birds gold 191.05 80.61 \n", + "0 B ThunderCats gold 208.22 117.12 \n", + "2 B Dog Patrol gold 198.89 101.67 \n", + "4 B Power Birds gold 196.67 110.01 \n", "\n", " player_ratio \n", - "0 73.91 \n", - "2 80.51 \n", - "4 75.31 \n", - "0 74.07 \n", - "2 77.17 \n", - "4 75.85 " + "0 73.31 \n", + "2 78.80 \n", + "4 82.72 \n", + "0 79.35 \n", + "2 76.27 \n", + "4 74.07 " ] }, - "execution_count": 73, + "execution_count": 26, "metadata": {}, "output_type": "execute_result" } @@ -1937,7 +1938,7 @@ }, { "cell_type": "code", - "execution_count": 74, + "execution_count": 27, "metadata": {}, "outputs": [ { @@ -1946,13 +1947,13 @@ "text": [ "Winners by methods\n", "Event A\t\tAcc_w method\t\tPerformance method\n", - " gold\tDog Patrol\t\tThunderCats\n", - " silver\tThunderCats\t\tDog Patrol\n", + " gold\tDog Patrol\t\tDog Patrol\n", + " silver\tThunderCats\t\tThunderCats\n", " bronze\tPower Birds\t\tPower Birds\n", "Event B\n", - " gold\tDog Patrol\t\tPower Birds\n", - " silver\tThunderCats\t\tThunderCats\n", - " bronze\tPower Birds\t\tDog Patrol\n" + " gold\tDog Patrol\t\tThunderCats\n", + " silver\tThunderCats\t\tDog Patrol\n", + " bronze\tPower Birds\t\tPower Birds\n" ] } ], @@ -1982,7 +1983,7 @@ }, { "cell_type": "code", - "execution_count": 75, + "execution_count": 28, "metadata": { "scrolled": true }, @@ -2029,14 +2030,14 @@ " A\n", " ThunderCats\n", " bronze\n", - " 38\n", - " 38\n", + " 48\n", + " 48\n", " 184\n", - " 73.91\n", - " 27\n", - " 27.94\n", - " 285\n", - " 209.56\n", + " 78.80\n", + " 33\n", + " 33.10\n", + " 290\n", + " 199.98\n", " \n", " \n", " 1\n", @@ -2044,14 +2045,14 @@ " A\n", " ThunderCats\n", " silver\n", - " 47\n", - " 94\n", + " 49\n", + " 98\n", " 184\n", - " 73.91\n", - " 34\n", - " 69.12\n", - " 285\n", - " 209.56\n", + " 78.80\n", + " 33\n", + " 67.58\n", + " 290\n", + " 199.98\n", " \n", " \n", " 2\n", @@ -2059,14 +2060,14 @@ " A\n", " ThunderCats\n", " gold\n", - " 51\n", - " 153\n", + " 48\n", + " 144\n", " 184\n", - " 73.91\n", - " 37\n", - " 112.50\n", - " 285\n", - " 209.56\n", + " 78.80\n", + " 33\n", + " 99.30\n", + " 290\n", + " 199.98\n", " \n", " \n", " 3\n", @@ -2074,14 +2075,14 @@ " A\n", " Dog Patrol\n", " bronze\n", - " 59\n", - " 59\n", + " 53\n", + " 53\n", " 236\n", - " 80.51\n", - " 31\n", - " 31.05\n", - " 379\n", - " 199.48\n", + " 73.31\n", + " 30\n", + " 30.64\n", + " 351\n", + " 202.91\n", " \n", " \n", " 4\n", @@ -2089,14 +2090,14 @@ " A\n", " Dog Patrol\n", " silver\n", - " 73\n", - " 146\n", + " 62\n", + " 124\n", " 236\n", - " 80.51\n", - " 38\n", - " 76.84\n", - " 379\n", - " 199.48\n", + " 73.31\n", + " 35\n", + " 71.68\n", + " 351\n", + " 202.91\n", " \n", " \n", " 5\n", @@ -2107,11 +2108,11 @@ " 58\n", " 174\n", " 236\n", - " 80.51\n", - " 30\n", - " 91.59\n", - " 379\n", - " 199.48\n", + " 73.31\n", + " 33\n", + " 100.59\n", + " 351\n", + " 202.91\n", " \n", " \n", " 6\n", @@ -2119,14 +2120,14 @@ " A\n", " Power Birds\n", " bronze\n", - " 22\n", - " 22\n", + " 24\n", + " 24\n", " 81\n", - " 75.31\n", - " 36\n", - " 36.07\n", - " 119\n", - " 195.10\n", + " 82.72\n", + " 35\n", + " 35.82\n", + " 128\n", + " 191.05\n", " \n", " \n", " 7\n", @@ -2134,14 +2135,14 @@ " A\n", " Power Birds\n", " silver\n", - " 20\n", - " 40\n", + " 25\n", + " 50\n", " 81\n", - " 75.31\n", - " 32\n", - " 65.58\n", - " 119\n", - " 195.10\n", + " 82.72\n", + " 37\n", + " 74.62\n", + " 128\n", + " 191.05\n", " \n", " \n", " 8\n", @@ -2149,14 +2150,14 @@ " A\n", " Power Birds\n", " gold\n", - " 19\n", - " 57\n", + " 18\n", + " 54\n", " 81\n", - " 75.31\n", - " 31\n", - " 93.45\n", - " 119\n", - " 195.10\n", + " 82.72\n", + " 26\n", + " 80.61\n", + " 128\n", + " 191.05\n", " \n", " \n", " 9\n", @@ -2164,14 +2165,14 @@ " B\n", " ThunderCats\n", " bronze\n", - " 41\n", - " 41\n", + " 45\n", + " 45\n", " 184\n", - " 77.17\n", - " 28\n", - " 28.87\n", - " 287\n", - " 202.12\n", + " 79.35\n", + " 30\n", + " 30.82\n", + " 304\n", + " 208.22\n", " \n", " \n", " 10\n", @@ -2179,14 +2180,14 @@ " B\n", " ThunderCats\n", " silver\n", - " 57\n", - " 114\n", + " 44\n", + " 88\n", " 184\n", - " 77.17\n", - " 40\n", - " 80.28\n", - " 287\n", - " 202.12\n", + " 79.35\n", + " 30\n", + " 60.28\n", + " 304\n", + " 208.22\n", " \n", " \n", " 11\n", @@ -2194,14 +2195,14 @@ " B\n", " ThunderCats\n", " gold\n", - " 44\n", - " 132\n", + " 57\n", + " 171\n", " 184\n", - " 77.17\n", - " 30\n", - " 92.97\n", - " 287\n", - " 202.12\n", + " 79.35\n", + " 39\n", + " 117.12\n", + " 304\n", + " 208.22\n", " \n", " \n", " 12\n", @@ -2209,14 +2210,14 @@ " B\n", " Dog Patrol\n", " bronze\n", - " 66\n", - " 66\n", + " 63\n", + " 63\n", " 236\n", - " 75.85\n", - " 36\n", - " 36.87\n", - " 344\n", - " 192.18\n", + " 76.27\n", + " 35\n", + " 35.00\n", + " 358\n", + " 198.89\n", " \n", " \n", " 13\n", @@ -2224,14 +2225,14 @@ " B\n", " Dog Patrol\n", " silver\n", - " 61\n", - " 122\n", + " 56\n", + " 112\n", " 236\n", - " 75.85\n", - " 34\n", - " 68.16\n", - " 344\n", - " 192.18\n", + " 76.27\n", + " 31\n", + " 62.22\n", + " 358\n", + " 198.89\n", " \n", " \n", " 14\n", @@ -2239,14 +2240,14 @@ " B\n", " Dog Patrol\n", " gold\n", - " 52\n", - " 156\n", + " 61\n", + " 183\n", " 236\n", - " 75.85\n", - " 29\n", - " 87.15\n", - " 344\n", - " 192.18\n", + " 76.27\n", + " 33\n", + " 101.67\n", + " 358\n", + " 198.89\n", " \n", " \n", " 15\n", @@ -2254,14 +2255,14 @@ " B\n", " Power Birds\n", " bronze\n", - " 17\n", - " 17\n", + " 24\n", + " 24\n", " 81\n", " 74.07\n", - " 28\n", - " 28.33\n", - " 126\n", - " 209.98\n", + " 40\n", + " 40.00\n", + " 118\n", + " 196.67\n", " \n", " \n", " 16\n", @@ -2269,14 +2270,14 @@ " B\n", " Power Birds\n", " silver\n", - " 20\n", - " 40\n", + " 14\n", + " 28\n", " 81\n", " 74.07\n", - " 33\n", - " 66.66\n", - " 126\n", - " 209.98\n", + " 23\n", + " 46.66\n", + " 118\n", + " 196.67\n", " \n", " \n", " 17\n", @@ -2284,14 +2285,14 @@ " B\n", " Power Birds\n", " gold\n", - " 23\n", - " 69\n", + " 22\n", + " 66\n", " 81\n", " 74.07\n", - " 38\n", - " 114.99\n", - " 126\n", - " 209.98\n", + " 36\n", + " 110.01\n", + " 118\n", + " 196.67\n", " \n", " \n", "\n", @@ -2299,67 +2300,67 @@ ], "text/plain": [ " event_date event_game team medal medal_frequence acc_w_score \\\n", - "0 2024-08-15 A ThunderCats bronze 38 38 \n", - "1 2024-08-15 A ThunderCats silver 47 94 \n", - "2 2024-08-15 A ThunderCats gold 51 153 \n", - "3 2024-08-15 A Dog Patrol bronze 59 59 \n", - "4 2024-08-15 A Dog Patrol silver 73 146 \n", + "0 2024-08-15 A ThunderCats bronze 48 48 \n", + "1 2024-08-15 A ThunderCats silver 49 98 \n", + "2 2024-08-15 A ThunderCats gold 48 144 \n", + "3 2024-08-15 A Dog Patrol bronze 53 53 \n", + "4 2024-08-15 A Dog Patrol silver 62 124 \n", "5 2024-08-15 A Dog Patrol gold 58 174 \n", - "6 2024-08-15 A Power Birds bronze 22 22 \n", - "7 2024-08-15 A Power Birds silver 20 40 \n", - "8 2024-08-15 A Power Birds gold 19 57 \n", - "9 2024-08-15 B ThunderCats bronze 41 41 \n", - "10 2024-08-15 B ThunderCats silver 57 114 \n", - "11 2024-08-15 B ThunderCats gold 44 132 \n", - "12 2024-08-15 B Dog Patrol bronze 66 66 \n", - "13 2024-08-15 B Dog Patrol silver 61 122 \n", - "14 2024-08-15 B Dog Patrol gold 52 156 \n", - "15 2024-08-15 B Power Birds bronze 17 17 \n", - "16 2024-08-15 B Power Birds silver 20 40 \n", - "17 2024-08-15 B Power Birds gold 23 69 \n", + "6 2024-08-15 A Power Birds bronze 24 24 \n", + "7 2024-08-15 A Power Birds silver 25 50 \n", + "8 2024-08-15 A Power Birds gold 18 54 \n", + "9 2024-08-15 B ThunderCats bronze 45 45 \n", + "10 2024-08-15 B ThunderCats silver 44 88 \n", + "11 2024-08-15 B ThunderCats gold 57 171 \n", + "12 2024-08-15 B Dog Patrol bronze 63 63 \n", + "13 2024-08-15 B Dog Patrol silver 56 112 \n", + "14 2024-08-15 B Dog Patrol gold 61 183 \n", + "15 2024-08-15 B Power Birds bronze 24 24 \n", + "16 2024-08-15 B Power Birds silver 14 28 \n", + "17 2024-08-15 B Power Birds gold 22 66 \n", "\n", " total_players player_ratio medal_relative performance_score \\\n", - "0 184 73.91 27 27.94 \n", - "1 184 73.91 34 69.12 \n", - "2 184 73.91 37 112.50 \n", - "3 236 80.51 31 31.05 \n", - "4 236 80.51 38 76.84 \n", - "5 236 80.51 30 91.59 \n", - "6 81 75.31 36 36.07 \n", - "7 81 75.31 32 65.58 \n", - "8 81 75.31 31 93.45 \n", - "9 184 77.17 28 28.87 \n", - "10 184 77.17 40 80.28 \n", - "11 184 77.17 30 92.97 \n", - "12 236 75.85 36 36.87 \n", - "13 236 75.85 34 68.16 \n", - "14 236 75.85 29 87.15 \n", - "15 81 74.07 28 28.33 \n", - "16 81 74.07 33 66.66 \n", - "17 81 74.07 38 114.99 \n", + "0 184 78.80 33 33.10 \n", + "1 184 78.80 33 67.58 \n", + "2 184 78.80 33 99.30 \n", + "3 236 73.31 30 30.64 \n", + "4 236 73.31 35 71.68 \n", + "5 236 73.31 33 100.59 \n", + "6 81 82.72 35 35.82 \n", + "7 81 82.72 37 74.62 \n", + "8 81 82.72 26 80.61 \n", + "9 184 79.35 30 30.82 \n", + "10 184 79.35 30 60.28 \n", + "11 184 79.35 39 117.12 \n", + "12 236 76.27 35 35.00 \n", + "13 236 76.27 31 62.22 \n", + "14 236 76.27 33 101.67 \n", + "15 81 74.07 40 40.00 \n", + "16 81 74.07 23 46.66 \n", + "17 81 74.07 36 110.01 \n", "\n", " acc_w_score_total performance_score_total \n", - "0 285 209.56 \n", - "1 285 209.56 \n", - "2 285 209.56 \n", - "3 379 199.48 \n", - "4 379 199.48 \n", - "5 379 199.48 \n", - "6 119 195.10 \n", - "7 119 195.10 \n", - "8 119 195.10 \n", - "9 287 202.12 \n", - "10 287 202.12 \n", - "11 287 202.12 \n", - "12 344 192.18 \n", - "13 344 192.18 \n", - "14 344 192.18 \n", - "15 126 209.98 \n", - "16 126 209.98 \n", - "17 126 209.98 " + "0 290 199.98 \n", + "1 290 199.98 \n", + "2 290 199.98 \n", + "3 351 202.91 \n", + "4 351 202.91 \n", + "5 351 202.91 \n", + "6 128 191.05 \n", + "7 128 191.05 \n", + "8 128 191.05 \n", + "9 304 208.22 \n", + "10 304 208.22 \n", + "11 304 208.22 \n", + "12 358 198.89 \n", + "13 358 198.89 \n", + "14 358 198.89 \n", + "15 118 196.67 \n", + "16 118 196.67 \n", + "17 118 196.67 " ] }, - "execution_count": 75, + "execution_count": 28, "metadata": {}, "output_type": "execute_result" } @@ -2378,13 +2379,13 @@ }, { "cell_type": "code", - "execution_count": 76, + "execution_count": 39, "metadata": {}, "outputs": [], "source": [ "# create an aux list o lists to flexibilize the code (indirect function)\n", "\n", - "def marker_size(df, score_type):\n", + "def marker_size(df, score_type, score_columns, scale):\n", "\n", " \"\"\"\n", " Returns a list of lists to give marker size according to total scores. Use solely in score_figure function\n", @@ -2434,7 +2435,7 @@ }, { "cell_type": "code", - "execution_count": 77, + "execution_count": 49, "metadata": {}, "outputs": [], "source": [ @@ -2474,7 +2475,7 @@ " print_grid=False,\n", " specs = [[{\"secondary_y\" : True} for t in range(len(team_names))] for e in range(len(events))])\n", " #---------------------------------------- build graphs\n", - " l_marker_size = marker_size(df = df_eventteams_scores, score_type = score_type)\n", + " l_marker_size = marker_size(df = df, score_type = score_type, score_columns = score_columns, scale = scale)\n", " for e in range(len(events)):\n", " for i in range(len(team_names)):\n", " #----------------------- traces: bar accumulative score values per medal\n", @@ -2489,8 +2490,9 @@ " textposition = 'inside',\n", " textangle = 0,\n", " textfont_color = 'black',\n", - " customdata = df[df['event_game']== events[e]][df['team']==team_names[i]][['medal_frequence','medal']],\n", - " hovertemplate = '
Total medals: %{customdata[0]} %{customdata[1]}',\n", + " customdata = df[df['event_game']== events[e]][df['team']==team_names[i]][['medal_frequence','medal', score_columns[1]]],\n", + " hovertemplate = '
Total medals: %{customdata[0]} %{customdata[1]}
'+\n", + " 'Medal score: %{customdata[2]} points',\n", " ), row = e+1, col = i+1, secondary_y = False)\n", "\n", " #----------------------- traces: scatter accumulative total score values\n", @@ -2538,7 +2540,7 @@ }, { "cell_type": "code", - "execution_count": 78, + "execution_count": 50, "metadata": {}, "outputs": [ { @@ -2551,19 +2553,22 @@ { "customdata": [ [ - 38, - "bronze" + 48, + "bronze", + 48 ], [ - 47, - "silver" + 49, + "silver", + 98 ], [ - 51, - "gold" + 48, + "gold", + 144 ] ], - "hovertemplate": "
Total medals: %{customdata[0]} %{customdata[1]}", + "hovertemplate": "
Total medals: %{customdata[0]} %{customdata[1]}
Medal score: %{customdata[2]} points", "marker": { "color": [ "rgb(194, 144, 80)", @@ -2575,9 +2580,9 @@ "name": "Event A", "opacity": 0.8, "text": [ - 38, - 47, - 51 + 48, + 49, + 48 ], "textangle": 0, "textfont": { @@ -2592,31 +2597,31 @@ ], "xaxis": "x", "y": [ - 38, - 47, - 51 + 48, + 49, + 48 ], "yaxis": "y" }, { "customdata": [ [ - 27, - 73.91, + 33, + 78.8, 184, - 285 + 290 ], [ - 34, - 73.91, + 33, + 78.8, 184, - 285 + 290 ], [ - 37, - 73.91, + 33, + 78.8, 184, - 285 + 290 ] ], "hovertemplate": "
Medal distribution: %{customdata[0]}%
Participation: %{customdata[1]}%
Team players: %{customdata[2]}

Team Score: %{customdata[3]}", @@ -2630,9 +2635,9 @@ "color": "white" }, "size": [ - 40.714285714285715, - 40.714285714285715, - 40.714285714285715 + 41.42857142857143, + 41.42857142857143, + 41.42857142857143 ] }, "mode": "markers", @@ -2646,28 +2651,31 @@ ], "xaxis": "x", "y": [ - 38, - 94, - 153 + 48, + 98, + 144 ], "yaxis": "y2" }, { "customdata": [ [ - 59, - "bronze" + 53, + "bronze", + 53 ], [ - 73, - "silver" + 62, + "silver", + 124 ], [ 58, - "gold" + "gold", + 174 ] ], - "hovertemplate": "
Total medals: %{customdata[0]} %{customdata[1]}", + "hovertemplate": "
Total medals: %{customdata[0]} %{customdata[1]}
Medal score: %{customdata[2]} points", "marker": { "color": [ "rgb(194, 144, 80)", @@ -2679,8 +2687,8 @@ "name": "Event A", "opacity": 0.8, "text": [ - 59, - 73, + 53, + 62, 58 ], "textangle": 0, @@ -2696,8 +2704,8 @@ ], "xaxis": "x2", "y": [ - 59, - 73, + 53, + 62, 58 ], "yaxis": "y3" @@ -2705,22 +2713,22 @@ { "customdata": [ [ - 31, - 80.51, + 30, + 73.31, 236, - 379 + 351 ], [ - 38, - 80.51, + 35, + 73.31, 236, - 379 + 351 ], [ - 30, - 80.51, + 33, + 73.31, 236, - 379 + 351 ] ], "hovertemplate": "
Medal distribution: %{customdata[0]}%
Participation: %{customdata[1]}%
Team players: %{customdata[2]}

Team Score: %{customdata[3]}", @@ -2734,9 +2742,9 @@ "color": "white" }, "size": [ - 54.142857142857146, - 54.142857142857146, - 54.142857142857146 + 50.142857142857146, + 50.142857142857146, + 50.142857142857146 ] }, "mode": "markers", @@ -2750,28 +2758,31 @@ ], "xaxis": "x2", "y": [ - 38, - 94, - 153 + 48, + 98, + 144 ], "yaxis": "y4" }, { "customdata": [ [ - 22, - "bronze" + 24, + "bronze", + 24 ], [ - 20, - "silver" + 25, + "silver", + 50 ], [ - 19, - "gold" + 18, + "gold", + 54 ] ], - "hovertemplate": "
Total medals: %{customdata[0]} %{customdata[1]}", + "hovertemplate": "
Total medals: %{customdata[0]} %{customdata[1]}
Medal score: %{customdata[2]} points", "marker": { "color": [ "rgb(194, 144, 80)", @@ -2783,9 +2794,9 @@ "name": "Event A", "opacity": 0.8, "text": [ - 22, - 20, - 19 + 24, + 25, + 18 ], "textangle": 0, "textfont": { @@ -2800,31 +2811,31 @@ ], "xaxis": "x3", "y": [ - 22, - 20, - 19 + 24, + 25, + 18 ], "yaxis": "y5" }, { "customdata": [ [ - 36, - 75.31, + 35, + 82.72, 81, - 119 + 128 ], [ - 32, - 75.31, + 37, + 82.72, 81, - 119 + 128 ], [ - 31, - 75.31, + 26, + 82.72, 81, - 119 + 128 ] ], "hovertemplate": "
Medal distribution: %{customdata[0]}%
Participation: %{customdata[1]}%
Team players: %{customdata[2]}

Team Score: %{customdata[3]}", @@ -2838,9 +2849,9 @@ "color": "white" }, "size": [ - 17, - 17, - 17 + 18.285714285714285, + 18.285714285714285, + 18.285714285714285 ] }, "mode": "markers", @@ -2854,28 +2865,31 @@ ], "xaxis": "x3", "y": [ - 38, - 94, - 153 + 48, + 98, + 144 ], "yaxis": "y6" }, { "customdata": [ [ - 41, - "bronze" + 45, + "bronze", + 45 ], [ - 57, - "silver" + 44, + "silver", + 88 ], [ - 44, - "gold" + 57, + "gold", + 171 ] ], - "hovertemplate": "
Total medals: %{customdata[0]} %{customdata[1]}", + "hovertemplate": "
Total medals: %{customdata[0]} %{customdata[1]}
Medal score: %{customdata[2]} points", "marker": { "color": [ "rgb(194, 144, 80)", @@ -2887,9 +2901,9 @@ "name": "Event B", "opacity": 0.8, "text": [ - 41, - 57, - 44 + 45, + 44, + 57 ], "textangle": 0, "textfont": { @@ -2904,31 +2918,31 @@ ], "xaxis": "x4", "y": [ - 41, - 57, - 44 + 45, + 44, + 57 ], "yaxis": "y7" }, { "customdata": [ [ - 28, - 77.17, + 30, + 79.35, 184, - 287 + 304 ], [ - 40, - 77.17, + 30, + 79.35, 184, - 287 + 304 ], [ - 30, - 77.17, + 39, + 79.35, 184, - 287 + 304 ] ], "hovertemplate": "
Medal distribution: %{customdata[0]}%
Participation: %{customdata[1]}%
Team players: %{customdata[2]}

Team Score: %{customdata[3]}", @@ -2942,9 +2956,9 @@ "color": "white" }, "size": [ - 41, - 41, - 41 + 43.42857142857143, + 43.42857142857143, + 43.42857142857143 ] }, "mode": "markers", @@ -2958,28 +2972,31 @@ ], "xaxis": "x4", "y": [ - 41, - 114, - 132 + 45, + 88, + 171 ], "yaxis": "y8" }, { "customdata": [ [ - 66, - "bronze" + 63, + "bronze", + 63 ], [ - 61, - "silver" + 56, + "silver", + 112 ], [ - 52, - "gold" + 61, + "gold", + 183 ] ], - "hovertemplate": "
Total medals: %{customdata[0]} %{customdata[1]}", + "hovertemplate": "
Total medals: %{customdata[0]} %{customdata[1]}
Medal score: %{customdata[2]} points", "marker": { "color": [ "rgb(194, 144, 80)", @@ -2991,9 +3008,9 @@ "name": "Event B", "opacity": 0.8, "text": [ - 66, - 61, - 52 + 63, + 56, + 61 ], "textangle": 0, "textfont": { @@ -3008,31 +3025,31 @@ ], "xaxis": "x5", "y": [ - 66, - 61, - 52 + 63, + 56, + 61 ], "yaxis": "y9" }, { "customdata": [ [ - 36, - 75.85, + 35, + 76.27, 236, - 344 + 358 ], [ - 34, - 75.85, + 31, + 76.27, 236, - 344 + 358 ], [ - 29, - 75.85, + 33, + 76.27, 236, - 344 + 358 ] ], "hovertemplate": "
Medal distribution: %{customdata[0]}%
Participation: %{customdata[1]}%
Team players: %{customdata[2]}

Team Score: %{customdata[3]}", @@ -3046,9 +3063,9 @@ "color": "white" }, "size": [ - 49.142857142857146, - 49.142857142857146, - 49.142857142857146 + 51.142857142857146, + 51.142857142857146, + 51.142857142857146 ] }, "mode": "markers", @@ -3062,28 +3079,31 @@ ], "xaxis": "x5", "y": [ - 41, - 114, - 132 + 45, + 88, + 171 ], "yaxis": "y10" }, { "customdata": [ [ - 17, - "bronze" + 24, + "bronze", + 24 ], [ - 20, - "silver" + 14, + "silver", + 28 ], [ - 23, - "gold" + 22, + "gold", + 66 ] ], - "hovertemplate": "
Total medals: %{customdata[0]} %{customdata[1]}", + "hovertemplate": "
Total medals: %{customdata[0]} %{customdata[1]}
Medal score: %{customdata[2]} points", "marker": { "color": [ "rgb(194, 144, 80)", @@ -3095,9 +3115,9 @@ "name": "Event B", "opacity": 0.8, "text": [ - 17, - 20, - 23 + 24, + 14, + 22 ], "textangle": 0, "textfont": { @@ -3112,31 +3132,31 @@ ], "xaxis": "x6", "y": [ - 17, - 20, - 23 + 24, + 14, + 22 ], "yaxis": "y11" }, { "customdata": [ [ - 28, + 40, 74.07, 81, - 126 + 118 ], [ - 33, + 23, 74.07, 81, - 126 + 118 ], [ - 38, + 36, 74.07, 81, - 126 + 118 ] ], "hovertemplate": "
Medal distribution: %{customdata[0]}%
Participation: %{customdata[1]}%
Team players: %{customdata[2]}

Team Score: %{customdata[3]}", @@ -3150,9 +3170,9 @@ "color": "white" }, "size": [ - 18, - 18, - 18 + 16.857142857142858, + 16.857142857142858, + 16.857142857142858 ] }, "mode": "markers", @@ -3166,9 +3186,9 @@ ], "xaxis": "x6", "y": [ - 41, - 114, - 132 + 45, + 88, + 171 ], "yaxis": "y12" } @@ -4067,8 +4087,8 @@ ], "matches": "x4", "range": [ - 2.3091836619272232, - 5.690816338072777 + 2.2552640881472144, + 5.744735911852786 ], "showspikes": false, "showticklabels": false, @@ -4089,8 +4109,8 @@ ], "matches": "x5", "range": [ - 1.969608944618113, - 6.030391055381887 + 2.0586076508328786, + 5.9413923491671214 ], "showspikes": false, "showticklabels": false, @@ -4132,8 +4152,8 @@ 0.22444444444444445 ], "range": [ - 2.3091836619272232, - 5.690816338072777 + 2.2552640881472144, + 5.744735911852786 ], "showspikes": false, "showticklabels": false, @@ -4153,8 +4173,8 @@ 0.5822222222222222 ], "range": [ - 1.969608944618113, - 6.030391055381887 + 2.0586076508328786, + 5.9413923491671214 ], "showspikes": false, "showticklabels": false, @@ -4190,7 +4210,7 @@ ], "range": [ 0, - 76.84210526315789 + 65.26315789473684 ], "type": "linear" }, @@ -4199,8 +4219,8 @@ "autorange": true, "overlaying": "y9", "range": [ - -100.73514618044638, - 273.73514618044635 + -183.2998940303779, + 399.2998940303779 ], "side": "right", "type": "linear" @@ -4215,7 +4235,7 @@ "matches": "y7", "range": [ 0, - 69.47368421052632 + 66.3157894736842 ], "showticklabels": false, "type": "linear" @@ -4225,8 +4245,8 @@ "autorange": true, "overlaying": "y11", "range": [ - 17.49351175993512, - 155.50648824006487 + 14.616464726531532, + 201.38353527346845 ], "side": "right", "type": "linear" @@ -4236,8 +4256,8 @@ "autorange": true, "overlaying": "y", "range": [ - -66.15700171821298, - 257.157001718213 + -42.67137497241224, + 234.67137497241225 ], "side": "right", "type": "linear" @@ -4252,7 +4272,7 @@ "matches": "y", "range": [ 0, - 76.84210526315789 + 65.26315789473684 ], "showticklabels": false, "type": "linear" @@ -4262,8 +4282,8 @@ "autorange": true, "overlaying": "y3", "range": [ - -230.8985255854293, - 421.8985255854293 + -113.02195608782435, + 305.0219560878244 ], "side": "right", "type": "linear" @@ -4278,7 +4298,7 @@ "matches": "y", "range": [ 0, - 76.84210526315789 + 65.26315789473684 ], "showticklabels": false, "type": "linear" @@ -4288,8 +4308,8 @@ "autorange": true, "overlaying": "y5", "range": [ - 10.027027027027035, - 180.97297297297297 + 22.777764829273984, + 169.222235170726 ], "side": "right", "type": "linear" @@ -4303,7 +4323,7 @@ ], "range": [ 0, - 69.47368421052632 + 66.3157894736842 ], "type": "linear" }, @@ -4312,8 +4332,8 @@ "autorange": true, "overlaying": "y7", "range": [ - -42.80851063829786, - 215.80851063829786 + -89.24228653432192, + 305.2422865343219 ], "side": "right", "type": "linear" @@ -4328,18 +4348,18 @@ "matches": "y7", "range": [ 0, - 69.47368421052632 + 66.3157894736842 ], "showticklabels": false, "type": "linear" } } }, - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6QAAAGQCAYAAAC5y61PAAAAAXNSR0IArs4c6QAAAERlWElmTU0AKgAAAAgAAYdpAAQAAAABAAAAGgAAAAAAA6ABAAMAAAABAAEAAKACAAQAAAABAAADpKADAAQAAAABAAABkAAAAABUH4gHAABAAElEQVR4AeydBXwUxxfHX9yNhEAguAR3d/cCBVooULSu/7ZAC/WWFloqVKgXa9GWFtcCRYq7u4cACfEQ4v/3Juzl7rjk7uIkv/ch3Mrszux3b/fmzZOx8fHxSSMICIAACIAACIAACIAACIAACIAACOQzAdt8rg/VgQAIgAAIgAAIgAAIgAAIgAAIgIAiAIUUXwQQAAEQAAEQAAEQAAEQAAEQAIECIQCFtECwo1IQAAEQAAEQAAEQAAEQAAEQAAEopPgOgAAIgAAIgAAIgAAIgAAIgAAIFAgBKKQFgh2VggAIgAAIgAAIgAAIgAAIgAAIQCHFdwAEQAAEQAAEQAAEQAAEQAAEQKBACEAhLRDsqBQEQAAEQAAEQAAEQAAEQAAEQAAKKb4DIAACIAACIAACIAACIAACIAACBUIACmmBYEelIAACIAACIAACIAACIAACIAACUEjxHQABEAABEAABEAABEAABEAABECgQAlBICwQ7KgUBEAABEAABEAABEAABEAABEIBCiu8ACIAACIAACIAACIAACIAACIBAgRCAQlog2FEpCIAACIAACIAACIAACIAACIAAFFJ8B0AABEAABEAABEAABEAABEAABAqEABTSAsGOSkEABEAABEAABEAABEAABEAABKCQ4jsAAiAAAiAAAiAAAiAAAiAAAiBQIASgkBYIdlQKAiAAAiAAAiAAAiAAAiAAAiAAhRTfARAAARAAARAAARAAARAAARAAgQIhAIW0QLCjUhAAARAAARAAARAAARAAARAAASik+A6AAAiAAAiAAAiAAAiAAAiAAAgUCAEopAWCHZWCAAiAAAiAAAiAAAiAAAiAAAhAIcV3AARAAARAAARAAARAAARAAARAoEAIQCEtEOyoFARAAARAAARAAARAAARAAARAAAopvgMgAAIgAAIgAAIgAAIgAAIgAAIFQgAKaYFgR6UgAAIgAAIgAAIgAAIgAAIgAAJQSPEdAAEQAAEQAAEQAAEQAAEQAAEQKBACUEgLBDsqBQEQAAEQAAEQAAEQAAEQAAEQgEKK7wAIgAAIgAAIgAAIgAAIgAAIgECBEIBCWiDYUSkIgAAIgAAIgAAIgAAIgAAIgAAUUnwHQAAEQAAEQAAEQAAEQAAEQAAECoQAFNICwY5KQQAEQAAEQAAEQAAEQAAEQAAEoJDiOwACIAACIAACIAACIAACIAACIFAgBKCQFgh2VAoCIAACIAACIAACIAACIAACIACFFN8BEAABEAABEAABEAABEAABEACBAiEAhbRAsKNSEAABEAABEAABEAABEAABEAABKKT4DoAACIAACIAACIAACIAACIAACBQIAfsCqTUXK+3StRt5eHhmesadO/6jGzdCMt3/IOzo2q07ubt70PFjR+nMmdMPQpNztY3DHx9Jr457nXp260Q3b97IlXPb2zvQqNFj6OrVK7Ru7ZpcOSdOYj2BkaPH0sv/e426dm5Ht8PCrD8BjsgxgWeee4Geevo5atu6GcXFxub4fLl5gvLlK1C79h2oXLny5OjkRJcuXaQVy/6m8PDw+6pxcHCgTp27Ur369enu3bt06OAB2rZ1i8lybdu1p5o1a1PpgAC6fTuM9u/ba7Ks8cG169Sl6tWDaP36tVazsrR9Uqf8pg0Y9AhVrVqNkpOT6fSpk7T07yXquozbZOl6v/4P09mzZ+nE8WMmD+nV+yFyYsam5BTXf/LEcVO7sA0EQAAEQAAEckzggVdIJ056m6pWq54piLGjHy9whXTY8BH0xqS3qAcrVMHXrmXaVlM7AgLK0E+/zCZbW1vasmUzjRg2xFSxIr3NxcWFfH19FQNrLzQz9k5OjvT2ux/Qv5s3QiG1FmoultfdW5u8d9b4b+c+2sz3+61Jr+fiFTz4p3J1cVXPl42NjdUXk9nzZfWJTBzQo2dv+vHnmWpPWGgo2drZUYkSJWjChIn03LNP0ZZ/N+mOEgXu519nU8tWreny5Usk1zRu/Bu0cME8mvTGeEpJSdGVXblmA9WoUZOSkpIoJOQ6BQaWU++WTRs30FNPjFbbdYX1FkQZXfznUh4cdKeO7VrRBSuUd2va16JFK/rxl5nk4OBIO/7bTp5enjRy5GgelJtAjw8dTKdPn9JrlWWL9es3oOlff0effTo1U4V08sefqO+BqTN++810KKSmwGAbCIAACIBArhB44BVSoSCjt0MHDzQJJDo62uT2/Nzo6OhInp5e2VKo+j08gKSjKFY8sQaXLOlPoaG38rP5D3RdmbG/c+cOtW3VjOLj4x/o60PjLSfg4elBrq6ulh+AkmYJZPZ8mT3QggIh14PptVdeos2b/mEr5m31HqxZqzYrhX/Tt9/9QA3r1WbrYZI607gJr1ONmrWoX58edOjQQbWtZ68+9N0PP9PBA/uVYqpVuYiV1AO87eiRw0pRFWVx/IQ3SKz1o8c+ST/98J1WVPcZWK4czZk7X1lTRSG1Vixtn3huiDJ68+ZN6v9QT5L3lIhYilev+4c+++Ireqh3d4url4HQbt16UMWKlSz6/RHWr/7vxfvOj/fkfUiwAQRAAARAIBcJ5L1ZIhcbm9mpknmkWzospv5kFFxGzX+fv5iaN2953ykqV6mq9nXu0lW3z9nZmd58+z3asGkrnTh9gVav/YeGPDZMt19bmDn7dxrDHRg572/zFtHRE2doy/Zd9PiIUVoR6td/AI3g0W2RL6d/q+qStkibLJEBAx8hcTv+9usvyY4tBP1ZQc1MGjVuQr/MnEs7du2n7Tv3smV1FnXo2FlXXDqPYjVYtnItHTh0nJavWkevvjaBfP38VJlHhwxV7ZNOkb7IiL20uWq1arrNfR7qp7aVKVtWWRq3/rebdu87RB9N+ZTkeLFkTP30c9WOQ0dP0ZdffUtueh05KSPnlDqN5dPPvqAJb0wy3mywHhRUg36d9Rv9u22n4r5zzwGaO28htWrdRlcuK/ZpaWmq3fo8pbP3ybQvdMfrL4x/fSLN+P4n1SnWtguXeQv+ILk+uXbp/JYuHaDtzvKzQoWKbLGYQcLt4JGTtILvhdQhlmB9MXdPhfPnX36tOB8+dkq1R44xFu27KhbJJ596hn746Vd1/Vo5S77zYqV/bOhwWrpijbpmafvPv84h/WdHO5+1n94+3vThR1PV83Pg8An6+tvvDVzxp30+naZ99qXJ074+8U36ZsaPJvdpG+f8voDc3dxJXDXleyd/ck59seR+vvzKa+q52XvgCB05fpr+2bRN3TdRavRF4926TVtauPgv9R3986/l1KZtO1VM3CMXL1lKx0+dV++ZTp276B+ulIe8YO3u4UFTPvmM5Hk5dvIsLVi0hBo0amRQt6xYcp1ZPV/aCS1hqpU1/jx8+BD9+cci9V6XffLMirvpqpUr1ABfWX73iMh75dHBQ2kDu9FqyqhsX7N6JR07eoTGPPGUrOpk5q8/K3dezWoaExNN3834Ru2vxQqvsXh7e9Pc3xbQtm1baO7sdIutcZms1q1pnzyf8l26dPGCThmVc1+5cpnOnD6t3Jazqst439SPJ1OnDm2oDbtjWyKJiUnKHVpcovX/oJBaQg9lQAAEQAAEskugSCik5i7+2NGj1LRZcxrGsYjG8sijg6kVK4dHDh9Wu6RjLgrbmLFP0IXz51gRnK5cxURReeqZ5wwOl87m8y+8TPMX/UHSkdiwfp2KwRHXJ4l7EpFYJu3HXDo+kZER6k8UZXNSq3YdEsVLOmVHeDT/7JkzJAqqKRn0yGCSDm+lSpVo1aoV7Oq1jerWrc8K1uequLRPFNDnnn+Rrly+TIsXL6CoyEh68eVXqGvX9BF3OVY67La2hq57fiVLqu36nW6xGEjZ5SvWUq/efejA/n109coVknjPn3+dRev++Zfat+9I+/buURyl3aPZAqGJ1CHHS53G0rhxU6pTt57xZoP1inxcw0aN2cpxhH6bO5vWrllNVSrz4AIPDMh2EXPsRXmtVj3D3VviU2XgQQYp9EWu+8mnnqVwHvSQTrGI8J6/6E8qX6ECzZr5M23ftlXFr61Yvc5A8dY/j7bs71+K/l6+mlq0bKWsP/N+m8Odv9v07HMvUv0GDbViqo6s7qmPjw+t4sGS7j160vp1a7kdv5Dcqz9Y0TFWcOS7KkrQmvWb6K133lcDIvK9F7H0Oy+DFzLIEMFtnfnrT2qgRDrw/3tlnK7N2V1Y8vcK6szxf4fZuiXxcqLsyACDJiHXr6vBi5psBdMXGUx56ulnzbrlR0VGUSrfu8SERN0zGBMTozuVpfeze/eeJANga1evorlzZtGFC+fUO+Crbwytatq7YQ4rMiIb/9mgQgt+/GmmGtj4Zsb3lJqSSv9sWEf+/v687Wc1kKM1KC9Yy31ezoMJg3kQ6Agrewvm/U6x7HbasuX9g2OWXKe558tSpto1W/opz0gKx1Vq8eTl2OVWLN/HOMbeWI6yQlqNQzpkMC8r0Z674GDDkAqJqZSBr9CwUJow7pWsTpHpPmvaJ78Re/fupi5duqnBTs2NukyZMuqdKN+7vBYZuDTHK6/bgPODAAiAAAgULwJFwmU3qEZN2rZjj8k798aE1+i/7dvUaLm4cImFIPZeR1QsPv0fHkibNm3UucE+yZ1bUQJ7dO2oXIHlpN/N+JrEwvLiS/+jObN+pYSEBF1d0oEYOWKoGomXjQEBZei/Xfvo4QGDaOuWf9nVdjVJZ0Lij955e5JS2nQHm1kQJU5ctmSkX2TJn4tVLGoNvl5xU9ZERvDfee8D1ZGRGFOtfdKZGswKlogoO9KZH/n4UBU3qR0rsUXOzi7aqtWfC+b/Tl9N/1wl3pCDxeojiUU+mzaVvvv2a+USJ50qUTjatG1P337zldV1mDpA2DZtVNcgNuybr75gy89BGsDsxU3PWvZ/LFpIL7z4P1b6B6lYK63e3n3Sk30sXDhfbRL3a1Hq5PzPPfOkTkkVxXgZd/hHjhyjvjPa8caffR7qqyyhjw7sT7t379TtFuU4OSlZrVtyT5/jwRCxyPbq3plOnjyhjvvhu2+VBfMdjo8VRpIQRZNGrKjP4HsiipS4fWuWcEu/8yNGjVZK6OiRw7VTqnPIwEJORSxUP//4ve5+iquhfGdl0EDi6BYunKcGT4YMHUbvvv2mrrpHHh3CnWd7EqU+K3nphWfYW+C04m3skmjN/XxkUP/7ktm8+da7arBKrNX6yXbk3TB86KO6eyPXIhbJ6vx+6dmtsy5BmQxeiYdFY7Zsa9+HvGD9xJNPUxVOkvPk2JFqAEPjJcqvWET1xZLrzOr5soapfr3mlsVLQ95jq3nQTRRiERmEEdHe62rl3n+SpEne8z58byQONTPp26+/2rXs7790ReS4b2b8oLw9+vftnWlsqe6ATBasbZ+8U37+ZTa9+/5kkhjdRYsW0FD2TJCBya/5HZeXIoNbZy9cpdTUVPWOWLliufLO0f9e52X9ODcIgAAIgEDxJFAkLKTx8XeUK5e4cxn/xdyLIV3EyoRYCES50EQsVGXKlKXFi9IVDdku1gNJHqSv8Mn2dWyBk06WuFrqyw52pxW3ME0kScbFC+epbGCgtilbn8o9l61EooxqcUR///Wn6igYW0m7sdXGy8ubpn/xmU4ZlUpFMdVczKTjLp1dSeKjL+IWp3WC9bdbuizKjb7SI9kqRebOnqVTLsSqKNsbN2nKiToM3YEtrce4nFidNZc7uSfS2RerVFRUJFWsVNm4uEXrksFTWAwc+KiBa+7AQY+qDMeS5VhEsh6LdfJHjjXTLKayXax7YrWpWy9r665mMa9Y2dA6LBbwi+yqJ2LJPZVO9Fb+rmrKqBwnnXQZNKlUuQrVZgu7vvzBHdrPP/tEN/iixd9Z8p2XQQVpdwlfXwNXWjmHxJ3lVJb8sVh3P+Vcc2alu0bKfRW5HhxMksRGBnr0M4GKRVsyqcq9y65Ycz9FwRERi1yDho2Uu7K8V0SMv3fybtC/N+ItIPLf9q06ZVTWte0tW6dbKvOKtbCT2EmxppsTa67T1LmsYWrqeFPbhPm37JotVl1xRdVEnkURTUHVtutv08ro79OWZVBSQhDkXaafxfw9VgibNmtBo0YMU+8Vrbypz+49eimLpoRwaH+al4dWt6XtE8X6OsfPSoxrGGcAnvTmO+yJUVFZtbV3nrRBPC20urRP/XARU+3Matv6dWvom6++pMkfvKs+xeNlLLs7z5wzz+CZy+oc2AcCIAACIAAC2SFQJCyk4oL69JNjsrz+XTt3qCk+RLlYtCBdARXFLvTWLdq0Mb1DLcpS2bKBbL3yI4lj0xcHh3RUAazA6nda9Mtoy9HcoXBySu+katus/RRrYkl25Vu7ZpWy6srxsXGxtGfPLpJER1OnTFbKqWyvVDldAcssLb904APYSrt+fd5Pb6Ipz3Z2hmMdsl1cwVw4+2VSUpQ0O0ciCvsrr41Xbq1ilRYRNz4btmqcP3cu2+devHCBismUwYqdrFCIa7K4e7/7ToZVrtI9hVfiBI3Fy8uTWZc13mywvoHdNMeHTaRPp33JbsxP0E7+boo1U1+xs+SelipVWsXTGZycVy6cP682VahYkWTAQRP9zqy2zZrv/ML58+h/r45T8bKiCIty89eSP7K0PGn1WPspAzuJiYnK40A7dv6836hjpy4k2VeXLf1LuTzLvZjy0QdakWx9WnM/xY3+3fc/ZGtmxuCK5n5vb5/161SuR+6Bna2h+6j2zMigkogMcuQ2a3leKnBiGxmYs0Rycp1yfmuYWtIeseb/8PNMNeXKk0+MUpl0teOio9Ndr+X9Yiza4EV0lOnkdhLTK7Hju3btoA/ff0d3uLi8D2Gr5NAhgwzq0hXgARp9EUXQ2FNg8ofvqcFKa9snMcfSbs1KLSEEH3EYiISN1KxVS+chUK58eWVF1W9HXFycCmHQ32bpsngT6csXn39KmvW/M7sQi1UaAgIgAAIgAAJ5QSDrHlRe1FhA55RO3mJ2fRL3NFEyZM5DceH9fe5snYXPzc1NuXeJxWXVymUmW3rqnmukyZ33NqaxuxOfKKsiZvcN5DnoRCRpjCkRy5HELYq4ubqpT83yplb0/hPLgmZ10ducJ4vq2k2cOTWNmeSiTOXELIPY6isuw2I5Pn/uLEVERKgEVDmpRjpd73/4McnAhSikYlUSRWLpX0t0p5VsrSJiSUhJSdZt1xYiIyK1RZOf4jrYrm0Ldg9+WSlXmnVDrMhjRg3nGMdIs/dUYoLlniYkpLst6ld092565mAXvu/mxJrv/JdfTFMW5Oeef4ljpDuq50fiRz94722DLKbm6rR0v1jexW1SExk4Egv00GHDlUI6dNjjatqOfzas14pk69PS+ynuruJ6Lu7OEk8o81xeu3aVXYE7ZfqcGjcoLZPnQN/SLsfkNms3N3flnWDKrdW4jblxnZYyNa7b1LoMmkhCsTZt2tErL7+g4nH1y8k8oiLyTBiLK7/TRSThnbHIoJO8XyXOdOzoEeo518rI4IAohXK/TcnmLf+pwYXKFdIHw8a/9j8yft60eXWtaZ+EdkhSsrfffEPnGi65DIY99gjNX/gnx7gPV9ZhedeLx0bH9ulWda2Nmb1/tf3Wfi5i7yHJnVC7Th0opNbCQ3kQAAEQAAGLCRQbhVSISAzOK6+OV4mBLl+6pOaTk/gcTUQREJdPcXVdtvRvbXOufdpaONeiZGUUl01xHd6yeZNB/aKEvMFzr4p1V1NINXfFQJ48XhQzYxFFLTo6Ss23Z7xPf13ihkQkplSUsLyU1NT05EDZiV8Va09PTqQkiWJkjkFLxFL2Yq1auWKZcuGTTuFA5ixT7sj3QpNLF9PdQyWjp3QWsyOiGIjbofzJVD6S+fbpZ59XiYfEEmjunsp3Vc6hWYf126BZaMXlzpxY+52XeE75E0VRXKQlM65YqmWwR/v+mKvTkv0SQysDKZoLsxwjCqpYsF/gWO4GnNhGBpS+4ezTpiy/mdWhr+BqZSy9n2I1kzY9+/QTShnQjs+rz9xkLc+/KDH+pUqZbW52rtP4+bKUqbnGiDu0zEUqlswXn3+GBwqX33eIWNNFqgcF3bdPtoliqLmnawXad+ikspBLcqdRI4fplD9tvww2THz9/mRd0o7effqSWA9v3bypFVcDI7oVowVr2te0aXN19NWrVw3OIs/Wzp3/qWRkorSKm7e4AGf3/WNw8ixWtPuqxbZnURS7QAAEQAAEQCDbBDLMD9k+xYNzoMShiRInytzARx7VZYDVv4Ldu3apGEFxhzIWiQXS4sWM92W1LgqhiDa9SlZlZV9PdkmU0X6J5/n1l58M/n75+Ufa8u9mZVnTLAIHufMkMnjwY+pT/z9NYZEy4nZlPK2IdNDF9VNE5r4TqXzPBVit8H/lWNHNbZEOoiTKMK5LFBEPT88sq/Pk/ZL5VjIW64tYNPSnlpF91rKXY8StUeYalMQ6Eou5iBPq6Mte7gyKRUviq0yJxtzUPtkmMa8ysKCJWNy+ZsVKOp3iKiliyT3dt2+PyqYrVk59eahvPxV3nJkLt35ZWbbkOy/ukPrXJW0VTwLJLC2JlSRpjCaSnGnEqDFsOeysbbL6s//Dg9Qxe/h51BdJbiTsv//xV1aKbZRrq/7+rJbluyDu+MZi6f2UbKkixt87U+c0rsOa9bxifZK9OyTztXEct/F7yZrrzOz5spRpVlzESinTKjXn6ZXGjh5pUhmV40XhFAVNrk1L1CXb5V3XoEEjWr16pazqRGJGZ87m6bH+20Yjhg+5TxmVgjIQIgNDxn+STVxkxbKlyjtDrZj5z5r2Xb58SZ3t4QED7ztrB1aiRfJCCZXES6YGa3r06q3qPHz4oPrEfyAAAiAAAiCQFwSKhIVUfkyfee4Fk3zWrFppEAMkCYy+/e4nFeMkblbG8tGH79H6jVt48vWl7Db3mUqSJNMyiBuVzCcq2Xev8xQU1sjx40dVJ1qsszM4y6wTj/oHB1+lc2fvt2bKeUVhllF1LdmJcV0rli+lLl278XQfvWjp30tURllxNZVsqSmpKcqiJ/FsMiF69569qH2bFjRl8gdqipBFfyylaZ9OUfPaVa8epOboW8Adr4U8WfyeXTtVO9+fPEVlVhRrUO8+/dS0IsZtyI313Ry3JZZgmTpHEkNJMqAxY59SirtxUin9+qQTLJZgmcZE4nkl+UdQUE0aNWasUvaCr13TFbeWvRwonU45/yiO77zGlgrJ0qwv0lb5HskUN6IESxylWCvFciHWkxBOSDI+iyki5D5JwhNJPiRud5L5echjQ1WHUEs6JVmCzd3Tz6d9oqbymTn7N/pk6sfKCi7fHWmDTFekKQv6bTe1bMl3PoEt5pu37lBT3IgieiMkhGpwtlNJliU8NPdEOf/jj4+ikaPHkqnny1T9su35F1/i611JEgMn7ugyX67E1Upsn77I/ZD5IEX5EGvZrVsZVir9cqaW5Xsi8aeSCEm+NzIQI0nDLL2fMh2HXNfHU6fR/N/nchU2akDgURMDQabqt3SbDMjkBetZPFWPzNc6i5PUzJ0zkwddPHh6nYfvGziw5joze74sZZoVE4nVbdK0mXLJl+mVZJBDX65dvaKL/5/H90PmOv7si+k0h+cKlcE6iXe2Z28K/bjZ8uUrqPl/5fsq3+NHTNy7VewhYcrFV79ua5ctbZ8kvJLEfGL9f/mVc8qrx4HjZ/vyfZLfoN/mzjbI5GyuHZKRWBKR+d2ba7pCxQrKs0EGdcQCr8nDrKSLC/wC/h2QgSyZHknmF5bMzPI7tHmTYTI87Th8ggAIgAAIgEBuECgSCqlYaCayG6spOXf2jIFCKu6XYuFwcHBUrpnGx4irZN/e3en9yR/TJzznojZqLB1lmTMwKtp0cgzj8+ivS/ZUSYozkhXaRX+muwJLan9TCqlYoVq2aq2sosZxZdo5JSmOuBUP4DhTUUhFxr36Miu5wWy1e5rnGn1JbRM3U+kIiYh1ZOjgQeq6fvplltom/0lnQ2KoREQJnPbJFHpt/Ov0y8y5SjmVuL2PP/pAZXpUhXLxv48mv6/m/JzwxiR1VlGgpnz8AT399HNma3npxedI5nSUpBsi4pL4w3czVMIn/YOtYa9/nLhyS3bLxTxfq6n7MOmN1zmb8kV69vkXlFKmHSsMJa41KxEFtzUrXdO/nqErJh3gtya9zt+xjHhIc/dU5qaVaXykE/73slXqXGJ5/nr6F2oqHt3JzSxY8p1P5WQ8G/9Zb/D9ktNKIqZJEycY1CBujWL9lsRDlkqdOvVo9JgndcVlSpFxr94/YCQFJOO1KKTSObdGPmWlXSzTEiMsng7y3RCFVMSS+7li+TISl0pl/b1nrRKFWdw3RYHOLbnD75q8YC3tr1q1upo+RxLwyPdarl+sgKKMaGLNdWb1fFnCVKvT1KcM9ohIHLf8GcumjRt0CqkMCkkW9NcnvqkrK9/B0aMeVwNW2rGOTo7qOyCDmDKtiik5xINBua2QWto+CZUYO2YEvf/BxyrfgQxipseKJ6ippL78fJqpJme67TX+XkrGY00GDxnGmeSHqdUKgRnu2/Leku+D9j6VAuIFIb8vkuzJ1DtQOyc+QQAEQAAEQCCnBGzYDTU9mC+nZyqCx0uHSEbmJa5QLELWxKplhkNcgcWaZqn1KrPzZLZdFGhxsRVLaQhbck21WdxdAwIC6DpbYaUtxiJus+JWepFjJUXRy0uReFAto6xkh5VOkKUirofVqgep4jLwYC7uNa/YSwyoL1shrgVfM8kzs+uRDrRMDxQbG6Pulf70OfrHmLun0mGVey6WVks46J/beNncd17ul2Rslu+QWKKNvx9iddyz/7DqPH8y5SPj02e5LhyFx2UeFMrq+ZA5O8uWLUudOrTJ8nyZ7RS3bj9fPx7AuaZLaKZf1tz9lOk2JDGaPF9afKD+8bm1nFes5fqrVK6inm+ZKzUzsfY6s3q+zDHNrA3WbhdmVapUVQN2mvurtefIy/LWtE/mtZWphCRWVKYSyyxpXW62V95jpXlQVBRQcQ02NVVNbtaHc4EACIAACICAEIBCiu8BCIBArhEQl2GZRqNNyyZWu7Zb0oigoBrKpf499jiYNfMXSw4psmXymnWRBYcLAwEQAAEQAAEQKFQEbAtVa9AYEACBB5qAuOtuWL82T5RRASMxbWIpWvLnHw80p9xofF6zzo024hwgAAIgAAIgAAIgYI4ALKTmCGE/CICAxQTEbTiJ4+AkxjkvRBISybyOkt23uEtesy7ufHH9IAACIAACIAAC+UMACmn+cEYtIAACIAACIAACIAACIAACIAACRgTgsmsEBKsgAAIgAAIgAAIgAAIgAAIgAAL5QwAKaf5wRi0gAAIgAAIgAAIgAAIgAAIgAAJGBKCQGgHBKgiAAAiAAAiAAAiAAAiAAAiAQP4QgEKaP5xRCwiAAAiAAAiAAAiAAAiAAAiAgBEBKKRGQLAKAiAAAiAAAiAAAiAAAiAAAiCQPwSgkOYPZ9QCAiAAAiAAAiAAAiAAAiAAAiBgRAAKqREQrIIACIAACIAACIAACIAACIAACOQPASik+cMZtYAACIAACIAACIAACIAACIAACBgRgEJqBASrIAACIAACIAACIAACIAACIAAC+UMACmn+cEYtIAACIAACIAACIAACIAACIAACRgSgkBoBwSoIgAAIgAAIgAAIgAAIgAAIgED+EIBCmj+cUQsIgAAIgAAIgAAIgAAIgAAIgIARASikRkCwCgIgAAIgAAIgAAIgAAIgAAIgkD8EoJDmD2fUAgIgAAIgAAIgAAIgAAIgAAIgYEQACqkREKyCAAiAAAiAAAiAAAiAAAiAAAjkDwEopPnDGbWAAAiAAAiAAAiAAAiAAAiAAAgYEYBCagQEqyAAAiAAAiAAAiAAAiAAAiAAAvlDAApp/nBGLSAAAiAAAiAAAiAAAiAAAiAAAkYEoJAaAcEqCIAACIAACIAACIAACIAACIBA/hCAQpo/nFELCIAACIAACIAACIAACIAACICAEQEopEZAsAoCIAACIAACIAACIAACIAACIJA/BKCQ5g9n1AICIAACIAACIAACIAACIAACIGBEAAqpERCsggAIgAAIgAAIgAAIgAAIgAAI5A8BKKT5wxm1gAAIgAAIgAAIgAAIgAAIgAAIGBGAQmoEBKsgAAIgAAIgAAIgAAIgAAIgAAL5QwAKaf5wRi0gAAIgAAIgAAIgAAIgAAIgAAJGBKCQGgHBKgiAAAiAAAiAAAiAAAiAAAiAQP4QgEKaP5wLZS0jR4+l9u07Fpq2PfXMc9SiZas8a4+NjQ2VDQykcuXLk4ODQ57VgxODAAiAgDUERowaQx06drbmEJQFARAoIgTs7R3I29s7R/2STp270OMjRhURIriM4kgACmkRu+uXr90kc39btu9SV/3scy9Ql67dCg2Bl19+ldq2a5/r7alQoSLNnjuPTpy+QDt27aftO/bSmfNXaM7vC6h7j55W1VemTBma+unnVK16dauOQ2EQKMoExox9UvfeuXD5Ou07cJTWrt9E0z6fTo0aNymQSy9VqrSuTfJOPHnmIv27dQdNnPQ2eXp6Wd2mcePfoIGDHrX6OEsOePrp56hb9x6WFEUZEChSBPTfHZeu3qBDR0/R0hVraNAjgx/o6zR+/1y8EkLHT55T70VjxbF9hw50+Nhp6t2nb7avuUfPXvTEU89k+3gcCAIFTcC+oBuA+nOXwPhxrxiccMKEiRR2O4xm/vqzbntsTIxuuagvtGjRSimed+7coXffnkRHDh8iLy9vqle/Pj3z7Av03vsf0bq1ayzG4O1Tgh4bOpzWrFpJZ8+csfg4FASB4kBg4uvjKDo6mnz9/Khateo0YOAj9Ojgx+iF556iFcuXFQiCP/9YRP9sWE8enp7UrFlzEk+MevUb0OPDBlNycrLFbXqoX3/avWsHLflzscXHoCAIgIBlBOTdERUVRX4lS6qBn8+//Jrc3N1pzqxfLTtBIS21eNEC9f6xs7MjHx8fenTIUJr88ScUGxtLf//1p2r1+XPn6NOpH9OJ48cK6VWgWSCQ9wSgkOY943ytYfHC+Qb1PcOdr+vBwWS83aBQEV6Z+NY7lJBwlwb0600XL17QXenu3Ttp2dK/aRLvh4AACOQOgU0b/6EbN0J0J/t82lRasGgJW0q/onNnz9LJkyd0+/Jr4eSJ47Rm9UpVnbwHw2/fpqeffZ4aN25K8h6AgAAIFDwB/XfHwvm/05p1G0m8ph50hfT0qZM86L1aB3jVyuXKCtyUB8c0hfTSpYs049uvdGWwAALFkQBcdovjXde/Zo6rfHjAIOUiIy6t4mbXslVr/RI0d95CGvLYMINtMoq5eMlSat2mrW67xEH9MnMuBQXVoJ9/naNeurv2HqSXX3lNV0ZbqF49SJ332MmztP/gMZLRUAdHR2237rMCu9v+9Mss2rP/MLu0nKLf5y+mmrVq6/bLwg8//Upjn3iKAgLK0KQ331FlpL3tO3SiBg0a0nczvjFQRrWDb926Sf976XltlV586X/q+g8cPqHqWrths+q42tqmPybSlmmffanKv/nOe+r6hYH8sIj0f3gg/b18tbpucQ2eNed3xIUpMvivuBKIiIigUSOGUUxMNH005VMDDPXq1af5C/9Uz9rO3QfUO0AsCMYiz/tv8xYpdzdxBRY3YHkniadCdkTrBNaqnf4ekbh1eY537jmg6ti2Yw99+tkX6n2inf+rb75T6506ddU99y++nO6Nor33JA5s1Ogn+H01m6Z/PUM7lCy9Tt0BWACBYk4gISGBVvMgknha+PuXUjTEzf6TaV/Q9p176eiJM7Toj7+ocZOmBqR+/HkmPf/Cywbb5BjjPog83/97dZyunCP3PV6f+Cb9s2mbcu2X336xZOpLZv0M/TKWLItlNCUlmW6HhemKV65SVb1X6tStp9uWVX2urq70wYcfk7w3j586T4v+/Jtq1aqjO1ZbQJ9EI4HPB4EAFNIH4S7lYRvFnW48u/Xu3b2LZnzzFbl7eKiXvn6VTZo0o8By5fQ3kZOTEzVv3pJ8fX1128uXr0CdOnWmv5atUh3Q72Z8TTI6+OprE6h2nbq6clWrVaMVq9eTxFhM/+Iz+uLz9I6qJBqSxEOaSLk1rCCXLOmvyn0y5SPldvfX0pXqWK1cg4aNaAh3Tv/ZtFXFxKalpZGnlxdbQNJj1/5glxlLpGKlyrR3z24Sq85777ylmEi82fMvvKQOj42LpQP796nlo0cO07Yt/6o/+WGR2DLptIo15q1Jr9PPP31PtuyiM3jIY5ZUjTIgUGQJiMVUrAL1GzRQ7w25UIkr/Xv5KkpKTqK333yDvvn6S2reoqV6L7i4uOhY1Kpdh1asWkdenPBj6pTJNG3aFJIBorZt26vkZLqCVixI51Mkjt34RcqWDaSI8HD69ecfadLECTTv97n8HuuqBpRUAf5P3gvi9i/Xoj338m4TkfeeDMytWruBXvrfq+Tm5qaLUbX0OtWJ8B8IgICOgJOjE8lv+Z34OyrZz1J+X7Tv0JF+/H4GTXx9PPcxYumPP5dSq9ZtdMekpKSoAXZtg/QdpI8zesyTZG+f7hAoz/+AgY9SZESkKibvk4WL/1LhBevWrVaD1PJsT/3kM4OB+Mz6GVpdlnxKuNCE1ydRGPcZJJRAE3d+Z0h/yov7LZpkVp+0dz57nQx6dAgtWbKY3n/3Ldq/by+VLh2gHao+0ScxwIGVB4AAXHYfgJuUl00Ul7Wnxo6iu3fvqmr279/LI49/kyiD4mJnrdzlkc1e3TvT5cuX1KG//PQD7d1/RCmKx48dVdsmvfmuit3q/1BPio+PV9ukE9ijRy/1A6Q28H/vvPchhVwPpgH9++i2r161gg4cOk4jRo2maZ9M0YqqH6yhQwbRYY4R1WTG9z8pxfg2u+hZIq+9kq54amXFklKqdGnq2r0nd5inqxHNBQvmcd1jaDm7+27ZslkrSm+98z6J282kN8brts2a+YuKh9FtwAIIFFMChw8d4k6hg4rdFOVOPBnOnD5Nox4fqnu2t279l7Zu20Vjxj6lc197970PWBGMo4H8DkhKSlL0Fi2Yf9+7wlKsMuD22oQ31Htn+7Yt6jCJCTWOC70efI2+mfGjysodfO0a/f7bHHry6WfpxIlj6l1gXJ+jowP9NmeWUmalE62JpdeplccnCIAAUY0aNWnwY0NVzLbkvBg95gmqVLkKdenUjs6fS++XrFyxjGRw+q2336NePboobP9t30a9ej+kYjXFO0OSFl44f44qVKykPL+2bd1CYoWUwe8d/21Tx4hiJ5bWHl076kIKxMXWm701nn3+RVrIv/mayHHG/QxtX2afk956l97ggW1RJCWOVEQG64M5lMqcmKpPFM2GPAj/9JNjaO2aVbpT+LE1uTnnzNBEEiShT6LRwOeDQAAK6YNwl/KwjZcvXtQpo1LNuXsve7GKZkshZQVTU0blfKmpqXThwnlq2jTdrVUsoDKiuZWti5oyKuWMRUYzW3O51atWUd9+DxvsvsadRUmYoi9itdBXRmWfOydEEKuGNVKfk5205HrFpbhEiRLKsivXYE6OHT1CknZd3IBEWZV4VemYhoWGmjsU+0GgyBOIjo5S16hNbSCWw8+nfaJTRmXntatX6cCB/dS8ZUulkErnrTG/h9asZkvqPWU0O6Ckwylu9T78PEtHV1xrXx//qoqt184n7v5t2rajho0ak59fSSp3zyNEvDhEITUnUZFRSmnVLyedSUuuU/8YLINAcSUw9dPPeKA6hb2fSqnf3Qvnz9OEca8qHOJWL95HmjKqMVq+bCm9/+FHyrNLFFdRSKWP0aRpM9qwfh316NmbLZGLqVnz5kpRFYVUPKdCb92iM2dOq9O0b99BvXuqc6iR/GkSFRmpvB/kOdbeP6b6GVr5zD5lYFviY0XEOiveZiNHjqGevfpQ755dKY5deDMTU/XJe0ras1VvQNzU8eiTmKKCbYWZABTSwnx3CqBtCXcTVK2ae0tuNEGsr/JSFxG3EnHJ27lje5anLh0QoDqOdevVu89dWCyeN2/ezPJ42Xmef9Bkbj/J1JfVS1/KSidVfhAf4c6ruL8cP35Mjay6cKxGRR5dNSczf/1JWUNf4iQMr7w6njONRvHI6nz6nkdCw9kdEAICxZlArVq1lfIpz5Yof6JshobdP1hz8+YNjoVKj+0U7wR5b+zbtydH6FLZjS8hIZFOnTihsmOL9eP69eu6c/bl7LmSdElc78Vj5NTJE7z/Gom7sH4Ige4ACxcsvU4LT4diIFCkCSQlJStviO3bT5N4F61YvlSnCIpbvan3heSBEAnk/afYzVYsgjKAJAPge3bvZqtoK3qT3fBDQ29xAsN3VTiNWEN37PhPx1Jc7t093GkUW2GN5dChg9xfceV2pA+oGe+3ZF0UaQlZ0Jd/WFmWONVu3XroEhvp789qWUKLDnO7zA22o0+SFUXsK4wEoJAWxrtSCNuUUwVVc2OTgH6RMvwDkpVIJkw55ve5s+mXn3/Mqmim+87eGwFtw/Fd5qZ2acFWGVFGJ4x/hcQlUBNJ3mRSIeVRWH2J5NFUcdeVeNhGbGXp2KkLjRg5mjvfATzlxdP6RbEMAsWKgLw75HkQjwsZnJGEJSJ1WOEznkDF29tHxVfJfonrFDH2hlAbrfjvryV/ZPoOETe6DyZPpe3bttIzT43RdYDFwiJxZ9p7S6vOhgyfe227qc/bt9OTlpi7TlPHYhsIFDcCEksuMdqmRJ6l2rUz8lBoZcTjQkSmttPkv+1blUeEzLF++tQp5bEl7rsyf7jEqSuvhc8+0YqTnDtZYk/79tJty+sFUZ5TkpNVe8SCao2IJbhq1WpmD0GfxCwiFChkBJDUqJDdkMLYHAnwl9F+fdFPPKK/3dyyZNsUN1Yt4ZBWXiwmNtw51ERG/y6yq6/EQUin0Vi0xCTG2/XXl/MIq/zAycioh4en/i61LNYXLVNn3br11bbNGzcalBPLqb7ciYtTq+IOrC8aD7m29evWctKFcWrks0PHTvrFsAwCxYqAPLsfT/2UJEHHp598pK49jp8hcesX1zN9kfhOSXwkcZoi4tJ/7uwZasnuepJVUpOygYEmM3Jr+635lHNJZl/pxGpueXK8qQE4efaljZaKpddp6flQDgSKK4ETbGUs6e+vMvjrM5B3iLjf6ofGbGe33bqcwVtmD5CcEyLisSQx408+9YxKiLjjvwwPraNHjlAdTrpYiS2PxmJJP8P4GEvWJYTAjgfqzpw+ZUlxgzLSLypTtqxBYkcpYNxXQZ/EABtWHgAC9/f0H4BGo4n5S2DdujXUjRP79Os/QE2jIsk9/lhi6IJiTYt++222itWSjJQSsympySWTpmSn1HeR++D9d9Vo5g8/zVSf0nkUS8sUzn4nSQLMibjpyqhrucBytH7jvypjnmT7lWx2Mj3DmnWbSFxsReQHT2Tim2+ruuSH7uOp02jY8BFqu/ZfMMevygjliJGj1PQz0v4yZcqoaSnGcbIUWZfY0xYtWlHnLl3p4IED2qH4BIEiT0DiqPs81I+GPz5STaPw3859nGl6GL3BAzQyUKOJZNeuwqP88g6QaR1k2oNvZ/zALrqO9MN3M7Ri7HEwjROsVSeZPurDj6bS9z/+Qhs2blWuvPrvCt0BVi6EXA+hyMgI9Zx37dZdTdHyxJNPcz2/qjPp1yFWjbbt2qvppCTpm0znYk4svU5z58F+ECjOBMRLSryr3vvgI5XfQTyXZC5hicOc/uVnBmhE2ZTBZnlWV69aqdu3auUKzvPQla5evUJXr1zRbf/px+8pIiKcZv82X8WZSoynWFHl/Mu5X5JTCeK4dYlllWRLMpXM2+9+QL/OmqviYRcvXmj16SXBmnhuyNQ10peR6e1k2rwBAx8xOJdMlYU+iQESrBRyAnDZLeQ3qDA0b9nff9Ejjwymr7/9XjVH4jQ+mTL5vulhLG3r9zwvaOXKVem1ca+rP7EkfMEuNBIboS+bN/1DY0c/rrLo/c1TyWgiiQ0+44Qoloh0giUDn/yQTf74E/VDJccl83QTu3bupDmz0zueW/7dRJ9zGyTZgLzYJZGRZLCTEVZx39NErCjjXvufbs5S2T565DDO2LedY1DG8vb0uQkljkWSKnzJHWoICBQXAjJYJM+OuMiJK9y2bf/SvN/m3pdwTNxoZV7BNya9pd4Bwkc6isMee4RCQjLiOyX26qknkmgoDww14dgvSUQyoF9vNd9vVFT247q0+yHvgeeffYremPiWmkNZtp89c4Zj2H7WtUsrK8+ym5u76kxKh1embTDOzK2V1T4tvU6tPD5BAATuJyDx3UMHD1RTq23g6d1ExPVfpoKSDP36IvGi8p6QKWAkoaIm0heQ513LrqttF6+tQQ/3VX2Eb7/7UZcJNyoq0ur4Tu2c+p8y7Yz8iYhSfYPfb/N//41++P5bNbitX9aSZbm28dwHkQFzyZEhyqlkHP5nw3qqVr267hTok+hQYOEBIWDD7koZOeofkEajmflPQFxqK1WurDLySjbM3BCZw1TmCZPMvskcT5GViMtt6YDSdPPGTeV+k1XZzPbJNZQrV57sHexV4gNTWX7F7aVGzZqcgfOa2WRE4sYcz3OkSayGiFhTxNrj7OxskGk4s/ZgOwgUdwLiGlu5chWeEzTOomy2wkusI/sPHuOYz7GcgTfDApJTlmKxTeYBJ3EnzkpEkXZ3d2PFOeS+GNPMjsvOdWZ2LmwHgeJMQDyS5Bk8d+6cUjBzk4UMNJXjJEfini8J1oxjyHOzrpyeS+aCl3eWWHtFqTYl6JOYooJthZUAFNLCemfQLhAAARAo5gQkA6bEWx08eIAHo0JU7NRbb7+nMuB2aNuSxLsCAgIgAAIgAAIg8GATgMvug33/0HoQAAEQKLIE/EuVoi+mf2NwfTLH73PPPAll1IAKVkAABEAABEDgwSUAC+mDe+/QchAAARAo8gR8/fyoCic9Eld4CRe4cuWyWRf/Ig/lAb5AuZ+ScE7mpzYWycpcqhSHZrC7pMQiQ0AABEAABIoHAdvicZm4ShAAARAAgQeRgCQ02bN7F23d8q9KUmIu3vxBvMai1mbJsnz52k0S5VMTyV66dsNmWrlqPe3Zf1hlTZa4fk1kiq+DR07QgsVL6MDhE5zZvYe2C58gAAIgAAJFnAAU0iJ+g3F5IAACIAACIJBfBFq1bkMjR4+9r7p3eLqLLZs3Ucvmjahls0bUlqfW6tK1uyrnxvM6T/t8Oo0c/hhJbPCTY0fSl9O/JW0uxftOhg0gAAIgAAJFigAU0iJ1O3ExIAACIAACIFAwBCrx1F0fT/mUY3yfMGiAZC+VeZkXLVqgtksyqpUrlvPcjH3UeseOndW0P4cOHVTre/fsplu3bqq5JA1OhBUQAAEQAIEiSQBJjYrkbcVFgQAIPIgEnNy8yNY2w43xQbwGtLl4EUhKjKfkhHg1FcePv8yiNyaMU1NR6FPw8ytJMqWWTKelSTAvN23eXK2WLl3aYJ9sDA4O5qm+ymjF8QkCIAACIFCECUAhLcI3F5cGAiDwYBFwcHIlW3vHB6vRaG2xJpCamkKUkkTf/fAzzZ75C+3atUMloNKH4unpqVYTEhJ0myWpkRfPJyni5eV9X5IjKet17zjdQVgAARAAARAokgSgkBbJ24qLAgEQeBAJxIaHPIjNLpRtlknhHRydyNHRgexYyU9jxSk5OYmSEhMpKSmpULb5QW1UgwYNqVr16lR6fwC9+toEsndI71o88+wLtPTvJRR++7a6NEdHR9KUUsmaHBUVqbbLp5OTs8Hlp++PMtiGFRAAARAAgaJJAApp0byvuCoQAAEQKHYEnF1cSeIVq1SvSbXrNqaSPI+pi6u7AYeoiHCePuYiHT98gG7dvE537sRRSnKyQRmsWEcgJCSE5s6epTsoRaymLImJCZSakkJhYaFqEKBsYDm6cP6c2idZd2/cuKGW5fiygYFqWftP9oeEXNdW8QkCIAACIFCECWAe0iJ8c3FpIAACIFAcCLi4uFH5SlWofZdePNWIv1WXfP7MCdq8YRVFhIdRMiynVrHLrLBYN0+fu0yNGtQmmbZH5CeOL7108SJ9/NEH5ObmRqvXbaQpH31Ia9esIsmyu+/AUXps8EA6dPAANWvegmbNmUdNGtah+Pj4zKrBdhAAgVwm4OrqSv7+/lTSz5ezXDtTaloaezJEc5KxUJ4f+GYu14bTgUAGASikGSywBAIgAAIg8AARcGSXXH9OfNNv4HDy9PbJUctPHTtEG9evoOjIiBydBweTiiE1VkjLl6/ASubv3Ml1JQ9PD1q1cgW9OXECpbAFVaRvv/40ZepnFBp6S81fOmHcq7Rm9UrgBAEQyAcC9vb21KBBfSpfvjwnKQslR5s7RGkc2mBDlEoulJTmQWk2TnT8+Em6yANLEBDIbQJQSHObKM4HAiAAAiCQ5wRcXN2odfuu1LRlu1yt64/ff6aL58/oFKVcPTlORqVLB1BMbAzFxcbeR0M6xQFlynDG3WDwv48ONoBA3hDw9fWlVq1akH1aBNmlsJu8KKKmxNaDEm0DKeRmJO3du89UCWwDgWwTgEKabXQ4EARME7CzsyN5wXt5efFUCO7kxi4wEtcmIslU4u7cocjIaIqOjqbbnOwjNTXV9ImwFQRAwCQBD09v6vPwEKpYpbrJ/TnduHHtcjp8YDcl3IW7aE5Z4ngQAIHCS0D6KR07tCe75Mtkk5LuXm+utUl2lSk0Iol27Nhlrij2g4DFBKCQWowKBUEgawLi6lKxQjkq6V+aku5GkS27vNjb8DQHqYl8oJY0hfOI2TpScpoTx2awoursRWGhN+nCxcs8MfzVrCvAXhAAARVv+PDgUVSuQuU8pbF5w0rat3MrZ+bVnt08rQ4nBwEQAIF8J9C5U3vyco0l2+T0BGOWNiDRLohOnL5C586lJymz9DiUA4HMCEAhzYwMtoOAhQSCgoIoKKgaz8UXx3EX4ax7SgxaelyU2VPY2BHZlaBEKkFp5EwnT53J1xe8JB/x9fNTLnJpnLzAWGxtbalUqdKczOCGSUuui4sLSRIEsfRCQCCvCTjx97XHQ4OoVt1GeV2VOv/fi+bQ6RNHyNSzkdMGyBQoJUqUUN4UJXy8yZ0T+0iWYPGwSOHpaUTs7B2U62p8/B2KZTfXiPBICuNnTZ43KMo5vQM4HgSKN4GKFStSvdqVyTHltPUgbN0oyaEGLVu23PpjcQQImCAAhdQEFGwCAUsIBPI0BfXr1yEHm7tkn8pxF6lxlhyWeRmOz0iyDaCkFEc6dPgoXb+et1MefDPjR+rZq7dKIiKK559/LKJpn0zRta93n7708dRPKSIigrw5YcyEcf+j9evWqv0S6/XRlE+pR89ePG3GHTXP4BNjRmKaBh09LOQ2AZlXtGHTVtS9z8DcPnWW5/vui8kUFckDTbkg8txUqFCBAgPLsiLqx54UEeRgG0+2xAlEUuWPPSo4hYih8KAVe1WQrSvvcaPEVBdycvFRg0TBwdfp8uXLJgeLDM+BNRAAARAwJNCpY3sq4cqDySnZS+SWaFeNDh+7qN5BhmfO3TV5b0ryM2sHBs0NqOduK3G2nBKwzekJcDwIFEcCjRs3pMaN6nLuuWtkn3w258qoQEyNIYfkM+RqG0xNm9TnjHf18hTtPxvWUf26Nahls0Y0eNDD9ORTz6rJ7aVSmYZh2ufTaeTwx6hD25b05NiR9OX0bzlDpotqU6/efahR4ybUomlDdfzevbtp0lvv5ml7cfLiTcDdwzNXlNG7PI1IuMyLmSiu9Oal76Bh5OjkbL5gFiVkmpN69epR34ceolpBZcnPPYJs7+wlp9Qz7CrHrvrJ3ClMlXhVY2VUTsreFrKPy9gmXyHn1NNkE7eX/L1iqE7N8tS370N87rrKUyGL8F2BAgAAQABJREFUJmAXCIAACBgQ8Cnhx6+XKINt1qw42ERR6VLWTbNlzfmlrPRF/tm8jZo0bWZw6OsT36TL124a/M2dt1BXRgbUDx45QQsWL6EDh09Qt+49dPuwUDgJcEAbBARAwFICMlLXmrPReXvakEPiUT7sfjdXS8+VaTkerXRIjaYKZSuSu1tL2v7fzkyL5mTHsqV/6Q6/dOkinT1zmtq0acefZ6hjx84c03qFDh06qMrs3bOb5yG7SW3btVdW0p69+tCK5Ut1cwQuWjCflq1cSzIiiSRNOqxYyCUC4sYqGXWzktiYaPro7VfvK+LDlsgJb0+lu+z2+sNXU9maH0aeXt4UExNF7Tr1pM7d+9x3jP6GwPKVqBRnhr162fqpDqTdtWvXpqpVq1DK3RCyvXuYnNLECppTSSHblNvkRKzIJrpQxbK+VL16Lzpx4gSdOnUKz2BO8eJ4ECgGBJISOczI5CCYZRdvk3aXQw1KWVY4G6U+nDyFBgx6VIUzmDp80cJ5PHXU67pdmgVVG1AfKvMacx+mabPmNFvmNWYjAuY11uEqdAtQSI1uScmS/hybk6TcFPV3IVZOn0bxXHZycqJ2bVuRu3M8Z6TL4wREaSnkkHKe/HwqUudOHWjL1u15GjPmV7Ik1axVW6eAli5dmuNKrxnc6GCeiqE0z/koIp//bFiv23/t2jUSPj4cE3c7zLJMfbqDsQACZgi4e3opd92siokFdfLnPxgU2b9nBx3ev+feNhvq0qMv1a7fmMT9N/jqJfr288nUpHlr8jIzh2k3dhOeP/M77sywW62FUq5cOXbpr8uZKyPJNv4g2WY2lYKF58u0GFtPHdlTg+JuUpWKZalSpe508ODhPHf5z7Q92AECIPBAELB3YM+PTGZ4segC0lJ5TmEvi4pmp9Dbb00k+du1N31g3PgcKSmpauYC4+3mBtSNy2O9cBCAQsr3QUaxX3ltPA0dNoINXml04cJ5GjSgr7pD5mLlSlVpWDjuJFqR5wTatGhEHk6SjU4UtYp5Xp9WgZd/APXxH0479x7WNuXoM+L6WUqMz5gD0J4Tp8z47kdau2YVHTywX53biy1Id+/eNagnISGBvDw90/fzp6xrkpCQXtaLf5ygkGpU8JlbBKoF1bHoVHZ2GT9pkvRn8/pVNGjoaHWsM7ub12nQRHceW1s7cnaWpFxuum2ZLfiXKkP2MnWTeNVaII0aNuQ40VLkmHqJf1Oy7xJnQVUZRVjhdUrj+ux82OW/AV285EdHjhzJ2I+lYkfAyc2LHF08it1144ItI+Do6kn2tiUsK2yqlH0JCr9jRx5+gab2ZmtbcmI8xUez54cF0rx5C/rsi69Un2PFimV07Gj6+87cgLoFp0aRAiCQ8etdAJUXlirf//BjqsXWoReff5p2/LddKaha2/Rj5cTU/94Hk1WsnJQVuXne9MiNdjw+iwaBpk0ac6jFGYpNvlAAF3SJ0uyrUIBHKlswc0cp1S5CXGw//ewLEqX0tVde0jZTVFQkWzwN4+YkI29UVHrnWj4lS6gm0rEXkeMgIJCbBBwdnah5q/ZWn3LPji1UwrckValWw+DY22G3aA9P53L5wjka+NgoctD7HhsUNFqpUbs+7eXjshKZb7hVyxbk6Z5GjknHuaipmNCszpAL+5TLfwxVCKzAA0itadfuPSatCLlQE05RyAmkpaZQSlLGwGEhby6al88EUnjQzjbNhl9T2TOTpnKytdDQsFz9jqWmWDbN1r69e3g+90g1cC7997+XraLRI4fR9m1beQ74rAfU8xkzqrOQQLFXSMuUKUOPDR1GA/s/pHNX1E+nj1g5C79JRbiYZMUsE+BH9knHCuwqHZIvUoXydSks7DaJe2xuiFj/P//ya5LRxBHDhxjEVoSEhFBZziKsL4HsghgSkp75Vz5lXRNZFoupZOSFgEBuEnB1cydPMy61xvUl8ndRrKPDxz5nvIs7MPEUFxNDyUlJFHrrxn37M9tQt34TOrRvFyt3iSaLSOKiNm1akbNdFMeAB5ssk28b05LZWnqefDwC1aT3W7ZuM/BoyLd2oKICJSCeMPreMAXaGFRe6AhcvnCWAv0d2evLMouk8QUkJdvTpXOH6E5UqPGuPF/f+M8Gkj9N5L0+eEi6QmpuQF07Bp+Fi0Cxz7LbtFkLNadbD57+YuHiv+jXWb+pxC3abZJYuWA9BUA/Vk4rg8+iS0AsHg3q1+MOZh7HjJpFmMoxpZeoYcP6ZktaUkDc1H+d/ZvKmjti+GMUF2c4Zc2//26i8uUrUIOGjdTpmrFrjJ9fSTX6KBvWrV1N/fo9zC6P6VbUwUMe421rkEzFEvgoYxUBSy2Y2klloOXUsf3UvGVratKkKZXy96Uypf35ryT5+5WgenXr0dhnXqSXJ7xDO7dupKuXLPN6KFUmkJzueQJodWmfHh4e1L59W3JzkIRkBayMao3iT8e0a+TmGEWdOnXQZcjW241FEACBYkzg3LnzlGpfhsjGettUmn0pioyKYQtp/iujpm7ZzRs3ycPDXe0yN6Bu6nhsK3gC1n8LC77NudqCsmUD1fxGly5epM0bN1K9+vWVUvrooP506OABFTOXVawcYkhz9XYUupPVCqpK3n6OnMTIh9smfwUrKQ6+1K77ADp9zvqMn1rLJYbU0d6GOnTopDadOX9F20UXOX66Q7tWFBcbS6+Pf4XmzV+s5in19fOjca++rLOirlq5gtq170h79h+m2JhYiomNUe4yuhNhIVsEfANrkL1Tuvtztk5QBA/y93YjByfXLK/M3c2FPNxdyYUHSJLZgrl76116ePBwcnZ1p5TUNN38dQ7ONuRkY8thGbbk71+Khj0+kipVrkD+pctQbBzHLt3N2r3RzackuflXNmiLg2Te5vhyF7twtjTE8L6KBvsLw0qKnRf1HDCUduw+qGORW+2KDQ+huAjLLc25VS/OY56AxPa5epU0XxAlii2BqEQnKlemI3uA8fR1loqdO6U516bjew5QbveBE+KiKPKG+UHCQY8MptWrVqh50CUp48BBj9CC+b+rK5ABdYktlQF16ccbD6hbepkol78Eir1CKmmij3Lih4UL5inyu3fvVF/inj17qy+yuVg5xJDm7xc2P2uTGEmf+hUpLuQAJyYxTPCTn+0wqMv2JpVwqU2hFw/nyBopTocVOOlKVrJ82VJ+4a+kAHZrv84ZdmViak3ErV1iTt3ZMuTOLpU3boRou/CZAwK3r53KwdF5f6ijgy0PZtiSLWepFUlMTqXEpBRinS/PpGyz1pSUcH92W2cnfj69vZQimpCYpGKJonnEfi9n1rXh7JEpaXZ0OzzDhTwiPExlUC/JScJEQoKv0vGTp6la7cYksXZ+Pm5kQ24UweeQkX9T0xfFRYTyAMw5g2tt3aoVxd86wvVlDOwYFCgUK5coyaYilS9hR3v27C0ULUIj8p5ATNg1kj8ICGRGQPqwrVu1JF8fe3JMuczFMn7nTR7Dg1vJPDB+8OASunxZyuedSEhRm7btSGa/+PHnWSpconWLJmrGgYE8Hcyn077gMKIQkgHz5cv+otmzflWNMTegnnctxplzQqDYK6RXrlymvv3638fQ2SXdFRGxcvehKTYbJHY0JSGUg/4LiTIq5HmKh7SkCKpcuTKdO2fYMc6LGyOK59UrmXe0YzkWT/4gRZOAi6MdObESWj3Qi+pW9KaAEs5UwiMjmVV8QgrdirxL50Ni6dCFCIq5k0TR8UmSrDzXROYP1RdRRP18S7C7uCPF3UmgG6GRlHxvsETKnjt9XE3von+MLEsCjx3bNnECjiRycHDiY5KpWct2ZO/Iybpi4viP+FodeIDFVbn2hkdGUdjtCFZMMy7Gjq2h+lKrVk0q4ePEHbkz+ptzvCwKv9SqzauX4xPyCSQDb6mSNalatWp09qwV1pDcqBznAAEQKLQE/tuxkxo1akjlytUj+5QQnqqKY0o5a7eB2LrzoJYfpXEW73179uXLtFL6iRYN2sIrj/Ecox481VdJto5KP914ftGsBtSNz4X1wkHAxsfHJ+PXtnC0KV9b4e3tTf9u20Uvv/AsbdmyWSVqWbd+M734wjO0aeM/1K//w/TSy69S755d1Qj8+x9+RCVK+KmMvPnaUFSW7wS6d+tCHg6cxCclPbNsvjcgswrtvCk83o82bdqSWQlsB4EcEXB3tqegQE/q1bQMJ8bJUEAtOen246G08dANVk6T2XKa85+XFm06UsduD5FkhJYYUC9Pd4qMjqMYdrHNjiRw8gsZaJHJ0zl4yuQp7DnG2tOdp4RxcaJQVkojIqNVuTk/fUXXr6VbBXx92X2+XVuyu8tTDaRl7eprspJ7G51Y6RfLc7kAFyrt58SWCkfy9OApZhhdVGwShYUn0o2wu3TtRjwlJaZSQlIOMvfaulKaSz3asGEDRUenX1NWbcM+EACB4kNA3mnVq1elgICylJwYx54jCTxnsx3Z2HEoBM/5efHCRTrPf/phbMWHDq40rwkYDvfmdW2F8PySNnr8ay/Tl199S+Hh4VShYkX65usvlTIqzUWsXCG8afnQJFdXjkfjP7pbyJRRufaUSE5rXo2nZXHCD0M+fBeKUxViES3r50oju1QmN2e7bF16m9olSf42H75JopxGxIqDeM5ErJYBpfw4xjORrt8M57jQ7CtlkpjIyUxzxOIaHhVLd+ITyNvLk92C3Sg45JbBUXVq1yKbRPYeyJYyasMKrz3VqupBLRv5kmsmrEuXdKagShnVxrGSv33fbTpzKZaiWVm1WlLvUOrdy1SvXh3avn2H1YfjABAAgaJL4Pbt27RzZ/Yy7hZdKriy/CJQ7C2kGmjJzFimTFm6deumsoRq27VPxMppJIrHZzmexqRRvcqc2Tbv3WKzQzTRrjrtP3SGgjm2EwICuUFArKIPNS9LTYN8c+N06hx32aX3m+VnKCQie9ZMOcmjjz1OPfv0p/DIGLrDCmlBiJeHK7vyutD0Tz+iI4cPsGtbOapfN4icU09a3RwPN3uqV8ObOjT3s/pY/QM2bL9FJ85HczKmZP3NFi0n2NehffuPqPgriw5AIRAAARAAARDIQwJ2Li4u7+Xh+R+YU0sCC0lgJK5cpiQxMZFiOfMoJPcJyGCAv78/u4kE8FQj5ak8x27WrVtXxQbIHJmenp5qygK5N0kc/5UfUqVKZfL1SiWb1MIZHykuNPEJ9jyAYmi1yQ82qKPoEfBxd6RnelWjoHKeuXpx9pwAqTVbS6+G3qFItuhZ68LboEEDql2vAScpcmdXVdPv5lxtcCYnk6RJKeyy5mCbQrfDQqlmjSBytedYK6viy23YJdeZxjxSkapWcMukJss3VynvRnWre9K5S3GsqJtJRGJ0WlubFPLwKkcXL10y2pOzVZlOSt7j8p7O7LdUEpCk8e+tqf3ill26dABnzmR3wVxw987Z1eBoEAABEACB/CJQ7F128ws06jEkIBlsxcogCqiPTwlOTnLn3vQM7JHKSUTuJqWRo4sHObvZkDfH7EqSD0liknD3rgqml+xueRkD5clxajap4YaNLkRrthTP3LwKUYvQlAeVgJebAz3buxr5eZl2ZLWzd1DPooOjC9k58CTqdvZkb+/ICkWiUixS+DM5KYES42NNZsMVLk/0qEKz1l+gY5cjLU541KxZM/Lmd0NYeAyVLGudwpUX90Lcd0NvR1HLli1Jnr+kqEiLq3FgxbxaJXd6uGsZi4+xpKCbqz09PbQSLVkXTGfZjTclxbKYXVtOWuLmVloNBObWoNaAgY/Qh5OnsJvzHZL3+/59+2j8uP+xAh+mLiWQ3/e/zJzLMcBeHL/rRsuW/k3vvfOmLnt37z596eOpn1JERAR5e/vQBD52/bq1lmBAGRAAARAAgQecABTSB/wGPmjNd3NzU1keJUts3B2Z9y+Jrt7gDoslo+GcyMSRs2CW4oD7SpUqqZjfU6dOUdi9Dk9usmDPAW5TwVlkzF4Lt006fRAQyAkBN3bTHdqhooEyamNrR26efuTi4cN/JUjWkxPiKCUxnlJTWAlNYS8FtnDZyvPBc3o6uLiSnacP2Tm6kj1Pt3I3LpLuRIdTfGy4UlK19o3uVpmm/XmSQsLNu+82adKEB1x8KZyfed8Ay5QsrZ68/BRLqQfHlvs4R1B0ost9mR1N1W1na0P1a3hR93alTO3OlW0Du5elFZtC6OjpaIsti44URlUqV8o1L4vr14PpoT496ML5cyQx+KJ8Pj5iFE3/4jN1je+8+wFt2byJpnz8ISvDbrRqzQbq0rU7rVu7WiWYmvb5dBrKmTMPHTpITZs1p9lz5lGTRnUtYpwrEHESEAABEACBAiMAhbTA0Be/ioOCgpQrbmR0LIWERrCFxXqrRyK7gslfVMwd8uBOTSueA1DmoTrCc8nmZuY3B7YK8TwRhfcmpaVw5x+Pb+G9QYW/ZfZ2NtS+rj9VK+uhGuvs7kMeJUqTu3cpSmClMulOBEUFH1WKqKVXIxkZHdy8OSGYD3mXLMeW07sUHc4Zd2+nxzq/1D+IPll8gt13M48FrVGjJvn6+ill1NJ686ucAz9zzs7OrGjf5MRiXsq6J+EcWUlldq3NS2VUq/uhTgH8Xkyiy8GG0+Ro+40/bVLCqGxgM54C50CuhELs2pmRJOkOe7xs37aVOnXuohRSBx5I7NylK3Xt3EE1Iy4ujlauWE69evdRCmnHjp3p6tUrShmVAnv37Fb5HNq2aw8rqSKG/0AABECgaBOwLdqXh6srDARkNLx9+w5UsVJlCrl1WymT2VFGja9Fpn0I4TkIvdiS0r17dxW7ZFwG6yAAAqYJeLs5UpeGpcmFFdGAKg2oZLkgskm6Q7cv7KHo68coPjLYImU0lceVYuOT2X1XHB1SKDH2NsXeOke3L+6mu3wOD+8SVL52K/JiBdWJXVc71S9FYjU0JRJ/WLVqFYqOK0Rz/+o1VLLtpiSGq1jYRI5p9fLy5mkRTF+LHObp7kCP9grUO0PeLg7vV17VaVEtfK/i40I5mV/uuhFrdbfjd75YO0X8/Eqym7cDXQ++pu3mhGzXqDTfbxHJFaC/T7ZJwrbSAXnTNjk/BARAAARAoPAQgIml8NyLItkSmbS4efPmnHQjiadRiMuTaxRraWJiCknM2fHjx+ncuXM5ridFetls7VGz02fjbBIz5uRoqzqraXwSJ4f0KTQS780hKNsSOBFJkoUxX/c3wZbdJ7mNkCJFwLNkeY7TNB3LmZsXapMUR4+xC2mpyvU5TtuL4sOvUtzNM7oqbO3S3cH3nrpFh86nxwBqOwNLulHPZhXU6v4zoXTkQhh5uDhy3HcytatbhsqXSre4SoGk+Gj1Z+/sTh4+5cjLvyL1KHGetp+OoyRHw2y+4oLevn1rioq+Q06ermpqFklsY2/vRBLHWhjE28eHJ46P5Ynj0zPk2ttzEh+2CEfdm6dUv412lECDuvlyzG3O2y5TvIhya4n06VyOlm/hWF0y79LvYu9KVWo1pOgk82Uzq/tuzG2KjzGMtx/7xFMcmlGdXnj+aXWYJKYT0fdiucv5ACSeVEQUe1nXFynrde84/e1YBgEQAAEQKHoEoJAWvXtaaK5IMue2bduWwiJ4uoZ4w85GbjcynjsvyRHJFBRUg13QHOjkSeunY9BvkyRPcnWx7vFwdkqf4D6osgfHjHlSKc6omZWEhN6lwyejVDISmew+gafIsFhs7FkJz5+Mwxa3CQVzTCA+OozDMvPecaVO1bLUsUNHio8IpvCQzJ+V1NRkqs4uva3rlNZdm1gE09id/eKNGDp2IZQGtq1EHs4OdDUsljYfvEqPdqhCzvcGYLSDktgFOIr/HN19qUSpivTEQKIv5m4ijkTVilDNxo0pIvQmW0fjddsktjw1xZ+tr1Y8GxlH5/qSi6M93QljK19a+rMnzrqO7MZrw3ORxnNMfIakUcUyThRQ0pHDbTNv+/Vbd+j7305nHHZv6e0X63GMuB39u+sGnTgbSS4c6xsbl0SN6vhS6yb+95XX31Ap0Jl8XHm+Vs5sbFZsWSl0qUFxESFmi2ZWICVJKGRI9x696KX/vUrDhw6msNBQtUNLQCeDDppSKq7PUfcSQ8mnk5Ph+zJ9fyGcBzrjUrEEAiAAAiCQSwSs63HnUqU4TdEn4MOWhNatW1NoeDQnLkrIlwtOSuLJ7DkJSpUqVVVMVE4spVEc5+rD8w5SSrTZtsuk9hXLuVG31v4kWS8tlQCe9F7+erClKiY2mTb8d4suBccxr8w7sNq502ycKNKEVUbbj88Hk0BSggVKRA4vrU6dOjSwG1vFrh+nRI4TzUrEQsnqJ2e51k8sJPZ9omuhMVSeraXu/P1ntZEC/VzJhZWokNuxVLF0hpVU//wJsaGUGHeb6laoSt07taF/t+9W02358VQgvpw1+uZtycKrXxfnT2LXUpmWq6DFga2hqak8nUmioaeHJHlyZkU1Nipj0M2NB7N6tivJiquZdnNGcSdHG5r4bF2Dy7Pj+N7L12Jo6+4bNO7JWmpwLIatpNNnnaQ6PNWLl0fWFs3ubUvSvKVXeGooc++Su5TmnET2Nqk81UrOv3t9+/Wnd9+brJTRo0cO664pLCxUvZPLBpZTSY9kh2TdvXHjhiojeQDKBhq6Nsv+kJDrunNgAQRAAARAoOgSyBieLrrXiCvLZwJioWzGbrqRrBzmlzKqXaLEpkZwvTKPqVhosysREZGUnOaa5eEubBGtWsGdXni8iprOwRpl1PjEHu72NKB7GXp+WBWqUt6dxNqalSSnuVFEpOXTTmR1LuwrPgRa8ZQlVQL9qFTqBbPKqEblevgd2nI4hPacvEVhURmDS/Z27DZupDy6syIWcydry30aK2kx7B7saRNFHTq0V89pzZo1SWLCjZVRrQ2F4VMyfKcm61tB01sl01SJuHKsvCZuLnasNFrmYivHiAKq/yfbkpN5HmT+hba7ZzH3YJddB3sbir1jPtlaKV8nnrs563eI1CEiCrZkxc2pDBs+gt6Y+DYNGTyA9JVROa/MS7pp4wYaMmSoqkbyCvR5qB+tWb1Krf/77yaeAqwCNWjYSK03a95CxZ1KYiQICIAACIBA0SdguTmn6LPAFeYSAZnMnueQ545ThsUgl05t0Wkk2Uh4ZBzJ1BFr1qzJVidXppJJsw3KtD53nruxf5cAqlA25x05/UqcnGxpSJ9AunAljlZsDmE3vUw6n3YebCGFQqrPDstZE2jXtg252CVTcvhZtvSVzbrwvb2lfVxU/LNk5A2PvkvLdlykHk3LU1m2hlYu40krd16iEuecqISnM2fOTaAwLiMxppZIgEsMhVyNpi5dOrMbZxJduX7LksMKrIzEi4prrikRpdTdzZ3ucPZYkfq1vE0VM7ktid31l6y7rDiXL+NGdYN8OPacqGKgO1Xg9e9+P00dWpTiZHCJVLm8B5Xxt+ydU7uaJ23baxj/a7IBaYm5opD26NlbWTn/2bTNoJoeXTtyCMUJmvzBezRrzu9KEfXw9KBVK1fQhvVrVdm42Fh6ffwrNG/+YgoNvUW+bDEf9+rLmPLFgCRWQAAEQKDoEoBCWnTvbYFcmWTJLMmWyVCezN5SsWULgJMzu8ey45+dnb1aFiuKna09d1TjOVYyUSUHSuLP5OSsrS9anXc4BtTJkTt3bCmVKWGslaioKO60c6/Qljt/qYaubBIbOvaRiqrTaO15LS0vU0U8N7Qy/frHJbodaRijRbbuzCVRuTpaej6UK94ExDLqYp9M8WEXqKyvZQqNECtfyp3/MtjZsVX09JVIpZD6e7O7ebPydPJyBN3guUX9fdJjAN1dLLMMlinhQvvPXiNbTrDk5OLDMZNO/KybVvgyWlBwS3LtNmT0LN5rTiorpGm2aWpKGFubZFYq05P1mGutm6sdtW9eWrn6i2V59b/BdOlaHPXtEqgsplUrSDKgaDp4PJy3x9KgXhUsfu/UC/KkPUci+F2RtduuDSVx/GbOE2k9Pmxwlpd75cpl6tyxLWfUDeAQhRgSJVRfli9bSqtXraQAzvp7nTPspiBpmz4eLIMACIBAkSYAhbRI3978vziJT4uLN6802tnbcwfUkXxK+FHlqjWpBE8LYE7iuBNz+cJZ7qxc4fkNeT5SM53X6Nh4qlS5Ml25ciVb1sTLfFyV8r5kd08hlWQulTlWVCyY+SEODrb0DCul85dfoYvXxFUw3TUw2aYEXQtGbFV+3IOiUEfDhg3Jg2Ob42+dVpfj7Z51/GFW1+zmZM9JhzKUsjKs3MqfiCilB8+FUSkfyxReib0WJdTV3Z2u3QojHx9vun37Ng86ZeIVkFXD8mGfPP+ibGYmYiUV19eUpBhyYU8HS0RiQTu1ykgYVY0V0Jl/nKM+ncpysrNo2ns0jF4aWVMpoRevxtDvSy+SO99LsZSaE29PR7a62ppVSO1tk5Uibe58ubX/xo3MEyjJvb/K710ICIAACIBA8SJg2a9m8WKCq80mgUBOSiEWzqwy6trZ2ZGnpzc1a9WeuvYaQE1atLNIGZUmubl7UK16jahLz/7UvksvKhVQlhxYqc1MUjgRSizPZ1itWrXMimS5/eLFS5Rmz3GoMv0LS5lSzvmmjOo3bGjf8pz86J4Fg9ti61SapG0QEDBHoGrVqhTg76tTRqW8m5n4ZP1znrkaxQpi+kDIHba0nQmOYutohkuulmtIkufsO32LalXwYWXMsthFqcfblxN6xcRQKmdqTU3ijK9ellkW9duYX8suTmz5laDOTETeNw4OjvwOzLxMJofqNnu42bNlMFUxv3AllkqXdNFZRCuV8+AQAXe6cNXQsqg72MSCcYyviSLcXqdCzd1Um7ENBEAABECgaBGAhbRo3c8CvZrq1atnmtVRrAvilluvYTMqXSbnFkYXVzdq3roju33F0IE9/1FsTJRKnGEMIJanYihfvjwdPnxYuf4a789qXTrKN2/epABff/J0CqNRAypkVdyqfeLiJ0z4n0Uyhl2Ep88+R9GJAXTtKs8ZeS9WzaKDUahYEvDw8CCJ5759cb/B9fNXz2I5ywrotqMh5MbTjsTzXL9VOG60dsUSuuNX7LzEz3yymk+3VnkfalTdT7fPkgUXTz+KvJueiVYUUjsnd/Lkdkfzs1fY5C7HuZrLmpvMbqbePIeqpXLuYgyV8HGkEt5OMsMN/bc/lMoFuLHl2Jb8fZ1p39HbFMdJjCRh2l1W+i8Hx1LjOhn8zdUjVuhM49DvHZySksDu/4XXVdrcNWI/COQ1AckCHhQURP6lSnFc813ua7AbPP92S2I3F2cnuh0eTqdP/Z+984Bvqzr7/8/W3pb3imPH2XsPsgmBJITRQgulg7eTt2//paWU0pYWeEtbWsp66R5vN1B4WwokgYQRdkISMiEhe3pvWbL2+D/nKlIsW9awJVuOn+fzubZ077nnnPu90tV5znnGYTQ1NaW7KyOyfjlZ1AkT/mhB74S/uTD/75nHWIAS7mBFRcU0jmvIiEjtI/LmJXHRrJAmCEuj0UjmWMKkjKU3AWGqpqeBZH1T7zQSwjy3rLwCM+de0vvEAe4Rq6ZLL12DUyeO4Oih98k8zRlRo1D8rLYujKIUAidOnIg4lsibQ4cOY/zVl+PmNSJISfyRfF2jA7/82+FeVd996wzyaQ2unLjcfvyKcg9+dE0FrXhcWG3qdVKPHTddMxZPvJqHg1s39jgysLfioS2U42g+W/Ee6Py9GBj7dJ49c8YMimZ7Ar4eaUrUZMaZqFy5sAJuCrojlFFhriunKK/dZfXcUaSjBSDSnPRHjDl5aDzbHD7V77FTtFoTRecWg774pv/hEwfhhVht9AfiX6fBkLhC2tzmxN+fO0kms5RSxheAicxsb1gfnPgSOUdbO1z43ZPHKGAS+dPTPVi2oAhTxiceMEmZwL32+oWvfucgEOQmmMDwIzBp8mSMJysr4QJUUx8lSJiFolRr1Jg/fwFqa2uwd+/e4XeRGdxjHbl0bHrxZdxx+9exa+eOcE9FWqg//PGv9Mw0kfWcDs89+2/ce/dd4XHMleuvxo9/8gDa29uRk2PGt775dby0ZXP4fH6ReQTi/7pmXp/T1qOqqjF4buOLePBnP8Vf//xHqR0xM/Oj+x/AmrXrpDxtbaSQfuFzN3N+tB53QQQzcjh6z7ILH7EJU6ajqrrviLU9qurXW1F/fkERtr+5lWbKIoMQCQWwtKysXwqpSOheltsOUz6Z/bqOJtQ3DQ0uo+UVFCdveLUG+yhAiZMGl8lKQfEEmNWH4EhBvsDubd/z3/dJb+/5/l3ddyPWA52/FxGoMu6NsAowUB5dW11in9lYFyCUmr4UG20S5rk925CrdPB1+SQT1dCxAJm9+tx2Mus3kD9pW2h3RvwXprQB9O0iIDopJsDU6thlul/MojkFmD8zX4qgq6Icrt1TRwnricuXlkqbiLAbL/do93pDr/u6b6Hj4n8AiqirC93L8GsmMBIJzKI0REXFtMLWaol4TvVkIdyU7JRvvYBW4xZSALl3t2/vWYTf94PAfT+8Hx+9/uPQk1LaU+6+5wd447WtuP/H90GkkRJK62Wrr8CWzS+QgqrHzx56FDfdcB327duLeTRZ8Oe/PI65s6dx5O6eIDPofeJT5RnU6XR0xUizLL/5/R9h7Yw0FVt35XrMnjMXC+fNwqL5s7Fr1w5893v3pKMLw7pOofC5hRlLN1FrtJizYEnaldFQkwbyTb30iqtoJTty1dFFwY/ychM3cwvVJ/7n5ihw2Tw3fIFsBBRl3Q/FfN09p6B4HZKrVpXj+7dOTypHoTg3oBwFLw12r17mh9mU+IA31G60/5etvhw7d+/Hzf/x+V6HQw/0mz/1CaxYughf/PzNeOTRX1BuQxENGeDvRS9kGbVj8uRJcFvOZVSfenZGodZHNaP3e1wUYVtGuXiDUXt7njdU74U5biAr9ndPrKIKq4JkRDwfhMlud2W05/n9UUZ71tHn+2yVNNna53E+wARGIIExFBCxmJTR1g5bTGU0jIa+++20Wmoy5WAyraqyDJzA97/3HUyZWN1rAUjkul912Wo89dSTUiPChWnjhuelcYnYsXLlKpw7d1ZSRsV7sbLa1NSIpcuWi7csGUqAV0jpxohAO7/6ze/xv3/4HdbSSmh3WbtuPTY8/2x4VuWpJ5+gVdTN0qDDH4ro0f2ENL0WgxxhdlpeViolDBdpUTxOGwJeWpUM+JBNwYSk/lCqlGyFGmqNgfwMbahvaEBNTS3ayMchnSKCkbS2X1DmRbChaTPn0oxhSTqb7VW3nB5UIuDRay9vgtMRXCkV0S/dZP5nNpsl841eJ/WxQ5gn3vyRoPlcV/sxGAtnEWsyCfbGNtvuK69gH83E360oREBGfhLNe6SyN101Cr9+8iT9SAbinxujxCsvvwSxfe/u/yZTzMhANLEe6MLsJVO+FzEub8QeEqujWeQX6O5K73d+oIDlSg28vuhmuQGvk2bFdeQ3GWmCP9A2B3K+2+1Btjy+Oe5g/i4M5HpC58rlGlZIQzAusv/ZcoU0NrjILivtlyPGWzNmzSFl1AoZBSpLRmzk6z1l2nTUNjRxrIdkwJ0vG/CT1QwFuYsl+ZSVQU6f7ToykQ6JMJeet2CB9FZMJHQ/JnbWUiqp4pLSUHH+n4EEWCGlm3LPvffh6NEjePofT/RSSMUHWAzaQ1JTUyPlbDPTiltrSwtySqpDh9LyX6RGGTumEpUV5XDbKeKlvRVuay383sgvLH2Hw+J3WyhBeyOUagOdW4FJ0+dI5rQnz5yjdCH14XKpfGHKL4OVFDXp0e33orp6LMpHp5dNX/2X0YNq0bLV2PXu2/BnBT/iaqMeRaMnIqBu6uu0XvuNik5ce0Xl+f0BODuPQ2eeArhPAp4oviRU0mAIYOUl5dJqh42CkWx5qwnn6l246rJREfWHBgrZsjg5GxWUBJJWR+1th6SJE/qDj181Bs+/2YlOjzGizkTf2Frr4HWLNDJ9S7wHerzvRd8185FYBAz0PZLJVbGKxD02e8Ei+K3noDVRhOgokk1uCNnZcT53Uc5L9S65UosshQtqSn0STRTaHHiyVBIP8Z0eahGhl0SfNUb6TgaiK9Kij9kU6ERMEGaCyJVq+hxEWoxE9CtbDRdNdimNxbRFHEn4jdPWDrGxZB4BQ145VNr4KYIyr+dD2yMx3pJrc6HwqMigPXnxK3SYMW8pDh89kfzJI/wMr9uJttqjMSkYjcGHlct1wU1MBDUS/qRCxCp1zyBHoqzp/HkxK+eDQ0YgM341h+zygU9/5j9QSaYZn/3MJ6P2QnyAu3/oQ0FzxAdfKKRKMjtLl4yrroTY7O316Go8Qr5VQSUim1IPiFXQeBKg1Qd3Z5O0qfT5mDZpHCaMn4APj55ES4r9swKggCfUJ7Fya6RAQ+MmTo3XvYjjfjrvzVc3U2APL5ndXi0de3XL82im6Gg95fJ1H4mbKkbkNx03YXLQb5QG31kyJUwUQKXNEulf2rPu0HsxSzdzooyyPFwwv/N5bejqOARdzkTaT4Nod2/lPseowqrFF2bhxlWKvIIncOWqUWSGeMF0lzIano+ye2FfqO3wf2UprYwWoqv9IHGxR/RlYrUJ+07Rak2iYXrDlZJFAA3u4ymk8R7o8b4X3Zrjl0kQcHVZ6D5HrlYncTr9EBuR5Xeiq+Vsn6f5/Qb6nnabweqzZHoPZJHS5nFb4XVFTq6FWhXmr/KsAAVN8tI29P0V/bJabcjy0P3xWULd7PXf56PnoL//97BXhQPYIZ6nbmffk09+mRa1LafgsMa2+ojVBV+cfNCxzuVj6SXQ1d5AkwVt6W3kIqxdV12C9paGqHExErlcv8sCPQWBszSdSaQ4l+lGQDyz4omI7SFELNiExudqtZqihXdI+8V/VQ+Xj+Dxvp/b0on8Z0gJjHiF9Mv/9VW89NKL+NrXb5duRNWYaskc10of+H8/80/6gFukD33oLqkpdYmQ0Ae/6dT+0KGU/c/JycHcObNpZq4Np3fupdXQFJitNQcfjGpjIcaWVNLMXyulQjmQsj53TC5HZ5uVUruoMWvpR+AlP7BkZO+ubejsaCVTY2343GUrL6cqLpilOimFy4sb/0n3Qx4uE6uNURWjceLI++gUDymHFtams2g6dSjWKeFjIhjItV+eBY8rcjAn3ntcXaSUjqNVkFHIctPAP8ZqiVZF5sJkduimgAcilUNIfGRq7fN6aIsyGM9SkM/oaDqmJDPd3aSM9r7/ay/R4tU33x+w2W6oPz3/x3ugx/te9KyP3ydGwO1IPMdktBqLyCLCRoMgjyvGxItfJ00cRTt/cPdl0WfbR5MjvT/foh9Z9P2Qk5WHn5TRTDGD7aQYA6osDeQxnskBP31/aYItE0QM7rwxPgsOyFBz5hTERAjLxUdATDzGm3y8+K564FekUyvQaumkfMD9mwjzurOQZyjg79XAb0XUGlpamqUo7GXlo3DyxHGpjIi620AuakLq6+sps0NkekFxvL6+TjrOfzKTwIURcmb2L+29+s1vfonmpmZplkXMtIgoj+Ih5KXBkBDxARYf5JCI16KcCCWdDiktLSWH7JXIdlH+OVoVjaaMqhUy6DUKmLQKlORqMLpQh7I8rbQVGMlEi2bm9JQ3UN4tmE6or05aMbWc3Y3SfBOWLV0SNAMNHRzAf1rMkGR0JSn0ZFaajJw4+iFslE900tSZIrVXWIJ5OsVKYnA7fGg/RP1CaU1UZs5dRMnqaYW0e8UJnGw2KVBZHt3UzefpQmfzPrjIRCSgnQEoLqyIiryCbZSqQYhg0j2vYALNSoGTAtpZ9BlzwNqyP6oyKuqZMSkHeTnRTR0TaSdemXgP9MH+XsTrLx8PEiij54ffkZ5nU8oZX5hrilq1WBUVz2Px/c0UsVHwjGxF/wKkZco1hPuRRYGjdPnhQVx4P79gAiOcgFhNE+ms+ivR8mX2ty4+rzcBkRJs66sv48Ybb5IOiii766+6Bi++sEl6//rrWyn//GjMpCjJQuYvWCjFXnn7rTel9/wnMwmM+BXSUHqX0O2ZO28e3njjNQpk9Jy0S4SQvvVr38DvfvMrySb9hhs/QWGlX0zLjH1VZSVmzKDcgXWHyF80clAp0iuIPIBVxXppU/TIBxjqf/f/li4PjtRYUdtql3IJeihtgRAx0OtqOgJtfhVWLF+Gt9/ZFjZ76H5+Mq+Fvqeh6LYTp85K5jQ0NdTh+NFDWEVmurU1p/s8195lpVyjx7D26uv7LBPtQI45DwbyJ/A6u5K6ZwZd/EGww3qaVj5boDFUkL8JXbenGc1k0vv35w5HzSso+vevzWdw4owV1i4vHqf8g2LS4Ju3zCFfOvL3UxZRP9vhaNlHTv1d0S4nYp9mACk3IiqK8kY80B98+H+kB/q+vXt6PdAH83sRpXu8KwoBMYhSqhSwuy4EF4tSLGN2CbPheBNFAb8HygzwHw1BE4GNHA4HdPK8uMHNQudk6n8RKE0E+giZvGVqP7lfTGCwCTjJoines2mw+zQS23vokcewZOkyFBQU4re//xOtirqxeOFcWjDy4oc/uBd/+svfJUXUQGnCNm3cgJdf2ixh6rLZcOcdt+HxJ55Gc3MT8vLz8c1vfC0cnHQkshwO1zziFdJ4N0l8yJctXymlx7CR/5CVVvI+e3N0f9N4dcU6LiJjTp8+lZTRgxQ9N2gfL8oLJbQsX4vpVTlQdzP5jFVX6JiJlKr5E8Rsfi7q2xzYd6IDVgf5lXqDiqmdfIc05lFYunQxtm59PSmFLdRG6L/IS1mSR8E+khCbtRPvUeCh5avWkv9pbAXwg/17UDV2vKT0JtGEVHTajHk4tPedpCJJVpQmtgrr89hgEwGHFHqodCVYuGQV5byiFVRLC1RyJ3RqMvkJ0IppIOgXcd3aarJFpKA1lGohkE3+x9kUcCJbA7ejCa7OAwkpoqHrLy1W40xdDNPMUME+/q+78iqIHKQGQzBAgIicezeFWRcTLvEe6IP1veij67w7CoF8+tH1DNDkN0q1advlJ7P1uClSyH9Ursisn6mWNgvUxUVk7Brd71JYdgwHcSMfJ0/uGw5d5T4ygUElYLVaKfcyxVqgaOX9EXGusKZgGRiB22+7tc8Kzp49g1Url1JqnhJpXC7GLN3l+eeexQubNqKErIbqaOLNR+4hLJlNILN+6TOA1Wdv/lREL8RMjPhS6A0G6HV6Mm/qHcgm4oR+vBEpU+bOmQNLzfthZVRFZrnFZjUWTy6gQVs/Ku1xijDtFVtDuxPbD7XA7iZzOLIpdbRTNM58UlznzcW7O3b2OCvxt2J1ZvykaYmfQCWFqa6OuJ46dVQ6r6ONzJQpVc0HB3ZT2PRZkqmuOCB8QGvOnsKV194glUv2j8mcS76tyeXaKy2MHzSqez+EYmrvOCZtcpWZ8nUaaSBdBD+lVMiSqehagl+1ACmmAfqR83nJt4d8Ub3u0/Q/6Ijfvb5EXpcWBP2ZEykbrcwLmzbQA3tDtEPSvlgP9MH4XvTZMT4QlYB4jvjoMzVcxE9B12TZsc3ihDWHSMuVSWIhP9LiojzqlylqcKPhoI/6ZXn0rHVRbr6mTELLfWECGUFAuKRUVI4Boru3x+2jhnxQhdsLS/oJxBqTi3HKubNn098JbiElBFghTRCjjWbMxJYOEcqgrelEWBkVq6LzxuehfIAKR7S+CiX3I4vL8e6HrTjb3CWtltpbTiK3dCrGjRuHY8eORTst7j4H+VMaKbWK0xX0vY17AhUoKRslpdAJlc2m6KJibUHeI8ro+/veQ/X4yaRU9l8BKyfndxGIJ1EpzKNVzH6K19VOSmakyXU/q4p5Wl5u+nxIQw3He6Cn83sR6gP/T4yAVkur+lECYCV29uCX8pKftIIma2KJ8CHNRAWvsakNpUWjII8SbVf4vGe6eFCCDw8fyPRucv+YwJAQOHfuHFmsTYfd4YInycBGMlpB0GlU2HXq1JD0nRtlAsOVQOb/cg5Xsgn2e+qUKZQwxU05LhskZcxIwYrWLyhLizLavUsLJ+Vh9lgzmQEHVx/spBBPmzaNzDfJhLQfIlK+qJSxzW57VltYXEo+pzPDW9moCmhpFVrsCw3q2tua0Vhfg0lTpvc8PeH3avKrKyodnZRJstcXe+Um4cbTWFCeiSP1NF4vVx2bgFarodRQ/ZzSj111Wo56nGQWR2H748lAgovEq7u/xzsoAqfbk4WAnHy/u0k2fSczJcJut25FvPTJitHR2cUrOBFU+A0TuEBA+Il/8MFBGHTJWUqJGgx6Nc7SqlwyE+AXWuZXTGDkEmCFdAjvvVD+xo8fD0frGakXZr0KVy8qQyIBi1LR7bGlBskkWETl9ZMJqb31LKZMmdyvqo15hdCo4w8uk618/55dZAo8lYK1JP/DEGpLTYNerd5E/qe0gpSg5Bgy33jAZExuAiDBS+diw5SAij7nmZBfNFF8Xjfl1iWTCJk89s9Qpip49Y0tFIisknzCL3wPsynXsIgAmbFC/uoyTVVKU35l7LVyx5jAAAgcPvwhrJ0WmI2JjxtMBi2l3HJi7969A2iZT2UCI5NA7JHAyGQyaFddXT0GXW01UmoXsTK6bn7JoLUdaqgkV42543IhUsnY22tQWFAAs9kcOpzQf2Fqq9EayB9MBlWc4ESxKhxdNQ4rL18fUWTFZeswdcbciH3JvtFpVeT03kWD38zyRUv2Org8E4hFQKw2JpJUPFYdg33MYWunZ0bmT/5E49JFeZGbW9rglY+JOOxx9y8QSkQlaXrjyhqNAwcOIJRYPk3NcLVM4KIgsG3bNnS0t6Eg1wCNqu8JdzHpnZejp1Rwdrz99tsXxbXzRTCBwSbACulgEz/fngjUUT2mGk5LPeUMVeDyOYkpoyK3ZZfTB5uDguP0kXvd6aJE8kkEFKso1GJCOQXhyQrARf0ZW02RYJMQMRDOycmFMGPT6WL7hCVRbUqK6jRqWrHwkm+rO5gYNCW1ciVMgAmkgkAXRaMOuQ2kor7BrqOhqQVOjwI+eYXUtFwuI1NeetZkoLiyKtDS1oWjR4NB5NLVRY1Gg7w8SovDwgQuAgI7d+7EB++/Dy3ldheKqVgFNeho02ul1/mkiBpo3HP0yGG89eabUkqSi+Cy+RKYwKATGJ5T04OOKfUNVlZWosvSDEWWF3PG5ieU0uVMgw1vHqgjE7EskGWYJKtml6OYoucKqWuxY8+xZum1y+2HkdK+XDqzjEzizheWjkT/M63KRBF4HWiyNGBU9QLseu+96AWj7FWQ72gWOfK3dXRi3JgKWo10JB0IIEq1KdklfECaW4MBhpQUaRfpiUuVkr5yJUxgIATcbjdFdKZHejDD0ECqGrRzbe1NKCoYiw6rk3y8M99vOxqYM2fraBKvAgqVH27XOQQ0fcwURjt5kPZ5s0thd6rx7ruvp61FkfrrR/c/gDVr10kpttpaW/GFz91Mvqr0m8XCBIYxAeETKjZhPSbSa+l0OulqbJRqpL29Ha30WWdhAkxgYAR4hXRg/Pp9dnlZKXyONhTmqDGKVigTEbVKhnULR+PTq8fhk5eNw7gyE3Z+2BQ+9bV9tZhYYcb6RaNx3fIqeHx+HK5JPKXIsmnkB6oIwNnVgZKSxFZsReM+aif434eW1g4YaeYwE0Sv01AeMb9kriv64z/fz0zoG/eBCaSagIsU0uxhZpbuJ1MOS2sDdNq+fcRDAc5SzStV9fkoEvDpM3XIUpaiyxPM6ZuqulNRj19eCncgF9u2vyul+kpFndHqWHflesyeMxcL583CovmzsWvXDnz3e/dEK8r7mMCwJCCUT5GJYN++fdJ2/PhxVkaH5Z3kTmciAVZIh+iu5OXlQ+mzYuHE/IR7UGQmUyjjBZNYEUBDT76nQoQpr1hhkIWWTmlfDpmRdDkSD7ChUmRjTLEePjulNChNXCFVdQs41NLWTgml5dDHGGBKHU7zHwWZzpmNOjS1XJi5NJpy0twqV88Eho6AnXwaZcr+p0Yaqp53NNfAQH7efUlWt2daX2WGer8IzlRf34j2Lnp+ykqHujvh9r3Uly6PGa+9/iZE5NB0ytp167Hh+WfD7Tz15BO4Ys1ayqPNw4x0cue6mQATYAIXAwE22R2Cuyj8a1zOLuQb5QmZ6vbs4tkmG07VWWF3e3HJlGLpsBgQzZlQiNf316G1Mw9CeW3qsEOY9CYjM6tzULPXilxz4gppz/rrG5tRUV4MN/XPTYmJh0LMJj35S3XA6XQNRfPcJhPoFwFtTiGZ2PcdPCNmpUo9NGby3fPH9mHMJtPKrOzMePSLdFEurwzCxiK/sAjWrh5pa+jBlpUlR7YwRc4AkSlUUBtye/Uk16TDiRMn0djUjInVs5ClKUCW+ySVGyLzXWLmV1bB6a/HnoMHINflkZ9br26nZIfLTilwaCsuKcUrL78UrrOmpkbKM23OzUVrC0UkZmECTIAJMAEm0AeBzPiV76NzF+tu4X+gDLgwc0xy0WxDPLoooJEwRXWRwmd3eWEiX1EhRTkaiNQxdqcHr+5pQ2WxAVpl8rc4T+OFRWsKNZf0f7vDSQOzNlJqTeS/aYEwaRtMySVlVAQyaiWFlIUJDCcCGn0u5Kr+rXK6AwpoaSLJT64AsSQr20erVpkRcTpbrqD8xQZ0dbahrHo6mZa2R/iSCkU0QJNtmdJfmeiv9kKaF8FZQ77pSsrn3GxxIltlwPsf7IH3qsuh0FE+ZRcppWQJM6giz0FAWQmvs436so/6ZIKW+pUuEZGdhUJqMhrhcl2YAHRR+gshJqOJFdJ0wed6mQATYAIXCYHktZWL5MKH8jJEFEJlthc6df8GhZNG50BsJ2mV9LW9tbhp1VgaxAEbd5zBevIxFWa9cycW4pXdNdh+uBFLpgZXURO95qkVBuwMxgFK9JRe5dop4q6CTHfzc41oae8M+5n2KpjiHUIZFWbLZ2oaUlwzV8cE0k+gq6Ox36uBHmszxlcUwGGNrZD6fVp6XiQRhjuNl+2lFCkOytsp+qxUqqDRmNFm7Qq3mE0myC4nBTwipScTRPTX2XWhf6JPJqURe3YcgLWlUeqit1ABW9sRKLXF0BgoYnlWK7I8teRXkbj7RL+ulfKhBhRkESPLgaPjFNyOJnhdDupXehVij8sudddisdA9vLC6r1YHJ1YsFp4Y7Nf95JOYABNgAiOIACukQ3CzNZSKZHSB+OEe2ADFpFPSaqhXUkabLQ5J6RMrpEK0FABp4qgc7DuevKmUQSuH3DLwVc0mytFXQM6tRXkmUkqtlA4hvYPKvBwDshDA2dp6iQH/YQLDjYCT8nL2V4Ra0NnWLPmTe5ydfVYT8KkoZVR6v4t9Nt7jgN/nJsUpaGJ87shuVE9bDDk9Fx3O4D4ZZEGFNEMUaL/PA2GiGhKjXoPTJ47gxJEPQrvg9eRLCrTTWgOnrQ5aYxUpp9Pocd9Iiik9m1KtmGbR/ZQXAapSuGw1pNzvoDaCz2+vxwm7pf+fqfBFJfBCRNMtHzUqXFK8FiumIhAMCxNgAkyACTCBWAQ42kAsOmk6lkuKU1Vpbz+keM2JFVGRf1SIWBH98Gw7RenVkDkbzdJrlaSKASfqgoMlEeToXLMNeaa+o1dKFfXxJ9+cmmiRIuVKa7sFxQXmtAU6UlPCalG/h1ZaztY2SAPyPi6LdzOBi5pAXX09stXDNXhXAPWnD0L4Y4p8nllkVizSSXm8A5u4S9cN16qVkNOzd/fu3X03QYqh3XICnU17aEKObI+1c+BXjQXk4vk/kJ9fsq6R51Fd4xDQziRf/Sx0Nu6Co/NUWBntu1PpObJl8wu45pqPQK0O/ubccOMnsGXzi/RbNfDJzfT0mGtlAkyACTCBTCHAK6Tn74TIL5Utk/Xp6yLMbLVabUpCfHvdDhhUAcrVltzHoM3qoqBFtVApZPBSRF0T+TKtmGbp8YUAAEAASURBVEkmWiQiJcyqWWU4cLINH5xqJb9NoICU0XmTCpNr5HzpQgMNnlIk7ZSf1OVyo7AgT/K36rTZyf914INMmSybcq1qpJQRIkF9ZzdTvxR1nathAsOKgMiVV1mxGK6Os8Oq36HO2q3taKk7ibzCCrTavBSUzIn0eT+GWk3+v5gEExOLr7/+ekIn+31ipfK4pDAqtUVQqosg05My6elAlt9GG/0YBCgKrhSQqqcCR8pnNlnUZKkRkGnJp9aAbEUOmeN2wN3VDJfjQzpXTEcOrWzauAHLlq/Ezt37YbPaKN2WFZ+9+ZND2ylunQkwASbABIYFgRGvkJaWluIf//dvSnZcACeFxa+rq8VDDz6A17a+It3AdCT7ttkcyJYHTWuT+ZTMnZCP2ePypVQuMpqaF2a53UUEMRKb3eWDmlYYBhK3pDCXVilI4RPBk1IhItDR6bO1MOcYya80h1YzfbDZaZDWjyi4obQyIs9oW4cFx0818yx8Km4S1zHsCQg/PgcFk1HpKZK3rXVYXk9701koyJ+0sGQijp7MPMVaKKP5ZgPefffdpM1RAwEfXF110iYiHctVOZArDJApRHRlLa0IC1cOeuYKBVOETpeEHBH8Hvi9dnjdNtrqSBk9REUyww/4fCfhpYjqt992K/QGA/Q6PRoa2HUixIb/MwEmwASYQGwCI14h9Xp9+MG938err7wskfrc579IybzvDiuk3ZN9izxu9/7gh1Ky769+5ZbYZGMd9blohjt5hVRUKcxzDeej6vbVRE9Fta9yfe3PlimgUWbTSmzqFNJQW2K1VGxCMTUZ9BDpWZy0eir8S8Um7kf3qLzZNCgT5nsKSlWhpIjBKtpkBKHDYkUDpVgQ5VmYABO4QODYsROYNL4KGKYKqbgSoVhnGzqlPMvZWQMxbb3AJRWvhDKqVxmxa9cuyjs6MIVL+PF6HC3Sloq+ZUodNiu5ltDGMnIIqCnKtJImyUVu9MD51XphqS2yAPjImouFCaSLQF4+LdLYbJI1Tbra4HoHh8CIV0ibmhojcqeJPGp333sfCgoK0dzchGjJvp/buJkevNn9XpVzu+2UwF47OHe4H63I1QYyJXNI0Wr7cXpCp4QUU6VCAR2tdIpAT2aN8B0jhZNWZoWIHzaxCaXT5XZLD5z2dlpVpdVWFibABKITOHPmDCZNnAilLpdMOmNH3I1ew9DvVRhL8Pbb7yCXclhOnDyNJscUcJGP+FCKXqtGIQVoe2HTBrKkqRvKrnDbTGDICIh1+xy9kn6ns1BdYsCEcoOUci6HJso13ay22m0eWGwunGm24/C5TkqLRBGqyTJKBGJkYQKJEHjznR0YPboyoui37rgNTz35hBRA7Q9//KuUVkqn1+G5Z/+Ne+++i4J78iJFBLBh9GbEK6Q979Wy5StQV1tLvqLB6LTxkn2rdKaeVcR939ZmI5NdeqCTUuqnKIiZJgqNiczCuhAgkzKVLr7iLKfVXuF/2x/x0jSqhXw/xZao9LctKedhAvcrQH3KovyHmZL7sC8uoo/9+fx5nF0Zk0ajr2sbqfuVGr0UzGeg13/8dA2mTJyAQO3+3lXRZFpWhqw6ZtMzRqGK/BlSmUrg8svRaulCa4cNEylq9ux5i9De2QVbF/lZDoHkGPXkp6/Ajl27pX7F+t6JXKWZ8uyQ0e9MrL6mAqWPUuGIaL4smUdATmmTZAphBj5wUVD+YmGctWJ6IWZXm6EkC6pYkmuUIdeopgCOJqyYUSIVrWt14M2DLThZ34VOkbI2Q55Dsa4j6rHzq8AXzOqjluKd/SAgUnyJMUpIbv70TXjn7TdDb8MK5933/ABvvLYV9//4PlrU0GHTiy/jstVXUCC1F8Jl+cXwIhA5EhhefU95b8eNH487v3MX7rzj9vDqZ7xk3xpDXtL9KDA6KZG4lQYKeXBaMi9fptpQiJba49DrjXBAF/f65PTDJAaWmS4y8ttN5H75KKpntlBI+6lkDxYH0cdErqdnf3weV4RCyiYvPQkN3XuhPIjP6UClhdJAuaGEsWQCHO2UA7ObCGUpK6t/E0jdqknJSzFJpMi+cL3i2k3lU/DOu+9Jn+0ARaltaG5FTX0LigvzSClU0eQV+VIO0iy4MNHNMWglt4IzNY2wdjnjfudkcl/GPDuEQqoxxH+GD+RmilRFrJAOhGD6zlWotVBpk580796jbArIZVC6cd0llZSurvcEdRa51ehyCqHW55DvN+VYp0k1kRrJ7bDB3tlKeXst4erKCwy4aUUwTNkr+5vw3jELugJa6fc2XCiDXog0TwoyRZbTJF42WW6Zc/PIP9pIQclIyQ9kUSwMN+xdNrS1NpPLkZsyHWTD7abvPz3XWPpHwOPqilBIvTQeExkUuouCLGZWXbYaq1etkHZ3UW7ojRueh3CxY4W0O6nh9TrztYhB4llUVIw//eVx/PqXv8Cmjc+HW42X7Luj4WS4bKIvSpQmdLbUIKewDPb2c4meNijl5EoavNAPTJelEQ4aaHTYgsneYzWelZtPAxIx3ZnZ4nHakOj98rl1dE3BXIiZelU+tzPh64l2DSJPIJu8RCMzdPusLZHK40B68vbWZqxevZp+3B3wuC749Pm9BTThFvkDP5B2BnKuiDhu7zZg1RVPxv73tuHMkUPhar3jqmC1dkpbfp4ZRfk5sEirpc4If/PwCSl4IQKnGSjHqJJcCBrJV72TosYKcTus9J07E7MFd7l4HmbGs8MtPfM4D2jMG3YRH3SQQii2/kqeQYU1c0sxZ1yxVIXPG/k7byoYhZyiSvKDJgWUfNbdFicpmH7JAkyu0iO3dAw9exxobzhNSuoFxVRUtnKKSdr+vvU0jtZ2hlPa9bevqTxPbzBCS4G5ps2Zh8nTZlKgrsSUeuHLeOzw+9i/ZwesnRZpS2W/0lmXMME2mxRSMEvRjjC/1mpkkg+wkwJlOl3kFEzicPpoUnDwfj++eMuXcdXV1+LUqZN4+h9PoK2tTQpCKielv662RuqT+FNLr+ctWBB+zy+GHwFWSOmejaqowONP/h/+/re/4De/+kXEXUxXsu8uSzPyysdDTma7XvIpzRRRm4phbRtYsI5MuRbuR2wCbPISm89wP2qlwDL79+/HxHHV8Eimu5kdXERtrkAXDXwOHrygjPa8By2U17iz04ZcswmlxXmSCa/d7kqZf6lWraL0XiryWZWjjfInn6ONhQkMVwI6czE0xuStuEARnYs1Lnxu9ehwTIeeDApHTyblRQZrwxGK+hycsAmV8XmdNBHWCYelDpqcUpRPWoiWc4dh62gKFQn/v3nNJByuseLZHY3wKPPD+wf7hXDVUcCDisoqLF2xGlp98gmnTCoN5i6+VNpclLJq25uv4hhNrnkgLK4yb9VU5u+COtuBidU6rFlSgKnjDRQ4MrYpdku7Gzv2d+DV7a1o7qBsCR6KDi67YOUy0PvmptX1zubgQs0Tj/+Nsl84oaDn8RVr1uGmT34aV65ZDaPRKDXjcl2YIBEpwkzGxCYOBtpHPj89BEa8Qlo9dhwpo0/j0YcfxD+efLwXZbH8f+vXvoHf/eZXUlCdVCb7Fl86Te4o6YHeq+Eh2CFTqKExl6L50LYhaJ2bHEwCbPIymLSHrq0TJ07AQGk4igrHw9F0ZOg6Eqdlpb4ASkMR3nn99TglaZWSzLdE3uHW9g4agBiQZ9ZLK6VOl4eCn3mlHMehSJ/xKhMRu4VvqFKpgFBGRd2WTloFpSjeLExguBNw0MS305pcYDONMgvzxptx1XzKcU4mq9Gs4wsrJoM0TrTXHIuLqKvlLK2etsNcPk1aLbVbgvE5up84rlCJW9eU4pFnD6PVKoIeidBJgycayjE/urIaa6++HkqVWmpYWCANRMjSF8tWrMKSZSvx0qZncJwUU2FaOvQSQI5RjooSNT573WhMmzC6W5fofsdZ/KTHLdYsNkmbOPHZl+vx9Asn0WH10/Nz4JOewk0jJN0XiP70xz/grW07sXjJUuzft1cqolQqKcd9UClVq9UUnb0jdCr/H4YERrxCOnfePJSUlOKnP3tY2kL38OePPYIHH/gJme/GTvZtLOz+ZQ6dHfu/QuWW8pBaO5rJ3KUKLn0rPD3MWWLXkJ6juoJqaXVU+OuLPKkqXQ6MWk3cxqRULCkKnBC3sQEUkKt1SOR+Cb8RGQVqEv5XmSxiAiGR6+l5Dfb2RjJ5yaWIxmzy0pPNxfh+3759WLRoIYx5Y+BoTd7FIN1MRM5UffE4KapuMgM2D6WJEiumYtNSlG4Rrduk10KtNkmKqciLKVJO+GmThrfij3i2UWoKEclbzLqLtFIOyoXcZXegpaVVUmbTfb1cPxMYLAJ+P0UcFVuColfLsXpWCZZOKaAzLigG3U835JWS0qZER82B7rtjvvY4LeisO4iC8gk429lC0fN7161SZOHbH5uER545jJpWO5WJWWXKDuaYc7H2mhtQOWacVGeik1mJdkD42F6x/jrMmncJ/vnEH9HZ0SZlD0j0/FSW02nlGFuhw3e+PIEihgcV74Fe7zWXFUNsb+xoxm//cQpNLU6kI9OPeJ63tbZKE6wtLc2SX2lZ+SicPHFcQiRckBoaMi8mSyrv38Ve14hXSEX4aLH1JfGSfWsMuX2d2ud+maItHPSio/ksTEVj0XEmOOPT50lpPqDU50JFW/ORneG+iQAFUMa/PnmAFOxhENRILgX4iH89IkDH8AlqFP96en50nNZWNnnpCeUif799+7tYsvgS6PKr6Uo7M+ZqlaSMKozVpIy+TWm2mvvdL5EKSmzNaJfqUNGAWUWrnjIyKRRmhSGR0kjRkk8olZRQalmYABMgn0HKJbp8WtF5ZbRvImbyGbXWH4bQKbsoz6haQd8xee8VTa83AAd9v/RqhRSM1m1vp2CO7RQ7owLtjaf7bOC2j07E/U8dlNLE9FkoBQdk5B9eMboaN958Swpqi19FYVEJ/uu2u/DsU3/B8WMfwkOp7AZTigvU+NrNY7FgZvJjhkT6uXxBAcT22F+O4zVSTi2dcZZa41RaUTEalVVVeOvNNyQFfumy5Rg7bjx2vLtdUka3vvoybrzxJvz4Rz+Qouyuv+oa3P+j++LUyoczmcCIV0gTvTl9JfvubDqTaBXhcgUF5Ch+PuiFpekc1BoDme6S/1Tz0KxeiNVQbV4lms4cIn/WCzb5rq4O8vmIb7qmp5DbPu/gPlzDMJN4IaK3dTbFn0ETs8o+z6iMvyYRLbezqS4JAsGi4h53dgaVEjZ5SRrfsD3h7Xe2YcGC+dCXTKIJpHpaOBnYgGGgIDQ5JdDkZePFV96gNFv9D7wSrR8ul5tMuTL/mRSt77yPCQw2AWE1MGtsLlbNKorZtIjqLvxDDx2vwbaDDTTZkyVZIBSatVg2nb7P5/OQbt1Th1MNndBSSic/LXVOGJWDuRMK4OyoJ2uICTEVUtGBb143GT95+iDaben5DovfvYlTZ+LKa2+Meb3pOHjtDTdj65YN2L97u+QGlo42utcpogRPqjbgobumpzW3fKjNW0npXTQrDw/971E0tV4YT4aOJ/pfmOA+9MhjpGzqYenooCBTWsqA8Q2cPRscc//wB/dSINK/QyiiBnLdENaML7+0OdHquVwGEmCFdIA3xZGkf4ZozkcBOQL+CzPzjWcOomz8XKiNhRQEYPADCukLx5ATeQ26OiIj6nooAqYjgR8ENaV9EbmjMl3EJECi98vvK6FrStzUaSiuXSgUiV5Pz/6xyUtPIiPj/Y4dO7F8shHjZ8yErfG4tGIx2FcucqDqC8ciW6Gl/HLPpFwZHezr4faYwHAnUGxW4/olo+JehoZSu3hpolqnkeOaxVXI0SvI2iCALbvP4cMz7Zg9PhiUqKJIj6WkoCpo5dTS5cG/3jyBaspHaibrDGHCGk/EeTetqMRfXz0JqyO1YwuxMjp5+hzyF/1YvG6k7filV1xFLgMK7Nz2BqWJ6b/SFq+DalU2Vi4sxB1fHB+vaEqPz5tuxq9+MAtfuWcfGsmEtz9y9OgRzJ8zAwUFlFKIlNOamnPhdIyiPqGYrlq5FMXFJbDarBARjlmGN4HY4bSG97UNm94HaEWu6fRBaPMroaak8IMpxtJJcLsoOEHjqcFsltsaYgIir1fI5EV0RSSWFjONL76waYh7xs2nm0DdmeNoqzsJA+Uo1eWPSXdzEfULf1Fz5VzJ5Kr22Huw27sijvMbJsAEBpeASafEF9cE/SfjtazUBLMClOZpJWVUlBfmuuV5OtS2Xvgujy0zSsqoOG7SKWDWq1DbElQYfOQSk4hUl+oxY0xuQgpsIvWJMkIZrqwen5QyKsz8Le0i127fFiVdFNE81vFo/Vt66RpapZ1B1ioXXAqilevvPhWZYF++tGjQldFQf3NNSvzpp3PIV7X/EXgF+6amRkn59FMU5GjS0FDPymg0MMNwH6+QZshNE/niGk7sQ3HVdMl/0d52Lq09Ez6fxrLJcNptaKk5mta2uPLMJMAmL5l5XwajVzayhrCTdUde2VjkjZkPe1sNHB3Jm38n2leFxgQ1pX+QKTRopvQP/V3ZT7Q9LscEmEB8AmKxcvZYMymNCQ4F+wg0VEPKZoEpegBEO6VyarW6cEnO+eNRAhr11dOPLi7HobMdaLOmxnTXaDLj45/8Ql/N9dq/97138fw/H4dCpSJTZS8qqqpx/Q3/AR1FLhfS0daCv/zhF5SaxEEuAk7MmD0fV193U8JKtDAZbqD8mU2NqX32ipyii+fk4ev/kdhEQ+jCAxSNSNxiYcLdUzweuo8dbikYUrTjPcuL92oy4f79j+fgP7+3B/XNiU1ERKuH940MAgk+hUYGjKG+ShclXa89vhtFlVOhpwiqtqYTFBUy+qzQQPqq1OZAXzROygnWVkdtsIxIAmzyMiJve/iihcl389kPodabpUAjueYyOC0NtDWSuXpqBoAqfT5ZfRRBptTBQmmuLM3vh9vnF0yACQwtgRy9ElctKEu4Ez5yzemZT/ODU22Sr+fKWeW96hGLWq/tqUFVMaWeMgcVUhGzIhm5dEYx/r3tnBQxO5nzepbVG4wUwOhLPXfHfJ+TY8ZXvnEX8guLpSBEf/3Dz/HuO69j1ZqrpPM2Pfs0JkyaijVXXU+WZi78/KH7cOiDfZgybVbMersfvPEzt+DPv3+Uou8GA7J1P9bf1xUlWnzvKxOTPv2hPxyUzvnml6ZGnPvbJ47gr8+cRGmRBp1WD77/1elYMi+2v3GoAgNNdoiovvc+9iHaSKFlYQJ9EWCT3b7IDNF+L+W+qj36Hpl/eJFLpm0qQ2HKeiJ+CITvlqF4ItrqT5HZHiujKYM7jCtik5dhfPNS0HUn5QhsOLkfjeQ2EJCpkUsrpqayaZTQvgxylS6pFrIpkrWSlFB94TjkVS+EylSKzrYmnKXcxkIhZWECTCBzCMwcY06qM26HDTJVcHVQnHi6wYq9x1pwxdwKCmAUaXoq0ra8daAePvq/fHqp1I5QZuUqbVJtXjI5HzlkVjwQEaa6kyiIUW5ecuOpqrETJGVUtK2gQEhjx0/G8aOHpK4I5fzDQwcwd8ES6b2SVlGnz5qLD/bvlt4n+kests5bsJQigqdmfUiYyD74nWmJNi+Ve2tnI9Z+9hU8tel0r/O2bqM8o5vO4F+/WoH/++UK3Pu1Gbjn0f3o6ExcuZw63kSpYShdEMUbYWECfRFIzTegr9p5f78JtNQeg6azVVq50JhL4Wivhcvav7QIMiXl5jMV0wCzFNbWGjR+uJ0WXn397hufyASYwMVHwGXvpBVTsX0IfU4RNEYz9PTcUJC1hodcCrweB/xeCsBBI80sMukKiKBf5P+UlSWnQaqGBmxaZNGgykU5le2d7WhtOAOPy37xgeIrYgIXAQGh5F0+O7mYFV2WZphLqikjwHEcr+3A9kONWDN/NApyIlc9xcroG/vrYXe6sXZ+RTgtjMpQQMETm5KmN60qB68fiAy6mEwlwlT3srXXJnNK1LLHjhxEeUWVdExkXhBmvDnmvHBZ8fr0iWPh94m+mL94Bd579y1YLANbJRUK38fWlsNM/pvJyNL5RXiRtkf/SJkWxAxCN3l3XwuWzitEcWFwhXvRnEIU5Kqw92AbVi4q7lYy9stPX1uBrduacKaOfxNikxq5R1khzeB7L/ysxKbLKYQxtwQGMrN1WVvgoVxeHkcnPQxpcBhFRBRLoYQK01yR509G+URt7Y2oObyD0ro4opzBu5gAE2ACFwgIH1OxCZHJFVBSaiq5QgW5Uk0KaDYNMNXw+VykoPrIvNcOj4WeSy4HK6AXEPIrJpDRBIS5rirJFSthwWVrb8CZrhzsOnwUVy4YDbMhUvkRXkZb3jsHOU1arZlXQc+PoD+iiFuhyR2FxlMfJM1l+bRC7Dnehk5734GF+qpUrI7Omreor8MJ73/njVfQSAF0PvGZoNmv0xlUrOQULTckCnpWOhz9U7iWXbYWL5AJsFh57a+I1dHr1iRugp1IO1q1jHI8R/apuECDuqbkr/P2L4zD3Y8eotXV5O9jIn3lMsObACukw+D+iRlFsclJsdSZ8qEhkzhtfhWy6eEnItaJ1U6ZTEkhscm/I1tB6RSUtKLRBaeNggHQKoW9s2UYXCV3kQkwgUwk4PP2P71QJl4P94kJjHQCIpjR3HG5/cLQRtZbNdZiuOU5+OcbkW4/H102BgaNEjVNwYi6f9x8ONxG6Zhp+KipQbKgCO9M8IWI1KukfJr9EVNOLhYtXdWfU8PnHHx/L7a+tBGf+/JtFNDIKO1Xq4Omx8K9Sq4IDqU99KzUaJJzcwg1MnXGXLy1dQs62ltDu5L6L3LAfv5jlUmdk0jhyxaX4pa7tuPP/zqOCZVGnKq14cPjFiycWZDI6RFlhOluebGGFdIIKvwmRIAV0hCJYfBfrG4GA4OwL9YwuF3cRSbABJgAE4hCQOQVzMvPR11tLVmAR5oIiuLZ2dkoKipGY2NDRO7BUFUajQZarZZz2IaAJPlfr1ZgVnVy/qOhJvw0AT6v2IarF18NewtNeHfUhg6F/39x/aTwa7Eyqi8eT/lKvWg6cyi8P9kXVSV6tHRGtwqLVVdRSdB/NVaZWMcO7N2FDc/8Q1JGy8pHh4vqyfdTTjlNO9pbwn6m7a0tMObkhMsk+2LcxCnYtf3NZE+Tyhv1cixfkLySGK+xqRNy8Ng98/CvzWex72A7pk8Mfm5CJrzxzu95/JZPVOE7Dx6ErSty1bVnOX4/8gj0b8pp5HHiK2YCTIAJMAEmwAQGSODnv/wtPvjwOP75zPN4d9de3HHndyJqvHL91dh74BCefPpf2LP/EC6/Yk34uFAAfvqzh6XzNr74MjbRVjJAhSNc+Qh6IUx1xYpaf0X4idcd2wO5LpcCoE2FyC9MWT4jqpORWb/WXC4FSXNSvuGBKKOi4ulVZnIXiGgi7hsFWYstHMDq6M5tb2Dzhn/hi1/5Jroro6JhEYRo4uTp2LXjbakfIsru+3vfw9Tps+P2q68CcyhAkkab/Aqr4LJ2RUlf1Q54/5xp+fjxHbPx6N3zMHtqLmx2L2ZM6t+ExpRxJug0vBY24JtyEVbAn4qL8KbyJTEBJsAEmAATyEQCr7y8Bd++83YpmX1lZRVeevUNPPvvf+HY0aPQ6fX42UOP4qYbrsO+fXsxb/4C/Pkvj2Pu7Gnkm+fAuivXY/acuVg4b5b0/t4f/BDf/d49+OpXbsnES83YPqUi2qnInV53fC8MIr5FbimMpZOlGBUyiuYfEH6QpCXZKeZFPeVXFwHTBiqluRpolHLYXYmvrGl1OpSWVfS76Q8O7EU75Rp95Cffj6jja3fei+KScqy95mP4y+8fkxRRJ/mOTps5F5OTSPkSUSm9MefmQ6lSw0EKfDKSl6OkYEYDWwmO1Z7P5ycFPBvtFhd+/fcjuH4t+Q6bIgNZxTq/57GVtJL7j01s6deTy0h/zwrpSP8E8PUzASbABJgAExgkAs89+0y4pdOnT5EiegRLliyTFNKVK1fh3DkyDSRlVMiunTvQ1NSIpcuW46Utm7F23XpseP5ZSRkVx5968gk8t3GzZOLrF6FdWRIiYKaARqkSa1s9xJZuMesVUCspwE4SCqmKTMMHIp/7z6/HPD03rwC3ffs+dFJ0XJVaAxUpkwMVszkXliT9SGWyLGjU/R/Ov0qpXR76/QUzWpHq5Vu3TMWKhcEoup//9ja0trvgdPlJGa3Al24cP6DLXLeyGBtfq5dWWgdUEZ98URHo/yf4osIQ/2LYZyU+Iy7BBJjAwAio9WbKpJLex7IIhpZF+QAzQUSgNq1J32dXhH+hjHKbpptJnx3ocUBOKXC0pth+WiLq5nDqb49LTPqtSO0jguj1R/ILCjBp8pSwAlpcXEx+pTURVdWSn2nxebNc8f+Vl18KH6+pqSElQEUrS7lobeHgfWEwcV5oVel9xsRpvt+Ho/kbx6qsqLg81uGUHRNpZVIlpaMqcfpkcqlj5kwZWPurLimB2PqSh++aS+lggMK8gSvcog0R2Ej4vArTXxYmECIwPJ9Kod4Pwn/hs/Kj+x/AmrXrYLfb0dbaii987mbU19cNQuvcBBNgAiOJgFAWhQKWThFpW0QqhEyQbMpjKqN0Mn2JGIAG+5sZ4Q6yKNhOrP6K6xA5WjOFbyL97Yt9ovu9nmCgmfHjJ2D5ipVRT7N0duLpfzwRcUxOn/Vf/uq32PziJuzds1s6ZjLlwOl0RpRzkW+eyRiMbCr+i/chcbmCZU1GEyukISgJ/BepPIajyOi7lYwUlw6OQppMn+KVLS6htC3i+Rwl2Fdf586e2v9ASn3V2X1/bk5qFNHudaoG4MPcvR5+ffEQYIU0zr1kn5U4gPgwE2ACKSNg70fS+GQb93kqKX+oO9nT0lJe+KFZ25tj1u31jKecy5nRX7EaaG2JXMHr2XlPZT71NzPy7AX7296zi2l5L8wj8/Ojrx7LaGK3u4goug88+DBFKVXg9ttuDR+yWDp6mT2KiLwWi0UqI/4rlRcmbNRkJilEnMeSOAGXe2SYN+cVFCYOJUNKCj9SBX1fPJ7EniFajQwTxhgypPeJd0Oskp461z/LisRb4ZLDiUDkr8Rw6vkg9ZV9VgYJNDfDBJgAE2ACw5bA+wf2Q2zxRFgdPfTIYxDmuZ/51I1hf1BxXn19PUUzjVzVKh81KmyRJCyTxPuQiNdixbS9fXCU7lC7w/2/hnwxh6MokshFKiY9NOdzhQ6naxW+qDKaqElYIaXV7qK8vq1MMvXaSwpSv+qaqdfK/UqMACukcTjF81nRmYNO33GqiTgsVwbIxygzfLgiOtbjjVKth47CpscTBc1giwdopouM/NUSuV9+ihCYTWaTIqx7JovoYyLX0/ManNa2jFlx6tm3kf5eY8xPu/+h+NxkyvNHodLSZ9jU522XfEjJpDdTni/C5zXed05Og/1MeXYE+5vewaqHVrndDluf97D7AZlMhv/989/gIrPcz3zqExHmt6Lc669vxYMP/w9mzpqNfXv3YP6ChdKq69tvBXMzbtn8Am792jfwu9/8SjLtveHGT2DL5hej5irt3u5Ifa3UGiG+Yz1FRr/rmfIM6Nm3WO/lcZ4XEef6vfBSoKtMeXZE9C3GGx/1WaU1QKYOmqnHKCodUms9ZFUQf5wWr57BPp6XR+PLKONnH7kAOG08wTTY9yMT2ssym829s1JnQs8ypA9bX38bDz/0M2zc8JzUI2EudOzkOaxcdglOnjyBoupZGdJT7gYTSIxAe92xhAeQidXIpVJFIK98IuSqoBliqurkephAOgnYKMJqV3tDQk3oDQYcpBykPeUU/ZauoN9UIVdfcy3u/8mDaG5uQl5+Pr71zW/gxRc2SsdCeUhXX34FbFYy97ZZ8dmbP0mBkGql4/wnkoAhvzxuEK7IM/gdExhaAq4uCzoaTg5tJ7j1ISGQ2UtAQ4IkstF4Pivix5iFCQwnAj5PZvjjDSdmg9VXe2dL2ldIB+tauJ2RQUCskCYqNqsVo8uLYhZ//rln8cKmjSgpLZUUTZ+PwnueF6/XK/mcCsVWr9OjoYF/f0Nsov0X+T+FxQ8LExguBMQKKcvIJMAKaZz7Hs9nJdGZ4TjN8GEmwASYABykkLIwgZFOQCie586e7RODUGzFxhKbgJsUUrGxMAEmwAQynUBmxNLPYErCZ+Waaz4CEelPCPusZPDN4q4xASbABJgAE2ACTIAJMAEmMKwI8AppnNu1aeMGLFu+Ejt374/wWYlzGh9mAkyACTABJsAEmAATYAJMgAkwgTgEOKhRHEChw+yzEiLB/5kAE2ACTIAJMAEmwASYABNgAqkhwAppajhyLUyACTABJsAEmAATYAJMgAkwASaQJAH2IU0SGBdnAkyACTABJsAEmAATYAJMgAkwgdQQYIU0NRy5FibABJgAE2ACTIAJMAEmwASYABNIkgArpEkC4+JMgAkwASbABJgAE2ACTIAJMAEmkBoCrJCmhiPXwgSYABNgAkyACTABJsAEmAATYAJJEmCFNElgXJwJMAEmwASYABNgAkyACTABJsAEUkOAFdLUcORamAATYAJMgAkwASbABJgAE2ACTCBJAqyQJgmMizMBJsAEmAATYAJMgAkwASbABJhAagiwQpoajlwLE2ACTIAJMAEmwASYABNgAkyACSRJgBXSJIFxcSbABJgAE2ACTIAJMAEmwASYABNIDQFWSFPDkWthAkyACTABJsAEmAATYAJMgAkwgSQJsEKaJDAuzgSYABNgAkyACTABJsAEmAATYAKpIcAKaWo4ci1MgAkwASbABJgAE2ACTIAJMAEmkCQBVkiTBMbFmQATYAJMgAkwASbABJgAE2ACTCA1BFghTQ1HroUJMAEmwASYABNgAkyACTABJsAEkiTACmmSwLg4E2ACTIAJMAEmwASYABNgAkyACaSGACukqeHItTABJsAEmAATYAJMgAkwASbABJhAkgRYIU0SGBdnAkyACTABJsAEmAATYAJMgAkwgdQQYIU0NRy5FibABJgAE2ACTIAJMAEmwASYABNIkgArpEkC4+JMgAkwASbABJgAE2ACTIAJMAEmkBoCrJCmhiPXwgSYABNgAkyACTABJsAEmAATYAJJEmCFNElgXJwJMAEmwASYABNgAkyACTABJsAEUkOAFdLUcORamAATYAJMgAkwASbABJgAE2ACTCBJAqyQJgmMizMBJsAEmAATYAJMgAkwASbABJhAagiwQpoajlwLE2ACTIAJMAEmwASYABNgAkyACSRJgBXSJIFxcSbABJgAE2ACTIAJMAEmwASYABNIDQFWSFPDkWthAkyACTABJsAEmAATYAJMIIUE5HI5srKykq4xOzsbJSWlEP9ZMp8A36XMv0fcQybABJgAE2ACTIAJMAEmMKII6PR6vPLaW5g7b37Edd/5nbtwpqYxYvvr4/8Il7ly/dXYe+AQnnz6X9iz/xAuv2JN+Bi/yEwC8szsFveKCTCBwSCgVquRl5+PutpaBAKBXk2KmcWiomI0NjbA7/f3Oq7RaKDVatHa2trrGO9gAkyACTABJsAEmEB/CNz3w/vx0es/Dj0ppdHkqX88jru+c2f4UGgMI5TYnz30KG664Trs27cX8+YvwJ//8jjmzp4Gh8MRLs8vMosAr5Bm1v3g3jCBQSPw81/+Fh98eBz/fOZ5vLtrL+648zsRbceaYRQmND/92cPSeRtffBmbaBOmMSxMgAkwASbABJgAExgoge9/7zuYMrEa9fV1Uavy+fzweDzhzev1SuVWrlyFc+fOSsqo2LFr5w40NTVi6bLlUevhnZlBgFdIM+M+cC+YwKATeOXlLfj2nbejy2ZDZWUVXnr1DTz773/h2NGjiDfDuO7K9Zg9Zy4WzpslzTje+4Mf4rvfuwdf/cotg34d3CATYAJMgAn0JiBTqCCTK3of4D1MIEMJ+H1eeN3OhHq3YMFCPPjw/6C1pQUbNjyHD94/IJ1XXFxMVl81EXXUkhVYMU+aRzDJtDeskGbaHeH+MIFBIvDcs8+EWzp9+hQpokewZMkySSGNNcP40pbNWLtuPTY8/2zY/OWpJ5/Acxs3S8EDopn2hhviF0yACTABJjAoBFRaI1S6nEFpixthAqkg4HHaYGurj1vVe7t2oqOjA06nE5MnT8G/n9uEz978Sbz91pswmXKk/d0rcblcMBmN3Xfx6wwjwArpAG+IUhPdtn2A1fLpTCBtBDwuBwJ+X0T9+QUFmEQPdeFvISTeDKOYaXzl5ZfCddTU1EClUsGcmyvNVoYP8IthTyA7OwsGjQJKRTbMOiWMWgXksixp67R70G5zw+bwwuHywemJ/FwN+4vnC2ACw5iA3dIMsbEwgYuNwKuvvAyxhcTpdOCGG4MKqcXSQeMRdeiQ9F/Ey7BYLBH7+E1mEWCFdID3Q2cuGWANfDoTGFwC1tYaeEkpDYmcTLp++avfYvOLm7B3z25pd7wZRjHTKGYcQ+JyBU1sTEYTK6QhKMP8v1mvRGGOGsunFWHiKEPcq+mwefDmwSYcONmOTjuZXZF/DwsTYAJMgAkwgXQTaGxoxOjRlVIz9fX1KCsvj2iyfNSoPn1RIwrymyEjwArpANG31x0bYA18OhMYOgIiiu4DDz4MoZTeftut4Y7Em2EUM41KpTJcXq3WSK/FeSzDm4BeLcfUyhx8dHEFrYImfi05egWuXlAmbftPduC57efQSSunfn/v6M2J18olmQATYAJMYDAICCun6upqlJUWwWjKpWc3BQmix7c/4Jcmms+craFgQecGoytx27j+YzfghU0bYLfbISy8rrv+Y3jyib9L573++lbJt3TmrNnYt3cP5pOvaX5+gWTOG7diLjBkBFgh7YG+oKAQXi+ZobW3Rxzh9BYROPjNRUBARMp96JHHJPPcz3zqxrA/qLi0eDOMIuqdmHEMiXgtVkx7fm9Cx/l/5hMQeccLTWp8Yc1Y5BkvTDb0p+czxuRAbBt21GLH4VbYXcHoh/2pi89hAkyACTCB9BKYNHEipkydCq+zHvJAE9B1DDKhjZLIshQoNhuRmzMekyaOw569B9BCgYTSLWJ8smTpMohx+W9//yeKpuvG4oVzaYzuJQX043iAIv2LsYpIXff8c8/gz3/6X6lLIlDjnXfchsefeBrNzU3S8W9+42sRY5x0953rT55AltlsHvHT1zKZDLfdfgdu+uRnaDYogJMnT+D6j14t0RSD9h/d/wDWrF0nzcS0Ub7FL3zuZl76T/6zxmdkEAHxmf/jX/4OFwUE+OpX/jPC/FZ0U0TZfW/P+/iEyON1fobxTyKP16yp0kP9mms/glu/9g1cuXa1FDzgv+/7EXJz8znKbgbd42S6opBnY8poEz6zqiqZ0xIq+/7pDjzzzjlYujwJledCTIAJMAEmMHgEFi1agII8HZS+MzQGjh3hNiAvhF8xGrt378HZs2cHr5NRWjIYjKSsFkjj8Wj5RcX4vaS0VMqz7vNxfIMoCDNqFyukdDt++OOfSlG6Hnrwp9j2ztsQg/VQPqOrr7kWX6WB99VXXiENxEV6i7y8Ah54Z9THOHM6k0tBfcQDsriogCK9maSQ+36fOxxEKCtbhmyZEn56OHZ0tKO+oYnyYzVJ0eIG8yr0BgMOUg7SnnKKJmNWLLtE2i0++/f/5MHwDOO3vvkNvPjCRulYKA/p6suvgM1qg9VmlSLc1VFodZbhRUBJyuglUwokU9t09bzJ4sJvNh5DR5c7XU1wvUyACTABJpAkgXnz5qK0UAOF72TiZ2Yb4FNOwPZ3d6ChoSHx87gkE4hBYMQrpKU0e/LWtp247tqrwhFGu/P69W//gA8/PITHHn1Y2j1p0mQpvcXEcZVkX89BO7qzGsmvx44di7HVVeRXKYMs0EmblRwvumi28ULgnwg+WRQBTqaDDwb4s0002eHEiZNncOLEiYhiQ/0m3gyjUGz1Oj39KMUP0z7U18Lt9yaQRXa6s8ea8cmVlb0PpnhPTYsdv3vxuBSRN8VVx61OoaBJIIosnUmz5GLis6SkhCaw8pGXa4ZeT4GjyGxa+G2FomBLE1jZCjLcCVC+YCuaW1rJVK5VGgRm0rXEvQFcgAkwgYwjMIpcbWbNmAyl94Pk+ybLhSu7Aps2vchj4eTp8RlRCIx4H9J58xeilcxw16y7Et/+7vfR1dVFduh/wFtvviHhipfegtO+RPlUjaBdY8dWY8K4amQHbEG/Cx8pojSolDZKlwFEhh6PRNNFPhpCaW2AWm/EzOnjMG3GDBw+fAwnT52KLJrCd9HSvvRVvbAUOBfDLMdmtdIKKV0zS0oIKFRaZFGgqcGSQkMWPnVp9aA0N6rAgCvn0wBmdyPcPvHdSL0EaJJQo9FCqVKgYnQ1CotLUVxaLil74rPc0dGGxrpaNNSfQz0lThc+SR4P+bcKB9pBkjKaBK0cPQqFhUVkMt8OZZYVWQEKBhagSR3febPmUHeEQ42wNCOlVG3QIJesLqqqyqHSrEBjYwNOnzmLurqhnQzyEUOfl1e+B+njk1QzMoVKstJJ6iQuPGIIzJw1CxpZDT3/Yo1T+sJhh0LuwpRpM3DkaOqCe/p9FKHdHdtsuK8e8f7hTWDEK6RlZeXSrPlpUgBee/VVTCeF4H//9Dd8/PprJd+5eOktOO3L8P4C9Lf3JqMB06dOhF6TBYW/jgaNnVSVCEk6kCTklC9OZsTsOTNQPWEy3j94hExhSWFNsfRM+5Li6rm6ARDQGPMhBpGDIQpvJ75y9Whkk59NIuJy+2BzepFrUEXV3zq7XBBRm/WUs7QvuWRqMQ7WOlFj06RU8faTQqSUBTBv0TLMnD2fBuHRr6mguAzjJk4Ld6+9rRU7t72BUyeOw00GL9myvvsePqmfLypHV2B8dSWys1xQBJqR5TsKtToUwkFMQugSqNkODexUrhkVZXkoKVsIj0+GYyfO4Ow5GlgOgTitrXBY24agZW4yHgGV1giVbiC/SfFa4OPDlUB+Xi4M5jwoXORmo+rfZ0Qt82LC5OmoabalDIPHaYOtbWgn2VJ2MVxRUgSi/2onVcXwLixMod4/cAD/ePJx6UJ27NgOESp67dorJYU0XnoLTvsyvO9/f3pfUVGB2ZNpUOs8DLeNVnv6U0mf5wh/jKNQyUuojWDggEwJs95nl/lAygh0Ng9ekIglUwqhyvbSolzsCLgHT7fjya3k/2lzQ06r/nd9ag4KKD+pEOG18Py203jjQJ1kFFCUq8WdN86MyeMTiwtw/9MHU2K6K0yOjcYcLLl0DabPmie1GyCTV6879jWFOmjQ67Dq8nXS2y0b/omjhz+gFX8xuZQ6KS4uxvTp0+g7Tazb3oHPb0VqwjvRRJgQmQmj8opQaKwgt5MD5PNNE1tDJMIMuaioCG1tbVKws2jdEBExRRRMJwVU6yliQqOoqFha/WWXmJ50kn9vtzRDbCxMoCeBUvMUOFo/hNsrxhz9lQZ41QbwOLi//Pi87gRGvEJ69uwZiOAtPUWtCQ64OL1FTzIj+/24ceMwZcpEZLsO0apo+kxVs731ZAZsx5w5syhHqByn0mjCO7Lv6Mi8erNeSXlGy+Ne/IdnOvD7TYdw3bJqzJtQAJUilAggeOoTpKiK2fEvXTkZEytyKF9d3CqhUckwodyE3cda4xeOUUJ8L8aMnYjrbvpcRCmlQgGVSgmVUiF9d4SSky3LlhRm4Xfp8/nh9nikzekkc9Pz0RevuOp6zFm4BE/99XfoTFE+3RkzpqOqsgIy71laER3Y9UZcZPc3Pgs5BljoeguwePEiHD9+Ah98cLB7iUF5/dHrPob7fng/7A67lKN493vv4Y5vfl3KXyg6IFJD/eGPf4XJaKIo3jo89+y/ce/dd4X5X7n+avz4Jw9IqaNycsz4Fp370pbNg9J3boQJjDQCRoM+6DI0wAv3eYTFBgsTGDgBYSc0ouWdt9+ksNBlWL58pcRB/GiuWHEp3nj9Nen9ls0v4JprPkKmVUEF9YYbP4Etm9mJO5UfGgUNIEVwD6HszSKfhsWLl2DNmjVYsmQJ5s6di0mTJkE432u12lQ2m3RdInDR5EnjIE+zMhruGA005e7DtLoyGWPGjAnv5hdMYKAEqksNCVXx/PbTWDylGEunFUNNAbuEq6XkGk1nt1ldePv9etywciwmjc6RjpHel5Csn18Gnbr/86HCT3TxisvDyqhWq0FJUT7GVlVg9KhS5JpN5Eeqoix6WfB4/bQa54GDNo+P9lCka/EsKczPpfKjUDmqjFIemCUFNr+gGF+5/W6UV1RJ5scJXUyUQiJv9apLV2J0mZG+wwfSp4x2azvL10zPpgOoqsjDsmVLJKWw2+G0v6wj39yr1q/BvNnTsWj+bOk389Of+Y9wu3ff8wO88dpWLFowWzq+lPILXrb6Cum4SDP1s4cexc2f+gRWLF2EL37+Zjzy6C/IH1gTPp9fMAEmkDoCZsoIAPT/GRzqiVwRHBuH3vN/JtBfAgP/NPa35Qw5r6OjA3fc/jU88j+/kMyMRldW4uePPYKtr74i9XDTxg1YRsrqzt37I9JbZEj3h203VDRYFKavQtEUqVJ8gSxKteODnPznJJ82MqXW5xTS7LkHXgqaIZdWOAKUC7aLApLUSyuGwpx6sKS8vBzTpk2BTCijcfJ0pbRPFKlX4TmKGTOmSXlwOcR6SumOyMpEztFVM4vjXruXlLfjtR0YU2zAY898QKZdXkypzMMVc0eRsgYcq7FI/qK7jzbjX2+egFohx8pZZVTGHLduk04ODSm4XeSTmqyoaHJwKZnozlu0lBK1m5BjokjVZDpsJxPQlrZOqZ/J1KmmlVSNWomK8hK4ydS33dKJT3/hq3j6b7/DyeNHpAi3ydQnnmeXLFooBTmT+wfZFyrggSpwAmZ9KS677FK88852DNZz8t3t28KY7HY73n7rTVy66jI8+vCDEJOOqy5bjdWrVkhlRPDAjRuex7or19ME7wtYuXIVzp07G450v2vnDkqH1Yily5bzKmmYKr9gAqkj0NraAm1BAiYtcZr0evrIJBDnPD7MBHoSGPEKqQDy8ktb8NrWGSillVLxI9jdt0VEZrz9tlvB6S16fnT6916sTIgVT7Ea6nB5oDPloah0NHIpt2s8EWkPGuvO0sqHDmPHjkdjUwM+PHSI0iC0xDt1QMdFn+fOnQ2ZmyLJ+YfAPIXalLlPYP78udiy5WW4XPwDMKAbmsEna2kSRiZXprWHaooIXZIff4XUYnNIOXOF+8IVC4rhdPvwf2+cgIsi5H506Rh02P2kaChRUmDCrPElON3QiV9vPII7bpiJqhJj3GuYWl2E9854kwtuRKlbpk2fjjXrr0UerYI6nC60W51wuS94ZWbLkvtZc5Pi7aaATBbadHStBfl5tOXji//vDjz6s/tIaRZ109JwAmLOycElC+eSie4ZZHnF91SsQgy+qOGEn3xWV6+7Gtu276LgaKkLOtLzalx2mgSgracsW74irGDm5xeQ+bSCEtTXhIvV0ut5CxZI74WfbfdjYmct5TQWUe5ZmAATSD0Bi8VKz+7cAa+RypX61HeOaxyRBJL75b6IEQnFU/iT9iWc3qIvMonvnzx5MqZOnQYvrYaWj50BE0V4S0Z0lKdvzPgp0uZw0MrhkQ8odUIhamtqsH//fsrl6UimuoTLCj9O4dMJMqEdMvG1Q5alw+zZM7F9+44h6wY3nF4Cfi8pP2QdkE4xGbMTW/WT+hHAlQvIB/K8La6PliL/SauhH1lSRV0MoKJQjyUUOVfIWDJPPVFvwe6jTaikVdV4MqPSgJ3HKTBPdmI/Q4GAH5MmTsTnvvAlyQ+0udUSoYjGay+R4112B8Sm06rJpNeMO7/73/jJfd+D1d47AE/P+oTZ8LzZ05DlOomAt5noDLH4akkJ9GD+nOl4/c13aPU3teHXQlcXypkaei/+f57u0bhx4/H/vnKLtNtoDE5QdJ9MExO/wp9UiMmUEzERLPaJsiLKPQsTyAQCwvJB5K0voDGHllwGxByV+Ay3UBAxMXmS7onxVDNobGzEhPEi5Vff4964bcpyYE1xELi4bXKBi5ZAYiOBi/by+cIGg4AYjMynmXC9gaJBjp2OnARWQ+P1S6PRYfLMBaSE2iFX7oVI37OTzLxSHZFWmBWbTVpSSE/H61Laj8u8NTRInib9KNbVnY+wmfZWuYHBJOC0tae9ufySfARC+S5jtJZDZrWgiLXNHV0oCkXVpRxxLpdbOj9PL8e77daIukQOudDxGFVLh8pyVYC7E3aXSLQZX2bNnoMv/9dXaQDUBVsCCqKPJhndLic0ut4z+CK6uojQ25eIdEtiM5v0+OKXbsEff/8ryvcZ+zs3f+YyeG3HkDXYZrp9XYS0vxOBLDumThiNt9/eFrNkqg5esWYdbv36N/Cpm26QBuui3s7O4AqqUqkMW3iIuAyW88GjxH+VKtIXLXh8CCcBUwWE6xnWBEyU+3f6dJpAp/9OssRwkVl/myVocSCnqNL5hcUoLx8luRMdoIwNIq/9cJD29nZ0Ug7xXF0BWXP0LxKzG0U4ceLkcLhc7uMwIJBgCIphcCXcxYwkIIIVXX755aiomoA5iy9PiTLa/UJFcJOpcxajrHIiFi5ajIm0gpJKmTx5IpQiYX2GiCJQhynUJxYm0F8CORRhNxERi6KzxhVgy86z0qKty+PHuwcbwj6iE0ebyVzWhQ8oLYyQFosTB0+1hY/Ha0NOaXuFb3giMnv2bCxeugKtFntcZbSxrgYvPv80nvvn37F507/R1RUZDdtLq9AvPv9/pCw1xm26nQae5qJRWHnpKlRWVvZZfiblrzbqApSTOHOeFaHOimeG2ajE1ClTQrvS9l9ErP/x/Q9Iyuj7B/aH22lpaYaHIhuX0cA9JCKAYMgnvp7iApSRn353EcdFlHsWJjBUBMSE9KpVq6BQadBIFhkWqx1OmpDzUqRusQkFtZNcG5rIdz2QraBgYstQVVU1VN1Nut1Dh47Am11Gq73J51/2y4tpMhEUz+N00u3yCUwgGgFeIY1GhfelhIAwb1lOfkSFZdXIL7kwEElJ5T0qKSitgCk3n34kfGReKMPBgwNPe1BW9v/bOw/4Oq/y/v/u3trbGpa3He8VZziOs4dDWH8SAiGBllJKS4BCKTtNGC2rLW0pbYAQIAFSRsjeA5I4sROPxLEdb8uy9h5Xukv6P+eVNa58pbulV1e/48/r+47znvE9V+99n3OeMQdWCfwMUZfVTQq2igOWEq6S6mZAZl5Dct2xv3woD7r/9cA+fOEnr6C3L6jZht66ZYHWabd4yb31yiX46aMH4HZa0NTRh23nVmHlvNhV8c3KO1KUdN7556OouBTFlYvFY+7kTpCaGuqw/aXnsEpiklbOXSD2uOonblR5dtfOl3Hi6CFNOIpS7chlb58PJRWLsHp1t+ac5/DhwyPX1E5hYSGqqsrF+dibYef1dGAbPImFi1bhtKzyqpWRdKQPfPBD+MTf3oYbb3g3Dh86FFaFEkaffeYp3HjjTfjmN+6Ay+XCtuuux7e+caeW7/nnn8V3v//vWgzwPbt3iUbNJii7U+UYiYkEpoOAmkxXXv6bW7tE8Iyu7t4rWhsBiem8UmzcVSipmpqa6Wh2XHUqtd2jx05injwrrSH5mx2MTVtl0CxaNpYK7HqZf59xAWfmSQlQIJ0UDy8mSkC9pF0iqwpz5p0Dd/bUOPaw2p1Yfe5WbdVFvQAdGvdSFG9f5lVXwWrQn/qNBc0SBmZuVBXCePvL/LODQCA4KqBF67GKV/rlD65Fe494upZ4Lx4RPMem1QvysWLe+WjrEntAlxVWS3QBc+z9MEzeFqXq7xFVf4PFFXbbRAf79r6O6vmLUS3xSUfTqGru2g3nQ20P/e6+0csx7OUUFKNbBPJFixeLN/DqQDRZAABAAElEQVRgWFzglStXwBSqjfllLobqUp9l0A+Dv0bz1v388+l5ibzq6mu1Vc6nn/1zWPuvunwrDhzYj6/fcTvuvueXmiDqyfJAebB/6snHtby94nTp85/7NO697340NzchX5xKffYzt6XNL0BYA3lAAuMIqEntdevWoUVMEmIRRodv94tA2iYmDmvlXqW6q7xJ6z3t27dPvKYbUD33HFhCIkSHOiZtcshcjpCxENtffEmLTDFpZl4kgTgIUCCNAxazxkZAhXS5UGLMlc8/B66sqRFGh1umPGyuOvcSUUExaGFSasXhUSJJ9aFQbEPg1Z8DIUOoFcXFG8RhiVl7OU6kf7xn9hKwW+MUGgWVEkwnSkrrtvCMjelEeSY6b1F6uxOk5cuXa85ulLffFeuXTpBr9LRyeqTUcPMLi/Hn556AsiEtKSvHknNWSqZRoXT0jvj2PDl5aK6v1bz8KgdqSt1UqfE6xBTWGErc07fZZBAnKWZkeSwoyrciL1s2UbEdlH/tnQF5Kfajud0nNq1BbZU6JF6BE0nGUCPcrnyxdytHos/Fyeq9+QM3THZZcxp46dbNKCkplb50QwmhY9ODf3wAjz7ysMQFLxOPu6e1Vaax17lPAlNFQJn+9IutqPLiHW9SAmx3jxdLxYnjazt3xnv7tOR/4403RYBuw2oJL2cyFcNiaBdbeBGmB1X/5RlttCNkyMKAMR8NjU3iPZve/qdloDK8UgqkGT7A09G9jRvPRcXcxVMujA73VdyVYMlKCScgjkv++MAfEvIuWSAz9EFfOyZ+DR+ubRo+Ra3G398mQmmx5t1vGlrAKkkgrQSU7VZlZZXYjPbALg7McvKiqwF7ZTVCOStSqxuLl64Q9Tk/9rz+qvb3v1JUeJNNlZXzUFdbg46uXgnBtBFPPfUUFi1cALuhIaGi3eI0qrLUiY2rcjGn2BFTGbUNfdixtw2n6vvElnZy9eVIBdrQhMWLF6ZFII1UX6RzDQ0T29mq1edTM0DVMVK/eC5zCMydW40OcZ6WaFJO16rkGbZ3z564zAMSrS8V9ylPwWpTE1bl5XOQl1skIfZEEBWbezUB19TcIk4j306byn8q+sAyZjYBCqQze/x013q1YjBv0RIUzpkbU9ve2L0TB/btCctbKqsaF116NZ594iE0S6zR8emKa9+J3LzC8afDjq12FyrEkdL6DRvw8ksvhV2L5aCoqAAWo8zgx2ZSEUuRKc1jMfSI7VoBBdKUUmVheiCgvKsqJ0atoi43MDAo6mSxr+gqz7nnrFwjChJD9ygBda8IpakQSAvEjtVmtcmqSR8sIvRu2bIFVvMAEIzPJtPlMGF+lQfXXSIaGHGm8hIHykvmyOrhIB5+th7Hanvh7Yv9IWWQlVyXs1TsMwtmXJiKOFExOwkkTEBpJ/gDsf9dja9IPbeUl24tLJ0IeTMpKe2JdGhQzCQGbOv0EKBAOj3cM7bWdeIEYPma88QTncRTjDHNE3uv9ZsuGJN7SL1u6xXb5Nyoelq/xAd87OHfQoV8iSXlFZdjbvV8HD1yBMp4P56ULzHHDAPx3RNP+cnmNQ56kRtnHNdk6+T9JDAVBJRTkO7ePs2DparPGSFsS6R2qHxKIFWqoG7PaPxK5egsFUmVrUwBVOqS9i1bVI1g72H4wjVPJ60qW9Ryb36nOGCTz2SSSdR8r7+8TNR5fbj3wVr09Mb+vDUNNGNuVRUF0mQGgPdmNAFlC5psColQqkLeqVVHJhIggegEYp96jl4Wc8xyAgsXLkR51YK4hFGFTBnUqxWN0W3opU+9AI6eM+Lg/r2omjtfVPgkKHUMSRZHsHTVBixdGn+4AxVOBgPeGGqZpixi2+FyxiaYT1MLWS0JxE1AOUMrLCzSQikM36z9LQ4fTPKpnhdzKubi4FtD4UaUDemJY4fFJrF8krvivDQ6PwaLxNTMcsX24qo5DSl34m9vnp+0MDq2xQW5Ntx2y3xUlTnlWTn03Bx7PdK+aaAdZXPKIl3iORIgASFg0bxzJ4dCmQ7k5uYmVwjvJoFZRIAC6Swa7HR3dcWq1aImO9a7ZWw1NjXWY+f2F/DGrh3oaIvs1dYrsQSPHz2MZSvWxFbocC6jDfMWLIDb7R4+E9OnRVTzYnWBHlOBqc40GIDZoksL11T3lOXNIgLKmUivhFkZm0ziqCzWtGbDJrTLM+SRP/xa4pDeqznGWb1e7MnPpB0vv6B52O3r8+Kl55/U9pVab6xJCZYqZXncCPh7MDjghzPKxJASFJfM9+Cmd1TGWk3c+T4oq67zK2OcoJLJrMGQX1Pbjbsi3kACs4BASlZIJU5pR8fkHmtnAUp2kQRiJhD7L33MRTLjbCSgbCXmlFehT4JGx5MKxSOmVTzammU2sb29DU8/9oBmP1pUEj6Dv2/vLgnlsAiOKC9/keqev3gl5i/YoTkYiHQ90rkhuzWxD9NrGgyKl93k1P702jW2a3YSUKsJOTm5aGgJf4kzKje+MSalzn/5Ne9EvwicBrE9tYlTjrFp4/lbxh7GvW+zO8R7d68IoXaYBjuh1PJcLqd2bqLCyovteJeo16Y73XBtOX5y/wnh1x+1KhO6tdWblpbEvQNHrYQZSGCGErCYY3/mTNRF9djyenWsZTVRw3meBKaJQPJ/ddPUcFarLwJzq6tROS/+1dHS8kosWbYSCxafgw2bNmP+oqU4evhgWOe6OjtQW3Mcy5avDjsf64FVXlLnzq2ONfsMyWeU1RkdC8wzhCKbqR8C8+bNh7c/vgmtiVqv1PrHC6MT5U3kvMthFxvzHs3pkujKTlhXltuCD727KpEqErrnQ++qhKozWjIbemWFdGpDckVrE6+TgF4IOB0O8dad3OuxU54RKhYpEwmQQGwEkvuLi60O5poFBEpLZQXAMHFMwVgRqBWOYCDcQcebe14TQXUZ1OpEIkk5WKqsqoZVbL5iTUFxdQ6DjhUIhHUoFJv9Wqx9Zj4SmE4CKtRAb1/01b3pbONw3VarCH1ajD4xNZdVUru8fI5PVosR126N35Pu+HK8fRJ/NMYQLxap85LzCkXjJIo96UAfPG7P+Kp4TAIkIAROiadZl13MdhJMbtGgaGtrQ3d3d4Il8DYSmH0EdPzGPfsGYyb3WHmzTcTu4sSxQ6iQ+H4mcSLgk3AKx+V4/sKlIyja25rRKMHoN2y6ceRcIjvFZVWaC/ZY3Zn7ff0wG9RLp06FPoMN/cKLiQQygYCKqesTdf+Q2F3NhKSpy/uH/v5CoqlgF9XgznENL84X+/WKye066xr78F+/CNcIUcV89ZOrxDlcED/5zREt3qjFYhBnSFZcdkEpFlWPehAeV6V2eM7CLLy8qxVNreG2uGF5B/uj2r6G5ecBCcwiAm8fPIgrrrhCM0EKBOPz0q1WVrPcDrzyypBztVmELW1dNcv7YUi8pUey98+XEFbKs3p//9mTmcr0qri4RKIsNMjE4cz4bUkbxBlQMAXSGTBIM6GJ+YWlGIjDOchwn5QXzJ3b/6zZhiqBtHLuAixcMuoVd++unVi0dLkWoHn4nkQ+s/MKkJ+fH3N8rR55wDmzlafd5IU+ZY9itYoygvDxBwYQCMbuRGXCvhrlBbi9a8LLvEACyRAwW+1wZuXD7sqBwyOeIuUrGxQBbCAkDnFEe8BotmIg6Bc7TZMoElhlQknswG1O+L3d6Otph7erFf294bagk7VH2aD7koj7N1nZ6bk2+jesHnvqZUd53Q34h1SOHXYTrr2kNKaqVd4vfHxFWF4V1sXvN+CarXOweF62dm37rmY8/sLpqAKpynz1xSX49cO1IuRP8DI9GBKnaNFVe8MaxQMSmCUEurq6sGfPHixatBitnWdU82Pse7YIo0ePHo071FyMxc+6bC5xSPnIY0/hc3//Kezc8epI/8srKvDjn/4c2VnZcLld+OMDf8DtX/2SJriqTNduewe++c/fFt8k7Zpvgn/47Kfw5BOPj9zPHf0RoEAa45g4xKbA6XTSJiACL6M4JHJJ3D+vf/QlLUK2iKcuvuxaBAJ+bXVUOSwa71Hz4suuiXhfvCeVWp3LPfnKwtgym5pbkJ+dDxPiswFRanpqUwHsKyUUQ0WpAzlZVmVmpuRRLapqe6cfpxv6cKrei1r57PeLkCqCajwpOOgSlaD42hZP+cw7Owk4swqQXVAGmytX4mu2IODtFK+1xzXhMzoRA6zObJjtOSisWCTZDehub0BXS50IsuFq+OPLUrPcwRmyOqraPjg4IL0bTYPyl20RJ2MjAqnNhPyc2E0ElAA6PnnEFnSJe0gYVdeWzM/CI88NxRx1uyYXJsuLHbDLc2hCgVTKCymzBCYSIIGIBI5I/HL13lcpMXu7ukfjIkfMLCetFjM8Ljsa6uuxb9++ibLxfBwE7vz6t/Du974vYpSEr37tDrzw3LP41jfvFMdyLk1ovezyK/HE44/Ku54b3/nev+GmG94jEwu7sWHjufjZPfdi/doV6OtLfpEhji4waxwEKJCOgVVdPQ9/fPgxfPc7/4Kf/+yn2hWlKvCNb30bV119jeYxrU2M1P/yI7egvr5uzJ2ze9cq4UdU6AOvhEFIJFnkfrWlMymBVP1gxJqaRSBdtHCuCKTRkxI2lSORxdUebFyVGzXOoKPIjjLZNqyUlSdJHV0BvLKnDYdP9KC7NxhRLWV8KwYMHgls//b40zwmgYQIuLILkV1UKTGBjehvP43ueqVGGt8kiZpu8Xs7tM3bdgIWexYcWcXIPecCdDSdREfjiQm/21keD5raZs6Kv4qPPDapySbLmOfL6qWjguTYfJH21WTU7544CZvFJJNYLqxYnKtNYI3Pe/hEtza55XJOLowO37dsoQfbd7cNH/KTBEggTgJvvvkmOjs7sXr1avSJwzWfPyQTyP6w55hdNCNsNiWMOvDGG29oq6NxVsPsExD4ype/ALW9snN3WA6LaHdcetnluPzSi7Xzvb29ePihB3HNtds0gXTr1ktx6lSNJoyqDGpltampEZsv2sJVUo2YPv+L/Q1dn+1PWauyZNn/R3f9FN1d4Ubo6gu+dt16bNqwRptZuf2Or+OLX/4a/u4TH0tZ3TO9IIs4+FCrpHpOKn6gJzv2FdIh73jy52FUarsTu253u8zYKILleWvyE+5+TpYFV11UrG0vvd6KnW+2T+7ERNo0oNZuU+TBTwkhKlaistEYn6LZYFBzYDyxmXVsEnXbgvLFohIv4UzaarRV0VT1INDfBbV522vhzKtAxbLz0VYnNpHtjWdVob5nM8V+VGu8moUak5S5grKDV8khq6MrFscmkLqcJmw5twQupxnd3gAeff40TtT24h2XlY8pHWIP2o8nX6zDu66ojCishmU+c6Da8Po+mSCYQPtChcVhymwCFlGjV+r3TIkTaG7vwVPPvYgF8+dBOV4rzSoR7YKQ/AYPwibCaJe8M9bWnsarO3chGAyKiQO9VydOe0hzw98X/h4+vryCAnHcJhopdadrRy6dlv0N556rHZeUlIRdUydPnz6NEuV8k0m3BCiQytCYRJj64Y/uwk9+/L+4WlZCx6arr9mGhx58YGSZ/ze/uk9WUR/XVhL0YCStBAmbqGYZ5TMgKm+BYLyrGmN7m9i+4hDJ2Dyx0tJzl1oh7e2ZWLCMVGtNzSlxSpIPYwSB1GY1YeFcF66/LLUPuAvW5UNtf3iiDkdresSu7uzxDBkLcfJkTaQmJ3Tua/90p3bf177ypbD7J7PBoOZAGKoZeeDOLRHV2sXobT2F9sYDaetDKNCH7sZDsDiykVs8Hw53LppPhTvyUS9yMypp1glKKD1jpiAfw2EilL24mqiKJSlHRZecXzKSdWFVFn76f0ew7ZI58hszJPR29wTwiz8cxUUbirF8Uc5I3mg7hXk2KPvUiAKpeBCPNAEVrUxen1kETBab/N3Rm3IqRu1kXTPUNlEyWByiJTHRVZ6PlYDB50U0gTQra2hxwecbddymnBope1KVsrNzznJypPJmn7kv1rYw39QSiO1Xc2rbNOW1fe32O3Ho0Nu4/9f3nSWQqhmVp596cqRNykurzWZDbl4eWiWouM0V20z4SAHJ7AzI7Js88PLlJWZusQvl+Q6UyaZm5FXILGWL2NkbwOlWsU9s7sXxRi/EUSMkaoC83KRvBdPpcmurA2qVQ6/JLOpwZvGEGc941Ta2aQ6VjH3t0q1RwdBuGcCVmwuxdF76fujffVU59h7sxHOvinOYwBiu8iJptM8V+9Nn4+rL2HEJ9PeKTV8Ql11+hRj9f0e8Dxfjnp/9ZGyWqDYY1BwIw5WyA6vDrTkKSlmBEQoymMzIK1sAd04ROusOip1ou6y6jfmORbgnFaeC/d3oqNkDd/FClC/eiMaTb8lzQ9TdXOIUySovc7YIQqmsPKpnl16eLUZhp1adBiXsksUuKvdnJqvUgqlFVkiVYyejSexLE+SZJc925QwyFDJoAq6yN7/7t0excXWRJpDGOw6Dg0atTWfdZ/JoNv/xPA/PKuPMiZDfJ6G6+sMuK5W6wLjwXcMZ6BVzmET6P4P+fpksHv3tSn+NrIEEkiOg3k2iJeV0SiUVym9YKLXbxdGjxKxXSX2Oj0M9dL1Tu87/9Elg1gukN3/oVsydNw8f/tAHIo6QmlEZ/sKrDD4JB6KSmolRAqnDk7iqplZQlP8GB0KwoQ8FbiO2rizEojL3hHeIczcUiHw8v2xUSPbJiumL+1vxyoEW+AwO8YgpmVKczMqRj6hPKI+bek3K4Yhf7D/iGS/1WOzo6UdR9gIYg0M2wzajFzddV4G87PRPha5elouSIhd++3g9fAND4zZgrsDpZlFnMTulL6JOnEAKBXyaQKomWtT25a/+k6i/hI9dNBsMvWsOJIBFF7coAUF5rE1nqlq4HC7xoNtV+6b2PTCkIH5wPO3tbTomKryVKFuwDvmFjaIqHIQ7Kw8dfWdWG8cWJgKpwWjWzbPFaLLIipMbAzIxZHHIs//Mu5NBXBzZ7BZY7X2yOqq8D8cm4B8Ru9C8XJs8T4YE0ZclXEtleZaUZUZLW7+slh7FpeeXYt2KxH5nnG4bgn0RVDYtReIF2RDX83DssIzd7xevymMF0o3nbsIP//suzYHI2Hz0ijmWxtTsW+xO2MTRGBMJzBQCAV+vmHr0TtrclpZmbcJrTnkFjh09ouVVz5eGhgZtv14cS80pLw8rQ12n75cwJLo7mPUC6cf/5u/w5JOP4bZP/b02ONXz5muz8d0yA/OH3/9WM2hXszDDyW4fEgyGZ2K6W2qHL6X80y6x5xaUuvC+iyrhsA4NVbyeEdVdFy/L0ba9x9vx8Kun0dUn9g+D4TZQyTTelJMrs7AhGGQmVsXk02NSgeLbW5sQ73jteKkTl19+KcSjFdx2P26+vhIej1FWMc62t0xHv4vyTHj/NUX4+QM16PXZMSjBunduf3JEhTyROmOZgYxmgxFNcyCRdvEeyPfzdFoxrF+/Di6bBe0nd0k9EQTAtNY+WnhPy1Gxw+rDyuXLcOyRp9DWdArejshO0UIlhbrxCKtC33g7WtBiDsGYE5SJqiGnQWqFNNhvgrezCaXZLk3QH+3txHuNTT34+e8OwS6qtQOhQZnotOKGbVXa/cdrxMNxhxe/ffSYtg2XsnVTMS67MDZTARMC0qaznUX5xQ79xOF6dDQcGy426U/1O/nEU8+ham41lPO/8YleMccTSf9xn4RfUhsTCWQSAaV98ewzT+HGG2/CN79xh+Zld9t11+Nb37hT6+bzzz+L737/37F6zVrs2b0LapJM2Z2++Oc/ZRKGjOvLrBdIf/Sj/4LHPap6OSgCVVAM1oNnXOKrGRU1szKc1L5aMVWxjVTKnbNw+FLKPkNBH5yhTnzokgqU5KVuRXPt4hKo7fk3WvDyoS6EbKkxvrcZQvBLbE2HhMXx9o/q9KcMSJIFmcQWyybqHH2BwYTG63RLLxZVLMdNl7UjO45QDkk2e+T2/Hwz3nvNXNz/QhEOnuyGPa8cEdY8RvJH2+lsPBF1BjKaDUY0zYFobeD1qSewbNkyFOZlobtuP/JLXFPfgHE19nXUwd9pwAXnn6+FTBl3WdeHvRI6YCC/QATSoWaqFdJBsVNXadiWdOjK5P+ft65Q1HEL0NntFwcpEj5LnBsNJ7UqmujK6HAZyr9AxGQSDZ/W1Iam8Iv30a1bLsCatetw149/FlYtvWKG4eABCZBADAS+968/wIWbL0JhYRH+5667tRCBF2xarzmP+vodt+Pue34JJYh6sjx45OGH8NSTj2ul9koc+c9/7tO497770dzcBGUm8NnP3JbURH4MzWWWJAmM/volWdBMvX04vMtw+9dv2IAXXnhOHBn9UTulYhp98rbP4H9/9EPNSPqGG98vbqUf0wKhqwwtYgeVymQRY9CV1Tn4wCVztWJDMiM/nGzOLAlWXyBOQbLFfklUd9WKpAivasVL2WINiI2p0WiRgOd2sUEKiEpWpxag3tvVEjZjv3mJC4tKzPjhQ4fQ3Zd8LLrcPHmh6uiQWSonuiWmqN6S3WFHT3c3fMKj5eSQekc8bexrOogbLn2PqBfKyoW/JuZbd+xtwR+fOoUv/s2KsBdNVUBrez9+dO8hbaXjXHkhjZbKyudj1fx23H//k/I9TP/qbDQbDOUKfzLNgWj94fXIBNx5pTDK33KqU/mcMixfugjdtXukfKVen36V81j6EPQ2wpFbgIp5i9HhO/tvU8X3VM824xkPtrGUmc48Jnm2OuQZrPRAHJ5isX0tluewX567mkgKh8RiVsOnbE1jTcrSoSA/PeNhsopjo6xxk5qyOjpoKMCgLQdZRbE7SZqoP77eDu3ZOtF1dZ5eMSejw2skQAKRCPz9pz8Z6bR2rqbmJC7duhklJaXo7ukWp5XhGjYP/vEBPPrIwygtKxOPu6fpxG1Ckvq5EPuvpn7aPKUtUbMuF23Zih2v7xWhRuJEyhf/w7dEtjdNtmEuiWV18coiXLpm1OuiKlN5w8wuLJeZd7OEZRAnNxJGocfXI0LmxMKk2Sru3iUOYJa87BVWLkNvez06RR3Q5x1S3yrOseGfbl6B7/7uAOrFCVKyynvdEgeqsCAX7Z3SLhWUT0fJ6bCiI4LaWqxNXLogSyYJWuUlTtTkLKUwBOqj3npMVjJf2R3ZI1+fL4T7HjwhRvfyJhpDGpQ6B+DB2gXHJNapG3sPpN8wP5oNRjTNgRi6xSwRCATEw6BRbHxTmezihG3ZwioRRt9AQNzpDw4MTWalso5Ey1KTaL31BzBYOQ9u8djW2Sn20WOSEkiV1oo8VMacnb5dZdMfEkcxKrW1tSJXPAcbgrUwyESiXybjlBOZgQGzbhzJaBo/snI5NgVN4qW79qj2XRh7PtH9UDC8/Ejl0CtmJCo8RwIkkCyBhoaJ38eU9/ZTNbEvIiTbFt6fHAEKpOP4ffiWD4adUV9oNUvjlsDtbvEmO9mXP+zGOA9UUPTL15XiouWFI3e6c4qRUyKrcuLBsK/tFPy9sduCBP1eeTnyor+rAcamo7Bnl6Jk7gr0iQOKtobjcm1o5fWz71mqCaV1IpQmkwKBoJhZ9slKoB3dvcmVlUw7xt+rPF/abVZ0doXPno3PN9Fxrth0ffHjS+SlOIDutv3wFK6UFRFxtBIcMp6PdJ9a/XzwmVrcdH01/v3uA2FZlKz+m4eO43xR1XvrUHTBctAyB4OmfPS0vqXZ6X5J2vKXX3wdXT1ndAXDSk/dQTQbjGiaA6lryewqSa3ipzqtXLpRwq4cRV/7kH3qoDjIUjbfekhKu8MvAec7G48jy5WHtpams2ayldA6VTbb0ZioSUB//9CzpKEuCFd1GYwyiQCzEV6ZoQ/0iypv0DMkREcrbAquD4jpyXgHIUGJOXvowA70dZ9tW5quJtErZrrIslwSIAESyAwCExiYZEbnUtkLpfKZLmFUqXttWlIwIowqb7XFVecgp7gCfa0n0SU2X/EIo+P7rV6iVND71uOvwjDgQ8XSTfDky2rfmaSEUo+KJ5NkapNVSLcIpHpKbpcdbe2Jv+SfvzYPOVlDbAZC/eJ0RjyTmgsxaJ0bsZtDq5/Hcf3lFcgVz5nj0yPP1aIo3451y6N7zRy0VmPAmItusfVSdatUILEF1y3PHV9sQsfXXHsdXn1tD276wM143w03aftXXnW1VtZYG4zn//QyfnL3z8NsMJTmwJ49uzXNgZdfeR2bzrsA3/rmHQm1gzelj0BhYaGog+bKhNbJ9FWSgpK9nc0S79cnDsNG7flTUGxai+iTuHd9fX4MmoskzIvEgZZJOb2nkKkETc3NGBYQp6q9Y71iDtdJr5jDJPhJAiRAAiRAgVQH34F5xW5cf94crSV2CftQvniDqKj5tZh9SkU33qRW4SYKPdYrAm77yd3ILpiDgoolI0X/9TUL4RnjUGPkQhw7vbIy6hfvZx6xJdVDskksPCUgt3UkthJQmG/Dpz6yMKwrA+IZtKt5NwIho3i8XSbGYqPOYQZErVCtfm5aU4jqirPD87y6R7xztvtw9cXlYWWedWB0S9krpA5odQ2EwlU4b7t1AQolVESy6dFHHsK561dj2eJ52qb2lX30cFI2GKtWLMHNH7wRq1csxWOPPjx8SXMqoDQHzhcHA+9+5zZcednFmp3GSAbu6ILA8uXnINA1sUqTLhopjejpbIVErhQ1dmuYbbJe2jdRO5pbO6C0GFQadoQ3UV49nB8wl0rM7SNT3pSxXjFV5S6XS3NG8tijj2htURoZlZVVmldMdYJeMTUs/I8ESIAEZg0BCqTTPNQ5EhT+I1fO11rhzC5A6YI18LZKiI+W45O27MDJDtz18AGoFbnxafv+Rmw/0Dj+9MhxUOxPO2p2i2dLI4qrRQVVUqms2m1dWaw55xjJmMBOc0ubrAy6JC7p9GuD50g7mqQ9odDZjGLpWnmxA8pD71lJJP7e9rfR19ssguNSWS2tBgxW1DX2oam1X9RpA3jm5Xo8t31IrfdPOxpR19SHP+9s1ATJZ7fXa9dbRTh9+1gn9uxvG6rCKGFdpKxB+xJRra6TOg6dVbU6keW2QAnLU5GGbTAmYphOzYGp6F8m11FcXAynhAlSavt6T/1i265Cd5oQErV/fUxoxcKsS/wKqPjGfcHoGg+xlJfOPEFTOU6frkeLxM9OR7KJrbLSuPjJ3b/QvFqq/W9/9/sjVSmvmJdedjmURsUrO3dj+8svRfSKGUkjY6QQ7pAACZAACWQkgemXGjISa2ydUrLO1lXFsFuN4jk3F8Vi49l5ep+o5w6FlJmolLoWL946cUaIGZPpZGMPXnyzXoTUIJbNjR7SpbvhEDzFi7R6G0+8KQ6VivHS/ha0doWvyI2pIupuv88PJZTmZLtFOEtcVTZqRVEyZHuc4oE4JHH8ElsdVSp4775iVK05UnW+XglbIV5C7Z5K2FyrkZXfICuO4qgo2KFlNxqGHLGYzQaosd68oRj9YyYQDPICbpR6TNY88XgpK7GmHHE6VSdq2q9OvMR9piHXbi3B/iOJ9S1SX3gu8wjMrapCsFv/wugw+c6WOvEIWyLOwxwinHaNeDIfvq7XT6/EKLZZC+SPWQTpAbEn1WMyeWCwlGDfvifS1joVDk1pWUyU6BVzIjI8TwIkQAIkQIF0Gr8DWU4LNosTI7PVgSKxGe2qOxBVGO3sDWhC5+XrK/DbF46Gtb5KVH+rihfilf1N4rRkSBgKyxDhoLtxSCgtKF+EltpDuH5TOX7x7HEEgiqwQWKpVWw21Wx5rgilyuvuVCelpuuSUC8nak4nXHVejgUXrJeXzChJOYfp6zqO/u4aWJ2luPD8tRKiQsIshLqhVqKf3vEKzt+wQNpjQEmxlGcQgdVgk5duO4421mH+kgosXeZAn7dFhNu3Y3Y2c+l5hbjrN8fR0TWxp+UoTeflDCZgMplQUVmJ5sMvz5hedjSfxvySuegRzQGHw4Fe8dyt9+SU+MYdEpO6Rjw5LltSDRvCnZjpo/1G+AxVeGP3Hi102XS3aTJfDMMaGdPdRtZPAiRAAiQwtQQokE4t75HalCroleuHVuCKKkVFU0K5+HomV6XyBwbw1Gu12LyqNCVOiIYb0910BDkVKzVHR8vlpBKUk1klVeXWNTShqqJMHAK5RGiauhdLp8Om1VlzugHBBFV1VfvtEqQ+nqQEU1+vjKFsRpMNJotHQrXYUddiQ8BUhpBMOqg0OBjEoIRJCAb6cOBtmVAIHMcSiaMVb7JK+yYMeh9vYcyfcQRKSyU2W4eolIuH2pmSghLupqutUcK/5CE4YJ8RAqnDbsa+N/ejtrYWuTk5KC2aK7jjt/tP5xj5jNU4daoBJ0+eTGc1LJsESIAESIAEEiZAG9KE0SV3o8dhxrmL88WTbpVIKSF4RSCdLKlQfE/vOo1z5uaiNC/FNlbiAam36RjyyxbIaq0dm88pnKwpMV87JfZKFrNJWymN+aYkMnpcDuTneFBb1ygrAYmrHasmVJYNCZCJNEc5IQr0tyDUX4vvfy4Xg94D6GrapW3dzW/ICtBBWVE9iS9+bA7edXn8wuhwm+aIjSsTCUQiUFIiqq/9Q6rjka7r9Vxr/XFxrmaFQ1Yeldq8npOa/Orr82rCqGrna69LOKZeIwYs8kzXSQqaq9Da4ceevXt10iI2gwRIgARIgATOJkCB9GwmU3KmMNsOi8SDyyudj97m41HrbO3qR3t3P7z9Qbz+dgt2HxlaTd17tBWtnckJX6ryQH8X+jrqkFdSjYtWFMEtM//JJuV19uSpOlkVHEBRQU5aHR0p9WClqnuipg7evqEQKcm0v7wkxUJ/Mo2Z4N7iQvsEV3h6thMoLMhHsL97xmHwS0zP1joRSsXZm9V6dtgkvXRIabhku52yOvpmWJNeeXUH+gMS59U6/UKpcpDW67Pi1Vd3hrWRByRAAiRAAiSgNwIUSKdhRNS8/4ZF+cgurERv6ymERH0zWnLaLbI6mgeTSZzgnNnUPWbZR4oWEnpbTsLhyYPNmQWHLXmBdLhPdfVNEveuGyVFueIhNrWCnsNuRWlhrsTpDOG42Iz6/P7hapP6LC6YGi+2yTSyaIo87SbTRt47PQScLrdmwzw9tSdXa0v9MZgNA8j2uJMrKI13Z7kdmgpsa2u4eq5y7LPr9e2icmzDgG2BtCBFD+d4+iJ26gO2RdIGM3a99nLCXsbjqZJ5SYAESIAESCAZAqmTOpJpxSy7N8tlwaoFBciSWKAth7fH1HuX3YTVC0ZDCwSDg7JS2qwJqQ5bfPaOE1c4qK2SZheUY9EcD5o7k19pHK6rTRwd9fZ6UViQh7KiPHR7ZbVXtpDSRU4gKadFLqdNe91ToV26e1Jrp6pCq+g9USDV+whNX/v6vVPvTCyVvW0+fQxF4mits0t/nqSVJkYoGMDevXsidnlgIISetrfgzF4Aq2MFDD7RgBmYotVqU7YWOsrf1yrO1o5FbB9PkgAJkAAJkIDeCFAgnYYRMYgYlV9Uhr7ORgltkDovqcfqu7H9rQbxkDuo9epYfRcuWF6CuSWemHvZ39mA/PnnYUF5toSAaY75vlgy+vwBzb7TKcJkXk425pTka+q1fb4AfLJN5oTIKEEK7VazeO8V+zLZAsEgOjq7ZJuiF71YOsg8JKATAsFA6iaTpqNL/b0daGxoQJbLLlogqZpwS74nSiPDLl60n3n66aiFeTuPiPOyEhFMl4hNRAMMfuX1O7EJuKiVSQTXQescUZkphLfzKPx9qX12R6+fOUiABEiABEggcQIUSBNnl/CdKgC8O7cI/VEcGU1WgYpt+dFtS8OyzCv1QG3JpIGQCIfi7XfJgioYnjoi9p/JlBb5XmXjqTYVmsLjcsItarzKG6+KyRkQ1dsBiR9qtpgRCARhElgmcYxkFJutvj6fdl9ra5vE80yNam7kFipV6Imu6Oe8pq6tn+awJXoikI4/3Cns34CsQCqHQXX1DVi0dLn8PRplwipdwlxsHXPabSjIzcIfH3g6Zg/Afq94+/a1S6ziKlktlRidwXoYRDgVT3axVRo1lxGDFnGMJjFG/X0t6Gt7XTwrp26SM2r1zEACJEACJEACKSBAgTQFEOMtQnmDtTmz0VUb7hAj3nLSld/f04qiohIJK2JCvz+Urmo026YOsS1VGxMJkEDqCFis4gE2dcVNeUlGkxnu7Gw89/wLWLO+ActXrUdbRw98gekRttQzWzlO2/naa2hpmTw813hYyuu2t+MQfBY3HO5ymJ3rRDBthSHUJvGKO8dnj+3YlINBU64IooWaR+/+1jfFF0FqzRZiawhzkQAJkAAJkEDyBCiQJs8w7hKUHaXf2y73pWqWPO4mTHpDQLxzZs+RGX2zMa0C6aSN4EUSIIGECQR8M1kcFcXWUFAcoQ0JaydO1qC1vQNFhflo7+xBr9ieT2VS2htqdVQ5TWtpCXdiFE87QoEeLeSTUVR+rfYCWTGthFHMD5RQahiU8Qp55SdBND/UNvLboJzWSR61mZwYMDhhEDvRgVC/tiLqb39d24+nHcxLAiRAAiRAAnojQIF0GkYkRwKoB/v1O5sd8nuhViiYSIAEZiaBQcPMdqBuFHV+ZXM+nJStuF9U+MuKRZATdf6Orl4xJ0jvhJ6qR62KBmRV9nhNrWh0pEZleCDYh/6eU9pmNNlgtuWIWYJLzBSKRdi0inmCEkDPeOeVkFkDA34ROv1Qz+VQoAUBn5hSyDkmEiABEiABEsgUApQ6pmEklUOfAZ07HQlJ+5TdJhMJkMDMI2A26z9s0WRUlWDm9Yav8qrjoydqJXxUAeYU52lCaU8aVkuV3bpHwrqoEFVNza2iKpw+T79KndfvbZwMBa+RAAmQAAmQQMYToEB6Zohzc3NlVdCE1gnsgxwOB5xOJ8bHnUvkG6Ic9gwMBBO5dcruUSpzTCRAAjOTgM3hwowO/CICaX8ELRK1Klrf2IzObjvyc3PEKVoulFDqFYdniYaQGh5htSKqwkl53Ha0d3Tj8LEaxvAchsNPEiABEiABEkgjgVkvkJaVleHX//cHFBQUor+vD3V1p/G9734bzz075NbfbDbjG9/6Nq66+hqZsfeiTQKh/+VHbkF9fV3Cw2KXl0WDBH7Xc6LKrp5Hh20jgckJBAJ+mCwOUfEMX2Wc/C79XDVZXWhrOzVhg1QMY694sHVKTNDc7CwJIZWnCaU+f1BT9VXqvbEku9hwKkFUhXNRK6Nd3T2yCitqsTHeH0sdzEMCJEACeiZgl1j2uVkWWCxGVJY5UVHqQGmhHer8gMSK7+gOoq6xHzV1XjS2+BAMDqC10yfX9Nwrtm2mEZj1AmlQQozccftXJK7cU9rYfeQvPoovfvmrIwLpNdduw9p167FpwxoJQ9CH2+/4ulz/Gv7uEx9LeKx9/X1iA6Rv9ANB2iglPMC8kQSmmYByvpPlyJqxAqndlYP2duX4bfI0JJgq8wIjsjwuOGSFszAvSztWsYrV831o5XTI/ECZZirBU8U2tYgXcWWnqspobmlDT684FWJKmkAqtYmSbgwLIAESiEjAZjUiL9uKFUuy8f+unoP5le6I+SKdDA0M4k87WvD7x0+jud2HplZfpGw8RwJxEdC3VBRXVxLL3NTUiKefenLkZrX/1dvvRGFhEZqbm3D1Ndvw0IMPaMKoyvSbX92HPz78uPbCo2aOEklq9cJg1LeNl8E4678aiQwt7yEBXRBobGpC9twyacvMs0+0OHLQ0yMhXnyxv+Ros/ji+Eg5P2KaHgLp0Caanp6wVhLIXAIOmxE5Ioh+9IZqXHxuYUIdNYl/ka2bCrWt1xvEz353Ei/takVD89R6QE+o8bxJtwQodYwbmou2XIy606fFVnQo1lxJaVmYwFpbWwubzYbcvDzN3tSZHf8ftEzaw2R1iFCqX/wmmxMWm4Q7kBAD0ZLF5pgRXnlNFhtiGa+BgRCMZovu+6TaGEt/xo+fr7cDoeCoB9Px13k8fQTsbmXLnvxzobM3gJzSeQj1ni2QGmR1UC/PHqPYilplVXNschTMxemWXu27rWxGTWbxPJsCJmPrSHTfbLFH/ZszW/Tz7IilvYmyGL4v4PNKLNRepEObaLgOfiZGwOpwwyzvGkwpIiDPI/VMUv9UMsg/5RHbMOwVO0XVpKOYQfHYnecO4tZ3V+DyC4pSVoXHY8bf3bpYNuCf/+cwdu2X8Fa+xH/DQqKd5+tNMD5zynrFgqaDQOLfmulobZrrXLhoET7/hS/h85/7e01vXlWXnZUVNlPv8w3NAGVnZWsCqRJy4k29vT3i6n9evLdNWX6jSb1Qqc0EkyF6/wxGecGdAWEmVDtjGS+DOHRS/dH7j4xqYyz9OeuLMwPG6qw2z5ITZqtdmwxJtrvKgrJbVFCdeWXwdTeHFaen77VStTWJADc2uaTNDQdflWekQ17+BkR4VgK0PsLYKGFetWuyZDAN6uZ5ONTecL6TtT2Ra8OTW+nQJkqkPbxnlECsv3mjd3BvLIFBeRdQduYGDCArJ1d8jRTDLe9+LteQeqvXK8JXdzdamxvFv0iL9pzqFzMAvUz4DffFYvRjxXwH7rht8fCptHx+4a8XYd/hbhFMj6Dda9Oe3fFWpJ758aT8ggL0ikZNfz9XZ+Phpse8FEjPjEpxcQnuvude/Pd//SceefjBkbHq7OyE1Spx4c4ku33oZaSzs0M7091SO3wp5s/2VvUSJi9bOvW0a7J74Otpg8/bhe6eoZXiyTpnziuQFTf925wGZSY/1vEKBXJ0v4oYCvhi7s9k48dr+iFgc2ZHFXhibW1DqxeL5y3E4LgQUwajaACIkKeHpFb5rUbPSFPsWUXoDxoQMtjh8NjlGXlGW0En2iRmmYB0eCafpDOZu7TJvJFOTeOOWl12eKJruSTTxJCYoPgkrHY0baJk6uC9iRFQK01cbYqPnZqwy8rOES24Aqw/90JUL1giMYJjm9RRwtSxwwexa8dLaBZzsO6ujpHFjfhakbrcyk70/dsq8B6xEx2ePEpd6WeXtLTajnv+eTk+dede7D/aJXb8iceL/tNLr6Kqam5YJf/wuU9rpnPlFRX48U9/LotGMkHgduGPD/wBt3/1S/SMHkZrZh1QIJXxqqisxL2/+j/88hf34Ec//M+wEVTedNUXfzipfWXbFIvDjeF7xn92d4k6gjz0zKISG1S/5DpLVgml4O1q1Vmr2BwSyHwCoZDMrgdTIyzWnKrBfLEjNcsEk9876iBorMrZtBMV9bexIbBM7iIcOHhsZIJrUNnpj1GRm+72qvaExFnSZGlQHH4oxnpI6gU53ZOFatJApWjaRHrgwTaklkCWaJAtWbwY5eXlEqWgGwP+Ps2/hnJ6Y7G7IR84fOQoDh8+nNqK01CaEkSzc/OwbPkabLnsmoRqUFpL8xct0zZVwPY/P4PdO7dPm2BalGfDJ2+Zj/PXFSTUn2Ru+revrMKd/3kAL4ttqc8f36rn2HpvufkmvPTin0ZOhUJDz5uvfu0OvPDcs/jWN++UFWsXHnnsKVx2+ZV44vFHR/JyZ2YRmPUC6fwFC0UYvR//9v3v4te/uves0VNf7k/e9hn8749+qKkE3HDj++UL/1jSs17ezhbYXPk6FUjz0dr0xlkseIIESCC9BDrqj6a0gh0SjXTponnwjtHkGCgqxEAwthn/lDYmQmH+/h5RLW7Trtg8xWg8dRT7dr4QltNfVSLPSX2Er+kX++uW2pNh7Rt/4CssQNCvD/UxtTrWcvLE+Cam5TiaNlFaKmWh00Zg8eJFWLbsHPS2nETrsR2izRDul0D9xVrsWVhQVYa5VRXYsfN1qO+IHpNbtAgWL1uBK659d0qbd97mS6G2F555FG/ueQ3dZzTrUlrJBIWpldHbPrwA563JnyBH+k9/5W+X4o7/OIAXX2tBMJTYJF1Q/F0EAuHfLYusWF962eW4/NKLtU709vbi4Yce1OzYKZCmf1zTVcOsF0jXb9iAUnFc9C/f+b62DYP+jx/8K7777X8W9d2HcNGWrdjx+l6xFZCXp55ufPiWDwxnS/izu60eRXPlYd5Wk3AZ6bjR5s4XlQd5AEQISp+O+lgmCZBA+gicPHkS8+dVw55div7O+vRVlGTJBoMJjvwqbH/l1SRL4u3TRSAd2kTT1ZdMqdfqzBLnhM6Ud2f50kWonpOH/qaDyDL44C5xwWU34+1TnQhIjMo18/PQ5w+hpz8oE041cOeU4tpt78CfXt6B9g4dCaWiQeCwWfC+D/4l8vLTt4p4yZXXY9OFl+E3v7xLPIH3aBpyKR+UMQU6rUH81XtLcOH62J0X9csqZnunHyUFdqXAd1bq7g2is8uP/FwxW7DHrsXzT59agdu+uQ+HT0mhkQoeV5MyRervGdXo+ejHPo7r3vFOHD9+DPf/+j6JT90mtryFMIu5R93pUZO507K/4dxzx5XGw5lEYNYLpCqMi9omSkFRz/r7T38Sbo8HbjFkb2hIzUudT9RblD6/zVN4ltORidoyFedt2SXobB79I5+KOlkHCZBA+gjs2fsGtly0GQGveFcO6GOlcXxvHfnVOF1XJ6G2wh0wjc/HY/0SSJc2kX57PLtaptTVneYgzllcjSvPr0Ku/xjM5blhEFbPywk7HnvQb2xF2TUbce//PQJvwIggpvf1Uzkqqp43D9e/N/kFhrH9nGjfKWqlH/7Yp/DEw7/H228fkPjIE+VM7rxhMIQt6z244sLYhdEvfnc3nt3egPwcm2j/DWLbpeX4xAeHHCB19QTxF//4Euoa+yTGsx0tHf245V0L8NEbF8Tc0O/943J86HOvo6Nvcodw4wu8795fiCp4v8SMNuPKq67BTR+4GddedTmUqrhKY0ODKadGyp6UaeYSmN4nwgzipjypqS2VqbP5FPKKq3QjkFpdeeKMw4ae9oZUdpNl6ZwAvdTpfICSbJ6aUT749iFUlVfD27A/ydJSf7vVIyq5Rgd27dqe+sJZ4pQRSJc20ZR1IAMr8otjQrUlm3LdViypyMK2TfOxdO0F6KjZi6AhIGq6sZdsG2jB2tJsrPzbK/Hi9p14ZMdptPX40ecbsgmMvaTkc9rEOeXqdZtwyZXXaQsDyZcYewmXXXUdnA4Hdmx/AX3e1PsQKSu242/ev1Q03Sa3dR/b4gvW5eELf71U2mVGbX0vbvi7P+HKC4pRXekWe/gA/vJ983DJeSViH2zAgSMduPkzL2LbJSUoyg8P2TW2zLH7asH1UzdX4hv/fRAdXeHqt2Pzjd8f69Pl7p/+GH+WFfYLLtyMvXt2a1mVw9FhodRut4tK+JCz0fHl8HhmEKBAOo3j1NvRBE9usYRmqIC37dQ0tmSoalfhPLTXH5/2drABU0OAXuqmhrMeajlw4ACyRMsjO1+Fm0rtxFoy/VOTYJbs+XjmmWd14wgomf7M5nvTpU00m5lOd9/dooa7YI4H79tcBbvViNySSlH9bxQb6cQEqd6WEyhYcB7OqS7QBNz9NV343Ys1UHGTB6bIEZjFYsWa9Zuw9Yrrpg3v+Vsu0zz3vvT8k+KbJHVaKzlZFnzp40vi7tdVF80Zuae81IXqCjde3dusCaRupwWXXVA6ct0kQqnbaUaWKz7xYd2KXKxbnotnXm4aKSueHfV8aWtthUd+x1pamjW70jnlFTh29IhWjHqfaWjgYko8TPWWVx/B3fRGZQrb0yYCoKtgrmb8P4XVnlWVW4RRFealp6PxrGs8kZkEhr3UnXfuWpy3cS02b75I81KXmb1lr3bs3AkxEoCaeNJDsjpzkFW2DK+I3ahenZ3ogdNMa4PSJEqVactM63smtVetit56+Tx86FKxQRdhVCVXTiH6uxJ/6R8UddL+LpmIzxsScJZVZuErNy3H+csK4LLFbpeYKGcVz3jxspVxCaPKY3ZnezuC4xzrjG1Dr3znJ7s+Nu/w/sbzt2Dl2nM1W8jhc8l+Ll+UjaULhtRZEy2rTVRyD5/owjmLwtWv1crpD352AP/yo334yidXwS6TFfGmT4uTpeICW0y3VVZWif+Wi8XsdMigdfNFW7Bg4SK8+sp2TRh99pmncOONN2llKS+72667Ho89+khMZTOTPgnE/43SZz9mbKuUl8mWU28jp3gBOmvfxIA4FJrqZM8qgUVWKmoP7pjqqlnfNBGgl7ppAj+N1aoXqz+/+BIuXf0euAvmo6c5tR594+ma8jDuKVuKPQ89hDqxHWUiARLQBwGllllR6MRt1w/ZEI5tldlsTzoygLJltznzxhaLd19QgcXlWbJaegodvemLaZ6XX4jr3jMkxIQ1YIKD3a+9ggd/e684hrJp4Z4qq+fjvTfcCpes0qnU0daCe378n2Ln2Ceqo/1YtXYj3iHlDwtRExQ7cvrSq96B06dOaNvIyQR3csWr7sdurE7w7qHbgmLY+sXv7MFWUc9dsTjcPrjbG0Bbpw++wABO1ia2Qq5Ugs9dlYcHn6mP2k6lgvu9f/2BhHRxo7OjA06XE5//3GdQU3NSu/frd9yOu+/5pSaIerI8mgPSp558PGq5zKBfAhRIkxwbV25J3CWYrYNiqzkadqG3sxlWuwvZc5ajQ4TSqUw2TwGySpag/uguGIwmGDA6S2mVOGIuUW+Jlizy4DCJxzO9J5PVgVjGa0BsL4wSUN5k0vefh2pjLP0ZPy793cpLXQG91I0HMwuOldrTobdeQ/XWC7XVyZ6Gw+LEYmonwZy5c+AUj7pNJ94M85I4C/CziySgawIWk0ETDD9y5fyI7QwFkw9npOLiWuW3a3w6pyob2S4L7nn6OFq7fOMvJ33syc7B+2/5WFzl5OTk4hOf+RIKikoQ8Pvx8x//B1556XlcKnagKj3ywP1YvHQ5rrruvfBLfPr/+N6d2L9vD85ZsSbmem64+a/wk//+nqzCJhf7vazIjjkl8TkNGttIFT/56//xBoLiJfn221aNvaTtL52fI+dXo9cbxLUfeRobVuWfJbSedVOEE7e+p0pik7ahpX3yMT506G1sXLcKhYVFshprR23tqbBwi0owvXTrZpSUlGrRL3p7xHsx04wmoO837hmA1n1G9SSeppqtbSLwhAtwna2nYbY5kFu5Gl11+8VZQPoN/e1ZRfCULELjyX3ysO0/q01WhwcGa/hMZqR+Wgb9YQJ2pDx6OGex2hHLeAUD/ZqAPX6M9NCHsW0wyY96LP0Ze4/aD8iqPL3Ujacye44HJLB4owiDeWXzkVu1RlZKj8HX05J2AGoSzlU0X54zdtQd2Q2/eBpnIgES0AcBo6hGLq7IxkeuSLdK/+CEK4jlBU78hQjDdz12BO3i8ChVyWQyYfXaTfBkhauhRiu/esHoKrFFHOgsWLQMB/e/oQmkymnQAdn/1D/crhVjlVXUlWvWY9/e1+MSSG0ibF148RV48uHfnhVvM1r7hq+bzQbcuK18+DDuz5CsjN7+73vR3CpC9e0bYbdNLBq4xH40L8eOhqa+hATSnCyrhI6xRBVIVSeUVk9T0+RmZDQPiHu4dXvDxN863TZZXw3rkXii8aZg/qAEpj97VaK55gDySufJysVy9DQdFsEhfS9sztxycaZULi+GuyTmU2TPZOqFsbdn8lks1XeXwz4tqsbxcldCd09b9LASaoU0FCyLOEbx1pnO/GqmOZb+jG9DKOBHV9eQ50V6qRtPZ/Yct9Ud1f7288sWwOLMRV/7KQkLk/wKSCSCjpwyed5UQsVfbqvfFykLz5EACUwjAaWmG00YNYzR7Bpu6ov7GnBOVR5yPaOrni+/1YiuCKq3F64oRb7bIqtwZ7//DJdXkmvHzWK3es/TxzRnR8Pnk/l0S5iQC7dekUwR2r2H334L5ZVDarHKVjokGic5ufkj5ar9E0cPjxzHurNyzQZs//PTaBNnPYmkQokNesG6gkRu1cK8fPrrr8FmMeIHX9sAq3VUS04VeOBoB/r6QlhzTr4WRvTFHaDF4QAAFQdJREFU1xrR0Nx3lo1pPJVfvaUUh44dxmA8NzFvxhOgQJrkEPe2x2/gH/RkTyjAtdS+DU9+GQorVohQegze9tokWxh+u8kiaqtF82TmyYhTB18Vb3kTe3hT9q29McxSWg0FU+46PbxXsR2FpK+xjtdAUPokgqme04AIpLH2Z3w/6KVuPJHZeeztakVfdztySuYif95G8fZ9WrxoNiTsRXM8RXtWMRwy+eX3eWVVdh/6eyNPfo2/j8ckQAJTR0A5MPrEdaOrgRPVrDS31DuEimd8sKYTx+u7UNvcg4Vl4fEf5xZ74A+OankFQ4N4YW+dCCCDMDuyompHzC12YeuqEjy287RmszhRe2I5bxRHRhvPvziWrJPmeemFp9Eocejf/6G/0vL193u1T7NlVNvNIppvfX1D5yctLMLFiy/fhod++8uEVkk97sRf5fv6Q3j59SHPt+e/97GRllXNceN3/32xeAEOQcUp7esLwiMq1SpMz1c+uQJlxc6RvPHuXLyxAL/4w0m0dqRuFTzeNjC//ggk/i3WX18ypkXdrXVDKxelSqVunbZyoTzTJZOMJiscsiLqkq217gg6m2qSKY73znACAfEYOOyl7pvfuEMcBwx5qfvWN+6c4T1j8+MlMCjBBNvrZTVCngk5RVXILl+hCaT+nlaJYdiBkD/2FyyDwag5SLPKiqvdIx455f6W04dF6G2Lt1nMTwIkMAUEnKKeecNFlTCHL4xFrNnb1QJl6tPbehIF2WICI05qWjplUnvIEerIPWWiejs27T7cgsoiNzwOC+zuArQf2zv2csT9i5YXYr8IvYdqh7R5ImaK4WSW2IGuP3dzDDknzvLWm7vx7JMP4yMf/7Q4NBryYmu3D/UxGAhKCJehV+mArPw6HK6JC5rkyuKlK/Cs24OO9viflcpRUKJJqeC+9uC2CW9XK6OP3X0Z2jv7oYTX0iKnFo90whtiuJDlschK7JDn5hiyM8ssIUCBVKcDHZAVhQax83Jm5YsH3rlarNL+rmb4xdYrGOsLorwcWp3ZsMmLoSO7BJ3Np1Czf/ukq6I6xcFmpYEAvdSlAeoMLlKpqrfVH9U2Z1YBnNkFyJE4byopu+OgrxeDQZ9oVwxo59SnwSCO0ESNz2xzyubStv6edvR2tqBFQloFRU2eiQRIQL8EqmQ1cpF4uI0ldbfWo2zRBvSJFkWBtihqiyqc9MuK2hvH23D9efIeI9oSPjEF8vfH5qX11suq8Z3fHkjKnnRO+dxYujZhnjd278RDv/+1JozOKa8ayecWT7tms1kEyBbN6ZG60N7agqyc+OxURwqUnaXL14jq7jNjT0XdF6fIWLMs8TqjViAZVOQVZTeaypQtQml9E38fUsl0ppdFgVTnI6hU6tRmc2aJA5sSZM05R1psQFDsS4O+HgzKS6QKFaM85KoXRKPRDOVN1iQvhyrOn8/biZ72JjTWHJJ8+lZB1flQZFzz6KUu44Y0ZR1SKyFqU66OLOIB3CIO12zi5MxkccmzRia65Pmi1P0HRIUvJKsC/Z1t8pJ5SotlnLJGsCASIIG0EshxWfH+LaNCVrTKlCDZ1VwDT5GEqat7K1p27fouWR2tFhXeouIiiYE8N67wcnaxZ1xRnYM/vZmYhpjVZse5F2yJqZ2RMu14+QU8//Rj+OgnPosi8eY6Nikv/EskpunOV1/E1We87L65+zVc9Y73jM0W1/7aDefjjV2vorc3do+xSl23six8RTquSqcp89xyJw4eTZ+flGnqFqtNggAF0iTgTeWtPm+X9rKnHIObReC0u7K1l0SzvCCaRQ3GbLFrDkkCfp/YZ/TBL7N2/b1vTIm33qnkwLpST4Be6lLPNJNKDMhLqNq8surJRAIkkDkE5pd5NLXbeHrUJur9xXOXI6t0CbrqD056a2dvQFRuO3HTNesk/zI0nzwApf0VT3rneeWywtqBjhj8WYwv1+Fworg0ce+z+97YjXaJNfqv//yVsKJv+/ztKJFyr77+/+Geu34AJYj2i+3oitXrsSyOkC9hhcqBUi82izdfxLaArN1utZhk9XLUodT4MvV6nC9xU5lIYCwBCqRjacyQfbUy0TOJM6IZ0g02kwRIgARIgARIYBoIKHvOK9eVJFSzclBWUL5I83Fh80zsqGzXkQ6sW7sGZfNWoKlmf8KTWvNLPXj9cPxxOpVAmkz6yF9/atLb8/IL8el/vBNdne2w2UWLRFZkk035+UUSkzR2O1Kj0tmdgckj3paZSGAsAQqkY2lwnwRIgARIgARIgAQynIBDnMoUZNkS7mVL7SHNznzAXoTcuYvgsfk077sGifkp4SPR1mdGX3Yxzqm2ax79Q4HoIeQmasyVa0twoKYDXrFHjScVl82JJ3vCebOycxO+d/yNcyqqcOzI5CvPY+/x+eNjMvbe6dwPBIZ8EUxnG1i3vghQINXXeLA1JEACJEACJEACJJBWAusWjsbPTKSinz5+EIdOdaCt24cdr+1EWUkxPv+BTbAabZpa7k9+/2cUu4LwFpclUnzYPQXZNih70ngF0pKSqRFIwxqb5IFSMTaIF6FBJdXHkFzOGNwjx1DOVGcpyKXK7lQz13t9FEj1PkJsHwmQAAmQAAmQAAmkiIDTZsL6RckJpLdeuQQSVjQstdcfGTn+4OYimFIY2WNOvlOE3/jiVuYVFI20Z6bs5OTmifdei8Qjja+vM6V/bCcJTEQghY+LiarIjPMOhwP5+ck9wDODBHtBAiRAAiRAAskRMIq3ZpOod0ZK6lppaZl4jY/8isLf40jUYj/ntJuRm6QNnzJdVMMzdhvbglQKo6rcldXxqcUa5btldyZnQzq2P1O1rzwDmyScDBMJzDYCkZ/2s43CJP1Vcab+5Tvfxys7d+Phx57CI7KpH0omEiABEiABEiCBxAh87Z/uxFdvv+Osm6/d9g7sfmM/fnX/77Br735cceVVI3n4ezyCIqkdkwosOcNSVbFTU9uNtdlGicPu6595cS4DErt5Bg5PrMPCfCQwIQEKpBOiGbpwzbXbsHbdemzasAbnbVyLnTtfxRe//LUod/EyCZAACZAACZDAeAKXXX4Fdry+F7fc+hfjL8HlduM73/s33PLB9+Pizefho39xC/713/4TakVUJf4en4UsoRO57plnv5fjssEhdqSxJoMs4dqT9LIba12pzGex2rV48qksk2WRwEwgQIE0yihdfc02PPTgA+iT2J4q/eZX9+HKq66eUJUoSnG8TAIkQAIkQAKzlsDTTz2JjetW4cd3/c9Zjlu2br0Up07VYM+e3RqfnTteRVNTIzZftEU75u9xar42bgn5MtOSWWRRrhzOtFFje0kgdgJUVI/CqkTUc9UP6HCqra2VWFM25OblobWlBcXz1wxfivmzoe0YTrbq21X3E7sa4Mgugq24MGq/DMEe/PH3v8HG8zZHzTudGXq8vpjGKxjox7fuOonCopzpbG7Uur9796mY+jO+oPa6w/D39Yw/zWMdEMgvXwKzbWg1KF3N+c1LbyM/Nztdxcdc7o5DbTA7c1CcJ85RJkiDAyG8LlopS1asmyDH1J0+efwogoOGqH9zew8dwVvH9OGQ5Hj9YNT2Jkuwp60eve0NyRaj3V9SUoK607VhZZ0+fRrqd1ilaL/HYTfyAJ6CcgnNcvZv+N6at3GBzt9Bxg+fel44swpgKSoefyni8aD8jt9/7914700fjnhdrycf/v2vkFVYDndxbCF5rGjGHT88jvdcNbM8Cn//ntqIzyZfbyc6Go7pdXjYrjQSoEAaBW52VhZ8vtH4WT7fkE1Cdla2JpBGuT3iZWvePPx6T8RL+jlplBcAe2zNGTS70Sre7x578pnYbpimXGZ3QUw1my125JUvxtfvGR33mG6c4kyqjUwkEC8B9b3Rx/NH/h6jPGMMRpP2t6iXZ4vBHt2xirNwgW6eHaas6ni/HgnnX7RoMbZcvDXi/Z1dXbj/1/dFvDb2ZHZ2DvrH2f2p31/1O6xSOn6Px9Y/W/b18wyIh3j058XY0gzyO+4qqNT9e8nYNqt9k7sI8UTo9KIQBxqhm2fO+P5MdMz3l4nIzN7zFEijjH1nZyes1lF7C7t9aPWis7NDu7Px6JBqUZRieJkESIAEohJorY09IHrUwpiBBKaQgM1uR0HB2atxqgmxeg1Vv6s28TI6NtmlXPU7rFK03+Ox93Ef6G6p1TayIAESIAG9E6BAGmWE6uvrUF5RMZJL7asZ2/b29pFz3CEBEiABEiCB2UzgzTf2Qm3JpPr6eswpLw8rQv3mqt9hlfh7HIaGByRAAiSQMQTo1CjKUD7x+KO4/vp3Qc3SqnTDje/HE48/hoGBeJQqolTCyyRAAiRAAiQwywk8//yzqKyswuo1azUSG8/dpK26vvjnP2nH/D2e5V8Qdp8ESCBjCXCFNMrQPvLwQ7hoy1bNTX1Pdw+6e7rx4Vs+EOUuXiYBEiABEiABEhhP4Jprr4OKQerxDNmFKs+5X/3yF7SJ3t6eHnz+c5/Gvffdj+bmJuQXFOCzn7ltxMs9f4/H0+QxCZAACWQGAUNubu5gZnQlvb1wezxwu9xoaKhPb0UsnQRIgARIgARmMQGz2YzSsjLxuHsaodDZHun5ezyLvxzsOgmQQEYSoECakcPKTpEACZAACZAACZAACZAACZCA/gnQhlT/Y8QWkgAJkAAJkAAJkAAJkAAJkEBGEqBAmpHDyk6RAAmQAAmQAAmQAAmQAAmQgP4JUCDV/xixhSRAAiRAAiRAAiRAAiRAAiSQkQQokGbksLJTJEACJEACJEACJEACJEACJKB/AhRI9T9GbCEJkAAJkAAJkAAJkAAJkAAJZCQBCqQZOazsFAmQAAmQAAmQAAmQAAmQAAnonwAFUv2PEVtIAiRAAiRAAiRAAiRAAiRAAhlJgAJpRg4rO0UCJEACJEACJEACJEACJEAC+idAgVT/Y8QWkgAJkAAJkAAJkAAJkAAJkEBGEqBAmpHDyk6RAAmQAAmQAAmQAAmQAAmQgP4JUCDV/xixhSRAAiRAAiRAAiRAAiRAAiSQkQQokGbksLJTJEACJEACJEACJEACJEACJKB/AhRI9T9GbCEJkAAJkAAJkAAJkAAJkAAJZCQBCqQZOazsFAmQAAmQAAmQAAmQAAmQAAnonwAFUv2PEVtIAiRAAiRAAiRAAiRAAiRAAhlJgAJpRg4rO0UCJEACJEACJEACJEACJEAC+idAgVT/Y8QWkgAJkAAJkAAJkAAJkAAJkEBGEqBAmpHDyk6RAAmQAAmQAAmQAAmQAAmQgP4JUCDV/xixhSRAAiRAAiRAAiRAAiRAAiSQkQQokGbksLJTJEACJEACJEACJEACJEACJKB/AhRI9T9GbCEJkAAJkAAJkAAJkAAJkAAJZCQBCqQZOazsFAmQAAmQAAmQAAmQAAmQAAnonwAFUv2PEVtIAiRAAiRAAiRAAiRAAiRAAhlJgAJpRg4rO0UCJEACJEACJEACJEACJEAC+idAgVT/Y8QWkgAJkAAJkAAJkAAJkAAJkEBGEqBAmpHDyk6RAAmQAAmQAAmQAAmQAAmQgP4JUCDV/xixhSRAAiRAAiRAAiRAAiRAAiSQkQQokGbksLJTJEACJEACJEACJEACJEACJKB/AhRI9T9GbCEJkAAJkAAJkAAJkAAJkAAJZCQBCqQZOazsFAmQAAmQAAmQAAmQAAmQAAnonwAFUv2PEVtIAiRAAiRAAiRAAiRAAiRAAhlJgAJpRg4rO0UCJEACJEACJEACJEACJEAC+idAgVT/Y8QWkgAJkAAJkAAJkAAJkAAJkEBGEqBAmpHDyk6RAAmQAAmQAAmQAAmQAAmQgP4JUCDV/xixhSRAAiRAAiRAAiRAAiRAAiSQkQQokGbksLJTJEACJEACJEACJEACJEACJKB/AhRI9T9GbCEJkAAJkAAJkAAJkAAJkAAJZCQBCqQZOazsFAmQAAmQAAmQAAmQAAmQAAnonwAFUv2PEVtIAiRAAiRAAiRAAiRAAiRAAhlJgAJpRg4rO0UCJEACJEACJEACJEACJEAC+idAgVT/Y8QWkgAJkAAJkAAJkAAJkAAJkEBGEqBAmpHDyk6RAAmQAAmQAAmQAAmQAAmQgP4JUCDV/xixhSRAAiRAAiRAAiRAAiRAAiSQkQQokGbksLJTJEACJEACJEACJEACJEACJKB/AhRI9T9GbCEJkAAJkAAJkAAJkAAJkAAJZCQBCqQZOazsFAmQAAmQAAmQAAmQAAmQAAnonwAFUv2PEVtIAiRAAiRAAiRAAiRAAiRAAhlJgAJpRg4rO0UCJEACJEACJEACJEACJEAC+idAgVT/Y8QWkgAJkAAJkAAJkAAJkAAJkEBGEqBAmpHDyk6RAAmQAAmQAAmQAAmQAAmQgP4JUCDV/xixhSRAAiRAAiRAAiRAAiRAAiSQkQQokGbksLJTJEACJEACJEACJEACJEACJKB/AhRI9T9GbCEJkAAJkAAJkAAJkAAJkAAJZCQBCqQZOazsFAmQAAmQAAmQAAmQAAmQAAnonwAFUv2PEVtIAiRAAiRAAiRAAiRAAiRAAhlJgAJpRg4rO0UCJEACJEACJEACJEACJEAC+idAgVT/Y8QWkgAJkAAJkAAJkAAJkAAJkEBGEqBAmpHDyk6RAAmQAAmQAAmQAAmQAAmQgP4JUCDV/xixhSRAAiRAAiRAAiRAAiRAAiSQkQQokGbksLJTJEACJEACJEACJEACJEACJKB/AhRI9T9GbCEJkAAJkAAJkAAJkAAJkAAJZCQBCqQZOazsFAmQAAmQAAmQAAmQAAmQAAnonwAFUv2PEVtIAiRAAiRAAiRAAiRAAiRAAhlJgAJpRg4rO0UCJEACJEACJEACJEACJEAC+idAgVT/Y8QWkgAJkAAJkAAJkAAJkAAJkEBGEqBAmpHDyk6RAAmQAAmQAAmQAAmQAAmQgP4JUCDV/xixhSRAAiRAAiRAAiRAAiRAAiSQkQQokGbksLJTJEACJEACJEACJEACJEACJKB/AhRI9T9GbCEJkAAJkAAJkAAJkAAJkAAJZCQBCqQZOazsFAmQAAmQAAmQAAmQAAmQAAnonwAFUv2PEVtIAiRAAiRAAiRAAiRAAiRAAhlJgAJpRg4rO0UCJEACJEACJEACJEACJEAC+idAgVT/Y8QWkgAJkAAJkAAJkAAJkAAJkEBGEvj/W/N771xRglMAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6QAAAGQCAYAAAC5y61PAAAAAXNSR0IArs4c6QAAAERlWElmTU0AKgAAAAgAAYdpAAQAAAABAAAAGgAAAAAAA6ABAAMAAAABAAEAAKACAAQAAAABAAADpKADAAQAAAABAAABkAAAAABUH4gHAABAAElEQVR4AeydBXwUxxfHX9yNBKKQ4C7FobgULy3QQnEp1B0p1FtaSqFe+LfFKd5S3K1Ii7u7Q3BCBOL/95uwx93lkruLk7zhc9zK7Ozsd2838+aZjY+PTzJJEQJCQAgIASEgBISAEBACQkAICAEhkMMEbHP4fHI6ISAEhIAQEAJCQAgIASEgBISAEBACioAIpPJDEAJCQAgIASEgBISAEBACQkAICIFcISACaa5gl5MKASEgBISAEBACQkAICAEhIASEgAik8hsQAkJACAgBISAEhIAQEAJCQAgIgVwhIAJprmCXkwoBISAEhIAQEAJCQAgIASEgBISACKTyGxACQkAICAEhIASEgBAQAkJACAiBXCEgAmmuYJeTCgEhIASEgBAQAkJACAgBISAEhIAIpPIbEAJCQAgIASEgBISAEBACQkAICIFcISACaa5gl5MKASEgBISAEBACQkAICAEhIASEgAik8hsQAkJACAgBISAEhIAQEAJCQAgIgVwhIAJprmCXkwoBISAEhIAQEAJCQAgIASEgBISACKTyGxACQkAICAEhIASEgBAQAkJACAiBXCEgAmmuYJeTCgEhIASEgBAQAkJACAgBISAEhIAIpPIbEAJCQAgIASEgBISAEBACQkAICIFcISACaa5gl5MKASEgBISAEBACQkAICAEhIASEgAik8hsQAkJACAgBISAEhIAQEAJCQAgIgVwhIAJprmCXkwoBISAEhIAQEAJCQAgIASEgBISACKTyGxACQkAICAEhIASEgBAQAkJACAiBXCEgAmmuYJeTCgEhIASEgBAQAkJACAgBISAEhIAIpPIbEAJCQAgIASEgBISAEBACQkAICIFcISACaa5gl5MKASEgBISAEBACQkAICAEhIASEgAik8hsQAkJACAgBISAEhIAQEAJCQAgIgVwhIAJprmCXkwoBISAEhIAQEAJCQAgIASEgBISACKTyGxACQkAICAEhIASEgBAQAkJACAiBXCEgAmmuYJeTCgEhIASEgBAQAkJACAgBISAEhIAIpPIbEAJCQAgIASEgBISAEBACQkAICIFcISACaa5gl5MKASEgBISAEBACQkAICAEhIASEgAik8hsQAkJACAgBISAEhIAQEAJCQAgIgVwhIAJprmCXkwoBISAEhIAQEAJCQAgIASEgBISACKTyGxACQkAICAEhIASEgBAQAkJACAiBXCEgAmmuYJeTCgEhIASEgBAQAkJACAgBISAEhIAIpPIbEAJCQAgIASEgBISAEBACQkAICIFcISACaa5gl5MKASEgBISAEBACQkAICAEhIASEgAik8hsQAkJACAgBISAEhIAQEAJCQAgIgVwhIAJprmCXkwoBISAEhIAQEAJCQAgIASEgBISACKTyGxACQkAICAEhIASEgBAQAkJACAiBXCFgnytnzcKTtmj5FHl4eKbZ4tb//qXw8Ktp7n8cdrR8qhW5u3vQ4UMH6cSJ449Dl7O0jz179aF3Bw+jNk81o2vXwrOkbXt7B+rbrz9dvHiBVq1ckSVtSiPWE+jTbwC99fZ71LJ5I7p186b1DcgRmSbw8quv06CXXqWGT9am6KioTLeXlQ0UKxZKjRo3oaJFi5GjkxOdO3eWlixaQLdv3051GgcHB2rWvCVVqVqVHjx4QPv27qHNmzaarNewUWMqX74iBQQG0q1bN2n3rp0m6xofXLFSZSpTpiytXr3SalaW9g/nxN+0Tl2eo1KlSlNCQgIdP3aUFi6Yr67LuE+Wrnd85lk6efIkHTl8yOQhbdt1ICdmbKoc4/MfPXLY1C7ZJgSEgBAQAkIg0wQee4F0+IiPqFTpMmmCGNCvV64LpD169qb3R3xIrVmgunzpUpp9NbUjMDCIfp84lWxtbWnjxg3Uu0c3U9Xy9TYXFxfy9fVVDKy90LTYOzk50keffE7/bFgnAqm1ULOwvu7e2mS/sca/W3fRBr7fH44YloVX8Pg35eriqp4vGxsbqy8mrefL6oZMHNC6TTv6bcJktefmjRtka2dHhQoVoqFDh9Orrwyijf+s1x0FAW7CpKlUr/6TdP78OcI1DR7yPs2ZPZNGvD+EEhMTdXWXrlhD5cqVp/j4eLp69QqFhBRV75b169bQoBf7qe26ynoLEEbn/bWQJwfdqWmj+nTGCuHdmv7VrVuffps4mRwcHOm/f7eQp5cn9enTjyflhlKv7l3p+PFjer2ybLFq1Wr0w0/jaew3X6cpkI78arT6HZhq8ZeffxCB1BQY2SYEhIAQEAJZQuCxF0hBAbO33bt2Ngnk3r17Jrfn5EZHR0fy9PTKkEDV8dlOhIEitHjQBhcuXIRu3Liek91/rM+VFvuYmBhqWL823b9//7G+Pum85QQ8PD3I1dXV8gOkplkCaT1fZg+0oMLVK5fpvXfepA3r17IW85Z6D5avUJGFwgX0y/hf6YkqFVl7GK9aGjx0GJUrX4E6tm9N+/btVdvatG1P43+dQHv37FaCqXbKuSyk7uFtBw/sV4IqhMUhQ98naOv7DRhIv/86Xquq+w4pWpSmTZ+ltKkQSK0tlvYPlhsQRq9du0bPdGhDeE+hQFO8fNVaGvvdj9ShXSuLT4+J0Keeak1hYcUt+vsD1u++/Uaq9uU9mQqJbBACQkAICIEsJJD9aoks7GxaTSXwTDcGLKY+mAXHrPmMWfOoTp16qZooUbKU2te8RUvdPmdnZ/rgo09pzfpNdOT4GVq+ci11e6GHbr+2MHnqDOrPAxi0+8fMuXTwyAnauGUb9erdV6tCHZ/pRL15dhvl+x9+UedCX9AnS0qnzs8RzI5/+el7smMNwTMsoKZVqteoSRMnT6f/tu2mLVt3smZ1CjVp2lxXHYNHaA0WLV1Je/YdpsXLVtG77w0lXz8/Vef5bt1V/zAo0i+YsUefS5UurdvcvkNHtS0oOFhpGjf9u52279pHX476hnA8NBlff/Ot6se+g8fo+x9/ITe9gRzqoE2c07h8M/Y7Gvr+COPNButly5ajSVP+oH82b1Xct+7YQ9NnzqH6TzbQ1UuPfXJysuq3Pk8M9kaP+U53vP7CkGHDadz/fleDYm07uMyc/Sfh+nDtGPwGBARqu9P9Dg0NY43FOAK3vQeO0hK+FzgHNMH6xdw9Bedvv/9Jcd5/6JjqD44xLtpvFRrJgYNepl9/n6SuX6tnyW8eWvoXuvekhUtWqGtG3ydMmkb6z47WnrXf3j7e9MWXX6vnZ8/+I/TTL/8zMMUf8+0PNGbs9yabHTb8A/p53G8m92kbp82YTe5u7gRTTfzu8EGb+sWS+/nWO++p52bnngN04PBxWrt+s7pvEGr0i8b7yQYNac68v9Vv9K+/F1ODho1UNZhHzpu/kA4fO63eM82at9A/XAkP2cHa3cODRo0eS3heDh09SbPnzqdq1asbnBsrllxnes+X1qAlTLW6xt/79++jv/6cq97r2IdnFuamy5YuURN8wfzuQcF75fmu3WkNm9Fqwii2r1i+lA4dPED9XxyEVV2ZPGmCMufVtKaRkfdo/Lif1f4KLPAaF29vb5r+x2zavHkjTZ+aorE1rpPeujX9w/OJ39K5s2d0wijavnDhPJ04flyZLad3LuN9X381kpo1aUAN2BzbkhIXF6/MoWESrf8RgdQSelJHCAgBISAEMkogXwik5i7+0MGDVKt2HerBvojG5bnnu1J9Fg4P7N+vdmFgDoGt/4AX6czpUywI/qBMxSCoDHr5VYPDMdh87fW3aNbcPwkDiTWrVykfHJg+we8JBb5M2h9zDHzu3r2jPhCUzZUKFSsRBC8Myg7wbP7JEycIAqqp0uW5roQBb/HixWnZsiVs6rWZKleuygLWt6o6+gcB9NXX3qAL58/TvHmzKeLuXXrjrXeoZcuUGXcciwG7ra2h6Z5f4cJqu/6gGxoD1F28ZCW1bdee9uzeRRcvXCD4e06YNIVWrf2HGjduSrt27lAc0e9+rIHQCs6B43FO41KjRi2qVLmK8WaD9TA+7onqNVjLcYD+mD6VVq5YTiVL8OQCTwxgO4o59hBeS5d5ZO4N/1RMPGCSQr/gugcOeoVu86QHBsUo4D1r7l9ULDSUpkyeQFs2b1L+a0uWrzIQvPXb0ZaLFPGnBYuXU9169ZX2Z+Yf03jwd4teefUNqlrtCa2aOkd699THx4eW8WRJq9ZtaPWqldyPiYR79ScLOsYCDn6rEIJWrF5PH378mZoQwe8exdLfPCYvMMlwh/s6edLvaqIEA/i33xms63NGF+YvWELN2f9vP2u34C8HYQcTDFq5euWKmrwoz1ow/YLJlEEvvWLWLD/ibgQl8b2Li43TPYORkZG6piy9n61atSFMgK1cvoymT5tCZ86cUu+AH3821Kpp74ZpLMigrFu7RrkW/Pb7ZDWx8fO4/1FSYhKtXbOKihQpwtsmqIkcrUPZwRr3eTFPJnTlSaADLOzNnjmDotjstF691JNjllynuefLUqbaNVv6jWckkf0qNX/yomxyC833IfaxNy4HWSAtzS4dmMxLr2jP3eXLhi4V8KnExNeNmzdo6OB30msizX3W9A9/I3bu3E4tWjylJjs1M+qgoCD1TsTvLrsLJi7N8cruPkj7QkAICAEhULAI5AuT3bLlytPm/3aYvHPvD32P/t2yWc2Ww4QLGoKohwNRaHyeebYzrV+/TmcGO5AHtxACW7dsqkyB0ej4cT8RNCxvvPk2TZsyiWJjY3XnwgCiT+/uaiYeGwMDg+jfbbvo2U5daNPGf9jUdjlhMAH/o48/GqGENt3BZhYgxMFkCzP9KPP/mqd8Ucvx9cJMWSuYwf/408/VQAY+plr/MJjqygIWCoQdDOb79Oqu/Ca1Y+Fb5Ozsoq1a/T171gz68YdvVeANHAytDwKLjB3zNY3/5SdlEodBFQSOBg0b0y8//2j1OUwdALa1qlc28A37+cfvWPOzlzoxe5jpWcv+z7lz6PU33mahv4vytdLO2659SrCPOXNmqU0wv4ZQh/ZffXmgTkiFYLyIB/x9+vRXvxnteOPv9h2eVprQ5zs/Q9u3b9XthnCcEJ+g1i25p6/yZAg0sm1bNaejR4+o434d/4vSYH7M/rFghIAoWqnOgvo4vicQpGD2rWnCLf3N9+7bTwmh/fr01JpUbWBiIbMFGqoJv/1Pdz9haojfLCYN4Ec3Z85MNXnSrXsP+uSjD3Sne+75bjx4ticI9emVN19/ma0FjivexiaJ1tzP57o8kyqYzQcffqImq6Ct1g+2g3dDz+7P6+4NrgUayTL8fmnzVHNdgDJMXsHCogZrtrXfQ3awfnHgS1SSg+QMHNBHTWBovCD8QiOqXyy5zvSeL2uY6p/X3DKsNPAeW86TbhCIUTAJg6K919XKw/8QpAnveR++N/BDTas83fEZtWvRgr91VXDcz+N+VdYezzzdLk3fUt0BaSxY2z+8UyZMnEqffDaS4KM7d+5s6s6WCZiY/InfcdlZMLl18sxFSkpKUu+IpUsWK+sc/d91dp5f2hYCQkAICIGCSSBfaEjv349Rplww5zL+RD70IZ3LwgQ0BBAutAINVVBQMM2bmyJoYDu0BwgepC/wYfsq1sBhkAVTS/3yH5vTwixMKwiScfbMaQoOCdE2ZehbmeeylgjCqOZHtODvv9RAwVhL+hRrbby8vOmH78bqhFGcFIKpZmKGgTsGuwjio19gFqcNgvW3W7oM4UZf6EG0SpTpU6fohAtoFbG9Rs1aHKjD0BzY0vMY14PWWTO5wz3BYB9aqYiIuxRWvIRxdYvWEcETLDp3ft7ANLdzl+dVhGNEOUZB1GNoJ39jXzNNY4rt0O5Ba1O5SvraXU1jHlbCUDsMDfhZNtVDseSeYhC9iX+rmjCK4zBIx6RJ8RIlqSJr2PXLnzyg/XbsaN3ki+Z/Z8lvHpMK6HchX18DU1q0Ab+zzJb5f87T3U+0NW1Kimkk7ivKlcuXCUFsMNGjHwkUGm1EUsW9y2ix5n5CwEGBRq7aE9WVuTLeKyjGvzu8G/TvDawFUP7dskknjGJd217vyRRNZXaxBjv4TkKbbq5Yc52m2rKGqanjTW0D81/YNBtaXZiiagXPIoomoGrb9bdpdfT3acuYlIQLAt5l+lHMP2WBsFbtutS3dw/1XtHqm/pu1bqt0mjChUP7aFYe2rkt7R8E6yvsPwsf15scAXjEBx+zJUaY0mpr7zz0AZYW2rm0b313EVP9TG/b6lUr6Ocfv6eRn3+ivmHxMoDNnSdPm2nwzKXXhuwTAkJACAgBIZARAvlCQwoT1JcG9k/3+rdt/U+l+IBwMXd2igAKwe7G9eu0fl3KgBrCUnBwCGuv/Ah+bPrFwSEFVSALsPqDFv062vI9HlA4OaUMUrVt1n5Dm1iYTflWrlimtLo4Pio6inbs2EYIdPT1qJFKOMX24iVSBLC0wvJjAB/IWtrVq7M/vYkmPNvZGc51YDtMwVw4+mV8fAS6nakCgf2d94Yos1ZopVFgxmfDWo3Tp05luO15c2Yrn0xMVmxlgQKmyTD3/uTjR1q54g8FXvgJGhcvL09mHWy82WB9DZtpDrk5nL4Z8z2bMb9IW/m3CW2mvmBnyT319w9Q/nQGjfPKmdOn1abQsDDChINW9Aez2jZrfvNzZs2kt98drPxlIQhDuPl7/p/pap6081j7jYmduLg4ZXGgHTtr5h/UtFkLQvTVRQv/VibPuBejvvxcq5Khb2vuJ8zoP/nsC9ZmPppc0czv7e3Tf53ienAP7GwNzUe1ZwaTSiiY5Mhq1nheQjmwDSbmLCmZuU60bw1TS/oDbf6vEyarlCsDX+yrIulqx927l2J6jfeLcdEmL+5FmA5uB59e+I5v2/YfffHZx7rDYfLejbWS3bt1MTiXrgJP0OgXCILGlgIjv/hUTVZa2z/4HKPfmpYaLgRfshsI3EbKV6igsxAoWqyY0qLq9yM6Olq5MOhvs3QZ1kT65btvvyFN+9+cTYihlZYiBISAEBACQiA7CKQ/gsqOM+ZSmxjkzWPTJ5inQchAzkOY8M6YPlWn4XNzc1PmXdC4LFu6yGRPjz00jTS58+HGZDZ34obSq2J2X2fOQYeCoDGmCjRH8FtEcXN1U9+a5k2t6P0HzYKmddHbnC2L6tpNtJyUzEyysHzNgVm6sNYXJsPQHJ8+dZLu3LmjAlBl5jQYdH32xVeEiQsIpNAqQZBY+Pd8XbOI1ooCTUJiYoJuu7Zw985dbdHkN0wHGzWsy+bBbynhStNuQIvcv29P9nG8a/aewicY9zQ2NsVsUf9EDx6kRA524fturljzm//+uzFKg/zqa2+yj3RT9fzAf/TzTz8yiGJq7pyW7ofmHWaTWsHEETTQ3Xv0VAJp9x69VNqOtWtWa1Uy9G3p/YS5K0zPYe4Mf0Lkubx06SKbAjdL8zk17lByGs+BvqYdx2Q1azc3d2WdYMqs1biPWXGdljI1PrepdUyaIKBYgwaN6J23Xlf+uPr1kEcUBc+EcXHldzoKAt4ZF0w64f0KP9MB/Xqr51yrg8kBCIW436bKho3/qsmFEqEpk2FD3nubjJ83La+uNf2DaweCkn30wfs603DEMujxwnM0a85f7OPeU2mH8a6HxUbTxilada2Pab1/tf3Wfs9l6yHETqhYqZIIpNbCk/pCQAgIASFgMYECI5CCCHxw3nl3iAoMdP7cOZVPDv45WoEgAJNPmLouWrhA25xl37YW5lpEVEaYbMJ0eOOG9QbnhxDyPudehXZXE0g1c8UQTh4Pwcy4QFC7dy9C5dsz3qe/Dr8hFPiUQgjLzpKUlBIcKCP+q9D2tOFASggUgxyDlhRL2UNbtXTJImXCh0FhZ+aMlDv4XWjl3NkU81BE9MRgMSMFggHMDvFBKh9Evn3plddU4CFoAs3dU/xW0YamHdbvg6ahhcmduWLtbx7+nPhAUISJNCLjQlONyR7t92PunJbshw8tJlI0E2YcAwEVGuzX2Ze7Gge2wYTSzxx92pTmN61z6Au4Wh1L7ye0ZujTKy+9qIQB7fjs+s5K1nj+IcQU8fc3292MXKfx82UpU3OdgTk0cpFCk/nGay/zROHiVIdAm45SpmzZVPuwDYKhZp6uVWjcpJmKQo7gTn379NAJf9p+TDYMH5Y6WBf60a790wTt4fVr17TqamJEt2K0YE3/atWqo46+ePGiQSt4trZu/VcFI4PQCjNvmABn9P1j0Hg6K9p91Xzb06kqu4SAEBACQkAIZJjAI/VDhpt4fA6EHxqEOAhznZ97XhcBVv8Ktm/bpnwEYQ5lXOALpPmLGe9Lbx0CIYqWXiW9utjXhk0SMdsPf55JE383+Eyc8Btt/GeD0qxpGoG9PHhC6dr1BfWt/58msKAOzK6M04pggA7TTxTkvkMp8dAEWK3wf0VZ0M3qggEiAmUYnwuCiIenZ7qn8+T9iHyLiMX6BRoN/dQy2GctexwDs0bkGkRgHfhizuWAOvplJw8GodGCf5WpojE3tQ/b4POKiQWtQOP2EwtWGHTCVBLFknu6a9cOFU0XWk790uHpjsrvOC0Tbv26WLbkNw9zSP3rQl9hSYDI0gishKAxWkFwpt59+7PmsLm2yervZ57too7Zwc+jfkFwI7D/32+TWCi2Uaat+vvTW8ZvAeb4xsXS+4loqSjGvztTbRqfw5r17GJ9lK07EPna2I/b+L1kzXWm9XxZyjQ9LtBSIq1SHU6vNKBfH5PCKI6HwAkBDdemBerCdrzrqlWrTsuXL8WqrsBndPJUTo/172bq3bNbKmEUFTERgokh4w+iiaMsWbRQWWeoFTP/WdO/8+fPqdae7dQ5VatNWIhGyQ4hFIGXTE3WtG7bTp1z//696lv+EwJCQAgIASGQHQTyhYYUf0xffvV1k3xWLFtq4AOEAEa/jP9d+TjBzMq4fPnFp7R63UZOvr6QzebGqiBJSMsAMyrkE0X03SucgsKacvjwQTWIhnZ2HEeZdeJZ/8uXL9Kpk6m1mWgXAjNm1bVgJ8bnWrJ4IbVo+RSn+2hLCxfMVxFlYWqKaKmJSYlKowd/NiREb9WmLTVuUJdGjfxcpQiZ++dCGvPNKJXXrkyZsipH32weeM3hZPE7tm1V/fxs5CgVWRHaoHbtO6q0IsZ9yIr17ey3BU0wUucgMBSCAfUfMEgJ7sZBpfTPh0EwNMFIYwJ/XgT/KFu2PPXtP0AJe5cvXdJVt5Y9DsSgE+33Zf/OS6ypQJRm/YK+4neEFDcQguFHCW0lNBfQnlzlgCRD0kkRgfuEgCcIPgSzO0R+7vZCdzUg1IJOIUqwuXv67ZjRKpXP5Kl/0Oivv1JacPx20AekK9KEBf2+m1q25DcfyxrzDZv+UyluIIiGX71K5TjaKYJlgYdmnoj2e/XqS336DSBTz5ep82Pba2+8yde7lOADB3N05MuFXy18+/QL7gfyQUL4gLbs+vVHWir9eqaW8TuB/ykCIeF3g4kYBA2z9H4iHQeu66uvx9CsGdP5FDZqQuB5ExNBps5v6TZMyGQH6ymcqgf5WqdwkJrp0ybzpIsHp9d5NtXEgTXXmdbzZSnT9JjAV7dmrdrKJB/plTDJoV8uXbyg8/+fyfcDuY7HfvcDTeNcoZisg7+zPVtT6PvNFisWqvL/4veK3/FzJu7dMraQMGXiq39ua5ct7R8CXiEwH7T/b71zSln1OLD/7NN8n/A36I/pUw0iOZvrByISIxCZ38Nc06FhocqyAZM60MBr5VkW0mECP5v/DmAiC+mRkF8YkZnxd2jDesNgeNpx8i0EhIAQEAJCICsI5AuBFBqa4WzGaqqcOnnCQCCF+SU0HA4Ojso00/gYmEo+3a4VfTbyKxrNORe1WWMMlJEzMOKe6eAYxu3oryN6KoLi9GGBdu5fKabACO1vSiCFFqpe/SeVVtTYr0xrE0FxYFbcif1MIZCiDH73LRZyL7PW7iXONfqm2gYzUwyEUKAd6d61i7qu3ydOUdvwHwYb8KFCgRA4ZvQoem/IMJo4eboSTuG399WXn6tIj6pSFv735cjPVM7Poe+PUK1CgBr11ef00kuvmj3Lm2+8SsjpiKAbKDBJ/HX8OBXwSf9ga9jrHwdTbkS3nMf5Wk3dhxHvD+NoymfplddeV0KZdiwYwq81vQIB90kWun74aZyuGgbAH44Yxr+xR/6Q5u4pctMijQ8G4QsWLVNtQfP80w/fqVQ8usbNLFjym0/iYDzr1q42+H2hWQRiGjF8qMEZYNYI7TcCD1laKlWqQv36D9RVR0qRwe+mnjBCBUS8hkCKwbk15RsW2qGZho8wLB3w24BAimLJ/VyyeBHBpFJpfx9qqyAww3wTAnRWlRh+12QHa/S/VKkyKn0OAvDgd43rhxYQwohWrLnO9J4vS5hq5zT1jckeFPhx42Nc1q9boxNIMSmEKOjDhn+gq4vfYL++vdSElXaso5Oj+g1gEhNpVUyVfTwZlNUCqaX9g6vEgP696bPPv1LxDjCJmeIrHqtSSX3/7RhTXU5z23v8u0TEY6107daDI8n3UKuhIY/Mt/Hewu9Be5+iAqwg8PcFwZ5MvQO1NuVbCAgBISAEhEBmCdiwGWqKM19mW8qHx2NAhJl5+BVCI2SNr1paOGAKDG2apdqrtNpJazsEaJjYQlN6lTW5pvoMc9fAwEC6wlpY9MW4wGwWZqVn2VcSgl52FviDahFlER0WgyBLC0wPS5cpq6pj4sGc32t2sYcPqC9rIS5dvmSSZ1rXgwE00gNFRUWqe6WfPkf/GHP3FANW3HNoWi3hoN+28bK53zzuFyI24zcETbTx7wNaxx2796vB8+hRXxo3n+46OILHeZ4USu/5QM7O4OBgatakQbrtpbUTZt1+vn48gXNJF9BMv665+4l0GwiMhudL8w/UPz6rlrOLNa6/ZImS6vlGrtS0irXXmd7zZY5pWn2wdjuYlSxZSk3Yaeav1raRnfWt6R/y2iKVEHxFkUosraB1WdlfvMcCeFIUAihMg02lqsnK80lbQkAICAEhIARAQARS+R0IASGQZQRgMow0Gg3q1bTatN2STpQtW06Z1H/KFgdTJk+05JB8Wye7WedbcHJhQkAICAEhIASEQJ4iYJuneiOdEQJC4LEmAHPdNatXZoswCjDwaYOmaP5ffz7WnLKi89nNOiv6KG0IASEgBISAEBACQsAcAdGQmiMk+4WAELCYAMyG49kPDj7O2VEQkAh5HRHdt6CX7GZd0PnK9QsBISAEhIAQEAI5Q0AE0pzhLGcRAkJACAgBISAEhIAQEAJCQAgIASMCYrJrBERWhYAQEAJCQAgIASEgBISAEBACQiBnCIhAmjOc5SxCQAgIASEgBISAEBACQkAICAEhYERABFIjILIqBISAEBACQkAICAEhIASEgBAQAjlDQATSnOEsZxECQkAICAEhIASEgBAQAkJACAgBIwIikBoBkVUhIASEgBAQAkJACAgBISAEhIAQyBkCIpDmDGc5ixAQAkJACAgBISAEhIAQEAJCQAgYERCB1AiIrAoBISAEhIAQEAJCQAgIASEgBIRAzhAQgTRnOMtZhIAQEAJCQAgIASEgBISAEBACQsCIgAikRkBkVQgIASEgBISAEBACQkAICAEhIARyhoAIpDnDWc4iBISAEBACQkAICAEhIASEgBAQAkYERCA1AiKrQkAICAEhIASEgBAQAkJACAgBIZAzBEQgzRnOchYhIASEgBAQAkJACAgBISAEhIAQMCIgAqkREFkVAkJACAgBISAEhIAQEAJCQAgIgZwhIAJpznCWswgBISAEhIAQEAJCQAgIASEgBISAEQERSI2AyKoQEAJCQAgIASEgBISAEBACQkAI5AwBEUhzhrOcRQgIASEgBISAEBACQkAICAEhIASMCIhAagREVoWAEBACQkAICAEhIASEgBAQAkIgZwiIQJoznOUsQkAICAEhIASEgBAQAkJACAgBIWBEQARSIyCyKgSEgBAQAkJACAgBISAEhIAQEAI5Q0AE0pzhLGcRAkJACAgBISAEhIAQEAJCQAgIASMCIpAaAZFVISAEhIAQEAJCQAgIASEgBISAEMgZAiKQ5gxnOYsQEAJCQAgIASEgBISAEBACQkAIGBEQgdQIiKwKASEgBISAEBACQkAICAEhIASEQM4QEIE0ZzjLWYSAEBACQkAICAEhIASEgBAQAkLAiIAIpEZAZFUICAEhIASEgBAQAkJACAgBISAEcoaACKQ5w1nOIgSEgBAQAkJACAgBISAEhIAQEAJGBEQgNQIiq0JACAgBISAEhIAQEAJCQAgIASGQMwREIM0ZznnyLH36DaDGjZvmmb4NevlVqluvfrb1x8bGhoJDQqhosWLk4OCQbeeRhoWAEBAC1hDo3bc/NWna3JpDpK4QEAL5hIC9vQN5e3tnalzSrHkL6tW7bz4hIpdREAmIQJrP7vr5S9fI3Gfjlm3qql959XVq0fKpPEPgrbfepYaNGmd5f0JDw2jq9Jl05PgZ+m/bbtry3046cfoCTZsxm1q1bmPV+YKCgujrb76l0mXKWHWcVBYC+ZlA/wEDde+dM+ev0K49B2nl6vU05tsfqHqNmrly6f7+Abo+4Z149MRZ+mfTfzR8xEfk6elldZ8GD3mfOnd53urjLDngpZdepadatbakqtQRAvmKgP6749zFcNp38BgtXLKCujzX9bG+TuP3z9kLV+nw0VPqvWgsODZu0oT2HzpO7do/neFrbt2mLb046OUMHy8HCoHcJmCf2x2Q82ctgSGD3zFocOjQ4XTz1k2aPGmCbntUZKRuOb8v1K1bXwmeMTEx9MlHI+jA/n3k5eVNVapWpZdfeZ0+/exLWrVyhcUYvH0K0Qvde9KKZUvp5IkTFh8nFYVAQSAwfNhgunfvHvn6+VHp0mWoU+fn6PmuL9Drrw6iJYsX5QqCv/6cS2vXrCYPT0+qXbsOwRKjStVq1KtHV0pISLC4Tx06PkPbt/1H8/+aZ/ExUlEICAHLCODdERERQX6FC6uJn2+//4nc3N1p2pRJljWQR2vNmztbvX/s7OzIx8eHnu/WnUZ+NZqioqJowd9/qV6fPnWKvvn6Kzpy+FAevQrplhDIfgIikGY/4xw9w7w5swzO9zIPvq5cvkzG2w0q5eOV4R9+TLGxD6hTx3Z09uwZ3ZVu376VFi1cQCN4vxQhIASyhsD6dWspPPyqrrFvx3xNs+fOZ03pj3Tq5Ek6evSIbl9OLRw9cphWLF+qTof34O1bt+ilV16jGjVqEd4DUoSAEMh9AvrvjjmzZtCKVesIVlOPu0B6/NhRnvRergO8bOlipQWuxZNjmkB67txZGvfLj7o6siAECiIBMdktiHdd/5rZr/LZTl2UiQxMWmFmV6/+k/o1aPrMOdTthR4G2zCLOW/+QnqyQUPddvhBTZw8ncqWLUcTJk1TL91tO/fSW++8p6ujLZQpU1a1e+joSdq99xBhNtTB0VHbrfsOZXPb3ydOoR2797NJyzGaMWsela9QUbcfC7/+PokGvDiIAgODaMQHH6s66G/jJs2oWrUnaPy4nw2EUe3g69ev0dtvvqat0htvvq2uf8/+I+pcK9dsUANXW9uUxwR9GTP2e1X/g48/VdcPBvjDgvLMs51pweLl6rphGjxl2gzxC1Nk5L+CSuDOnTvUt3cPioy8R1+O+sYAQ5UqVWnWnL/Us7Z1+x71DoAGwbjgef9j5lxl7gZTYJgB450ES4WMFG0QWKFiynsEfut4jrfu2KPOsfm/HfTN2O/U+0Rr/8efx6v1Zs1a6p77N95KsUbR3nvwA+vb70V+X02lH34apx1Kll6n7gBZEAIFnEBsbCwt50kkWFoUKeKvaMDMfvSY72jL1p108MgJmvvn31SjZi0DUr9NmEyvvf6WwTYcYzwGwfP99ruDdfUceewxbPgHtHb9ZmXaj7/90GTql7TGGfp1LFmGZjQxMYFu3bypq16iZCn1XqlUuYpuW3rnc3V1pc+/+Irw3jx87DTN/WsBVahQSXestiBjEo2EfD8OBEQgfRzuUjb2EeZ0Q9isd+f2bTTu5x/J3cNDvfT1T1mzZm0KKVpUfxM5OTlRnTr1yNfXV7e9WLFQatasOf29aJkagI4f9xNhdvDd94ZSxUqVdfVKlS5NS5avJvhY/PDdWPru25SBKgINIfCQVlBvBQvIhQsXUfVGj/pSmd39vXCpOlarV+2J6tSNB6dr129SPrHJycnk6eXFGpAU37U/2WTGkhJWvATt3LGdoNX59OMPFRP4m732+pvq8KjoKNqze5daPnhgP23e+I/64A8LfMswaIU25sMRw2jC7/8jWzbR6drtBUtOLXWEQL4lAI0ptAJVq1VT7w1cKPxKFyxeRvEJ8fTRB+/Tzz99T3Xq1lPvBRcXFx2LChUr0ZJlq8iLA358PWokjRkzijBB1LBhYxWcTFfRigUMPlGi2YwfJTg4hO7cvk2TJvxGI4YPpZkzpvN7rKWaUFIV+D+8F2D2j2vRnnu821Dw3sPE3LKVa+jNt98lNzc3nY+qpdepGpL/hIAQ0BFwcnQi/C2PuR+jgv0s5PdF4yZN6bf/jaPhw4bwGCOK/vxrIdV/soHumMTERDXBrm3A2AFjnH79B5K9fYpBIJ7/Tp2fp7t37qpqeJ/Mmfe3ci9YtWq5mqTGs/316LEGE/FpjTO0c1nyDXehocNG0E0eM8CVQCvu/M7AeMqLxy1aSet86O8stjrp8nw3mj9/Hn32yYe0e9dOCggI1A5V3zImMcAhK48BATHZfQxuUnZ2ESZrgwb0pQcPHqjT7N69k2ceFxCEQZjYWVse8Mxm21bN6fz5c+rQib//Sjt3H1CC4uFDB9W2ER98ony3nunQhu7fv6+2YRDYunVb9QdIbeD/Pv70C7p65TJ1eqa9bvvyZUtoz77D1LtvPxozepRWVf3B6t6tC+1nH1GtjPvf70owvsUmepaU995JETy1utCk+AcEUMtWbXjA/IOa0Zw9eyafuz8tZnPfjRs3aFXpw48/I5jdjHh/iG7blMkTlT+MboMsCIECSmD/vn08KHRQvpsQ7mDJcOL4cerbq7vu2d606R/atHkb9R8wSGe+9smnn7MgGE2d+R0QHx+v6M2dPSvVu8JSrJhwe2/o++q9s2XzRnUYfEKN/UKvXL5EP4/7TUXlvnzpEs34YxoNfOkVOnLkkHoXGJ/P0dGB/pg2RQmzGERrxdLr1OrLtxAQAkTlypWnri90Vz7biHnRr/+LVLxESWrRrBGdPpUyLlm6ZBFhcvrDjz6ltq1bKGz/btlMbdt1UL6asM5A0MIzp09RaFhxZfm1edNGghYSk9///btZHQPBDprW1i2b6lwKYGLrzdYar7z2Bs3hv/lawXHG4wxtX1rfIz78hN7niW0IkvAjRcFk/WV2pTJXTJ0PguYTPAn/0sD+tHLFMl0TfqxNrsMxM7SCAEkyJtFoyPfjQEAE0sfhLmVjH8+fPasTRnGaUw9f9tCKZkggZQFTE0bRXlJSEp05c5pq1Uoxa4UGFDOam1i7qAmjqGdcMJv5JNdbvmwZPd3xWYPdl3iwiIAp+gVaC31hFPvcOSACtBrWlKoc7KQenxcmxYUKFVKaXVyDuXLo4AFC2HWYAUFYhb8qBqY3b9wwd6jsFwL5nsC9exHqGrXUBtAcfjtmtE4Yxc5LFy/Snj27qU69ekogxeCtBr+HVixnTepDYTQjoDDghFm9Dz/PGOjCtHbYkHeVb73WHsz9GzRsRE9Ur0F+foWp6EOLEFhxQCA1VyLuRiihVb8eBpOWXKf+MbIsBAoqga+/GcsT1Yls/eSv/u6eOX2ahg5+V+GAWT2sjzRhVGO0eNFC+uyLL5VlFwRXCKQYY9SsVZvWrF5Frdu0Y03kPKpdp44SVCGQwnLqxvXrdOLEcdVM48ZN1LunDLsa4aOViLt3lfUDnmPt/WNqnKHVT+sbE9vwj0WBdhbWZn369Kc2bdtTuzYtKZpNeNMqps6H9xT6s0lvQtzU8TImMUVFtuVlAiKQ5uW7kwt9i30Qq86qmbdkRRegfcVLHQVmJTDJ2/rflnSbDggMVAPHylWqpDIXhsbz2rVr6R6Pnaf5Dxpy+yFSX3ovfdTFIBV/EJ/jwSvMXw4fPqRmVl3YVyOMZ1fNlcmTflfa0Dc5CMM77w7hSKMRPLM6i/7HM6G32RxQihAoyAQqVKiohE88WxD+IGzeuJl6subatXD2hUrx7YR1At4bu3btyBS6JDbji42No2NHjqjo2NB+XLlyRdfm0xw9F0GXYHoPi5FjR4/w/ksEc2F9FwLdARYuWHqdFjYn1YRAviYQH5+grCG2bDlOsC5asnihThCEWb2p9wXiQKCE8P5jbGYLjSAmkDABvmP7dtaK1qcP2Az/xo3rHMDwE+VOA23of//9q2MJk3t3D3fqy1pY47Jv314er7hyP1Im1Iz3W7IOQRouC/plLQvL8FN96qnWusBG+vvTW4Zr0X7ul7nJdhmTpEdR9uVFAiKQ5sW7kgf7lFkBVTNjg0M/ShD/AUmvIBImjpkxfSpNnPBbelXT3Hfy4QxoA/bvMpfapS5rZSCMDh3yDsEkUCsI3mRSIOVZWP1yl2dTYa4Lf9jqrGVp2qwF9e7TjwffgZzy4iX9qrIsBAoUAbw78DzA4gKTMwhYglKJBT7jBCre3j7Kvwr74deJYmwNoTZa8d/f8/9M8x0CM7rPR35NWzZvopcH9dcNgKFhgd+Z9t7STmdDhs+9tt3U961bKUFLzF2nqWNlmxAoaATgSw4fbVMFz1LFio/iUGh1YHGBgtR2Wvl3yyZlEYEc68ePHVMWWzDfRf5w+Kkrq4Wxo7XqhLYT4Hv6dFvdtuxegPCcmJCg+gMNqjUFmuBSpUqbPUTGJGYRSYU8RkCCGuWxG5IXuwMHf8z26xf9wCP6280tI9omzFi1gENafWhMbHhwqBXM/p1lU1/4QWDQaFy0wCTG2/XXF/MMK/7AYWbUw8NTf5dahvZFi9RZuXJVtW3DunUG9aA51S8x0dFqFebA+kXjgWtbvWolB10YrGY+mzRtpl9NloVAgSKAZ/err78hBOj4ZvSX6tqj+RmCWT9Mz/QL/DsR+Ah+migw6T918gTVY3M9RJXUSnBIiMmI3Np+a77RFiL7YhCrmeXheFMTcHj20UdLi6XXaWl7Uk8IFFQCR1jLWLhIERXBX58B3iEwv9V3jdnCZruVOYI3sgcg5gQKLJbgMz5w0MsqIOJ//z6y0Dp44ABV4qCLxVnzaFwsGWcYH2PJOlwI7Hii7sTxY5ZUN6iDcVFQcLBBYEdUMB6ryJjEAJusPAYEUo/0H4NOSxdzlsCqVSvoKQ7s0/GZTiqNCoJ7/Dnf0ATFmh798cdU5auFiJTw2URockTSRHRKfRO5zz/7RM1m/vr7ZPWNwSM0LaM4+h2CBJgrMNPFrGvRkKK0et0/KmIeov0imh3SM6xYtZ5gYouCP3gowz/4SJ0Lf+i++noM9ejZW23X/rvM/quYoezdp69KP4P+BwUFqbQUgzlYCtbhe1q3bn1q3qIl7d2zRztUvoVAvicAP+r2HTpSz159VBqFf7fu4kjTPeh9nqDBRI1WEF27JM/y4x2AtA5Ie/DLuF/ZRNeRfh0/TqvGFgdjOMBaGUL6qC++/Jr+99tEWrNukzLl1X9X6A6wcuHqlat09+4d9Zy3fKqVStHy4sCX+DyTVEv654BWo2GjxiqdFIK+IZ2LuWLpdZprR/YLgYJMAFZSsK769PMvVXwHWC4hlzD8MH/4fqwBGgibmGzGs7p82VLdvmVLl3Cch5Z08eIFunjhgm7777/9j+7cuU1T/5il/Ezh4wktKtpfzOOSzJay7LcOX1YEW0IqmY8++ZwmTZmu/GHnzZtjdfMIsAbLDaSuwVgG6e2QNq9T5+cM2kKqLBmTGCCRlTxOQEx28/gNygvdW7Tgb3ruua700y//U92Bn8boUSNTpYextK//47ygJUqUovcGD1MfaBK+YxMa+Ebolw3r19KAfr1UFL0FnEpGKwhsMJYDolhSMAhGBD78IRv51Wj1hwrHJXC6iW1bt9K0qSkDz43/rKdvuQ8INoAXOwIZIYIdZlhhvqcVaFEGv/e2Lmcptvfr04Mj9m1hH5QBvD0lNyH8WBBU4XseUEsRAgWFACaL8OzARA6mcJs3/0Mz/5ieKuAYzGiRV/D9ER+qdwD4YKDY44Xn6OrVR/6d8L0a9GI8deeJoZrs+4VAJJ06tlP5fiMiMu7Xpd0PvAdee2UQvT/8Q5VDGdtPnjjBPmwTdP3S6uJZdnNzV4NJDHiRtsE4MrdWV/u29Dq1+vItBIRAagLw7+7etbNKrbaG07uhwPQfqaAQoV+/wF8U7wmkgEFARa1gLIDnXYuuq22H1VaXZ59WY4Rfxv+mi4QbEXHXav9OrU39b6SdwQcFQnU4v99mzfiDfv3fL2pyW7+uJcu4tiE8BsGEOWJkQDhFxOG1a1ZT6TJldE3ImESHQhYeEwI2bK70KEb9Y9Jp6WbOE4BJbfESJVREXkTDzIqCHKbIE4bIvgnsT5FegcltQGAAXQu/psxv0qub1j5cQ9GixcjewV4FPjAV5RdmL+XKl+cInJfMBiOCGfN9zpEGXw0UaFOg7XF2djaINJxWf2S7ECjoBGAaW6JESc4JGm1RNFvwgnZk995D7PM5gCPwPtKAZJYlNLYJPOEEc+L0CgRpd3c3FpyvpvIxTeu4jFxnWm3JdiFQkAnAIgnP4KlTp5SAmZUsMNFUlIMcwTwfAdaMfciz8lyZbQu54PHOgrYXQrWpImMSU1RkW14lIAJpXr0z0i8hIASEQAEngAiY8Lfau3cPT0ZdVb5TH370qYqA26RhPYJ1hZS8QwA+w5hktLO34/sVrrRUxr3z5XyJcKfQcl/r78fxSLUDYcCSdFv6x8qyEBACQkAIPL4ExGT38b130nMhIASEQL4mUMTfn7774WeDa0SO31dfHijCqAGV3F+BD+7Y735kITRJaa6gXXrjtZc5/cY21Tn45k2cPJ28WLvlxhrmRZyv+dOPP9AJrQhghwBYMPdGtOWhg9828DvO/SuUHggBISAEhEB2ERANaXaRlXaFgBAQAkIg0wSgUSvJQY9gCg93gQsXzps18c/0SaUBqwkgEMx9jo5+lPO4ogznwHO1Oc2Glk7j94lTOHL6GRr11RcqgN2yFWt4eSSn5FquckXv3H1A+Qki9yO04lOnzaSa1SuraMtWd0YOEAJCQAgIgceKgGhIH6vbJZ0VAkJACBQsAghogo+UvE1gz+5dBh1MSExQEwjYCN88RB1v2byJqgNT66VLFnPk0fZKIG3KwVkQ1ArCKMrOHdvp+vVrKlKqfnRmtVP+EwJCQAgIgXxHQATSfHdL5YKEgBB4XAk4uXlx3l27x7X70u8CSCA+7j4lxN7XXbmW+gea7U8+HKG2+/kVVnkSESxOK0ihVatOHbUaEBCgAslp+/B9+fJlDmRnmP9af78sCwEhIASEQP4hIAJp/rmXciVCQAg85gQcnFzJ1t7xMb8K6X5BIpCUlGggkAYEBJKLiwsV8imkAhQhTZinp6dCglQdWkFQI/iTonh5eacKcoS6Xg+P046RbyEgBISAEMifBEQgNbqviBCIXFUIrKBf8AfW1dWVc+vd0t8sy0JACAiBLCMQdftqlrUlDQmB3CAwa+YfhA+CFP34y3iqW+sJTtWVkpbC0dFR5Y9Ev+ATjFyPKPh2cnJWy9p/Kfszn2tWa0++hYAQEAJCIO8SsM27Xcu5niE/5eCh79Oe/Udo1ZoNNGHSNN3JkT9u9JjvaNvOvbSUgzAgEAPyT0oRAkJACAgBISAETBM4c+a00pAit/PNmzconnO8BocU1VVG1N1wTg2DgpyuwSEhun1YwP6rV68YbJMVISAEhIAQyJ8ERCDl+/rZF19R/foNOET9S1TjiUrU7flOuruNoAuIHohZ3nq1q9POndtpxIef6PbLghAQAkJACOQ9AkgK78haN3d3D/Ly8SVPNgt1dXNTvox5r7ePf486PN2RgoJSJmsxkdu7Tz/ax/ljYXEEYXT9ujXUrVt3daFufB/ad+hIK5YvU+v//LOekHO22hPV1XrtOnUJfqdbNm96/MHIFQgBISAEhIBZAgXeZBd/QF/o3oM6P9NBF+EvISFBB65N2/a0ZPFCXej5ubNn0aKlKznwiK0k7tZRkgUhIASEQO4TcHZxJWcWQkuULkcVq9Ygv8L+hG36JZLNQ69cuUiH9u2icP5GqpL4+Dj9KrKcAQJlypSjb7//me7evaN8SM+fO0dvvvGqrqWRn39KU6bNUIKoh6cHLVu6hNasXqn2R0dF0bAh79DMWfPoxo3rhIBIg999S/d3V9eILAgBISAEhEC+JFDg85B2fKYTffDRJ/T3/D+pWrXqKtn61CkTafOmjeqGL1i8nGZMn0rz/5qn1j08POnQ0ZNUvVpFSUWQLx+JgnVR8NPC4O8KR7REInvjgokXf/8AunYt3OQEjPhWGxOT9dwg4M7v5dLlKlHj5m3IxdXNqi5cuXyB1q9cTNfDr7B/4wOrjpXKhgRgnhsYFKgEyZs3bhjufLiGoEeRUZEEIdS4QLMayJPEeB8lJiYa75Z1ISAEcoBA4cKFOdCYF1uXuFFcXLx6nm/w8xxl4pnNge7IKQoIgQKvIQ0ODlF/+M6dPUsb1q2jKlWr0qQpf9DzXZ5R5kaI8qcfGVAbsCA6IHLjFSlepYD8VOQy8wuBO1dPU/yDaPp53G/Upm07pZGA4PnXn3NpzOhRustEUJKvvv5GBfjy9vahoYPfJi0nIAaOX476hlq3aUsxrGG6zcG+XuzfR3y+dPQytuATXJocHF0ydnABPMomMZaCAgOpzdOd2RQ3Y3/OQkuUpX6vDqHwq5dp+aI/KZYNZGzsnQogzYxdcvSdaxR995o6GOa5Fy9cSLeh8PCrae6HdZK549M8WHakIuBeKIhcvfxSbZcNQsCYAMYA5cqUoNCiwZSYEE12yTFkawPLETtKTOb3oZ0HxdyPpZNnLtLV8JTn3biNrFiPjblHEdfOGTSFdzsmqExNmhtUNFoxN6FuVF1Wc5lAxv6C53Kns/L0+IEfPHCA5syeqZrdvn2r8mNp06adEkgjIiIIkQG14uycMljUogPeOH9Y2yXfQuCxIJCcnKT6uXbNKnp/2HtKUxEWVpxWr9tICxfMp5MnTpCbuzuN+fYH6t61szJlr1W7Dk2dNpNqVq+sZkv1favv379Pn34+UvlWww9bSsYJ3OXJAhaHMt5AATrSnX+jHbr0pLDipYiSEigh7pGrRUYw+Pn6Uu/+L9PGdctpz46tnIbkUW7NjLRXYI4xYVlRYK49j19o9J1w3WRBHu+qdC8XCRQpUoRq165Ftsk3KfryQX6fpmEpYudDYYV5koP/bdu+M5t6bGiphbEIgokOee9t2rlju+6cw4Z/QK++9qZuHQsbN26g3j26qW3pTagbHCQreYZAgRdIL1w4T093fCbVDXF2SQlBjyh/iPanFSxDY6qlhUnmHGxShIBGADN5vjywxWAZ5i7Ozk4EM+/IyHtsDh7DwtwDlQLh9u3buW6Stmjh31q3CbkCT544Tg0aNFICadOmzenixQs6v2r8Ibh+/Ro1bNRYaUnFt1qHLksXkpNSJguytNF81hiCFfn5+VPvl97iyUInq2fNzeFo1KwNBQQVpVVL5lNUpKQdMcdL9uddAmry0XB8n3c7Kz3LFQL+/v7UoH49otiTZJN4O/0+JNwiB7pFRQqFUpNGT9KGf7I36NgXI0dRpy7Pq/GUqY7NnTOTPhg+TLdL06Cam1DXHSALeYpAgRdI/92ySZkeNm7cVM2uQOBs0qQZvfH6y+pGrVq5nN586136/dfxKnF3124v0KqVK0z60+Wpj59V5AAAQABJREFUOyudyTEC8KMMDS1GxdjUxd3Dm5PE3yVbekD2tpwEPjmeyDaSvJ3jKbmICyUkeVGyTXFycPLi3Hu36cKFS/y5mCopfI51/uGJ/NhnpHyFijoBNCAggP24Lhl04zL7dQU8THmE77VrVuv2X7p0ifMIOpFPoULiW62jIgvZQcCXAxW9+PrQ7Gha12YZ9kf19PSmP2dOZKE0JYembmc2LhQuXIhCAguRI1viuDjZk6uLEyWxBjI6Oo59uWIpms3jz56/ria3srEb0rQQEAIFgACiXddnYdQm9jhRYkpOYEsu2yHxPHm6hVHtWjVpx85dlhySoToffTic8EHaRVMlMTFJRfA23mduQt24vqznDQIFXiC9e/cumwK8Rd//+AtBaxUaFkY///Q9h6hfq+4QIgE2YmF1x+79PDCJUsEY+vXpobt7viHldMuyULAIeHGkyDKli5M/C3NJcTfY5+IWv9QvcsZ3jQOyKuGDKWqHhxtZQCVoXe6RR6Ana2KqU73GrejSlSt06vR5DhoQ/bBe9n3du3GB4mNjdCdAIJJx43+jlSuW0d49u9V2L06R8eCBodkOLAPgU41izrdaVZL/hEAWE0DwooHZLIxqXQ4ICqHWHbrQ0gVz6MH9R8+Ltj8rvr29val4WAh/gqh65RCqWNKBigWwyXZyLBtuJ/EnxQInmf24km3sWTh1pqNn42nf0Xt04tRVOnbiIl26fCXVs5oVfZM2Hn8Cdg5OZMfvdylCwBSBmmyma88aT1tb/ltvqxu4mKqaapsdhVPRYpXp6vXbdO369VT7M7ohKRHuF4Zjj7TaqsPpocZ+96OaBF+yZBEdOnhAVTU3oZ5We7I9dwkUeIEU+NesXkUb1lflHGrByixRfyCOIAvvvfMma748yN3NnRN5GwZkiLhxPnfvoJw9xwnY2dlRtaqVqSgncreJv0T3r7EQ99Av07rOIAol+wzaOpCPA/twVC1FZ86cpf0H2IcjG0tiPGtuHxY4/X8z9juVmxG/c63AR9qJ02foF0TkhU81ijnfav3jZFkIZAUBdw8v6tprYFY0ZXEbiNz7RM16tHPrRs6nmTkfVf2ThoWFUflypSjI35OeqmtHZYqxqTYms1gIJRMZaFhEVZ7FmN5iuZUqF3Wk5DaBtGWvH+05XotOnDxHJ0+d4QBlpiPb6p9blgsOASdXT3Jy8y44FyxXajEBD3YrCgkrTfb3efzilLHfSLL9fapWsw5t2Zp1WtL4B1EUddtwnG3qonbt3MEppu6qybgKbN21YNEygrIIuYvNTaibak+25T4BEUgf3gMMNuBPmlaJioxkDWlkqt0JsRL4IhWUfLwB/ha1atbgWcU7RFHb2X+NI79l+noxAj3LSpHLFFIkmPyaNKBdu/bQLY5cm50F/q7ffv8TYTaxd89uKliRdr6rV69SMAvc+gXm7PCpRjHnW61/nCwLgUwTYL/RSpyWq0hAkMVNxbFG/35MNHn5FDI4JiYmipITk8mNJxktKU1atqNjh/fTnds3Lamebp1SpUpRuXJlqJB7PLWqb0MVwh76qFobiiA5jmwSblDDykQNq9jRmu0etKdoLbp6LYqOHj3GE6tZp7FI94JkZ54mEBNxg/CRIgSMCfiXK0vR1w+QfWK48S4r1sPJ3qUm3bly0opjsqbqurVrCB+tIAhd124pAqm5CXXtGPnOWwREIM1b90N6k4cJlC5dmipVqkh2cazVNOf8n5Hr4EGmQ+JZ1lb6sR9zE9qzZw+d5XRE2VGg5Z009Q+KZbPc3j1fMEhthPP98896ZQpT7YnqKtp0bTaN8fMrrGYfsV98q0FBSk4RQGCwpi07WHS6U8cO0+IFsymStfy2dvb0+nsfsm+zH0XcuUMTxo1RPqEODo7kzYJqi7YdqWx5lurMlKc796DZ038lCLkZKQh0Vq1aFXJ1tqES/uHUq7032dlB75kFhSfFWtYmqhB6l+atjmdz+pp08dIVOnTosEn/qiw4ozQhBITAY07Av0hhsrfJfNC2xLic87FPD/k1TkUTGhqmqpibUE+vHdmXewREIM099nLmx4hAhQrlqXSpMLKL5TQ/SdnjT6bhsElkTQxH461atRILp3Z08uQpbVeWfbu4urLQ20y1d+L0BV27Z8+c5uh59VUqmGFD3qGZs+apPKW+fn40+N23dFpUc77VugZlQQhkkoCtrR3VebKJRa2cPnmM5syYQK3bd6YqT9QmRw60leLDzZbxdrbU/tmuVK5iVdXWvxvX0opFf1kkkAYVDSVfvyJ09TLMaq0r2kSWE12kMsEx9OxTlmt5rTlTsL8Lvf6CE/0+5zjZBvtzftbmHHBkt5jxWgNR6gqBAkIAwRgpKfOWFDbJlvl7ZjXWLs91peXLlqg86AjK2LnLczR71gx1GnMT6lndF2kvawjY+Pj4ZN7iMGv6Iq0IgTxJoGTJklSpQmlySOBIdKzFzLFi60oJDmVpz94DbE7+SGjMsfPziWDWGxgUxBF3L5tMU5OWb3VO9lHOlb8JeHKArdfe+9iii/ztp9FULKwktXm6i9n6t2/eoDEjh9MHX3zHMQJSgnWld9DJ44dpwZypJp+DtI6rXbs2Bz3z4Dhn5zlgkSN1bBGYVtUs3f7z9NN0974nJTkUp4MHD9Hp02zVIUUICAEh8JBA69Ytyd2W3dSSMhdIMcGuGC1ctjVbuMKlqEHDRlS4cBHlLxofH0dP1q2p/Plnz51PCGoEbSgmzBcv+ptGvD9U5+uPdI6jvh6rm1AfOvhdWrF8abb0UxrNGgKiIc0ajtJKPiUQGBhIlSuVJ/v4HBZGwZM1sfbxJ6km+6zev38/VzQd8K2+mI4wnJZvdT79ORTIy3JxtCN7Ni+1Yw2jLYfWSeZ/SJeawP/FxSdSPPtjZmfxZVNxS0oiR2c8f/aUEkinTfiJ4uPiCEGJGjVrRchdalwgYHr7cM5gC31JS5etSK4c2C7ynmVmbo0aNSBvdxtyTDxGgUWcc0wYxXUO6lqcfp19hqIeHKYK5UtxgDJHOnLkqDECWRcCQqCAEoiP44j/LpmPwJxEsELJnqIfaNH4DC907axyvBdm7ShiWmCMpF8WL1rIGtSl6U6o69eX5dwnIAJp7t8D6UEeJYC8mjVrVif7hHPZbqabJoKkKM4RdoZq1apOy5evSrOa7BACWUXAloU3D1d78nJzoBqlfalcsCcV9jY96Dh/LZr2nLpDRy5E0P24RIqJTciqbqh2IEhWrVHPojYj7t7hIGPJ5ODgQA2aPMXRF++zSe48lbKlVftOBm1c52jpK5fOp85d+/D21MKqQWW9FR/fwhYJpI1ZGPXxTOJ3B+frc3egfl3C9FrJ+OK9qHjVnrkWnJxsqV3TQFq0loOQxR2n0iXL8CRCMh07dszcoZnaD990BH5DCjX9aPX6jUKbER0VZXI/on77+wfQtWvhkutbH5osC4EsJnDt+g3yDPPghFKW5x811QUbOzdTm3NkWyTniMYnrWJuQj2t42R77hAQgTR3uMtZHwMCVapUJvvk2xzAiCPq5mKBT6mjvQehPweyOSVMLl6mnDoPEPBmIbRRpSLUpKq/Rb0J9XcjfJ59MoTuRMXRsh1X6PilexT9IGsEUzd3DypRqpxFfUElCLDNnmrP/qJ26phk1uKuWPwn6Qukkffu0rQJP1KT5m04cm9Ni9tGxdJlKtIF1sKmV+rWrUNe7slKGEXgoqZ1/dKrrvat3nyFNm6/ZlCvdHFP6tu5pNr2z7ZwOnwygoMi2VFkdDxVr+RLDWoWMahvvFIq1I2C/Z3p9IVodjc4wUJpWSUEnjt3zrhqlqx36vwcfTFyFMVwzlZHR0favWsXDRn8tsoRiBMgSvfEydM56JIXubm70aKFC+jTjz/QmUC3a/80ffX1N3SHg095e/vQUD529aqVWdI3aUQICAFDAteuXaeSJYqxQGq9X7yuJTsvfqfE6lZlQQhkhoAIpJmhJ8fmWwIwAwkK8ucgRgfyxDXaJ17iPx5V2Zf0ovKlyBOdkk7kGwJerg5UvXQh6lAnOMPX5OPuSD2bhdG9mASaueEsXbweQw/YpDczxdbWhpw4/60lBea30LDduXNLBSDSjomPZ9O0hwWpWyaN/04FSWrUrLW22eLvsBKllNALTaypUr58eSrs667MdLHfy8OBKpXxMlU11baalX3p6RZFdds1K+Pzl6Np047rNHhgBXJ1sadI1pL+MOUoVS7rze076uqbWnimZTD9b9ZpFhLjySn5DFWv/gRFsXby5s3Mp7AxPt+VK5epQ/vWdOb0KXLloGkQPnv17ks/fDdWVf34k89p44b1NOqrL8jNzY2WrVhDLVq2UhG73Tgn4phvf6DubIa3b99eqlW7Dk2dNpNqVq+cyhTP+LyyLgSEgPUEkLM4OvoBeTn7kQqkaH0TFGcTSMdPpD9Bl4Fm5ZACSsC2gF63XLYQSJdAhfLlOD/XVa7DznJ5oSTHc97BK1S2bOm80BvpQz4i4M2C5GsdymRKGNXH4cnmvq+0K00d6gaTu3Pm5jyTky03p3V1cab2HTtR9J1rVLpEKJUKCyFvDyfqN2AQhRULJl8vNzp/4gANff8DGvTSK1QyrCgFB/qTt5eHimatfw1pLbuzdg8pY0wVTGKVKVOSnJLOqt0ODrbU8knLNM04AMI3NKraB+soCQlJZMN/qe1Y2EbxYBNgB3sbimLB31xxZtPdYkGuKdUQHTz2LJv/1zB3WIb2b9v6nxJGcXBMTIxKEdWgQSPVFsyom7doSXPnzlbr0dHRtHTJYmrbrr1ab9q0OV28eEEJo9iwc8d2zqV6jRo2aqz2y39CQAhkPYF9+w9Son0xNi2xbNJPvweJdkEUFZ1A2WVxoX8uWS4YBDI3WigYjOQqCxgBb29v8vHxUr6beenSbRPCKTi4Jrm4HBKtQV66MY9pX+xY4ClWxI3eeLpMtlxBvfJ+FOzrSlPXnqG7bM6bkeLoaNp3VWvLwcGevD09yNPDXbmCtunQmTasWUGTJ/7Ks/8x5MvRGes1bErXb0XQ2VPH6eKVa3Rx8WIi/jjysfhUeaIm1avfkGI5CFLEvUi6GxGpNZ/qG0GNHLhPcXGpzdRqsPbRIZHN35JT9jk72RHMZi0tZy9F0fxV58mdA41ULutDQZzGBSUsxJ1Cg9xo/Izj1KSuP0VExlGJYh4UVOShoGnmBI1q+Smz3fj4JLJNvEGOdu45Yv7fqHETnYCJHMb29g4crfuSrreXeblWnTpqPSAgwGAfNl7myN4BgdmTIkfXCVkQAgWYACwlDh85xoHPyrBZP2s6LUxpl2QfSPHJhWn7jo0FmJ5celYTEIE0q4lKe1YTQJ5Bd09Ou8D+Xo7OLiqSZXIiBwThwWJUVCQLXxxtln3CEAgDYb+zu4SGFmMTlszn58r6fiZRYmw4J38OzfbgJFnfd2nREgK+IayZd0oRRCypn9E6iQlx5O8QQS+1CctoExYdV6KoK73Z2YMmrLlMSS6Wawu1xpMf3CUHp9SCl6OjAxXy9mRB1JVn6e9TRHQsR/xljaGNEzV66hl+Z0STLasVnfh9opXS5asSPqZK+K1IcnF2pEK+fgTh6G5EFN26YzqarrO7N7n7p/h2am2VLB5KfkFebKqLFAosHHMk4hJFYsnO3rQ2VTtO+y4RWojc3V1Z+2pD4dcf0KQ/z1GvTiWoJAuedvxXumwpPzp1PpIOnIiicyy4dmkTyu9Hy9oOKOJInl6eFG/rnXI65uId3JTu2/rQvci0hW+tb+a+o25fZa10uEG1AS8OotKly9Drr72ktnvi/c4lNvaRII+gR/AnRfHi1D7GQZBQ1+vhcaqS/CcEhECWEzh58iT7cSdw3vOqZBN/gWwTDH3ZDU7I79d4uxAOYOdI27Zt4Um/zKWMMWhbVgo8ARFI88FPAJoOJ07N4GhvqyIpxvFMeCybeaXl55QXLtmeTbhcXDnoRnAxqlazLhW3IHDJjWtXad/urXTi6CHWUMSp6JnZcS0hIUFkl3Qm0007sPmdI98XDE7hcRYXl0QJmUyR4UD3KCQ4UATSTN+dvNnArUvZGwVVu2pfNmUd8EJFSohlM85sLgjQ26mGO01dc9DqYEehnFM03qiPRfwKkW8hL7p7L5ouXIygRJ7IMi4OnD8XJSH+kQBkXMd4PZLrRrKABq2ph5sLayV96catO6w1jTKomnA/km6FP8oLjMiydSsVpQfX/qMHDzUMeCdXrl+MIPhbUkoVcyZ8UooXp9eJp+17r1JYkBMdPxNB2/ZcoTf7lGf/VaKzFyNpxsLT5OJYXGlKLWm/iFciHT19Tlc1wTaafNmc+iT7a2Z1adW6Lb359rvUs3tXusl+aij37qVEwkSwI00odWbf4IiIlAif+HZy0q4/pUcp+01PCqTUkP+FgBDICgJnzpxl3/u7bDlRiV0YWDDlQI72NvcfWnvYU7ItC6JJ7mTn4EWnT52iQ4cOZ8VppQ0hYEBABFIDHI/HCvyyXPhTJsiDyoR4Uiib3SFXIPyKUO7HJlJETDydvhqlIl5evBHD2xIojoXU3C7Qhnp6eVFDRLisUoPNT53J3dVFfTuykOpgb8dCG2tH+Tuec2DCbwqCNbQf/kV8qUTJUqwRiaHwK5do9bK/6fq1KxSnN+ue2evz4JyE0MZSnHUzf0iV4epqRz4cxKR0cTaxC3GjQp6OBB8urTyITaKbd2N5QBmjtB33ohIomv3A0oiPoh1m+J14l3NvIa+gk25gZ1hB1oRA+gS83RzpVfYZzclSMtCdWlQLoBW7+HnN4HvI2dmJ83n6cd7TJLocfpvfE5kLmJTW9eNdc+sua0w5d6dvIW9+rl3oaniKYGXqmLJly1By/C0DczcEH0KE24wWd/YTvcXvCpQzF6IooLCLEkaxXryoB4UGu9OZi1EWC6Rl+J109PQjbah9UjgVKVKNXRN8VFRbtJsVBcnoP/l0pBJGDx7Yr2vy5s0bbN0ST8EhRXV+poi6Gx6eollFcvvgkBBdfSxgP/ILShECQiD7CSC69caNmwnWDEFBQVSI330uzt7sw57AY65oDoR2lq5cuaKe4+zvjZyhIBIQgfQxuesIdOHh7MDpGIqotAzpdduFfZfwCfBxpicrpKQcuHYnltbvD6cTl++xedujqJPptZPV+zy9fKh+o+ZUq14j8vH2YHMsD6XRfRAbx1EgY9k3KkYNMo0FNAiI9qz9dWKBFQPE4MDCFODvR6HFS9CZUydpyd8z6e6d25SUBQPUQoUKUXJi2nmtjJnAT8zfz4nqV2dhuWj6/mIQTkPYLwyfhjV9VVPHzkTS1j232DwwnmItjEiamBDFaRG8OVdfOqY1xh2VdSHABDBx0qBSYfJhgSezJYZTu0Txx4sFXCcO4GOuNK5ShHacuEVXb/PMu5UFgYcC/QsrQREmujlR7vN76f6NOPLxcqcSoSF09doNum8ixUGJEsXJMem0QZcwNYh3tqVl76HbVImj5iIQUhRPJu47fJtqVkl5RxTxdaZdB2+pySs3Dhj1gCccz1+OohqVClnaPIUEQKC1MbCasU+6Sej77t13LG4nvYo9evam115/i7p17UQnT5wwqAphdP26NdStW3f66svPVZTd9h060qgvv1D1/vlnPY397keq9kR12rd3D9WuU5fgd7pl8yaDdmRFCAiB7CUAawbNoiF7zyStCwFDAiKQGvLIc2sY0nhwSoY2tYKoTtmUAUpGOunv40QvNAll8zaiOf+co+MsmEbdNx+lMSPnMj4GqRiCQkKp54DXyb+wHxXy8eRcevfp5u17KX5fxgcYrUMTgs+DWBak2XoOWlN3NqkL4bQsfiygFmet6fJF82j/nh0Uy35JmSlKQ2rLZnZmlC+OPHD093Omto3Rh/QDr6TXn3IlPAifqzce0PIN4XSTJw7MmfXaJt9nnysvEUjTAyv7TBLwYIGmmQU5RudvPksrtp83aKNSWCF6u0sVZXY7es5e1vY/IETojYiOo9a1i1KHemEG9U2t9GxWnH5ZfJx9kMw8YHoH4xn3YoE0/PodnrTJ+cm0O+xP6u7qTMVCAlVQJL2uUWBgINlwBGxKMjTrtdYWZe+R27Rg9QX2iXWg6PuJVIWF03pPFFanQs5RaEt/n32S33v2HHwpkRrV8aeKZR76hOp3KI1lWNQ4OdoqYVarggBHRYtWpj179hoIqtp+a79bt2mntJxr1282OLR1y6Z09OgRGvn5pzRl2gyCIOrBk5HLli6hNatT8owiPsCwIe/QzFnz6MaN65y2x48Gv/uWBG8zICkrQkAICIH8S8CGTXZMJ1TLv9f82FyZi5M91Szlw0nni2Z5n2/di6MJK07SjYhY5d+Y5Sd42CCiZFZ+ohZ16dabhdFCrGGIo3tR97PM3M6TA4F4e7rSrdsRbG6yntYsW0gx0Y9M06y9rnr16nBkUDaVS0jbRM/DzYGealhECZLWtm+u/sETEbRh600W2NMZeDsE0JlLibRn7z5zzcl+IaAjYM8m/c83CKWaZcxr1iCQRsbEUc8Wj0x7oWGzY0UozP8Pn7vDeUsLc6oSonPhUTRyxi4a81I9Nlk3PzkzfulJOnXFsme0eYtW1K3XAJ6oicyyd4YOiJULri5OVLiQJ33+4TA6dSpFA1ijRg0qyrGaYAKrX/x4AvClF4rrbzK7DM0ntKNeLORDU2qqIMKuudyjpo7Dtp+mnU71XnlgW5b27DumTPHSOi6rtwcEBHIu1UgVpM64bXv2/Q1kc8ErHGE3MQssXozbl3UhIASEgBDImwRM/9XLm30tUL3yYB+k5xoUyxZhFCB92b/x/a4VqWpJH3LAKDMbCoTRmnUbUq++A6mwnw/dZk0DPlnp+3UvKoZN6e5wgCQXas3BNJ7v2Z/cPVIiN2bkklxdOCrnw7QNpo735QgtA7uGZYswivNVLuNFfTqFkmd6JpXJiRwsKfMml6auT7blXwLwPbdEGNUIIDCPPZudah/tNaEmysqmCKOoC6EU21zZpcCS0qJ6gGrTXN3SpUtz0LNgusGWFFn5zjB33rT2w60AfalTpzb7V6UI9QH+RcieUgfescZcVzsfzP/92M0iLWEU9TIqjOJYUzPP9hwkrTBrI3OyhIdzVF7WiJoq8Fe7eOGCCKOm4Mg2ISAEhEA+JpA9kkg+BpYTl4YZ8lc7lKVqJS03ycpov3o3L05Nq/mTKw+GsrLATBea0R69+hGCkYTfuKu0o1l5Dq2teJ5Jh/lvfEIiNWzQgDo935OcXVKnitDqp/ft4QlhNrUlO7RDxUNc6eXuxdnRP2tZGffHy8Oe3uhdMp2gKDYqPYXxcbIuBNIjEOybvo+z8bHHL0XQlJXH6K9NZ+j8tdQCxDU22f1r4xmate4k9WlVziI/UpwDwdhcWYBNr4RwgJvy5ctzJN0Yk1F00zs2O/dBKMWkWt26dZVQCt92Skrt02qJT2129tNU29qEgv4+CKSBgazilSIEhIAQEAJCIBcJiEBqIXwX1pz5+mbch9PC07C/qD292q40+SNXQg6V1jUC6cmKPNNvRRAOc12Dz2j/ga8giorSKmQmBU08J6G3xDcUQZEiox9Qk6bNqGHTlhwIKf1Br6lriLwHbUdq39qQAGfq/nQxU4dk27a+ncPYRNDU7yBJBXHKthNLw/mOgC0/h3XKWf7+KhXkycGPAijU34N9GuNp1Ow9dOR8SooODc59Dmh0734cTwQlUfht66JSBxRKOwIt0n3AFPYOC6OYbMprBULpg7gEDrxTh5ISLDM9zmvXoOtPUjQHGPLQrcqCEBACQkAICIHcIGD9iD03eplD5yzOUVsXLV1BY8eMpulTJ6uzQqj5ctQ31LpNW4qJiaHbt27Ri/37ZEs4elc2qXuhCQshXqaEkOyF0KZmoIp+eZgHncZRbq09M6LpDh7+CUd1tFVRMS07Ppk2rlupTLWaPdVeHQIhdNu/G+jWzetsouqktJ4NGrdIV/uJYEkoXbv1VPlKz589rdYt/e8+n9PH1dGgujv7jPZ+NtRgW06t9O8SSuNmnGHfMj0h2caOc5qm42OaU52T8zw2BDzZBaAMC5mWlnpPlCFnN29ydHEjR2c32nbsDsU8iKewysGqCTzboZWT6MlGMWx+GU1fTttMV3guJ8hCa/kKxbzoxCXTwly1ak9wmoEHHIAnjtwt7XAO18PEV8mwYE4iH0dxpi8jh3uU8dPFxWV/LtqM906OFAJCQAgIgYJAQDSkD++yJ5tq/jphMkXeMxxdtG3XnqrXqEl1az1B9WpXp507t9OIDz/J8t8GtJMNKhamcpxXNKvKnSiOFmtF6f9UCSpkQVCS9JpEntEuL/Ti3H0caIhz+Vla9u7cygNbw/p7dv5L9pzqpWOXHtT+2W7k5e1Du3f+Z7ZJCKUPWGB7451h3A/rzBSjeHCdbPNoQgABjHp1zLqgUokc5jjaiujGMAl8rm0IId2DVhKTnVQuVm1dvoWAOQLwH3R0QMzutIubdxHyD6tMxas2JZ8ixVRe4/jI6xRx6RA9uLyLwo9voZun/lOfGye30J0zOyn6+kmy5zRJFUoEkG9IeSpWoT75BZdhQTZ9rVvRwm4qDYlxb1Ly3xWiew8nloz356X1hIRkDqiGyav0uealPpvqS1Ji5iKTm2pTtgkBISAEhIAQsIbAo1GuNUfls7p2nOdy/K8TaNLE36kNa0L1S5u27WnJ4oW68PNzZ89iLepKDuRhyzk0rQ3ur9+y4bKvpxPBdNaagtP/8PcBTlycREO7VdMdunTbedpz8ga5cZCRe5ySoX6lQGpV0zDpuK6y0ULfliVo/NITHEkzY6ZywSHB1LhxU5WiwajpNFdPnzhKUSyMlq9Ujc6dfpS/LvzKJar7ZFPO55fyMy1XoTKtWjKf28HwOv1BIFI1+Pt5U1OO0rls8d9pntt4R3Q050JN8qSU8Cw2nOvPmwp5G2pMjY8xXr915wH9OvMEtWjAqXqqpQQMiWEhdPHai+x/FqeCSCWxGrpt02AqGmheYA4q4kxlw9xpz5EUk8nEZGfJE2YMXdYzTMCrcFHy9A3mPL6xFHfvBt28foKOX7hNJQI92ezdhmL4XXD84m0qVzTFp/0GpyBJSErkPMeu/A6MpzMXr9H1i5fIsXg83bP1Ikd3PwooXpniY6Mp4uZliom4mapvRbycyZHbjo3Hs/yoVKhQgdNRcZTrx6DYsBl0YmIceXi4U2Sk4WTaY9B9XRf5KnTLsiAEhIAQEAJCIDcIiEDK1D/59As6ceI4zZszK5VAGhAYRGvXrNbdm0uXLpGTkxP5cJTFWzdvkpObhTZquhZSL9izzyJyhNqwdtGaMnfDKboTGc8RWR11x568HEGrdl2hrwfWJXc200OOwI8m76Da5QMs0n6GFOYk8EHedPJavEkNRnr9+z975wEgV1Xv/+9O77OzvW82m2w2CQkkpBAwQAgljSpKUxCfPv9Pn6JYeCoKolhQ0efzKc+GqFQrJNTQaxqpkELq9r47szu97f937mS2ZXfnTtndmezvwGTu3HvOued+7uyd8zu/JvzUPvaJz0TSupC0LIT2WKWttRlHDx/E6jVXoLHhBF2HYqCdmsx0hdwZ7cdotkAsAXg9XhiMsQU5O/mUXnvdx7Bj+3YKjtIbayjS8V5KdaEyUBRQfzt06hA+tCSSC1BWYzE2mrw/urGezIpJpKVASMK0UZRXtrYj3J+Fz318rvR5+95OvPBGKz513Wzpc6x/1q0qwZF6L9wB6k+bD0/gYMLfvYDXRcLHEBPgWCfn45NGQKM3Dfwtp/KkRn34lH5NtkLYCqsQ9Dnh6jiKgGcwWqxIy/LGe20QkXlFztBqMvc9Y2ae+EojRDLkK7tbJN9RjUpJwmkYF55ZSs8hLUIBLzw9jdJLa6EcvSWzEMgrQ3frcfg9g4GRTAZlxHohOPiMKKdARjp6nrodLqhPBj3KUqgG/v5TySOZvhQqNY3PAK1OjyxaLLPYcuEjbenQBUqxP/q3n8y5UtlWSeNWaU+NhKxV6hN+lojxhcjHP0j3nUv6EVBp9FCq41tQTb+r4BFNJwJibiLmKFymH4FpL5B+/OZPYMbMmbj15ptGvftWiwU+3+CKvc8X+eG1komvEEj15txR28WzM0/jRFVxfILtq3ua0e0MYP2KmXh7fytN2iK3MtSvgJL8XtVk6irMZ20UsVWj1VAy+zDyrPJu9w2rZuIXm+rgV8TnwVVaYMPsOfPQ2mk/ZfI7Gg8RQOjdrW/jgovX0hh1FP9ISZM4ep0UzKuq52D3u9tIC9Evme62tTZRHRJYaRIcrTNav9F9QWrnDQSxfMV5eP3tbdHd474LhY1Wn01aTNKuLlXTeQYnzOM2pINCY/3408dw3tIi7P/ALvGPtg+HFXQNNEk92V9BnoG0150Dn2P1LY4vOysXb72nQZBMivtpEqk3U4qaBEoo4GOBNAFuk9FELHApVYMm4yk7Z1h8HyN//+JvJ798DsSCj7uL/s6dXdJpxN9etGxYUQU/Ra0WwqiwtFDRYlO0lOSacNPFtdIxkY7FTIsvtPQSPTzw7u/rJP9KekbmlKFs9lL0tNfB0V4/cDxLqYae/taiZd6CsyiIEaDWD/aloGeZnL/1aB+T8a5UUZ5QBb3It1alMNAzKQirLR8u1+AkSqEMxvW3PRnjVtC4NbpThROFypzU75jX2cMC6WTcwATOodbRwokhvrlFAqc57ZtoNRpUVpajnCzAdDRXEemJ+uk/NT2f/IEAGpuaUVffKMUZOe1hTPAFCssaFkgnGHKadi9PQknTwadiWP/x2c/jhReexW1f/LLUXdXMapq4KciXtBf//Mff4HA4KKDO4I+4jlbFRXE4IuaT9tZj0udE/9GQj+A6iqobCg4KvbH6OkCBh17acRx3XL8Iu490klbCN9C+ulCPqnwdvvPg29hwTiW6+ryoKTKgNEczUCdW/8JdMUfjxcHG9lhVhx1fd8knYHf00XnkBdw5fGCflD/06OH9Uj/27i7i3oM9O7dg/oJFmL/wLEmwPn70oBQxV8ov2h8mXzhxLfLOYSc/1nPPOxfPP/3PYQsLwwY+4sPhAzYsmKXBwtn6uAS3TS83Ii9bhUVzLdh3oFNqG9VELjszG3/82xH8+R+HsYLMeF/b1obVK/Lj6n/5QjO2vO/Hgb3vItnv3YhL5o9pQqCPTFwnouRRqhXxjNGZbMgvmwM/LYZ0N+8b91Qio4lZJ4TDoLTYMrIyKU8pQ1IW+sNicjZ2cXUeh9fRAlPhbKjLZqOj4WDkb8PvhL27W2potVoR9vais2tQSysOGNSFsv/Wxx5Bao+IyZLb7YLTQtpbTQ98oR5yKyDTZkfHwIlC5EMf/dsf2DnFG9K4+yK/W0OH4s0y8fNkKJDTaNvT2wXx4pI4AZEPef78WrjcXrQ1N8A3IqCghhaaTXotzlk0BwcPHMD+/ZH5TOJn5JZMYHoSkK/+OU35PPDA/6KjvUMSVoQmtJ/UXEHSDARPCjwtLc0oKy8fuHqxLer19PQM7EtmQ0/5P2cUxjY/jZ6jrceDP28+hM9eeQYlox/UaESPi+BI82fYUGDT4633W7Hx7RNYOCtXMrWL1pHzfsHCQhLMBzUVsdrk5ORiwZmLKGCPfNOt4tJyFBYWk5ZBKb2ERlecUXyOlCzUzD2DUrhchhUrV0v3pKCoJNZQhh0XGhxLNgWLqo2Yyg47OMaHEyfqUVwyeM/HqDZs99bdnejs8WHthaP76mabNSjON8BsVOFfmxvIhDiAElo8iLfkFZSjiVZjuTCBeAmYbEUomnkm3N31cHWeiLd5UvWFKa+jcR+yyOe0uPosqDTD076U03NVpFPJpCLS3ZDtBpni99PzNYs0zoMLl5l0Hf2IPm8zadQ8ViYw8QQWLVqMWSSQdnb3QbgAjRRGxQj8ZIVl73VR3IxulFdUSjmKJ35kfAYmcPoRmPYa0mh6l+itXbJ0KV577RUKZPSktOv5557BF267Hb954FfwUkqQ666/Ac8/9+wwf6Fo20TeKwrkC6Oi/9fIVDcvW493SNgUpaHDia5eL5586wTWk0Z0f103Xt/XgrtvXkoCJXCwwY7//dd7sFIqk9qKQfM4qfE4/8wpM5MpnvBBlaeJrKmthZkEPxFMSG4RwuVQAbPu+GHKN+pBLQU3ihShd4kIxZ3trag7fgQfuvBSud0P1HN7fZg1azb27Nk9sG+8DXtPF5YupGjHpP1B8NSALKO1fWN7G+ZWW/HyOy3S4S4STg8dc0CrUeCseTnY9HKDJIBefF6xlFbnxbea8dvHDuO//t8C+YsFpC1aUC2088O1SKONh/cxgaEEysorpei3joa9ZA4lz596aPtUbTvJV9VgK0fxzLPID/wA7CcjgRcXF0smwKk6z2T0EyBTvTB0kjgXDvfT37oGAX98kc0nY5yxzqFQDl8ciFWfjzOB6UBgwYIFKCgspIVmeXOaACkyusn/3UZp7xYvXoydO3dOB0yTco0i/WKIlAuj5bPPzcujDA1OaX4+cjDC2rGwsAhtba0pm7OPPAd/Th2Baa8hjYXy6U0bsXv3Lmx7dw/e3vIuziF/xB98/55YzWQdV9Cq+tKa+HxQF87MlaJdqsmeTrwk3y6Sm8S2KAfr7SjLM0nCqPgsImPOLs2W9ovP8ZRso/wV/2J6cHtSrOEQZtNP/vXP9HoY2955HeeSljQvvzCeS5Dqerx+5BcVUQJ4ecJ/rk2DXGMX+tXFss+1cmkhRL5SlZLuCb1ELCNxf5UntcxH6/pQUmCQ+hOBYS5cXkQmQEG0dUbypso5Ub+qmHyNncij8aWyiIe2iDQ9WhHHiimwl3gfrej1euTmxvcdHq0f3jdxBEpLSzGndh4cTe9NqTAavUJ3TwO8vS1Ycc4KKUCcCBIn/jZH0z5E26Tju4/ypPZnRYQ5MVHSkm9ZJha1JvJcysSx85iZwEQQyM/PR1VVFRykFY239FAb8ZspnrtckidgNJnw4itvYMnSZcM6E9aKz21+BZuefkGan3/33h8Om8es33AFdu3dj0ef+Dt27tmPSy9bM6w9f0g/AtNeQzryltx6y8eG7RLO61/+0hdgMptJ4DChtTWiARtWKcEPRp0Sc8vjCzggtJxDNZ3vvN+GPk8A65ZXSKMozjXiDdKQ9rop+q5BTelbgjjcZMd5ZxTFPUphSlzXPhioY6wOhI+tmYI/idyfyZTKqtkQr2gRfV685ioKxKElX9LkhDA1RRvMEytpQwKPRM8z8l1oNQPeLgRFtF11GbICjSOrnPI5mt4leqCuyYXZVRYsqLVJuwry9Ni9n1JnVFskU+iDkvZUiRyrvAA2/ZpKSqNhp4ioFDAqojSOnirp97u+812pj7u+9c1hfYkH+vd/eJ9knp5NOWC/9pUv4oXnn5PqiBXLe39wH9ZQmiS3243uri586pO3QJi4c0kfAmKxYPny5XC2HkIgW953bTJG7+lpQsidhWXLllKE88PwkBVDphUxZoWSonDTY0/SkI4SwTbtr0lhhMctTwMUz7WIoHpCgzxaYY3GaFR4XzoRmDt3LgUd9CJElg9xF1qc6nP7MG/+fHKvmZiYAHGPKUMbfPd7P8A1134UJhJKR5Zv33UPXnvlZVIQfVda0Hz62c24+JLLyILxGQgh9sc//TluvO7DkkJp6bLl+ONDD2PJ4gUDKRxH9sefp57A6GqPqR9X2o3ASXnmUimMigsUfkekTIu7iAT2uWU1KJuzDEvPXyv9EZbOXkyRLBfjumvW4Y7P3oD3ekuxzzkDW9ty8JnrVuPcs8jWM85STj6PcorNZiPTtQQuJGbnWTDSQkCywqg4jZp81sQ45ZQ8W2Ti7u49hiwt+YQqzHKajVvnitVlktb65384gAceOYQde7tw0xVVFDBLBjclLVqo8uHuPS6dw2ZNTjiPDvTiSy6VVhZv+cS/RXcNvEcf6Ld87AZcuHIFPv1vt+BnP/8lRUWN+L2uW78Bi89egnOWLsKKZYuxfftWfOPOuwba88bUExDPl7PPXoze1sPwu1Pj857Kq/KSppTWzLBw4UJKIUPhdTOs+Mk8V6TAgUInBXUazZws3S8pmGVBS2t8wetiXdOy5efgna2nmiuyRiMWOT6eDgSEtYY1O1sKYpToeMRilQi+KDStXBIn8K07v475tdWnLHSLBa/VF1+Cxx9/VOpcKBo2bXyKAoRukD6vWrUaDQ31kjAqdmzfthXt7W1Yef4F0nH+Jz0JsIZ0Cu/LaKkSxhqOSDFgySuFOaeYJpekKXM74Go/jGxvH1aWkl9h42AkvVpaTBIvl68Ltqo8aPRF0BhJaKTVvr7uFjg6GsY6zbD9eZS8Xk4xUERJyUZVTuUpqqOkFBcW0rjKKSUUpViUcNADt/0w9KYqZHnfpz3yJ803XzNT6iP6Tw5pp66/vErK3ej3h2EUoYzllCwN+rWzKILnESmaqWhSkKsl/9Q+Oa3HrSPy64rXnd/+DkUxVg6rO94DXWhJ167bQH7W/xpYbXz80Ufw5KbnJNPeofkYh3XKHyaVwJlnLoQi6Ia3rw3Ilve3PKkDpJN5u49jxsKLyHSdor+SRiLTitPphlVvgyLcIj1fM238wX4LOjoOpWTYwlLmeTKhq5xRJVlMjOyUNRojiUz8Z85DGj/j0soKWmCn1HmUaziZEqLf7tKKKrJWyzy/8mSuO9m2cvKQ5uXl05xFjeamQeu1JtpeStZAohSRi9bQY2Kf0FYXkSk1l/QlIHNWnL4XMNUjEznpEi1KST06voZMJGHPKaqCSGLv7m5E97EdlE5gqCnU2O2NpOjzU4448ULHCcrvZ4EhuwTZ+ZXobjuBvq7xzStNlF9QT+ayfkr6Pl4xmS2k6RWJ4FNsSzreSeM81t+fBYPBRDkeY9wvMrfJy9ENXIvf0yblhdToapDlOxjnWU+trlYrSeM7XPg7tdbJPVkqEkbnwOdqIhNiyll6km8uCbcxr2PMTknQpsTT/ZQ+Z7wS64EuHuxCmI2WxsZGyR/QlpMj5eeN7uf3qSEgTHUryMfGUf/u1AxA5ln76VkW9Nglk/+unswL1uXodVLk7FyyD2mhKx7/OSkTyeRVo3zGSrUJzc3j/w7IHZDQGK+64DwsWnw2fvu7Pw5rFtVoXLL6Qmn/UI2GMLGLtQA2rDP+IJsA5yGVjWqgYkFROaVzMtF8aey51UDlcTaUWj1y8kugb+ocpxYfGklATh7SqHJBZLyIFhF01GqJuMBZrdmnBDkSda0ylRLRPvl9cgmwQJokb1vpoM9jvF0pPa0QmruxijDNzaP+PfYW9NTtJCGCNHQk84lk8YmUUMANV8cR+PVWEkorSONags6mwwj6R9dMhGid0JidC6N2fFPXnFLK3arS0ovs79K0KGlsBkpeH+t+hYJ+uGhBU6kevC9+LwmlGiPURoqI6/2ArlC+pjRhHFlqEkZrJZ/RgK9j2Hh6vaqY1zHeeR20GBEr8XSsB7p4sA/9MfD5It8h8YPQ1ck/wOPxH++YiSwgFLEWTcbr4OSxpcuXUIRou5R3VOxSqYNkxJBef59CA6HXaqDVG5GlsiCvqILM5IYHERF/h4k+72RgSqiKSkfjVkVM18XSoM5cCFXATgHmPND7IkKpUkNODMrEntMJDUpGI4k3PVeiJawupZRnIZjptyCZ4nPZadFs/MUE1mgkQzjxtpyHNH52WbNL4SO3anccGQNGO4sioIdeo+Qcv6PBSXJfLwW8FEVYZUTnITqdjjIQkKUNFfE+Mshc5Pj4zympMf8zZQTS6xdzyjAkfuLOOmHKmVipKjIh5B89ymouCaIGs40E0V0IeFL7R+Tro7yr9DLYylBctQAd9QfgGpLUPXo1yn4/JbRvh9Mz/gq6w6ZGsDAPoQBJcmlaxNjcPe2Qc79yzq86RUjv69wPvaWKJs9zSFN6lNSMqQ8EMoCOfEb7NdVkatlCr/qB3dGNPHNI1nVE6yfyHuuBLlLPiB+DaNHpIhP06A9CdD+/x0cg4HNDERhc9Y2vdaR2UVEhyLgBfa3HB5qHhRwSQys+UHmSNvpJUx8KkXEcLbC5yA1BS35BvSMWx/rDtDCUSGCRCbyGMAW6Cw0J4NbR0YlcczYUIcfAc6M/rIhphTCBQxy16zDlgA36BxfTgllmHD60nX5fkjP/F4t4sQprNGIR4uPpQkD6bSMXqWQLGVuhkxdnk8U4avvOzg4paFppWTmOHT0i1RE+6q2trdJ2S0sLSsuG54QXxzno4qg402YnC6RpcysGB1I44wwKX50Fe/3uCZ3UuHsaSQPnQl75HClRvVzf0sGRRrZEJOKsk+lNRh5Lm89k7hpOckLuoaBCQstssM0HfPUUfVeY6aW29GvIIVhFKWHsRyQz3dT2Lr+3WA908WAXD/hoEdtipbKnJ/2C50THmAnvsTRNcq6h/Kx5cLV9AL93cNEkTKvHkoWFnA4mqU6QBBk/RQF30kKRP0RRWfs1pGUMS1Gbo0MIh4zkmzkoREX3T+V7WIzb6xoYQlODC9a5s2iCFKa/2QjzcNBA8v/4ZvEDHUzSRoii3ga8EXePoKII7W11aK4/NilnZ43GpGDmk6SAgN1uJ19D+h1OsoiUb9HvfZJdcfMRBEQE75df2ozrr78R37/3HinK7obLr8QP7v2uVPPVV1/GT+7/b5y1aDF279oJEWhNWGm8+cbrI3rij+lEIDkj+XS6ktNkLIWV88kfKYze5gMTKoxGcYnom46GfZIJrzm3JLo7rnePxyMsidO6KCmPpo98DJItwqe0r30ngjCjX7+QhMcU5eBU51N/ZyEY1qO3Y/eUCqOCkXigV1RUSg908XnkA134fV155dUQZjCiXHf9DRRu/VkSHtJrEi4Nbhr9IwKM5ZAfr7eXAhllSBEaNgVN3vpDPvLzTi6QyFRccphUIe3t3QirkzN9nbSxZykpx3IJ9h9I3ide7piHajSibVijESXB7+lEQGg1dTrNQMyGRMem16ooYFhHos25HRH46c9+ga07dqOgoBD/99sHpW1hUSPK9+65W4q0+/aWd7Fl+y688/Zb2PzCc9Ixl9OJO776JTz8yBN49fW38fsH/4Sv3H7bQBBGqRL/k3YEWEOaRrdEpHIRgY56Ww5M6qiCfhedcz+lkllAJl0+ePoGI/bKGYjIQxkJ0CSn9tTUEVFk+yh1TypKiCKXOrveh1qXA725AgryxUKwC1n0Qn8cQq9Cj34lCbQk1IaCxJ20okHf5GkY162/HCIHqZmCUokiIud+m8KsC8Fy6AO9o6MdInfg0Af605s24vwLVklpY5x9TvQ5+3DrLTelAi/3kQSBctJUu3szaxIUoGeOymimqNYBSs9klEx4hdVFJpX2zi6UFM2OLFCJ50Aal4CiAnV19RCaoMkqrNGYLNJ8nmQJRPNqG/UGON1x/J4PObGBgkGKIDtdlJ+bS+IEvvylL4zZuL6+DqtXraSIusXS/EPMWYaWp578F555ehOKS0oo4i7lvQ6ll6XN0LHydoQAC6Rp8k0Q6Vz0RguZ6e6ZkhEFKH1Mb+shFFTMRcPBrSMi+Y4/JDGx0WoGg2WMX3tqjmpIIE31BCzg7SZNZjeZO1uhMRRQeh0y5RWBp0K9yOon3+Cw+DETD0HxZyYm2PSu0KKfktFDQXl5SBfup+i5/r5DtBCQGmGZOpVdnnl6Iz2wN45Zf7wHuhAYxI+FifLEmoymlOfoHXNQfGBcAqUlxQhTsLRMKiKomtYcsbEQ2lKhdXeOmFxkwvX0UsTdgKIc6qxIwI10HHOYFsCC/SbKz/dmyoen1Wrx+ltbpbzRIuez0Gy8RpYWX/vK7dK5hEbjwYf+AmFaZ7aYIRa1RtNojLYAlvLBcodMYBwCBw4cwMqVK+H1+REkP/d4irD2MBt12EWmolwmnkBr69iuU2Ke0lB/ahyOiR8VnyERAiyQJkItxW1UGh1pJ2tgb9hLPU9d6gC/swteHUW7pLG0xxGsSZjsij98jVoFfyA9NRsaEpgnarUy6BfBTBxw4zBF4zWThofSy6gNlJqFNI9kHidSK4QCfZIPXzjoRTDQQ58b6DV8RS/FX6uUdBfrge4krbN4cZl6AsKUKTvbRoE09k/9YOIYgdfdC1uxWNASizj0HBkSLCuObqa0qpoWvEQqk+PHT6CqcgaNpWlKxzPqyYVFhmYmdrz9zqiHk90pfMiXLzlrzG5YozEmGj6QZgTEXOHQBx9gxgzKqWt3UvwJ+fMym8WIhoZ6Ke9lml0WD4cJpDUBFkjT4PaIPKPurgYESUs51cXVeRy2ysUwWHLRTVFe5RbhK7FA5CxNQ4FURO/0e90UCjy10YpHYxMiTad4cWECk00gO5tyr5Fwl2nF6+6DSkkLN+SuEKLIuxoylcu0IixE2tvb8f7775MJ/HLMLK2kS5A/iZ3w66V0LwFlNfbu3Ye2tqn1L2aNxoTfbT5BCggc2L9fch8QbhB9Th+8lGd3vCIW5IVmVKQ927NnaizdxhsfH2MC6U6AgxpN8R3SGiyUKzAH7u70MStwdzfAVjgjLjLtJJDq9YNpQOJqPMGVDQYtursnz19qgi+Hu2cCoxKwWq20GDI8j+eoFdNwp8d50uw/yUjYU3VpJEsPBDDZsmUr+jwUOEhTNVXDGX7ekzmNj9c14OjRo8OP8ScmwATGJLBv717sp0Umq1kPmyWSNzmLIvYPLWIxKpuO5edYKAXJUWzfvm3oYd5mAkxAJgHWkMoENVHVsgvK4elpmKjuE+o3mqPUaM2V3b67u4fcJ8MQzvxub3J5FGWfVEZFRZYCJoMOnV3dMmpzFSaQuQRMJhPCgdHzGqf7VTntHTDnV8AtrHYzLFKzmKCaTcaBHHiC9c4dWxC8cSb5l89Elv/Y1OEXZrraGtKct+PwBwenbhx8ZiaQoQROnDhBJrgNZL47A1VVVci1URBCsuQQZrw68pt2OHrRUHeCzPWPS6nPMvQyedhMYMoJsEA6hbdAo9HCYC1A55EjUziK0U/tdbQhOy++NDA99GDOtljSSiA1m/RwutzwxzC3GZ0C72UCmUNATI4QSn+/5NGI9na3omjGXNj7vJOS7mq0MSS6z6DXkt9u5ykpBZzd78NooxzPunlQ+Egz2T/JC3WqHBJGqylqej18zsZEL4/bMYFpT0BEaBXWBWxhMO2/CgxgAgmwye4Ewo3VdVFJKeULbKcE6iISa3oVT28rTNb8uAKM2B3kO0nWLEIjmQ5F+KVZzQbSjk5eKpV0uG4ew/QkIKKc9osozxlYwvQMdHS2wCiZ/aeR76UMljq1EseOja4FdfUcgs/dhX7DQgqynS+jt1RUUZC5cIWUF9XZvZ+F0VQg5T6YABNgAkxgQgmwQDqheMfvPJ9yOwbcaSoskS+X3+NATo58s11xtR2d3ZIQqFBM/VdL+HV09zjg8wfGvxF8lAmcBgRycnMpmbsyY6+ku60OFpOBAhxljuGO0I4K870mynM3VvGSdlLkLQ4pChDWzaVsT+axqia9v5+E3n7DWQiEVOjt2EV5jdl3Pmmo3AETIAJKWuA2Us5uiyUbVlsOssl012zNptRnFjqWOc8svplMIF0J8F/RFN6ZbBL2/O70zRkYcDuQl5eLI8fl+7i6yAnMQfn4cqwmdPZMXcRPMbEVQnE7CchcmMB0INDd3QVNhgYFEvfH53Gir6cdRlNRxtwuvUaF997bF3O8Ii1Ub+duaI2l0JtrJNPqrCBFuw2lSGBUF6FfVSAlf/f0fECCaJoudMYkxRWYQHoQUKs19CwywWK1YeasWlRWz5KEUINB5BAfLB6PC70OO+qOHsbRIwdhp+ew2+2C3yfykHNhAkxALgEWSOWSmoB6wlQ3HJxkv6I4riPod1Few+w4WkSqCiGwoqwYNhJKexyT7/RkeawAAEAASURBVNMmAisJU93jdWNrLeK+KG7ABNKcgI+CiWkpH2Yml46mo5i9ZFZa5zSO8jUb9VLu0cbGxuiumO8+VxPES2MooujqZVBoZpBQ2oMsIZiGyOUB4Zh9SBWyKKK50oyw0oYslY1ShvXAaz/KGlF59LhWCggYtCoYtEqyaMhCvlWHHAsJcLQvEAzTPgV6nH509vrQ0+enb3U/+twBBEPpb44vBND8wiIsP28VKqtmxSSl1xspw4ARhUWlWHbehVL95sY6bHnzZbQ1N8Fu50XxmBC5AhMgAiyQnvwa2Gw2KMgkQ+SQGq3o9XoYDAaIhMmpKkF/ekfEDHmdMJniM9mNsmlqaZOEUiEYOvomLxWFXqtBHoVfb2hqpZyobKobvR/8fvoT8FHgrn7KhZfJJRjwwmHvIT90StXkCKbtpahJ8BcLbps3v5PQGIVljHgp1SaodTnQaMug1JOAGXRR8CMvskQApP6AcMmXSj/IL5TSt4AE0SwF5WlVqEn4dCDg6qIcy0cpDsH4ORITGiQ3YgIjCBh1KuhJCF06OxdLanJgM8lP9XawoRdbD3WhoYM0iu4gCacyF19GjGGiPprJFHdG9Wxcuu4a+nukAHFJlJKySlxz/a0IBoN4dfMmHDqwD730XOPCBJjA2AQye/Yy9nXJPlJSUoLH/vpPMk3Nh9fjQTOtaP30J/fhlZdflPpQqVS49wf3Yc3adWSG4UY3CaSf+uQtaGlpln2OMSuG03fCJcYsAo2oKRJwIiVEPzYNja0oLy2CYpI0pUYKppSbbYYQhoXpMBcmMJ0IOJ1OFGTnZfwle7xeMoFzUJL54aZx6XRhForevWfPHvT2JueWEAo4IV5eioQr/H+VaiMtjOropSXBU037IiJpP5lih0NuevXQy0NtSHDlwgQmiYDFoEZFgRGXLytFfnZic4LacgvES5QtB7vw4s5WOL0B+EmjOpVFpVaTRrQYV33k45JJbirHIuaPF6+9CuddcAme/Otf0NRwgiL+p69VXCqvnftiAvESmPrIM/GOOMX1g8EQ7rn7W5hfW42zF52Bf/7jb/jGnd8eOMu69Ruw+OwlOGfpIqxYtpiSHm+l43cNHE9mQ0wy0rkIk2KFInETwCCFSj/R0AwFzanyc6xQkwZ6oorQVlhpklhH5+tzTp5GdqKuh/tlAvESsNvtlGIkfYU4OdejUGooUjCwY8d2el5knYy6K6fl5NURz5n2tlYcSXG6LhEhOejvpWBy7fA6G+DpPQa346j08vRSjkMy9Q14O1kYnbxbPe3PpNUoUVloxG1XzcEnL52ZsDA6EuQ5tbm488b5uOa8cuSYSes/ssIkfRZBilasXI1P/PsXUy6MDr0EvcGI62/5DFZduh5ms3XoId5mAkzgJIFpL5C2t7fhxc0v0CSoX3qJ7ZqaOcjPL5AQrV23ARuf+tdAjrnHH30El61ZKwXMSfpblP7uFMlfInEV5rMu0i4XF9qkKJpJdzqkA+EvWlxgI61BCMfrm+AhPzouTGA6Eujp6YHOENFAZOr1awzZ6O7uRoDM7bds2UKLTAYIy4d0KSJYm8/rxs6dO9NlSGk3DuHekksRn7lkNgFhjnvVijLcduWcuExz47nqZXNIML3hDCyoyoaW0idNZhG+opdffQM+dOGlk3baxcs+hGtuvBXWbNuknZNPxAQyhcC0N9kdeaPOv+BCNFMI/66uiC9pUXGJJLBG64kAFiLfny0nR/I3tRRURg/F/a7SGcksK30jsanIH02p0UPONaq1ejI3G9ufpKfXBbfXj/xcG8osRvQ6vXB5vNIiQNzgqIEQRM1GHfFTSHlGJa2ogsY7xhKLUkUBF2zF445RjEOYKSs1Ooj66VpUMu/JWON397RB+OpxST8CppxiKJL47vnCKliLa+B3DQ+koVIHJRPQdLpitdZA/mjD/850eVXobOuTnjlivW7Pewdx/qUb6O9RDecUm+ELYVRBJrS73jsU85mo1gXT7hmiNWbDkpV64d7nspP21oEJdW9Jpy9uBo1FZ7JRAK34FqmEZZQBTnx2fTWsxuF/nxN16Z9cOxevv9eBNw5QmrYs8pGe4EKxl3D1R25CQVHJBJ/p1O7LZ8zCxz/9RTz2p9/C3z+5Qvipo0m/PUGfm6xCOtJvYDyiCSfAAukQxLNranDH17+JO776ZRJMIua0VosFPt+g1s13MpS31WKVBNKAR0RGTLCIGVc6m+2SgOdz90HONYZDlP/uJLOxaHhJeym0pQa9jgKCWFBemEtCqk/Savr9QYrOFxqrKeX5UkBNArJBp5Emsf5AEF3ddvT2yfOlEj+yQZ8rZlRjYUbdHzaQoDz2WMYc5CQdCFPeQzn3ZKzhCKGbS3oSCNCPsSIw+LyJd5QNdcdRUZSNkH/4gkOY4uGk27Omn77Hwtd8aNHozKg/sYu+3xGze5HKRviiFxfmSab/vZMYIC06LvHssVmN0ljrW9rJZNZH4xvON1o3+h6mPKDp9gwREd0DntQHegsFIwGVhrq3eCgew933fE9yb/n85z4TxcLvk0wg8l2NZ44SRhGlyf3CFTXSSMXv5mSVlfNykGNU4smt5FsamDhBTUeLYFd9+BbkF1CqpBhzFnHtoo5I62KgFDAiFUwqitCQ3nDzp/HIHx+Q5kCp6PN06SMUTP0z6nRhc7pfBwukJ+9wIYX5fvChh/Hr//0lnt701MB9d1BwDY1m8CGk0+mlYw56QIni6RuuiZB2yvxHaOLSbdIydOhKtZkexD2yrjEULCezWXlBmkTwFfESeUItZiNMRgMsNtI+0Gfh0xuiHwAVRbEU20IjoaRt4WPi8weonQttbe3S9tCxxtoWQpjPLS8ASTgYMQGO1edUHQ+HArLuyVSNj8+bOAGhaUqmHDnkxczKSyjy6vB0S2Fd+j1rgiTI+H2DzwwNRfTubGtCZ2vjAIIQWVS4XC6cqPeSUJpPQctMsFOe4/EWrwYap2BDWGII/3S7oxcdXZEomUGfh/7+xo+YGQpYJTeCFAwhZV0EpHEnvtgRayCjubc8uek56bkeXeCN1QcfTy0BscAlXnJLJQUu+vyGOSSEDf5dym2binrzyo0kAebjr2/UweFKvWAifDkvuuRK5OUXypqv7NqxBU/97WGoySouRBFzK6qqce11n4DRTFI7lec3/QOvvvjMsEuvqT0Dt/6/Lw7bN9oHE/Vx+TXX4++P/B59ffLmJqP1w/uYwOlCgAVSupPlFRV4+NG/4i9/fggP/OqXw+6tiKZbVl4+sE9sC42p8NdKtogHnDCJDaVp+hcRIKWz60iylzlmezFJsTv6pNeYlfgAE5hGBCz5FWRWnlgUyygmb78WuZVnwetoje6CSuOjyK2DC2sDB6ZwQ6M3IYusJaLFVDwfH9S1wlYyO7oLGsrvp6KFO1FaOuyU0smKspJCEkopdcQEBi8TaV3M5L+qIasMIYg6XZ6BcegsuVAYx49mrDF4oUryPg5ASNGG3pwLG0XxTXXx9nVJC2Sx3FtSfV7uL7UEcsxaKXiR3F6FctHu8sGkU9PfyRi+MnI7G1JvXoUFV5xThn+81QCXN3WCsZKCKi5ctAw1cxcMOdv4m9mkyfzc7d9EHmlTA5RW60+/+x9seetVrF5z+UDDpeesxJVk/hstWVnyWRSXluNsav/Wa5ul/qN9TOW7WpVF7lBqskrLosWkLIRFlDn63+cPoc8VStjNaiqvic+dGQSmvUBaPWs2CaNP4Of3/wSPPfrwKXft+eeewRduux2/eeBX8FI6guuuvwHPP/fsgEnvKQ3i2NFD5mia6mx40lQgVesjZslxXBJXZQJMIAkCwq9SRf7YyZSmth4sqJ2JoCdixSH6Uigop+XJFCLJ9J3KtgpyCVCpIsKm2kBRuMnfrbXzIAmhg5GCFZQ2YegEr6unj6Joe5GXa6VgZrnkV+qVhMVUjUtFk1Yj5UC1kuVGt70Xza2RWAJDxyD8yzUx0mEplMJnV/7ENFXjH68f4eOvyRpkO17deI75T7qtxHJviadPrju5BLLJV/Q/L4+Y6co58zv72/DIS4fJfUaN6uoaLFs0B2vOmQWNQnzvyVydLJLEYrvb0YX7//ISxeVoxteuP0tO11KdRdU21Le78Nb+DspXKnybki9mazYuumxQkJTTY9WsOQPV1GQpN6tmHg7u3ztMIBWWXUpl4lNpEeX3wPt70NY8aBkycNJJ2DAbVZT3WYXSQh3OXpCD+bPNmFFGlmu0b2jp7Pbh8Akn3n2/B3sP9lKgyiA6aF+q7s/Qc/H29CQw/Bs3DRksWboUxRS46Ec/vl96RRH8zy9+hp/c90My392I8y9YhW3v7oGzz0mToT7cesvgali0fiLvnZ2dUBtmwONoSaT5hLZRKNVQU6L2Lsq7yoUJMIHJIdDbQfkokxRkepoPI8/YDy1pMPwntaQGs5L8p1NvApcMFWFW7KUcnKLoNdk4sPVN9DQfG9aloaRM8tkcutNDPpwNbicJjnpkW80oybfS5MgLr88PD73iLWJCKYIr6fUa6GjSae/tw+Gj7RTpd3TtjNAIOsmMeLxSQibSwSR8gcfrO9FjHhp3T09EwE60j9HahQIR5rHcW0Zry/umnoBWpcAli4uQbRKO5vKKjbSpP/rCetTOWwB3bxc2vrwdb7z0ARbXDFoOCMH03bogZsycgxLSBCpV/WT2Kv/v80qK8HuwsRdtPeP7a8sZsTDVvfqjN8upOm6dw4feR1lF1bA6x45+gL8/+iCMJrOkgS0pqxh2XM6Ha6+/FX/67X9PmumuWJwszNVifo0FN15ehqry2AtVeTlaslDRYsXiwQjaL73djr8924jWLh8cven1+yKHO9dJLwLTXiAVaVzEa6wSJLPaL3/pCxD2/iZK1N7amjrhsbmpERrjpWRKpyZ/hvT6Y9ZZCuHoaqVAHpMX1GCse8D7mcB0IRCPv9d4TPbs2omVKz8ET08T+unZEg6TDylIQk2jInzOgyT0ac358AfCpCXYe8roxHNxrCBcfeSHLl4aSmxvsZgkX3QRfMgnAqRRv8LPVDy/hMlZfziiZckiEzQlCaAqSjEh8iILk1yNRiVpWe12B02qnDFN0oQA5vdEBOlTBnxyRziklIKhjHV8KvZHxj1xPqQT6d4yFbymyzmLcvRYMXdQkJRz3csXL4Alrwx9LQcoUJYDBYYQ6jtcWIzBfvYf70RHmxNVxWY0hiwoqVmGtmN7yb99/MWcoef/2EVV+M0zR9CXZDCuvIJCFJUMul4NPYfc7bdeexFtNP+74eZ/H2hSWTULQthVa9RoaWrAr3/+fcppehuqa+YO1JGzYSHT4JLyGThE2teJLsUFeqxanodPXTdcsE7kvKvPLYB4nWhw4r8fOorjjW5ypUivuWwi18VtpobAtBdI5WJ39vWRhjSeaHWxexYTLZe9DTprCdzddbEbTGINrbUIjgPvTeIZ+VRMgAmkioDI5XniRB2Kcyvh7pg4P/Bkx5tFi3EGSvWyZev2hLvyU87STvLzFC8RDE1HAUhEJE0NvYT5rQiMpjiZDypMUX1D9Nz1+QJwU27kbqFVpUjfIg81l+QITKR7S3Ij49ZjETDr1bjxwhljHR51v8lWBEtuKXqb3iPrBY9Up7HTiXzroKtBc6cb++t6cPmKGaijNE6e7nr4espQMGM+mj94d8xFppEnLM3Vo7rYhN3HEo/ZoTcYsPqyK0Z2Hdfn9/ftwssvbMIn/+NLFNBoMI1O7fyFEK9oEVF4t295I26BVLRfc/m1aGqoo3lmcoHtomMZ+W4hDfjCWgu+9bm5FC04te4EM0jD+rM7z8Su/Xb85LcfoK3TF/E9HTmICficm5cHFy1MCpc6LplNgAXSKb5/9vZ6lM5ZCq+9mR7S6bGypCcBWUSSdCcRQXiKsfLpmcC0J7Bnzx7kr74IGnMhsZiYSU6ykPV51Th67DhFzm5LtiupvYjM7Qy6SeMpP7JoSk7MnUyoewvjnRgChTYd8rPlB1ET1lx5ZTVwNO4bEEbfO96NHqcfqxaVSYMU0XHf2NeCtcsqyAIha2DgbnsTFORXaiueia6mwwP7Y218dGUFjpOmNdGou1rKjFBcGr8ZbXRce3dtx8Z/PCYJo6VlldHdo75bLNno7uwY9VisnQaywBNBlCZCIC3M0+GzN1Vh5dL8WMNI6viiedl4+GfLcN9vDuHNHeTaQH6myZTX39qKysoZw7r42le/JFk1igCjv/vDnyBSMBpNRjz5r3/i7m9/k636htHKrA8skE7x/RImen1dzTDkVsDZcXSKR0OnpwhxhtxytJ1g7ejU3wweARNIjsCOd3di1YUXQuM5nlxHE9BaZ6tApyeE9957fwJ65y4nm8BEurdM9rVMh/PptSpcQX6a8RRrfhlF725DwBuxFjvR2oddhzuxZlklDNpI7tADpBk1GzQ43BhZBOvqo8BjZHL77qFOMulVIn/WcvR2NlI6moh2Ndb5ddRvSY6BBNL4F9WEr+TipefGOsWYx7e9/RqldXkWn/7cV1BQVHxKvZ3b38aCM5eQya4GLkrdsnPH21h2zgWn1JO7Y9Gyc9Hc3JDSlFFFJIz+8u6zkJM9eVHWv/bvczB7RhP+8mQDehzy/YZH43TLx2/EW2++PnAo6kb27bvuwWuvvIwffP+7MBqNePrZzbj4ksso6OjwNDwDDXkj7QmwQJoGt6in9TjKapdDS1Exfc6pDSJkLpgFl6MT3gQe/mmAkoeQAAE2eUkAWoY0sdvt2LZ9O6649HyodR00kUyPfHcGG02EdW5sf/2VDCHJw5RLYCLcW+Sem+vJJyCCGZWRSWw8xZxbgl7SjopytLkXItquEEaHalkrCkwUHCwinIp6ShHdm/4XaURE9F0h0AqzXzHvkVsuXFiIoy198Afj84M3mkw448ylck9zSr339u5CT3cnfvbDbw07dtsdd6OouAy7SCD9x2MPQfiAusil68zFy7Di/IuG1Y3nwxkk3L720rPotSduojz0fBUlBvzxviVDd03a9tWXliKfAif94sEj6LQnLpQGKRhfgNwyhhY1xQ1YffEluGT1hdJukat608ansG79BhZIh4LKsG0WSNPghongHp2Nh5BXOkdaeQzHEYkulcPXkd+oUmdGy8GtqeyW+0pTAmzykqY3JsXDampqwoH9+3DxotXk9/X+lAulBls5tBQ0bdu2R6Wczim+XO6OCTCBkwSkNFIn8/gOhdLfH8bi2UYpRcvQ/XK2QxQ9+mBDL/Yc6SIf0ZkUnXe45q003wzxipbDTQ54g/1YNLtA2uV322HIKYe9vSFaJeZ7TXk2silwWV8gvimrRqeBSPeSaPkUaUbHK5/+/H/B6yEXARJGrSSUCk1pskWnMyJgHjR1TrQ/mzFAwujZ5D8vv6+wCP5G/4/Vpr3TiwLSuMot5y8rpEUEBf7vsQY4vYOLFOO1D5EAGk0lJep9+jP/gcuvuArHjx/DE489AhEfIS8vn+IFqCmdUONAV020vXT58oHPvJF5BOL7686868uYEbtJK9mnM8FSPJf8M96jIBuTG91WY8qFKb8aLUd2ZgwzHmhyBNjkJTl+mdS6kYJlCL+t/Ioz0dtyCL6+9ikZvpGeMUqtCS3H9sAdI3XKlAyQT8oETiMCSrVWSt828pIUYS+W1eaTQCpPSIi2DwUocAy59dS1ueD0BfG3N45FD0nv16yciRzzcIFFmM1KeXypnSjhoA8qjSHuc+fZ9PD2De9b6nCcf2w5VjpP5LzjVEvqkJ58P8UrVaWE0socO1GfVHdWrQu/uHMRpdqJb4p//x8i7hNf/fT8Yef//ROH8fI7rbDS4kMXpeG5/OJyfOyqmcPqjPXhkvOK0NETwhMv2BFCbIE9i9zYogLpIw//mQR+LwVhUuGyNetw400fx/o1l1BU9UhgKZ9vMGq4CGok/Em5ZC6B+L6tmXudGTHynrYTUNCqj7m4lsKpH5w0oVRjtJEgXIu24+/BdzLJeUYA40EmTIBNXhJGl7ENnT2tUm7M/LI5UGkNcHWemLRrERNQI7kDBChlSsvR3ZLp3qSdnE/EBKYpAa+zB+I1suSaNSgwl0rC4chj430WwmU/BV+8bMmp/pTRduL40FJdbKRIuUapndgfpjg3QlASgmk8ZU6RBvuP1sXTBPNrV1PwpcTNReM6WYoqF+TnY/e2NxLuTUTT/dQNs0AZsGTnfX1jWxu+/+t96Oz24rr1M4a1272/G3947AA2/u4iEvg0Up1rP/sqLjonF4V58ky+r1uTj3f3tGIHBbuKpzzwq18OVH/wD7/DG29vw3kfWok9u3dJ+zWkkY4KpTrK/exw2Afq80bmEWCBNMl7llc5fCUpnu50KjuUFHVuaLF3NCKnpBq2GWejr/UgPUwnNpS1yDdqKpyNjvr98NPK1NDxqMgPxEzh3XXK2Kt/Wr2ZJrnDr2XodU31tpo4Z1N0P9UI3iPHJcyn1WTmoxrFzGlk3an6rNabkMz3zkELH3k2K5u8TNUNnMLzislp0wfbkVdeC1vl2ZJQ6ndNrN+6MM8z5s1AT8sxMtOLb0I5haj41EzgNCYg34xzKIRU5EvPUqgQ9Mc/r6kpNUNDfq/x+JEWFJYMHX5GbBcUFkNBmuux8i/HuohF86xxR9NdSaa1z9Lr53/Yj2CIbHaHFJEjWpjwqoi9KHk5Omhpbtjt8MkWSEW7e744D7fesUNKCSM+x1tE0LTuri6YzWZ0UiRj4VdaWlaOY0ePSF0JF6TW1tZ4u+X6aUSABdIkb4ZSFdsEYaxTZGUpyZTl1B8GMXEL55fThHERXB3HpSAAY/WRzH5TwUyoDTmkGd0Ln7v31LHQ2BRKFa1myrhGMoshw5xkhjOxbaVrUce8FnENEROj9L0WYf4k656MQVRcH5u8jAFnGuwWE532uvelwCLZhTMgFqU8lJJBJLhPZRH9GnIq4PO60HRoO/xeZyq7576YABNIkICNNKSJFI0uYiqZSNtoG5WWfCTpmRBvsRk1FMlXRQKpPI2n+J0zmgZ9WeM931TVFz6vKgra4/fF77ZVmKfFN/6jNqVDXzw/B2fOteHjt7+Jf/voLLR2erB0YR5qZ8bnmyuiJX9kbRl+8/hx+P2xg1NVVFRiRlUV3nj9NSlP9MrzL8Cs2TXYuuUdSRh9+aXNuP76G/H9e++RouxuuPxK/ODe76b02rmzySXAAmmSvDtpYpdoMebrKN9nxNF/ZB9djYfh6umgnF+zyefKDDeZ1wX98sKkj+xr5GedpQB60lp4+3rQfOwt+mMf/eEQ9PvQ19kEl69hZBenfM7Rz0/Z+E7pPAU7RF5VOwn64kdq3NLfTxPnioRWcMftN4UH/R4nOusiq4KJdCu0wL29kWirbPKSCMHTo40w4RUvKy1+WQpmSyZ1vr4OaQEsUR92YZqrNReQkFtAplQudDQchGcUk8HTgyBfBRPITAJWozqhgYdIGFTrrUktXmlMOXD1dsZ9fo1aQZpD+c2USiV0eoP8BmlSUyw4q8ikmaZfcRUxt1l7fhH5W8YBScYZhGb0nLPI3xgd2PRyI3a934XvfOksmkvJaDyiyjWXleKvzzaRljS2hlyY4P70Z78gYdMEB0WLNxgNuOOrt6O+vk7q9Xv33I0HH/oLhCBqtpilPMibX3huxBn5YyYRYIE0ybslHtCJlv5+sUo5ujAo+vS6utF4aCuyCyphLV8IP32WcoBRepj4Sxb0FEVXay2kHFdhKaqvp697/G5IOAuTw0eITCViFSHU9lP9dC39FDpOtrlRml8LSQ7DfDwSYc4mL4lQOz3bODoaIF5Ga76kNc2bNZOCSvQiSLkGxStEC2HCdWCkkKpQkMUB+aIKIVRJWg+1IZsmKQq47O1oOb5vIDDF6UmNr4oJZC4BvSaxqV+vyJmeXZywQKpU66Ez56Ot4XBC8GIuKA/pVTyLxOJrphVhwZKArEfms1rcfE1lyi/3zR1t+OcLdXjsFxfQgkAW3t3XiS/fuwO52VosIU1pvOWmK8rxP386ggBFXh6vfPDBISw7+0zk59MCJwmnjY2UnzU8OF8WgunqVStRRPlh+5x9cDnZAmc8nplwLLGnUiZc2Wk0RuF31dvVBHNOMWkyqunKsugHwY4AhU8P+pxj+JlmkS+kCSoysVHrLdAac+AmAbS7tQ5uR8dpRIcvJRECwv+CTV4SIXf6tnHRc0G8RNGbc6AzkM+WMQ+GPPIPp2idIlqlNMGjeYSCVvBDNNkLShERnRQxtw++9iYOinb6fj34yk4jAk7v8MBDci9NLFyJeYiwgkgkUrcpvwoieGOYUnskUoK0mC67kFQnXI4yrQj/URHJON4yf3by5tSjnXPH3i7MnmGRhFFx/OwFeThrXi4FKOpKSCDdcFExHt3YgJaO2FpSoeRob28bbVgD+1pb4wuUNNCQN9KOQOb9taYdwskZkJgIRjUZWoMVOqMVelMBpDQKao30gBdaSrGylkUPYbE6GKDJovAN7SXTX2/DB1KEzckZLZ8lEwiwyUsm3KWpGaOwnohpQTE1Q+OzMgEmkCQB4Y+ZaBHpo4qqz4IjRPki3adG8B2rXxNF2RbypL0tYnI5Vr3x9gsfUocrMWF2vH4z/ZjJoMJNV5ZPyGVUlZvwrxfq0UNBjGxWLZzuAHbv78IVF5clfL6amZT6S4ZAmvAJuGFGEmCBNANvm8/tIEHTQQJqfQaOnoecLgTY5CVd7gSPgwkwASaQGQSET3jbiX0oqlqIvvZj8PQ0jjtwpUpLVhYz0J+lQivlH+aSegIWkwozSo0Jd/zS2y346W/fh9MVMXF+mT5/7TNn4MJzinDF6nI0tLjxb3e8g1ybBi53EJ/4yCxcdO7YqX9iDeSK1SV4+91uMtuNQ+Mdq1M+nvEEWCDN+FvIF8AEkiPAJi/J8ePWTIAJxE9AISKzU2SUUOjUaKLiWGFhEdraWof5jUXPotfrYTAY0EVpILhMPgG3oxONB7cht3QWsskn1NfbFnEh8rulwYgMAipyGdLSMT35nNrJTLen9fjkD3SanLGiJLngTatJuBSv0UoW+Y3+58210quNIuzKzT06Wl/RfYvmZSMnWyMruFG0Db+f/gRYID397zFfIRNgAkyACTCBtCJw13ciKRru+tY3h41r/YYr8P0f3oeenh5kZ9vwta98ES88H4meKaKP3vuD+7Bm7Tq43W4pL+GnPnkLWlqah/XBHyaegEjj1HJ0NwyWXAqIVgBLadlA/u5+Cszjo2jwwuy/Y//bFOcizpCxEz/80+oMSxbYJuV6UiGMRgdKci4XJjCMAAukw3DwBybABJgAE2ACTGCiCFx8yaUkcP4YBQWFeOiPvx92GqPJhB//9Oe48boPY/fuXVi6bDn++NDDWLJ4ATweD9at34DFZy/BOUsXSZ/vvud7+Madd+Hzn/vMsH74w+QRcPd2Qby4TA0BkQ7nrLnWqTl5EmctyteyH2kS/E7HpvGH8jodKci4JmEilJubK6MmV2ECTIAJMAEmwARGI/Di5hekdA6/++3/nZIqbNWq1WhoqJeEUdF2+7atUpTNledfIHW1dt0GbHzqX5IwKnY8/ugjuGzNWooAylMZCRD/M+0ImIwqFOTpMu66q8oS93nNuIvlAcsiwE/xGJiEidCPfnw/tmzfhU3PbsbT9CouLonRig8zASbABJgAE2AC8RAoKipCc9PwIDlNTU0oOvmbK96bGgePN9K2VquFLScnntNwXSZw2hBQqRQQUXYzrWRbE4/0nGnXyuOVRyDzvsXyritltdhEKGUouSMmwARiELCVzoZao49RK/7DOlUP+XclF/gi/rOO38KUXQhN/vi+T1pKT6HWpp7H+CMb/6jRVghtzvgpFnSm3rQcd4Epe/yLS+Coq6cNLnsbamrm4IILV43ag6O3F0889siox4butFqz4fUOz0/o8/lgtURyLIp38TlafL5IXavFiq7OzuhufmcC04ZAFigxdAYWM2l2uTCBoQT4GzGUxijbo5kIPbnpOclEKBzmkNWjIONdTIAJJEjA3nKUWqY+2oOlyIig35PgqCammcvRAbtr/GA0+soqGvdwAWViRiO/VzHuXod93AbFOgvlgU4v3m57Bzo6m8Ydd0IHKXm9KFqdDnl5+aN2oSRLIznFQVy12uHmhzrq1+FwSM3Fu0YzqFnR6SKLFaIdFyYwHQmEM1MepejZGTrw6fglm6RrlvcrMUmDScfTCBMh4fMSLUNNhMSKrNFWFD0U97tKE4RCqY673WQ1UCj7oTVa0a+LPUaVWgulKna9yRr7yPMoibPenAtFjDGK6IAKtQZKZfr+aSiJdTLfOy9FPgwF/SMR8ec0IKAz5dAzIfXfPZWGvtcT0G8yyNRaAwyqQeFitL6Ual16jts6/rNOPGbS7Rmi1hFva+qDnwQo2qqfIqru27tHeo12H+Xua2lpQWlZ2bDqZeXlA1F0RTRd8TlaxLbQmIqIvFxOJaAxWEhTf6plhJJ+49J57nHqlUT2qOhajDZ532ERxVX87qfzvGS06xSLN2LeBfWp9220+kZzMO2eNaONc+Q+s1k/6jxGRGT2Uq5bLtOPQJbNZuNlinHu+8uvvon7f/pjbNr4pFRLrM4ePtaAVeefi2PHjqKwetE4rfkQE0g/Aj3Nh6UJZPqNjEeUW1YLVZqZqPJdYQLjEXB2t8DV0zpelVGP3fnt70ClUuLub985cFxE2d2xcx9uEFF2d+3EsuXn4EERZXfRGVIgoyuvuhpfuO12rF97iWTa+53v3oucnDyOsjtAcPiGOa+MFiFG11oPr8mfmEB6EPC5HLC3HkuPwfAoJpVA6pfiJ3X4E3+yWCZC4seYCxPIJAKhAGtH0/V+uXs7004jmK6seFzpQUBoSOMp69ZfDpGD1GyO+IUKt5hv3/l1PP/cs3A5nbjjq1/Cw488gY6OduTm5eErt982EFX36U0bcf4Fq7Dt3T1w9jnR5+zDrbfcFM/pp1Vdn7sX4VBwWl0zX2xmE+CctZl9/5IZPWtIY9D71QO/xcGDB/CLn98v1Zw3/wz866lnUDt7BtnAsw9pDHx8mAkwASbABJhAXAREdPvikhKKuNuEUCh0SluT2QyT0YTWVl4QPgUO72ACTIAJZCABTvsS46Y9/9wzuPLKqyECK4hy3fU3SCu5LIzGAMeHmQATYAJMgAkkQCAYDKKhvn5UYVR05+zrY2E0Aa7chAkwASaQrgTYZDfGnWEToRiA+DATYAJMgAkwASbABJgAE2ACTCBBAmyyKxMcmwjJBMXVmAATYAJMgAkwASbABJgAE2ACMgmwQCoTFFdjAkyACTABJsAEmAATYAJMgAkwgdQSYB/S1PLk3pgAE2ACTIAJMAEmwASYABNgAkxAJgEWSGWC4mpMgAkwASbABJgAE2ACTIAJMAEmkFoCLJCmlif3xgSYABNgAkyACTABJsAEmAATYAIyCbBAKhMUV2MCTIAJMAEmwASYABNgAkyACTCB1BJggTS1PLk3JsAEmAATYAJMgAkwASbABJgAE5BJgAVSmaC4GhNgAkyACTABJsAEmAATYAJMgAmklgALpKnlyb0xASbABJgAE2ACTIAJMAEmwASYgEwCLJDKBMXVmAATYAJMgAkwASbABJgAE2ACTCC1BFggTS1P7o0JMAEmwASYABNgAkyACTABJsAEZBJggVQmKK7GBJgAE2ACTIAJMAEmwASYABNgAqklwAJpanlyb0yACTABJsAEmAATYAJMgAkwASYgkwALpDJBcTUmwASYABNgAkyACTABJsAEmAATSC0BFkhTy5N7YwJMgAkwASbABJgAE2ACTIAJMAGZBFgglQmKqzEBJsAEmAATYAJMgAkwASbABJhAagmwQJpantwbE2ACTIAJMAEmwASYABNgAkyACcgkwAKpTFBcjQkwASbABJgAE2ACTIAJMAEmwARSS4AF0tTy5N6YABNgAkyACTABJsAEmAATYAJMQCYBFkhlguJqTIAJMAEmwASYABNgAkyACTABJpBaAiyQppYn98YEmAATYAJMgAkwASbABJgAE2ACMgmwQCoTFFdjAkyACTABJsAEmAATYAJMgAkwgdQSYIE0tTy5NybABJgAE2ACTIAJMAEmwASYABOQSYAFUpmguBoTYAJMgAkwASbABJgAE2ACTIAJpJYAC6Sp5cm9MYGMIqDRaFBRUYnc3NxRx61QKFBcXALxPlrR6/Vjth2tPu9jAkyACTABJsAEmIAcAjabDbl5eWNWFcd0Ot2ox2PNX0ZtxDunjMDos8wpGw6fmAkwgcki8N17f4j9h47h0cf/jtff2oZHHvsbzGbLwOnXb7gCu/bux6NP/B079+zHpZetGTimUqnwox/fjy3bd2HTs5vxNL2E4MqFCTABJsAEmAATYALJECgpKaF5yVa8teVdbH7xNWx65gWsuujigS7Lysvx3OZXsOnpF7Dt3T0Q8xmlUjlwfLz5y0Al3kgrAiyQptXt4MEwgckjsHXLO1iy6Ayct2KJ9J5fUIDrrr9BGoDRZMKPf/pz3PKxG3DhyhX49L/dgp/9/JcQGlFR1q3fgMVnL8E5SxdhxbLF2L59K75x513SMf6HCTABJsAEmAATYAKJEggGQ7jn7m9hfm01zqZ5yj//8TeaY3x7oLtv33UPXnvlZaxYvliag6xceT4uvuQy6Xis+ctAJ7yRVgRYIE2r28GDYQKTR2DTxidht9ulE/p8PqhodbGxsVH6vGrVajQ01GP37l3S5+3btqK9vQ0rz79A+rx23QZsfOpf8Hg80ufHH30El61ZO6Zpr1SJ/2ECTIAJMAEmwASYQAwCYr7x4uYX0N/fL73Edk3NHOTnF0CtVmP1xZfg8ccflXpxuVzYtPEpaaFc7Ig1f4lxaj48RQRYIJ0i8HxaJpAuBD77uS/gT395DK+++or0AyDGVVRUhOamiHAaHWdTUxOKTprlivemk8KrOC4EWa1WC1tOTrQ6vzMBJsAEmAATYAJMIGkC519wIc1JmtDV1Ym8vHyoVOphc5Qmmq8UFRdL54k1f0l6MNzBhBBQTUiv06hTW8nsaXS1fKmnA4G+rkYEfRHNprieyhkzJN+LsrJy8iE1oaenB1ZrNrxe77DLFVpUqyXiYyrexedo8fkida0WK7o6O6O7+Z0JMAEmwASYABNgAgkTmF1Tgzu+/k3c8dUvIxwOw3JyHjJ0DiLmK2L+IUqs+UvCA+GGE0qABdIk8bp6WpLsgZszgcklEAr4h53wjq/eLn3+1QO/xec+/0V875674HDYSeM5PHKdiGTncDikuuJdROiNFp0u4lsq2nFhAkyACTABJsAEmECyBAoLi/DgQw/j1//7Szy96Smpu97eXuldzEGiQmlkfhKZf8SavyQ7Jm4/MQRYIE2Sq9/jTLIHbs4E0oPAsWNHMWtWROPf0tKC0rKyYQMTUe1aWpqlfeJdfI4WsS1+GIR2lQsTYAJMgAkwASbABJIhUF5RgYcf/Sv+8ueH8MCvfjnQVWdnBwKBAM1RynHs6BFpv5iDtLa2Stux5i8DHfFGWhFgH9IRt0M4TIu8RyML51scSYQ/ZzIBER79Yx+/RfL7FNdRUFCIDZdfiR3bt0mX9eqrL0v5Sc9atFj6vGz5OZLfxptvvC59fv65Z3DllVcP5P8S0Xmff+5ZyZxGqsD/MAEmwASYABNgAkwgAQLVtDj+178/iV/98hfDhFHRlRBGX35pM66//kapZ6PRKM1fnn3maelzrPmLVIn/STsCWSR89afdqCZ5QGJy/qUvfxU33nQzKJwXhKbo2muukEYh8i3e+4P7sGbtOrjdbnR3deFTn7xlQFM0yUPl0zGBlBAQ3/mnNj2H2rlz0drSCpHyRYRV/+bXv4ZgMCid44orr8IPfvgTdHS0S4mpv/aV2/HsM5ukY9E8pJdcehmcfU70Oftw6y03SUEHUjJA7mTKCSiyAItRAyVt5Jg0tK2GSa9COAT0ugOwu/zo9QTgD4Th8ka+M1M+aB4AE2ACTIAJZDyB6264Eff9+GenXMf//OJn+Ml9P5QWzB986C+Uis4As8VM5rwbpflLKEQ/UFTGm7+c0invSAsCLJDSbfje93+EefPm46c/+RHefutNKcDL0En552+7HVesv0xKcXH3Pd9Dbm4+Pv+5z6TFDeRBMIFkCIh8XQVkFdDW1iotuIzsSwiexZSgWkS3iz7oh9Yxmc0wGU1kKsO+1EO5ZPK2jYTPIpseK+bl4YzKSJCI8a7H7Q1h2wdd2HG4Cw5XgIXT8WDxMSbABJgAE0gZgaKiYmlB3OU81X0u1vwlZYPgjlJCYNoLpCU02X7j7W348FWXD+RcHEr21//3Oxw4sB+/+Pn90u65c+fhSaFZmj2DzROHguJtJsAEMpqAWa/GghlWXLWinELqk3o0gdLU5cHf3qhHa48XvkBkpTqBbrgJE2ACTIAJTDIBMy0w19TMQlmpiB8RJoNBsnwhG0qVxgCnsxdHj56g19FJHhWfbroQmPZBjZYuO4fyGnVhzbr1+K9vfAsiwe4fH/wd3nj9Nek7IPItioS80TI036JIb6FUDUYajdbhdyaQzgTCoSD90ITTeYjTdmwKyq2WRf9NZlHS6crytfjExdUw6ZL7SSjNNeK2q+big6ZePP56PZn08vdM3r3sh8mggF6rRFW5AdUVJhTTPSnI1ZJlQj9aOnxobPXgSJ0TbV0+OHqD8KeJlXSYbLj7hR03l7QjoFAokUUvLkwgFoH58+ahZk4N+n2NUIQ/IHl0SNo32rTqrFgwvwq1tbXYvmOnNG+O1Wcix8XcRMxRuEw/AsnNPk4DXqW0EiRMEU8cP45XXnoJC888E79/8M/46LVXYfeunVLexWhYaXG5I/Mt2ko5D+lp8DWYVpfgaDuBgNc1ra45Uy7Wkl9Bq9HD0+1M6Nh9DiyZocPaJYUpPc3cqnx8uzIPv3z6OLoDBijVk3hNKb2Sie2sP+CCQenCmvMLccWqfPq9Ucs64eE6F558qQ27D7rQ5zcSX62sdhNRyW1vh9vRMRFdc59JEtBb86G35CbZCzc/3QmceUYtivJNUIeOAVqxuJQ9xiX3AUot1l31UWzdsQsdnV1j1Et8t9/di96OhsQ74JYZS2DaC6T9FMRo3969eOzRh6WbuHXrOxCRRdeuXS8JpLHyLXbWvZ+xN58HnloCWi1pNCg4UG5uDswmI/QGPbQaLbQ6A3xet7SY4fF4KZdnH7opPUpbW5sULS61o+DeMpmAvWXyzKHMFKBo/bJSLJtjQcjvmRBsn7usGH944RgO1DsQCk/7+HkDjEXAqLwc0kp/uJKE0YqT+0MI+uVpGquKlfjix0qkdv/9xyN4fXsdehyBgf55gwkIAq6eVunFNJjAWARqambDmGWHr3ULfGNVGra/kYTSE5hTXo36g+9KVoXDDvMHJpAggWkvkNbX10nRuEby0+kjK/qcb3EkGf48lIBaraZobxWoqqqA2UwTe58daqUbWWFaSezvBs30AbcCWjJD0aopUqlWg3wKGBOsyCVN2BLY7T04UdeAEydOsE/yULC8PaEEtGol1iwRwujEa08+eelM/GrjYRxpob8JLjDSQsDqc/PxxVsHrWsUKj09Dyzku2uC2Faq6PcnS4GsrMhPtPDl6u8PIRz0IEha1RC9gn47mcoGcdsnZuGT11biKz/ch6P1TnqOMGQmwASYQGwCIl3KwoVn0hxlV+zKQ2uE7FBktWDBgvnYsiWSKm7oYd5mAokQUFJ+zbsTaXi6tOlob4OIontg//uoqzsBkVz3W9/6Dn5NSXiPHz9GEwQVbrnlk3ji8UeldBj/+YXbKOJoM555euPpgoCvIwECQhCdN28uVqw4B/k5ahiVnVD4j0FJQmhEGCWNUz8JoyCNhwgMIL3T57BHOi7VC7aQz1g/8vKLKP3KQpp/Zk2YX0YCl8hNTlMCIo2LEEQvPbto0q5wKZ1v26EueGVqACdtYJN8ohyrBp+/pRo3Xi5Msy3QGktgzK6BzlgENQWSUil89AxxICvUjqygeDXTq5VeXeTX5YAyKwAVLWyptTnQWaqh0eWR4KqitkFsWFVAvqZeNLV6ESS/Uy5MgAkwgfEIzJ8/D1a9h54ttHgeZxHzHAM9uxobm+D3i7kOFyaQHIFpH2VX4BO5FH903/3o7u5G5YwZEHmOolF1Od9icl+w07F1dXU1rQyeAQQ7oQq3SULmyOtUqxSRCSa9C0tFYaIXCIZJuxFGYLTJosKIoKKQxFYL9uzdh/r6+pFd8mcmkBICRTYdvvaRebL7EkKkyDOaY9aSxm6wmZv2OellpVylWrVi8MAYW529PvzvUx/AQTlMp2PJz9Hgm5+diyWLZpMgWkTpxSggHgmaWSGaDIbdiSFRZqNfaQPU+eQX3gmvqxn/95e9+NfmZrg98sx/Ezsxt2ICTCDTCaxdcymMiuMJP3+CyhnYf7gDH3zwQaaj4PGnAQEWSE/eBCF4lpSUop00pl7vkOhiJ49zvsU0+LZO8RCEj+iSsxchN8cITZj8KMKDea+EAKrRKFBRYsCZc6zIzyXzXNOpAUocfQG0dfqw95BDiprp94WGC6hKK/xZJWjrcODdd3dJWvkpvmw+/WlEQK9R4nOX16AkVx/zqt4/0YNHXz4Mu9NPmrssfPNjZyM/WycJpz96bBc67V5kU85Sh8uPNcvKcfmKGTH7FClh3j7QGbPe6VZBPAt+9PXz6PmxgBan+qEI0UJWMH6txNhcFOhXk8ZbVQS/rxv3P/Aq/v7sMSlC79ht+AgTYALTmcA111wNhTsJk1tVPho61Ni6dft0xsjXniIC096HNMoxGAySVqou+vGUd2dfH8SLy/QkYLPZcO6K5dBk9UAZPDgAwaBXorLEiAuX5yEnO3YKIKtZDfGqqTJJfQgTu9e3daK5zQO3lzQaIQdoio/ivAqsXr0K77yzFb29vQPn4w0mkAyBigKjLGH0QJ0dv316Pz58fjWWzsknDahSpKOTitD2X0HC5+LZ+VCQYvREqxPf+8sOfOiMYthIizpeuXZlBfZTgCO7a+K0pBoKJGYwmpBty4EtlyLXZttgtlgplUCIAor1wN7dhc6ONgrG4YSrr3fCfbdNBg2+ftsaLF9eA/gbyPx2IgTyMLICzWSG0UILY6X4+u3Xw+17Gps27x7vdvAxJsAEpjEBkRYoqULuSHl5JUl1wY2ZQJQAC6RREvzOBMYgkJ+fj/POW0GCaCNNJkmzQUXkCywv0eOqS0rINDe2ueIYXVOuQR2uW18GDwmj/3yhGc0koPpIa6oK1cOoLsYFF6zE66+/SRNpx1hd8H4mIIuAkXKMXnNuuay6T71zAufNL8LKBaR1O1mi1rp6rQpLSEiNFiGUin0G3akWAdE6Q98XVefglb2Rv6Oh+5PZVtAgLFYbamrPwDkrL4LRZJbVXd2xw9i+5Q20Njeir9cuq008lfLy8vDRqy/AZSttyHIL4TAq1o/di98fpsUpMoU2a4aZSIsWYbL/zyK76aGm08N7ouN+st4g7es9Xz0fIYUZm196hy0thkPiT0yACRCBYJCsX5IikUUL5jw3SQohNx4gMO2DGg2Q4A0mMAoBq9VKQuH5JIyeIGE0kmvPZFDhI+vKsGJRLkSAmFQUIdQuIFNfIaCeaPLAT76mWWQSrFT0o6S8Fs3NLZwiJhWgp3EfVoOaIusWxyQgAuL8efMhVJdY8dLOZryxr5nMcgOoLrYOE4TayGT3ua31eG1vM65ZWQ2hfZVTKvKNeOdgFwXeSU04WLMlGx+68FJc9dGPY+bsWtIQjq+lHTrGbFsu5i1YhDPPXo5e0p66nH30d5aaAB0i+vZFq87Dzev6oVO0Dj3tqNtHTvThT/88hpffbsWOfV30PLBBrxvUYPhIUP3lQ4dQUmhAtiWGNUZ/QHpeGUzZCCrL0NLSys+PUanzTiYwfQnU1taS+4Cw2EjM3zxMPuxtnV60tqZ2gXH63pHpfeXJLY5Mb3Z89ac5AaF1Offc5VAE6iUzO6GZKC3U4ZZrKifsyqvKjfj8zdX4/RPH0dbllzSyWqWCovkux4svvjxh5+WOT38C8yutsi6yp89HKUYoTg6Z6V5yNmnv/UH89bWjZAIaxIdXVg304SEtXq/HLwXrau120X6K+CqjCOsCEQTJIy/p3Zg9CsFzVu18XHntx8asI/eAVqvDFdSPvacLT/z5N+jqjCw+yW0/st7MmTOxkFIizC6ooyiWlpGHT/l8rK4PTzxzApeuLMFCEkTVI4JEbXypEbvf7447SvGKeX3YurMPF110IVtanEKddzCB6U2gs6MdRTb6XTi52B4vDQp1R/nU98XbjOszgVEJsIZ0VCy8kwkA55yzjCKIBkk72kQRMbNQW23G9RvkmTwmw0+Y4y0+w4bmdi/svaTpoPDqSrUVZmuepClNpm9uOz0JiGBGH1lZCWG2G6sIc9GXdzXi9mvPRCHlzC3OJY2cSYcXdzbg4sVlA81FQKNFs/KwrLYQD2x8nxKlZ0uReAcqjLPR0u1BUxelRkqwGCh/3oWXrJdeCXYxajOd3oCzl69EZ3srCafdCfmXVlVV4cyF82FVH8X1a3ModVhsK4q/PVeP2plWnL+sUHrWiGfAULPcOTMtuGB5Id4lzekZNbbYGtIhV6fMcuNEgxNlM+ZLmgyfL8mVgCF98yYTYAKZS0BYqRQUzYCqP4EFOBGAsT8bO3exn3rmfgPSa+SJO7+l13XwaJhASglUVlZSpFxKVB+sk/qtKjPiavIXncxyPfmWCo2sKOrQcZSWFqOoaNCnLxVj0el0KC0rk/zSRutPaImLi0soeM3ojwrKY4zc3NzRmvK+NCKgJYE0P1ueKWuORUeRYCknLmlKh5ZAcHT/R6HxtFDgnm5K6yK31JTG1hqO1Zcw0d1w9Q1YtPT/t3cegG1cV7r+SQAECIC9d6r3Xu1YluUmFzlO4iR27DiOU152k40Tp2xeqv3slN0UJ5tNssmmZ2M7ZZO4yEWWe5WLqi3JapREsXcSIIjOd+5QIMGGRoAEqf/aEAYzd+7c+QYczLn3nP+cP16VCa9/9/W3SPvnyUxlGNfYEUcqLCzEihXLofccgyXNBZNx7L+b4N184iJ9un5AsfsPf68R74jjInTWrM1SB9eLdXndshxYDe0Sl96oeVooRXkWEiABEmhokHAMWx98uuifbdwp5Xjr4GFCJIG4EQj/axm3Q7EhEpg+BJYvX4q0/nqtw/k5Rk14aCp6r9yDB9LH9MMgxvGKFcvi1o3//Okv8Nbh4/jfvz+EXa/vxRe/9OVhbV+97Z3Ye+AQ7v/L37Bn/yFcvvWKwe2B/Lxqv+2P7cQj8lKGK0tyElBiOJEW8RDHKlHQ3fFarWYUuSSeedfBJiyplnyXUpSq7pG6rkGD6UBNuxivTlQXRyYkpNoozU+PKf5azWBecc17MWd+5HlU1fFiKZde+S4sXLJ83MGakW2qwZ0NG9Yj1X1cSwmlPCoiKd02t8ZSb0jBBWsKJDa9AG8caMfOF0U1N05FxaLqJGeyMbUH69atjVOrbIYESGC6E1Dp5TwogF9SRkVWdPDo56OuoRWnTw8M2Ee2X+y11POGCpmKtoQbUI+2PdZPLAEOlSaWL1ufhgQWLFiAVL+kWpEULMoY/NC7KyM6i3t+dQjtXcNnid6ztRJrluXhl386hlN1A7MgwY198uYFMgtqDl41avnmd1WI2MkZ2Ho7YTIUYs6c2ThxomZUvWhXPLlzB/7vlz4vQi52VFfPwhNPPYcH/vE3HJMk1xarFd/7wY9w4/XXYd++vVi3fgN+9/t7sXb1MvT19eGqq7dh9Zq12Lhulfb5zru+ia987Q58+lOfiLYbrD8JBNKiVIK+fstc/PSBt/DlX+9Cb58Xs0oEgi6UAABAAElEQVQy8eHNc7Weur0+/HL7YS2e0Szqum6PDx/eukDLURrpqWSlG7Q4UocoSkda9AYDNpy/GXMXJN4YDfRp23tu1FLENNafCawa933t2tVi9LXKvaNLZkZ1WLkosphd1aB61tqysXjQSPdLEO+O5+u1mNJxDxjFhgWSZqqt0yWDbHXi+bEIc+fOwfHjJ6JogVVJgARmIoHe3l48/8KLmvdEut4EvV8E2PqdY5+qiBh5dJU4c6Zx0lx11bOIGvD+4uc/i9dfe3WwX1/68lfxyU/dNvhZLTz33DP40E03aOvUgPq3/+276OzsRLak/vrXL3wWT+x4fFh9fkguAjRIk+t6sDdJQGDBgnkyG3lUG5E7b1XuMKXLcN275bo5mFM5NDOSelaF96Pvnzs4o6TasDs8+PHv30amJXyqDKWouXR+Jl7Z2wFDfzPmycNkPAzSBx/4++DpnDp1UgzRI7jgggs1g3TLlkvkR6dWM0ZVJfVD0NLSjE0XbtZu6ldetQ0PP/SAZoyq7X++/z48uP1xzbXX74+PeqpqlyU+BKJNTZQj8aFf++BqdNolLYB8hzNEoTdQ5pdn4XufOA898h1WxmiecvGN0tdGuflqfYrCIC0uLcf5my8LdGPC73bJQZoq08Fm80BO4PEa/OBH/gW/+PF3RIV3/LQwKm40J0se5nxHtGbUuWXIYFYkRf19Kxfp7h635DIecqv2eCKf1Q53HCWW9tKedq1amv+keFqs1OLRHQ5HuF25nQRIYIYTULnOd+zYiWXLlspg1TL4XF0w6HqRImrdqviQLq9MOF0ecdPdL/eO+HlvhEJ79ze/g/e89/2wilE6Vvnzn+7FV7/8pcFN/UqNT0q4AfXBHbiQVARokE7wcqRMNLHwBI/P3eNLoKKiQm7CIrYiLzU7ulbiryIuMsuh0sAoAaSRJWCYBta/+HoLVizKifih9eLzCvDm0R4xZHtgTCtHSWmZCJSETyUROF7we3+/GIxnb9yB9fmSa3XR4iWDBqiKVW2orwts1t7r6+tRfNYtV70/ufOJwe11dXUwGo3Iyc0VhVIlI8+STAQiETMaq7/KMB2rqBm9LG0wJTKja+w2Rv+djFVPrUs3W3Dd9beOt3lw/Y7tf8dLz+1ErnwPLSJ8pGKc58mM6rslJYzKAerxePHCszvx+isvSP48G/Si1PuJ24YeaAYbClpQM7MrVm/Ei8/ukD+b0UaiTqfD0iWLYfQHzThGfmpizKdg8bwsPP96M669tFJyA/o1Rd15s4YGtoK6E9NiYZ4RerkvqZQ+8Dvh7TsjfV6C115/Pab2uBMJkMDMI/Dmm2/h8OG3UVRUhJycbLmHmrVHBZutS9R0j6Cjo2NST/rrX/sy1EuFBo1VfCLK5PEMGM3B28MNqAfX5XLyEKBBOsFrUVC1ZIItcPdkIrBi7XLkWW2AuwBXnG+BTj/2A/lYfVZ1X9nXhUMnepErcadrl+bBnD76T6xTZkL2H7HjtlsXSfuRP9BvOb8Mz+4WVxqTFUvXnA/fWwOzMWP1JdS6zsYT8DhVmo6Bopc+/PRnv8Djjz2CvXt2ayuzsrLhdA5321HqnFmZA2I06j1YrdPlGqiblZlFgzQAlu9xI1A1ex7M44ySq4OY003IyLBgw3pxI1+/BstWb9AMO5/PJ2boWUNMlvbs3gWP24WP/NNnUFlZpaW2cThdcDicYqDaZcZ39MONav+CLZdj/55XZJZ0dBJ45eIPn7j498t942yJcsIYV20px70P1OCeXx+Eo8+HihIzrtw8FCrwt8dP44SkhrH1enHvgzWacfmFjy/RjNnAMUO9qxhSQ1qqGKIDLtIGf4MIpMm9TgTJ2tsHZk5D7c9t05OAzmCM6jdmep4lex1vAq0d3VCvkSUtfeyZypH1JvLZ7/PC6x7+7DFeexs2bMT37/kP7Znj4YcfxFtvHtCqhhtQH689rp9aAqOflqe2P9Pu6C0nB/4Apl3H2eExCehXzkZP035kyX13bkUOfF73mPXGWrl6UQb0krtRuaweOtKGV3c3QsWIqniy4LLzeREnWmCF1dQfVfvL55nw/K56dHd1w5Q6H/H47qmg/+9+/x5JTWHA528fisfoFvdElZsxuCjRlu6zD+TqPS1tyFg3mdK1qmo/FhKIJwGLNQNbr37PqCZ14m6bnZmB7KxMMTX7xX3cDZvDDbvERJd0jo7X7pNYqQP79uGSK94Jg+QGbWzt1FxljUaD/I0aUVUhgyxut7jO2uQ1en+VDuaZJ7aP6sf8eXNFVVfUJoMmT0fmER2104gVyhvjnz+4ADa7RzMyLebhP83XXVE1Yo/oPw43kvsl3rUF8+bNoUEaPcpps4fRnAmjJXva9JcdJQGP0w57R2NYEG+8/hq6urq0gfPF4t31jwcfwa233IQXX3ge4QbUwzbOClNCYPiv3pR0gQclgeQgUCBuqz6PAzqJm6gui/5HfJPkEAwUpZT5g18eQk2tXXPHC6xvaXfi0NFu3P7RRYFVUb0X5RtFpt0ueUlTNZdEJUgQa1HKdT/44Y+1VDIf+uANg/Ggqr3GxkYtHUxw2+XiztzYOBA7ot7V50BRy2rGVAkIsJBAPAmki7Ku2TJ8ZD4/Nxv5eTnolZnNzm67CCwNzGy65L2luVFccp+TAZV0VFbPQXbuQFqi1pZGGGVQpa72JA7seU0GjwzizrsERSVl6HO6tXYs6eJ2np2NPHFXa23vFANx6O9rvQgqvfrSs3D0Dhmr1dXV8HtldtQ/PBbTLDOSsZRI405jaVuvCVsNzJCq/XW+ZpSWrIUaaBrpDRFL+1qb4r6s3P2Ua994bebl52tCamNtVwNkRUXF4h7YFFMO2Fj7PVP3c3S3Qr1YSGCmEXjqyZ1Qr0BxOvtw/Q0DBmm4AfXAPnxPLgLDB02Tq2/sDQlMKoGMjAyk9vdqMaAbV0UROzpGL1VcmFlmOZwjRFuefLER61bmwxqBmNEYzWL98lxNbMnvtUuMR+x9VHFvv/7d/2gxdh/64Acw0rB99tmnNZfGlatWa91YL64x+fkF2uijWrHj8Udx7bXv1h5m1efrb/iArHuMD5EKBktcCSxaunKwvcwMK+bOrtS+tw3NHaJqbRs0RlWlgoIizJq7QGKZ82W204UnH3sALU0DgygOGbxJgYgNZWRi6Yo1KCwqwQvP7EBH29ADe2+fCy3tXei2OzSDt7K8RGK2B9zqU0UvQBnHwWXWrCqkYbrGTEv8lbMZKm4+HuU9170PBySMQImbvfrGPvzmd3+EMj4DRQ1aPb7zGWx/5Am8tns/7v7Wv8m9dshwD5VmKtAG30mABEhgLALNTc1ybx8YuAw3oD7W/lw39QRokE79NWAPkoRAlrj+6VNdsIohqXKPRlM6JN3L8VO2Qa2g4xLv1dYhuRnLLYPN1Dc5tDiwTesKB9dFu1BVZkaGRQ99iogunY3njLYNVT/dbMZFF12MrVdchaMnanG6rll7Pfv8y1pzKhXMl754O+697y9Q63792z/gC5/7zOAs6iPbH9YEkNSD5cu7dmPjee/Ad759Vyxd4T4kMC4BlXd0+ar12vbiwnwU5OdoM5nKEPVKfOjIUlJeiYWLl0tqmCVYt3GT5CtdhBPH3h6oJkJDuXn5YrAuRH5hMeYvWoayiiptxnRkO2rGtLmtS1MRnl1dLgq6A7HT8xYuHayqRLyUaxh809crwJjajYryssFzmshCQ0M9rtl2BdatXo7z1q/WBqtu/tCHB5v8xh134blnnsZ5G1Zr2zdtuhCXXrZV2x5QxbxFBscu2nQePv7RW/DDH/1EG3gYbIALJEACJHCWwHvfd70M+g8MECpRxuve+77BAfNwA+qEmJwE6LKbnNclol6pVAHGNJ2WlkHNyCmFV6UCqXLYqcwbKl+gSmqfrMUgLnPl5eUy85avjaSbRRFTqWAqIZI0mZVQAiMp8p9aVkpqyh20paVFU5e12YYEROJ1flZRlEO/XYROoh+nUeqV/yvCI263X0sT4xbu115eMSyNwxOS6P48SXxvGUPoKJpzUKFqqXDLLOvw2Zpo2rALv6ryIRfjsfZ96MEH8Ogj20XRt1QUd+u16xKo5/V6tZhTq8wqW8WdsqkpfMxHYF++k0CkBFSccp48bJSVFGoiRU2tXWMq3Y7XXnq6Beq7ropVYlFrT50YVdUnIhrjlR6ZKXW6VDqWLHEBTkNF9WzsevFprbpyTfW6OzGtf0R9XcjKljRXci8eS61yPC5jrd/1ysBgltqm0smoWK6LL7kUP7rn+1r7l1x6GS675CJtV+WRsf3hh7R8xsrbgqqYGhb+QwIkEERAhRRdIANXBQWF+MUvfyv3KDfesXGt/BZ4xQB9P777vXu08CLlifHQg3/H7377a23v4AH11tYW7fkyeEA96BBcTCIC0/q3NIk4TlpXVIJ7kxih1UVWrJ6bg9klShxn7MvY0uXEwdoe7DvRge5eD2yS4H6stAWT1vmzB1KxmnPmzEFZWRl6bL3w+vtFPdIp7ndD8VopYmwH99WgF5VIowVVs+Zg0aLFIlxiQ01NDU6dOhW37usNwrHfG1Fu0JEHLcwz4UufWAq7cPZI2oacLKOW7D643q3vnRv8MeblDJnBtTl98pAX3SxuLAdUN/4ztbXj7qoe9gMP/ONW4oZpSSBN1JzTTBYYTGZNbVpnSNMGiJR6T7/8zXpF8Mvr7hPVWidcvd1RCXRFCkS50VeVl0q6oz702PvC7naq5igqKmdLf/VwSUzRSfk8Z95AvLaKFX3j1ZfQ3FCHIslp6ui1oVFSG5236eKQ7bplkKyprVO8JjKxdvVa/ONPv9MeiEqKi2BMlXtW8o75hTyvwEav5BxU9+R45xa8cPNFg2mklLu/Ek4LTiVVL+zXbdigdYOqmIGrwXcSIIEAgWChxcC6wPsHrr9OC79Q9y6ladHXN/z3IdSAeqANvicXgbEtmeTqY1L0RuWzU+4BUyWRrxLJl+am4+r1ZWKMDrmBhoJTmG2Cem1ZPuAiuuvtdjyxpwE9kjpAzaJOdiksLMQSyX2n3EX7XF7UNanYK5kBFVENa0YOMrNzYJW0IRZJVG8Qdzi/zJQqARGbrVtLSm/v6UZvn0dEfRwwm4xYsHARli5dioMHD+LkyZMTPh2rRfL+9XeIcmcUSQSDjio2dMR5RYN2i3ox06pHQ0eqNuMT9c7cIakJ5JUvhF7EeOJdTLp2aTf8jLoluxDmjDykZ2TL35/I77t64ROj0+91SfrKoTQAKSI+Y9ClwSj1dNKuUq31eyR9iq0Tjp42OMVADVesORKfWZQ7bjWVA++CNYvhEK8Dh8svIkThB2DO1J7G7tdfFREkC1x9Tm0Aa+GyVaKmm6rtf96Fl2o5SNU9p9fWgyUr1sqsZ2QDRV12l4y0F+Lybddh95tHUb1oFSypp8Vld7gatTohQ7rEokeRMmpcCHHcYLJmo19mjEcWv6EYc7y58KXHdg9Vipi9ncNzIn/0Y/9HFHzn418+9QntcIHwguBUUUrUSKWJUoWqmBoG/kMCJBAFAZvcw9VrvBJuQH28/bh+agjQIA3iPmvWbBFkeAzf/96/4w+/+422RSmRfus738UVV16luSF1SM62j33klkG10aDdE7JolDQihdlG3LhlForkfSJl48I8qNcLB1vxzP4mEe7wBGcqmEjTYfdds2YNSkpKYJfUDK0dNjHuLSgpq9TiuXLzCsLuH6jQ57Dj5PGjMtJeiy6ZMUmTmdP5CxZqAjx79+6RXILj35wCbYz33iMGb0GGXwy9tPGqJMX6QEqILqZYSYrrEc9OtNedjXeMZ6PSVkZphhiXQwIzwc0bxKDMKqiANbcY7t4uuGxNcDS/LTOeruBqYZcNJonBFsM0p7BSu6/Y2hvQ3Xpm3P3snY3yNywG3RhFuZCuuuQSSb/So0n7j1FlzFWbLrpMc+tSs6Ppco/R6fRiTHsGJzGLiktw9bvepw10KYGiVBHV8YohHWlpbnUh1e9CRa4enp5W9PQdll19o3bP1pkTMmM86kBRrHDau8QjZUjAaXBXvV3OxYTmE2Mnnx+sF+GCiku/7bOfwwdvvB5trQPHC9yXlQt2wCgdSCPVpbVKVcwI4bIaCZAACcxQAjRIz17YTBmp/fkvfwOb5KALLlddvQ2r10iy9XWrNJeAO+/6Jr7ytTvw6bMjv8F1472cYTbg6nWlWL9gIG1BvNrftKQA6vXrHSdwtN6muZjGq+2R7ajE62vXrpUHwhS0dtokObtRBEcWY/GyAfXWkfXDfU6X2dPFy1drr7raGhw6sBedPQ4RIjLhsssuExexfThxYnScWLh21Xa35CBESpqkKxj9gBnJ/pNVp0/1L8Uo/R1IdTFZx+VxZhYBncw45hRVI0MM0d72M+g8tVvSHkWWkHwsEh5nj6i29qCvsw5p5hyYM4uQXVSFrubTIQ3TsdrauHGjxL/7kBJDDLxBXIvVa7yiwgFUbtNYi61XZkrlvqZmcPv6kvteEdE5+p0SBx6f35h3Xvsu3HHnNzVj9M0D+wcP3yZKxipGtay8AjUnjmvrlepuU9PAzCpVMQdRcYEESIAEzkkC0au3zEBMSnr+Zz//JX79q//G0aPDZyiuvGobHn7ogUH/9D/ff58ok14pycsTiy4j3YB/uWZ+3I3R4Mv30a1zsHVNCZQ7cCJKqYjhXHTRRXB5+2Vm1IOColJcesW1MRujI/tYLrFiyn1OGbgeERVqkkT3C8+68Y6sG8lnmwiY+CWJQ4Y5MTwi6UMkdTLEZdfrN4qrylA+xEj2Yx0SCBDIzC9HxaKN0KX0o+3Eq3B01E7IGA20G3h3OySHZ9Pb6K57C5bMXJTNW4N0a2RpihYvXiyzm1aJG4185jJw3Ml6V0ap1ZouA2zjG76T1ZeJH0eJyE38PG764Ifwf7/8ddxw/XsQbIyq/ilj9OmnduKGG27UumsRl+pt11yLxx59RPtMVUwNA/8hARIggXOWQGKtqmmC9Y477xZD9Aj+8qf7RvW4uKQU9XV1g+vrZFnJ/efkjh/7NFg5xoXCLBP+383LUCDCOIkuF68owvUXViFTZmPjWSorK6FmOVrau2UGth8ql+CGd2yRuKr4Hkf1edHSVVgvbaek6tHebZe8epVYvnx51KfT3S3CLP3xj9+LuiMR7OBPMU/IPTmCQ7DKDCSg/v6KZi1DZk4humr3o7etRgSKxleZnSgCr8uOnoaDcPU0o7B6iczIzgrZpFLcnjdvHmyO2GdqQx4gThs9omCujKysrIEYyDg1OzXN9PuH5QONtRNXXHm1zICW48mnXxhMI6XSSSkROlW+ededUEq7Kk3Urtf34pWXX8LOJx7XtgWrYo6VZkqrxH9IgARIgARmLIFz3mX35g99GNWzZ+PWD9005kXOklyPgZgXVcHlGnhQUmIM7W1tyK9aMuZ+sa5M6W3CV29YGOvuMe23akE6dGlmPLhb4nmME3/Ays3Jxvkb1mp5/NIsqVi5eoOWuiGmzkW4U15hCba+8/14/ukdcEkihkWrKmEtqMLR4zURtgDoZNQ+o3ABdIYDSE2A4RxxR8JU1BtMyCldhBRrC/LTI4+/DTTb3XxKXCtFHZQl6Qhkl8yBPm20SM5EO2pM64Y5uwiFFQslTrQdPTJ7qUrqJAnvuB0d8NX3wlo8X4SQctBaexiWrELo84bfbzauWw2fDCylZw+I7xiMBvl7nPjs3UT5Be+fZs6ETlySjZl5MPmKkWrKhmOEwqPB5Ey6e4jRkgnrWIJZKQZRbq+M+bfM0dUCR3crbr7p+mBMo5ZrRXDqki2bUCxxvDZRSVdGaHChKmYwjfgsW3KKkS7fUxYSmC4E3I4e9ITQHpgu58F+Rk/gnDdI//mTn8YTTzyGz3z28xq9WbPnaO64NhHT+Mff/xdq1izYnclkGphBUyIMqnTWH9Pe4/GP1ZSKT79zvqhaTr6r2pIyE2rqvHjp8DH4JpDGQCkRL169AKcl3YLKzbnxgi2S504UO0VYJNFFRG6x+eLL8dTjD+LMqVYUSJqGOvSivr4hokN3Sq2eOYXwzREhlBC5CSNqLIGVvH4RIKk9irbaAaMi2kMl87lFey4zrX5Pa61EW6tvcnzL3CWVmjFqbz0JZ/dwRdT4Hmn81vySQqjz1F5YC+dJXxbB7TiATlvL4A7l5WXoFyXftq4hQ8UkgmeTce8Y7EQEC26nHU4xQB3daZLypgVpki6qT4wyv6TCCRSv0ZR09xC3CML12sdQP041wpVaH/Nvmd8fXRxtqJzFVMUMfIPi894nAwVOW0d8GmMrJDAJBPrFY4Pl3CRwzhukP//5TyVVx5DARb/fLznmfPIaMKBUfiMlvhAoalnNmHZ2KvNF9BUlF188SrrkFt22vhS5Eh8YaWI76Sp+9PcD0lc//vWGlYPd+MqvXkVL1/CcTLdsXYhNy4oH64y1cM2GUpxqFhXbpqEHwrHqhVq3Yvl6Gf3uFUY+rN14ATKzcoblEw21b7y2bb7kKjz52APo6OrByhXL0dzUOGyWO9Rxzpw5g/7z5Hr3D+cXap/J3uZPyUKtCDrF67s32f3n8cYnkAjjS7nBrly9TmZFj8BtV6mWprbYW46I98JsrN+wHo88/tRgZ+bPmyv5iCXFTNBgkHo4Cc5HPFh5KhfkxjvQxxT4pK9Kwzc93TQsH6/6HZGOT2UvRx1bYzmme7YRDjGyeT8ZhWzar9AGC6IcMJj2J80TIAESmJYEznmDNJDeJXD11q5bh+eee0aEjB7UVu14/FHc9pnP4b9//jNRX3Xi+hs+gB2PPyaj4fEdxSnJS8eauZHFpao0DSZLFp5/246Vay9AXm42Zq2YA6Ueqco115Zo6V2KM/VwivuDygnotKtR0vAPSB+5fDa++7+HJYYr+hnNqqoqLVFxp61PExpSIkZTUXSSqmf9Oy7Cay8/Kw9abqxcuRKvvvpqRF05XXsGft0qqTt+uoqIGkpkJUO+5F0depBP5KHY9vQmoPI/nn/eRtiVMSr3g2Qp9tYaGEVA7Dzp2yuv7ILKUawX19wuceWcLiU1VcXDp2gzoxbxDLHbpk/fhzFONYlo30AoyrD1/EACJEACJEACk0QgeZ5QJumEoz3MI9sfxoWbt+C13fvlgcOuxb7cestN0TYTsr7ZqMfNF4cW+0iRxO4ZuSWw5hTBYDJj78Ea+F02LC1Ixds1x9FaLG54Z10duk6ehj2rAp6UfJiMVonbqoTBvBSOrlbYJIF5XwgXHotJj6VVWXjlcPQzKUuXLZM8d05YMjKxYPGKkOc8emM/nnvqcZlx8OHiy7eN2nzi2GG8setFvOt9N8MoSe3DlZzcfJRVVEvO0iMoKChAUVERmpubw+2Gjo4OuF0yO6rPB7zRMwh7gAlW6Jck9raezkHV5wk2x91nOIH169dpaViMKWpAKrSHxGSjcIigUmb2XCyT+4Zy9Xe6oh8Em+w+Bx/PI/lLDanpYpA6JMzBDxXO4ZT8p9OtSM+p2D3dLhr7SwIkQAIzjAAN0hEX9NZbPjhsjYpp+fztt8GakSG52qySN61x2PZ4fJhdYkWWZXz12Zzi2VriendvB5xddXj7dB1eP9SMa86rxulmm7iPyYNckN+9X9yy9h2px/HTzci0GLGgIhtmU5qIcBQhv2yu5gLX2XQKvRJfMlZ536ZKHD7TLbMVkT8gzp8/X3N1lrBRrFl/wVjNhly39/VXJL7JBpMkqx9ZWpoacOzwwZGrw35eumItGs6clllSDxYsWBCRQaoabWo8hX79+UhJQoMUhlI01j8R9txZgQRWrlgBna8Pfd0SQ50dfhBnKog5W09gVtVKbRDrZG38762JPCenUwxSEYODGKTKYcZkMk5Lg1SlkOruDj9Yl0iWbJsESIAESODcJsC0LxFef+WOlQhjVMWOXrOhbMxemLMKULn4fDHSTOis3YuexsNobWnGC2824rI15SKmMbb4ycLKHFQWWJFtNaK2xYYHXxIhE5dbhDdEuOL0Hm3GJLe4GkXVS0XBcuzUMtVF1jH7NN7KeWKQ9va5kZ2TiwxRII6mnDh6GHYxRlVqmJFnZLf14I1XX8T5my+NpsnBugsWL0OvpJDIyspGtogrRVJ6RKDE53Wh31ASSfVJq9OfJrPeri6ZIW2ftGPyQNOTQHFxsaQ/KkNfe01Sn0C/34MUV4c2u+hLspjLcOBsvU74kKlVUyEckXhuhGtzKran6EUxvp33lKlgz2OSAAmQAAkMEKBBOsXfhDRD6pj5RvPLFyC/dC7sLcckwfxRUd51aD09fLoTGeY0HKvrxu4jbSJA1AN7n0dbDoS1rpiTiyWzcrBsdi6u3lClxTg1tA+l+XDZWjUDt9/rQPmC9bBkF46icNmqEuh1kX091MOvX6R5+5GK5avXj2or1Ao1+3n86CGcd8HFom483Bz1eNx46dmdWHfeJklCPyQ8Faq9kduqZs8XwREL+sQgLy8fEqcaWW/kZ4ftFFKMVZIXY/SM7ci6k/I5VQYIxF3X0R1/AyM1NXXcPIRqW4nk4lXvY5X09HTk5TGtwFhspnLdsqVLxBg9NcxzYir7E+rYBr1Om1nMsEY3CBaqzcnYZhfxNugGBt9UdL66B6aljT3ANxn9iekYqRa43B4ZEIxdyC6m43InEiABEiABEggiMPZTZlAFLiaWwKKK4bOJqTo9SueshHpI6zj1huQM7BzWgcpCK0rzzGJApAy8lJCR/K8+j1WUHWGSWVi3Z7QIk6O9VpLWH0KeGL7ZRdXDdi/JNcFi0g1bN96HCqU87PGJKIkBFuvAjMF4dYPXa7OfEhd6webLtX2DtyllzZeffwpzFy5BgeQYnUjJF8GUPnGvq64WAzPC4vPYNeOvP21WhHskspoO/cbZ0p8T4pkduRt1pD264//djW/cedeo6ldveyf2HjiE+//yN+zZfwiXb71isI5ehKP+/Xv3aAnutz+2E4/ISxmuLFNPYNasWdCl+JJCUTcSGiZrFvp6bTLoZB134COSdia7jlPU1rUUWWLUqaLuWXpJATOdiqc/K+K0WNPpvNhXEiABEiCB6UWABukUXi+DGJFr5g0p6+okSX2JGKM+dy9szUelZ2rcfXgpzTdj5dy8wVdlkcS2mgzaZ2V82no9qGvtHcw4oJa77G6U5I490+fpk1jR2n2wZuUjt2TOsIMVZEU22q8Eg5RLcGlZ5DOQ6kDKVdcisbknTx7FWwd248zpk+jttWvL7W0t6OlS4j292ue3DuzR+vb2wf3o6ojOvWzOvMVnc6umQKmORlpcvfVwy7XoN86NdJeE1Os3zoO7r1PyNsY3zuvSyy7XxLpu+fBHR/XbIsbB937wI9zywQ/gok3n4eMfvQU//NFPZLY5Xat71dXbsHrNWmxctwrnrV+N119/FV/52h2j2uGKySewYMF8eFTc6DQpJvFg8Hg88Lr7NKN0mnRb62Znt8Tw6wY8TNTd2qAfXwsgKc/LUCAGaX1Sdo2dIgESIAFFQA2AB7JIjCSSJ2nNTOMIXYbz8BrZFj9PLQEapFPI35SmxxwRNAqUollL4RHhot62k4FVUb97xW/3uf0N+P2Oo7j/6eN4Zm89Ni0vQUYI0SS/zy0zpQdhzpA4y6CZ0iqZjQ1XLBYLUnUygycqwFWz5oWrPmx7iRiwRUXiGpyq016p8q7medVni9mCeQsWD27TycyxKupYKSNce7UNIf7JkPjRNKNRZok9yM0dGgAIscvgJkfXMTFm5fzSZg+um8yFfqMYFxLP6uiJv6vukzufwPo1K/CrX/5Cm90JPq8tWy7BmTO12Ldvr7b69dckt63EL2+6cLP2+cqrtklqpAcG1X7/fP992HrFldNqhiv4fGfKcklJCVL7JTdmX9e0OSWlIO5TLv/yPVdqu/LkMW363tHZhZS0AulvqvY3pJP703Qp/bpcLWe0UhZnIQESIIFkJKAGx5985gWsXTc8HKxcPPMe3/kMtj/yhDawfve3/m1Y6FEoD69kPE/2SZ79CWFiBNIzojNwgo+mT3WLcTVwCQqrl6Df4xTBoXp5Hov8oWZ+RQ7UK1ByM8246dKF6HN74ZWHvIx0w7gjS4F91LtK5N7TeBQ5lStE0McLu6SHqS7JgvFYnxgZ4/ensLhInsWMMnMGZGQN9SO47fGWi0sroF6BcqrmqMxIurB4+RptVeBdfVAJ6A++uUfSySzXBFAC+0T6nm7OEGPXj6LSSjS394y7m0oenyqzHMrwDZTeLpnJzVkIffp8EWBRhuFo9+dA3bi9p+jFCJ6rJavv6zkxrD+pOgMm8r1zOc4qM4forIoLbqivG1ZDzaQUn3XLVe/KoA2Uuro6GMXozxGDv72tLbCa75NMYPbsWfDaWyb5qBM7nFf+tlVR9yCf1w2z3EwcDsfEGp2kvT0eryjU2pBpKkOqry7iuPtJ6l7Iw7hQhOPHlScOCwmQQCQESktLtUHtDPHsUoNPPT09Wqo49fvHEn8Cd3/zO3jPe98/pufMN+64C8898zS+8+27oSZGVNjQpZdtxY7HH5XQsQEPrxuvv04bVF+3fgN+9/t7sXb1ssFB9Pj3li1OlAAN0gkSNKTHJrajDqv3dYtBqkNmfpmIYZjQdUYeDmS2YKJFTTCoNC/Rln5JF2NvOYH88kVwOnpQkO2GXkQ6dIYBN82x2svMyUeK3ijOxS4xTCc2s6FmStRrzHb8A9vG3T5W54LWZWbnyoNjN/IKimFIPx20Zfii3+/TrsnIQQE1U5qeOQtp6cuQ4jklFrJt+I7x/KTLFmO0Wma52iRn7OlRAxQqzngi3zuPU9JUqFRBIYpSJXY6ncNquCRmLuusy7N6V58DxeUaqJslCss0SANUJvddDQgUF5eg7VjsHhaT2+OBo/n9ytn1bJHvpclomjYGqep1c2s7subOQn9fi/ytDhjXgdNJ1ne/rkAYe1FbW5usXWS/SCBpCMydOxcLFy7UBvnVQL/HK4PSEjNeINkISkrLsHr1GhncOYZDhw4lTZ9nQke+/rUvQ712vT7gqRU4J4PolVxy6WW47JKLtFW9vb3Y/vBDUKFEyiAN5eH1xI7HA83wPckI0CCd4AXpaRnfuAnXdK6kZdGJb3xOURU6T+1JiGBNuD6M3O6yt4rLsCinFlejueUN+Hvb0ev2jaw2+NlXmAF7t3LbNcIvM6sTKRVVs6BeY7WjTN333Xir1vxY28Md12RMQ4OkczGb9Ah3zXzuWdpMzcg27R1HxCAthDlrjmxqRopbxV7FcbZUzYoaymWkIg+OzuMSNzp2nlgVa9fTktgR2e7uLpnxHJ67UsVpKKNeFfWeljY06GEyDQxaqP1YpoZAQUEB7F1t8pw0/t/r1PQs9FHVw0WgqIGSNHHX15TaxoihD9RLpneXxM+3t3ciN6Nc7oNnkqlr4/QlBd7UUrx18I1xtnP1TCGg0rrppltccxLBV3GLGzduRIao/NscLgn7CX7GSRGProHff71kBJg1dwFKy6vw6muvDRusTaLTmRZd8YvHjNc9fDB8ZMfz8wskrtQwzIurXjy61m3YoFUN5+E1sj1+Tg4CNEin8DoY9CnIKaxEr6jdekU8J1mKo6MWOVVrYLTmyGyhMgXHLyrYXD03jjRext9jaraknzWYxktfEmmv3DIL4nV3y2xpFQzmlYCnCSlecZGUuL2YS0qaGKKFoohSogkX9XW8IYMTE2gv5o4M7djY2IiycjGOg4qK2WhsHBDLUe/qc6CoZTVj2tk5XBU6sJ3viSdQUJCPfvf47uiJ70FsR1CCRoNFZh38Ph+MMtjhEvf96VIamlqQnSUDWSkq13FjUnfbq6tCQ0OTxIRPL9fupIaapJ0zmjNhtKjvJEssBM7bsHbAe83WK7Hierkvjd9Kr/xkZ2Zl4pKt2/DcCy+PX5FbQhLwOO2wd4S+hwbEKYO9tJRHl/LQUiWch1fIDnDjlBGgQTpl6IHiojyY5MdCpXdJttInRmlx+Rzxnn0loq55gx8qI9pjciulKsNZSmjzOrI++X0u9HYeFXdm9WNfjDTLOon/bUWKT8RBfGIQRGKcpsiskHLNlRcMuZoh6uo+AJVuJhnKs88+je/f8x9YuWo19u3dg/UbNkKNSr74wvNa95RbzG2f+Rz+++c/01x7r7/hA+Iq85jkvI3jjHEygJhGfcjPy4WvezrM0A2Hqhs56CV/P2rWdDoZpOqMGpvbMauyWm4yNcNPMIk++VLz4fRZ8Mbul5KoV+xKogg4ulslXdjYnjaJOuZMaXfx4sXwOrrQ2hT5ZIHK0peVYcbskkzs3r17pqBIuvNQsbuqKC+tgFE64MHVpa0P5+GlVeI/SUeABukUXpJZs+bC2a1GgoJiqKawP8GHdtpaoZd4y6KiYthP1QVvGrbsFTddFbOarrnZDduUVB+Uyq4qqr/xKl6ZjVIvR3cN0kz5mjuvzjxXvHhlZsffJ5dVRKsg7pMpEmPbr1xQ5M9NlpEqrrCpaZLepweu3jaJFT0yJW6WV119DVQO0oyMgVQ4Sjn3GxKvoQzLXrsdX/ri7bj3vr+gtbUFSlr9C5/7zKAgwCPbH8aFm7do6nZ2m13UOm249Zab4oWW7cRAQOUA7pQ0T9OtjHQp7Jc4bp3kYZ5uxdnnlFnHDnhSZ0nXkzA2U2eFzjwPbzz77HRDy/6SwKQSUMaNMkgbZJAp2tJj70NZWZnElB4fDHGJtg3WD02gra1VSxVWVl6BmhPHtcrKS6upqUlbDufhFbp1bp0qAjRIp4i8cnUtlmB4Z8/pKepB+MO6bC2okD/yEyEM0r6+PjFI4zHvGL4/E62hk0Stw9wDJ9rg2f2Ve63L0aS91CqdwarF1KbqTOLyrBc1PlEPFSGEfr8SE+qQl1NmQqfecHj0kYehXuOVhx58QLZvF9GGUonVqJdzGIpNVIb952+/DVZRG7RarPJDoAZWWKaSgFKInmpX71jOX8UM6fSS+kUJhagi56EXobTpVpQRrVIleb0ezC6bL90PHQc1qeeXaoVXn4FdL+5CG1WwJxU9Dzb9CJRLuEpXj13Ei4Z+8yI9i34JO3A43aiqqsKBAwci3Y31oiCgnuOefmonbrjhRnz7W3dpKrvbrrkW3/nW3Vor4Ty8ojgUq04iARqkkwg7+FDqhtfX0wZ/RlD8VHCFJFh29jSjtKxKyy05niumMkhHetwlQdfH7IIaBOiYhIcx5XabLK63Y4KIYqUyPM+EUOK022xQL5apJ+B1u6e+EzH0wCWqz3pJoRAwSFX6l1QxUKdbUa7HKob6xIkTWDxX3PGNiyVN1DE5jSn2gEnNQL9pHg4ffghMTzHdvlXs71QQKJG0Zh5P9MZooK99To+meE6DNEAktvcf/PDHuGDThSgoKMQvfvlbuSZuvGPjWs3T7Zt33Ynf/v6PUIZoRmYGlNfWzicGFHTDeXjF1hvulWgCNEgTTXic9ktLSyQ+QSUkT94Hr36ZEXPaO8Vtt0jEbMaeAVNqq8a0IZXMcU43KVar1KJdXQMxBknRIXaCBOJIwO9P3sGtUKfZZ++CyZwnsUCB/vfLINf08LoIPi+DGNEBFeqDb+0TBc7ZMBgXItVzasCFP7jyJC3363IBMUYdXUclxYv0g4UESCAsgYwMK7rtsXs4qNzKKvc5y8QIKC+s8Upt7WlcsmWTZvirkCFlhAaXUB5ewfW4nDwEktcaSh5GCelJXm6uxA4OpNBIyAHi1KjPaUN+Xt64ran8T2r21DANYr6MIpTS0aEGAVhIYOYRMKZbp+VJ9Xa3wWgI/ilKEZf36RVDqtOlIk3uL8HusI7uE3D2dcjs5BItldNkXxyVQqo/rUoUKw9KCikq6k42fx5v+hJQMaTK9TbWolIrG84KKcbaBveLjIAKFxppjAb2DHh4BYcbBbbxPfkIBD8FJF/vZnCPVNylz5P8aQ18bjtyckPLxqtAcpXnM5lLmuSsUjF2AXW2ZO4r+0YCsRBwi+vrdCwOWycMopaojLqBMpD6ZTqdi0m8RMbyInHZ60SR+wj8ejEOjXMHRM0SfWJKvTt9Obz96ehp3Qevi6mYEo2c7c8sAjYJQ5lIiji93MuczuR/vptZV41nM90JBJ4Apvt5TLv+e92iwjoNitfVC6s19MyLiksyGZPb+9ucbsTp08krIDUNvgrsYpITSEmdXrOKwTjtna0wp58d1EpJhX8CsxPB7U7WsklyFDY0NIx5OI+rA90tb4hLshP9krtYzVyK9NmYdSe0MtUMvxi9/rRZcNjqZGb0kOhDTX5ccXp6OvJCeNVM6By5MwlMAoG29nZJPRX7M43ylmB40CRcKB5iRhGI/S9uRmEAcnJyNDex9nFEb9SPrNlsRrvcqOJR+n2BeKl4tJa4NlQKhrS00IqXaoZUzfiqWQKnOznPSz3s1oYQ50kcQbZMApNDwJAm6YSmaeluq0fx7OWSPsip3Uumk4uVCgVQCrvhBIP6ek5qStwma7nkLl4DaLmL2yR38QRFwfT56JcXREnXZT8jcf+Hp+RboETjvvWd7+KKK6+Cw+FAh/xWfuwjt8jM8diG+pR0kgeNGwFTWiosRoMoyacgx2pAtjVNPuvg8qgQnlTYHB609bjRKwI/IjIvn90y0BS3wye0oSbRzCgulpR3MYrhp8sA/aHjHABP6EVi4zOOwDlvkJZKSos//fUfyM8vkHifPhnlrscPvv9dPPP0k9rFTtSPrDL0pkPpl+B8vbi7hitq9nH1+k1JaZBmWNJFXbeL7rrhLiK3T2sCfhEhS9WlSVqhyZ8Vmyg4hwgb+cRrRA0cOb0qBcz0uD+q8zbKw+cJyTkYSfF7+0Rg6BictlrJW1wEo3mWpCbWod/bhVS/PP36RZhD5TAeV5lXZlZ1FvSnqlcGUvTZkgu5G257K9yONyPpQsLqXHX1NqxesxYb163S8hXfedc38ZWv3YFPf+oTCTsmG55cAsrQUvHeK2ZlY/2CfJTkRjYI5vX242iDDS8dbEVTZx96xFj1JbF1qtzvFy1aBIvZhF5HdOJG6RK+pDIPcAB8cr+bPNr0J3DOG6ReefC5686v46knd2pX8yMf/bj8iH5j0CBN2I/s9BORDPltr609I6IeeqibcZ8ruR6IM6zpOPgWRT1CXkBunPYEuru7YDBZ4e6dnsJd7Y2nUFC5AC6bX/L/RfcQOFUXTymMWyQc4NixY1F1we9zyUxmrfbS6c3QG3MkjjYTOmOpDCqIoIooJvf3u5Ei/w0UeU9VLs0p8Hsd8HpsotIuyeFdR5Im9+yVV23Dww89oBmjqs9/vv8+PLj98ZBpwwbOjf8mOwFruh6luem4al0pKgstUXdXr0/B4spM7aV2flEM06f3N8Pe54VXTZ8mYVEpWzZt2iQpRnxwRej5pRdPiaxMM/bu2ZOEZxR9l5Tn20TEnaI/Ivc4lwmc8wZpS0szntz5xOB3QC1/4867tbxHra0tSNyPbOBBY/DQybkgN6TxcpCO7HBrewdyRQCprzV5DNKcLKu4j/XBZhsuCT6y7/xMAslAwGRVoQOx3ZZtTj/K8iQ+0e8ddSo6fb+41sXW7qjG4rRCbzAiTeIeA8XtdmnmV15hCXrrG2X2UC/5SA1i0CQg3jJw0BjeddJvo3mgTzny8HmipgZGq6RXCSo6cWeM9Doqw9PjbNZeQU1EtCi3Z6RE+H0xmCwwZ2VG1G40lTwuh/S9F8WSuzH4t1S5MBuNRhHFy8V4oTDRHId1J5+AUQyswmwjrt9chdK89Lh14IIlBVCv52Wg+LkDLei0J88zQ+AklWL27t27sWrVKnT2ONAXRqRIDU5lZaTj7cNvh3XfDxwjWd4zrXpYzar/esyutKC6zIyyYrOEYal4fkmXJ67XZxr7cPJML07VO8RA96Gz2wO3uGezkEC8CCTXE0q8zmoC7Vy4+SI01NdLrKjE9khJ1I9sii68G+wETiNuu6qHWI88KEZSunvsyLBakJ1pkRtYjMEXkRwowjrpJolpkdmLmlN1Ee7BaiQwtQQs2UUyWxbbg587xQRLQTXg7hl1ErpUpRqZXIadPi0d6frhgml9TieqZpehtdsps6Q+ic2M3LAbddIJWqH6nWoywJpuEmXgFLTZfcjIl4GAoGIwdknfk+sebzRnIiMtJ6iX8Vm0dzRqBmlWZqYINw39VigRJ1WyMrNokMYH9aS2ki1xoZuXFcmrMGHHvXBpITaI6+/vnqhBTbNd/uaTy8BRbrcqdcjq1avFONPD4XSPmi1VAkbmdIN4hxmxb9/eaeOqa5FBtQyLAReuy8d7Li9FYX5k7teBL8PeQ13466N1qG1woKnNJRMX0yRAOHACfE86AjRIgy7JvPnz8aUvfxVf+uLnB2cFw/3IZhfPDmoh8sXMgkqI5SsPicn10BJ8BqniZmPJKYHPmIlw52kwituZzBy0dvSguqJE+KWKmMHUud0p2fWCvGw0tYgIlRjVqm8ZeWVQsxuhil/FzMoDp95wVvEzVOUp2qYX1uGuR6iu2TsaJO5s6q5NqL6d69v8/b6Y00EpIY4Vi+dr33e/Z7iKd39Kv0QlJtcDg0rD5B8h7uaV+8bp07WwisHXLkapSNImncuY6rdOeGZlmPDSrtfHvF5KIyDZXN3UvS0RqcZSRBVZle7ubhHAG7pvmkwDAyvKlZxlagikZ+bJbH5WVAfvl7zipv4efOzyahRmhf69jKrhcSqLIwQ+ee0S7NzXjNdOOOBOGfKaGGeXSV3tEBv5pd2HMWd2NSrKymC2mOF2D8zoKmNUpXepl3vvgcNHxFjVT+i3eTJOzKhzIi/Dh3+6oQorF8XuMbFuRSHUS5X7tzfg0edb0eUwicfGxJ5pPZLZobezeTJQ8BhJRoAG6dkLUlRUjN/+/l78109/gke2PzR4mcL9yPbZYlTd1R5Y1ENL8op3qB+mfklP0NJcj3Dn6fPmiBHqlRfk5tyMyvJieNs8cE5BPKnKH5abZUFHpwgZST4xVdTDmNPRHXaWSD1s+nxGqZ+818Xvdcv1iD23oGLBkpwEemW2aSLpW469/SYKxe3KaR/+/bBaU6EEypKpqNRXzhGxovqsSrzx0rOorq5CutkisZJik47hgjyV56EGc6w6H1575U2cqTk5Zlc8mSIupTqfRMXdZ4Ota4KKvmOcj++sB41S0y2vqBisoZbVjGln5/Dv4mAFLiScgEdyE0d1v5d0S4XitHD7exaI2rX8bk7i394ly/NQIPeuh15tgN2TXN4c6kK9ua9NXm8k/Jol6gASfIVcuba33TQbG1cOhBjE6znn+iuLoF7/+T81eHFPG7rssYekRfV9TRQstjslBGiQCvaKykrce/9f8cf/+T1+/rOfDLsQ4X5kXb3dw+pH+qG1qQ5FRqsYpMnlohLcf80glRivxrrTCHee6iYSuLnZRSu9rr4ZpcX5aG3vmVSRI71Oh7xsqxYz2tI2JO7ilwEAT19kcaT9vnz5IU5ig1RYh7sewdeRy9OHgDvC7+h4Z3T08FsovuB8EbtxDKviF/fSZLvX+MRg87iGjGSDKRNucfM8XXMUZ04dx8WXXCIPUBnyt5hc98gsmdI5dfI4Dr+5bxjj4A9+b1bS3UOUIe3qHXKpDe5vPJZ3PP4obvvM5/DfP/+ZzBo5cf0NH8COxx9LuusXj3OdLm2oQZ9ocp6rONHb37VIRoHUYPnkn+WyKitSUYS/vlCrKfFOfg9m5hEzLHqcvyYPX/o/C7QTTNTzzaduqsLVm/Pxle+/heZ2t3yHpuBLNDMv4TlxVgO+NufEqY59knPmzsNf//YgfvaTH48yRtUe6kf22mvfDZNpwL8+Xj+yTc0tMJjjH88z9lnGvtYoIivNzdG7T/SIiFB9Y4vEJWRLnMKA61bsvYhsT5UHtTA/S3KH9SLYGI1s73O3Vl5+/uD3+9ylMDPOXCVj7+qxwZiRuLivRJHSZ5bgyNEBtVplhL704oswpumQaU0eF76C3Ex0C+N9+8Y3RhPFJ9nbfWT7w1oM3Wu79+PlXbux8bx34DvfvivZu83+nSWQI3lEv3CdGKMRFjVO1GFzxV3YZklVlqbmazZxviTCSxGyWn6uEZ+9dd6gMRqychw2VpdbcN+PNuAdq3Ml88I5b2LEgei508Q5/xe/dt06lIg64L9/7x7tFbj0//njH+L73/03cd99GBdu3gL1I2sXI8tmt+HWW24KVIv5vV6Ek85fo27+w2cyYm4wATumiXKkvdY2KOMf7SFsdgdO1tajtKhAEmXr0GUT96EEzXaoh9YccdNtam4X9bfRoi7R9v1cqK9c6n71mz9ooiMWEaN68IF/4M5vfFVclpN3dvhcuC4TPce33z6C9evWSPqUlok2NWn7p5mzoUuzoKamZvCYfZIX+o03dmPTJVeK+6AZ3XL/mKqiwgDycjLgknixPTMkpUO8WSrxl8/ffhusGRmwWqxoamqM9yHYXoIIZIu4zSevkfjzCMsrh5px31PHJCepTkR//JhTloVbti5Apii1Bhf1c/+jvx/Q6vzrDSuDN4VcXr8gD7UtDuw60ibPDJxlCwkrxMbCPCO++smFWLYgujjiEE1GvOmu25fgx78/jh0vNItCMZ8pIgZ3Dlc85w1SlStNvcYrifqRVbGpjl4HjJX5cNnbxjv8lK43ZRaKYtzrE+qDCvivOV2H4sI8lBRko9veJzOYwwVXJnIApaSrjFFlRCk13UjzhU3kmDNl32/ccReee+ZpmcW4GxaLBY88thOXXrZV8wqYKed4Lp5HS0sL2to7kZldDmdX3bRAYMgqwyFJlzCyOBwOnKlrQklxAfJzMmWwyQ5fgga1Rh478FnlVlaDXUpFvFW4soQmYJe4ffVimR4EDKJkffHKEhG6GRKkCtfznAwjvnLTGpRIblKDJR9PHuqFJ7saVXNzZGDJpA08e90O/OOpA3B5daJEEb3b/Xs3VeB4Qw9auhPnZh7uPKfz9vwcuUb/HLkxqqVy6XKjqCBdix8eee7dkvrFLy64OVEIXd12y1xtBv3Jl1riPpM+sn/8PP0JnPMGaaSXcLwfWZ0+8pv4yGPVnqmFaeNGMUiHYh1H1pmqz/o0M3TiUnzmTJ2kLwh/jkppUSVRHq80t3bAJgZ4vuQpzVQzrw4nenud2g1uvH1CrTebjLCYjVAxo20dXfKwOPAANF4fVIL5VFF/G2/74LFUzEOYcxmsO1UL0r9Irsl43VPxviqB9yWXXobLLrlIq9Yrbs7bH34IV129jQbpeOCm0fq33noLW7duhbevG15XchsH6Tnlcj/w4NSpU2MS9spg05n6JnHHz5WBrRx0iVHa2zc5D6kqhZXVbNLUulUYAgsJzDQCRdkmyQmaH9VpLazI1tTo88vnaYr0c5vfwlt7nkeVrmSwnaNNHlGjNuELn7oZD+14YXB9NAs3bpmFX+04DnvfUKx5NPufq3VzstLw6VvmYPnCyGZGv/r9PXj65SbR3xBBR3kG2nZxOT5580INX3NbHz7xlV3o6HJJaI8ORfnp+Keb5uMdayILC/nCx+ajrdON1w90JiSmVIUc9drtWtz6uXq9Z8p50yCd4JXMr1oScwsdne2Sc1CSlUtqFZctuWZJrUVz0NTaBEtuCYz68NLgaeYM7QcqFAy3/KY0tHRLzi6juIlaxTjNhUMeLJ1uETfxeLWXuhmOLMrOVYanwaCHyWiQV5pWt8fWK/FyAzMWKlVLqKJyO2aXzIZKTxOqKGXMNFOqnEt0OblCtRnvbWnpwm4C37vOhmPyw5MpRqlBMg8NzaDVy/K6DRvi3V22NwUE7PIDrVxLF82fA3vDgSnoQWSHNKRnIT2nAi8++WTYHVRceK+jT0bw87R7iE28LdS9IxFFGaHK80LlRVUeHl7JicpCAjONgDVdj+s3V0V9WmkmC4pmr4CrqxFdjWdwvPXCsQAAG1JJREFU/MRp5GUO/QY3tDnw5tFmXHNeNepOvoHqqnLklxegre5oVMeqLDRjVpEVb55i6qBIwakZ7ys3F2HT2sgHGTatL8JXP7Vc7qt61DX24vpPPy9tlGNWpRW61BR8/mOLccG6Iq0Lf3r4JH7828MRG6Rqp3/74lJ84DOvitBRdAOJz7/0KqqqqrXjBv751y/ernk1MuQoQGTmvNMgneC19EkKjlhLv96HjubTyC2ugtPWGmszcd8vzZIjhrIVHU37NMl4HyI4R3GjizTPYW+fzI7Kq0lmTS3y4Gc1p8OcaZYAeL02gub1+UXMRC/ut165GcpsoOQU9Uh8kktSyKgH0pa2TnH/iPJBVAxdlfMw3PVSs4f9/WkJGcmL14XSUtNM5HsnLDIlib0qwYnslTKmSmLPMjMInDx5Erky6JOXPxfwDg08JMvZpcqASHrePOwWw1nN0EdS1N+/MhBzZEAlPzdH7hFyT5BBrT5JWD/RorwnLDJYpu5HXrkPNDa3avebibbL/UkgWQkUZBpRJsq60Zai6mVijNbD0VmPt052oNPuxpZV5Voz3b0evPBmI65cXym/6SmS+9YJW/1bMJ5/NXJkULizcShOPJLjvm9TpcST9qJbvChYwhMoLUrHx94/K3zFoBpXXFg2+Km8xIJZFVa8ur9VM0jzc03YtH5ogH7TukL84FcH0d4p+UxzhtYPNjDOwh2fWYyv3yP7iVtwNOWWm28UgbvnB3cJaFww5GgQyYxZoEE6wUvZdvpgzC1kFEt6krYzkm8vQ2ZJxW2tNbobdcwHDrFjSqpeZiwq0Vp7SJOLt7XXR+Quk29dIa6B0ceGuvt6IRPFCS8ekb/vivCH0OOcJefuTHifYj2ASl/TJg/lEyk9PQPCTyqRfcAoVUrSTGI/EarJt+/u3bux+cJNMOdXS+eS5zudkqKDpXgxDh49JWEBZ6IG19nVA/VShml2VgZyxONCGaXKQFUDWZHGmSqxNaP8DagBMOW54ZBQgpa2dolznzoBpahhcAcSiIFAuihYv3PjgBEZze65JXPgcYoGhhijp5ps2HusDVesr4LZOJA79PDpTmSY03CsbiAlXrvNKc8QHjz73Mu45PIrYe9oGpWWKtTx1SxukRg+k2mQKu8hJc4lo+wwS+ops4h0qd9HFZo0VvHJAJZb7j1OeZ6x9XRroUHKjdTjic74GqvtaNbliqvu1z814GobzX7BdTu6nDh2qgdL5mcHrx5c3rW3FcUSZ5obRSyp2nnh7AxsXJWLR55pGmwrkgWvSg82YgLCYDAw5CgSeNOsDg3SJLhgrXVHULFwA4ySuNxln9qZUmvhbDi6ZWZAXiwzl0BbW6t2ky8rr0DNiePaiSoXmKam6H4sZi6hmXNmL738CirfvRWW/BL0tp2c8hNTxmhW2RI0vLIHhw4dmlB/AoapUdz4rWaziHOly8xppnhU+DQ3W594W/hEpVOLbtf+waDXhQoBUMUhs642iQ9taGqhwvSErgZ3TjYCygshVTf2Y56kJkZVsRhdUZSUVEnDVFCJjpOvoabBBqW2e+WGKuRnDc2yVhZlIN04dEzl5aS8D1LhRZ8YsVmFlVG77m4R0aXaDi9E0DdhRSlpW8wWVFTNxvLV61BZPWdCx2qoq8WBva/h1Imjco9xiNdFgt3+xfNp9bIczJFcrrEWr68fX/nBflx8fqnEn+aOaqbmjB0//eMxfO1flsv3amzjfNROQSs+++H52HPIhtau8S9kv+SA9wUZ8h//xD/jmne+CydP1uAvf7oPHR0dyM8vYMhRENeZsjh015gpZzQNz0P9AbbITGvJ3FXorpORNsfUKDla8mchRWdEe8PEHhKn4SU457qsRhyffmonbrjhRnz7W3dpKrvbrrkW3/nW3ecci5l+wkop/LVdL+Oqte+GtXAe7C3HpuyUVcy8tWi+DHi14eDBt+LWD+XOr17tnQOxZirOXBmcer28JP48UFSMunL5UkyUIreKXWchgZlKIF3yiJtERHBk8cszx+oyX9TieOasfHidPXj7dAf2He/ANe+Yg2yrcVjz5YVZUK9AOV7fDbcvBavmF8Pr6EB25Up0Np0KbI7ofXF1vqi7SqiOPi+i+tFU6pdQHl2/GxdcdDmWrlwTza4h61ZUz4V6qXLk0AE8/9QOePxixIm4YiKKWWcTsaE50vzw6xHpsVR6nW//dL9MChtw9+fXSTvDzYPWdie+8J39+MgNi7D1oujjjlU/1Klf/I5yPPqKVxOZHKtvbqdNPAfrtU333fs/Muvs1O7lW6+4CjfedDOuvuIyhhyNBW4GrBv+jZsBJzRdT8HZ2y1G6SEUVC4Wo/QteEQdczKLObcKelMmGmv2T+ZheawpJPDNu+7Eb3//RyhDNCMzQ8u5u/OJx6ewRzx0oggol7LGE/tQULUYWeXL0NtSI27pkcVtxqtPxowCZIgx2tlUg+7WM/Fqdsx2nGKcqhcLCZzLBHq7WqBeI4tRXNVXn79Ai+8cuS3UZ70hDW57O07UdWh5gf/81NvDqr/nwtkibjTcIPKJy6XSbvD7Bl4qplS9oi1WnbiS1g0/XrRtjKyfmZWNVevOx/kXXqptSlSozpy586Fee157EbtefAbdXfGfdKhYlI1cmfCO5RyUJ8md/7Ff0lq58KOvrYU+VWajlQrl2dLQ7MAnv/4q3rO1Aje/szymYwTauuGKPOx8djdaOsILHP38Zz8J7Ibf/uZXeOHl1/COCzZh/7692nqGHA3imRELNEiT6DIGfjiKqlegu/7wpLnvWgvnItVgRtPJA5qIURIhYVcSSKC29jQu2bIJxcUlsNltmnR6Ag/HppOAQKsMemUVVCC3ejXszcfR192Y8F6lphrEXbgauvRMNMs9ps8e/4exhJ8ED0ACM4iAxaxDsYjVRFv0Mvvmd/WIm25FxLvOK8+EegVKv3/I0Amsi+R9cWUWjtXHJ4WVciHOycvHDR/6BLKyR88gR9KfWOqsXn8BFi1dhft//3O0tjTJ81Z83HjTDKn4wDXlsXRJcsb24/ZvvgGjtPHjO9YhTWKLg8upOjs+9Y1d+PgN8/GuyyuDN8W0bDHrUZhnjMggDT6A8mrpaG9HhsT2MuQomMzMWY7eCXzmnHtSnokyShuO7RYRkipYC2YntI/6NIvmPuOX6I6G43tkFJMqdgkFnqSNNzU10hhN0muTiG6p2cmGo29Ab8lFTuUqpMl7oorKMZo7ex1c4iJe9/ZrNEYTBZrtkkA0BPrPBlRHs88U110gRq1KaTLRohMX/qrZ8/CJ2748qcZooN/pEqf6kX/+PBYsWiY5XOPjvpubnYZ1y2O7j/c5fXh5dwue2dWE89/7GNa+c7v2uu6fn9W6vP9wB5rbnPjmTw4MblN1/uuPsc9WX72lOGxO+MrKKly4+aLBepsu3Iy58+bj1V2vaPoXgZAj1UmLxaJ5ej326CNan/nP9CTAGdIkvG7KfbdeHhjzy+Yjp2o1HO21Mlsazzylkt4gT1Tx8irQLnnBekRJl4UESODcIeASAbXGE/thySpAdpHcC3Ir4JTZUmePEjMTackJFJ3eBFN2MUxZJZLOqlMbYHM7J9c9eALd564kMOMJ5FpjM4Q8LgeMEgc+kaJLC50LfLy2s61pouSrR/cEUp6pmdGqWXNxvcyMTnV51/s/hIf+9494++D+CYup5WbFdj0VAzVj+cZD28bFce1llVCveJYLJEfqr/96Cm2d44dVKFXjH/zwx2JsWsXFuUuUjs340hc/B+XZpQpDjuJ5RZKjLRqkyXEdRvVC5cNskdQrluxC5MgDY3p2Kfq6GiZkmKZKRLkpq1hry9HTjjOHd0ksQPSpWkZ1litIgASmJQGlpq1e5sw8ZOaVoUBiPJ22Nnglht3t6JJYr8juDwaJPzeYs+SlchhbJLVDo+Z14aEhOi2/F+z0zCaQJcZdLKVPBpgychYh1uElleM81nuCSVxKdakTm9ktKimL2Ri123rgdrmQKwqvI4uzr09zwa2omjVyU8jP73zvB2G39+B0zfGQ9cJtXL8yttnRcO0marsygsPNdh89egTr16xAQUGhlnKnru6MuBcPqfMy5ChRV2fq2qVBOnXsIzpyQJTAmlMsD4ylsIgbr7u3XV4d8Di60d8/9Ac6VoM6gwmG9CzNLc+YkQ97Z5MIFx2AW2ZIWEiABEhAEVADVOqlBq0s2QWizJmNrNxy7bPX7YBP5eWVe41S51SPhCpfcYq4vunE7V+fli4PmTaoh1V7S62kjYqnNwevDwmQQLwJmAzD4wQjbd/l6NGeOYzWPBkcjz6BuCmrFDYZrIq1yARnzEXFit780dti2v/gm3vxyvNPYd6Cxdh86VXD2lBxoPf+9mdwOvvwqc99bdi2SD7c+OFP4mf33B2z0JEy0tcsGTtnaCTHn6o6OZIztbE1tLhVv6iit7Q0h+yiCjlimRkEaJBOk+uoDEn1SjNZoaTXzdkVyCpdMqBep1TrlBuL/PEiRXLuycOierBUrjH9MqLkEsPV1tWGxlOH5HN8guinCTZ2kwRIIAoCfkmBYGtv0F5R7MaqJEAC04iA3Rm7XkRH0ykJJ5org+Jd8sgR+fOEKbNQ0n6Y0NNWFzMpT4yJSI1GE7ZcdrXEbMb2yKtmQM3iOjpW+cdf/wez5y3EITFaYy1Xv+sG/OMvf0CfI/q5Z6tVj7LCoTywsfZhsvebVW7GoeM9k31YHi+JCcT215nEJzTTu+Z22qFeXc2nZvqp8vxIgARIgARIgATiTCB3RO7QaJp3KDd/8aDIKFkIW+PhsF5aqu00ceXPKF6ARhFPnEixmPTocURvTOfmF2LRslUxH3rN+vNF+E9mh4NcRlVjz+x8BPnS9tKVaydkkCqRpfLKahx7+2DUfUwToadsmW2cbkUJMbGQQDCBiUuWBbfGZRIgARIgARIgARIggRlLoL3+mMRT9iGrYoVmbIY6UXNuJTLFeG2SHOdKsHGyi1K1vepd74/7Yd/avxud7W2jXHhjPdDWbddJPvCsqHdPnWBcbdQHjNMOVokjZSGBYAL8RgTT4DIJkAAJkAAJkAAJkEBIAm2i0K+0LXKK58AsoUAe0bXwupTL6UDYkN6UAWNGgcSWt6NOsgZMlYBiVlY2CotKQ55LLBuPHz2Mhrpa/NePvgOvpMxra23Gvb/5GW76yCdjaU6MUdVPyQneE53R7nJH7jYdU8cStJPbE1r/JEGHZbNJTIAGaRJfHHaNBEiABEiABEiABJKRQEDbwpyZD5MlE2ligKaJIdpn79TiIdub3oBHZlKnqqSm6rDuvM0JOfy73vfBwXbb21rwpz/8d8zGaKChjZsuQe2pGsmzOX46lEDdwLvFHJtAVWD/qXrPz6HL7lSxT9bj0iBN1ivDfpEACZAACZAACZBAkhNw9LSJSnfyqWtnZmVJfOeaCdP7zc9/hA4xOtXs78maY/jw//nMhNscq4HKaplttkrezc6OsTZzHQnMaAI0SCO8vOnp6TCbzWhvj17qPMJDsBoJkAAJkAAJkAAJkEAcCOgl24CkHphwSx/5p8+GbCNPhI1iSfkyVqOZWTk0SMcCw3UzngBFjcJcYr1ej3//3j3Y9fpebH9sJx6RV0lJ/OMRwnSDm0mABEiABEiABEiABCIkUFRWHmHN5KlWWTU7eTrDnpDAJBKgQRoG9lVXb8PqNWuxcd0qnLd+NV5//VV85Wt3hNmLm0mABEiABEiABEiABKaKQHHJ9DNIK5RBmjLxWd2pYs7jkkCsBGiQhiF35VXb8PBDD6BPEiOr8uf778PWK65EairRhUHHzSRAAiRAAiRAAiQwJQSKisum5LgTOajFmoE0AwV/JsKQ+05PAowhDXPdisU998mdTwzWqqurg9FoRE5uLtrb2lA0J/Zky87eOpxuT17J7vufq0NmQSUshvC5sWprT6GxsWGQU7It/O1Pf0Bu+QIYjOaQXfOLfPuv/16DJYuKQtabyo3/eKpjQt+7zgbJIddnn8pT4LHHIZBXvhB6Y/o4W2Nf3dN9OqnuNTv2NCE9qxDGooKQJ2W3tyXVfeWFZ3ZIvwtgyq8O2e/WnjM4WBO5UmbIxuKw8fd/Pw1TRiGKRA013sXe0YjezqZ4N8v24kAgI78cZvm+jiwvHjmC5fOS99ljZH/V59eOdkCXni2/fQvH2jxqndftwEP/+DPee+Oto7Yl84rtf78fuaVz0K8zRtTNNLTirp+dxHVXTC/j+57f1435HOOSXLVdTTURnTsrzSwCKTk5Of0z65TiezZPP/si7vnB97D94Qe1htPS0nCs5gy2XHg+ampOjPkHFd8esDUSiC8BGqTx5RnP1hJlkMazj2yLBIIJ0CANppFcy+MZpMnVS/aGBIYI0CAdYnGuLXGGNMwV7+7uhjJCA8VkGpi96O7u0lY1n9gb2MR3EiABEpgQgfa6tye0P3cmARIggQABW1sd1IuFBEiABJKdAAMhw1wh5YZaXlExWEstu1wudHZ2Dq7jAgmQAAmQAAmQAAmQAAmQAAmQQPQEaJCGYbbj8Udx7bXvhslk0mpef8MHsOPxx+D3+8Psyc0kQAIkQAIkQAIkQAIkQAIkQAKhCNBlNxQd2fbI9odx4eYteG33fthtdtjsNtx6y01h9uJmEiABEiABEiABEiABEiABEiCBcAQoahSO0Nnt1owMWC1WNDU1RrgHq5EACZAACZAACZAACZAACZAACYQiQIM0FB1uIwESIAESIAESIAESIAESIAESSBgBxpAmDC0bJgESIAESIAESIAESIAESIAESCEWABmkoOtxGAiRAAiRAAiRAAiRAAiRAAiSQMAI0SBOGlg2TAAmQAAmQAAmQAAmQAAmQAAmEIkCDNBQdbiMBEiABEiABEiABEiABEiABEkgYARqkCUPLhkmABEiABEiABEiABEiABEiABEIRoEEaig63kQAJkAAJkAAJkAAJkAAJkAAJJIwADdKEoWXDJEACJEACJEACJEACJEACJEACoQjQIA1Fh9tIgARIgARIgARIgARIgARIgAQSRoAGacLQsmESIAESIAESIAESIAESIAESIIFQBGiQhqLDbSRAAiRAAiRAAiRAAiRAAiRAAgkjQIM0YWjZMAmQAAmQAAmQAAmQAAmQAAmQQCgCNEhD0eE2EiABEiABEiABEiABEiABEiCBhBGgQZowtGyYBEiABEiABEiABEiABEiABEggFAEapKHocBsJkAAJkAAJkAAJkAAJkAAJkEDCCNAgTRhaNkwCJEACJEACJEACJEACJEACJBCKAA3SUHS4jQRIgARIgARIgARIgARIgARIIGEEaJAmDC0bJgESIAESIAESIAESIAESIAESCEWABmkoOtxGAiRAAiRAAiRAAiRAAiRAAiSQMAI0SBOGlg2TAAmQAAmQAAmQAAmQAAmQAAmEIkCDNBQdbiMBEiABEiABEiABEiABEiABEkgYARqkCUPLhkmABEiABEiABEiABEiABEiABEIRoEEaig63kQAJkAAJkAAJkAAJkAAJkAAJJIwADdKEoWXDJEACJEACJEACJEACJEACJEACoQjQIA1Fh9tIgARIgARIgARIgARIgARIgAQSRoAGacLQsmESIAESIAESIAESIAESIAESIIFQBGiQhqLDbSRAAiRAAiRAAiRAAiRAAiRAAgkjQIM0YWjZMAmQAAmQAAmQAAmQAAmQAAmQQCgCNEhD0eE2EiABEiABEiABEiABEiABEiCBhBGgQZowtGyYBEiABEiABEiABEiABEiABEggFAEapKHocBsJkAAJkAAJkAAJkAAJkAAJkEDCCNAgTRhaNkwCJEACJEACJEACJEACJEACJBCKAA3SUHS4jQRIgARIgARIgARIgARIgARIIGEEaJAmDC0bJgESIAESIAESIAESIAESIAESCEWABmkoOtxGAiRAAiRAAiRAAiRAAiRAAiSQMAI0SBOGlg2TAAmQAAmQAAmQAAmQAAmQAAmEIkCDNBQdbiMBEiABEiABEiABEiABEiABEkgYARqkCUPLhkmABEiABEiABEiABEiABEiABEIRoEEaig63kQAJkAAJkAAJkAAJkAAJkAAJJIwADdKEoWXDJEACJEACJEACJEACJEACJEACoQjQIA1Fh9tIgARIgARIgARIgARIgARIgAQSRoAGacLQsmESIAESIAESIAESIAESIAESIIFQBGiQhqLDbSRAAiRAAiRAAiRAAiRAAiRAAgkjQIM0YWjZMAmQAAmQAAmQAAmQAAmQAAmQQCgCNEhD0eE2EiABEiABEiABEiABEiABEiCBhBGgQZowtGyYBEiABEiABEiABEiABEiABEggFAEapKHocBsJkAAJkAAJkAAJkAAJkAAJkEDCCNAgTRhaNkwCJEACJEACJEACJEACJEACJBCKAA3SUHS4jQRIgARIgARIgARIgARIgARIIGEEaJAmDC0bJgESIAESIAESIAESIAESIAESCEWABmkoOtxGAiRAAiRAAiRAAiRAAiRAAiSQMAI0SBOGlg2TAAmQAAmQAAmQAAmQAAmQAAmEIkCDNBQdbiMBEiABEiABEiABEiABEiABEkgYARqkCUPLhkmABEiABEiABEiABEiABEiABEIRoEEaig63kQAJkAAJkAAJkAAJkAAJkAAJJIwADdKEoWXDJEACJEACJEACJEACJEACJEACoQjQIA1Fh9tIgARIgARIgARIgARIgARIgAQSRoAGacLQsmESIAESIAESIAESIAESIAESIIFQBGiQhqLDbSRAAiRAAiRAAiRAAiRAAiRAAgkjQIM0YWjZMAmQAAmQAAmQAAmQAAmQAAmQQCgCNEhD0eE2EiABEiABEiABEiABEiABEiCBhBGgQZowtGyYBEiABEiABEiABEiABEiABEggFAEapKHocBsJkAAJkAAJkAAJkAAJkAAJkEDCCNAgTRhaNkwCJEACJEACJEACJEACJEACJBCKAA3SUHS4jQRIgARIgARIgARIgARIgARIIGEEaJAmDC0bJgESIAESIAESIAESIAESIAESCEWABmkoOtxGAiRAAiRAAiRAAiRAAiRAAiSQMAI0SBOGlg2TAAmQAAmQAAmQAAmQAAmQAAmEIkCDNBQdbiMBEiABEiABEiABEiABEiABEkgYARqkCUPLhkmABEiABEiABEiABEiABEiABEIRoEEaig63kQAJkAAJkAAJkAAJkAAJkAAJJIwADdKEoWXDJEACJEACJEACJEACJEACJEACoQjQIA1Fh9tIgARIgARIgARIgARIgARIgAQSRoAGacLQsmESIAESIAESIAESIAESIAESIIFQBP4/R6Publm0ZIMAAAAASUVORK5CYII=", "text/html": [ - "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "score_figure(df_eventteams_scores, 'performance', legend=True, scatter_opacity=0.5)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Participation figures" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Participation by team" + ] + }, + { + "cell_type": "code", + "execution_count": 85, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.plotly.v1+json": { + "config": { + "plotlyServerURL": "https://plot.ly" + }, + "data": [ + { + "branchvalues": "total", + "domain": { + "x": [ + 0, + 1 + ], + "y": [ + 0, + 1 + ] + }, + "hovertemplate": "labels=%{label}
sales=%{value}
parent=%{parent}
id=%{id}", + "ids": [ + "North/Tech/A", + "North/Tech/B", + "North/Finance/C", + "North/Finance/D", + "South/Tech/E", + "South/Tech/F", + "South/Finance/G", + "South/Finance/H", + "North/Finance", + "South/Finance", + "North/Other", + "South/Other", + "North/Tech", + "South/Tech", + "North", + "South" + ], + "labels": [ + "A", + "B", + "C", + "D", + "E", + "F", + "G", + "H", + "Finance", + "Finance", + "Other", + "Other", + "Tech", + "Tech", + "North", + "South" + ], + "name": "", + "parents": [ + "North/Tech", + "North/Tech", + "North/Finance", + "North/Finance", + "South/Tech", + "South/Tech", + "South/Finance", + "South/Finance", + "North", + "South", + "North", + "South", + "North", + "South", + "", + "" + ], + "type": "sunburst", + "values": [ + 1, + 3, + 2, + 4, + 2, + 2, + 1, + 4, + 6, + 5, + 1, + 1, + 4, + 4, + 11, + 10 + ] + } + ], + "layout": { + "autosize": true, + "legend": { + "tracegroupgap": 0 + }, + "margin": { + "t": 60 + }, + "template": { + "data": { + "bar": [ + { + "error_x": { + "color": "#2a3f5f" + }, + "error_y": { + "color": "#2a3f5f" + }, + "marker": { + "line": { + "color": "#E5ECF6", + "width": 0.5 + }, + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "bar" + } + ], + "barpolar": [ + { + "marker": { + "line": { + "color": "#E5ECF6", + "width": 0.5 + }, + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "barpolar" + } + ], + "carpet": [ + { + "aaxis": { + "endlinecolor": "#2a3f5f", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "#2a3f5f" + }, + "baxis": { + "endlinecolor": "#2a3f5f", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "#2a3f5f" + }, + "type": "carpet" + } + ], + "choropleth": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "choropleth" + } + ], + "contour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "contour" + } + ], + "contourcarpet": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "contourcarpet" + } + ], + "heatmap": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmap" + } + ], + "heatmapgl": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmapgl" + } + ], + "histogram": [ + { + "marker": { + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "histogram" + } + ], + "histogram2d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2d" + } + ], + "histogram2dcontour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2dcontour" + } + ], + "mesh3d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "mesh3d" + } + ], + "parcoords": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "parcoords" + } + ], + "pie": [ + { + "automargin": true, + "type": "pie" + } + ], + "scatter": [ + { + "fillpattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + }, + "type": "scatter" + } + ], + "scatter3d": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatter3d" + } + ], + "scattercarpet": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattercarpet" + } + ], + "scattergeo": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergeo" + } + ], + "scattergl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergl" + } + ], + "scattermapbox": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattermapbox" + } + ], + "scatterpolar": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolar" + } + ], + "scatterpolargl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolargl" + } + ], + "scatterternary": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterternary" + } + ], + "surface": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "surface" + } + ], + "table": [ + { + "cells": { + "fill": { + "color": "#EBF0F8" + }, + "line": { + "color": "white" + } + }, + "header": { + "fill": { + "color": "#C8D4E3" + }, + "line": { + "color": "white" + } + }, + "type": "table" + } + ] + }, + "layout": { + "annotationdefaults": { + "arrowcolor": "#2a3f5f", + "arrowhead": 0, + "arrowwidth": 1 + }, + "autotypenumbers": "strict", + "coloraxis": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "colorscale": { + "diverging": [ + [ + 0, + "#8e0152" + ], + [ + 0.1, + "#c51b7d" + ], + [ + 0.2, + "#de77ae" + ], + [ + 0.3, + "#f1b6da" + ], + [ + 0.4, + "#fde0ef" + ], + [ + 0.5, + "#f7f7f7" + ], + [ + 0.6, + "#e6f5d0" + ], + [ + 0.7, + "#b8e186" + ], + [ + 0.8, + "#7fbc41" + ], + [ + 0.9, + "#4d9221" + ], + [ + 1, + "#276419" + ] + ], + "sequential": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "sequentialminus": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ] + }, + "colorway": [ + "#636efa", + "#EF553B", + "#00cc96", + "#ab63fa", + "#FFA15A", + "#19d3f3", + "#FF6692", + "#B6E880", + "#FF97FF", + "#FECB52" + ], + "font": { + "color": "#2a3f5f" + }, + "geo": { + "bgcolor": "white", + "lakecolor": "white", + "landcolor": "#E5ECF6", + "showlakes": true, + "showland": true, + "subunitcolor": "white" + }, + "hoverlabel": { + "align": "left" + }, + "hovermode": "closest", + "mapbox": { + "style": "light" + }, + "paper_bgcolor": "white", + "plot_bgcolor": "#E5ECF6", + "polar": { + "angularaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "bgcolor": "#E5ECF6", + "radialaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + } + }, + "scene": { + "xaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + }, + "yaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + }, + "zaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + } + }, + "shapedefaults": { + "line": { + "color": "#2a3f5f" + } + }, + "ternary": { + "aaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "baxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "bgcolor": "#E5ECF6", + "caxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + } + }, + "title": { + "x": 0.05 + }, + "xaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "ticks": "", + "title": { + "standoff": 15 + }, + "zerolinecolor": "white", + "zerolinewidth": 2 + }, + "yaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "ticks": "", + "title": { + "standoff": 15 + }, + "zerolinecolor": "white", + "zerolinewidth": 2 + } + } + } + } + }, + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6QAAAFoCAYAAABACjY7AAAAAXNSR0IArs4c6QAAAERlWElmTU0AKgAAAAgAAYdpAAQAAAABAAAAGgAAAAAAA6ABAAMAAAABAAEAAKACAAQAAAABAAADpKADAAQAAAABAAABaAAAAAAsW5ObAABAAElEQVR4AeydB5wcZfnHn5ndvd7Se++FQAoh9BI6AiogICgoKqKA2BX9I11BioAoSFVAOgKh9xZIT0hI770nl+t3uzvz/z2zt7lLcpfc3c7szt79Hj6b3Z2ded93vjNh89unGTZMaCRAAiRAAiRAAiRAAiRAAiRAAiSQZAJmkufjdCRAAiRAAiRAAiRAAiRAAiRAAiTgEKAg5Y1AAiRAAiRAAiRAAiRAAiRAAiSQEgIUpCnBzklJgARIgARIgARIgARIgARIgAQoSHkPkAAJkAAJkAAJkAAJkAAJkAAJpIQABWlKsHNSEiABEiABEiABEiABEiABEiABClLeAyRAAiRAAiRAAiRAAiRAAiRAAikhQEGaEuyclARIgARIgARIgARIgARIgARIgIKU9wAJkAAJkAAJkAAJkAAJkAAJkEBKCFCQpgQ7JyUBEiABEiABEiABEiABEiABEqAg5T1AAiRAAiRAAiRAAiRAAiRAAiSQEgIUpCnBzklJgARIgARIgARIgARIgARIgAQoSHkPkAAJkAAJkAAJkAAJkAAJkAAJpIQABWlKsHNSEiABEiABEiABEiABEiABEiABClLeAyRAAiRAAiRAAiRAAiRAAiRAAikhQEGaEuyclARIgARIgARIgARIgARIgARIgIKU9wAJkAAJkAAJkAAJkAAJkAAJkEBKCFCQpgQ7JyUBEiABEiABEiABEiABEiABEqAg5T1AAiRAAiRAAiRAAiRAAiRAAiSQEgIUpCnBzklJgARIgARIgARIgARIgARIgAQoSHkPkAAJkAAJkAAJkAAJkAAJkAAJpIQABWlKsHNSEiABEiABEiABEiABEiABEiABClLeAyRAAiRAAiRAAiRAAiRAAiRAAikhQEGaEuyclARIgARIgARIgARIgARIgARIgIKU9wAJkAAJkAAJkAAJkAAJkAAJkEBKCFCQpgQ7JyUBEiABEiABEiABEiABEiABEqAg5T1AAiRAAiRAAiRAAiRAAiRAAiSQEgIUpCnBzklJgARIgARIgARIgARIgARIgAQoSHkPkAAJkAAJkAAJkAAJkAAJkAAJpIQABWlKsHNSEiABEiABEiABEiABEiABEiABClLeAyRAAiRAAiRAAiRAAiRAAiRAAikhQEGaEuyclARIgARIgARIgARIgARIgARIgIKU9wAJkAAJkAAJkAAJkAAJkAAJkEBKCFCQpgQ7JyUBEiABEiABEiABEiABEiABEqAg5T1AAiRAAiRAAiRAAiRAAiRAAiSQEgIUpCnBzklJgARIgARIgARIgARIgARIgAQoSHkPkAAJkAAJkAAJkAAJkAAJkAAJpIQABWlKsHNSEiABEiABEiABEiABEiABEiABClLeAyRAAiRAAiRAAiRAAiRAAiRAAikhQEGaEuyclARIgARIgARIgARIgARIgARIgIKU9wAJkAAJkAAJkAAJkAAJkAAJkEBKCFCQpgQ7JyUBEiABEiABEiABEiABEiABEqAg5T1AAiRAAiRAAiRAAiRAAiRAAiSQEgIUpCnBzklJgARIgARIgARIgARIgARIgAQoSHkPkAAJkAAJkAAJkAAJkAAJkAAJpIQABWlKsHNSEiABEiABEiABEiABEiABEiABClLeAyRAAiRAAiRAAiRAAiRAAiRAAikhQEGaEuyclARIgARIgARIgARIgARIgARIgIKU9wAJkAAJkAAJkAAJkAAJkAAJkEBKCFCQpgQ7JyUBEiABEiABEiABEiABEiABEqAg5T1AAiRAAiRAAiRAAiRAAiRAAiSQEgIUpCnBzklJgARIgARIgARIgARIgARIgAQoSHkPkAAJkAAJkAAJkAAJkAAJkAAJpIQABWlKsHNSEiABEiABEiABEiABEiABEiABClLeAyRAAiRAAiRAAiRAAiRAAiRAAikhQEGaEuyclARIgARIgARIgARIgARIgARIgIKU9wAJkAAJkAAJkAAJkAAJkAAJkEBKCFCQpgQ7JyUBEiABEiABEiABEiABEiABEqAg5T1AAiRAAiRAAiRAAiRAAiRAAiSQEgIUpCnBzklJgARIgARIgARIgARIgARIgASCREACJEACJEACbZ2AbYuEwyJ4kgB+qg0E8D4iUl1tY7sh1TW2VFXr+9h23TeKz3V/G/+ZhkgwYEgoFDs2M1MkO0skM0MkQx/YHgoZEo2KWJYtBg4IYg4Dx9FIgARIgARIoC0ToCBty1ef504CJEACbYxAJGo7ojAAQWhZIrtKbdm+Q2RnsUgJXpeU2VJWJlJZCcEJ8dg8U3nauJkQoNkQqvn5IgX5hhTkGdKhvUhRER4FhpgQwromFcP6oJEACZAACZBAWyBg2LC2cKI8RxIgARIggbZFQL/dohB4pmFLRaUhGzfbsn4jBOh2W4pLRCoq/MUjJ0eFqUjHjqZ072pL9y6GZGcbEoEnVj2v9Kb663pxNSRAAiRAAu4QoCB1hyNHIQESIAESSDGBWNit7YTGbt9hy8o1ImMPNuSN96KyclWKF9fC6bMQ9tsNwrRLZ5G+vQzp2CEmUINBhP1SobaQKg8jARIgARLwEwEKUj9dDa6FBEiABEigWQQ0rFaFaGWlLavWCkSoJRs2xvJBdaCJx5piYZ8PP4OrtBWYgbDent1F+vQ0ZGB/U1Swav4qQ3xbwcXlKZAACZBAGyVAQdpGLzxPmwRIgATSlYCGsBoIw9W8z0XLbFm9xpYdOxs+m6GDDRk1wpDn/tc6BOneZ9muXUycDhkU856qQA+xOsTemPieBEiABEjAxwT4teXji8OlkQAJkAAJxAhoLqiN6rSOCF1qy7KVseJDB+KzCXmjR01ovaVsd0KI79xpy5x5tmRliwzqZ8hBEOCFKJKkEb1aMZhGAiRAAiRAAn4mQEHq56vDtZEACZBAGydQUxOrPLtgsS3zF1tSDK9oc6x4l3pT1Xsosm17c45Mv32rUBl43gLbeWjl3uGDTRk2RD2msXY06XdGXDEJkAAJkEBbIEBB2hauMs+RBEiABNKIgIadaguUtettmQuBtXJVYsXgN2+xpX9fA4I0sXHSCKEj3D+fZjkVe8vQyiY/T6RXj5inmLWQ0ulKcq0kQAIk0PoJUJC2/mvMMyQBEiCBtCCguaGIypUv51ny1aKmheQ25cTWbbClN4oAIei3Kbu3mn0K0EKmR1eRh5+wJBwWyYMoPWQkQnqHm7FwXvY6bTXXmidCAiRAAulMgII0na8e104CJEACrYBADcRSdbUtM+fEwk3dPiXtPzpqRNtLphyGkN3NW+oqDpeViXw2xcYjClFqyNhDTMnMFMlAj1MaCZAACZAACaSKAAVpqshzXhIgARJo4wRUiFagXcv0mbYsQqEir2zjZngHc5FLCeGlnsK2YsNQYXjyNMQ/N2CxXNOoaHXew8aakp1tQ5i23uJPDSDgJhIgARIgAZ8QoCD1yYXgMkiABEigrRAIIzRXheg0FaJLvBOiu3liiq3IHx3Y35CFKI7UFqxv71iI8tJl+z/bxfghYPHSqAwaKHL4OFNyIdyDAQrT/VPjpyRAAiRAAm4SoCB1kybHIgESIAESaJSAeicjUVu+mIaKucgRTaat3xgr6tNWBOnwoYasXtt0wipcly6zZASOO3x8rCpvkDmmTQfIPUmABEiABFpMgIK0xeh4IAmQAAmQQFMIWOghqjbrS0umzUquEI3NLLJhky0TEJqaTAtA0GVniZTDG2xbyfM65uSI9O9jyOP/bThcd38M9IeC+YuicuhoU8aPNcTG5dLzoJEACZAACZCAVwQoSL0iy3FJgARIgAQkErFl+SqRyVMsKa9IHZBNEKQF+cmZv3MnkWOPNKV9kSGaJ5udLbJqtS0ffw4G5d6vYSjyQjeh1U1ZAnNNn21BmIocOcGUQQh1pij1/rpxBhIgARJoqwQoSNvqled5kwAJkICHBFSIlZba8sGnlmxCUaFUW0WlSBUq+fbqof1NvVtNIVqtnHNmAJVsLZm3EB5K23AEqRYOUkGcDEGqYbez5ibuiVZm734YE6YnHGVKfoGB/FLv2HFkEiABEiCBtknAsGFt89R51iRAAiRAAm4TiH+jTJ5myewv/fX1cspEUyrgpf30i9oYYrdPHuOdfEIsLPidD7ybY3/L7tkdazg+II8+1fxw3f2Nq5+Nh6gePyYWemwkLwL5QMvi5yRAAiRAAmlOgB7SNL+AXD4JkAAJ+IVABNVzN2+15d2PLHhH/bKqunWs32DLULRC8dI6d5SU5cnqeWkxo7U4Ty9s2kwLFXlFTjjGlK6d4S3lvyC8wMwxSYAESKDNEUhuhYc2h5cnTAIkQAKtn4B6RfXxObyiL03ypxjVq7AReZWF+d4K0rw8A7my3gjCA91JGRkigweYMgP5n17ZrhKR/71myWdTLeeaxz3iXs3HcUmABEiABFo/Af6+2fqvMc+QBEiABDwjoF7R7TtteQe5hsXFnk3jysDbt4uEINo0z1OFlRdWWmZLPkQpJLoXw+93TC1mtA3nuDMJ12HefFvWbYjKicea0qkDix7t98LwQxIgARIggf0SoId0v3j4IQmQAAmQQGMEokhTnD3Pluf+538xGj+HLQgp7t/XOy+pCsJ+aLnSoBneitQRwwxZhF6iybKdO0Wefxm5wrgHosmbNlmnx3lIgARIgASSRICCNEmgOQ0JkAAJtBYCGqZZUyPy5vtRmTI9vZSI5lf27N6IYHThAk2dYTmCdPTBhhhmTIDmoO2L5l127+rdvF27iORkGzLHheq6zcXwBUK1X3s76twTDOFtLj3uTwIkQAIkwJBd3gMkQAIkQAJNJhBGiO62bTbEaHJ6ajZ5YU3ccSP6kQ4b6N1vscW7RF5+PSrHHmHKhLFBR6RlZoqsXmt7Fiaspz5siCEbNnrrgd0f4jVrRZ56ISqnn4j+q+0QGh3yTnzvbx38jARIgARIIP0IUJCm3zXjikmABEggJQTC6C26aKktH32WXl7R+rA2bREpQA6pl7Zho8jTL1pOFVr1jpaj1YyGN3tlJnqDDh1oyEsoNpRKKysTeQ4hvMceacqwwSpKU7kazk0CJEACJJAuBLz7mThdCHCdJEACJEACBySgoZhfIDw3ncWonmQEonpnsS2DBnjvwdOCTyVof+OlGNVzUjG6q9SQzRDbfrCPJ1tOxWUrdQ5bP2DgGkiABEiABJpIgIK0iaC4GwmQAAm0VQIRePdefiMqX37VOhSGejD79PJekCbrftFiRkuX++vazEUV3jfesRwxzrzSZN0JnIcESIAE0pMABWl6XjeumgRIgAQ8J2AhArS8HFV0X47KuvWeT5e0CdYjj7Rjh6RN5+lEeh7tCg2ZPiu14boNneTK1bY8i3tHQ5YpShsixG0kQAIkQAJKgIKU9wEJkAAJkMA+BNQrun2HLc+gpYv272xNtnGzLQV5reOMhmsxI5yPX03vnWdeisrW7WgN42EerV/Pn+siARIgARI4MAEK0gMz4h4kQAIk0KYIqBjdvEW9W5ZUwLvV2qxU8zrhUOzSOf3PbOggU+Z+5T/vaH2ylZUiz+KHjQ3wTGuVZhoJkAAJkAAJ1CdAQVqfBl+TAAmQQBsnoIV41q235aVJltj+1jkJXSktANS/T3rnkQ5GMaPKKpE16xJCkZyD4cR9+XULa6WnNDnAOQsJkAAJpA8BCtL0uVZcKQmQAAl4SkDbuqxaY8ukt1qxEq0luBaiu1vX9BakI4Yasnxlel0rLXS0YrUWO/JvmLGnf8k4OAmQAAmQwD4EKEj3QcINJEACJND2CITDNoSCLW++l14Cp6VXahPyLgsL0leQFhWKdO1syBcz0k/YvfWeLStXe98Op6X3Bo8jARIgARJILgEK0uTy5mwkQAIk4DsCGqa7eq3IOx+0DTGqF2DzVpGcbJHsLN9djiYtaPgQU1RUp2tYtf7wsWqNJXrv0UiABEiABNo2AQrStn39efYkQAJtnIAjRpHX11Y8o/Uv95ZttgwckJ5e0qGDReYuSO8fEN541xYNnaYorX9X8jUJkAAJtD0CwbZ3yjxjEiABEiABJaBtOLTyqeb1uWXt2olcfF5gd99JzUvVvp8ffIyKvai26idbv1GkZzdD5s1Pr7DXfn0N0UrIy1f6iWbL1vLa25acfYYpPZDPGwi0bAweRQIkQAIkkN4EKEjT+/px9SRAAiTQIgJRy5btO0VeecM9MVp/IX9/KNZ0MhthsaefZMq40aZ88rk3c9WftzmvVYz379NwoFBOjkhBvj4MJ7Q3N8eQ3FyRrEyRTDwyQoYYhgpZ9bAidBZ/Wjg99fapCFfxXV5hS3l57HVJiS0lZXjtQhudkShmtHpNc87U3/u+guq753/TlE4dlKm/18rVkQAJkAAJuE+AgtR9phyRBEiABHxNwIZ6qig30IYjJhq9XKz2oCzepSJNJZu/bCMEaX6eLZ06inTrYuAZjw4xEWpCp5bVE5O7ymzZChG4s9iWKrRa0XYre/fUDOKYPIjY3GxDCgpE8vG6Q3tD+kPU5uVBzGZBuNqGqDjdtkNky1ZbNiAPdPv2pnPRcXr3NOSRJ72/dk1fVeJ7apuhi74VkDz8EEBRmjhPjkACJEAC6USAgjSdrhbXSgIkQAIuEIjCk/fKW1GprnZhsEaGOGgEvF34TIVZx/aYb6p/BGmXziLdEarbr7chJsJEv3aKKVu3of/qRltmzLZl4VLLed/IqSW0uUsnQwYhb3VgPwhVhN6OPcREYSVbNqIv6gbMr306N21ufIphgwzZBCGrorg1mXqVJ70ZlfO/EWDobmu6sDwXEiABEmgCAQrSJkDiLiRAAiTQWgggUhc5o1HZiXBdLy0efql5gVlZhowfk7qQ3WBIEJobE6C9exlOSO3mLbZ8Md2WPr1Egljj/Y8kx+O4GWJSH59NqaPfAYJ9HISpVs495QRDMjMMR5guXRFrxVO/ku5whOtOnemv0Oe6M0ns1XZ4jbW4loZ4q4eaRgIkQAIk0DYIUJC2jevMsyQBEiABR4hNnmo5LV68xvHBJ3WiSXMuL7kwIPMXS7PCUxNdY2+IzZFDTekHMar5skuWW/LCq1Gn32p87MPGmvINFNVJpakQexstd/Shpus98jBTDkXe7SkniKxcY8uiJbZo3q+BpS5aksrVejv3SvTC/WyKJYePNyXEf6F4C5ujkwAJkIBPCPB/9z65EFwGCZAACXhJQPMdFy+zZd6C5IfOamhwBQr8dGgHYbjd2/kLESI8ZLApI4aI1NSILISQe+y/EdmEkNiGbPkqzSP1VyUdFWUrV6vHNoocVBSFOjEgRxxmILTXFG1Vo3mkZSiQ1Frty69saVdoy7AhhgT5r5TWepl5XiRAAiSwmwD/V78bBV+QAAmQQOskoEWMtu+w5MNPvRWDDdHLyIBAHKgVag20mKnzmja0byLbevYQOXikKb26G7J4uS0PPxGVrxYe+Hy3QSBrC5XByOtcguP8Zuo9feK5WDixhvSeOtFw2uqsgGidv8iS9Rv8tmJ31vPRZEs6dTJFc25Z5MgdphyFBEiABPxKwLBhfl0c10UCJEACJJA4gRoUjHnq+WhSvGr1+5CqkFAv5bYdmq9poWhP4uey9wgD+2thIG3NYsjsuZZzniowm2PX/DiIIka2PPVCMw9sziQu7qtcv31OQEaPMpxKwHPmqUe19X2Vqyf4IvS0zUAOMI0ESIAESKD1EqAgbb3XlmdGAiRAAk5fzLfej0KwtC4YffuIHIpCQCpEJ0+z5MVJLReTJx1nyhHIWbzhdsQ1p5l9/QyE8x5qomKyLbMgTFesbF3CVPNpTzvRZOXdNLsvuVwSIAESaA4BCtLm0OK+JEACJJBGBDRv9CvkjGqRmNZi2rJFCxEVFYpTJVeLFCVqWoH36suDcs21cCWnqZ1xckCOOcKQ0lJxqvBu2ZqmJ9LAso+cYMrBaCOkFZtpJEACJEACrY8Ac0hb3zXlGZEACZCAaDKGhsq2FjGalSUyYZwpg5GPOnWGJTfdkbgQjd8mmo+Zk42eqfkiJRB06Wivo5XP6++IXPytgHz99IBosabP4TmurEzHs9lzzZPxg0qPbqZ07sh80j3J8B0JkAAJtA4Cqa113zoY8ixIgARIwJcE3v+4dXhGDx5pyCUXBNAv1JY/3ByW/zzrnhiNX7h1G20nbDf+Pl2fn0QBpF9dFxYN3P3Ot1BteJi/Kgi3lOu7H1ksbtRSeDyOBEiABHxOgCG7Pr9AXB4JkAAJNJeAhup+Ae+Yts9IZ9OiNicda6JCr8gLr1gydZZ3Avu8swPSp5chd/w9/fJIG7vGY0aZcs5ZpuMl/fQLS4p3NbZnemw/5CDDCdfWys00EiABEiCB1kOAHtLWcy15JiRAAiTghOpqr8p0F6Mjhxvy3fMDsmW7yK//FPFUjOpts2S5hRYjresGmoWqw3+4OSLrN9lOtdoRQ9PbW6rVhLUaMnsDtK77lGdDAiRAAhSkvAdIgARIoJUReB/hjelqBr6VTjrelEMQpvsQeon+45HkeCyXozptfl56C7bGrvljT0Xln49G0afVkBOOSe+Kte99kr73dmPXh9tJgARIoK0ToCBt63cAz58ESKDVENBQXQ3N3FWSnqfUvav2nTTFNG3HKzpjdvLER1m5SGmZLePQSqY12ux5lvz2BhX3tlyIHqZdu6TnWZbg3v4CRa2i7qcRpycQrpoESIAEWgGB1vnN2wouDE+BBEiABJpLoKQkfUN1hyOc9BtfC8iU6bbcfm9q1MbSFbaMHtU6vaTxe+nuf0ZlOnJxv3lmQEahlUo62szZNqohp3d+dDpy55pJgARIwCsCFKRekeW4JEACJJBEAuox+uTz5HkU3Ty1CYeaTksXDdF9cVJqxKiez4LFtvTtnZ4irTnX47lXNIQ3ImMONuRwsE9H++gzSyLJieZORzxcMwmQAAmkFYH0/CZKK8RcLAmQAAl4S8CCDl2GHMh1G7ydx4vRTznBlL69RG6+M+x47ryYo6ljah5pQX7yBem5qPDbs3ty59UCQTfdEZGePWI5u01l5Jf99F5fgV6rDN31yxXhOkiABEig5QTY9qXl7HgkCZAACfiCgArSx/8blfIKXyynSYvQ4kVnn2Y6FVNv/Kt/XF333x6Sv9wTkbXrkxMSejIKOH3t5IDTN/Sp56MyzcPWNo1dmGt/EXLydt94x5vczG+fa0qH9obofVpZJbKz2JZ5C2xZhhDpREzbAV16oeYcJ1fMJ7JmHksCJEACJLAvAXpI92XCLSRAAiSQNgRqwiIz5lhpJUZDIZFz0R+zolLET2JUL/rqdbbT6zIZN8DQwYZ8E3mz/0D47N3/jDhMtB+qmeRv5lvvCks5ijp9/QxTsrK9OfM337PkflRMfubFqCxcYssJR5tyEFr7JGK65ulzhKG7iUDksSRAAiTgAwJJ/trzwRlzCSRAAiTQighEo7ZMnZmYpymZOHIgeM6BGN2+Q+Sv9/nHMxpnMH+RJUMHJSaU4mPt71k9hj++NCiTp1qyaKktq9YghPbOiPTrY8jllwb2d6gnn6kg3rxV5KxTTdFr5InZhvMjxCII0lffisqxR5qSBy9nIjYNFXfD4fS5/xM5Vx5LAiRAAq2VAAVpa72yPC8SIIFWT0DbvHw+Df8YT5N/j2dmCirpmrJhozgeQT9eIA0jbd/OW0GqHuKfXBaQNfDGjhllymknxr6KS0tF7vh7RCa9ZcmAfoYMHujtOvbmf//DEVmPa3P6yaboGr20TZsFlXIF7WcSP8cvUJmZuaReXi2OTQIkQALeEqAg9ZYvRycBEiABzwhoyOuCRemhRlXgfO0UEyGxIvc95D/PaPwixQobiQSD8S3uP3/3/ICoDFMOt9wVkfFjTLniewFRwa55lus22NINQm30Qcn/iv4Hwmo3b7HlLOT3em3Fu2xpV5T4LPPxd6AijfKnEz9jjkACJEACrYuA9984rYsXz4YESIAEfEEgjNxRDVdMFzv9JFN27RJRL5yfLYKuMxs323L0BG++Hk88VnMnTfnHI1GEmops22HLrXdHZOt2Ea3NY+ChglWrJj/7v9S0wPn7w1EpLYvllHp5rYoKDSd02405pszU0F03RuIYJEACJEACySbgzTduss+C85EACZBAGyNQXmE7uYfpcNra2iWCXNc7/+FvMRpnuRg5naNGJB5KGh+v/rNW733gsYgjROPbVUi98GrUqUB79mkBGTTAgHhPredb83utqCEnHufNPxO6dRUnf1TFvxumean6d4JGAiRAAiSQfgS8+aZJPw5cMQmQAAmkDQGtrKvepTNRgMaNkEcvT/zow00nJ/PWu1Lj7WvJuWmRoe5dvRGki5c1/kOChuhOPMaEFzkmTjVs99yzkl/gKM7sJvSG1fvs8PHusDBM2ymYNGyIIWeg1c37n1hSibBzt2zKDJteUrdgchwSIAESSCIBD7NkkngWnIoESIAE2hCBavRyfOalqFMQ56LzArIOXrcvpltOlVQ/YRgx1HC8fTfcll6xlMtX2ZKf544Ia+r1UPH5/YsC8siTUdmEHM7sLJErfxBwigtVVJpOJeXtCO9Ntv39obD89mchKS215KuFLZ9fCzdZlilVuHd3oA/pB59asgJhyW7a0uW2HHmYeF6Qyc01cywSIAESIAGkq9gwgiABEiABEkgPAlpZV1uFzJsf+193Xp44wlR7Omr441Tk0q3fkPpz6YqQzHPODMg/H43K7Lnpk+saJ3f3LSGIw0hCIiw+1oGeVXz+4ZdBmT7LllfejDp5pFf+IPZ78aS3ozJymCEnHx9werZu2578r+xDUAn4CrSieek1iGVUx/WzKatjjjAlkDrHsp/xcG0kQAIk4EsCDNn15WXhokiABEigYQL6E2JcjOoeZSg+88nnljz6VEwsaB/Jc79uop9lw8cnY6uKgZOQe/ghQjLTUYwqo+WrLBl7cHK+Ijt2METbzWhvTrUzTw1I184iDz8RcfqTvva2JZ9+YcmpyMVNhc3BDwpvvWfJxGMDYvpc6KkXVysV00iABEiABNKHQGq+3dKHD1dKAiRAAr4hoL0Wv/yq4X9tay7e59MsiBhLVq+1IQgDcsE3tUBO8pd//NGmbN0m8jTCitPVtJWI9gJNhmmho8efjor+2HDISNMR81rpthLhrWpaeXdQf0OWQrSmyv73hv7gYTs5rqlaQ1PnVVHK2K+m0uJ+JEACJJB6AhSkqb8GXAEJkAAJNImAChMVSvszrdg6faYtDyMXcclyywlfvPBcU4ajkEwyTPNGu3QSue2e9Kio2xgT7UdaWJAcZvXXMGSQ4Xi761efPQse05wckZlfxn6MGDrYkGt+HHR6ldY/1uvXd6FKcpfOhug19rPNXWBRkPr5AnFtJEACJLAXAQrSvYDwLQmQAAn4lcCadTaKyzRtdRack7O+tOUReEznw2M0fqwhF59nysEjvRMTBQUiRyN/75n/NezFbdrKm7fX2ENMR6w176gD762sMzNEOrY/8L5u7qG9R+uHOR+Cyrvau1Q9ppFajb9qtS3zILp+dWVQRiO/M5n23MtROfZIQ4qKkjlr8+YqKRFZt3H/P9w0b0TuTQIkQAIk4CUBVtn1ki7HJgESIAGXCFTXSIsL7MxFASR9DIdna+zBBkSpCU+rJTPnuPuP9mMhRufMsyGE9xWkP/5eQMZBPDZkCxbbot63ltjFqDJ81z9sqfCgB6WG0h4+3pRJb+17Pi1Za3OP6Qpv5GWovBvLD7ZFPaNDBprIN7WclinK7bc/C8pKCNTiJPUtnT7LcopoHYN2Pq++mRouTeGo92DXTgHJwI8KNBIgARIgAX8ToCD19/Xh6kiABEjAIRCN2o7wSATHAoT76kPDQrVgz8hhsZ6YU9G/MVFTsVsID+nNdzYsLB/6TxT5rbGcUu2tqZVln3gu9t6v+X4LlkDED0mdIK2ssuVZeCRnz7NkQF8DbWCC8vFkCx7TAAofiTyGQla6jxZAKt6V6BVs+vEPPh6RP/9fUEagoq163/1oa9eJaEVqClI/Xh2uiQRIgAT2JEBBuicPviMBEiAB3xHQYkbzF7m3rMVLbVm8NCoDUbRnzCEGPKemLFlmyeQpLRMX2dkI1Z1gyhPPxwRmQyvVc4ibVkG1MFU8BDW+fRg8gOedHZDOndDCZpPtCFYNnVVTsXv+NwKOhzActmUGwpFfeCU26FAI7EsuCEi7IsPpx6rtSdyotLoUTI46LHVlZXch9PSzKTEv5KgRpkyfbcnzted8EMTg738elLJye3exI922Bl5dPc5rewXe0Yu/FZDlK6NOb1Gv52vJ+Avxg8KYUYaYDTvmWzIkjyEBEiABEvCAAP837QFUDkkCJEACbhJQSbZwsfvhkctQuOc55Ht++GkU4Y0ID73YRH5g878WjkRY6ypU9v0CVX5bal0w/+WXBp0w0F9fF3YK+GgfUzUt5nTVD4POs4b23v9IVLIy62Y6aLgpmtt4z4MROXS04Vp13OWrbMnL2zfnVgVOLooMdWhvSK8esYe+zkdPWK9MvaSjkU/at3dsPSrotb3OA49FRcV+756GXHFZUE47MSCdOu67ZrfXNWWG5bSqOWxs8+8Xt9fS2HiLllrODx+Nfc7tJEACJEAC/iBAD6k/rgNXQQIkQAKNEti501uv16rVIqtWW9KzhzihvD+8JCArIFY/+AzVSg+gMTujoq62R/nF/6G8bwKmxZAWQHRrddmCfMPJeT3jJMMJ7e3WxZA+vQz52wMReARjkzxZG+6r79RrqPmeavMQQjp8sClLl9dzyTqfNP8PbbuiXtxvfM10Ku72xRraFRqSmxvbrp9FMI2GHAfxbaoCMYTnCrTg2brNds5l6XLb8VquWhNbX/NXETtCj38GbXTUE6ymvUv/80xU1m2AaMZ6fnpZwPGmVmHNv74yIB+jN+3r7xzg4sWGbvGfjzwZkVv/LySLlwlawrR4GM8O3LlTUATMdjznnk3CgUmABEiABBImQEGaMEIOQAIkQALeEQhHkPeJ0MNk2Lr1qE663pJuXWPC9EffDchKCCHNW6yubngFh40zZcbsxMM2O6Gabc/uhnwHYaBx036qGoar4ktDeONiNP55Q8+6zizkp7bUVFRqfu1YhDKPQCizeh+PONSUFSgcpH1eVRgqE22v05Cp97RfH0P6wZM5eIAhJx5nOgJbx124JFZIatZcq9HjGxozvk29kvr47vkBmY+CRhrCq/OpZ1nX998XYiL8g09FbvlDCPvasn2Hd/dOaRlaDGENh45OXZ5tnE1jzxrqfvihsR8LGtuH20mABEiABFJLgII0tfw5OwmQAAnsl4BpGk5V1f3u5PKHGzeJvLbJkk7wfo5BW5HvXWTKmrUin3xhSRlESNz69hFpD8F48x2Je+JKMO5sVOh94dV9PZsF+eKEoar3UQvVeGGaT3v80RCiEKMq4jScWcODVyBstzmmuavaw1Qf731cd6SG9p460ZRzzgLPbwdkGoTc5KkWcnmbN76O+BSEp3pl1bRAlIYK3/dQHbdgMBay60Xl4disdX+ql/bOm0OOCNdqv34zDds9Yjx+DaCRAAmQAAn4lgAFqW8vDRdGAiRAArHQz4qK1JDYulXk7fctad8OwhRC7bsXmKLVS1VI7UA4pLZx+Qyv3TDtvfmjS4LO2Bq2q3mj2mNzEbyK6pXUUFT1Nr77YSwvUOeehhYkiZr2MVWh2Bl5l1rY6c9/i4h6Zt02DSnWSsNqmu/59dMDciVyPrdut53Q2pkNtMppbA3qtVXTvNXxYwy57Z6o1KAtkJp6TL+PVjFTZlqowBvbpizjAja2xd0/J6Pw0jh4lP0oSCsRPr0dIe+d4GWnkQAJkAAJ+JMABak/rwtXRQIkQALIX0Q13GXui6PmolXx+d5HFgRgzGN6EXp/bt+hYZC2vDSpzjPX3HHr7689NSe9FXX6aqpnr7DAkC3Iw1RBWoUw3AfQakQ9i6ecEPN2qfhJRJAOGWjIBd8MIJwWYaezbLmlkXY19dfo1mutHHzvv2Ku3m+fG4DQD8gZJ5vyIljOR1ueppp6cn9/U2SP8F/1mGrBJc2rzUQPTh3/0DGms88Hn1oOYzcqENdfo1Y1njAuKAP7qze/6euvP4aXrxch5L3doYaT5+vlPBybBEiABEigZQQMG9ayQ3kUCZAACZCAlwQ0f/SZlywpLm76LBPwD2/N6Xv/YwtFgrz537sW0TkdAmr6bFteft0dQRo/Q/XmqRitrrZ3e/jin+lzPgRkGN5AFaktMV27to85BBVrNSf06RfdXX9L1qTHXHphAHmrpny10JKn0D6nKfmye881HhVvL4IAvemOiBN2/OurgpIHcfrwk1Gn4JKKXs37/PfT7p/zmacE5LCxBoRw4l7rvc8r0fdFhSIXgkuQkbuJouTxJEACJOAJAf/Wa/fkdDkoCZAACaQPgcpKo1liVM9s8ABUmIWXajA8gF6Z/gM/B71H3Rajul79ibR4V8NiVD8vLW25GD0cxYn+8qeQdO1syFW/DftGjOp5PQ6RqGvqiDDcv1wXQihu87+ee6Eo1L/+HZFtCAPW4zVv9da7I6IeWfUoP/h4VEYMMZxrp3O6aZPejor2o+3Z3c1R3RmreJdIZaU3P864s0KOQgIkQAJtm0Dzv/HaNi+ePQmQAAkkhYAKs+a2CunaBWG0+L/6J2j50aMbhAe8Y16Y5pPOnpte/8C/8JyAE6Kr4aW33OVRZSQXYOvaXnsnKhej2rBW022O1Q/5HYTw2amoyFvfk6yVgW+9O+q0pdFCSBrS66bNQa/Ug0b4858Vq9bixw43T5ZjkQAJkAAJuEbAn98crp0eByIBEiCB9CRQE7YhSJsX/jh4oClLVliiRZA2oE2Kth1x24qKRLpD7D5Rrw+o23O4OZ6G6P726qCMGmHI9beF5YNPmsfUzbU0day3UEjqDzeHnaJO1/486IQwN/XY+H5aLKkXiiftbRq2+vtrgnL9b0NOdVzNMdVCSG7Yf1/UXrbo1YoiWH6z5assJyfbb+viekiABEiABFCQjxBIgARIgAT8RyAjZKDaa9PXZZgQoPCKLVke8wPpsxbucdtGDDGdKrTpUH2gEyrn/vGXsdp9v78xIjubkYvrNrfmjqe5nj//Q1giSPf8/TUB6dKpeddSveQZIZELkC+rIcraBzUb/Vl/c3XAeb72prD86v/CUlQQax3T3PU1tL9W/12OH0SGDvLfPy02bBAJ1bbDaWjt3EYCJEACJJA6Av771kgdC85MAiRAAr4hsBUVZptjmi+Ykak5pIYcOcFwREhniBjN93TThg4WVGr1v5exJ/Ip1bu4Ei1jbrvXvyG6B7o2t2Pteg5/gLDu36fpolRbvuixEVyqyy4OOOHbJx4XkE1bRGZ+acvVlwclhJDd19+15JCRTR/3QOt972MbgtS98Q40X1M/V7Gs7V9oJEACJEAC/iNAQeq/a8IVkQAJtHEC6n1UEdIcG4Jw3XXodal5gvooLbOdHpduFjfqC0FUjeq28xf5W5Bq/uyvfhp01qmFfNLd9Bzmzrfkmh8HpQu8nU01FaUvoP2L5qVqMaie3URmod/rK29GnX6uv74yKCcfbzoitaljHmi/eQssKUfbHr1X/GZa2CkdPPt+48b1kAAJkIDXBChIvSbM8UmABEigmQSqa2ynB2dTDwsgKrV/X0MmT0Wv0Jnoz1n7mDNPw3bd+9/8cFRo/aoZfTKbun4399O2MFf+ICDLVlry8BPpL0bjbPRcFqAn6y+uCEg75PG2xFattWVgv5hQnPOVJf94JOoUv9JCT27aAtwjA3A/+s3WbcAPNunrLPcbTq6HBEiABFwj4N6/VFxbEgciARIggbZNQPNHN2xqOgMN5SyDR3T7jj2PWbHKFq2m2rnTnttb8k5zEPv2MuTtD9wVLy1Zy/6O+cn3grITbT7+/rC/17m/c2jsswceizrX+EeXxPJiG9uvse0ffmpJty6GXPjNgGixp01bbLnh9oioUHPTPvg0KkMQthts2TLdXMoeY2m4MnuR7oGEb0iABEjAFwQoSH1xGbgIEiABEqgjoCGPNQiNbaotRQGjp57fN4y2pkYcL9iWrU0dqfH9+vQ2kIMHEbO58X1S/cklF0BoQYBr7mRrtdvvi6Dqrsh30BamuaYtYO68PyImDtV+rGMPMT0JYd2Ie2QH7pXeDVT5be6a3dw/jL8PGsZMIwESIAES8BcBClJ/XQ+uhgRIgARk6zb/QdAQzPkL9xW9flnphHGm0yblVh/3GHWL1Z/vjsiho005bGzzv8IrKgU/XkTll38My8w53l3PBYstGeRB26FEGWo7HBoJkAAJkIC/CDT/28xf6+dqSIAESKBVEdBqoG6HULoBSMN1P53inYBJZI1ZaGdy0XkBeev9aJvwgGlLmElvR0V7iObmtIxcNbyFXpq2nenjMw+pnu/GjSxs5OV159gkQAIk0BICFKQtocZjSIAESMAjAipI/ebF6YQc1DDWtWadP71LmhO5abMNQepPwezFrfLuR5aTA6qi1I+2GgWUNDy2Oyr7+sn07xYLG/npinAtJEACJCBCQcq7gARIgAR8RMDE/5WLUZTHT9avjylbtvpTjI4cZsRCdRHG6mdT4ZgNT66bpqG7I4eZ6CPqz6/y9RtRRKmrv6rtbkPhL/07RiMBEiABEvAPAf5v2T/XgishARIgAbHg5Kuo8BeIPj3Qv/JLfwrSr58ekC+mW54U52npVdD8zqGD9xRihx9qSlHhnttaOn7946bNsuSs0/z5Vb5oiUgPnwnS8nIR2/LnvVz/uvI1CZAACbQlAv78FmtLV4DnSgIkQAL1CGRkiJxzlinHHGnKCHj/enQXyWlhnmC9YVv80oCG6tjRkCnT/ddGRT2D7dsZ8vSLLV+b9m89aPieQnFgf0O+dkrLvx615cnQvfq/lpfbTqsVXe/Yg02nHU+LL0q9A7VAUbuimJe43mZfvJwxJ4qQ3T3Z+mFhxSV+WAXXQAIkQAIkECfgsy5h8WXxmQRIgATaLoHu8Cp17yoSiRgSjdpOiKFpotcoRM3OYuSYbrNlB56Ld+E9wnu1nYVX1qG9SDVyAXeVejVDy8c981RTZsxOLG/0iu9rYSDDqTw7eWpsLC0UNGqEKa+9vefY2sMyspf21WsVQbSwbh99kOFck4H9DCc8d9iQoHNt7kCrlTJ45k49MQCPoTg9Zi+7OCB/ezAiS5Yl7q37fBq8pGAxe+6e6205WXeO3Lpdvf226D20d49cd2Zo2SjF+LvTqUPLjuVRJEACJEAC7hOgIHWfKUckARIgAVcIBPF/6GCwzsNUWGA4PSj7oOJtOIzQQ8yiIkkLIZWU2c4/+rVoi+agOmIV//B2dkpgNZ06QGT5UIwOGWhA6Bhy0x2J5Y5qCOcXEHTnnR2QL7+yHOGo4jGvnlda+35+/6KgDIDQ1PzD9z+25MVJMWU68RjT8QIW5ousXGPLvAWx545Y25PPRZ0fERR/OcKw1Ut67c1RJyz71Inwgh9uQpDupXBbcK2efyUq9/w5JOqZXbw0cYHbgiU0eojmbHbtjB62O/yzrh3FWmnXEPX+00iABEiABFJPgII09deAKyABEiCBZhHQf0hraG/cAhClKoA6whM1oB8EKjSagZ1CIcOpdLqrxEblXpEdEAU74VVVwVqG1iFNsZ49DFm9xl+eN133EeNNWbo88XUpB22zo2L0/G8E5JEnoxCOEKS5dWrlsouDsmOnLb++LuKEx171w4DMmmvIytW2lEFo6vW44faIxFupGIYpncYbsrleISj1bm/YZDtiVNevFYuPmtDysGAdo74tX2nJ0Rhv8dLEBW79cRN9vR5tVjoh5DvhX0YSXUi940vwA4v+iKM/+NBIgARIgARST4D/O079NeAKSIAESMA1AsGA4XhN4wPmZCMHNduQbl0Q2lsbAqz7QDNBlMZCgLfBq6qhv8XwHOlzdXX8aBW66kH0j3dLV6YC/LBxptxyZ2LeUR2rDCGlubkiz70clZuvDcnwIZYjFrPBTb2hmRD+w4cYEJyxHqeVEJVfTLflOOT4rlwND2gtw7gYdcaE+NQx65sKXw0Njpv2Eq0veuPbW/r8/CuW3PC7oBN6rO1W/GLLV9py+ol15+2HdZWU4ocBf93SfsDCNZAACZBAyghQkKYMPScmARIggeQSCOH/+KEDhADrPpoTqV7V7TtF8vMNqaqypTO8XFuQu+oH06JAKirWrk98PU54LryhGlL7LETpxecFHG+nnqfmkkqtlqofcqreTa2aq7a3N1W3qdjMz9NXdaae1Pbt6r2HF1Z/LFDvqp34achG9GEtxjXT3NepMxP3HNetNLFXy1ZYOG/8guAjK4WHNOCec9pHZ8alkAAJkEB6EqAgTc/rxlWTAAmQgGsE9g4B1nBgDbPs1DEW2nj2GQEpQv5qZmYsF1IFl3pVN22xHW/iitUWCi25tpwDDjR+jCGLlrig4jCTU/221nM5ZYblhAKffnJAKipjHk09x2Xw8o0Yasr02gJKPbrVFXlSD2veXt5QFaxqo0YYCPVVgYrQXnhNe/es8xTqe/XAqifWrTY/mj867hADgtSZ3hd/bN4aE9x5EOhNDRP3euF6/7IXqdeUOT4JkAAJNJ0ABWnTWXFPEiABEmhzBFQ4vfhqzOOmQrWoUB+G86xFfsYdYkpBQUAs5OSpF7AEXrotyJ1cv0mc3NNlq+w9QoDdADh0sCl3onKtG6YeUq0CG7cnUIjoul8HHcGiIkq2iHz0mSVnog2MejI17/D4o015DiGyanq840l13sX+0F6yT79kyUnHBZxqu/95NioauqrViuOmRak077Sq3rb4Zy191nVefbl+rfsrj1TvIT8JUuWr/OvnYbeUOY8jARIgARJInAAFaeIMOQIJkAAJtFoCWgAmbjVoL7MFHi8VnDGLPyMfEuKtCNVoi9ATsx1E67jRhpx4bNAJXa2otJ0wVm23oaGla1HoZiWEaktCbnuhyJKKCS0o5IbFQ3bjY2lLnTfejco5ZwZ2V9qdNsuSAlTRVSGq4czP/s/a7S3Voj0PPL6vAJw5xxJ91Le45zS+rSXnHz+2oeflYIruQGgZZDgFlBraJxXbSkoNyUMes58KG1XX2BCkdR7rVHDhnCRAAiRAAjECFKS8E0iABEiABBolUFzS6Ed7fKDhmPGKtbEPYoLRRPpgXKjqczeIJS0SVAgvq7asUa9qKfJBt6EKsFahVdG2fJXlVALeY4LaNwP7G07+aEOftWTbCoi4aHRP4fj2B5Z8PNlyKhTrmOrxfOdDy3nsPYcWgNIx/GKa+zsIjJSlX2xXqSX5uPZ+Mi1Chd8YaCRAAiRAAj4gQEHqg4vAJZAACZCAHwloiKpW3k3ENJRX8yi1bUrM4s8iWVka/qsP9aoaMmywIYejXUphfgBeUG2pgh6oaFOzGXmc6olchT6ffZCHqW1a3DJtzVK/PYuOqwJUc0jT0dZDiPbtbcjHn/tn9VqAKi9Hqwi5d90SPTv1stNIgARIgAT8QYCC1B/XgasgARIgAd8R0PDU+i1g3F6g5k9u0gfCePcWKwUa/hsXqwgDPqKXIaefhNBPFBB6/pV9Q2TdXlu6jrcIhY2OOdxfJWTVc96pg7+I1m/T46+VcTUkQAIk0PYIUJC2vWvOMyYBEiCBJhFQD2mq/uFeglBhfaxZu6dYvezigMyY4x9PW5NAJnGndWiF06Gdv3Ijq6oNp3dsEjEccKqaer12D7gzdyABEiABEvCUgL9+RvX0VDk4CZAACZBAcwlo8Rc/WQ56g2oYL61hAktX2KKM/GTlaI2TiQrNfrKwO0Wa/XRKXAsJkAAJpC0BCtK0vXRcOAmQAAl4T6B+yG77diJHTTBk4rGmDEW+pxgxYdgO23Pr9eL8GlqkeGHaB1Vz/6KM2N0v3howyteWNT6xchSu8luLFeaQ+uTm4DJIgARIAAS8+VcD0ZIACZAACbQCAnWeSO3VecbJpuxA65b5iyzp38eQY45AmVyYVnXt2rkuTFRbpDhWK1hr3zW+bY8dGn+joiZCMdo4oNpPVLD7qaWJ/qiREaq7Pw54AknYIRKtu7eTMB2nIAESIAES2A8B5pDuBw4/IgESIIG2TKD+P9lHjzJl7nxbFiyKbX3nI0t+8B3kc84WGTLQEO1RqlVytYengZ86TzredHp3ap/Pt9+PtVUZe4ghHTuYTj7hnHmWbNgo8s0zTadFSV8ULXoXY27f0ThxDfsMYx4/2OABhmgLmm5dDGnvs5xNE9rvu+cHpMoneZIF8NYapi3jx/pHlObm+GctfrifuQYSIAESSCUBCtJU0ufcJEACJJAmBNoVicz6sk6iRhAWqu1YtOrt4mW2IySXr9TP8Q99PH02BX080TrltBNNp1quCZGqIbcqTvV54jEQohstyc4W9B21Zcr0urH3iySJOqJzR8MJTVZvcI8ulnTKr5bsLFsCWLRdWS7RzRvFWrtcrPVQ0X5RyoCX0e08GVwyW2yfVO4xqjMl2GO8HDYWfX5oJEACJEACJLAXAQrSvYDwLQmQAAmQQIxAfe2nYZeFBUa9fqKx9w154bQ6r4pRNe3nqfmlnTrEwnpPOj42quYVqtlwnm7dGnt9oD+14m8odKC9mvd5EN+CI4eqt9OUXj1EurWrlvzsqASzMBFOxNq2BYJzlUSnL5XoxrVSgYeFh11ZewLNmy4pe2edcb6EZ00Wexfiq31gZufuEjx4vA9WwiWQAAmQAAn4kQAFqR+vCtdEAiRAAr4gUCdJV62xZcggQ1avg0hDjmJPiLdw2JaSUhvPhqiw25+t32hLLqq/Tp4a84QGWyAsNSw4GEtb3d9UDX7Wt7fhhBZraHCPzhFpl1sjmVkBMeGutXZsk+gmCM1lyyS6bqVUb1znCE+7eHuDY/l9o62qvRoNXv1kdbeSn1bFtZAACZAACfiAwAH+CeGDFXIJJEACJEACKSOg4bVq8xZa0r59QC5BbmJJmS1Z2P7WB3Bv2oasXG3LiceZMqCvIW+933DVoa3bRAYPEGc/PVbbbsRzS2MzHPhP9dKq1jIgbtQLu7cVFWoea2wdPbvZ0qWgSnIQEhzIyRKrvEyszRsQYrtConMhPOHlLIPwtDat23uYtH9vhDLErvKPIDWyEKrbwPVKe9A8ARIgARIgAVcIUJC6gpGDkAAJkEDrJJCZoa4tG6G1hnz0qSWfwEOZAVFYX+8U7xJ54dWohIKGWNjvvy/EihgpkY8n171W76hhWs5+6u1Uq79vbMv+/9QQYC2eNGiAKb17ivRoXy0FOZhbQ2yxVGvrRokixNaasRjPa6QCns8ohKfvPIb7P80WfxoYOFzs8tImHR+Fqp+8eacsK6mQ9pkhObZre2mHZ9ctk7mjrjPlgCRAAiTQighQkLaii8lTIQESIAE3CagnUivb1jcN161qyAkKT2lTejuqsI2L0frj7v26ezdDundF7ikKC7XLj0h+qEaCGaaYKCj0iysCEl4wR6xVSyT6yQqp2bBGKjWvs8QfOZN7n0sy3wd69BarBL8QNMEeXrxOdqJp6XHd2suG8mq5duYSuWHMIOmclSGfQ6gOK8pzBGrYwg8Rm3bKxO4dmjDqvrsYWXBTa+llGgmQAAmQAAk0QICCtAEo3EQCJEACJIB8TXxDxEN2veChIbY9IDy7oIdp+yJbCjOrIIBRxRYhnnYVqthu2RQLsV29VMIb1koVRGfmaeeK2a6jlN9xrRdLSvsxA4PgId28/oDnsa2qRj7dvEMeOmqkZAfg9u7k+MHl7XVb5azeXeTlNVtkKASp2oaKapm1vSQhQWqE+M+NA14U7kACJEACbZQAvyHa6IXnaZMACZDAgQioh7SoKBaye6B9G/tcRW2vHrF+nR3grQw1NgAAPVlJREFUYGufUyPZGWF4OxEaioaZ1vatYsHDGV2wBNVsV9dVsUXOZ0NmrVslweGHNPQRt4FAsP9Qia5YfEAWC4vL5YjO7WJitHbvrtmZMnVrsWxHOeMNFVXywKI1MrQwT7rlZEpRRlA+3rTDeT24AGWTm2Fme6hdekibQYy7kgAJkEDbIkBB2rauN8+WBEiABJpFoLCgabt3hpezR22IbfuCqBRkVqMAkSFmTo5YxTtQUGi9RBcuE2vNClSxXeuE2FrbNjdt8Hp7RZYtkKxzv1dvC1/WJ2B27Sk1n71bf1ODrzV/tEwrS9UzDd8twg8FKkC7QZxeezCqUMFeWLVJNlfWyCAI0WeWb5QzenWSsR0LRb2s07ftkl01ETmzd2fJbaQEslHUsd4sfEkCJEACJEACexKgIN2TB9+RAAmQAAnUI1CYX/cmD46xnt1jIbYd2tlSlF0tWSFLTOQcagKptXUT2qagoNC0pRLZuEZqIDyjCLWVSLhukARfRZcvckrtqicwsgKv08xqUG32oYoM+RE8xdDrrlqgV3+HjVYTPpCNbJcnz6zY6HhDOyBRWAXqqwjT/fmIvrIRIbrdUZk4bhqy+63+XUU9owG4zdeUV8mYjgXwoK6VC/p305JXctvcFXIj8k8nYYytEKoRy0bIb64cg0JJZlG7+FB8JgESIAESIIF9CFCQ7oOEG0iABEiABOIECvJsufyCSgkhZNNAzxVrxxanZYo1Y6kjPrWYkLZQSWZBochXMyXjtHMkcv8t8WX69vn96oB0C9gyPBirNqwi9OOagFyYjbxZw91eKNmXXo02Nusl4ITt7l+sd8SPCBcO6Ca/n7FE+ufnOJV2T+3Z0SlktGhXuRTiesdtPQRoj1qBug3hvIXIB527o9QRnpPWbpF28KruqA6LFj9ah321Yu+EzkUSREi2mpFb71eN+KB8JgESIAESIIFaAnXfOERCAiRAAiTQNgnYlthh9GGBPnJ6WNZUi70LYbYIqQ0MGCaRR26TqhXI8WxCsZxkAKz54iPJ/vblrk+1LGLKPDwCGFlF5EHBqGQl6MVcEEHfVvCNC1IdLg9CtBRVictRrXhl1JSREKvtzcTFqdm9DwQpCj+dcIYYX78IHmS0vlk6X6LLF6NIVMU+vLTNy5Fd2iEcF61zIDLzawsP9cnNkhfhFb15znL5zah+UhGJ7g7HVXE6rEdHCcJTegRE5/nwkKoYHQePqYlt65F7qkJXQ3/VjKwctKo1tSMPjQRIgARIgAQaJEBB2iAWbiQBEiCBVkYAIZm29mWBODK0qiokgno1o/B4aoinvWObWDu3ir1zO8QLmn3WWvbFV6DxaKZvxKguKzz9E8m9+joxO3V1woTja23p8xqIwr+VhxzxOQzisAza8K3qoFyAbiXHZDTU46ZuJs3C3IlWNp3qCcqP4AFVAVoJ0bkUAnc+HpOxrQCq7Lr8aslHB5QnK4OyFcf1gvB9ECG8N+RVy8BaL2rd6E1/ZXbs4oTGlv7yYrEryiXQb7BknPA1CY05QjLPOF+iyN2NLpsvkWWLxC7evntgFZZx72d8YzZyQf9wyACJ4J7Rz68c3if+kehnPZBjmhUw5Yll69EOZoeot7U6ajnhvJpPGhejepDZuRuawyol/nNjN0S+IAESIAES2IMAvyH2wME3JEACJJDeBOwoBJTmbKpXSkNsy0ockWlt2YCKtpshPLfHhGdpSZNONKohoENGIc70rSbtn5Sd4MGt+fx90RDV8r8m3v5FxeEQiMHLc+pyXS0JQ5jW+fVmhwPyUlVQtkFEDsK+l2aHHa/mBojZP5VmyGNFVbtP/S3sl5sdccYcCi9rOca5DGOrZ1QtH889IGCvzatxPIfPYf73IVgTEaTZl1ztFDNSMaoWXblEKh+5S/SnBSOvEO1yzpHQ2CMldNTJ8H7vlMgS9ZwuhEd1nbN/Q3+oGFUbUlhXVfeywT1373r9mIEyeXOxzEZLGM1JVVGq4br1zezcFbci/6lRnwlfkwAJkAAJ7EmA3xJ78uA7EiABEvA/AcfbWe2E2KKUrQgEmlaytRFia23Z6AhOC8LThsdTw3ATMR1Pw3b9ZjVvvSg5v7zZtWVl7jUSnJjwaMbgrYbovAce1O9ChA6FGH0F3tOnKkNyVW6NIy5VcGqGqB6jlg+xWYINevyAoC1zwsgXredBVUHaHZ7RuNzti31mVarXuuUWHDpKyu/6Y4MD2GW7pOr5R52H7pBx4tmSccQJEjrnEngvo/CcLoTndKEjYhscoJGNBs7gKIT86iNuN6CwUX0ze6HQkvb+oZEACZAACZBAIwT4LdEIGG4mARIggVQTcPI6UShGQ2wdaQSvZhReTi1cY+1AeC3CbO2deECQemWaR5ox4Xivhm/xuJHF85xw3exLfyaVj9/T4nH0wLOyIvKXskyZi9DavhCKGn47OhR1xKd+/gm8lxrKe0JmLHz3Ing/f7orE7mhhuP11GujolSFplo+lGbcu6qiVPNF61se3pbGdnU26z7x/evv19TX2d//uXM/RBZ+2aRDat57RfShpiG9GceeBpF6lhg5+RCliyWCvFML1YzduK8CXXo0aU3ciQRIgARIoO0SoCBtu9eeZ04CJOBTAtG1K52cTRWDNoSnpcKzvDQlq7U2rIHCKhQDOYrqgfWTVU96RrK/l7gg1aJC/yqslC8gPDdYpqyLGvJ6daYclxGRHyDUVnNK1aMZNxWQXSBavwqbcgRyTLPwXj2i+bVOThWmcRFaiP1KEOZb39SDWlZvm4byltQNX3/XJr3OOPwEqXjwtibtu/dO4Vmfiz7UAn0GOsI049CjxTzrQojTZRCnX0kU7XXsXcV7H3rA90Z2DsKFm9jI9oCjcQcSIAESIIHWSoCCtLVeWZ4XCZBAWhJQr1TVfx/w1dqtdStFRUr1my/4al3hKR9K1je+Izk//JVUPHRHQmvLgWac6HhAY17Qr+AtvbU00wnTPRiC9XWE6cZNw3M3QbjmQEiq9YNY1cJIPQJR0fI9WqxIRafaYBxbgZczkYOqwlOFrArW9Tg+bupR1QJIOnNzA3dzfvw75AZvkfCMz+LDtfg5unrZ7rxTQauWrNPOldC4oyTjuNOdH0WiKk5RFEnzkZtiGq5rR8O1RbSacgT3IQESIAESaIsE6r4R2+LZ85xJgARIwGcEjAD6febUFZHxw/Ki61ZJ8KBD/bCUfdZQ+fS/JHT4xH22N2fDBnhEVUjWNy1elAnhqH1Dx8MLuhn7aE/RYmx/BvmjKi5HhlSaipyYGZGHK0LIM82QX+zKcsJ34x5QlbHqZX0bx+pxKk4PgkjVMeOm4vXegqrdOajx7Qd8NgMSOuxYqXzqnwfctdk7wCNf9cJjUvq7y2TXxROl+pUnxSjqIFnnfU+yIYIzJp4Jj+qA/Q6rlX6N0N7Zufs9hB+SAAmQAAm0QQKGDWuD581TJgESIAFfErBraqT6pcclunq5b9an/S2zzviW7Prx132zpvoLyb3mRoil9lJ2/ZX1Nzf5tVa5fa8mKGOQN9oOAnQ5xKe2a7kiNyzjsU1tLsJzn4SgVKHaH4Ly+yhwVD+MV8N8l8JLqu1e2kGs6hdrJsby0vJueVA0pLri/lu8nGafsUOjD3fyTgNDDxIDntQIqvVGl8B7in6nToXn2iNUuJqFdQWP9hmIG0iABEiABEgABChIeRuQAAmQgJ8I4DfCmo/flPDUj/20Ksn52fVSdsPVTqsQXy0MizEgegr+9rRTRbb6jeeavTz1Ws5FSO06iM0wQme7BizRMN36lXGbPajHB2QinDbr/B9IyVXni126y+PZGh8+0Ke/U7U3BA+62b038k6XoqXMPOc+yf7hr+EhzWj8YH5CAiRAAiRAAiBAQcrbgARIgAR8RkB7SFY994ivVpV51kWiuaQVD/3VV+uKL0bzHLO+/WMp+cXFKHHbtB6r8WPT7hlFpgrvfUYq/nW7hL/40D/Lz8mTzFPPcfKNA/2H1K2rtp9p3Qa+IgESIAESIIE6AswhrWPBVyRAAiTgCwJm526+WEf9RUSXzZfgyDH1N/nqdc1Hb4gWOcq/6R++WpcXiym4+QF40d/ylxjVE60oQ7j5v6X09z9wqkRXvfykRObNELui3GkhY0f3ztT1gg7HJAESIAESSDcCFKTpdsW4XhIggVZPwMjO9V9hI+QJmp27i9mjr2/5Vz56t9hlpZJ3w/2+XWOiC8u7/j6xircn3Hs10XXs73jnPunUDWG7i5zKzBX33ShVzz4skemfiqV9c8M1e+Sa7m8sfkYCJEACJND6CVCQtv5rzDMkARJIMwJa2Mjs2stXq7arqyWycA5CMr/p+romVQXlflSorXGhxF75bb8Vs10Hyfnlza6vM9UD5v78JjE7dpXyO/+Y6qXsd35txRNFHqnU84hq8SX16lb+669S+djfpOaTtyW6ca2IbcF7WrXf8fghCZAACZBA6yZAQdq6ry/PjgRIIA0JGJmZEujVz3crjyx1P2x3HqrXPo3qtVtQUOg69P3UKraJmI380bK//EZCQw+WnKuvS2QoXx2bc9V1Tsi0Cm67pNhXa9t7MUFU4Q0v/HLvzbvf2zu3Sxje0qr//F0q7r1Rat55RSIrUKE3GhW7GuKUxf93s+ILEiABEmgLBChI28JV5jmSAAmkFwEUgQn0G+S7NUeXzBezqCN6ko5zZW1bIT7vhmf022ihcn1+tYxFb87fQ5QuQMuVREy9cWU3XSNa+bU1iNKcn98ooTGHx6ocr12RCBrPjw2NO1KM7GyJLl3QpLnsqkqJzJ8l1c8/KuV3XCvVrz4tka9mil1V4YhTGyKVRgIkQAIk0LoJsMpu676+PDsSIIF0JQAvUfmdf3C8Rn46hYzjzxAJBqUcXshETMNz/wjxuV1FaWG1FKB3p9pMtF/5R3lIbiuolo5mYjG8ZrdeknftnWJt2wwxd1Uiy03ZsXko0mS27yRlN17jFApK2UKaOHEeCi5ZO7ZJGK2LEjW9foHBIyU4dJSYuXlOb1e2kUmUKo8nARIgAf8RSOxnaP+dD1dEAiRAAq2DQCQCL+lg351LePYUCQ4fjaZhgYTW9mBFhiMwjoRX9HclmbIyGvs6GhuKyn2FVaLvNK+0MgFNaiFHsfQPlzt5igX3PC1mh84JrTmpB2dkSsF9z2LtIqXX/igtxKhgzUG0e4nMn+kKKr1+KmwrH7xNKh79m4Q/fVusjetErNrQXldm4SAkQAIkQAKpJhC4HpbqRXB+EiABEiCBvQgEIPgiYYkua1ro415He/cWIZZml+4S6NNfInOmtmie16uD8kF1QP6UXyNHQZDmwxN6D8Rnj4DtPIJII42IIasgUg8OWY44bdFEehByErWYjtmjj+Rc+jPH4xxFLqyfLfOMb0ner/8s4ZmfS4V6yTWvMg0s50cxr3lkxmT3V4v7TkOxI19Ok8jMyWKj0rAEQ2IWtkNobw1+H8HfF/Y7dZ87RyQBEiCBJBBgyG4SIHMKEiABEmgJAS3QU3H/LS051NNjAr36S+bp58muH53V7HlWQGT+ER7R3+VVyyiIzbjp9iy4A7tDlD6DIkfqGL0QuaVuWsYxp0j2D34l0ZVLpOxPP3VzaHfGysqR/D/dI2a33lLxr9sl/Pn77oybpFEKH3pVql9/TqJrVyZpxtg0AXhlg0MPksCgESImfOsQqoaZmAc/qSfAyUiABEigjROgIG3jNwBPnwRIwL8EtF9j5b/vFXv7Vt8tMvviK6Tms3el6sV/N2ttKkEXomjRiGCdGK0/wDTkkN6PHNI/o8iRilO3zWjXUXIuuUqCh0xwBJ8KPz9Yzk9+L6EJJ8ArOhnX/L6YB9APC2viGrK+dRnWf5xUPfVAE4/wZjeza08JDDlIQsNGieTkwWmqAjXozWQclQRIgARIwBUCFKSuYOQgJEACJOABAeSR1iCHLjzjMw8GT2zIwMDhknHc6VJyxTcSG6je0euihvwBhY6uyg3LOOSSVkCP3lqWKVfm1kjXBAsc1ZvGeamVgrMv/okYBUUSnvWFVD701713Scr77O+hGvBhx4qNQkCVTz8okXkzkjKv25MUPviyVL83SaIrFrk9dIvHM4raS1DvU3jG1WvKkN4Wo+SBJEACJOApAQpST/FycBIgARJIjEAURVyq/nNfYoN4dHTWRVdIeMqHUvXcIwnPoOLz96VZcgSE6PkI1VXf6O1lGTILHtNR2DYcHtXTMyOSmVib0n3WGRp3lGSefbEEuveSyOJ5jnfS2rx+n/3c3KAhz1nfvlyC8OTpXFUvPYG+nJ+4OUVSx8q68HIJjT9Gqp78R1Lnbepk2d+9CmHQPZu6O/cjARIgARJIMgHGsSQZOKcjARIggeYQCKCAkJGTK3ZFeXMOS8q+4akfScYJZyYsSFV83oeiRt1MS75Vmzf6QlVQ1iOv9NGiKtmF6N5/I690pxWS7+e4m1eq3md9BEcdKpkTz5SCe59Gm5gtEKdzpeaN5ySyzB2Pn+Y3Zp54lgRHjBGzXQepmfaJlN/2W0cEJ+VieThJ5sSvSfXb//NwhpYPbaBdjNm1e8sH4JEkQAIkQAKeE6CH1HPEnIAESIAEEiAQRdjuR29ANHlQuTSBZcUPzTr3Uoks+UoqH7snvqnZz5pNOgkC9CR4QHPgAZ0Br+i9yCO9FXmkPWvzSDWc91qE8z4OgaotYTyzUAjevmMlAx6/4JgjRLS6666dEl2zTKLLF0tk4Ry8Xo4ywJGGl4CiOoEBwyQ47GDHA6rVfc3C9iKoAqvhuDUoVBSe+rFTQbnhAdJra86Pf+cUE6r6b2pzRxujFjr0aMk49lTw5+/vjTHidhIgARJINQEK0lRfAc5PAiRAAgcgYG/bLBWP3HWAvVLzcaB7H8n4xsVScjlyScPVCS9iA4Tn7yE8f4o80vEI1Y3bf+Ah3WUZyC+tcTapHEyGxAj0HeQIruDAYRLoPQDeth5i5Oaj1UgVzhdrQU9MlHSNVXbNzESV14DYZaUIxV3nVPONrl4mkUXzRJ9bncH7WPTAy8h9/Zdv+6Rqjq7ZuVurQ88TIgESIIHWRICCtDVdTZ4LCZBAqyRgwxtX+ehdYu9E70UfWuZJZyPn05byv/w24dWpJ3RuJODki8YHU4/pffUq72q+6S9LsmQCephekBV2Pa80Pm+jz+h3aeQVxB6ZaFajwrSmWvJvfUgqHoj1D2302Fb0Qd5N/3SEec2bL/jyrIwOnST70mvEYJVdX14fLooESIAE4gQ8jXyKT8JnEiABEiCBlhMwEAaquYd+tZrJ7yNEdbSEjjop4SVqiK4WL4qbekxVjKrHNN4GRsN6tS1MGTymN6AKrwrUpJoN+V26S6yNayW6aqlY61eLtXUT8nzLIFILk7qUpk6m3mUV9m5ZxhETJdh/qIQ/edutIV0fJzgcf2e0LymNBEiABEjA1wSSEfHkawBcHAmQAAn4noAK0oMPkzD6fvrRVIjVvD9JslFt1c01qiy9HcWOTsuMOuG7S9G/9CXkmhaiBczp2PZThO9qMaTXsO1b2XUiNlWM7MoKMfITF6Tn7cxu9BR+nFMjE3HuzbX1EKT/qQjJuMLmH9vQXFnf+alUf/Cq2OWlDX3si21aqEp/zKGRAAmQAAn4mwAFqb+vD1dHAiRAAg4BA8V2Av2HoM/jYl8SicyfJcGRoyX3quuk/L4bXVmjfkFdjqq6Q9DyRWXULWgDc2ZWRIoMW+6G13RMyJIQXpfaLveCaeHq7bISMQrbtfDousP+W1S5+81VCE3+IRiMCsaEZMAHp5r78xvhIS6WyJxpu9fptxf6d8XIQO9RGgmQAAmQgO8J8KdD318iLpAESIAEUDcnI1OCow/3NYrqd16WEEI5Q4cd69o6h0GM6hfVRoTuqiQ7G4JUPYR/LaiWTdj2WU1QzsA2tZVoE/MKvKWpMqukGC1dOiY8fQiiM/5Q/RlEfm78vbLQqsTP4zx/sitLvlec5XiJq2rDlvWz/+Gzq/HZD/DZbRDx2+AdVYt/psf9qiRTptQ0P4Q3NOE4pwpx9buvOmP69Q/tL2uEUGSKRgIkQAIk4HsCFKS+v0RcIAmQAAmAAArpBAcMRY5ivm9xaNGl6ndfluxLrnZ9jZpbOgiP+xGiuxUCS0XWAoTw/hQhrF0Rwqte0r9CfH0IgfpmdVBKUuA1tYt3iFmEFi8em7bI+Qr5oL/Lq3GEeSnE6ORacfkqPvsYDL4Lr+pfINrVu7yzVpAqs0pw0ePOgoh/FJWLm5t+m4NrW/3O/8TesdXjs2z58EZ+gWh1ZP07QyMBEiABEvA/AQpS/18jrpAESIAEagnAU4YemX62yJfTnBYgeX+61/Vl/iqv2hGf90CUqgfwRHhKD0elXfX83Q0xOgji64cQqFsgvH6+KzPpobzWzq2u5JAeCNzbENwnoPCTyskwFOU4hC5Pqy1YpJ9pUahxaJnTEUL96xCeykWtM95/OzssvQOWHANuERyrVY2balpV19q8QSJzpzf1kJTsFzr0GMzbXKmdkqVyUhIgARIgARCgIOVtQAIkQALpQgD9LoOHHOb71dbAg2Z26SlZ37nS1bVqdd3zIai+i8dhEFwX4lntKXj6SqA/roAYHQHxdQm2a37p6/AWJtOsbVucVjBezqnSUj2d70F4/qsiw3l8Ae9oFthoSPN2fDa8Nt/0QOvQY9Rj2hTLvuwXEujaU6pef7Ypu6d0Hy0A5vSGTekqODkJkAAJkEBTCST327qpq+J+JEACJEACDROAKA2NniDh2VMa/twHW+2aGql56wXJ/PaPJbrkKwlP/cjVVQ2G6Pwlwk7VNFT1g+qAE56qAktNhdkKeP60T2kyzdqyUYycXE+n1F+R81HI6VKI7gG1ns/6E+bhs7XIpe0ZcO/cQ4dPlMxTvilVT/0Tiagxb2v9Of30OjRmghgB/tbup2vCtZAACZDAgQjw/9oHIsTPSYAESMBHBIxgEEWDjvPRihpeShS9OdVTmv29a5BX2aHhnVzYOguhqj9D+5cuCEeN25PwmKo2HQ0vqloxvIZrIVC9bgxjbV4vRlaOM6eXf4yH0H4O3t94IaNKnPrntTmk6hl+H6/jeaPLkWervVxbamanrpJz+W+k+s3nJbpuVUuHSdpxoQkniAT4W3vSgHMiEiABEnCBAAWpCxA5BAmQAAkkk4B64QLDDk7mlC2aS/NJI4u+lFwP8knjC7oKYvQQiLC4fQYx9hE8pr+p9aA+hN6bVyDf9PrSTCfvdF7Yu689bfuiuYtGVuN9ROPrTOT5YvRczYbGvBzndRUeP9iVLYshPNW0mJG++im26+NO5NvW0XF2adYfmgscRs5oZO6MZh2Xip0DI0aLZGalYmrOSQIkQAIkkAABw4YlcDwPJQESIAESSAEBrXJa8dAdKZi5+VNmnn6eGNk5Unrtj5p/cDOOWIVQ1etKM+SXEKkHQ6Q+AU+ptja5Gu81zHc+RNvfUPzoxvxq6Y6KvV5Y4X/ekdJfflesrZu8GH6PMdXjq97fIniH9/YJqve0Cvmh+llLLf+2R0Wqq6XqlSdbOsTu466eslDWlNX1V9UPDmqXLzeNRTVclyznh78So30nl0bjMCRAAiRAAskisPd3WLLm5TwkQAIkQAKJEMgrlCA8QpH5sxMZJSnHVr/xvGSd/0PJu+4eKbvxZ57NmQHv5PfgIVQxqkJNixpdi8q82vpEbSSeT0YF2jUQrt1dzLHc44TCYRQ2KhRJgiDVL3CtpNuQaT5tFvJJW2p5f7zbKQzkhhiNr+EXI/vK4Z2L4m/RlaXlocS7B6l9ERg0QkS500iABEiABNKOgHexS2mHggsmARIggfQhYGRkSMbRp6TNgqtfelzMDl0k5+c3ebZm9XoeX1vIaCMEqRb4OaheOK9OrG1QtNjRMnhLv0T4ruZfuml2BIIUfTDT2XJ/e5uYnbtLFa6ZmxaEAA2ZKMpV+9D3blnGxK+J/p2gkQAJkAAJpB8BCtL0u2ZcMQmQAAnECOTmSfDg8WlBw4bnsOqFxyTYf7DkXHOD52vug16blShttLA2tzI+YQ22XYd80ruRW/k6WqdcU5LlCNP45wk/o8KwkZ++nrrc3/xFAj37SdXzCNfFNXPTZmwvkUlrtux+VEbcqQQcPGisGLn5bi6VY5EACZAACSSRAAVpEmFzKhIgARJwk4ARDEnGMenjJbUryqTquUchSodI7q9udRPFPmNpz9Kfoi/pvRCeryF0dzXCdNXuKQ853tEfILT3WhQ++i0ed2EftzyldlWlmGnqIc279g4J9O6Pa/SI6LVy2zZWVMvSkvLdj7BLJSwyjjtd9O8CjQRIgARIID0JUJCm53XjqkmABEggRiAjSzIOPyFtaDii9PnHxOzeR/KuvdPTdR+B0FwVnRq+G0ZorrZA0cdtBVXyPETqq3j0hye1AOJ1fa1gTXRBen5GfrtEh0n68Xk3Pyhm155S9ezDnohRPaEze3WSX4zst/tREEq8jEXGkSeKZGQmnRcnJAESIAEScI8ABal7LDkSCZAACSSdgNOX9MiJnrcacfPEYp7Sh8QoKJT8m/7p5tD7jNUbgvOH8IYOREGj7ag6q3mmvfC4HsWO1kKE3oDw3XKI1Z7Yzw2zS4vFbO9d31U31rj3GPm3P4b7J0sq//sAxGj53h/79r3m6oaOwL1P76hvrxEXRgIkQAJNIUBB2hRK3IcESIAE/EwAgipj4pl+XuG+a9OcUnhKrZoqKfjbf1FEp9u++7i8ZThE6dqoIZvgMc3QkF60gxkPL+olEKxaldYNs4p3ilGUHoJUmRf8/Xmxy0ul6ul/uZ4z6gbP/Y2RcfwZaPvqzg8J+5uHn5EACZAACXhLgILUW74cnQRIgAS8JxAMSmDIQRLoM9D7uVyeoeaNFySyfJHk//lhCU04zuXR9xxOq+5eAfF5Pbyi76KgkbaGOQ1tYI6trcy7594te2fv3AbPb11rk5aN4v1RoUOPBvNHJLpisVS/9qz3E7o8Q6BXP3FavQQSD/t1eWkcjgRIgARIoJkEKEibCYy7kwAJkIAfCRihDMk86Ww/Lu2Aawp//r7UfPiG5KIlTPa3Lz/g/onsoC1ftJDRLLR8eRo5pG6btX2LmHn+bvuS/Z2fSO4vb5HIikVS8/GbbiNocLx7JwyTI7q4l1ubeeq5DNVtkDQ3kgAJkED6EaAgTb9rxhWTAAmQQIMEjML2EkqjAkf1TyKycI5UPnG/hNBbNe///lb/I9df90O+qIpS9Za6bdbWTWhBkuf2sK6Nl3fD35F3eZJUv/RvCQ4ZKYGho1wbO1kDhQ47RgT5xzQSIAESIIHWQYCCtHVcR54FCZAACYggdDfj6JM9yWG8espC+Xzzzj0oT9laLD/9fMEe2xJ5Y21cK5WP3+sMUXD/82kprq3N60WycxPB4MmxWvyn4KFJ6MIqUvnoXU6YtHqlM792flLyd906KaNdR8k49jR6R90CynFIgARIwAcEKEh9cBG4BBIgARJwk0Dmaee6OVxyx4qEpfqN5yU883PJvfpPknPl/yV3/gRns7ZthlhCKLA+fGLa81VZRqZ8JP/f3n0GyVHeeRz/9/TEXUmrnHNGCBAgogQmCUQQiHBGIpnikOziyq47g3lx9+aqfC/84q6oO98d5mzjAxXBmIzPwiIYTJBBEiAkQMISEiiAwqKwcVL3/Z9eCbRKO7s7Pc/M7LfLg3Znep7n6U+3S/XTk1qff0zEa1sIKPfhCsmtXiGJeTeJuG6ZtPb4zWh7tou0AtXxq+JTBBBAAIESCRBISwRNNQgggEBJBBxH95McIbGZs0pSXViV5Fa/K80P3qf7lY6S3v/+uMTMfpMVcviZjDi97A8pNcOf6x54LugBbf7lv0r2g78cIZh56VkRXWU3MW/hEZ+V2xuxmeeJO2SEiD7jHAgggAAC1SNQPv+EWz2mXAkCCCBgVcCJJ3QbmKslt+lT8et3Fa0tb+qQ3c2NLd+Ut605/c3PYfzgf71L0k/pXMcZZ0rN4nslf9GV0vyf/yLenvowqitemdrLG9E9MvN77bTTqe0ttT/+qbiTp0vm5eckt/a9415by+P/I6k775HY7DmSffOl455r68NgqK7ef8KorTtAvQgggEB4AvSQhmdLyQgggIA9Ad+X5JU3FrX+1rwnTbn8N6+0/l6KI/fBu9Lyq38TX+vu8/MnpOb795ai2q7XoXusOr3t9JDW3Hm31N3/lLbdkZZf/KzDMHrwItPPLZH46bOC7YMOvldOfyav0WHFHAgggAACVSlAD2lV3lYuCgEEeryAGbo7eJjEL7hcMq8VZ2uPS4YPaLd1h1nUaMlft5eE2m9ulMyyZzRgrZL4rDnS5/6nJavX1fLbX5ak/s5U4mdLP2Q3dctdeq+vELPtTOvTD0t+y6bONFm8XTskrZ7JqxZIi/ZMm9WCy+WIXzxPnAGD6R0tlxtCOxBAAIEiCxBIiwxKcQgggEDZCLhRnUt6nuS/2CR53XOyGg5v+xfS+rtfa0/edImf9R3dJmaO7qX5or73YNlcnp9u1R7S0uxFmrzl73TV2bkirU2S1vmg+Q2fdNkht/odiQwZJsmrb5Lm3+jWOwcWP+pygUX4ojtpmg7ZPotVdYtgSREIIIBAuQowZLdc7wztQgABBIohoKunJq5ZqIvslCYgFaPJhZSRX79WWh65XzLLXw2CaR9dvKdm0T1lsbqt39Ic7pDdeFJq7vonqXtwqcRnztYe8P/T7XJ+3q0wetA8s+xZ8ZsaJaGh1PZhhj0ntMfWicZsN4X6EUAAAQRCFKCHNERcikYAAQTKQcCJJSR57a3SsuS/yqE5RW1Dft0aadGXO3q8RE89R/o+tEzy69dI63OPSlZ7/GwcfuM+ieh+mcU+YqedG+wbanqHvU0bdHucJySvC1cV+wgWOVr8k2Bl4+xbLxe7+ILLS8y/RZxYvODzOREBBBBAoDIFHF+Pymw6rUYAAQQQKFTAzGvMffS+ZP74dKFfqcjznLp+OsTzbImdfIb4+78O9jNNv/C4eDovslRHzV3/KE4iJU33dX8P1ciw0TqEdoFET9Fhq8mUZNesktyaleLv2R3q5Zj5x8mF35f00icl/+naUOs6WuGJS+eLO/10AunRcHgPAQQQqDIBAmmV3VAuBwEEEDimgO6PmXl9qWTfe/uYp1TTB+7EE8SddKJEp80Qb/sWyX24QtJ/Xire5g2hXqYJclHtxWz85x92qR537CRJXH6DRE+aGfS05jeu0yC6Uofkftyl8rr6pZgGe7OgUMtD/yHe7h1dLabT34tqT7BZjIve0U7T8QUEEECgIgUIpBV522g0Aggg0EUBXaim9ZmHNNxUxyJHBSnoHMRgcZzxU8QdN0X8dEsQSrPaY5x99zXxdhR3peDEZddJXHv4Gu6+raDmRfoOkNiFVwS9uu7IsSKpWvE+Wy/ZT1aLCaOSzxVUThgnJeZeJ5HhY6TFLHJUggFV7tjJkrzhdhGd+8yBAAIIINAzBAikPeM+c5UIIIDAtwIacMx80mIHsW8rKO+fIkNHijtmgpieSHfMRPEb9gbbnpiViHM6/zS39n0d4ruzyxcR0/08U7rA0v4fXHtEGZEhw4Oez6j23JrwFek/QJza3pLXHtz81s06N3R98OcRX7T4RnLhYvF0oaPM84+G2opgmLBuX0PPaKjMFI4AAgiUnQCBtOxuCQ1CAAEEQhbQni6/qUFaHv65hrH9IVdWvsU7vftKavE90rrkv4M9W93R48QZPEIiffuLo832mptEdP9Tf2+95HWfTjMP1W/cH6xC6zepW+6wnstoVJyaXrp1ynBJXn+7ZN96RRwTOHvVidNHX9rzGZRbv0vyO7frMOLPxftK/9Sfy/2o0UWOsroHbPbtV0NpqpNMSuqOH4e7OnEoLadQBBBAAIHuCrDKbncF+T4CCCBQaQKOxqLaXjo08o62lXdz2Uq7gqK018zz9L/aFgRCEwpzGrgOHmabHKdP3+AV0TAZ6dMvCJpOKhUsWCSJpA5h1bNNwjTHgeGsfmuLiO5DGhyxqHhfbhW/eZ0uQvS1eNoT6zfsa/uswv7b+twjktK5sWYuaf7Tj4re+uSNi6pua6KiI1EgAgggUKUC9JBW6Y3lshBAAIGOBHzt4fO2fyGtjz3Q0alV+Xny+u9pT+WXkn1jWdGvr/YffirND/xMw6j2slbJEdNtdcxc15aHtGe9vutDmg/nMGE0MmqsOC7/Rn64Db8jgAACPUEg0hMukmtEAAEEEDhSwNEhpu7wUZLQYNYTj0j/weLpvM0wDj+X0cWJasIo2lqZ2feXS/7jD3Qbmpu+7RnuZmsS82+WyIgxhNFuOvJ1BBBAoJIFCKSVfPdoOwIIINBdAV2BNqqL6ySuubm7JVXc9x2dK+pt+zycdusWO5FkdQVSA5V+8Skxw5ITV2ko7eaRmH+rRCdO00WMYt0sia8jgAACCFSyAIG0ku8ebUcAAQSKIaA9pdFJ0yQxb2ExSquIMlydP+rtqRc/kw6lvX7W9JDWhlK27ULNEG932EiJnXNhl5uSvHqhuBOm6PYuDNPtMiJfRAABBKpEgEBaJTeSy0AAAQS6JaDBwJ18opheq55wRHU/Um/rpvAuVQOpU1N9PaQHwVp1C5jYWRcE+7sefK/QPxPzb5HI5OniaO88BwIIIIAAAgRSngEEEEAAgUDABISo9lr1hDmlkaEjJL/ls9DuvK8r7TpVOGT3IJj31VZdDOpFSWqvutN/0MG3O/wzcd1t2jM6lTmjHUpxAgIIINBzBAikPedec6UIIIBAxwIaSt0xEyVx450dn1vBZzh1/SS/7YvQrsBvbQ72JA2tgjIoOLtqueQ+WS3JawqbT2pW042OnUTPaBncO5qAAAIIlJMAgbSc7gZtQQABBMpAwInFJTpqvKRu/1FV9vKZ3lGzb6i/tz40bb+5Ufd67R1a+eVScHrpk+Kn07rI0YJjNsn0FKe+9yNxdWsX0WeLAwEEEEAAgUMFWE3gUA1+RgABBBBoE3BdiQweJqk7/l5anviV+LuLt++kbWJXV3bN6/6rYR5+Y6O4/QofytqVtmxpapUfLv/4iK/OHTlQfjB19BHvh/VG66O/kNTieyV29oWS/cuf2lXjDBgsqQWLxDHh3HHafcYvCCCAAAIIGAECKc8BAggggMDRBZyIOL3rgt6t9DNLJP/Z+qOfV2HvuiPHSX7jJ6G22m9uEKdEq+z+7qIZ7a4lYiH4pV94TJIaPL3dOyS/oS0ku+N0OyFdJMuJ0yva7gbxCwIIIIBAOwGG7Lbj4BcEEEAAgcMFzGJHyRtul9jp5x7+UUX+Huk3QOePhrT/6AERv2F/yVbZjUUicujLtRBIvS+3SPbPy3TroBvF6TdQoqedK8nrbyeMVuT/Q2g0AgggUFoBekhL601tCCCAQGUKaG9p7Py5Ehk0TNIvPlWZ12BanUyJ06uPeGEP2W3YJxJPlsTp0Y3b29Uzqa5WzhhY1+69UvySXfWmRIYMk5rFP9H9XXUfVh32zYEAAggggEBHAgTSjoT4HAEEEEAgEHDiCYlOmyGOzi1NP/OwmF7ASjuiU04Wb2f7ABfGNXj79oiTKE0gbcrl211CJu+1+71Uv5jh3WbOqJ/L0TNaKnTqQQABBKpAgEBaBTeRS0AAAQRKJqCrpEaGjpTU394tZt5gfuO6klVdjIrcsRMl9/nGYhR1/DKyGfE9T4NZQnsL08c/t5ufLpoyqpsldP/rZqGoxLwFYlZoZvGi7ntSAgIIINCTBJhD2pPuNteKAAIIFEHA0TmKpvcvce2tEr/wyiKUWLoiIgOHiLd1c2kqzGoQTdWUpi6LtZhnIKF7kZrwTRi1eCOoGgEEEKhQAXpIK/TG0WwEEEDAtoDjRiWmi9e4o8ZJ6+9/K/7Xu2w3qcP6nbp+On803AWNvmlENhustOvr8N0wj4z2xB56mEWNSrGwkQn38Sv/RlydVyz6LHAggAACCCDQFQH+BumKGt9BAAEEEGgTiEaDIbw1d+oQ3leel9yqt8tWxmxD4jc36qupJG30ddiuU4Ie0u+++kG76ynFPqSxmbMldtFVEuwsamFV33YXzC8IIIAAAhUtQCCt6NtH4xFAAIEyEDgQSOLnXy7RKSdJ+g9Pir+3vgwa1r4J7oSp4nVhu5e0LhLUkM1Jv0SsUz2PZqXZMAPpqNqkPHvJae0vMuTfnLq+kpynw3MHDdXRuUEcDblGikcAAQQQqHYBAmm132GuDwEEECiRgBOPiztynNQsukcyr/1BsiveKFHNhVXjDhsl2Q9XFHaynrV85155RLdU2Z/JScKNyN5MVk7q11tumjBcJvYpYG6oLmbkpGoLrq/cT4yde7HEz7tUxPeZK1ruN4v2IYAAAhUkQCCtoJtFUxFAAIGyFzC9ZvqKnX+ZxE4+Q9J/fFrypVpEqAMcp65/wT2kL2+vD8Lo3dPHynQNoeZo1F7SZdvqZeP+5oICqdfaXBWLGrljJkhiznwRnX8bHPSMtjnwXwQQQACBoggQSIvCSCEIIIAAAocKONGYiC56k1ywSLIfvS/ZP/1e/NbWQ08p6c+R/gNFdL6rt3tHh/VmdZGg//3rVrlr6uhvwqj5Uq9YVK4bO6TD7x88wWlpFqdXW5g9+F4l/enU9NJVlK+Q6AmnsGhRJd042ooAAghUmACBtMJuGM1FAAEEKkrArMQ77VSJnniqZN94SbLvvGal+e7k6eLv2FZQ3dub09Kc8+SMQXUFnX+sk8wCSmauZSUe8XMukuisi3XRIu3xdt1KvATajAACCCBQIQIE0gq5UTQTAQQQqFgB7Zk0y9/EZs+R2JmzdX7pi5Jbs7Kkl+OOGi+5zRsKqnN3a0Z7Q12JRdq26s7pnMklG74Ns2cMrGvXc3qsQr2mBomOnnCsj8vyfTPMOnbeZSLJpJhtfTgQQAABBBAIW4C/bcIWpnwEEEAAgUDA0WAq0d6SuHS+xGddIunXl0r+k9Ul0XH6DxLvndcLqmtwKi4NupCRWV3XLGZkwnT8QDh9c8ce6a+r7R6cV3q8Av3GhlBX2T1e3Z39zJ02QxLnzxWp7SXBcOvOFsD5CCCAAAIIdFGAQNpFOL6GAAIIINBFAZ1f6ugCOYm514uvISj71suSW7uqi4UV8DVdhMfUly9wy5ehqYSkoq6Y8Hnx8AHBVi8368q65tjc0FJAhW2n+Pv3ipNMFXy+jROj2iNqhudKbW9xYjrvlwMBBBBAAIESCxBISwxOdQgggAACbQJOPCHmFZ9ztcQ1mGZ0fmnuvbfbthUpIpJZlMc3ixnlcwWVaobq3jZxuPxGFzYyQ3fP1LmkZi6l6TFtyuULKsOcFATSRHkG0tjM2RI7+wLtsdZ/HEgkC74mTkQAAQQQQKDYAgTSYotSHgIIIIBApwScuAYifZkVXU0wza1+R7Ir3wwCXacKOsbJ7rjJ4m3ZdIxPj/72ZSMHSlyH6/76061y39rNUhePSkM2L9P69ipouK4p1Sxq5EfMokD6V22BYfjorSnOu05dX4meeq7ETj1HHDME2Qyh5kAAAQQQQMCyAH8bWb4BVI8AAggg0CYQLKKjC7rGZs7S12zJbVwnuZVvSP7zjd0iigweLpnlr3aqDNMjetGwAcGrWXtFG/U1QOeOup3dgzObFaemRvyG/Z2qv5gnu5OmSey0WRIZPT4oNgijxayAshBAAAEEEOiGAIG0G3h8FQEEEEAgBAGnbXXb6ISp4o4aJ5LLSu7Dlbqf6Xvi1+/sdIVm/qhX4PzRoxVeo/NJzatLRzaj80hLH0jNNcdOOVOip5ylq+Vq2xmW26Xbx5cQQAABBMIXIJCGb0wNCCCAAAJdETCLEZkgpa/oWefrljHniff1bg2nKyS3brWYVWw7OiIjxoqvodBv2NfRqaF87pse0lRNKGUfXqgJodFJ0yV68kyJ9B8oYoblHgj3h5/L7wgggAACCJSLAIG0XO4E7UAAAQQQOKaAE2nroYwMGiqxCy6X+AVXiFe/I9jPNLdhnfh764/63eikE8Tb/sVRPyvJm5mMSIiB1BkwSKITTpDoCTPEURuzRY2YHlEOBBBAAAEEKkSAQFohN4pmIoAAAgi0CQRzTfVHMzc09p3Lg5e0NEvezDldv0byWzcHw3zN2ZHhY4PeVPOzlSOb1h7S2uJVrT2e7oQp+poaBFETdoMQqqvlciCAAAIIIFCJAgTSSrxrtBkBBBBAIBBwDgax3nUSnXGWuCeeFuynaeaa5j77VNyRYyTz6vPWtPzWlm4N2XXicYmMHC/u6HHijp2kvaDDNGzndLucuLVromIEEEAAAQSKKeD4ehSzQMpCAAEEEECgHASCv950QSQzhNXMNzULGwWvndt1Luou8ZsaQ29m4srvigmlmVde6LAup7a39voOk8iQERqkxwZ/OrW9xM9oL6vu1yqdXeG3wxo5AQEEEEAAAfsC9JDavwe0AAEEEEAgBAHHBLhYW0+i06evRPQlk04U3+wJauZZ5vNtwVQXSvJ2fSne/r3i79PX/j0aYIuzTYvZi9Tp06/t6nQerJNKiVl8yLwX6TsgCKDuwCEi5j0TnD1Pgl7fQ8JnsLBTCD4UiQACCCCAQDkI0ENaDneBNiCAAAIIWBXwvbyIrogbHBoMzTxV0zMpZoXe5ibx0y3itzTpcNl80OPptzaLmPFFvneg51LDr/4vYuaLmpWBo9FgqG6kV53+rr2bOrTY0XDsawgWEzrNCrgmFB8SPK0CUDkCCCCAAAKWBAikluCpFgEEEEAAAQQQQAABBBDo6QJtu4/3dAWuHwEEEEAAAQQQQAABBBBAoOQCBNKSk1MhAggggAACCCCAAAIIIICAESCQ8hwggAACCCCAAAIIIIAAAghYESCQWmGnUgQQQAABBBBAAAEEEEAAAQIpzwACCCCAAAIIIIAAAggggIAVAQKpFXYqRQABBBBAAAEEEEAAAQQQIJDyDCCAAAIIIIAAAggggAACCFgRIJBaYadSBBBAAAEEEEAAAQQQQAABAinPAAIIIIAAAggggAACCCCAgBUBAqkVdipFAAEEEEAAAQQQQAABBBAgkPIMIIAAAggggAACCCCAAAIIWBEgkFphp1IEEEAAAQQQQAABBBBAAAECKc8AAggggAACCCCAAAIIIICAFQECqRV2KkUAAQQQQAABBBBAAAEEECCQ8gwggAACCCCAAAIIIIAAAghYESCQWmGnUgQQQAABBBBAAAEEEEAAAQIpzwACCCCAAAIIIIAAAggggIAVAQKpFXYqRQABBBBAAAEEEEAAAQQQIJDyDCCAAAIIIIAAAggggAACCFgRIJBaYadSBBBAAAEEEEAAAQQQQAABAinPAAIIIIAAAggggAACCCCAgBUBAqkVdipFAAEEEEAAAQQQQAABBBAgkPIMIIAAAggggAACCCCAAAIIWBEgkFphp1IEEEAAAQQQQAABBBBAAAECKc8AAggggAACCCCAAAIIIICAFQECqRV2KkUAAQQQQAABBBBAAAEEECCQ8gwggAACCCCAAAIIIIAAAghYESCQWmGnUgQQQAABBBBAAAEEEEAAAQIpzwACCCCAAAIIIIAAAggggIAVAQKpFXYqRQABBBBAAAEEEEAAAQQQIJDyDCCAAAIIIIAAAggggAACCFgRIJBaYadSBBBAAAEEEEAAAQQQQAABAinPAAIIIIAAAggggAACCCCAgBUBAqkVdipFAAEEEEAAAQQQQAABBBAgkPIMIIAAAggggAACCCCAAAIIWBEgkFphp1IEEEAAAQQQQAABBBBAAAECKc8AAggggAACCCCAAAIIIICAFQECqRV2KkUAAQQQQAABBBBAAAEEECCQ8gwggAACCCCAAAIIIIAAAghYESCQWmGnUgQQQAABBBBAAAEEEEAAAQIpzwACCCCAAAIIIIAAAggggIAVAQKpFXYqRQABBBBAAAEEEEAAAQQQIJDyDCCAAAIIIIAAAggggAACCFgRIJBaYadSBBBAAAEEEEAAAQQQQAABAinPAAIIIIAAAggggAACCCCAgBUBAqkVdipFAAEEEEAAAQQQQAABBBAgkPIMIIAAAggggAACCCCAAAIIWBEgkFphp1IEEEAAAQQQQAABBBBAAAECKc8AAggggAACCCCAAAIIIICAFQECqRV2KkUAAQQQQAABBBBAAAEEECCQ8gwggAACCCCAAAIIIIAAAghYESCQWmGnUgQQQAABBBBAAAEEEEAAAQIpzwACCCCAAAIIIIAAAggggIAVAQKpFXYqRQABBBBAAAEEEEAAAQQQIJDyDCCAAAIIIIAAAggggAACCFgRIJBaYadSBBBAAAEEEEAAAQQQQAABAinPAAIIIIAAAggggAACCCCAgBUBAqkVdipFAAEEEEAAAQQQQAABBBAgkPIMIIAAAggggAACCCCAAAIIWBEgkFphp1IEEEAAAQQQQAABBBBAAAECKc8AAggggAACCCCAAAIIIICAFQECqRV2KkUAAQQQQAABBBBAAAEEECCQ8gwggAACCCCAAAIIIIAAAghYESCQWmGnUgQQQAABBBBAAAEEEEAAAQIpzwACCCCAAAIIIIAAAggggIAVAQKpFXYqRQABBBBAAAEEEEAAAQQQIJDyDCCAAAIIIIAAAggggAACCFgRIJBaYadSBBBAAAEEEEAAAQQQQAABAinPAAIIIIAAAggggAACCCCAgBUBAqkVdipFAAEEEEAAAQQQQAABBBAgkPIMIIAAAggggAACCCCAAAIIWBEgkFphp1IEEEAAAQQQQAABBBBAAAECKc8AAggggAACCCCAAAIIIICAFQECqRV2KkUAAQQQQAABBBBAAAEEECCQ8gwggAACCCCAAAIIIIAAAghYESCQWmGnUgQQQAABBBBAAAEEEEAAAQIpzwACCCCAAAIIIIAAAggggIAVAQKpFXYqRQABBBBAAAEEEEAAAQQQIJDyDCCAAAIIIIAAAggggAACCFgR+H+R6jCoq+4U3gAAAABJRU5ErkJggg==", + "text/html": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# df de ejemplo funciona para dejar huecos entre leafs\n", + "df_sample = pd.DataFrame({\n", + " 'vendors': ['A','B','C','D',None,'E','F','G','H',None],\n", + " 'sectors': ['Tech','Tech', 'Finance','Finance','Other','Tech','Tech', 'Finance','Finance','Other'],\n", + " 'regions': ['North','North','North','North','North','South','South','South','South','South'],\n", + " 'sales': [1,3,2,4,1,2,2,1,4,1]})\n", + "\n", + "px.sunburst(\n", + " df_sample,\n", + " path = ['regions', 'sectors', 'vendors'],\n", + " values = 'sales'\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 86, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
vendorssectorsregionssales
0ATechNorth1
1BTechNorth3
2CFinanceNorth2
3DFinanceNorth4
4NoneOtherNorth1
5ETechSouth2
6FTechSouth2
7GFinanceSouth1
8HFinanceSouth4
9NoneOtherSouth1
\n", + "
" + ], + "text/plain": [ + " vendors sectors regions sales\n", + "0 A Tech North 1\n", + "1 B Tech North 3\n", + "2 C Finance North 2\n", + "3 D Finance North 4\n", + "4 None Other North 1\n", + "5 E Tech South 2\n", + "6 F Tech South 2\n", + "7 G Finance South 1\n", + "8 H Finance South 4\n", + "9 None Other South 1" + ] + }, + "execution_count": 86, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df_sample" + ] + }, + { + "cell_type": "code", + "execution_count": 89, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "RangeIndex: 10 entries, 0 to 9\n", + "Data columns (total 4 columns):\n", + " # Column Non-Null Count Dtype \n", + "--- ------ -------------- ----- \n", + " 0 vendors 8 non-null object\n", + " 1 sectors 10 non-null object\n", + " 2 regions 10 non-null object\n", + " 3 sales 10 non-null int64 \n", + "dtypes: int64(1), object(3)\n", + "memory usage: 448.0+ bytes\n" + ] + } + ], + "source": [ + "df_sample.info()" + ] + }, + { + "cell_type": "code", + "execution_count": 83, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
player_idevent_dateevent_gamescoremedalteam
0744832024-08-15A3goldThunderCats
1744832024-08-15B1NoneThunderCats
2387262024-08-15A3goldThunderCats
3387262024-08-15B1NoneThunderCats
4671542024-08-15A1bronzeThunderCats
.....................
1217379102024-08-15B2silverGo Magikarp
1218251642024-08-15A3goldGo Magikarp
1219251642024-08-15B2silverGo Magikarp
1220355492024-08-15A1bronzeGo Magikarp
1221355492024-08-15B3goldGo Magikarp
\n", + "

1222 rows × 6 columns

\n", + "
" + ], + "text/plain": [ + " player_id event_date event_game score medal team\n", + "0 74483 2024-08-15 A 3 gold ThunderCats\n", + "1 74483 2024-08-15 B 1 None ThunderCats\n", + "2 38726 2024-08-15 A 3 gold ThunderCats\n", + "3 38726 2024-08-15 B 1 None ThunderCats\n", + "4 67154 2024-08-15 A 1 bronze ThunderCats\n", + "... ... ... ... ... ... ...\n", + "1217 37910 2024-08-15 B 2 silver Go Magikarp\n", + "1218 25164 2024-08-15 A 3 gold Go Magikarp\n", + "1219 25164 2024-08-15 B 2 silver Go Magikarp\n", + "1220 35549 2024-08-15 A 1 bronze Go Magikarp\n", + "1221 35549 2024-08-15 B 3 gold Go Magikarp\n", + "\n", + "[1222 rows x 6 columns]" + ] + }, + "execution_count": 83, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df_sunburst_test = df_eventplayers.copy()\n", + "df_sunburst_test['score'].replace([0], [1], inplace=True)\n", + "df_sunburst_test['medal'].replace(['not played'], [None], inplace=True)\n", + "\n", + "df_sunburst_test" + ] + }, + { + "cell_type": "code", + "execution_count": 90, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "RangeIndex: 1222 entries, 0 to 1221\n", + "Data columns (total 6 columns):\n", + " # Column Non-Null Count Dtype \n", + "--- ------ -------------- ----- \n", + " 0 player_id 1222 non-null object\n", + " 1 event_date 1222 non-null object\n", + " 2 event_game 1222 non-null object\n", + " 3 score 931 non-null object\n", + " 4 medal 931 non-null object\n", + " 5 team 1222 non-null object\n", + "dtypes: object(6)\n", + "memory usage: 57.4+ KB\n" + ] + } + ], + "source": [ + "# score debe ser int dtype\n", + "df_sunburst_test.info()" + ] + }, + { + "cell_type": "code", + "execution_count": 97, + "metadata": {}, + "outputs": [ + { + "ename": "TypeError", + "evalue": "int() argument must be a string, a bytes-like object or a real number, not 'NoneType'", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[0;32mIn[97], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m df_sunburst_test[\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mscore\u001b[39m\u001b[38;5;124m'\u001b[39m] \u001b[38;5;241m=\u001b[39m \u001b[43mdf_sunburst_test\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mscore\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m]\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mastype\u001b[49m\u001b[43m(\u001b[49m\u001b[43mdtype\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mint32\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m/private/var/containers/Bundle/Application/D724311E-15B3-480A-B49A-03F6726F1E0E/Carnets-sci.app/Library/lib/python3.11/site-packages/pandas/core/generic.py:6324\u001b[0m, in \u001b[0;36mNDFrame.astype\u001b[0;34m(self, dtype, copy, errors)\u001b[0m\n\u001b[1;32m 6317\u001b[0m results \u001b[38;5;241m=\u001b[39m [\n\u001b[1;32m 6318\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39miloc[:, i]\u001b[38;5;241m.\u001b[39mastype(dtype, copy\u001b[38;5;241m=\u001b[39mcopy)\n\u001b[1;32m 6319\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m i \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mrange\u001b[39m(\u001b[38;5;28mlen\u001b[39m(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mcolumns))\n\u001b[1;32m 6320\u001b[0m ]\n\u001b[1;32m 6322\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 6323\u001b[0m \u001b[38;5;66;03m# else, only a single dtype is given\u001b[39;00m\n\u001b[0;32m-> 6324\u001b[0m new_data \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_mgr\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mastype\u001b[49m\u001b[43m(\u001b[49m\u001b[43mdtype\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdtype\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcopy\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcopy\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43merrors\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43merrors\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 6325\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_constructor(new_data)\u001b[38;5;241m.\u001b[39m__finalize__(\u001b[38;5;28mself\u001b[39m, method\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mastype\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 6327\u001b[0m \u001b[38;5;66;03m# GH 33113: handle empty frame or series\u001b[39;00m\n", + "File \u001b[0;32m/private/var/containers/Bundle/Application/D724311E-15B3-480A-B49A-03F6726F1E0E/Carnets-sci.app/Library/lib/python3.11/site-packages/pandas/core/internals/managers.py:451\u001b[0m, in \u001b[0;36mBaseBlockManager.astype\u001b[0;34m(self, dtype, copy, errors)\u001b[0m\n\u001b[1;32m 448\u001b[0m \u001b[38;5;28;01melif\u001b[39;00m using_copy_on_write():\n\u001b[1;32m 449\u001b[0m copy \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mFalse\u001b[39;00m\n\u001b[0;32m--> 451\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mapply\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 452\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mastype\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[1;32m 453\u001b[0m \u001b[43m \u001b[49m\u001b[43mdtype\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdtype\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 454\u001b[0m \u001b[43m \u001b[49m\u001b[43mcopy\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcopy\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 455\u001b[0m \u001b[43m \u001b[49m\u001b[43merrors\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43merrors\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 456\u001b[0m \u001b[43m \u001b[49m\u001b[43musing_cow\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43musing_copy_on_write\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 457\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m/private/var/containers/Bundle/Application/D724311E-15B3-480A-B49A-03F6726F1E0E/Carnets-sci.app/Library/lib/python3.11/site-packages/pandas/core/internals/managers.py:352\u001b[0m, in \u001b[0;36mBaseBlockManager.apply\u001b[0;34m(self, f, align_keys, **kwargs)\u001b[0m\n\u001b[1;32m 350\u001b[0m applied \u001b[38;5;241m=\u001b[39m b\u001b[38;5;241m.\u001b[39mapply(f, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n\u001b[1;32m 351\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m--> 352\u001b[0m applied \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mgetattr\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43mb\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mf\u001b[49m\u001b[43m)\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 353\u001b[0m result_blocks \u001b[38;5;241m=\u001b[39m extend_blocks(applied, result_blocks)\n\u001b[1;32m 355\u001b[0m out \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mtype\u001b[39m(\u001b[38;5;28mself\u001b[39m)\u001b[38;5;241m.\u001b[39mfrom_blocks(result_blocks, \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39maxes)\n", + "File \u001b[0;32m/private/var/containers/Bundle/Application/D724311E-15B3-480A-B49A-03F6726F1E0E/Carnets-sci.app/Library/lib/python3.11/site-packages/pandas/core/internals/blocks.py:511\u001b[0m, in \u001b[0;36mBlock.astype\u001b[0;34m(self, dtype, copy, errors, using_cow)\u001b[0m\n\u001b[1;32m 491\u001b[0m \u001b[38;5;250m\u001b[39m\u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 492\u001b[0m \u001b[38;5;124;03mCoerce to the new dtype.\u001b[39;00m\n\u001b[1;32m 493\u001b[0m \n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 507\u001b[0m \u001b[38;5;124;03mBlock\u001b[39;00m\n\u001b[1;32m 508\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 509\u001b[0m values \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mvalues\n\u001b[0;32m--> 511\u001b[0m new_values \u001b[38;5;241m=\u001b[39m \u001b[43mastype_array_safe\u001b[49m\u001b[43m(\u001b[49m\u001b[43mvalues\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdtype\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcopy\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcopy\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43merrors\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43merrors\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 513\u001b[0m new_values \u001b[38;5;241m=\u001b[39m maybe_coerce_values(new_values)\n\u001b[1;32m 515\u001b[0m refs \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n", + "File \u001b[0;32m/private/var/containers/Bundle/Application/D724311E-15B3-480A-B49A-03F6726F1E0E/Carnets-sci.app/Library/lib/python3.11/site-packages/pandas/core/dtypes/astype.py:242\u001b[0m, in \u001b[0;36mastype_array_safe\u001b[0;34m(values, dtype, copy, errors)\u001b[0m\n\u001b[1;32m 239\u001b[0m dtype \u001b[38;5;241m=\u001b[39m dtype\u001b[38;5;241m.\u001b[39mnumpy_dtype\n\u001b[1;32m 241\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m--> 242\u001b[0m new_values \u001b[38;5;241m=\u001b[39m \u001b[43mastype_array\u001b[49m\u001b[43m(\u001b[49m\u001b[43mvalues\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdtype\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcopy\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcopy\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 243\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m (\u001b[38;5;167;01mValueError\u001b[39;00m, \u001b[38;5;167;01mTypeError\u001b[39;00m):\n\u001b[1;32m 244\u001b[0m \u001b[38;5;66;03m# e.g. _astype_nansafe can fail on object-dtype of strings\u001b[39;00m\n\u001b[1;32m 245\u001b[0m \u001b[38;5;66;03m# trying to convert to float\u001b[39;00m\n\u001b[1;32m 246\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m errors \u001b[38;5;241m==\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mignore\u001b[39m\u001b[38;5;124m\"\u001b[39m:\n", + "File \u001b[0;32m/private/var/containers/Bundle/Application/D724311E-15B3-480A-B49A-03F6726F1E0E/Carnets-sci.app/Library/lib/python3.11/site-packages/pandas/core/dtypes/astype.py:187\u001b[0m, in \u001b[0;36mastype_array\u001b[0;34m(values, dtype, copy)\u001b[0m\n\u001b[1;32m 184\u001b[0m values \u001b[38;5;241m=\u001b[39m values\u001b[38;5;241m.\u001b[39mastype(dtype, copy\u001b[38;5;241m=\u001b[39mcopy)\n\u001b[1;32m 186\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m--> 187\u001b[0m values \u001b[38;5;241m=\u001b[39m \u001b[43m_astype_nansafe\u001b[49m\u001b[43m(\u001b[49m\u001b[43mvalues\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdtype\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcopy\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcopy\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 189\u001b[0m \u001b[38;5;66;03m# in pandas we don't store numpy str dtypes, so convert to object\u001b[39;00m\n\u001b[1;32m 190\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(dtype, np\u001b[38;5;241m.\u001b[39mdtype) \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;28missubclass\u001b[39m(values\u001b[38;5;241m.\u001b[39mdtype\u001b[38;5;241m.\u001b[39mtype, \u001b[38;5;28mstr\u001b[39m):\n", + "File \u001b[0;32m/private/var/containers/Bundle/Application/D724311E-15B3-480A-B49A-03F6726F1E0E/Carnets-sci.app/Library/lib/python3.11/site-packages/pandas/core/dtypes/astype.py:138\u001b[0m, in \u001b[0;36m_astype_nansafe\u001b[0;34m(arr, dtype, copy, skipna)\u001b[0m\n\u001b[1;32m 134\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(msg)\n\u001b[1;32m 136\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m copy \u001b[38;5;129;01mor\u001b[39;00m is_object_dtype(arr\u001b[38;5;241m.\u001b[39mdtype) \u001b[38;5;129;01mor\u001b[39;00m is_object_dtype(dtype):\n\u001b[1;32m 137\u001b[0m \u001b[38;5;66;03m# Explicit copy, or required since NumPy can't view from / to object.\u001b[39;00m\n\u001b[0;32m--> 138\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43marr\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mastype\u001b[49m\u001b[43m(\u001b[49m\u001b[43mdtype\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcopy\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mTrue\u001b[39;49;00m\u001b[43m)\u001b[49m\n\u001b[1;32m 140\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m arr\u001b[38;5;241m.\u001b[39mastype(dtype, copy\u001b[38;5;241m=\u001b[39mcopy)\n", + "\u001b[0;31mTypeError\u001b[0m: int() argument must be a string, a bytes-like object or a real number, not 'NoneType'" + ] + } + ], + "source": [ + "df_sunburst_test['score'] = df_sunburst_test['score'].astype(dtype='int32')" + ] + }, + { + "cell_type": "code", + "execution_count": 91, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "player_id event_date event_game score medal team \n", + "10471 2024-08-15 A 2 silver Dog Patrol 1\n", + "70722 2024-08-15 A 2 silver Dog Patrol 1\n", + "70251 2024-08-15 B 1 bronze Dog Patrol 1\n", + "70341 2024-08-15 A 1 bronze Dog Patrol 1\n", + " B 2 silver Dog Patrol 1\n", + " ..\n", + "39901 2024-08-15 A 3 gold ThunderCats 1\n", + "40037 2024-08-15 A 2 silver Dog Patrol 1\n", + " B 3 gold Dog Patrol 1\n", + "40049 2024-08-15 A 1 bronze Power Birds 1\n", + "99995 2024-08-15 B 1 bronze ThunderCats 1\n", + "Name: count, Length: 931, dtype: int64" + ] + }, + "execution_count": 91, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df_sunburst_test.value_counts()" + ] + }, + { + "cell_type": "code", + "execution_count": 87, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.plotly.v1+json": { + "config": { + "plotlyServerURL": "https://plot.ly" + }, + "data": [ + { + "branchvalues": "total", + "domain": { + "x": [ + 0, + 1 + ], + "y": [ + 0, + 1 + ] + }, + "hovertemplate": "labels=%{label}
score=%{value}
parent=%{parent}
id=%{id}", + "ids": [ + "A/Dog Patrol", + "B/Dog Patrol", + "A/Go Magikarp", + "B/Go Magikarp", + "A/Power Birds", + "B/Power Birds", + "A/ThunderCats", + "B/ThunderCats", + "A", + "B" + ], + "labels": [ + "Dog Patrol", + "Dog Patrol", + "Go Magikarp", + "Go Magikarp", + "Power Birds", + "Power Birds", + "ThunderCats", + "ThunderCats", + "A", + "B" + ], + "level": "d76b7a", + "name": "", + "parents": [ + "A", + "B", + "A", + "B", + "A", + "B", + "A", + "B", + "", + "" + ], + "type": "sunburst", + "values": [ + 403, + 406, + 186, + 207, + 145, + 129, + 328, + 319, + 1062, + 1061 + ] + } + ], + "layout": { + "autosize": true, + "legend": { + "tracegroupgap": 0 + }, + "margin": { + "t": 60 + }, + "template": { + "data": { + "bar": [ + { + "error_x": { + "color": "#2a3f5f" + }, + "error_y": { + "color": "#2a3f5f" + }, + "marker": { + "line": { + "color": "#E5ECF6", + "width": 0.5 + }, + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "bar" + } + ], + "barpolar": [ + { + "marker": { + "line": { + "color": "#E5ECF6", + "width": 0.5 + }, + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "barpolar" + } + ], + "carpet": [ + { + "aaxis": { + "endlinecolor": "#2a3f5f", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "#2a3f5f" + }, + "baxis": { + "endlinecolor": "#2a3f5f", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "#2a3f5f" + }, + "type": "carpet" + } + ], + "choropleth": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "choropleth" + } + ], + "contour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "contour" + } + ], + "contourcarpet": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "contourcarpet" + } + ], + "heatmap": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmap" + } + ], + "heatmapgl": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmapgl" + } + ], + "histogram": [ + { + "marker": { + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "histogram" + } + ], + "histogram2d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2d" + } + ], + "histogram2dcontour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2dcontour" + } + ], + "mesh3d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "mesh3d" + } + ], + "parcoords": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "parcoords" + } + ], + "pie": [ + { + "automargin": true, + "type": "pie" + } + ], + "scatter": [ + { + "fillpattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + }, + "type": "scatter" + } + ], + "scatter3d": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatter3d" + } + ], + "scattercarpet": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattercarpet" + } + ], + "scattergeo": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergeo" + } + ], + "scattergl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergl" + } + ], + "scattermapbox": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattermapbox" + } + ], + "scatterpolar": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolar" + } + ], + "scatterpolargl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolargl" + } + ], + "scatterternary": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterternary" + } + ], + "surface": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "surface" + } + ], + "table": [ + { + "cells": { + "fill": { + "color": "#EBF0F8" + }, + "line": { + "color": "white" + } + }, + "header": { + "fill": { + "color": "#C8D4E3" + }, + "line": { + "color": "white" + } + }, + "type": "table" + } + ] + }, + "layout": { + "annotationdefaults": { + "arrowcolor": "#2a3f5f", + "arrowhead": 0, + "arrowwidth": 1 + }, + "autotypenumbers": "strict", + "coloraxis": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "colorscale": { + "diverging": [ + [ + 0, + "#8e0152" + ], + [ + 0.1, + "#c51b7d" + ], + [ + 0.2, + "#de77ae" + ], + [ + 0.3, + "#f1b6da" + ], + [ + 0.4, + "#fde0ef" + ], + [ + 0.5, + "#f7f7f7" + ], + [ + 0.6, + "#e6f5d0" + ], + [ + 0.7, + "#b8e186" + ], + [ + 0.8, + "#7fbc41" + ], + [ + 0.9, + "#4d9221" + ], + [ + 1, + "#276419" + ] + ], + "sequential": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "sequentialminus": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ] + }, + "colorway": [ + "#636efa", + "#EF553B", + "#00cc96", + "#ab63fa", + "#FFA15A", + "#19d3f3", + "#FF6692", + "#B6E880", + "#FF97FF", + "#FECB52" + ], + "font": { + "color": "#2a3f5f" + }, + "geo": { + "bgcolor": "white", + "lakecolor": "white", + "landcolor": "#E5ECF6", + "showlakes": true, + "showland": true, + "subunitcolor": "white" + }, + "hoverlabel": { + "align": "left" + }, + "hovermode": "closest", + "mapbox": { + "style": "light" + }, + "paper_bgcolor": "white", + "plot_bgcolor": "#E5ECF6", + "polar": { + "angularaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "bgcolor": "#E5ECF6", + "radialaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + } + }, + "scene": { + "xaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + }, + "yaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + }, + "zaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + } + }, + "shapedefaults": { + "line": { + "color": "#2a3f5f" + } + }, + "ternary": { + "aaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "baxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "bgcolor": "#E5ECF6", + "caxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + } + }, + "title": { + "x": 0.05 + }, + "xaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "ticks": "", + "title": { + "standoff": 15 + }, + "zerolinecolor": "white", + "zerolinewidth": 2 + }, + "yaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "ticks": "", + "title": { + "standoff": 15 + }, + "zerolinecolor": "white", + "zerolinewidth": 2 + } + } + } + } + }, + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6QAAAFoCAYAAABACjY7AAAAAXNSR0IArs4c6QAAAERlWElmTU0AKgAAAAgAAYdpAAQAAAABAAAAGgAAAAAAA6ABAAMAAAABAAEAAKACAAQAAAABAAADpKADAAQAAAABAAABaAAAAAAsW5ObAABAAElEQVR4Aey9B3xU55X3/7t3Rr0CEiBAiN4ExnRwwzbuvSaur53yOm2zm+yuEyebzTrZ5N1NvEk2yW7+GycbJ3Ec23Hcu407xvTem6gCAUJCXZqZe//n3GFAEkKoTLl39DufjzQzd+59yve5oPnNOc85hi0GGgmQAAmQAAmQAAmQAAmQAAmQAAnEmYAZ5/7YHQmQAAmQAAmQAAmQAAmQAAmQAAk4BChIeSOQAAmQAAmQAAmQAAmQAAmQAAkkhAAFaUKws1MSIAESIAESIAESIAESIAESIAEKUt4DJEACJEACJEACJEACJEACJEACCSFAQZoQ7OyUBEiABEiABEiABEiABEiABEiAgpT3AAmQAAmQAAmQAAmQAAmQAAmQQEIIUJAmBDs7JQESIAESIAESIAESIAESIAESoCDlPUACJEACJEACJEACJEACJEACJJAQAhSkCcHOTkmABEiABEiABEiABEiABEiABChIeQ+QAAmQAAmQAAmQAAmQAAmQAAkkhAAFaUKws1MSIAESIAESIAESIAESIAESIAEKUt4DJEACJEACJEACJEACJEACJEACCSFAQZoQ7OyUBEiABEiABEiABEiABEiABEiAgpT3AAmQAAmQAAmQAAmQAAmQAAmQQEIIUJAmBDs7JQESIAESIAESIAESIAESIAESoCDlPUACJEACJEACJEACJEACJEACJJAQAhSkCcHOTkmABEiABEiABEiABEiABEiABChIeQ+QAAmQAAmQAAmQAAmQAAmQAAkkhAAFaUKws1MSIAESIAESIAESIAESIAESIAEKUt4DJEACJEACJEACJEACJEACJEACCSFAQZoQ7OyUBEiABEiABEiABEiABEiABEiAgpT3AAmQAAmQAAmQAAmQAAmQAAmQQEIIUJAmBDs7JQESIAESIAESIAESIAESIAESoCDlPUACJEACJEACJEACJEACJEACJJAQAhSkCcHOTkmABEiABEiABEiABEiABEiABChIeQ+QAAmQAAmQAAmQAAmQAAmQAAkkhAAFaUKws1MSIAESIAESIAESIAESIAESIAEKUt4DJEACJEACJEACJEACJEACJEACCSFAQZoQ7OyUBEiABEiABEiABEiABEiABEiAgpT3AAmQAAmQAAmQAAmQAAmQAAmQQEIIUJAmBDs7JQESIAESIAESIAESIAESIAESoCDlPUACJEACJEACJEACJEACJEACJJAQAhSkCcHOTkmABEiABEiABEiABEiABEiABChIeQ+QAAmQAAmQAAmQAAmQAAmQAAkkhAAFaUKws1MSIAESIAESIAESIAESIAESIAEKUt4DJEACJEACJEACJEACJEACJEACCSFAQZoQ7OyUBEiABEiABEiABEiABEiABEiAgpT3AAmQAAmQAAmQAAmQAAmQAAmQQEIIUJAmBDs7JQESIAESIAESIAESIAESIAESoCDlPUACJEACJEACJEACJEACJEACJJAQAhSkCcHOTkmABEiABEiABEiABEiABEiABChIeQ+QAAmQAAmQAAmQAAmQAAmQAAkkhAAFaUKws1MSIAESIAESIAESIAESIAESIAEKUt4DJEACJEACJEACJEACJEACJEACCSFAQZoQ7OyUBEiABEiABEiABEiABEiABEiAgpT3AAmQAAmQAAmQAAmQAAmQAAmQQEIIUJAmBDs7JQESIAESIAESIAESIAESIAESoCDlPUACJEACJEACJEACJEACJEACJJAQAhSkCcHOTkmABEiABEiABEiABEiABEiABChIeQ+QAAmQAAmQAAmQAAmQAAmQAAkkhAAFaUKws1MSIAESIAESIAESIAESIAESIAEKUt4DJEACJEACJEACJEACJEACJEACCSFAQZoQ7OyUBEiABEiABEiABEiABEiABEiAgpT3AAmQAAmQAAmQAAmQAAmQAAmQQEIIUJAmBDs7JQESIAESIAESIAESIAESIAESoCDlPUACJEACJEACJEACJEACJEACJJAQAhSkCcHOTkmABEiABEiABEiABEiABEiABChIeQ+QAAmQAAmQAAmQAAmQAAmQAAkkhAAFaUKws1MSIAESIAESIAESIAESIAESIAE/EZAACZAACZAACQChEGBZgClf1epPIGCjqQVobgJaAvI6CATlsUWOtwQMBOW1ZdmwBZ5pAKkpBlJSAL/8ZU2Vx9RUICPdcB5TU2z45X3rRB+Q8/0+wJBHGgmQAAmQAAn0ZQIUpH159Tl3EiABEuhjBGxRj0ERhSo4VYDW1NiorAKOVAK1tTbq6mzU1gP18tO5qQxtbx0da3WOiM/MdCA7G8jLNdAvz0D//pBHIDfHgM9ny5jCjz4flWorcnxKAiRAAiSQxAQMWyyJ58epkQAJkAAJ9FEC+tctIB5Nv3gr6+ttHBXReeCQiM+jlvyI57PZXWDSRawWDAAKBxgYWmRgYAGQLh5WFc5+vy0imiLVXSvG0ZAACZAACUSDAAVpNCiyDRIgARIgAVcQcASoxP4cq7axZx+wv9zCQRGhLRJ660VTkVo0yMCQwQaKh4lgFY9qICihwTJHhvt6cUU5ZhIgARIggfYEKEjbE+FrEiABEiABzxAIBjXIxxBvp42du4Hd+yyUiwANeFSAdgX8sKHAyOEmRo8UD2qa4YQf+2Q/Ko0ESIAESIAEvEiAgtSLq8YxkwAJkEAfJqCJh9Q7eKTSxpZt4gndb6O6um8Cyc8HSoYZmDDOcLynISvsPe2bNDhrEiABEiABLxKgIPXiqnHMJEACJNDHCKgIlYS2qJUkRBu32ti63UZDYx+DcJbpZmYCY0cbmDTeQH6uiHbZc+pjcbezUOPbJEACJEACiSZAQZroFWD/JEACJEACZyTglFtpsbFZBKiK0GOSEZd2dgL5krl3/FgTpROk7IwkddJyNDQSIAESIAEScCMBClI3rgrHRAIkQAJ9mIBmx9WffQdsrF5vYd/+Pgyjl1MfPBi4/QafJHiyUTzUcEKdmQypl1B5OQmQAAmQQFQJUJBGFScbIwESIAES6CkBrQ9qhWxs2gasXmdJTdCetsTrIgQWzDcd7+gbCy3k5ABTSw3Ha6p1TpkIKUKJjyRAAiRAAokkQEGaSPrsmwRIgARIABqWq1lyV64B1m+SzaK0qBDwS2mYB+7z4ZkXQ07d1daNTplkYMY0E+mpDOdtzYXPSYAESIAE4k9A/lzRSIAESIAESCD+BIJBoL7RxrKV4Wy58R+Be3pUb+WlF5l49yMLIeESDZsomXerJPvwkaOnt7Z+ky3iPyT7TIHZM0xkZUh2Xu4zPR0Uj5AACZAACcScAAVpzBGzAxIgARIggdYENDS3ocHG0iQVokWyb3PsaBOFA4CQzPVghY21G2w0NbWm0Pa5njd2lIFlq4DjxzVDrg1bSrhkZ2lyIkPCbQ00inhfv7Hr2YVLJxrYsqNzj/PW7ZBkURbGjTEwd6b2x1DetivDVyRAAiRAArEmQEEaa8JsnwRIgARIwCGgoqulBViy0sIG8dC50gzNqCRFTnto06camHaOiRVrLOwss5GRbmC8iL3Bg4Dde2xHaBb0N5CbawgLGwcO6r5ZYJJkw1W75TofNNR21VoL23bY+PQtPmzYbOGQiNr+/QCtO9qVcjeDB8IRl6ulna6Y9qU/Gso7d5bsO5UxcI9pV8jxHBIgARIggd4SoCDtLUFeTwIkQAIk0CmBkBQQNSS1q3pEV6pAcqkWTU8HPnuPH79+LOR4NjudVAdv5kmpFRVzTz4bQtXJ8jQ2duySCavQhYF7bvdBPcSVlUC/fgY0bPnZlywRpjYqq2wRn1JnVX7U1DOqnuQly7sPbNIE02nTaagbvyKhvLq/dM6MsEhmLdNuAOSpJEACJEAC3SZAQdptZLyABEiABEigqwTUK7p9F7BoSUhCTrt6VWLOa5LESmpZmUBN7akx+GVvZW42UCtZfwOSgElNw3JzNYy2ycZ08YgePmo73t8D5XYrMRo+1/l9wuv64usWamrCx1MlodBn7/E5nk+tr6r7PdPkWMS0VMs8Ebj33emT+qu204cK1vr6yBkdP6pnU8Xscy8L/B7aytXqxQYumGs6Hl56S3sIkpeRAAmQAAmclQAF6VkR8QQSIAESIIHuElAhqgLu3Y9COFDe3avbnq+eSw1vtWRPZSxM2x82REJoRWyqaM4W8ekIUvFqqiCcLN7GOvFU6v7KV94M4eAh8W7mGTh/jomjx8JeTRWMEySJUGMn+0R17LqPdLZ4HseMNCQ015B9okCehO/q9XX10ke2zjEsjPXcPzwVxJDBEuIr4lf3mBYNMvDCq52H4eo4qkXcVhzuHa3mZuCdDyxs2ioJly40nTBjv4hdGgmQAAmQAAlEkwAFaTRpsi0SIAES6OMEbNFSEp0reyg1e27nwqk9KvVEZot3UgWhij9N6KMhvnff5sfLIgQPH2l/xdlfq9g0zbDXUxP3HBfvpO7tjHhrhw0FrrvSJ5loVRAaSJUxZEnfKgrHjjJRPNTA438JOUJytAjCmeeaePkNqZEq4jEg4bbPvyrK+4T3U/fHDizofEzXXmE6Ql09perp1Nc6X7Va8cqWFIef629TxF9qiuEI+gMyHhWoUyefXZRPlmRG23Z2j/2pXk9/pgL8iWcszJpuOomPImt8+pk8QgIkQAIkQALdJ0BB2n1mvIIESIAESKADAuoVrThiY+H7liP8OjjltEMa+qreNxWBKgZVzB46rOIQzo/PZzjiTwXqYWm7vWmpkpJiI7xP88SbV1xiYtM2C/sPAOdOCXsjda/mzt02Ro0wMES8jG+9J4JNPKCXXOCTPZoW1qwPt33lAhGIIoTV9NzKY/JYIuJYRGOOeC+1L32u43PCa1slQNp3wMYsre0pIrh9Rt0UCcUNBGwJ9TXwwXOhcNit9K+hsJH+dohQ1j2oKpw1nFeF8/0SrqtMVQTqXBct6VxoDiwMhxevlC8Eom3LV1nYURZer8IBLBMTbb5sjwRIgAT6KgEK0r668pw3CZAACUSZQNmecMipeiG7arp38m0RsCrwNFL1c/f6JCzWOunB1Hb0vX6SXVbrdI6WUNdKCZNVYaYeUxVpV4mI/O/dQadMip6flibZaCUMdr8IRPVCqhj9y4uWk802I8PGZ+7y4YPFKn4N5Evo7a7dp0SeEzYrXlo1TeaTLYmKdG9ntZRiOXDQworVUjtVwndbJNxWRaP2H9lXqkJaf6641MSb71jQkFcVvcPFyzr/fBOPP21h+04bC0SAHzikx03Juithwk1hj6x6bd/90MJIEcDapma9/f2TIRljuI+jkgjpbFbqJDM621k9f1+TNWkSpqki9C+U/aVq+iUCjQRIgARIgAR6SoCCtKfkeB0JkAAJkICTjVazw+peQxVM93zKh3mzTXyy7JTI6wyTirbWobjqZVWPYSSkVq9VQaqhsovFk7lUwoBLpUTKbAkfVeHaILU51XuYlSmeVNmzGjk/64SX0xG6clBLq6hpu80SWpubK/tERTjrtSpYI6YCVr2Yqo7VMzlU9pauWisnnTAtyZKepjVBRSTKddqP7td0TLylbyy0sGC+iftF9B4/Ht53qll1V0oZGLUPPrYcz6uKzHc/slAlQleFeMTUK6o/ra01i9bH2z9XcTtBkhk5YcTt34zy67XiUd6zP4QrxRvdP1/3w0a5AzZHAiRAAiTQZwjwT0ifWWpOlARIgASiS0DF49qNNj5uFUb67qIQrpc9mZslEY56FbtrKiA1PFf3dEZMPZJle4D10peaZpr97N0mfPIXLBTU0ihhEXtKkNpOEiBVeo7HMyvsyYu0F/aCSh8iOPfulzBe8bpG6qKqsNJ9rGobt9iYPNF0PJ6799qOp3LCWBMffWLJeGzZ86l1RmWe4dOd31ojVPeYqqjW0F0Vu9U1Mu4Tob26z3TLtlNza3Vpr59OHBsW2Ycqet1UlxqoFm/p089ZuHCegcmTTDDhUZew8SQSIAESIIF2BChI2wHhSxIgARIggc4JqFdRQ0p1H6YKs9ZWXi7CcZONKyVs9ennu+YlbX29isWIdzNyXEVqsSQfipgKUEuaVuGo4cF6je7vPFQRHoueP0T2pqrp84yMcIKgiJdUvaCRREI6Vg35LR5qO+G3mSIiM9LDMai6D/Qp2e+pSYKGFhmyL9SWOYekn3DbmujnTKb96k/Y4hPTqqJw264zjykymmg/fvSJLSHIFnTvropShvBGmzDbIwESIIHkJkBBmtzry9mRAAmQQFQJqMdPvZevyx5JFXYd2eKlFu66zYfzpCyKPu+O1Z/wdra+pq4uHPra5tgJUamCdLfU6xw53HD2Z+bmhMNWM0WEqmmd0JAMQWuLahZbtWPVkkzohNNUBfWrb4eccipHjobbSmn1l1FDisMJgtoK73BL7vldKNl98yQMefmqxIxzl4QZ/7EihGsuM1FYwBBe99wZHAkJkAAJuJ9Aqz+77h8sR0gCJEACJJA4AipGt263nb2PZxvFexK6e+M1JrZsFwEomWq7aqfE5ylhpZ5GDeNtbY4nVfaNaliuhvDeer2BB+7zOfs6NRus1u50TEJl33z3RIKhEw0sXnqqbT20d5/+nDrWfGK/6YnTPfEwSZIZHTyY2KGq5/qvkvDoIkngVDqeojSxq8HeSYAESMA7BChIvbNWHCkJkAAJJIyAhul+LN7OdSf2cZ5tIFq7crUkvrniYp8T9nq28yPv14moUW9fa1NBqgl7NKut7sFUUxFaLUmD1DTpz5/+YkG9og3iEdX9mvp+xHbuOvU8cizZHidKMqOX3nCHkv5QEjcdqzJwsQhThu8m253G+ZAACZBA9AkYtlj0m2WLJEACJEACyUJAs8S+9lYIe8ST2F278xYT+8Vzp4mAumJaR3Ow1Aldt6HdnyYpnxJJDNSVdvrSORPGGZgx1cQTz7hDkEbYlxQD11zhY7KjCBA+kgAJkAAJdEigberBDk/hQRIgARIggb5IQBMH1UgplaclsU9PxKgye3eRhSmTjNO8nmfiqSVgThOjevKJLLVnuq4vH1e+2xOQzOhszPWe0aRQ6uHmd99no8X3SYAESKDvEqAg7btrz5mTAAmQwBkJaEmXo8dsPPVsSMIvz3jaWd+oOAyskDqel0noLi36BAYMgJSjMbBsZTuPcvS76lGLVXLvqCg9JrVx9J6ikQAJkAAJkEB7AhSk7YnwNQmQAAn0cQIqHMoP2U6NSc0y21tbtsKCFbIxX/YU0qJLoHS8JDOStXKz6R7fJ5+1pDSM7dRldfNYOTYSIAESIIH4E+Cng/gzZ48kQAIk4FoCul90734bL7zatT2fXZ3Iux9ZKJV6noMGdvUKntcVAhNl/+jq9dFdq670291zbBnii3JPaYkezdZMIwESIAESIIEIAQrSCAk+kgAJkEAfJ6Ce0Z1ST/KVN6MvcLTG5/KVFhbMZ+hutG6z8ZJZV7MSHyiPVouxb+f1t0WU7qUojT1p9kACJEAC3iFAQeqdteJISYAESCBmBAIBGztEjL4lNTtjZctX2wi02LjkQv7piQbjyeJx3uHCZEZnm9vrC8OilHtKz0aK75MACZBA3yDATwV9Y505SxIgARI4I4GAhFDuloyosRSjkc41627pBANDiiJH+NgTAv37AQX9gaUr3L1/9ExzU1G6c7fNREdnAsTjJEACJNCHCFCQ9qHF5lRJgARIoD2BYNDGvgM23hCBEA+rrAQWL7NwyQX889Mb3pMmmJJ4qjctdP3anBzg6stNZGZ0/ZqunPnmO5aUE2L4bldY8RwSIAESSGYC/ESQzKvLuZEACZBAJwS0zmiF7O18NQZ7RjvpFqukDEyjZO9dcBH/BHXGqbP3Jkkyo7UbYv8lwiTxZt91mw/qkY1FqPWrb1k4dJie0s7Wmu+RAAmQQLIT4KeBZF9hzo8ESIAEOiBgS6TnsWrbyXzawdsxP/SeZN1VsVM8NOZdJV0H48YYaGjSbMixm1pmJnD9VSbOm23inQ8sPPnXEPJygRHDjah3+sJrFqrkXtR7kkYCJEACJND3CFCQ9r0154xJgAT6OAH94F8v2VlfFCGQqMQyVVXAR0u0Nimz7nb3dgwnM4qdelPBe8/tPqgH/c/PhCRxki3PDSxaauH8OdEXpFoSRkVpvdQrpZEACZAACfQ9AhSkfW/NOWMSIIE+TkD3jb74WggNIkoTaWvWiQhpsHHZxfxT1NV1yM8HCgsMLFke/XDdDNkjqntFdX/vh59Y0HDahlYiUevTZmcZyJU9pdG2RunnlTdCCfuCJNrzYXskQAIkQAJdJ8BPAV1nxTNJgARIwPME1OulGU6PiYdSLT0dyMuTJ0bsPG5OR2f4paG7E6Se5vDhZziBh9sQKJVkRocqYrNWGXIvjJSQ3JdEGG7ZdnofpmnApw7t6DtJnTlqrdrXJdGR3qM0EiABEiCBvkOAgrTvrDVnSgIk0McJaHjuoiWa2VRAiAA9b7aB224wMWeGiVuuk8Q1UkYk3lZ9HPhwsYX58xi62xX2EyWZ0er1sVFs+iXFkhUW5s0yYZinC9Kxoww0twA1NV0Zac/OKZNSMHo/BMSLTyMBEiABEugbBChI+8Y6c5YkQAJ9nEBQxOiW7bZkZg1/0J80zkROjoEnn7Wc+qOvSKbdC+eaSEuLP6h1G23U1Nq48lL+SeqM/hgVhJrMSL9QiJGtkjDqZsmAfPnFPvhTwp2oOJ043nCyIqtYjLWt32TLvQoRpbHuie2TAAmQAAm4gQD/+rthFTgGEiABEoghAU1idLTSxrsfnhITmhhn2apwUqMUER4t4vlSYTi0KEbxmGeZ33uLLKjgGjniLCf24bcnTwR27j61hjFBYRt46z0LfnFY33+nDzdfZ+K+O/w4X7Lt6hpt3xkfz+X7EspdWWkx825MFpmNkgAJkIC7CPjdNRyOhgRIgARIINoE1NOk+0Zbmx4LBgBNZHPFJSbe/9hC2V45RwRJIkzDQD8Q79tFc30o2y3uXFobArrPd/BAEy+8Gns2AbkvXnvbcmqP9utnSKIhW7yysrdTtOjQIQYyMw0cKLdjnhTr9Xds3H2bjdTUxNyTbRaAL0iABEiABGJGgB7SmKFlwyRAAiSQeAJBEZ5vLAyhrq7tWFavkz2kc0w0NdvYusN29pGqGC2RpDaFhW3PjderDRKqqbVRr7qMf5raM58kIbMHD8fHOxnpW/eU7pSSL7v32JL4ysBdt/pw49U+nDPJEK+pDyXFkTNj86j37Fvv28y8Gxu8bJUESIAEXEOAf/VdsxQcCAmQAAlEl4CK0TWyZ9RJYtSu6d17bWwTIXrt5T5o+K6GY161wESBJDYaJmG7085JjFdKxzGyBBK+227AffylCtJ1MUpmdDa06kW/7XofDlYAv308hGdfsvCyZOJdMN8Hs4PkR2drrzvva5KjdfJFRaLq5XZnrDyXBEiABEigZwQoSHvGjVeRAAmQgOsJVB+38cmytqG6rQddJp6vV94K4cXXLUeIVtfYWLnGhnpPE7WXVL1iHyyycf4cZt2NrNXokQZaJIy2bG/kSHwfSycYOHzUli8tQs5eY+19fzmcfaa5ubH/4mKR1EStrLK5nzS+y87eSIAESCBuBChI44aaHZEACZBAfAm88e6ZxejJkUiYbkASGqVKYqPa2vDRcWPCAuTkOZEncapVummrjaPHbFx9Of9EKXr1YO/aHVmE+D+mSLaJWg35brW/eNDA8DjqG+IzHk20ZMRe+8ZnMuyFBEiABEigDQH+tW+Dgy9IgARIwPsENGHRR+JVqpI9gF01DevVxDnXXGFiYAGwSrykrc0vouT2G30oHtb6aOyevydZVkuGGRg/NnZ9eKHl3FxgyGADnyzvwpcLMZrQNsmsW1JsOGufnQ1Mn2rgpmt8WCzed/0yIx6m9/JHUkNXEy7RSIAESIAEkosAs+wm13pyNiRAAn2cgJZ4OSLhlWvWtxWUXcGyeKle08F14hnVupRan1L3pcbDGsTzppl/580ysXV74sRYPObaWR+Txps4VGHDin1y3TMOo/IY8PFSC1de4nOyMh+T8Nm337fEa2ujYACQk22gQhIuNTSesYmovLFGviQZVWI7Ap3e0qggZSMkQAIk4AoChi3mipFwECRAAiRAAr0moP+j//mvIWiG1GjZeXMM1Eg47zAp+fHmuyFnL596L8sPIeYeq6sl464p20lffbNvitLP3hOu/1m2O1qr2fN2DElg5PdJiLd4KTMzgSsvNZ17olLCq/PzDUekbpdEWbG03Bzg/0iGXwrSWFJm2yRAAiQQXwIM2Y0vb/ZGAiRAAjEjoEJBQzujKUY1u6tP/lLovk59nDjWFCHiw2WSYXWElIiJtWnW3aGDgQnjY92T+9ofOcIQj7QhdVndMTbbCotRn3xBcKtk3dXQ8N89EZIvQCy8+FoIF80zkZYW27HqFyN6jwelNiqNBEiABEggOQhQkCbHOnIWJEACJOAkntEsuVEzCdXVPYy6d089UypEautsJyR4204L22VvYaytqUmy7i62MW+mdN7HbPJEOGGxbpv2iBJDyr0Ary+0UF8fHt0BybqrIbxTJ8f+Swq9x2tr3EaF4yEBEiABEugpAQrSnpLjdSRAAiTgIgJB2WP4wcdR3mgoWVWXLBfRKY/V1cBLUh4mJcVA0SDDEamDBwEDpG5prG3rdhvlB21cf1Xf+ZOlyYOKh5hYstI9ocrFQ+F4QIMBG6mpkNqgp76Q0HuheKjhlAvSEOtY28IPLdYmjTVktk8CJEACcSLApEZxAs1uSIAESCBWBHTfqHortTZkLK1Qsu9qhtUXXxORJCJVa4bOlaRDu6Se6a6yU+IkFmPQBEe6d7BUSqBs3BzbvtqP3xAdnCV7JrOzgPR0A+kSlpqerqVy1BsYGYshSZ9sJ4xVQ6fVk6xJfmp66MkrlWRGByWZUVDacovNONfEDlnnjVssx0t+6YU+J3x22jkGzpkk4nmFhTUbwvdGrMd8qALQ7L9aokhDyWkkQAIkQALeJUBB6t2148hJgARIwCFgiQbQLKixttwcA2+8Y0n5DwPTpoQTHa1YbeHiC0SUxliQaobf9xaFcOFcM6aCNDMDGCxlVgr6GxhUCCeLbHaWgcYmEZsiDlsCBprkuYYSN4rgDIQMqCzVsjiFAwzxIIsXMVVEa7p6EQ15Hq7hWVVt45BkotUfzVobCXU905pNmiBe6MVR9nifqbMuHl8q3tqrZP+whua+LEmmLj7fxOfu8aHiiI2nng85XnQ4NLrYYC9P03t+3Og4uGN7OU5eTgIkQAIk0DkBZtntnA/fJQESIAFXE9AyLCtkT93yVbEXpBEQV0h2VU0so6LsuitNR5CES8ZEzojd4+WXmMgU7+SLEj4cLRtRAgwfZmKk7I1U76dmjVUP3N79Nrbvkr2yu+weh4dqe6NHmk4dzxHFwFDJVDygn4H6Bhta+3XvAX1sW9ZF92jOP8/EH550lyBV3rpHVD2lKrALRICvXGNh9XoLmvAoETZzmonZ03V/c2L6T8Sc2ScJkAAJJBsBCtJkW1HOhwRIoE8RUM/db/8YPXHWFXhae3LOjLAo6S/i6vV3QrjkAh/y88SD2AIpDWM5NUu70lZ3z1EP5H13+qDeuvUbI+Gy3W0FGDvawHgJ99RMwVXHgd0Sdqwe2M3bet5md0YxdbKJC+aYUDGcJ55nFb9bpWSKhsReI6VuNJvsh4vju65dHX+erLMmuTp8BF1aZy0XM6LYRJkwjoV9/v9IfVT5koJGAiRAAiTgTQIUpN5cN46aBEiABKQkSDgD7oZNsfmgfzbE5802HO/sOBF3KhRXr7OhYuXSC0289IZ4zWRYgwdCEhKdraXuvT96pCEC2MRv/yQexG5MffBgYNI40xGix0XwrZP9ji+9GUKtPE+kaWIoDYWdLPsw+wk/Df99WkJgVfB53fr1A6642MTAQsMJ81XhH20rlfDmiyR82M/o3WijZXskQAIkEBcCFKRxwcxOSIAESCD6BNSL5oawzqsvN/HeR+EQXg3p1ARAi5fZUDHSP9/ATvH6qchSAR0tWzDfRI4kGXpBEyydxTQU91zZ86pj2SQe0FffCmGfhMq60UqKDXz6Zp9kqwWOVgLr5cuGWHkWYzp/w5Z9xibmzjSxWbIkl+22cOlFPvzpmRAC4kWPtt0vXvMc8drSSIAESIAEvEeAgtR7a8YRkwAJkIAj7t6R0hfbJMwzUaahmEMkAZB6Qs8V8XFYkttoYh8N4Z0yUQSjlC5RYTp7hu6ZRFSTEWlN1PvuNLFKvLJr5KcjGzNK9zsayEgzsEgS4Dz7svv2ZHY07sixW6/3Yc5MwxFwuk9Ykwl5wfKkdu1l4hXVJFjvfBCScOTwqHX/r+49XbE6+vMYN0Y88yJ4U+SLDxoJkAAJkIC3CDBZurfWi6MlARIgAYdAXb2dUDEaWYappabs3xPP41YbwyRhz9vvWxgu9Si1JuViSXykZTlysqNfqiUk2lK9sjOnmvC1EyHDi4HbbjBxvuzRXLbKxte/E/CcGFW+KqC/8S9BqUVqy1wM3HydKV8ARMi78FG8olNKDdx5m88pf6NrdOjwqXEekjI2g6WGbSxs2w7NXBx9oRuLsbJNEiABEiCBtgToIW3Lg69IgARIwPUEAgFNwGNh63YXDFVESIkkrNEanVqfUsNitQyM7iEtkL2Rs6ebeEX2aVoRrWBHV5BcIvtVdd/lc69YSJOMthdJdlpNVLRMsg7/8SlveUTPtpr3firsMS3bAyxaEg6RPts18Xxfa8RqiK5+UaDe3AtlLfrnw/mSIlXK31x7hZQHkuOfiNc8FjZ+rNx7spdU+6KRAAmQAAl4hwAFqXfWiiMlARIgAYdATa0te0fPvncyEbiyRJiqmRJ/c72UhNHandU14WO6F3KHlFCJphnSz313mNi5G5g4zpD2LfzyN6Go7leN5nh725Ymj/rq//VLKRmpU/qJhc3imXaLmRJGnSrj03JAjsmXFfPP80GFqk/WaftO2xGn6jmNlX3mLvlyRDzyNBIgARIgAe8QoCD1zlpxpCRAAiTgCDwVJVslUcyHIkhOfvh3GZtZ0w1sEwGiHlItX9LcHB7g9KkG9pXbOBKlDLKZkkBJM+5qKKgmeFq51p1CPdrLM0u43iohvFqyRvk2yB5dt5p6LA3RiHoPpEt5lljes1MmGbhwnghg1iV16+3AcZEACZDAaQS4h/Q0JDxAAiRAAu4loKGvT0lJEP2A/9m7fbjhai2p4b7xLpe9m8dFLGlmXU00owmQ8iV8c+MWG+dKDc4hkkW2t6Z7Re+61Ye6euBvHwr0GTGq3JZLSPJD3w86yaLuuMVEyfDe0ozd9VqbVsWoelBvERE9c1rsPJialThkxa792FFiyyRAAiTQdwnQQ9p3154zJwES8BgBS5x/azbY+Fj2D6ppFttzzzElo62BI0dtyThrSYkVd01KM90elrHNm2WKF89GZqbhhG7qPs93JUtwT22O7FWcJqVcnns1hLff63k7Pe3fTddddpGJWyQj70pZ/xXyRYCbLCNDar+ON9AsonSzlNxJE+/+bTf68O5HIew/EJuRnifJrKafYzhf2sSmB7ZKAiRAAiQQTQIUpNGkybZIgARIIIYEQqK7NFFPXV3bTvzyIV+z3Z47WcIhmw1s2GxhrQhXN5lmiH1ZEh1puZa7JAurJjqqF8/mKNkLuUG8Wt2xKxeYGFRg4OePBqWkSPeu7U4/Xjp3uNQv/dsH/Kg4bOOtd10i0GUPqZau0S9SmsRDminiVO+BIUVSjkdCt599KTbj1Hqk993hoyD10g3MsZIACfRpAhSkfXr5OXkSIAGvENBan3v22c4H+s7GrN6oaeIdUpGqNUpjldG0szF09N7gQUDpBMmIK2G7KpZ3SYKjG64ynXDbhkYbS1ZIqKWE93ZmmkVXM7Xakqn34R9JtiTaaQS++6Afusf4tbdkX2njaW/H9YAmuFJh+Os/hJy11f3DWrd27QYLC+b78Ps/xy670Y3XmBg+jKG7cV1wdkYCJEACPSRAQdpDcLyMBEiABOJJoKXFxhvvWCJKu9bryBKIMDUxoJ+BXXslAdLHlpMQqWtXx+Ysv+wl1eywW3dYuPJSnyOYNfNu8TBAM68el2y86jXtyHJzJWuvCNgKqWv5k/8+i3LtqIE+dOyr4ikdKvVKtfTOmXjGC8f/EUH6idSj1Qy7arffZKJQvNsfyP24cXP4mHrNCwukZmlF9EY1ssTAFZewBEz0iLIlEiABEogdAQrS2LFlyyRAAiQQNQJ19TYee6L7IY7qmdS9liOGm9h3QDymKyxUVkZtWD1qaLTsK82V/a+r14UFiYZYXiclYiqPhWuZHihv22y/fipGfZJZ2MKj4m2jnZ3A5+81MWGsDy++HkLNibI7Z78q+meo0FRhuEdCq/PzDBT2N7Dwg5Dci4B6UK++zESaZOGtlyzBL7za/fu7sxF/7l6fEybc2Tl8jwRIgARIIPEEKEgTvwYcAQmQAAl0SkD3jq5aYzlhrZ2e2MmbeeJhPHeKicmSAKniiI0Vqy3s3tvJBXF6K0XEiNYr1QRHtbI3VrMGv/haSPYdhsMt1TN6kxxbL9l5YxniGafpxrWb++70YfIESfz0cmLDdzW7su4b1lJFWjtVs+6aknVZS9fMmmZiv5QBUuFsRzk77lxJpDXjXAMmI3fjet+xMxIgARLoLgGWfekuMZ5PAiRAAnEmYIsg3SL7QXtjGg6rYZK/eTzk7EW9/GIf7hSRMFnqNibKtBTM1ZKgaN1GG9VSIsbSjbJqWtNGTOtXqmd0swgZilEHSbd+aV3WMvnSQRNK6f7bRFn1cRvPvxLCOx+ExWj//sCnbvJhpGRafvblEHJzDBSI5zTatmWb5SRUina7bI8ESIAESCC6BOghjS5PtkYCJEACUSdwtNLGk89GN5xRB6ne0umyz9SQrya3SDjsUkksFE+76PxwKZhBhYZTEmSSePN27LKxRcqDqH3qZhPHqrhntLdr8g9f8TvJpJ55Ue6h+C7xaUPXvZ2aJXm1lKjRWqrqCS8eCvSTvc7rYpAZ+q7bw/uoTxsID5AACZAACbiGAAWpa5aCAyEBEiCB0wlosh8Nc1zfzdIop7d05iOaaEgz8+blGijbbeM98aSqVzbWViSJdw4egnjIAK1XerDCdl5rv7q3MD0dkk2XCYyisQ7ffTBFsu7aCa/ZetdtptTLPfWlQ2RupiQ2Kh6imaQjR6LzOHWygfOlLqkmTqKRAAmQAAm4kwBDdt25LhwVCZAACYQJSC3HMsmSG0vbWWbjr+I9e/3tENKlVuQX7vPhmstNSUITy17DYlR7qKmVPbJrT4nRmdMk+Y1kYqUYjR7/7z8SQOGA8BcP0Wu1+y0dlcRVJyKyT16siY/uEG/4nBnqrY/uvb5Fwr1NftI5yZpPSIAESMCNBPjftBtXhWMiARIggRMENCNunST7iYeVi7dS61c+/UIITU3AvZ/24ZbrTSekMh79ax8lxcCMqSZ+9j/0jEab+S8eDWCmJPnRkkCJsuWSTEtr5fqkBJCKz9kzDNx6gw9676lwPE8SEUVTlDY3A0ck5J1GAiRAAiTgXgIM2XXv2nBkJEACfZxAKGRj8TIba9Yn5gO1hsxqZt5zSg2ndMjajSFs3hq7RdEyIHfdauLlN228+S7Lu8SC9FWX+XCthEM/8dcQGhtj0UPX2uwvpXwul3IwmgH3rffDpYj8KZJR+Zpw1t0ly6N3z0+bamCueF+1Di6NBEiABEjAfQQoSN23JhwRCZAACTgEgqLJ/vJ8yKnPmWgkU0SUagIky5L9fxIGuXxV9ARDZG5XS5iw1qP85aP0jkaYxOLxb7/gR6Z82fD6wjhsFD7DBC672ITW1l22MpzYKHKahokHZfnr6iNHev+oZWfuuNmHFBG8NBIgARIgAfcRoCB135pwRCRAAiTgEKit03IniRMNHS3D2NEqTA1kZRnQvadaSiYaNlHCOFXwfuPhQDSaYxtnIfDI9/xOcqFNUt/VLaahuuNGm7LXFaiSMkD6xUcoSt9N3H+XiZzs6JeWcQs7joMESIAEvEyAe0i9vHocOwmQQNIS0JKcWkPSbbZ9p42nn7fwloTUanbcL9zvw1USApqd3fOR6rUXzDXx/GsM0+05xe5dqWt44TwDGZLEyg2WI/fSXbf6ZEwaWmtgipQkuu4K+YgiSb2iYXujnL03GmNiGyRAAiRAAmECFKS8E0iABEjAhQQC4ijcuy86H8ZjMb395cDLb1j468sh6Fjvv9OHm641MaSo+71pWY59+218siw63tbuj6DvXbFijYVtO+CUREn47EV03nCViWrxiv7vn4J4f1E4sZbuYR5VEp2PKWV7Lec+TfhcOQASIAESIIHTCETnf/rTmuUBEiABEiCB3hDQ/W77y90rSCNz0yzA73xg4XdPhFBxRIWFD5+W/Xrjx0bO6PxRBezwoQZ+9qsoxWZ23h3fbUXg578OYsRwA4MHtTqYgKcDpcRPWpohiay0/m04rFYfj8q9lRel0kN79oNJjRKwtuySBEiABLpCgIK0K5R4DgmQAAnEmcCxattTHp0GSUb0iWQEfvSPIWzdYUn5Dh/ukbIxmuG0M9NQ3WWrLLRQj3aGKSbvaVj40pUhzJNSK4m0kERqp0gGXE1mFDEVoqNKDJQfPPWlTFqalASSsjU9CeO1pA+Wf4nQ5SMJkAAJuItAYv8KuYsFR0MCJEACriDg7B/dY2PQQOC2G0wJqzQwsNAVQzvrIPSDv5apeezPIcnEa2G8JEH6zN0+XCB7A9vbyBG6h9HAH5/2zt5Rn6/9LLz9+k9/sZxkP2NGdv7FQSxnWXkMOHzUdvYiDxsKZ2/rp2/yYf1mCxWHwz0PL5Y9prf5UDTIEPHas7HulbBw/bdFIwESIAEScBcBZtl113pwNCRAAiSAlhapw/mehfxcAyqAyg/ZmCN1FDdstrFjl/c+UauYmCb1TAcWGtiz18ZHn1hobALuvM3E0hU2nn/VO4L0H7/iR12D7Hddbjnrod49r9vN15mYPc3EU88lbg9vaqoKURNDi6TmbW249u5uuVc0dF296Jrd+cPFFrZs6/n9XzIcuOpSH7QvGgmQAAmQgHsIUJC6Zy04EhIgARJwCKgX59E/hHDpRSbWbrBw8JDssxRRpyUxFr6fONHQ2+UpLBBhKqVdxowEjlXJvkFJWvP3/+StMi+633HOTBPzZhrIzDSccGMVp2Xi0fay/fQHKZJMKIQ9LspGO3QIcNl8nyQ7svHOhxbq6npHWJMkff5eH4yeOVh71zmvJgESIAESOCMB2bVBIwESIAEScBOBevHAtbQAgwca2C1eUsDGuZNN2ZtpIz8fmCveUvXyqMd0124bpnhRNVTW7XbkKKRcjIXFUubl6gUyn+1uH/Hp49PQ0pffCOFQhel8YaAe0r/5vB9NTeI1XWFhiXh8j1Z6T5yq1/pc+bJgz77Ef+Hhk08m5802MUlq0y5eamH9pujwbBKvfEMjkJV5+rryCAmQAAmQQOIInL6pJ3FjYc8kQAIkQAJCoOIIkCn1IQMB2xGemglVP5Rv3W7jIglr1CRAL78ZwqQJBvIl+UvJMAOzZ4TdPpq1NtPlH7g1OU1ujoFf/75VFhsPrrx67p5+PoR//G4AT/w15JQo+d43vfk9r4ZND8g3MKB/4hdCv6wYKN70J58NRU2MRmZ1RL5QoJEACZAACbiLAAWpu9aDoyEBEujjBCxxUB2QGp+DJXmL1vpct0Hrc9pOSKh6RVNlT92xKvGZSlmMY8dsZIu3MRC0nZIWKvSuvMTn7MPTTKRXX27CMMMfwNXrpO+7wc6ZFPb2umEsvR2D7nGcea6JBRf5nC8IdorH2qu2cYuNc0oT/7HgPalD+qzUt62piT7JfQfk3453lyj6QNgiCZAACbiAgDe/ynUBOA6BBEiABGJBQEtfHD1mOfvc2osbDeM1WumFIYPFcyphuxqCaMrxWdMMrF5vITsLsk/TRJWUjlHhevklJpqbJVRRju8os7FdQn+1rEajhC9qm+1NzxvQL+yp1euibWNHQ+qOeiDG+AwT1z2Iuh92whgTP/uh6exx1H2kf37WRqV8SeBVe/v9EP7hKz6891FiZ1Bfr/3HZqPn4aMWgiGfU2YmsbNk7yRAAiRAAhECFKQREnwkARIgARcQ8Mv/yloGQ/e7dWSaZfTaK8TzKZ/Xd++zUVsrNRzFS1fQXzym1UDZXgtTJhkoKTbw+kILY0YZjmDdtNXCYQkFvkrCIVWQzpXEPFr7URO9rF5nY6cI1Yhp/cfRUgZExbG2vXhZuPyGPlfvUut6kZFruvo4bowhYzYcYdzVa9x0nvK7/GKfk/1YQ6eTIaFRhG+ZZLWtrTecjLbbd566HyLvJ8Oj7mP2tfpSJxnmxDmQAAmQgNcJUJB6fQU5fhIggaQioGLvTGJUJ6p7SbeJWGiR/aXq/VQLSKLaQsn++vrCkHh/wt5RFaDq3ewnSZCcZEh5hmTpDYtMvUY9oM+/quVXpLRGu7qOgySZ0oo1FvZLeOPgQcC8WSZekHOL5Hm/fgbWSp3RnpqOYcOWxCfO6en4tQzP41I3VWtkJkPJl/Yc9L6ZMNZAsgpS/bfSIj/pLglfb8+fr0mABEigLxKgIO2Lq845kwAJuJZATd3ZxV44jPZUSKN6SR97QsToiRxBmgl2zQnRWH0c6C/iU+t9bpRsvWoZkjCpWUJ1NWRXQyP1Q3prGzxQPaEm8nJsqDhVAazm8xldqgNZUowOy4doNuDh4rn91WMnBtq6U488f/Ut74rpriB+7a0Q/u27KY4HOBkFtzLQOqfpaaf+/XSFC88hARIgARKIHQEGrsSOLVsmARIggW4TqJKERT2xiBjVa18T0RTZG6qeLhWlN15j4tYbTKeeqYrMQ4c7Fr6a+EjDclevE+Eln9nzcoFIZtLZ0w1Y8p4KzssuNjF9aji8s/V4c+X8qVKipiMrHgonxLinc+yoTR6LLoFKuf/0fhk2JLrtuqm1agltp5EACZAACbiHAD2k7lkLjoQESKCPE1AhWBGDshRaLkZ/IjakSOuXRl61fRxUCBGr4Uy+x6pUzNoonWhC61TqvtWAeFZV0Kr3TIWqJlkaNcLABXNNJ/xXE9KcSeyOKDaxd/+pcbTtma/cQkD3IY8Y7o6apLFgcljqxOpeZhoJkAAJkIA7CHT8NbY7xsZRkAAJkECfIqD7PzX8NtZWfhA4eKjjXlRs5kgpmbHygb1oMFA6QbLISrZerQt5WBLCqGlJGt1jqiU0DlUA8883nXqcz7xgOR5UFaQ5OcB1V5q44WoTMyX7r5adGTEcWLQkuUNew4S8/XvRUhvDxJudrKblZFpHFCTrPDkvEiABEvAKAQpSr6wUx0kCJJD0BGzRarVd2EMaSxArRWhqVt10qXk6UrLt7pFMvms2WI4IrdAwX6lvmiuCNSKcB4pHtWyP7SRQ0nHlSMmYCvGwamKcvQdsvPRGCA0NQL6E8mZIRt9VGgpMczWB9RuldFCmgUzZa5yMpntI6adPxpXlnEiABLxKgCG7Xl05jpsESCDpCGj4a4OTaChxU7Mkc6+Whzl8pPVHdkMy7tqoF2GZJUKlQt6PmO5V1VI1apq0yC+lYTTp0jYpLXPVZaaIVxNLV6rHzUDVcYZJhkm5//dRqadaJHVuW5cDcv+ouzZCvY81/JxGAiRAAiTgDgIUpO5YB46CBEiABOAXQVcnezDdaFq/MWJvv3fKy6k1U/XD/U3XhgNujlaGRanuh/3LCyGcM8nExReYIkZtlB9sLXIjrfHRjQR0HQdIbdtkFKT6pQ9rkbrxruOYSIAE+ioBCtK+uvKcNwmQgOsIBJzaoq4bVqcD0uRGKlBTJcQ3RbyjGpabKo9XXmqivCJcXuOoJJEpkXIvy1dTkHYK00Vvaqh26YQkdSPKbRiQykN6n9JIgARIgAQST4CCNPFrwBGQAAmQgEOgfT1QL2HR0F390Sy7as+8FEK/fMnGG7Sl7iNw7hQDu/ac8qyGz+JvtxLYutPCJReIyz5JTcPKKUiTdHE5LRIgAc8RoCD13JJxwCRAAslKoCWQRDOzZc9oq5qqmbL3VGui0rxBQEN1s7KS1EMqS9Ai0QhOoV1vLAdHSQIkQAJJTYBZdpN6eTk5EiABLxFIdEKjWLHKlQy7zc22U7s0Vn2w3egSUG99s3i8syWjcjKaevNpJEACJEAC7iBAQeqOdeAoSIAESABNItqS0bSuaUsgeb1tybhmOicNa9W1S0ZTsU0jARIgARJwBwEKUnesA0dBAiRAAggkqWhLS9W9pFxgrxFQL2J6WnJ+kUAPqdfuRo6XBEggmQlQkCbz6nJuJEACniKQrKItTTLwasguzVsEGpok8Y+sXTKalxOIJeN6cE4kQAJ9mwAFad9ef86eBEjARQSCSZqEVkWNihuatwjolwjpad4ac1dHS0HaVVI8jwRIgARiT4CCNPaM2QMJkAAJdIlAS0tyehHTJOyzsTE559alhfXoSbrP0p+ktTqDId6PHr0tOWwSIIEkJGDYYkk4L06JBEiABDxHYNkqC0cq2xajcHbwtd7GJ8/bvGz9otWMjVbHWz9vdQoix51TW5/f5qTwi5Nvy5OTz9udd/J4u3O05MuIYmDfAflz45xknGjjxJ8fZyDh55F3gNbnnjgv0nO79p1hdHTsxPgi82wzXGccrY+cHFrbg/LqxJC7fPy0Ez16YNhQ8WzXGzheG+Hv0Yl0MOy8HAOFBR28wUMkQAIkQAJxJ0BBGnfk7JAESIAEOiZgNdQhVHFItFgrAdD6uXOZvOccU5mkz/Vg+NGWxxNHIf+5h8+Wh7CgCp8TPlvOc97WK/Ry57dz/snnesi5sPX74etOXHWqb72yTRsnrrUlBlna8fUvlOw46QiuW64nnrjOuUh/nXh9Ygyt23HeO3G8/fOT7USuO9lQ2/baXyftn2zxZF9nacN5+yznaD9JZv4pM4FAC6zjrQrKJskczfz+8E+ekSSz4TRIgARIwNsE/N4ePkdPAiRAAslDICSCreWDN5JnQpGZzLsURnYuGn/zSOQIHz1AIHvsJFh1tQh8vNADo+3eEFMvvLJ7F/BsEiABEiCBmBHgHtKYoWXDJEACJNBNAj5fNy/wyOnNTTAyMj0yWA4zQsDIypH0yEmajUo89jQSIAESIAF3EKAgdcc6cBQkQAIkACMlOVOa2o4gzeAKe4yAkZEFu7nRY6Pu4nDNJP3yp4vT52kkQAIk4CYCFKRuWg2OhQRIoG8TSEnOlKaOIE2nh9RzN7d4Ee2m5BSkRho9pJ67HzlgEiCBpCVAQZq0S8uJkQAJeI2AkZakXkT1sqUmp/fXa/dYd8ZryJrZ9bXducQ756ZIcVwaCZAACZCAKwhQkLpiGTgIEiABEpCktunJKUitmuPcQ+rFG1xCyJNVkBpp/ILEi7ckx0wCJJCcBChIk3NdOSsSIAEvEkhSL6Jdc0zEtoTsJmvSJi/ea2cbs3gQNRGVfbwaZbWNaA5JCZ8kMjMzO4lmw6mQAAmQgLcJsOyLt9ePoycBEkgiAsnqIXVKhtZUwz9uCoKb1yTRiiXvVHxS8sWuqULAsvDw6u0YmSPiVOq23j16CMblZXl/4v7k3K/t/YXhDEiABPoiAXpI++Kqc84kQALuJJDEiX+syiPwl05zJ3eO6jQCKaUzYB07in31TRgvAvThaWPwlYnD8bONu08714sHWIbIi6vGMZMACSQrAQrSZF1ZzosESMBzBIzU5E20EjqwG76R4zy3Jn11wH7xkIbK92JnbQNGiXdULSfVLx5T23le2dyCxYerUN7gwTqlhgEwqZGzjvxFAiRAAm4gQEHqhlXgGEiABEhAa7zY3gAAPuhJREFUCQRaYGTnJiULq+IAfEXFSTm3ZJyUOaQYVkU5ymoasbiiCj/ZUIbvrNiOT48cjKrmAH60rswRp0/sPIglR6odBE/sLHceLQntbQyFXIvFyM4BQkHXjo8DIwESIIG+RoB7SPvainO+JEACriUgn+Nh5vZDqK7GtWPs6cCsA3thDCzq6eW8Ls4EjPwCWPt2OR7Sf5Zw3RTTQJppIsPvw2+37sNtIwZhdmE+xuRm4rndFZgrz1ccPe7sMX3/0DEsOlSF78p1G6pq5VrTCfuN8xTO2J2RlQtb9saKn5RGAiRAAiTgAgL0kLpgETgEEiABElAChnxwR25eUsKwmxoASZKTMu/SpJxfMk0qZdo8oKEGoYZ6VLUEUJieivzUFEeM6jybJWx3YEa4bIpm320Mhr2hKjz19ZLD1dCoWLWnyw451++ta8QvNu3Bj9ftwtO7DiIk377ozzHxtp7JPhbP7Jbquqhn+DX6DZDxUY6eiTuPkwAJkEC8CVCQxps4+yMBEiCBMxGQsiimfFhOVgvu3oHU8xck6/SSZl6pl9+A4K7tzny+PXX0afNSr+jCA0dxsLFZxOUh3FgyyDknzWfixb0VuGH4QJjif9xeU48iEa7901Lw++0HcNXQAnzjnFGoFwG7WwTqfkmY9PCq7fiP9WWnJUvSsN/H5JrlR2vww7U78VMJGVYBq6Ze18hz50A3f5l5/QFm2e0mNZ5OAiRAArEjQEEaO7ZsmQRIgAS6R0C8Nmbh4O5d46GzQxIC6hs1wUMj7ptD1TUKlW2DKffjiOyM0yBcKcJy6oBcvL7vCBYM6X8yHDdbwnk1K+/kfjnoJyJU95feIqG9up9UPa3LJaT3Zxt2Y8vxesczqvVNS+Xcr0wajvvGDG3Tz4GGZgzLSse9Y4bg+9PHojYQws4a8bKLra6s7VW4rVkwUMIR6CFtA5wvSIAESCCBBLiHNIHw2TUJkAAJtCdgDgh7m9ofT4bXoV1bYdx4N8xBQyVhzoFkmFLSzcHsXwAzvz9COzZ1OrdZBXnQn9Z29bBCDMoIZ4oeLJ5RDd/VR7XcFD/uGFUE3wkhaEtx2t9tOyD7UPOQIZEB+tPayiS7r2bw/d22/chO0fdNjBbP7NGmFgwQsati+bB4aAdIOHGkzdbXvyke3JEipjuqmZrM/8ZaM+BzEiABEvAKAQpSr6wUx0kCJNAnCBiS1ChpLRh0hE66iNKGR3+ctNP08sTSP/U5aGh1T+yc/pK99oTdPGLgyRIxeugmCetV72iOCFMVo1+cMBy7RHTeKh7UjmyXeE/vGjXE8ZKud0J0w2dtFy+pelvVfrh2F8aKSC0Xb+oXJhSjQMSp7jktESG6UryxU/plhy9q99sQ0U0jARIgARJwDwEKUvesBUdCAiRAAlIfMQVGegbspsakpBHctBap8y5Jyrklw6T8U+cg8PHCXk/FkKDaVMnMG7FpEuI7RQTrQRGPOeLxVFPhqMmSOjKtf3rF0AEYkpnuZPL9QdVOHBKPqIrYkTkZaJEsubqP9F4J9U0X7+kR8Zx+a/lWqCh+7+AxbDvegKLMsJdWQ4T7SQ3V4dKfkZEpycPaemM76p/HSIAESIAE4keAe0jjx5o9kQAJkMDZCVjB5N5HunU9jPwB8I2fcnYWPCOuBHyjJzp1cIOb18akX7+E2RbLvtCICH1g/Jnr0u4WD+m75cfwoZSQWVhe6YhRzfargnR0Tib21jU5QjVPhKYmU3p9/xFcXzIQn5c2HxBv6RARoyqKv79mB7aKIH1N3v/vzXthDhwiJV/cWyM1JuDZKAmQAAm4nAAFqcsXiMMjARLoWwQMfyrMwcOSetLBdcuQfv0dST1HL04u4zN/ByMtHSlzL4aR2XG4a7zm9ej5pZhekCslZSy0yF5UTWyUKmVlKhpbZJ9qmlMfdZQI04gdbwmiND885l0S1jtKvKhqev2I7HQnpPc+SZBkSi1cw8fgsAg3PpIACZCAGwhQkLphFTgGEiABEogQEC+Sb/jppTYib/fmsUJCHusCwd40EZVrg5vWwF86LSptsZHoEfAXj0LzG8/CN7YUmX/zHaTddA98I8ZGr4NutJQhGXsnicC8clgBrikudErH6OUPSdkYNU1yVNpqj6iWllkhJWKCEsa7qrJGBGlYrP7zuaNlP2kNHlq+zXnPLB4JtEug5DTIXyRAAiRAAgkj4HtYLGG9s2MSIAESIIHTCBipaQgs/+i047058LZkHf1/kgRGa0eeNzCxiZPsulr4SsbCV1SM4LrlvZkWr40SgfS7vggzrx9aFr7krElo/Ur4hgxHyuz5SJk2V0ScJCOqOgoEwgmFotRtt5vJlRBdNd1/qiI0YipOPzlcjbcPVDphvVeLiF1+5LikTwKuLR6IMql7qh7WkdffDv33RSMBEiABEnAPAcatuGctOBISIAEScAgYmVlO6KTd3NRrIlXNAWfv3DbZR/flicPxl7JDWHqkGnMK83vddm8aCKxchLQrb0Xj4//dm2Z4bZQIpF18DZoXvniyNaumCs2v/9V57Z86Gynyk3rJtQhuWYvgmmUI7elZJt6THUT5iYrNz40Lh7prFl81rYv6wp4KaAmYgrRUzBpSCGSeCvON8hDYHAmQAAmQQA8JUJD2EBwvIwESIIFYEbDFC2WKdypUtq1XXSyuqML/t2Ufxudl4edzJ6KfeJQGyAfz/9q8B9Ml62mKfIhPlIV2bYPdUIeMOx5A41OPJmoYPep3f8jA12vSJWUOnJ80w8Ykv4UvZgaQb4bFUI8aTtBF6Xc+ALulGaGdWzocQXDtMuiP1idNOW8B0q77tJzfIseWICieVLuxocPrEnVQkxmpaRkYTXIUMd9wCfeV0kNIZZbdCBM+kgAJkIAbCFCQumEVOAYSIAESaE0gJVX2kY7qsSCtD4bwqAjRZeIJ/ez4Ybh8yKm6ixramCu1IHVf3dyBifWStix9H2mXXuc5QRpZqr/0C5fmOW4Z+El9Kp5v8uMzIkq9ZmkLrkfzu6+eddhW9TE0v/aMc56Wh0mZOku8ptdBs/IG1yxFaO/Os7aRyBPMISUw5N8WjQRIgARIwF0EEvf1uLs4cDQkQAIk4BoChngufaMn9Gg8Wp/x60s343BTM/5TvKKtxWikwWFSemNvfeLrnIa2rIdVW42MBx6MDM2Tj3niFS3yWUg/VXbTM/PI/NK3YNccR0jK8XTHgmuXovGP/4XGR38MhAJIv+EOZHz+H5Ey6wKnjm532orXuf4xE8Wl7cFFihcg9kMCJEACCSJAD2mCwLNbEiABEuiMgFlY5CSSQah7WXF1L90lRQOwU0pfDMzo2BtUJrUcZxbkddZ93N4LfPSWZHO9V8TNL4Gm3u+ZjdvApaM3m/2w5PGweEj3BE3cndMSz+5731d6BlLmXYqmZx7rcVtWVSWaX30GzdJCyrR58E+ZGfaa6l7T1eI13berx21H9ULJrGsUDo5qk2yMBEiABEggOgToIY0OR7ZCAiRAAlElYAda4NMSFT2wT40cjHrZK/eMJDBqb0/uOoijTQGnpEb79xLxOrSvDMHtG5H9TfG0eczKZC/pbvmpFkFaaxt4ttFb3/Fmf/NHCO3YBKt8T1TIB1Z/4nyx0Pjb/xCvqYW0G+4Sr+k/IGWmek3To9JHTxvxjRwnGYJVNtNIgARIgATcRsBbfz3dRo/jIQESIIEYEdC9br6xkxDavb3bPfgkLPGbUq/xG8u34mCDlHkZJGVeJNfO6/uPYFN1HX4wYxzyTpTP6HbjMbgg8OGbyPjiQ07CnMDid2LQQ2ya1CRGEasXQfqV42m4NC2EEgnfdbulSnIi35hSOOIxyoO1jh0Vr+nTTqspM8RrOnkWUiRDb2jzGic5kn4JEW/zlYwRFy7LvcSbO/sjARIgga4QoIe0K5R4DgmQAAkkgIB/zKQe95qfmoKfzZmILElg9Kx4Sh/bvt+p3ajHxuS6q/SFZtttefcVZNz7lR7PN9EXZkmm3Tz5i7pPPKZesPS7vyTMX4ZdVxPT4QZWitf0D79A0+9+Jt+JGEi/8R6kf+7v4Z9xXlzrgfrHlsr2UW+sTUwXhI2TAAmQgAsJ0EPqwkXhkEiABEhACRiZ2TDy+sM+fqxHQLKkDuPnT9RmjDSwS/aP/vu6Xc4e08EZabh/3FCMzkm8QA2uWQINq8x+6BHU/bu3khw1iPf5oxY/qsQxOkHKv7jdsr/1CKyqowiuWx63oVqVh9HyylPQXbYpM8539ppqhuWgek21run+3TEbi9G/EEZWdszaZ8MkQAIkQAK9I0APae/48WoSIAESiB0Bcej4RsnetyiZloF5aPk2qFD96qQSTJNapD9csxPVLadCT6PUVY+aaXnzOfjGlUrG1rt6dH28L/pUVQb050vH07GoxYeHsltQ4PI6pGk33wtf6XS0vPNyvHGd7C+w8mM0/f4XaPz9z2EbPiepVfpnv46U6fPEa9pxIq6TF/fgiX+UZqymd7QH6HgJCZAACcSFgGGLxaUndkICJEACJNBtAqFD+9D0h//q9nXtL2iSJDMPLNqAW0YMwk0lg06+/SPxlk7Iz8KNw08dO/lmAp74JEw57ZrbUffwV6UO69YEjCB5u/SNGIPsf/0fNL/whOxN3uaqiWriI//kGTALBp3wmkqG3gN7ojLGjPv/FuagoVFpi42QAAmQAAlEnwBDdqPPlC2SAAmQQNQImIVDYOTmS63I6l61Wd7QBJ9ptBGj2mC6z9SEqK4xzfoaWLEIWQ/+EDVfvs0140qGgWR/+ycOW7eJUWWra64/5sAi+OdegrRb7oMl+1tDEsod2LBSTuiZF9/IyZM2hyTD8nEOJEACJJC0BBiym7RLy4mRAAkkBQEJYvFJQpbeWmF6KhqCIRxrPvXBfmF5JT45XI2LBksWXheZZtq1KsqR8+PHXDQqbw8l5yePwzp8EIFFb7t6IjrGlpf+jIZffh8hEaL+qXOQ9XcPI+3q22AOKen22P1jJ8IOnrrnu90ALyABEiABEog5AYbsxhwxOyABEiCB3hGwDpej8bGf964RufqFPRX4q2TcvUAE6OrKGqlVGsJDUh5mcr+cXrcdiwbS7/oibEm+U/eDr8ei+T7TZvZ3fwGz3wA0/ulXnpyzOWgIUsRr6hs+ClZtxGu6CuiC0Mz47NdgFhZ5ct4cNAmQAAn0FQIUpH1lpTlPEiAB7xIIBdHwvz8VcVbZ6zmsPVaLdfIzIC0FFxf1R20giGdEpG6U+qT5Upv0jlFDMLW/OwSqZhlOv/MBhLZtQP1//kuv594XG8gU72LKhHPQ+Mdfwm7RHLfetpTZF8EvSZk0c25o02oE1i6FVb6vw0npOZmf+Rrg5+6kDgHxIAmQAAm4hAAFqUsWgsMgARIggTMSsC20LP0QgQ9eP+MpPXlje009vrd6ByblZ+Piwf1xuKnF8aD+64xxGJmT0ZMmo36N7gFMv/MLCEr4poZx0rpOIPPL34Z/2lw0PfmbHpcO6npv8T3THDwMKXMuhq9EvKbHqxESYRpYL3tN5cubiKWetwAp8gOfL3KIjyRAAiRAAi4kQEHqwkXhkEiABEigPQGrvhaN//WD9od79fprSzZjUr9sPDC++GQ7bx84iu01DfjyxOEnjyX6iZHfH+m3fQbB7ZvQ8NPvJHo4nug/+8F/gzl2Epqe/i3s6p7VsfXERGWQKkz9pdNgSFhyaOMq8Zoug3VwPzK/8h0Y2e7w9nuFJcdJAiRAAokgwKRGiaDOPkmABEigmwSMlBTxBo3u5lUdnx46Ue1rb32TJDTq3+ak/hLK+5aI0hVHj7c5nsgXKqianvlfpEhN1ux/+mkih+KJvrP/5ZcwR45Dk+wZTXYxqgsSWPo+Gn/3MzT9+dcw0rOQ8anPIfOr3xWlmuKJ9eIgSYAESKCvE6Ag7et3AOdPAiTgCQJGajpSZs/v9VgXH67Cb7aG99zNLszDR4fC3rOgiNQ/7SjHI+vL8NlxwzCjILfXfUWzAVvCMhtVcMi+QGbfPTPZnEf+4JQJanryUdj1dWc+0ePvVLcEUCP7n1ubdVBq9r7wOOp//j0nRNlITWv9Np+TAAmQAAm4lABDdl26MBwWCZAACZxGwAqh4dFH5MN21WlvdfVARWMz/n7pFvxy3iSkSQ3Sn2/cjWYpRKof7n2Ggb8rHYHirPSuNpeQ89KuvwO+ouGo+/cHESrblpAxuK1T36jxyPrmj2Ed2o9mKZuSzPbm/qN452AlLPkSRfc/3zd2qHPvRuZsZOUg80vf4t7RCBA+kgAJkIDLCfgeFnP5GDk8EiABEiABIaCRtvItIkK7t/eYR3aK3/nw/rh4Q4dkpkHDdxdLLdIFQwrwNRGj+anuD3PUrLtIz0TGPV9SKghtWddjHslwYdrN98p+yX9CcNVitLzzUjJM6YxzUM/oS3sP43vTx+ByuWeXHDmOPXWNKG1Vuij1wsvh05ql8gULjQRIgARIwP0EGLLr/jXiCEmABEjAIWCYJvznzuk1jZtKBuHqYQV4UT7YH2sO4D9mT8Cdo4raeJk66kTDetUr5QYLfPw2ml95Cuk33o2sb/2HG4aUkDFkf+sRpN90D5pffRqBT95NyBji2enzUku3LhBC0LJhiuC8Z8wQ2e9c02YIKefOBeTfCo0ESIAESMAbBBiy64114ihJgARIwCFgBwMIvP8aAisXx5WIeqH+U8J750sSJBW0bjEjKxupV9wMX/4AND71G7QsesstQ4vpOFIvugIZd30ZocoKtLz5XFLvF42A/MGanfiKZH9+X/Y9a9KtB6eMxHJ53C/JuT4zdphzWsrMC5A6/2rWHo1A4yMJkAAJeIAAv0L0wCJxiCRAAiQQIWD4U5Ay99LIy5g/qkdUvVL/uGwLxuRm4jl5vlfEqVtME/c0P/84WlZ+jIwH/hHZD/8XkJHpluFFfxySqCf7e79Cxhe/5ZQ5aX7uj31CjK6vqkWRhJj3kyzQN8sXIrfIzzeXb8XqyhrcM3rISc4pcy+mGD1Jg09IgARIwBsEKEi9sU4cJQmQAAmcIpCaCv/kGadex+iZJkD6zsrteEVCe79z7mjxTpXgLgnt/d9t+2PUY8+bDa5bjsb//Sl012Der1+UpDYP9bwxl16piXryfvsKIMmtGn8tCYwOH0TKBVe4dLTRG1aVhJX/ctMeFKSf2t88oyBP7skxKK9vdryk2pu/dDrAzLrRA8+WSIAESCBOBBiyGyfQ7IYESIAEoknAOnYUjb95JJpNtmlLa5H+ToRnQPbqPTJ7PEblhL2OmgTp0++twW8vmOzaBEi+YSMcoWbm90fzh2+g6fH/bjM3r71Iv/MLSFtwA6z6GrQsfBlW+R5nCuaQ4RK2+0U0PvErWAfd9yVBNDlrMqNH1pVhlpQqah0yXifZoTdV12F2Yb54yB+E2a8gmt2yLRIgARIggTgQoCCNA2R2QQIkQALRJmC3NKP5jWcR2rw2qk1rCRitRbrteD2+OLHYSXr0/sFj+OGMcU6ZmB01DXhQwnf/MP8c5ErGXjebb9QEpJx3Kcy0DDTL3tKmP/+Pm4d72tgy7v87pF5wOezGerR8vBCh7ZtOOyftqltgFBZ5XnSfNjE5sL2mXr4UOSBffPjxhQnFyPL78D9b9jle8L+ZJFl0W5m/dJrsJRYWEj1AIwESIAES8BYBClJvrRdHSwIkQAInCdjVx9Dw6x+dfB2tJ8/uPiRlYAac9ID+z5a9slevFqNzMrBK9uxdNawQ90vtR6+Yb1wpNPOqObAIwY2rHa9pcNmHrhy+1hNNv/U+CT+dAevIIUletahDIdp68Bmf/wcE161AYNkHrQ97+rlmf9YvRr41dRT+Qx6PtwSlRm6J46kvq23ESLkXW1vmF74BQxJb0UiABEiABLxHgILUe2vGEZMACZCAQ0Az7ra89QKC61fEnMjaY7WO13RcXiam9s+NeX+x6MAsKkbqRVfBHFIMu/a4iNNVaJKkQFb53lh01+U2zYJBSL/9s/BPmQUjL99Zz+Da5bJHtLxLbfhGjnOub/zdT2EdPdyla9x+0jvllegvCYyONrc4Q52Yl+0k1vrXGWMxNjerzfBTzpmFlMtvhCb8opEACZAACXiPAAWp99aMIyYBEiCBkwTshno0/PL7J1/H48niw1XYKiG9kVIb8egzWn1k/N8H0fLuy4DPB78IGf+IsbBrRJzu3Cz7M19EYNUn0eqq03ZSz1uAlAuvgH/kePHs9UNo5xYENq1BaOt6oAe1XtOuvwNGZg6anv5Np/164c3Nsid0Yn62M9R/WrkN358+FjtrG7C4otqpO+qX+qOtLfOr/yxzD5/f+jifkwAJkAAJeIOAuzcAeYMhR0kCJEACCSNgpKUh9fzLnD2GsRyEJjM62tSCQRlpKM3PwXO7K5xyMFqCwytmSrIjIz3dEX865tC2jWgWceMbM9ERhplf/o6UjMmAXVWJ0IE9ct5m2aO7DoEtsk83EPbUdXuu4rVzQoYd8TsO5rASKddSCIiHNrRvF5rfeQmhsq0iQrvdcpsLml9+ChkStuqfNhfB1UvavOf2F43BEExZhzSfCb3P/ioh4/8sGXTVirPSndDdw5Lx+ZvnjEJ7MZoy71LJrJvu9ilyfCRAAiRAAp0QoCDtBA7fIgESIAHXE/D5JXHPAgTWLZMw1JqYDFf382kd0lrJaKq1SL81dbRTBuZrS7bgwkH9pByHNxLJpMy+yNlr2QaSCCBNFhROGPQ8jKwcmEOHy37ToSLu5iHtSkmUky0hyiJIrSapv9rcJD+NsOW5Jd5pSNi0hBoB6ZKFWEqOmFoDNS0dhvwgJVUEsAhcFZ9HDjplWoIfvQ3rwG5JVNTQZhjReNHywVtIv/Z2hHZtgX28OhpNxqWNjeIRfabsEL5xzkgMSEtt4yDWZEY7axqdGqSa1Ki1GTm5SDl/AQz5N0AjARIgARLwLgH+L+7dtePISYAESMAhYFsWUudfjeZXno4JkSd3lWNGQS6+NGE4Fsrevn9ZtR3/NnO87OXLhIqJ+YP7x6TfaDfqLx6Fhvde67RZu77W8Zyq97S1GTl5jljV8FojIyssglR0ijnOTRWYLU0IiVDVMGq7oc4RnZp4Kl4W2iIhv5POQaqUiGmWvbFesHrxjs6UmqLqHf3e6p34m4nDHS/pY9v3o0HeawhauHt0kZNht/180i65VjLutg3fbX8OX5MACZAACbifAAWp+9eIIyQBEiCBTgkYfj/846c4oZoaahpt65eaIt7RcFjlFUMLUCfPVZTuq2/Cfa2y7QZEGKeYZrS7j0p7KTMvQOjYYQnHPdqj9tTLqT84tL9H18frIk3SlPnlb0uW3ulO0qZ49dvTfn65aQ++LCJ0Sr8cfFsy6mqt0Wa5jz49qggZss83J8XXoQfeVzIavrGTnb3APe2b15EACZAACbiDgDs/ObiDDUdBAiRAAt4hIHsVU6+6LSbjvUxE6PKjx/HS3sPOPtJtUh/yiOwnVQExTPb4vXewEksOV+PrS7c4ZWFiMoheNuqbPAMBj+2t7OmUWz5+R7yk14snV8KHXW4Pyb7QDw8dw68273WE5w8ki26R7FNeduQ4SrLTOxSjOqW0y24C5IsYGgmQAAmQgPcJUJB6fw05AxIgARJwCGg4acqci6NOY6DsEf3pnAlYLiLh84s2INU08Iu5EzFZvFqahOYTEaP/vm4XLi0agHP750S9/942aOb3h69gIEIbVvW2KU9cH1y7FHbFAaReer3rx6shu9cVD5RkWal4WLzuAbmftPboACn5ErA6zvSUMvdiyUzsjTBx1y8AB0gCJEACLiBAQeqCReAQSIAESCAaBLQOY+r8q2AMkCyuUbbcFL+zj/TBKSPx95NHIltea8juN5dvdbylU0WI+kWoarZUt5mT9GnjGrcNK6bjaXzmd/CNGicZfiWs1aW2UrzuX/p4I9ZJjdtbRwzGjcMH4bsrw6Hg1w8f6OwrbT90o3+hU0uW3tH2ZPiaBEiABLxLgILUu2vHkZMACZBAhwTSrrq1w+O9PXiTlHg5X7Lqqr1dfhQPSubdc/vn4sezxjsi9dV9R5xMvL3tJ9rX+0aOhXoN+5TJPszA0g8ktPUGV4a2rq+qxVsHKvHvs8bhiZ3leE3unVmFeXIfjUBzyDrjUqVfc/sZ3+MbJEACJEAC3iRAQerNdeOoSYAESKBjAuKh1JIlKbMu6Pj9KBzdJJl1f7d1P747bQzuGTPESWSUl+rHf0pYb/qJWpJR6CYqTfgnnQu7JQCrfG9U2vNSI4FlH0r5lyqkuTB096NDVbi2uBBDMtPxr7JvdOmRavx6yz4Uy77RcXlZHWL2Tz8PxsAiwIVe+A4HzIMkQAIkQAJdIkBB2iVMPIkESIAEvEPASE1F6iXXwSwYFJNB6x+OUTmZmJSf3ab9g43N+IdlW/GOlIZxi/mnzUVwzRK3DCfu42h6/nH4Jk6Fb+S4uPfdWYcjsjPwviQzUkuVzMwZUmM0w29CvewdmdFvAFLF22tIbVcaCZAACZBAchGgIE2u9eRsSIAESOAkgbRrP3XyeTSfjBUPVk0giA9OCApNbPRM2SF8e8U2HBdvZHVLEI2SrCbhJntqfUXDEVy/MuFDSdQAtB5qYOXHjphL1Bha97uxqg576hpx5bAC+GS78XdWbnMSYg3NTMNVks15+3Gp59qBpV13ByuOdsCFh0iABEggGQgYtlgyTIRzIAESIAESaEvADgYQFDHS8v7rbd+IwqtjzQEJ1TWcPaP/uXEPmmTf39dKSzBUQjB/u20/dtc24P/NHJfQuqSpF1/jJHhqfvYPUZixt5vIuO+rCO3ZKffCawmbyO+3H4Bm1d0hZYPmDeyHT40c7JQRapBjRSJIf7Jht2TcLXSyN7ceZMol1yJFPN30jramwuckQAIkkDwE6CFNnrXkTEiABEigDQHNuuufcYGTbbXNG1F40V/KchwXT+jfS+1RDd39yezxThhvmuwh/dKEYqgXtbPkNFEYwlmb8I0tlXDdPpbM6AxUml95Cv7p8+AbNuIMZ8T28NpjNagTr/rdo4ukpEuqeNEDeGR9GXIkW/NwCd9dVFGFmQV5p4lRzRKcqntHGaob2wVi6yRAAiSQQAIUpAmEz65JgARIINYEDL8faTfeCyM3P+pdDctKx48kw+79YyWJkuwDjJiWfrlaQjLLG5qdOqWR4/F89I0YAyM9HaGdW+LZrWv7siqP/P/t3Ql0VvWZx/HnvnsSQkISQoAQIOx7kU1FKxaVsbW41OpYl6qtZ5yOrd07nZnOaM/pNq0zrU7njK3HVjunntOq7RTHrdXaqUgVBVRWAZElQAJhhyTvOs9zw4sJyfsmZLvhzffviUneu/zv/dx7jv7y39xwHrr0yj67xk2Hj7tr11qFw/LCcl31cHn8vVr5hIbST02sdJcN2qytpVYu1jVsLxlR6v6c/pdTVCyRK67vl7MEp6+R7wgggAAC3Rd4//8gun8uzoAAAggg0A8FnGBQIlff3CtXNlpbt1qWnccb5Ku6NunnVmyQf9UWsLtWrJe6xmjLXfrk58CchTp29PU+qetsqST64lM6Q61PbF3WvijP1+yXH2/YriF0r1RoIC2PhGSnjh919J/fbK91/2gxfUhhxksJL71Jw2gw43Y2IIAAAgjkhgCBNDeeI3eBAAIIZBawpWBKy6W3W8f26iy7X9eJjcZqSH3owunyk4XTZFFFifznhh2Zr62Xtvgrx0rszZW9dPaz97RNzz0poQsuFd+wEb1+E1dWlcsc7YZrkxjdt3ab24X75vEj5RdbarT7bkIu1UmMMhV7V30s8ZKJh88RQACBnBIgkObU4+RmEEAAgQwCOgYvOGOuBD9wboYduv/x77bXyQxt8bpzyih3nKB13b1MQ8ea+iOS7MP584ILFknyQJ2kDu7v/k3l2BmSNdu15XilhBb3Xtfd9NhhGxsaTSbl9gmVYi3pNqPukHDAXb/WunkHMqwnGtB3NKDvqnU3pyCAAAII5L4AgTT3nzF3iAACCDQLaCi1lqfeWpPyoE5UM7m4wO2SmSbfoV14bQIkC6fpYkvG1Glram+VwNRZEl89cNce7ci16ZknxCkokOD8Czva9Yy3L9tRJ3e8vFb+ZdVmtyW0qiBPntpZJ9eOqZCP66y6NiNztmLvZljfUSYxyqbENgQQQCC3BAikufU8uRsEEEAgu4BOPhT+2CfFV1aRfb8ubJ0/tEiW1x5yl/Kw5T2e3bVPvvfWNrlFu2mmyxv7D7vjS/+wuz79UY9+9w0d5nZPjq9d1aPnzbWTRV9YJqGLdFmcIZm7zXblnj+oXbSrBkVkZkmh2103JSldkzbpnmr+0GK5Z/b4jKd1SodK2MY6t5ggK+PObEAAAQQQyBkB1iHNmUfJjSCAAAKdF0gePyqNjzwgqaOHO39QB3ta+PjJxl3yxz317uy6xaGg3DZxpJyva042JBLy8Ds1skKX9/j0pFGyaHhJB2fr2uawzcqqdTU983jXTjCAjgov/YQ7E3Hjrx7u0buOa/fsBzfulLh21/3MlKpWMzBnqsjJL5C8W+8Wp7Ao0y58jgACCCCQowIE0hx9sNwWAgggkFVAQ0OyvlYafv6ABrh41l3PdOOBppic0BbSivywO05w/aFj8iPtqlmRF5LPTh0tZTrbam+V/L/7R2n8zS8kubvvJ1LqrXvqzfPm3fn3ElvxosTffK3Hq7Guuq9oi/lXZozVsaNZZsvV3tx5t35efEO11b5F1+4evyBOiAACCCDQLwXostsvHwsXhQACCPSygP6Pv1NcJpFrb+vximzMqK1RmtLQ+/PNNfLN1Vtkqc64es8543s1jAZmzpVUtIkwegZPNPrSsxL60BXaMjn4DI7q3K5XjCqX63Xt0WUaTLOVyHV3aBfycsJoNiS2IYAAAjksQAtpDj9cbg0BBBDoSCAVi0pi+xZpeuKRjnY9o+37de3Rb67ZKhG/T+6eNlpG5kfO6Piu7Jx302ckvultia38c1cOH7DHRK75pKSS2s35t//d5wY2njkwZqKuN8qMun2OT4UIIIBAPxGghbSfPAguAwEEEPBCwGYz9Y8eL+GrbuzR6q2L5kcqh8p35k7skzDqRPLEN7xSlzR5o0fvYyCcrPHJR8Q/YrT4p8zq0u1uPHxcvqV/fHj4nV1Sc6Kx0+ewd85fpZMcEUY7bcaOCCCAQC4KEEhz8alyTwgggMAZCFgoDYyfKuGP3nAGR2Xf1a9dgpdUlol974sSvOASSby7SVKNJ/qiupyrI7r8heblVsJn1pK983ijPLZ1t3xOW8Fnlw6W7+usykd1WZ+OSnjpDeKvnixOqPfGE3d0DWxHAAEEEOgfAgTS/vEcuAoEEEDAWwF/QPwTp2lL6U3eXkcXa/dXT5HYmle7eDSHxd/8i6Rqd0tw8Uc7hZHU8cFWdh5r0LVnB0lhMOAG0hvGDZfH39ub9RyRK2+UwMTprDWaVYmNCCCAwMARIJAOnGfNnSKAAAJZBZxAUPzjJkv4mluy7tffNvrHTREnHJbE1o397dLOqutpePxnElRLv7aWZyq2vuz3397mds+1febp2rOr64/IliPNLdO25mg4yzqiEX233PPrH0AoCCCAAAIImACTGvEeIIAAAgi0FojHJL7jXWn6dc+uT9m6kp77LfLx2yVRt1tif3q25046QM8UXHCRBM85X048+D0RXUe0ZUloq+i9OmPy1aOHua2hts2W+DmmXXR/+e4eOag/Vxfmy03jR0hBwN/yUJFgUCIfu1V8I8eIw5jR1jb8hgACCAxwAQLpAH8BuH0EEECgPYFUPC6pA/uk8VcPSer4sfZ26Tef5X/+Xml45H5JHazvN9d0Nl9I3o13SqJ2j0T/8D+tbuP5mv1iofRynazKyit1B+U/1u+QOyZVysXDS91t7Y0ZttbryI1/K74SPY6W0Vam/IIAAgggIEKXXd4CBBBAAIE2AtaK5RtaIZFbPy++8uFttveXD4ILF0uyvpYw2oMPpFGXfwlMP0dnXx7X6qybdDbdKTpe1Iq1jC7bsU/uP3eKvLC7XpbXHmx3AitnSJnk3Xq3OCW6zihhtJUnvyCAAAIINAsQSHkTEEAAAQTaF9AZcn2DCiXvlrt03N/k9vfx+NPApJkSX/UXj68it6q3FvHYG8sldOnVrW5sWF5Yntm5z/2sRJf1uWf2eCmLhKQ4FJQxhXmt9rVf/BOmSt5tGkaLS8Xxn9aFt83efIAAAgggMFAFCKQD9clz3wgggEBnBbRlK3z1LRLQsYX9qfgqKsWnLXDxdav602XlxLXE/vy8pGJNError07dz5KRZfLmgaPy0p4D7mdhv0+e2lknRaFAm7VmA7PPlcjVNzOT7ik9fkAAAQQQyCTAGNJMMnyOAAIIINBaQCc7sqVVoi8sa/25R7+Fl35CJBaVpmce9+gK+m+1NhuufZVrC2ZXi69smOR98nPS8NiDkty9wz3Nvsao/HTTTtl2tEEskM4rK5KbdRIjX4v1ZkNLrtEuv3OYvKir8ByHAAIIDDABAukAe+DcLgIIINAtgVhMkvv2SOOyxyR1qLmlrFvn68bB+Z/9J2l84tFTYakbp+rXh8Z0ttuNOn7zaDQuxdpVdmJRgQRaBMD2Lv5/tWvtW9qa+fVZ1W02H9FZcePJlAwJB8TRf7KV0OIrxFc5VhofeaDVbnGd3MjWIg21WOLFGTRYIrqOrTNshIbRYKv9+QUBBBBAAIFMAgTSTDJ8jgACCCDQvoAGkZS1TGooTWzZ0P4+vfxpULuEBuYulIaf3tfLNXl7epvZ9tHNNe4YzYiOw6w50ShBDaP3n5d5rVC74iffq5Xf794vHxk11J2A6NoxFVKvExH9cO17YoE0pfsM0qVZfqiTEnVUIrd/QeIb1kh8xR8z7uqv1vVrl94gTkhbZB1GA2WEYgMCCCCAQBsBVqZuQ8IHCCCAAAJZBTQQOSFdyuOqmyX2+ssSfenprLv3xkbrEhpf81pvnLrHzrly/2E5oq2ai0eUdumcr+jMtb/culu+NXeijB7UPGmQ/ilA1tQfdc+350ST/Pq9vbJFW0+te+5YXQP0M1OqxCYcWlV/WPZr99qjsYRU6GRE1qD68Du7ZEF5kVw3tnnWZDu+MyX63JOSp8u2JDdvkOT+vW0OCS76sAT1jwMOs+i2seEDBBBAAIGOBfgzZsdG7IEAAggg0J6AtthZELFxhk5p89qU7e3W0585hYPFN3yUxN9+o6dP3aPnq21oEgulnSk2NrMpkZS9eswzu/a5rZhPbq+Vq0YPOxVG7TzWxXZ26WD3lBZCK/Mj8pWZY+W+BZNlsE4u9IstNe62L0wfo+uCiobPCrlMJyPK02dVoC2i6w4ek5X7Dsv2Yw1Skd+58aXJmu0SX7tSQpdd5Z47/S9f+Qh3Fl3CaFqE7wgggAACXRGghbQrahyDAAIIINAsoK1iPh0zmP+pL0nT738r8dW9vwRL6LzFEt+8XlKNJ/r1UygNh9zusumLtNbNZ3ftlxV1hzQspuTSEWWyaHiJu/meVVt0bGi+O+5zgo4RnT5kkFgL5oTBBenD23wfPzhf7GvLkRPy2r56sVB7ULvlWrGlWFJax2FtobUWUyu3T6yU3+2ok19t2yN7NPhaQP22tr7adXZUmp5+QvLu+LL+AeICt1XcZtENX6bLwmgdbvNrRydgOwIIIIAAAhkECKQZYPgYAQQQQKCTAicn2Alp183A5JnS9PSvJXX4YCcPPvPd/NWT3PDb2SNtUqADGtRs+p69DVH54556uXvamM4e3u5+x3QcpoW6au0m6z95/7ajtYg+omM+raUzHQrTJ3h0827ZcvSE3FA9XI5rV9oHdbbaqcUFUq5dai00RnWiof9aOE2CJycKiunv9k+m0pBIyLfWbHUnKDp/2BBZPLxUHtzYPBuuXZNNgLS/KXoqkFodt04Y6Z7OJiS6d/UWDbKH5fLKzrVuR198SiLX3qZr0k4R/8jRzZfV4t4zXSefI4AAAgggkE2AQJpNh20IIIAAAp0WsHGl/lHVkv83X5Po8j9ITL96uvgnTRfRVtnE1o3tnvqF3fU6I+0xqW+MuSHUgugx7do6OOiXizWwzSkb7M5Y2+7B+qEFQAuC6dlj7fiXdSzn0qpy95Avv7ZRZpUMdicMGqKtkPXaKvmATjA0RMOehdD73t4mN+kyKBbydh1vlC++utGdjdbO+bR2xf2x7lug12LnnaatoE/pbLjWclkSCUpVQeRUGLXKJmjr54ZDx7W1tNCt+/R/vVp3WBq1m+/3509yu/JaQP3huqQ06P3maevnJG1p3aqtpxO1ldVCubXMWjdfG49ap8F8+7FGuWtq0emnzfi7LQOT0jr8VeNoFc2oxAYEEEAAgTMVIJCeqRj7I4AAAghkFki3lp67yG0tjT77hCR0DGJPldDs83Ts6OsZTxfwOW7gsnGWr2rr34j8sHxxxthTy6RYN1gLqxbMlmn3VZt5dp6G1PlDi91z/lxbN60XqoVEKyd0v8d0YqF0ID2qLaMHtNXxpwunu+tw3r9+u9hMuNdrq+dyDa5jC/PkilHN4bVSA6a1RB7SbrP2Parh8Z9XbXbHc1prZamG0PRkRaX6u11Ly7KgvFh+q+NIl1SWaaB+/z/XFnRtDKiNGbVgu/dEVJIapG1mXWsFtvNUaiD9qF7H9956V2wJmDEaQq8cXe522TWXcXqd3503UYZ2Yp1S/+hxEr7kKnGKh+gfA/wtL5GfEUAAAQQQ6LbA+/+F6/apOAECCCCAAAInBXQdSmtRC//1HZLY+LZEX1jWI2M+fcOrpFFnfc1ULqpoHpNp2y2sWfhquWZnc9fYpPzD6+/I3LIit1XyR+u2yw/m58lwDa+2ffPh98emWlBs0CCZbnUs0fGWc/S4sL95TsBpxYPkpb0H5Hqtz0KuzWibLtZttkhbUe06qgZFxMLyNz4w3q0nvU/6u9W7Viccalmu0CVbVtcfEWuV/bC2uBZqKF1/6Jjb0nmztsIu1G6684cWyVdXbpKIXs911RVu/aeuTVtgf/bBGe5su2UaPO16vjR9bMsqsv7s5BdI6JIrxT9hKuuKZpViIwIIIIBAdwQIpN3R41gEEEAAgawCjgbTwJRZYl1trQtv7NU/Zd0/28bQB5dIonaXpA7WZ9vt1DZ3UiFtDW1ZLKzZZD6f0hbQmSXNXWGtxdG6+lpX2xJdR7O+6f2Zca3rq4W9dKtjc0tm9NQpLeilJxKaoV1rf6LjQluWkrC1YkbdyYdsnOdD7+x0x6/aNWzU7rjP1eyTL2pItEBqwbVl8WmA/MYHxrkB9O2DR91WUQvNP9AuuiN0dl0rd06ucr9aHtfyZwuhw1qE5Jbbsv0cXLBIQhdeJqIhmnVFs0mxDQEEEECguwIE0u4KcjwCCCCAQHYB7ebp6JcFnOC8CyX6f89J/K2V2Y9pZ6t/oobaFS+2s6X9jyw8Whg8vdjnNsttuljXWmt5tGLdaOtPO8aCrRtIdT8LjtblN13cgKrjSK3M0oAb17Gij+rSK3NKizRIHpQdGnbTXXHvnDxKHtq0S+5cvs7twmvdiW1JFiuTiwbJtWOsw23rYqHUWkLtqy9KYMZcseAvIQ28dM/tC3LqQAABBAa8AIF0wL8CACCAAAJ9JKCTETkFhbpcyFUSOv9DEv3z8xJft7pTlftGjhGnsKjT+9tJLTy27G6brqhEWzVbtkY2B9fmkDlKQ6ctlXJEx4rauE1r/Yy6s/Q2h047py2zki6n13HX1NHuLLu21qdNovS1GdXuhEe2v60F+lndbl+nFztPehzr6dv64vfA5FkSWnS5WDddCXa8DExfXBN1IIAAAggMDAEC6cB4ztwlAggg0H8ELJgWlUhoyTUSXHiJxKzFdONbWa8vMP9CSaxfk3Wf0zfazLfW5pjubpvebuEv3Wppn7UMqDZO01ojbV3QyoKwGz6bg2ncPdyWeWnSMaXpkq9db7+ja3kGT44ptVbSf1swOb253393W0T1jwPOoMEi2r2aggACCCCAQF8LEEj7Wpz6EEAAAQRcAUdb4pwhZRK+/OMSuvgj7vjS2KpX2tUJVI6Vxid+1u62TB+mJxVKd7dN73d6V94yDajFOmNtuljX2nU6wZCt4fnpSaO0ZdN3ajkWG3eaHnua3n+KTmx0VhXtBhycu1CC8xeJE9ZJmGgRPaseHxeLAAII5JqAk9KSazfF/SCAAAIInH0CqXhM9D9KElu1QmJvvCypo0fcmwjOvUACM+dJw8P/fsY39V1d9mSJjtO0ZWDSxdYLtXVBrXvuQCrO4GIJnHOeBGef7962oxM4URBAAAEEEPBagEDq9ROgfgQQQACB1gIn/06a2LZZg+lynQzpUomvXeX+3HpHfuuMgL9auxTPvVB8o8eLNo4ya25n0NgHAQQQQKDPBN7vo9RnVVIRAggggAACWQTc1KSTvGqQ8lVWiWMzvr67SZziEkkdOpDlQDalBawrdGDGHAnOnO92yaU1NC3DdwQQQACB/iZAC2l/eyJcDwIIIIBAW4FEQmyESaq+VmK6ZEzinbWSOna07X4D+BPrkuufME1D6DzxlehyMhbsdQIpCgIIIIAAAv1ZgEDan58O14YAAggg0EYgFYuKEwhIsm6PuwxMfPN6bTmtb7PfQPjAGVIqgfFTJTB9jvjKykVsVgjWDx0Ij557RAABBHJGgECaM4+SG0EAAQQGoEC8eTmW1IljEt+yXhJbN0li2yYNZjk6X5/jE//YCeIfP0UC46bouqE6w6+NC6UldAC+/NwyAgggkBsCBNLceI7cBQIIIICAdemNNYktJ5Os3SMJHXea2LFVEjXbRXQG37OxOPkF4quo1LG0Y9wA6hta0XwvLNVyNj5OrhkBBBBAoB0BAmk7KHyEAAIIIJADAhZQoxpQQ2Edb3pEEnt3SXLXNknuqZHkvj2SamzoVzfpRPK02+0w8Q0fJf6qavENGymigVR0/KytFeqcnOypX100F4MAAggggEA3BQik3QTkcAQQQACBs0cgldAuvtrN1wkEtTU16s7amzywT5L7ayV15KB+HZKkftn33uj26+Tli1M0RGwWXF/JUPGV6pd+d4pKxQmH9Jr02oLB5gmJzh5WrhQBBBBAAIEuCxBIu0zHgQgggAACOSOQTErKuvUmU+L4fW6LpLWuSlOjpBqOi0Q1vEYb9fcmSWqQFQuz+rPocTaG07GJhDRIOsGwiC5TY+FSAtqqGdGfI/kiYf2urZxuILY6fCdnwKXVM2deIW4EAQQQQKBrAgTSrrlxFAIIIIAAAggggAACCCCAQDcF9M/AFAQQQAABBBBAAAEEEEAAAQT6XoBA2vfm1IgAAggggAACCCCAAAIIIKACBFJeAwQQQAABBBBAAAEEEEAAAU8ECKSesFMpAggggAACCCCAAAIIIIAAgZR3AAEEEEAAAQQQQAABBBBAwBMBAqkn7FSKAAIIIIAAAggggAACCCBAIOUdQAABBBBAAAEEEEAAAQQQ8ESAQOoJO5UigAACCCCAAAIIIIAAAggQSHkHEEAAAQQQQAABBBBAAAEEPBEgkHrCTqUIIIAAAggggAACCCCAAAIEUt4BBBBAAAEEEEAAAQQQQAABTwQIpJ6wUykCCCCAAAIIIIAAAggggACBlHcAAQQQQAABBBBAAAEEEEDAEwECqSfsVIoAAggggAACCCCAAAIIIEAg5R1AAAEEEEAAAQQQQAABBBDwRIBA6gk7lSKAAAIIIIAAAggggAACCBBIeQcQQAABBBBAAAEEEEAAAQQ8ESCQesJOpQgggAACCCCAAAIIIIAAAgRS3gEEEEAAAQQQQAABBBBAAAFPBAiknrBTKQIIIIAAAggggAACCCCAAIGUdwABBBBAAAEEEEAAAQQQQMATAQKpJ+xUigACCCCAAAIIIIAAAgggQCDlHUAAAQQQQAABBBBAAAEEEPBEgEDqCTuVIoAAAggggAACCCCAAAIIEEh5BxBAAAEEEEAAAQQQQAABBDwRIJB6wk6lCCCAAAIIIIAAAggggAACBFLeAQQQQAABBBBAAAEEEEAAAU8ECKSesFMpAggggAACCCCAAAIIIIAAgZR3AAEEEEAAAQQQQAABBBBAwBMBAqkn7FSKAAIIIIAAAggggAACCCBAIOUdQAABBBBAAAEEEEAAAQQQ8ESAQOoJO5UigAACCCCAAAIIIIAAAggQSHkHEEAAAQQQQAABBBBAAAEEPBEgkHrCTqUIIIAAAggggAACCCCAAAIEUt4BBBBAAAEEEEAAAQQQQAABTwQIpJ6wUykCCCCAAAIIIIAAAggggACBlHcAAQQQQAABBBBAAAEEEEDAEwECqSfsVIoAAggggAACCCCAAAIIIEAg5R1AAAEEEEAAAQQQQAABBBDwRIBA6gk7lSKAAAIIIIAAAggggAACCBBIeQcQQAABBBBAAAEEEEAAAQQ8ESCQesJOpQgggAACCCCAAAIIIIAAAgRS3gEEEEAAAQQQQAABBBBAAAFPBAiknrBTKQIIIIAAAggggAACCCCAAIGUdwABBBBAAAEEEEAAAQQQQMATAQKpJ+xUigACCCCAAAIIIIAAAgggQCDlHUAAAQQQQAABBBBAAAEEEPBEgEDqCTuVIoAAAggggAACCCCAAAIIEEh5BxBAAAEEEEAAAQQQQAABBDwRIJB6wk6lCCCAAAIIIIAAAggggAACBFLeAQQQQAABBBBAAAEEEEAAAU8ECKSesFMpAggggAACCCCAAAIIIIAAgZR3AAEEEEAAAQQQQAABBBBAwBMBAqkn7FSKAAIIIIAAAggggAACCCBAIOUdQAABBBBAAAEEEEAAAQQQ8ESAQOoJO5UigAACCCCAAAIIIIAAAggQSHkHEEAAAQQQQAABBBBAAAEEPBEgkHrCTqUIIIAAAggggAACCCCAAAIEUt4BBBBAAAEEEEAAAQQQQAABTwQIpJ6wUykCCCCAAAIIIIAAAggggACBlHcAAQQQQAABBBBAAAEEEEDAEwECqSfsVIoAAggggAACCCCAAAIIIEAg5R1AAAEEEEAAAQQQQAABBBDwRIBA6gk7lSKAAAIIIIAAAggggAACCBBIeQcQQAABBBBAAAEEEEAAAQQ8ESCQesJOpQgggAACCCCAAAIIIIAAAgRS3gEEEEAAAQQQQAABBBBAAAFPBAiknrBTKQIIIIAAAggggAACCCCAAIGUdwABBBBAAAEEEEAAAQQQQMATAQKpJ+xUigACCCCAAAIIIIAAAgggQCDlHUAAAQQQQAABBBBAAAEEEPBEgEDqCTuVIoAAAggggAACCCCAAAIIEEh5BxBAAAEEEEAAAQQQQAABBDwRIJB6wk6lCCCAAAIIIIAAAggggAACBFLeAQQQQAABBBBAAAEEEEAAAU8ECKSesFMpAggggAACCCCAAAIIIIAAgZR3AAEEEEAAAQQQQAABBBBAwBMBAqkn7FSKAAIIIIAAAggggAACCCBAIOUdQAABBBBAAAEEEEAAAQQQ8ETg/wHrtr/b2iMfSwAAAABJRU5ErkJggg==", + "text/html": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# el problema esta en medal\n", + "px.sunburst(\n", + " df_sunburst_test,\n", + " path = ['event_game', 'team'], #, 'medal'\n", + " values = 'score'\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Participation by players" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
player_idevent_dateevent_gamescoremedalteam
0744832024-08-15A3goldThunderCats
1744832024-08-15B0not playedThunderCats
2387262024-08-15A3goldThunderCats
\n", + "
" + ], + "text/plain": [ + " player_id event_date event_game score medal team\n", + "0 74483 2024-08-15 A 3 gold ThunderCats\n", + "1 74483 2024-08-15 B 0 not played ThunderCats\n", + "2 38726 2024-08-15 A 3 gold ThunderCats" + ] + }, + "execution_count": 42, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df_eventplayers.head(3)" + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "metadata": {}, + "outputs": [], + "source": [ + "# crea barpolar en subplots, con jugadores individuales\n", + "\n", + "def players_score_figure(df_data, sorted=True, ascending=True,hole=0.50, h=400, w=900, theme_colors=theme_colors):\n", + "\n", + " \"\"\"\n", + " Creates figure with barpolar subplots to represent individual players scores in each event in a given date.\n", + "\n", + " **Parameters**\n", + " df_data: dataframe containing desagregate players, teams (factions, color, etc.), scores and score description\n", + " (medal, cups, etc.)\n", + " sorted: sorts players by scores (default: True).\n", + " ascending: way player scores are sorted, only takes effect if sorted is set to True (default: True).\n", + " hole: set empty center from 0 to 1 (default: 0.5)\n", + " h: figure height (default: 400)\n", + " w: figure width (defautl: 900)\n", + " theme_colors: set colors in HEX code (default: color_theme palette in app, max. 5 colors)\n", + " \"\"\"\n", + "\n", + " # copy to keep integrity\n", + " df=df_data.copy()\n", + " # sort values before building the figure (if ascending=True)\n", + " df.sort_values(['team', 'score'], ascending=ascending, inplace=sorted)\n", + "\n", + " # team list\n", + " team_names = [i for i in df['team'].unique()]\n", + " # event list\n", + " events = [i for i in df['event_game'].unique()]\n", + " # other config: color theme\n", + " color_map = dict(zip(team_names, theme_colors[:len(team_names)]))\n", + " \n", + " #---------------------------------------- create Figure\n", + " fig_polar = make_subplots(\n", + " rows = 1, cols = len(events),\n", + " column_titles = [f\"Event: {e}\" for e in events],\n", + " specs = [[{'type':'polar'}]*len(df['event_game'].unique())]\n", + " )\n", + " #----------------------- config unified legend\n", + " sp_legendgroup = [True]\n", + " sp_legendgroup.extend([False for e in range(len(events[1:]))])\n", + " sp_legendgroup\n", + " \n", + " #----------------------- traces: bar polar by event and team\n", + " for e in range(len(events)):\n", + " for t in range(len(team_names)):\n", + " fig_polar.add_trace(go.Barpolar(\n", + " name = \"Team \"+ team_names[t],\n", + " r = list(df[df['event_game']==events[e]][df['team']==team_names[t]]['score']),\n", + " theta = list(df[df['event_game']==events[e]][df['team']==team_names[t]]['player_id']),\n", + " marker_color = theme_colors[t],\n", + " legendgroup = team_names[t],\n", + " showlegend = sp_legendgroup[e],\n", + " customdata = df[df['event_game']==events[e]][df['team']==team_names[t]][['event_date', 'medal']],\n", + " hovertemplate = \"\" \"Team \"+ team_names[t] +\"\"\n", + " \"Player %{theta}
\"+\n", + " \"
Date: %{customdata[0]}
\"+\n", + " \"Medal: %{customdata[1]}
\"+\n", + " \"Score: %{r} points\"\n", + " ),row=1, col=e+1)\n", + "\n", + " #----------------------- bar polar config\n", + " fig_polar.update_polars(\n", + " patch = dict(hole = hole,\n", + " radialaxis = dict(showticklabels=False,\n", + " visible = False),\n", + " angularaxis= dict(showticklabels=False,\n", + " visible = False,\n", + " categoryorder = 'array',\n", + " categoryarray = team_names)))\n", + "\n", + " #----------------------- figure layout\n", + " fig_polar.update_layout(\n", + " legend = dict(font_size = 10,\n", + " orientation = 'h',\n", + " yanchor = 'bottom'\n", + " ),\n", + " hoverlabel = dict(bordercolor = 'white',\n", + " font_size = 8,\n", + " font_color = 'black',\n", + " ),\n", + " template = 'plotly_dark',\n", + " height = h, width = w,\n", + " title = f\"Players participation during {', '.join(events[:-1])} and {events[-1]} events\"\n", + " )\n", + " \n", + " return fig_polar" + ] + }, + { + "cell_type": "code", + "execution_count": 58, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.plotly.v1+json": { + "config": { + "plotlyServerURL": "https://plot.ly" + }, + "data": [ + { + "customdata": [ + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ] + ], + "hovertemplate": "Team Dog PatrolPlayer %{theta}

Date: %{customdata[0]}
Medal: %{customdata[1]}
Score: %{r} points", + "legendgroup": "Dog Patrol", + "marker": { + "color": "rgb(240,205,204)" + }, + "name": "Team Dog Patrol", + "r": [ + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3 + ], + "showlegend": true, + "subplot": "polar", + "theta": [ + "91241", + "19980", + "35087", + "89288", + "41633", + "57834", + "49277", + "87129", + "45238", + "71206", + "33798", + "98288", + "54373", + "20388", + "15435", + "42048", + "77101", + "79841", + "29961", + "92893", + "37843", + "43027", + "76251", + "31841", + "62500", + "30055", + "45848", + "24532", + "75262", + "53673", + "85093", + "14096", + "71476", + "45693", + "88001", + "31613", + "46967", + "51535", + "90811", + "15653", + "47685", + "64113", + "96391", + "28043", + "85952", + "48726", + "26946", + "74607", + "75695", + "49262", + "83017", + "32219", + "39636", + "68141", + "53423", + "26820", + "99364", + "70496", + "65219", + "20496", + "65333", + "92783", + "65922", + "68430", + "46060", + "11798", + "20107", + "63970", + "62880", + "74377", + "93602", + "88138", + "33162", + "97418", + "95415", + "33981", + "65759", + "77919", + "66666", + "45382", + "30454", + "55886", + "17342", + "46727", + "12940", + "26779", + "96693", + "29369", + "78789", + "17964", + "35912", + "69071", + "64520", + "65262", + "81536", + "15011", + "97507", + "40465", + "17694", + "21047", + "17691", + "43050", + "39496", + "90471", + "53061", + "60044", + "28072", + "63710", + "45504", + "68611", + "36895", + "41988", + "84290", + "52375", + "66693", + "54840", + "66700", + "23587", + "33042", + "92851", + "70341", + "85621", + "14040", + "11270", + "55294", + "19978", + "20025", + "49081", + "70422", + "32890", + "58106", + "40037", + "84960", + "52978", + "33843", + "75810", + "34980", + "74024", + "79250", + "16009", + "94055", + "68246", + "63454", + "14522", + "56923", + "26087", + "80830", + "72080", + "99040", + "79643", + "68939", + "10471", + "11661", + "37697", + "70827", + "24675", + "70376", + "97235", + "12864", + "15919", + "70722", + "45500", + "40264", + "41224", + "54377", + "38048", + "99616", + "38615", + "49994", + "37712", + "11155", + "80922", + "91244", + "99895", + "60502", + "53412", + "24738", + "72584", + "46728", + "52495", + "14671", + "54612", + "38017", + "88546", + "76905", + "29169", + "27369", + "42057", + "17833", + "21542", + "37782", + "71518", + "55220", + "42310", + "94780", + "92424", + "26365", + "79870", + "35148", + "44906", + "68989", + "97023", + "99905", + "70949", + "70251", + "90385", + "28204", + "22981", + "36345", + "87698", + "35104", + "18792", + "66646", + "60682", + "65502", + "55794", + "73981", + "67058", + "12632", + "50509", + "70572", + "51470", + "49550", + "21149", + "85310", + "80354", + "26682", + "78415", + "64792", + "78699", + "42840", + "98541", + "31002", + "76049", + "27001", + "56209" + ], + "type": "barpolar" + }, + { + "customdata": [ + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ] + ], + "hovertemplate": "Team Go MagikarpPlayer %{theta}

Date: %{customdata[0]}
Medal: %{customdata[1]}
Score: %{r} points", + "legendgroup": "Go Magikarp", + "marker": { + "color": "rgb(173,172,194)" + }, + "name": "Team Go Magikarp", + "r": [ + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3 + ], + "showlegend": true, + "subplot": "polar", + "theta": [ + "10731", + "38098", + "18671", + "34001", + "51519", + "90256", + "88929", + "66089", + "18591", + "28930", + "30977", + "67382", + "18101", + "19847", + "91507", + "18605", + "87970", + "54654", + "83594", + "75650", + "85934", + "24057", + "16548", + "88391", + "27307", + "98021", + "23274", + "46892", + "92479", + "25962", + "20152", + "85664", + "16402", + "91853", + "99558", + "29743", + "52731", + "97731", + "68102", + "82978", + "88532", + "28941", + "17613", + "51468", + "38221", + "53404", + "58914", + "83283", + "69344", + "81709", + "74803", + "85486", + "99402", + "38655", + "28926", + "60266", + "35549", + "62820", + "99837", + "21870", + "31611", + "83951", + "18492", + "24284", + "34187", + "99287", + "69565", + "90716", + "55737", + "64826", + "40425", + "99015", + "96584", + "39818", + "59524", + "65157", + "67311", + "83447", + "23657", + "19264", + "52913", + "68786", + "79506", + "83024", + "42995", + "43172", + "37910", + "18922", + "20673", + "13357", + "96252", + "82230", + "83603", + "73947", + "24148", + "23405", + "68490", + "86202", + "47376", + "87699", + "75134", + "18171", + "89275", + "76062", + "99632", + "62534", + "67272", + "40762", + "62624", + "25164" + ], + "type": "barpolar" + }, + { + "customdata": [ + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ] + ], + "hovertemplate": "Team Power BirdsPlayer %{theta}

Date: %{customdata[0]}
Medal: %{customdata[1]}
Score: %{r} points", + "legendgroup": "Power Birds", + "marker": { + "color": "rgb(251,230,197)" + }, + "name": "Team Power Birds", + "r": [ + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3 + ], + "showlegend": true, + "subplot": "polar", + "theta": [ + "26962", + "18714", + "10114", + "38708", + "75895", + "76836", + "44026", + "33293", + "83963", + "85944", + "19225", + "90642", + "40420", + "19546", + "96118", + "88662", + "73630", + "12127", + "12881", + "12089", + "82703", + "43019", + "66837", + "99531", + "63518", + "74759", + "77119", + "36071", + "14430", + "55128", + "67267", + "57510", + "83182", + "40049", + "32217", + "82229", + "87016", + "65298", + "66939", + "11613", + "23477", + "40550", + "39881", + "10568", + "57982", + "15021", + "31474", + "13333", + "51104", + "18670", + "57239", + "49624", + "66767", + "71117", + "38606", + "93572", + "40228", + "81125", + "57094", + "45032", + "73388", + "70000", + "40302", + "99073", + "94696", + "59815", + "59731", + "61337", + "37074", + "80105", + "80862", + "91721", + "76073", + "94974", + "77842", + "41577", + "82617", + "94899", + "76299", + "97386", + "98482" + ], + "type": "barpolar" + }, + { + "customdata": [ + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ] + ], + "hovertemplate": "Team ThunderCatsPlayer %{theta}

Date: %{customdata[0]}
Medal: %{customdata[1]}
Score: %{r} points", + "legendgroup": "ThunderCats", + "marker": { + "color": "rgb(160,185,205)" + }, + "name": "Team ThunderCats", + "r": [ + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3 + ], + "showlegend": true, + "subplot": "polar", + "theta": [ + "11112", + "30689", + "14392", + "39831", + "62227", + "98238", + "59850", + "11684", + "18516", + "72485", + "85445", + "77077", + "31219", + "16272", + "11872", + "82225", + "43269", + "84078", + "52546", + "74037", + "96600", + "66675", + "20733", + "98532", + "80615", + "82761", + "86489", + "63001", + "67400", + "45415", + "11251", + "69064", + "86098", + "47625", + "86265", + "75747", + "65738", + "98571", + "90860", + "70584", + "39343", + "70721", + "63251", + "56583", + "67154", + "49513", + "39001", + "48878", + "29526", + "19357", + "95564", + "18871", + "22771", + "76875", + "61709", + "18843", + "81263", + "97977", + "99028", + "48393", + "65734", + "83480", + "76043", + "10504", + "38894", + "54171", + "31992", + "82979", + "30018", + "12339", + "98394", + "25585", + "90246", + "14225", + "86876", + "66063", + "76439", + "99995", + "59306", + "32046", + "79752", + "45274", + "12652", + "22558", + "33763", + "27828", + "54483", + "10778", + "33324", + "99677", + "71139", + "18340", + "88135", + "90756", + "72468", + "67027", + "69873", + "37403", + "31842", + "21125", + "53823", + "47471", + "42433", + "95586", + "80400", + "22872", + "67483", + "86436", + "50901", + "60018", + "95085", + "25342", + "15382", + "38469", + "30333", + "97154", + "95711", + "67361", + "84069", + "88525", + "61450", + "48578", + "12238", + "92293", + "92968", + "85569", + "79395", + "52912", + "49169", + "24101", + "56544", + "74483", + "38726", + "52140", + "42651", + "41345", + "82962", + "97266", + "22683", + "68238", + "67873", + "65637", + "48119", + "76550", + "98750", + "30547", + "84325", + "80692", + "35288", + "46633", + "14288", + "25508", + "17253", + "33164", + "38396", + "80154", + "65268", + "22587", + "65089", + "22148", + "19673", + "18600", + "31233", + "33328", + "89054", + "95123", + "99019", + "89475", + "73245", + "42431", + "20851", + "39901", + "36192", + "41989", + "83562", + "75348", + "19392", + "22909", + "24892", + "80528", + "30092", + "71491", + "95240", + "48376" + ], + "type": "barpolar" + }, + { + "customdata": [ + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ] + ], + "hovertemplate": "Team Dog PatrolPlayer %{theta}

Date: %{customdata[0]}
Medal: %{customdata[1]}
Score: %{r} points", + "legendgroup": "Dog Patrol", + "marker": { + "color": "rgb(240,205,204)" + }, + "name": "Team Dog Patrol", + "r": [ + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3 + ], + "showlegend": false, + "subplot": "polar2", + "theta": [ + "68141", + "55294", + "19980", + "19978", + "35087", + "89288", + "76905", + "65219", + "49081", + "70422", + "45238", + "46060", + "21542", + "37782", + "84960", + "34980", + "92424", + "33162", + "44906", + "94055", + "68246", + "95415", + "79841", + "29961", + "92893", + "97023", + "70949", + "72080", + "45382", + "30454", + "31841", + "78789", + "30055", + "24532", + "10471", + "11661", + "37697", + "35912", + "64520", + "45693", + "97507", + "15919", + "88001", + "31613", + "73981", + "41224", + "51535", + "50509", + "90471", + "38615", + "80922", + "91244", + "99895", + "41988", + "85952", + "24738", + "26946", + "66693", + "64792", + "78699", + "54840", + "23587", + "33042", + "14671", + "32219", + "31002", + "85621", + "11270", + "56209", + "99364", + "70496", + "20496", + "49277", + "27369", + "65333", + "65922", + "32890", + "71206", + "71518", + "63970", + "62880", + "33843", + "74024", + "79870", + "97418", + "42048", + "33981", + "77919", + "56923", + "76251", + "80830", + "70251", + "17342", + "28204", + "22981", + "62500", + "35104", + "96693", + "17964", + "85093", + "71476", + "24675", + "70376", + "60682", + "45500", + "65502", + "17694", + "40264", + "46967", + "21047", + "67058", + "12632", + "54377", + "49994", + "45504", + "84290", + "48726", + "80354", + "78415", + "74607", + "49262", + "66700", + "83017", + "92851", + "38017", + "88546", + "20025", + "29169", + "42057", + "17833", + "92783", + "20107", + "98288", + "52978", + "55220", + "75810", + "93602", + "88138", + "79250", + "54373", + "35148", + "15435", + "68989", + "63454", + "65759", + "37843", + "43027", + "26087", + "99905", + "99040", + "46727", + "87698", + "53673", + "69071", + "15011", + "70722", + "17691", + "43050", + "39496", + "38048", + "99616", + "28072", + "37712", + "96391", + "11155", + "28043", + "51470", + "60502", + "53412", + "72584", + "49550", + "21149", + "85310", + "52375", + "26682", + "42840", + "70341", + "27001", + "91241", + "53423", + "26820", + "54612", + "41633", + "57834", + "87129", + "68430", + "11798", + "58106", + "33798", + "40037", + "74377", + "42310", + "94780", + "16009", + "26365", + "20388", + "77101", + "14522", + "66666", + "79643", + "55886", + "90385", + "68939", + "12940", + "26779", + "36345", + "29369", + "18792", + "45848", + "75262", + "14096", + "70827", + "65262", + "66646", + "81536", + "97235", + "12864", + "55794", + "40465", + "90811", + "15653", + "53061", + "47685", + "60044", + "63710", + "64113", + "68611", + "70572", + "36895", + "75695", + "46728", + "52495", + "98541", + "39636", + "76049", + "14040" + ], + "type": "barpolar" + }, + { + "customdata": [ + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ] + ], + "hovertemplate": "Team Go MagikarpPlayer %{theta}

Date: %{customdata[0]}
Medal: %{customdata[1]}
Score: %{r} points", + "legendgroup": "Go Magikarp", + "marker": { + "color": "rgb(173,172,194)" + }, + "name": "Team Go Magikarp", + "r": [ + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3 + ], + "showlegend": false, + "subplot": "polar2", + "theta": [ + "91853", + "99558", + "51519", + "97731", + "96252", + "82230", + "28941", + "18591", + "55737", + "24148", + "99015", + "68490", + "86202", + "60266", + "75650", + "67311", + "89275", + "46892", + "92479", + "10731", + "20673", + "38098", + "18671", + "18492", + "24284", + "68102", + "82978", + "99287", + "66089", + "51468", + "90716", + "81709", + "18101", + "19847", + "64826", + "74803", + "85486", + "91507", + "18605", + "54654", + "59524", + "83447", + "24057", + "76062", + "79506", + "67272", + "43172", + "25962", + "21870", + "18922", + "16402", + "52731", + "90256", + "34187", + "88532", + "17613", + "28930", + "69344", + "73947", + "40425", + "23405", + "99402", + "87699", + "96584", + "28926", + "75134", + "39818", + "65157", + "85934", + "68786", + "88391", + "40762", + "42995", + "62624", + "37910", + "25164", + "62820", + "99837", + "20152", + "85664", + "31611", + "83951", + "29743", + "34001", + "88929", + "13357", + "38221", + "53404", + "30977", + "69565", + "58914", + "83283", + "67382", + "83603", + "87970", + "47376", + "38655", + "18171", + "83594", + "23657", + "16548", + "19264", + "52913", + "99632", + "27307", + "98021", + "62534", + "83024", + "23274", + "35549" + ], + "type": "barpolar" + }, + { + "customdata": [ + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ] + ], + "hovertemplate": "Team Power BirdsPlayer %{theta}

Date: %{customdata[0]}
Medal: %{customdata[1]}
Score: %{r} points", + "legendgroup": "Power Birds", + "marker": { + "color": "rgb(251,230,197)" + }, + "name": "Team Power Birds", + "r": [ + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3 + ], + "showlegend": false, + "subplot": "polar2", + "theta": [ + "26962", + "40302", + "94696", + "12089", + "82703", + "99531", + "10114", + "59731", + "77119", + "76836", + "91721", + "10568", + "85944", + "15021", + "51104", + "94974", + "57239", + "41577", + "19225", + "57510", + "38606", + "90642", + "40228", + "97386", + "96118", + "98482", + "70000", + "66837", + "63518", + "37074", + "74759", + "38708", + "11613", + "36071", + "44026", + "39881", + "57982", + "31474", + "13333", + "76073", + "77842", + "93572", + "82229", + "19546", + "57094", + "76299", + "45032", + "73388", + "87016", + "12127", + "12881", + "99073", + "18714", + "43019", + "61337", + "14430", + "83963", + "67267", + "18670", + "49624", + "66767", + "71117", + "40420", + "82617", + "88662", + "59815", + "65298", + "66939", + "80105", + "75895", + "23477", + "80862", + "40550", + "33293", + "55128", + "83182", + "40049", + "32217", + "81125", + "94899", + "73630" + ], + "type": "barpolar" + }, + { + "customdata": [ + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ] + ], + "hovertemplate": "Team ThunderCatsPlayer %{theta}

Date: %{customdata[0]}
Medal: %{customdata[1]}
Score: %{r} points", + "legendgroup": "ThunderCats", + "marker": { + "color": "rgb(160,185,205)" + }, + "name": "Team ThunderCats", + "r": [ + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3, + 3 + ], + "showlegend": false, + "subplot": "polar2", + "theta": [ + "74483", + "38726", + "67154", + "41345", + "31842", + "95564", + "62227", + "68238", + "53823", + "18516", + "65734", + "85445", + "86436", + "16272", + "11872", + "25508", + "60018", + "38396", + "80154", + "65268", + "22148", + "86876", + "31233", + "33328", + "99019", + "98532", + "39901", + "80615", + "45274", + "75348", + "12238", + "99677", + "79395", + "56583", + "52140", + "14392", + "42651", + "72468", + "67027", + "37403", + "29526", + "19357", + "18871", + "98238", + "61709", + "22683", + "97977", + "11684", + "65637", + "76550", + "98750", + "48393", + "80400", + "77077", + "22872", + "83480", + "76043", + "10504", + "67483", + "82225", + "46633", + "43269", + "50901", + "14288", + "82979", + "65089", + "14225", + "95085", + "15382", + "30333", + "89054", + "95123", + "66675", + "99995", + "73245", + "95711", + "42431", + "79752", + "36192", + "41989", + "88525", + "61450", + "69064", + "86098", + "47625", + "22909", + "10778", + "90860", + "30092", + "70584", + "92968", + "85569", + "70721", + "71491", + "49169", + "18340", + "49513", + "11112", + "30689", + "82962", + "76875", + "47471", + "72485", + "48119", + "42433", + "99028", + "30547", + "95586", + "31219", + "84325", + "17253", + "84078", + "98394", + "25585", + "74037", + "19673", + "66063", + "18600", + "25342", + "76439", + "97154", + "96600", + "67361", + "84069", + "86489", + "27828", + "19392", + "86265", + "24892", + "92293", + "65738", + "39343", + "71139", + "52912", + "95240", + "88135", + "56544", + "39001", + "90756", + "69873", + "48878", + "39831", + "22771", + "97266", + "18843", + "81263", + "21125", + "59850", + "67873", + "38894", + "80692", + "35288", + "54171", + "31992", + "33164", + "30018", + "12339", + "52546", + "22587", + "90246", + "38469", + "89475", + "20733", + "20851", + "59306", + "32046", + "82761", + "63001", + "67400", + "12652", + "45415", + "11251", + "22558", + "48578", + "83562", + "33763", + "54483", + "80528", + "75747", + "98571", + "33324", + "63251", + "24101", + "48376" + ], + "type": "barpolar" + } + ], + "layout": { + "annotations": [ + { + "font": { + "size": 16 + }, + "showarrow": false, + "text": "Event: A", + "x": 0.225, + "xanchor": "center", + "xref": "paper", + "y": 1, + "yanchor": "bottom", + "yref": "paper" + }, + { + "font": { + "size": 16 + }, + "showarrow": false, + "text": "Event: B", + "x": 0.775, + "xanchor": "center", + "xref": "paper", + "y": 1, + "yanchor": "bottom", + "yref": "paper" + } + ], + "height": 600, + "hoverlabel": { + "bordercolor": "white", + "font": { + "color": "black", + "size": 8 + } + }, + "legend": { + "font": { + "size": 10 + }, + "orientation": "h", + "yanchor": "bottom" + }, + "polar": { + "angularaxis": { + "categoryarray": [ + "Dog Patrol", + "Go Magikarp", + "Power Birds", + "ThunderCats" + ], + "categoryorder": "array", + "showticklabels": false, + "type": "category", + "visible": false + }, + "domain": { + "x": [ + 0, + 0.45 + ], + "y": [ + 0, + 1 + ] + }, + "hole": 0.4, + "radialaxis": { + "autorange": true, + "range": [ + 0, + 3.1578947368421053 + ], + "showticklabels": false, + "type": "linear", + "visible": false + } + }, + "polar2": { + "angularaxis": { + "categoryarray": [ + "Dog Patrol", + "Go Magikarp", + "Power Birds", + "ThunderCats" + ], + "categoryorder": "array", + "showticklabels": false, + "type": "category", + "visible": false + }, + "domain": { + "x": [ + 0.55, + 1 + ], + "y": [ + 0, + 1 + ] + }, + "hole": 0.4, + "radialaxis": { + "autorange": true, + "range": [ + 0, + 3.1578947368421053 + ], + "showticklabels": false, + "type": "linear", + "visible": false + } }, - "hovermode": "x unified", - "showlegend": false, "template": { "data": { "bar": [ @@ -5924,297 +18182,16 @@ } }, "title": { - "text": "Event Performance scores, by teams, date 2024-08-15" - }, - "width": 900, - "xaxis": { - "anchor": "y", - "autorange": true, - "categoryarray": [ - "gold", - "silver", - "bronze" - ], - "categoryorder": "array", - "domain": [ - 0, - 0.22444444444444445 - ], - "matches": "x4", - "range": [ - 2.5, - 5.5 - ], - "showspikes": false, - "showticklabels": false, - "type": "category" - }, - "xaxis2": { - "anchor": "y3", - "autorange": true, - "categoryarray": [ - "gold", - "silver", - "bronze" - ], - "categoryorder": "array", - "domain": [ - 0.35777777777777775, - 0.5822222222222222 - ], - "matches": "x5", - "range": [ - 2.5, - 5.5 - ], - "showspikes": false, - "showticklabels": false, - "type": "category" - }, - "xaxis3": { - "anchor": "y5", - "autorange": true, - "categoryarray": [ - "gold", - "silver", - "bronze" - ], - "categoryorder": "array", - "domain": [ - 0.7155555555555555, - 0.94 - ], - "matches": "x6", - "range": [ - 2.5, - 5.5 - ], - "showspikes": false, - "showticklabels": false, - "type": "category" - }, - "xaxis4": { - "anchor": "y7", - "autorange": true, - "categoryarray": [ - "gold", - "silver", - "bronze" - ], - "categoryorder": "array", - "domain": [ - 0, - 0.22444444444444445 - ], - "range": [ - 2.5, - 5.5 - ], - "showspikes": false, - "showticklabels": false, - "type": "category" - }, - "xaxis5": { - "anchor": "y9", - "autorange": true, - "categoryarray": [ - "gold", - "silver", - "bronze" - ], - "categoryorder": "array", - "domain": [ - 0.35777777777777775, - 0.5822222222222222 - ], - "range": [ - 2.5, - 5.5 - ], - "showspikes": false, - "showticklabels": false, - "type": "category" - }, - "xaxis6": { - "anchor": "y11", - "autorange": true, - "categoryarray": [ - "gold", - "silver", - "bronze" - ], - "categoryorder": "array", - "domain": [ - 0.7155555555555555, - 0.94 - ], - "range": [ - 2.5, - 5.5 - ], - "showspikes": false, - "showticklabels": false, - "type": "category" - }, - "yaxis": { - "anchor": "x", - "autorange": true, - "domain": [ - 0.575, - 1 - ], - "range": [ - 0, - 38.94736842105263 - ], - "type": "linear" - }, - "yaxis10": { - "anchor": "x5", - "autorange": true, - "overlaying": "y9", - "range": [ - 5.921255508001092, - 142.01874449199892 - ], - "side": "right", - "type": "linear" - }, - "yaxis11": { - "anchor": "x6", - "autorange": true, - "domain": [ - 0, - 0.425 - ], - "matches": "y7", - "range": [ - 0, - 42.10526315789474 - ], - "showticklabels": false, - "type": "linear" - }, - "yaxis12": { - "anchor": "x6", - "autorange": true, - "overlaying": "y11", - "range": [ - 6.2382727215495315, - 141.70172727845048 - ], - "side": "right", - "type": "linear" - }, - "yaxis2": { - "anchor": "x", - "autorange": true, - "overlaying": "y", - "range": [ - 13.880148768014891, - 118.51985123198511 - ], - "side": "right", - "type": "linear" - }, - "yaxis3": { - "anchor": "x2", - "autorange": true, - "domain": [ - 0.575, - 1 - ], - "matches": "y", - "range": [ - 0, - 38.94736842105263 - ], - "showticklabels": false, - "type": "linear" - }, - "yaxis4": { - "anchor": "x2", - "autorange": true, - "overlaying": "y3", - "range": [ - 13.554185715197011, - 118.84581428480298 - ], - "side": "right", - "type": "linear" - }, - "yaxis5": { - "anchor": "x3", - "autorange": true, - "domain": [ - 0.575, - 1 - ], - "matches": "y", - "range": [ - 0, - 38.94736842105263 - ], - "showticklabels": false, - "type": "linear" - }, - "yaxis6": { - "anchor": "x3", - "autorange": true, - "overlaying": "y5", - "range": [ - 14.849175567769372, - 117.55082443223063 - ], - "side": "right", - "type": "linear" - }, - "yaxis7": { - "anchor": "x4", - "autorange": true, - "domain": [ - 0, - 0.425 - ], - "range": [ - 0, - 42.10526315789474 - ], - "type": "linear" - }, - "yaxis8": { - "anchor": "x4", - "autorange": true, - "overlaying": "y7", - "range": [ - 4.55583164867306, - 143.38416835132693 - ], - "side": "right", - "type": "linear" + "text": "Players participation during A and B events" }, - "yaxis9": { - "anchor": "x5", - "autorange": true, - "domain": [ - 0, - 0.425 - ], - "matches": "y7", - "range": [ - 0, - 42.10526315789474 - ], - "showticklabels": false, - "type": "linear" - } + "width": 900 } }, - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6QAAAGQCAYAAAC5y61PAAAAAXNSR0IArs4c6QAAAERlWElmTU0AKgAAAAgAAYdpAAQAAAABAAAAGgAAAAAAA6ABAAMAAAABAAEAAKACAAQAAAABAAADpKADAAQAAAABAAABkAAAAABUH4gHAABAAElEQVR4AeydBXwUxxfHXzzEEyCQAMGDu0tx90IpFIpLjSpUoKVQSpXS9t+WCrRIKVoquLUUd3d3tyjEk//7Tdjj7nJJ9i5Gwnt8wt3tzs7Ofvd2bt48GTtfX98kEhECQkAICAEhIASEgBAQAkJACAgBIZDNBOyz+XxyOiEgBISAEBACQkAICAEhIASEgBAQAoqAKKTyRRACQkAICAEhIASEgBAQAkJACAiBHCEgCmmOYJeTCgEhIASEgBAQAkJACAgBISAEhIAopPIdEAJCQAgIASEgBISAEBACQkAICIEcISAKaY5gl5MKASEgBISAEBACQkAICAEhIASEgCik8h0QAkJACAgBISAEhIAQEAJCQAgIgRwhIAppjmCXkwoBISAEhIAQEAJCQAgIASEgBISAKKTyHRACQkAICAEhIASEgBAQAkJACAiBHCEgCmmOYJeTCgEhIASEgBAQAkJACAgBISAEhIAopPIdEAJCQAgIASEgBISAEBACQkAICIEcISAKaY5gl5MKASEgBISAEBACQkAICAEhIASEgCik8h0QAkJACAgBISAEhIAQEAJCQAgIgRwhIAppjmCXkwoBISAEhIAQEAJCQAgIASEgBISAKKTyHRACQkAICAEhIASEgBAQAkJACAiBHCEgCmmOYJeTCgEhIASEgBAQAkJACAgBISAEhIAopPIdEAJCQAgIASEgBISAEBACQkAICIEcISAKaY5gl5MKASEgBISAEBACQkAICAEhIASEgCik8h0QAkJACAgBISAEhIAQEAJCQAgIgRwhIAppjmCXkwoBISAEhIAQEAJCQAgIASEgBISAKKTyHRACQkAICAEhIASEgBAQAkJACAiBHCEgCmmOYJeTCgEhIASEgBAQAkJACAgBISAEhIAopPIdEAJCQAgIASEgBISAEBACQkAICIEcISAKaY5gl5MKASEgBISAEBACQkAICAEhIASEgCik8h0QAkJACAgBISAEhIAQEAJCQAgIgRwhIAppjmCXkwoBISAEhIAQEAJCQAgIASEgBISAKKTyHRACQkAICAEhIASEgBAQAkJACAiBHCEgCmmOYJeTCgEhIASEgBAQAkJACAgBISAEhIAopPIdEAJCQAgIASEgBISAEBACQkAICIEcISAKaY5gl5MKASEgBISAEBACQkAICAEhIASEgCik8h0QAkJACAgBISAEhIAQEAJCQAgIgRwhIAppjmCXkwoBISAEhIAQEAJCQAgIASEgBISAKKTyHRACQkAICAEhIASEgBAQAkJACAiBHCEgCmmOYJeTCgEhIASEgBAQAkJACAgBISAEhIAopPIdEAJCQAgIASEgBISAEBACQkAICIEcISAKaY5gl5MKASEgBISAEBACQkAICAEhIASEgCik8h0QAkJACAgBISAEhIAQEAJCQAgIgRwh4JgjZ83Ek7Zq3YY8Pb1SrXHb1i10/fq1VPc/qjuMrysxMYFu375NZ8+coWvXrmZJkx0cHOjFl16mXs/0pYCAAAoNCaV6dWpQfHxclpxPKn28CAwYNIRefW0ktW7ZhO7wd1kk+wk8/+IIGv7ci/REo7p0LzIy+xuQyhmdnJzoiSZNqUKFSlSY+547d27Tnt27aNPGDRaPQPkWLVtT1WrVKDo6mvbv22uxbFBQcWrStBkVKxZEzi4udP78OVq6+C+6e/euxXqNN1aqXIWCg8vRmjWrrGalt304H367uj/Vk8qUKct9bTydOH6M/v7rD3Vdxu2x5n3Xbk/SqVOn6OiRwykOK1WqNFWrXiPFdm0Dzp2UlKR9lFchIASEgBAQAtlCINcrpKPHjKUyZYNThTVkUL8cV0j7Ptuf3hnzHrVr04KuXL6caluNd1i6rsTERPpn7Rp6a9RrFBISYlw8w+8HDxlGo94aTatXraSpP/1Afn5+PDBJzHC9UoEQAIF8+fJR/vz5yd4u650ytmzbTf/99y+9N+ZtgW9EwC2fm7oHdnZ2Rlv1vbWlD9NXM9GylWupfPkKFBcXpybcihYtRvb29rTu37U0fOggtV2rCwrctF9mUoOGjejChfOEaxr15js0f94cGvPOm5SQkKCKtmvfkX6aNl29v33rFtnzhBv6tLe4j3vxheG0Yf06rcoUr1BGFy76mzw8PKh5k4Z01grlXW/7cNL69RvSTz9PJycnZ9q6ZTN5eXvRgAGD6I1Rb1G/Pr3oxInjKdqW3oZq1arT1998T198/qlFhbTxE03ow48+TbWapUsWyyRkqnRkhxAQAkJACGQVgVyvkALMcZ5V7tOrh0VG4eHhFrdn50ZnZ2fy8vJWgyxrznvs6BHq0b2LGsRjsNKgQSMaO+4Dmjt/EbVv29KaqtIt26Xrk2oAM3zowHTLSgEh8CgT8PTyJDc3t0e5ibmubbb2YXoudAErk3v37qFDBw8ohRJK3ZtvvUOwqg/iibKpP35vqGbUW29T+QoVqWundrR//z61vX2HTvT9j9NoH9cBxRRy7eoVGvn6K/Tfun/Y4nqHoIRXqFiJFc2/6Lvvf6QaVStZVLyKFitGs36dq6y0UEitFb3tc3R0UsrojRs3qFvn9nT//n11Klh1V6z+h7748n/UuWNb3afHhGebNu2oRImSun5nevV8kk5aUHjFI0Y3cikoBISAEBACmUgg680VmdjY1KqK55l1DDos/WHWHbPpv81dSPXqNUhRRanSZdS+lq1aG/a5urrSu2PH09p1G+noibO0YtU/1JtdWc1l+szfCJZF1Dt7zgI6dPQkbdi8nfr1H2go2rVbd+rPs96Qr77+Tp0LbUGb0hPM9sO1LiIiXFlWF/2+gP78YxFVrFSZigUFGQ7X095Onbuqc3t7+1Ct2nXogw8/opm/ziHMqE/9eQaVYwtFgYIFDe2DhUGTLl270Z9/L6Mjx07TP+s2Eay3cEszFo0FLGHDhj9PP079hZXnCaqIdu7AIkXUto1bdtCO3fvpo08+JwzMYLn49PPJtHnbLtp/6Dh99b/vyN1sMPjq6yNpyfLVtGvvQTp45IRqx5tvj07hrq21I617YtzumrVq08/Tf6Wt2/eo84NFs+amyj4sGXPm/a7ahnZj8Fu4cIBxNam+L168BFssphCued/BY7SUrwHthrVQEwz2YeVZvGwV7d1/RF3nGyPfovwFCmhFFKPJX32j2njg8HHVHrTdXLTrt3QfUFbPtcA69UyfZ+nvpSvVNaPt036ZRcbPiPl59X728fVRFho8J3sPHKVvvvvB5B5Omvw1TfriK4vVvT36Xfp2yk8W92kbZ/02jzzcPZQLKJ4z/KFOTfQ8Kyhr7fetUeMnaP7CP1UfsOjPJQRLFKRDx8608I+/6cjxM6o/adGyldqu/ZdVrD08PemTz76gbTv30uFjp2jegj+oes2a2mkNr3quU08fpud7ZTip2Zvpv0xTbreadRP93fdTvlWlKrISqQn6hKd79aG17EarKaPYt3LFMjp86CANHjpcK0oHDuwn9Jf4TYDADRUurMuXLVWTg0W4LzIXHx8f+nX2PNq0aQP9OnO6+e50P1vTPjyfULzPnztrUEZxgosXL7CieEK5GKd7QqMCn348kVo0a0yN2R1bj4SFhSnXZbgvG//pOVbKCAEhIASEgBDIbAJ5QiFND8rhQ4eoTt161LffgBRFez7dixqycnjwwAG1DwNWKAaDhwzlmM3T9N03Xyt3r88mfUnDn3/R5HgMQl8a8SrNXfC7cklcu2Y1uXCs0sSPP1OxSyiMGKeoqCh1HAZaoaEh6g+Ksi0SFxurDnNiRQ6it72Y+Uec1vvjJ9Affy1lBftZqseKVkBgEQoLDSW4A+NPa19MTIyq/7kXXlJKQCyf94fvv2VLxi6lcGKAi8G0JmCBwffKNevovfc/UAo3uEK0cy9ZuorLdKK9e3bTpYsX6Vm+H9N+mUGr/1lPTZs2p927dirm3Xv0pEFsHTGWtm3bEyYeVq1YTr/OmkFnz55W7P/37UPrCcrruSdavU/17EVQHkqWLEnLly9lt7lNVKVKNfps0mStCKHM3AWLKKh4cZoxfRpt3rRRxa8tXbE6hdJsOOjBG3//QvTXkhVUv0FDZamZM3sWD/7u0AsvvmyI48LAFIo24ncvXrhACxfOU/fj5Vdfp9atky0kvr6+tJwnRdq2a09rVq/idvysJg9+Z0XHXMFJ6z7ovRYow5ggCOG2Tv9lKiEOG4rBa6+PMr9Eqz/ju9eS4/8OsHUL8XJQdn6dM99Qz7WrV+np3n04nrCiYRveQDkf/twL6brfh4WGUSIrH7ExsYbvckREhKpL77OCwtZ+32axIgP595+1KoTgp6nTacoPU/nZ+YESE+Bqv5r8/f152zQ1CaMK839ZwRrXuYQnE3oxx4OsmM2b8xtF8sQWPCzMRc91pteH6f1emZ87rc9anOOVKw9DHIqxKy8s34cPH0px6CFWSMty6AZi4dMS1JvAsZo3blw3KYZ++5cZs+nW7VscEvG6yT69H6xpH34Ldu3aQa1atVGTmpobdWBgIFWuUlX1c3rPa0s5cML3REQICAEhIASEwKNAIE+47MK6t2nrTos833lrJG3ZvEnNosO1C5aDyAcDVChU3Z7sQevW/Uu3bt1Uxw/jQW+5cuWpXevmyhUYG7+f8g3B8vLyK6/RrBm/kKasYR8GFgP691Ez9PgcEBBIW7bvpie7P0UbN6znmMwVhEEG4pLeHztGKWIoZ4tAeenQqbOa0UaCDoi17UU7ej/dXSl/SKLh6OhIq1YuZ4tOUzp4cD+NePE5Q9NgMYUSsnzZEnqJ4660ZBdbt2whKIJg9+cfvxvK16xZi6Z8941SGMET1k9jmTf3N/rf15NV8g5sh+UIyUm+mPQpfc/HwUKCgRmUFrTnu2//Zzi851PdUiQXefe9cWqSABZW40Ql6d0TVAprCJRzDAr79+1tuKcYmCKxEwRu1lCucQ9ffH6Y4fpn/zqTFvOAf8CAweq7oQpb+K9T5y7KEvp0j260Y8c2Q4mywcGsXMerz1BOoXwN6NeH1nPcoyawXLu65lMfX+RJD1hkO7Cb9rFjR9W2H7//Tlkw32crNL5nuJeaWLoP1lxL/4GDlBI6aMCzWpXqXmJCI6MCy9c0jlHWrGFwNQSDho0aqzi6+fPnEJTx3n360rix7xpO1/Pp3qxsOBKU+rTklRHPs4X7hOL9xmsvmxS15lmx9vv2bJ+nDfcG14IJm2DuR9q3aUknT55Q7UCCHXhS1GLLtvZ9yArWQ4c9R6U5Sc6wIQPUBIYGAcovLKLGouc60+rDrPleGZ83vffwyoAs/utPQ1H0RxCt/zbs4DfwJEF/7st9AWJGLUmZsmXVs7aCJ5+gZGuC476d8qPyQujWpaNJzKpWRs+rte1DnzLt55k07oOJhBjdBQvmUR/2TIBl95v/fannlDaXWc5xuxC4CiM0BL9xyE8gIgSEgBAQAkIgJwjkCYU0Kuq+xQQOABrxIIZ0wfy5SknsyArdgnlzFWtYrgLZQjiOFUVNYFXYsOE/gzKqbV+9cgU1a9aC4IKpDTCxbytbj+Aupgmy4J47e4aKFC2qbbL5FcozBrFQRJHoA67AyBiJ2ChYMyHWtncgKz7GWYeNFRnzhmL2HhYJxHBpyijKLP77T5WkSbnyGimkv/NAavIXnxmqMY9HgmXT+HzIpAnX2l9nzjAoKDgPtg8cPFS5BWuWZC0rKNqDgT5cXrUZ/hIlS5kopHruSRu2uMJ9+esvvzAoo2g4Jhs0d73WbdoSrJM/mV0/rHuwsFSpWtVwrZbeaJbxEqVKGhQQlDt18qShOBQtKCfGyih2wuVQE3DeyN9JTRnFdgyoMTkCS2YlduE2Lm/pPui9FkwIoN1+zBcuhVDuIbiXiMfLqPzx+0LDvUZds2ZMN1FIr165Qkg4gwmdjydOMNwbuMwj66o2EWNLO6x5Vqz9vhnfG1j6IVs2bzTpK7TtDRo1Uvc8q1iDHWIyYU1PT6y5Tkt16f1eWTo2tW2Y6IKbP/oL474WzyLEWJnU6tC2oYwlhRT9xnfs7g1LMdxbjWU8K4R16tZXsZxhYaHGu1K8b9uuAxUpUsRk+86dO9RvgLXtg2J9lWNdnQ86073792jMu++rfv3HH6aYPCNpndOkITo+XLp0SfVv169fp/iEePV7hv4FYQvPDx+iJid1VCNFhIAQEAJCQAhkKoE8oZDC1fG5YYPTBLN921a6dOki9XjqaYNCCtfQWzdvcjbH5IE24iKLFCnKyk4BFd9mXKGTUzIquLgaD5KMy2jvw3mg4eKScXeoEpygAhYVTS5wVsnBA59VboHYZkt7NcuUVmdar8VLlFC7z/ByM8YCpfH8uXNqMGO83Zq6cRxm5yEODg9df/EZ2xFXmY8zaMbFhWGTipsd98GHbF2qY4hf1ZRVWHnTE/N7UrJUKXUIrAOpSUlWdCGIyzQXb28v5e5svt3481p203zz9mj6fNJX7II8lLbxdxDWTE2xgzU2gK3na9asND7M5D3KFCpUWMW+mezgD1gGCIL7ZKyQWroPeq8F93b+3Dn02hujVJwvFGEoN7CEWxroqwZk4D9M4MAdHJ4FmsydM5uat2hFiGPG5AcmjtD+Tz6aoBWx+tXaZwVx2rZ+33A9uAcO9qbuo9r3HRMhkKxgDVfM4txvYAJOj2TkOlG/3u+VnragDGJvkdBn+/at9OEH75scFh6e7HqNvsFc8JxAwsNSJrGDp8aP06arZVyGDR2osvNqx8PlvTdbJfv0fspku7afXTYMb/EGk4LmngITPxyvFFJr24eYY7Rbs1Ijn8FHHO6B8JAKFSsaPATSOqdJ43R8QN+j9T9a8e+++UqFWox8821RSDUo8ioEhIAQEALZSiD9kXy2NifrTobB30J2iYLbGmIasRYiXHh/+3WmwWrn7u6u3L5giVm+bLHFxhx/4DJpceeDjUmwXrIbWEYFMayvvfISxXLs5EVWRu/du2dSZWa116RSow+wKkBiYh66t2m7o6OjKN+D/do2a18VJwsHJZotNwP3Q7jxwg0Y8V1Yd/Dy5UvsmtlCJduxUEWKTeb3xN3NXZXRrJgpDuANyNYKmThhHCsY8eq98X9YqzUtgQLX5In6NOLlV5VyhQRY+IMFGBMLsJBpVrLU6oF1HGVSuwc4Ts99sOZavvpykrLgvfjSK2yhb66eE7huTxg/1pDFNLX22rIdVnO4TWqCCSJYoPv0fVYppH369lPLgWTEpdCaZyVTvm9m32Ht2tAPGUtms3bnhE5Qvi25tRqfF+8z4zqt+V6Zn9/8MyYekDwL8aBDBvVXExXGZbA+KQTPhLm4cd8N0ZIYafvBArG8jRs3oddfHWGYzNP2Y3IASiH6F0vy34YtanKhVPHkCZM3R76W4nnT1tW1pn0InUBSsrHvvmMIRUB/3/eZniqLeu9nnlWWXPRPaZ3TUput3XaV47YRG4/fQ3idaNZma+uR8kJACAgBISAEbCXw2CikAITYnNffeJNgGb1w/rxaZw5xO5qEcnIfuGzBbXPx339pmzPt1do1GGFRMbZ8mTckq9uLxEMQWK9gnTUWWIq1/cbbs+I9rBhQjl94bigdsZDQxJZzaq6fRdkF+szpUxargBUYgoyeGCzaIlAM4CKIv4IF/VVCKCSKQgIoWALDw8OUO3ZqdeMeow5jC6JWFvcAouc+WHstWBcRf1AUkSgJaxe+PvJNNamjuYtr7cjIK2J5cW/PnTtrqAYK6sL582gEx2xXr15DDZS/ZSuOJcuv4SCzN8YKLnZZ86xkxffNrHkmHzOTNb5PUGL8CxUyOYelD7Zcp3kfZu33ylI7sK1psxYq2zeSMA0c0NegpBmXhzUdElyunPFmwzYohsZhAlCusBYprK4vv/S8ioU3PxCTW6PfTpmsC8d07NSFvpz8Od28ccNwmNYGwwajN9o+Pe2rU6eeOhIutMaCZ2vbti0qKRyUVrh5a/Ual8vs93hesO50fHxCZlct9QkBISAEhIAQSJfAQ7NEukVzfwHEp2EmGAppj55PG7K6Gl/Zju3bCXFRxsuqaPsRI6TFLWrb9LyGhISoYsbLeOg5Tk+ZrGivdt7dbMmDdO7SVdukXpGUB4mfdu+2nEjKpHAmfED2SggyABsLXKttlX08EIX06vVMiio05W8XDwZh0RoydHiKMtiglbO4kzci3hjWTU1g4f2GFSsMOuEqCUE7WrZqY7IMDLZjgAhXXQg4Q3mAlc9YcF8waZGW27FWXu+1wB3S+LrQVngMIIM0EishaYwmiH/tP3CwirPVtln72u3Jp9QhO/m5MxYkNwL7H376hVnYKTdi4/1pvcfzZum7ofdZyYrvm6X2WsMazxxYmy9JZKneY+zFgazVsA4ai3n/Y811ptaH6f1eGbfD/D1iRqfP5KWXtmyi/s/2tqiM4hgonFDQcG3GCdMQT169ek1asWKZoWpYPrFUEzKJDxk0wKIyisKYCMHEkPkfMoFDli7+m5CMTY9Y0z5tgu/J7j1SVN2MlXOIrZNgKSo02oDM3+YCVg0aNuY8DEdMFHrzcvJZCAgBISAEhEBWEcgTFlJkN3z+xREWGa1cvszEurdwwVxeGH2qin2CK5S5fPTheFrz7wZeQP1v+urLL1SyJCzXAPcqrCeK7LtwcbJGjhw5pAbXsM5O4cyxLjxzf+XKJTp9yrJlzpq6s6K92vlhPcAyFq+8NpIQg7lpw3qlqE/48GNODhJhsmC9dkxWvCIT7gBeBubjTyfR3N9+5VPYKQXtaQvKpN7z7+O4SGTbRObVhMQEzqS7kge5jmpx+bbtO1DTxvVVXBi+L1ieBm59iKOEtRKWC1hPrnFCkjfTWCICdWMJByQfgmUXSap6P9NHKZtaEqNPOHEPlnRZ8PvfNOnzT9Q6hMHB5dSaivN4oDx/3hyaPOkztTTM9Jmz6bNPP1ZWVUyqoA1YlkhTFtK6diTe0nMtnl5e9N/GrWqJGyii169do/KcBRjKJ+rQ3BOhBGB9T7hOw+1dr7z08ivMfZlyP0c2Wqy/irhaxAway2W2HGE9SCgfyPJ88+ZDK5VxOUvvDx08oFykkQgJ8d5Q7FeysqL3WcmK75uldupljWP79RuongFLfZZ53TN+wXIzP9GMWXM4MdB09gTx5OV1nkyhzFpznan1YXq/V+Zt1D4HBRVX6/Tie4XvW08Lz/TypYsNrrhz+PnHOsVffPk1zeK1QuG+i3hnR46dNY6bRfxv7Tp16a8/k5dsgjJvLJc5n4CWO8B4e0bf620fEl5hXVS4yb76+mnlvYOlvLrwfcJvzWx+powzh6fXLmTqRiKyAg/WLi5eorjybMCkDizwmqxdlzy5hIlZKMXImfDKa2+oSaWXX3pOKyavQkAICAEhIASylUCeUEhhuRk9ZqxFcKdPnTRRSKF4wNLm5ORMy3igYy5w5ezSsS19MPFj+owzmGquf4jfxFqCYeEpk2aY12H+GVlVx73/Li8TMogWLEp2BUbK/8xQSLOivcbtf5mX0UCiDSihmrXvOK8f+dSTXXQpQsZ12fp+6ZLFBBc3ZSF6YD2AAgN3Oig0tsqoN17liYErbAF9jtcBfUVVA5dtDCo1GfPO25w1+Ry98NIIpZRp28EgPcsJlhtqxErX199M0Q5TA+v3xrxtWGIB1qw+vZ5S37epP88wlIMlCLF0kIOsYGFZGAzC/1q8XG2Da+I3X3+pltFRG3T8p+da7vP3/N9/1pgwQdVIhDJm9FuGs0CZxPcBmVBhRdUrlStXpUGDhxmKY0mRUW+knBhCAWS2hkKKwbk18jkr7WjbB/ydhUcDnj8opHqflaz6vplfg17WOA4upFBQkOQpPUH7y5QJVsvnIAEPlBJcP6yAiMfVxJrrTKsP0/O90s5p/urs4qzuFSYVsfyJJdnPk0dabCgmhbDUzNuj31WZmFEeXAYN7EeYiNAEE0gQZBzGn7ms+3dtliiketuHxFdDBvenDyZ8rPIaYLIS31mEi2AJlq8mTzJvcpqfR3I/CM8eTXr17ssZ2Puqj8WLPrSKbli/XmUwxgSTJsj0O3zoIDUhoG2TVyEgBISAEBAC2UnAjt1QTbNsZOfZH/FzYVATVLy4couEpciaGLbULg2uwLCy6bFqpVZHatuzor3aueAuWpqzQGK5AGusVdrxmfEKdzMkpLrGFurMjKvCpAOW04GlFHWndp8RAwrL4OUrl3UljdGuGQNoLAMEqzLqR4ykJcEyKwEBAXSVY+XwHTEXDFjRTlhaMdGCQa2tkt61IFsrMgCjTVcuX1ZWWeNzYbkZuFrWq11dxV0b70vvPc4NHhd48iet5wAZprHERotmjdOr0uJ+dw8PKpC/AE86XE7BXM+zklXfN/PGpscaFt6dew4oReWzTz4yPzzVz7j+0qVKs1vqOcPyPZYKW3udafVh6X2vLJ3flm1ghv4ICpzm/mpLPVl1jDXtwzrKWLoKyYSwZFhaidYyo71w5cZyZ3DhRhiL8TJgmVG/1CEEhIAQEAJCwFoCopBaS0zKCwEhQJu27uR1NjfRO2+NzBIaiFGG6/x49iyYMf3nLDlHbqkU7tlYCqVxg9pWhwvklmuUdgoBISAEhIAQEAKPLwH7x/fS5cqFgBCwhQAsZIj9m5mFiuLQYc8pS9Efi363pYl56hi4665ds0qU0Tx1V+VihIAQEAJCQAgIAY2AWEg1EvIqBISALgJI/oT1LhFvm1WChERY1xHZfR93gYt2HLtnwz1VRAgIASEgBISAEBACeY2AKKR57Y7K9QgBISAEhIAQEAJCQAgIASEgBHIJAXHZzSU3SpopBISAEBACQkAICAEhIASEgBDIawREIc1rd1SuRwgIASEgBISAEBACQkAICAEhkEsIiEKaS26UNFMICAEhIASEgBAQAkJACAgBIZDXCIhCmtfuqFyPEBACQkAICAEhIASEgBAQAkIglxAQhTSX3ChpphAQAkJACAgBISAEhIAQEAJCIK8REIU0r91RuR4hIASEgBAQAkJACAgBISAEhEAuISAKaS65UdJMISAEhIAQEAJCQAgIASEgBIRAXiMgCmleu6NyPUJACAgBISAEhIAQEAJCQAgIgVxCQBTSXHKjpJlCQAgIASEgBISAEBACQkAICIG8RkAU0rx2R+V6hIAQEAJCQAgIASEgBISAEBACuYSAKKS55EZJM4WAEBACQkAICAEhIASEgBAQAnmNgCikee2OyvUIASEgBISAEBACQkAICAEhIARyCQFRSHPJjZJmCgEhIASEgBAQAkJACAgBISAE8hoBUUjz2h2V6xECQkAICAEhIASEgBAQAkJACOQSAqKQ5pIbJc0UAkJACAgBISAEhIAQEAJCQAjkNQKikOa1OyrXIwSEgBAQAkJACAgBISAEhIAQyCUERCHNJTdKmikEhIAQEAJCQAgIASEgBISAEMhrBEQhzWt3VK5HCAgBISAEhIAQEAJCQAgIASGQSwiIQppLbpQ0UwgIASEgBISAEBACQkAICAEhkNcIiEKa1+6oXI8QEAJCQAgIASEgBISAEBACQiCXEBCFNJfcKGmmEBACQkAICAEhIASEgBAQAkIgrxEQhTSv3VG5HiEgBISAEBACQkAICAEhIASEQC4hIAppLrlR0kwhIASEgBAQAkJACAgBISAEhEBeIyAKaV67o3I9QkAICAEhIASEgBAQAkJACAiBXEJAFNJccqOkmUJACAgBISAEhIAQEAJCQAgIgbxGQBTSvHZH5XqEgBAQAkJACAgBISAEhIAQEAK5hIAopLnkRkkzhYAQEAJCQAgIASEgBISAEBACeY2AKKR57Y5acT0DBg2hpk2bW3FE1hYd/vyLVL9Bwyw7iZ2dHRUpWpSKBQWRk5NTlp1HKhYCQkAIWEOg/8DB1Kx5S2sOkbJCQAjkEQKOjk7k4+OToXFJi5atqF//gXmEiFzG40hAFNI8dtcvXL5B6f1t2LxdXfULL46gVq3bPDIEXn31DXqiSdNMb0/x4iVo5q9z6OiJs7R1+x7avHUXnTxzkWb9No/atmtv1fkCAwPp088nU9ngYKuOk8JCIC8TGDxkmKHfOXvhKu3ee4hWrVlHkyZ/TTVr1c6RSy9UqLChTegTj508R+s3bqXRY8aSl5e31W0a9eY71OOpp60+Ts8Bzz33IrVp205PUSkjBPIUAeO+4/yl67T/0HH6e+lKeqpnr1x9neb9z7mL1+jIsdOqXzRXHJs2a0YHDp+gjp262HzN7dp3oKHDn7f5eDlQCOQ0AcecboCcP3MJvDnqdZMK33prNN2+c5um/zLNsD0yIsLwPq+/qV+/oVI879+/T+PGjqGDB/aTt7cPVa1WjZ5/YQSN/+AjWr1qpW4MPr5+9EyfZ2nl8mV06uRJ3cdJQSHwOBAY/fYoCg8Pp/wFClDZssHUvUdPerrXMzTixeG0dMniHEGw6PcF9M/aNeTp5UV169YjeGJUrVad+vXtRfHx8brb1LlrN9qxfSv9sWih7mOkoBAQAvoIoO8ICwujAgULqomfyV99Q+4eHjRrxi/6KnhESy1cME/1Pw4ODuTr60tP9+5DEz/+jCIjI+mvPxepVp85fZo+//RjOnrk8CN6FdIsIZD1BEQhzXrG2XqGhfPnmpzveR58Xb1yhcy3mxTKwx9Gv/c+xcREU/euHencubOGK92xYxst/vsvGsP7RYSAEMgcAuv+/YeuX79mqGzypE9p3oI/2FL6Pzp96hQdO3bUsC+73hw7eoRWrlimTod+8O6dO/TcCy9RrVp1CP2AiBAQAjlPwLjvmD/3N1q5+l+C11RuV0hPHD/Gk94rDICXL1uirMB1eHJMU0jPnz9HU777n6GMvBECjyMBcdl9HO+68TVzXOWT3Z9SLjJwaYWbXYOGjYxL0K9z5lPvZ/qabMMs5sI//qZGjZ8wbEcc1M/Tf6Vy5crTtF9mqU53+6599OrrIw1ltDfBweVUvYePnaI9+w4TZkOdnJ213YbX4uxuO/XnGbRzzwF2aTlOv81dSBUqVjLsx5sfp/5CQ4YOp4CAQBrz7vuqDNrbtFkLql69Bn0/5VsTZVQ7+ObNG/TaKy9pH+nlV15T17/3wFF1rlVr/1MDV3v75McEbZn0xVeq/Lvvj1fXDwb4YYF0e7IH/bVkhbpuuAbPmPWbxIUpMvLf40ogJCSEBvbvSxER4fTRJ5+bYKhatRrNnb9IPWvbduxVfQAsCOaC5332nAXK3Q2uwHADRp8ETwVbRBsEVqyU3I8gbh3P8bade9U5Nm3dSZ9/8aXqT7T6//ft9+pzixatDc/9y68me6No/R7iwAYOGsr91Uz6+psp2qGk9zoNB8gbIfCYE4iJiaEVPIkETwt//0KKBtzsP5v0JW3etosOHT1JC37/k2rVrmNC6qdp0+mlEa+abMMx5mMQPN+vvTHKUM6Zxx5vj36X/lm3Sbn247cflkxjSW2cYVxGz3tYRhMS4unO7duG4qVKl1H9SuUqVQ3b0jqfm5sbTfjwY0K/eeT4GVqw6C+qWLGy4VjtjYxJNBLymhsIiEKaG+5SFrYR7nRvslvvrh3bacq3/yMPT0/V6RufsnbtulS0WDHjTeTi4kL16jWg/PnzG7YHBRWnFi1a0p+Ll6sB6PdTviHMDr4x8i2qVLmKoVyZsmVp6Yo1hBiLr7/8gr6cnDxQRaIhJB7SBOVWsoJcsKC/KvfZJx8pt7s//16mjtXKVa9Rk3rz4PSfdRtVTGxSUhJ5eXuzBSQ5du13dpnRIyVKlqJdO3cQrDrj339PMUG82UsjXlGHR96LpL17dqv3hw4eoE0b1qs//LAgtgyDVlhj3hvzNk2b+gPZs4tOr97P6Dm1lBECeZYALKawClSrXl31G7hQxJX+tWQ5xcXH0dh336Fvv/mK6tVvoPqFfPnyGVhUrFSZli5fTd6c8OPTTybSpEmfECaInniiqUpOZihoxRsMPiH32I0fUqRIUQq5e5d+mfYTjRn9Fs357Vfux1qrCSVVgP9DvwC3f1yL9tyjb4Og38PE3PJVa+mV194gd3d3Q4yq3utUFcl/QkAIGAi4OLsQfsvvR91XyX7+5v6iabPm9NMPU2j022/yGCOSfl/0NzVs1NhwTEJCgppg1zZg7IAxzqDBw8jRMdkhEM9/9x5PU2hIqCqG/mT+wj9VeMHq1SvUJDWe7U8/+8JkIj61cYZ2Lj2vCBd66+0xdJvHDAgl0MSD+wyMp7x53KJJaudDe+ey18lTT/emP/5YSB+Me4/27N5FhQsHaIeqVxmTmOCQD7mAgLjs5oKblJVNhMva8CEDKTo6Wp1mz55dPPP4F0EZhIudtRLNM5sd2rakCxfOq0N/nvoj7dpzUCmKRw4fUtvGvDtOxW5169yeoqKi1DYMAtu166B+gNQG/u/98R/StatXqHu3TobtK5Yvpb37j1D/gYNo0mefaEXVD1af3k/RAY4R1WTKD1OVYnyHXfT0yMjXkxVPrSwsKYUKF6bWbdvzgPlrNaM5b94cPvdgWsLuvhs2/KcVpffe/4DgdjPmnTcN22ZM/1nFwxg2yBsh8JgSOLB/Pw8KnVTsJpQ7eDKcPHGCBvbrY3i2N25cTxs3bafBQ4Yb3NfGjZ/AiuA96sF9QFxcnKK3YN7cFH2FXqyYcBv51juq39m8aYM6DDGh5nGhV69cpm+n/KSycl+5fJl+mz2Lhj33Ah09elj1Bebnc3Z2otmzZihlFoNoTfRep1ZeXoWAECAqX74C9Xqmj4rZRs6LQYOHUslSpalViyZ05nTyuGTZ0sWEyen3xo6nDu1aKWxbNm+iDh07q1hNeGcgaeHZM6epeImSyvNr08YNBCskJr+3btmkjoFiB0tru9bNDSEFcLH1YW+NF156mebzb74mOM58nKHtS+11zHvj6B2e2IYiiThSCCbrr3AoVXpi6XxQNGvwJPxzwwbTqpXLDVUUYGtyPc6ZoQkSJMmYRKMhr7mBgCikueEuZWEbL5w7Z1BGcZrTDzp7WEVtUkhZwdSUUdSXmJhIZ8+eoTp1kt1aYQHFjOZGti5qyijKmQtmMxtxuRXLl1OXrk+a7L7Mg0UkTDEWWC2MlVHs8+CECLBqWCPVONlJAz4vXIr9/PyUZRfXkJ4cPnSQkHYdbkBQVhGvioHp7Vu30jtU9guBPE8gPDxMXaO2tAEsh5MnfWZQRrHz8qVLtHfvHqrXoIFSSDF4q8X90MoVbEl9oIzaAgoDTrjV+/LzjIEuXGvffvMNFVuv1Qd3/8ZPNKEaNWtRgQIFqdgDjxB4cUAhTU/CQsOU0mpcDoNJPddpfIy8FwKPK4FPP/+CJ6oT2PupkPrdPXvmDL016g2FA2718D7SlFGN0ZLFf9MHH36kPLuguEIhxRijdp26tHbNamrXviNbIhdS3Xr1lKIKhRSeU7du3qSTJ0+oapo2bab6nmAONcKfJmGhocr7Ac+x1v9YGmdo5VN7xcQ24mMhsM7C22zAgMHUvkMn6ti+Nd1jF97UxNL50E+hPRuNJsQtHS9jEktUZNujTEAU0kf57uRA22KiY9RZNfeWzGgCrK/o1CFwK4FL3ratm9OsunBAgBo4VqlaNYW7MCyeN27cSPN47DzDP2hY2w+Z+tLq9FEWg1T8IPbkwSvcX44cOaxmVvNxrEYJnl1NT6b/MlVZQ1/hJAyvv/EmZxoN45nVufQDz4TeZXdAESHwOBOoWLGSUj7xbEH5g7J563bKyZobN65zLFRybCe8E9Bv7N69M0PoEtmNLyYmlo4fPaqyY8P6cfXqVUOdXTh7LpIuwfUeHiPHjx3l/ZcJ7sLGIQSGA3S+0XudOquTYkIgTxOIi4tX3hCbN58geBctXfK3QRGEW72l/gJ5ICBFef9xdrOFRRATSJgA37ljB1tFG9K77IZ/69ZNTmA4ToXTwBq6desWA0u43Ht4etBAtsKay/79+3i84sbtSJ5QM9+v5zMUaYQsGMs/rCwjTrVNm3aGxEbG+9N6j9CiA9yu9CbbZUySFkXZ9ygSEIX0Ubwrj2CbMqqgam5sCOiHBPIPSFqCTJg45rdfZ9LP035Kq2iq+049mAFtzPFd6S3tUp+tMlBG33rzdYJLoCZI3mRRIeVZWGMJ5dlUuOsiHrYmW1mat2hF/QcM4sF3AC958ZxxUXkvBB4rAug78DzA4wKTM0hYAqnMCp/5Aio+Pr4qvgr7EdcJMfeGUBut+O/PP35PtQ+BG92EiZ/S5k0b6fnhgw0DYFhYEHem9Vva6ezI9LnXtlt6vXMnOWlJetdp6VjZJgQeNwKIJUeMtiXBs1Sp0sM8FFoZeFxAsLSdJls2b1QeEVhj/cTx48pjC+67WD8ccerKa+GLz7TihLrjEXvapYNhW1a/gfKcEB+v2gMLqjUCS3CZMmXTPUTGJOkikgKPGAFJavSI3ZBHsTkI8Mdsv7EYJx4x3p7ee2TbhBurlnBIKw+LiR0PDjXB7N85dvVFHAQGjeaiJSYx3278eQnPsOIHDjOjnp5exrvUe1hftEydVapUU9v++/dfk3KwnBrL/Xv31Ee4AxuLxgPXtmb1Kk66MErNfDZr3sK4mLwXAo8VATy7H3/6OSFBx+effaSu/R4/Q3Drh+uZsSC+E4mPEKcJgUv/6VMnqQG76yGrpCZFiha1mJFb22/NK+pCZl8MYjW3PBxvaQIOzz7aqFf0Xqfe+qScEHhcCRxlK2NBf3+Vwd+YAfoQuN8ah8ZsZrfdKpzBG6sHIOcEBB5LiBkfNvx5lRBx65aHHlqHDh6kypx0sSRbHs1FzzjD/Bg9nxFC4MATdSdPHNdT3KQMxkWBRYqYJHZEAfOxioxJTLDJh1xAIOVIPxc0WpqYvQRWr15JbTixT9du3dUyKkju8fsfpi4o1rRo9uyZKlYLGSkRs4nU5MikieyUxi5yEz4Yp2Yzf5w6Xb1i8AhLyyec/Q5JAtITuOli1rVY0WK05t/1KmMesv0imx2WZ1i5eh3BxRaCHzzI6HfHqnPhh+7jTydR32f7q+3af1c4fhUzlP0HDFTLz6D9gYGBalmKUZwsBZ8Re1q/fkNq2ao17du7VztUXoVAnieAOOpOnbvSs/0GqGUUtmzbzZmm+9I7PEGDiRpNkF27NM/yow/Asg5Y9uC7KT+yi64z/fj9FK0YexxM4gRrwYTloz786FP64aefae2/G5Urr3FfYTjAyjfXrl6j0NAQ9Zy3btNWLdEydNhzfJ5fVE3G54BV44kmTdVyUkj6huVc0hO915lePbJfCDzOBOAlBe+q8RM+Uvkd4LmEtYQRh/n1V1+YoIGyiclmPKsrli8z7Fu+bCnneWhNly5dpEsXLxq2T/3pBwoJuUszZ89VcaaI8YQVFfUv4XFJRqUcx60jlhXJlrCUzNhxE+iXGb+qeNiFC+dbXT0SrMFzA0vXYCyD5e2wbF73Hj1N6sJSWTImMUEiHx5xAuKy+4jfoEeheYv/+pN69uxF33z3g2oO4jQ++2RiiuVh9Lb1B14XtFSpMjRy1NvqD5aEL9mFBrERxvLfun9oyKB+KoveX7yUjCZIbPAFJ0TRIxgEIwMffsgmfvyZ+qHCcfG83MT2bdto1szkgeeG9etoMrcByQbQsSORETLYYYYV7nuawIoyauRrhjVLsX3QgL6csW8zx6AM4e3JaxMijgVJFb7iAbWIEHhcCGCyCM8OXOTgCrdp03qaM/vXFAnH4EaLdQXfGfOe6gPABwPFvs/0pGvXHsZ3IvZq+NA46sMTQ7U59guJSLp37ajW+w0Lsz2uS7sf6AdeemE4vTP6PbWGMrafOnmSY9imGdqllcWz7O7uoQaTGPBi2QbzzNxaWe1V73Vq5eVVCAiBlAQQ392nVw+1tNpaXt4NAtd/LAWFDP3GgnhR9BNYAgYJFTXBWADPu5ZdV9sOr62nnuyixgjfff+TIRNuWFio1fGdWp3Gr1h2Bn8QKNXXuX+b+9ts+vGH79TktnFZPe9xbW/yGAQT5siRAeUUGYf/WbuGygYHG6qQMYkBhbzJJQTs2F3pYY76XNJoaWb2E4BLbclSpVRGXmTDzAzBGqZYJwyZfeM5niItgctt4YDCdOP6DeV+k1bZ1PbhGooVCyJHJ0eV+MBSll+4vZSvUIEzcF5ONxkR3JijeI00xGpAYE2BtcfV1dUk03Bq7ZHtQuBxJwDX2FKlSvOaoPd0ZbMFL1hH9uw7zDGfQzgD70MLSEZZwmIbzxNOcCdOS6BIe3i4s+J8LUWMaWrH2XKdqdUl24XA40wAHkl4Bk+fPq0UzMxkgYmmYpzkCO75SLBmHkOemefKaF1YCx59Fqy9UKotiYxJLFGRbY8qAVFIH9U7I+0SAkJACDzmBJABE/FW+/bt5cmoayp26r2x41UG3GZPNCB4V4gIASEgBISAEBACuZuAuOzm7vsnrRcCQkAI5FkC/oUK0Zdff2tyfVjj98Xnh4kyakJFPggBISAEhIAQyL0ExEKae++dtFwICAEhkOcJ5C9QgEpz0iO4wiNc4OLFC+m6+Od5KHKBQkAICAEhIATyEAFRSPPQzZRLEQJCQAgIASEgBISAEBACQkAI5CYC9rmpsdJWISAEhIAQEAJCQAgIASEgBISAEMg7BEQhzTv3Uq5ECAgBISAEhIAQEAJCQAgIASGQqwiIQpqrbpc0VggIASEgBISAEBACQkAICAEhkHcIiEKad+6lXIkQEAJCQAgIASEgBISAEBACQiBXEZBlX3LV7ZLGCgEhIASEgBAQAkJACGQ3ASdnZ3Jy4j9HJyI7O4qLi03+i43N7qbI+YRAniMgCmmeu6VyQUJACAgBISAEhIAQEAK2ErC3d6B8bu7k55efypSvREHFS5NP/vzk5uZhUmVU1D0KvXuXrlw+TyePHqY7t69T1P37lJCQYFJOPggBIZA2AVn2JW0+slcICAEhIASEgBAQAkLgMSDg4elJ/oWKUN2GTahkmfI2XfGli2dp5+b1dO3qJYoID7OpDjlICDxuBEQhfdzuuFxvjhHw8vKiMqVLUbGgIKKkOEqMv0+Ozh4UH3ufHJzcKTYuns6du0CnT59mN6C4HGunnFgICIFHn4CTkxOVKVOGShQPIhdXF0qI4/7E0Zni42PIwTEfJSQm0YULF+nMmbN07969R/+CpIVCIAcJ5MvnRsVLlaXOPfryc5R5zoMrlyykE0cPsdX00X8Gy5UrR2XLliZ7YutuUjTZEVyRHSiR2E3Z2Zvu3L1Fx4+fohs3buTgnZJT51UCopDm1Tsr1/VIEahcuRIFBwdTUsxlcki8w519TMr22btRnF1BsnMqSAcPHqKzZ8+mLCNbhIAQeOwJlCxZkqpWqUyUcJeckm4TJUamZML9SYJ9frJ3DqRjx4/R0aPHUpaRLULgMSfgyPGgBQsVpq49+5Mvu+dmhdy/F0mLf59NVy9fpNhYC7/9WXFSK+r09/enOnVqkqNdFPcnrGwmRFg8OsmxII9RCtOt2yG0bdsOi2VkoxCwlYAopLaSk+OEgE4CTZo0Jh9Pe3JOvKgso+keZs/WUvsSdPHyDdq//0C6xaWAEBACpgRcXFzIkS2IdhwHZpeURIgHS8I/fo8/xHdhYJgQH296YC74VL1aVQoKCiDnhPOWFVHza7Bz4f6kGN0JiaUtW7eZ75XPQsBmAg72duTi7ECO/Mo5flSiH37iKD4xUX1OZCt9XEISRcc+mvGULq75qHa9xtSkZXubGVhz4K5tG2nLhrWPlLW0WLFiVLt2LbKPPUN2PMGlR+IdilNEtDNt3ryNYmIePQVbzzVImUePgCikj949kRblIQING9Ynf197cky4YOVV2VOsYzCdPntVLBtWkpPijx8BOx4Nu7l7kLe3LwVXqELlK1Ul3/wFUwURz4rojWuX6fD+3XTm9HGKiYqi6OioVMs/KjuqsFW0VPFC5BR/gpuUZFWzMIi8FZIkSqlV1KSwOQEXJ3tycXKgckW8qGZZXypZyIOceVtqEhIZR0cuhNKBsyF0KyyGIqLi1aRQauWza7u7hxd17NaLSgdXyK5TqvNcv3KRfp87nSIjwrP1vJZOlp+TNDVt2oTsY46zVdS69sQ7FKOQCEfasHGzpaplmxCwmoAopFYjkwOEgD4CcNEtH1yEnONP6jvAvJSdE8U5VaLtO3ZnacyGvb09z2bbWcwKiH2F2J3pxo3rlMiz3uaSL18+zjroRnfusBuyiBDIZgKwgvp4+1HdRk2pWq36Np89lmf5N65bRceO7KfIRzQJSZEiRah2rarkFMeutxyDbovEOpTlSa7rdPQYD0CzUBDfmlocfP4CBeheZCRPAESnaEF6/U2KA2RDthHwcnOiCsW8qH2dIuTlZnuM5cFzofTv/ut0MzSGYuJyxnLq7eNHvQcMJ7/8/tnGz/hE9yIjaMaPX3HCo1Djzdn+vk2bVuTpfIvs4tnt3waJcwimY6cu08mTp2w4Wv8hiOmFVwu8W8xF+hNzIrn3c+rTWrn3mqTlQiDHCWBAVrFiBXbTvWR7W3jQ6Zh4mSpXytoZ3HEffEjvj5+Qop0dO3WhfQeP0ryFf9DeA0epTdt2hjL4gfhs0pe0fdc+WrZyLS3nv4CAQMN+eSMEspIAFBcfPz/q3msgDXvl7Qwpo2inM7v4tmrflV4eNY4aNW1N7h6eWdl8m+quUqUSOSXodPtP5QwIG6hQoSJhIimrpG69+rRtx94U1Rdl18BVa/+jZcvX0M49B+jDjz4lBwcHQ7m0+htDIXmT7QQ88jlS/fIFaPyzVahX0+IZUkbR+Kolfej1J8vTCx3LUqBfPnJ0gK9v9gk8Kbr3HmiFMpqkFMewkLsWFSJbWo7+pf/QEeTh6WXL4ZlyTIkSJcjViV2rbVRG0QinpCvcn2Tt+MTdw4P++W8T1a5T1+S6pT8xwZEnPoiFNE/cRrmIR40ArKMVyrJrXULGExPFOlVhK+leunnzZqZeZqvWbejjTyeRv38hmjXzFxo39l1D/fgR2LXnIPXp1YPjWPdRnbr1aOasOVS7ZhWKYvfGLl270cuvvkFdOrZVn8dPmEj52UXy5ZeeM9Qhb4RAVhDw9PKm2vWfoPqNW2RF9apOuPQu/v1XOn/2NMXGpLTkZdmJU6m4aNGiVLN6Ofa2yLhlM8GxOJ25GMmJ0w6mcjbbNjs7O9NqVjiLlyhJd9ljAn2FsUz9eQad40Rtn3z8Ibm7u6tJrE8+nkirV63gCYC0+xvjeuR99hCAoli0gBsNaFWavN1tt4im19qdJ+7Qqj3XKDQSGV2zVhBb3q5zT6pYtaauEx07vJ8WzZtJ9uxBZM+TJ/Ak6t1/OJXgbLxwuf1o7Bsp6vHNX4DeGvtpiu2WNly6cJb+mDcjR2JKWzRvSn5u7NmUEGKpabq3xbKVdP+hM3TxIk+WZbJ8OPET6v7U0+TB/cNT3bvQrp07DGeQ/sSAIs+8ybpeJs8gyrkLcXKwJ3eenUSokKuzPbm5OpKbiyPFc5KAqJh4us9/SBgAL4aIKF5GhBMI5EZx5cQCsFCg/RiY5Mvnri7Djq0gUfcjWeG5T0nsLprILhuR7OqSG6RY0QByIlM3Vvd8DmwRgHssUT5XB76fnE4d94w33L8fz/c0ORFEbFwiRcc8dGVCVt7AwIBMV0j/WbuG8Pfe+x9wmvuHlgrwbd68JV26dFEpo/iMH4KbN2/QE02a0prVq6h9h060dMnfShnF/gXz5tLiZas4eYy9RddelBERAhkl4OnlQ88OeYl8fLMmG6bWPngA9HhmMB3Ys4PWr13Gz2fOLtlQrFgR7k9ME464ujio2L1E/gHA7wT6E7i02XOCmftRCdyfsIsbe9kncN95jz9rgv6kSJESma6QxsbGUvOmjahGzVo07eeZ2unUKzxGWrZqTa1bNlOfsQzNsqVLqEPHTkohTa+/MalMPmQ5AVdO0zZH/AAAQABJREFUVPREZX9qXzsgy89Vt1x+qlrKl779+wRdC8m6OG4HB0flSaFXGcWFw5I5bMQoKhxQVHFYtXQRrVyyiF54bbSybk6c/KMJnz07t3KfsdNkW1ofihUvRfUaNqMtG9dSHD8/2Sm+fgWI7p3O8Cmd7MKpcCH/LFFIx743mvAHTyxjkf7EmEbeeS8K6SN2L/FD4MoJAioE+VC9cn4U5J+snKXVTCioJy6H0w6eabx06x7dj05WVNM6Jqf3wW0GfxUqVaPK1WvxAJM7x3QE63idPH6YDu7dSaEhd3htvUilqKZzWI7sRoyKXdR5cudYG28vJ6oa7EXly3ipQWN6DQoJj6UjpyLoyIlwNelwP/Ye5fdLPUFLevXZsr9w4cJ09cplk0OvXLnCP8zJbrl4hTKryeXLlwmzz77sRnnntm3xKFpd8ioEzAlgoqNwYFEaMPw1811Z+rlarXoUUKQYLZw9jSIicm6B+wIcd2kXf4zceFILymfFsl5Umf98uG9JT+5HJ9Cx0+F08Hg4hXOCmXs8yYd1S7NTChQoyJNeTiZ9yhXuX+rUq6eakV5/k51tzUvncnbzIicXN6suycUumrrWLUzVSnpbdVxGCrvxfOjbvavSrH/P06mbnPSI8ydktmBc1abTU1ZVW7JMeZPyjs6ulL9gYV7nN7l92isKwati47o19NQzAw37TQ5O5UPjFu04BvM4hUVk76SXvZMjObv7pNIqKzY7OFHhokXI/bTpeMGKGkyKJsTFUHRk2lZb6U9MkOWZD6KQPriVXuwG5uvrS7du3eTZ8PspbnBqyVv8S1ZNUdbaDUk8jW0XHULFCzhSuxr+VNDbusECbmK1su78lzybeepqBK3ae5NCYpzJ3jX7flTSu250NPZJsVShYlWO02pJmOWyRpxcOEV7g2bqD8ftY+vF9k3/UQL/eDla+aNrzXmtLZsQc48TrbhRk4ZFqGZF6/kX8HOmpvU8+C+AEtjisWn3PdpzrgjlL1qOHJys+25YanvItTMUF532j5+3t0+KpCNI7+7tlRzzglfjdO8xD9wavfk5EoXUEnV927wKBmXKPdZ3ttxRKjEhjgL881PPvkNypMGBQaVo2Ktj6Nefv+N1PV2zvQ2J8bFUqLA/VS1yi56o7avcB61phIe7E9Wp5sp/yQlc9hwJpQ2Hnci7YFGyd8p4LGl0xB2KijC13pq3z+tBv2HcZyCpEfoLSHr9jXl98jlrCOSzj6aBLYLYVTfj3wtbWjigZQn6Y8sV2ncxKlOVUrukeOrcY6AtTVLHHD9yiA7u38XJuMKpS48+FuvZsWUDZ/YuYFPW3ieffpZmT/+Bf+/tLdadFRsdHXksEZcJNXOuC3iuZKdIf5KdtLPvXI+9Qoofwj/+WkrFgoJUJtGCBf3pxx++o/99NVndBbhuffTJ59SufQelqCI2ZujgAXTt2lW1/9aFIxm6W5i1CyroRs+05mQB+aCgJVJ8bMbcVkqyYvtCm0A6cy2Sft90iu5ybEZCygSpGWq3tQcjZqgcK6JtO/VIPjQpga/zoRuZtfWhfJUq1dTfvl1baTOv7RUZEclbc85tGakZ/LwdqU/nYjSoTwBbSK/zOoexaGqG5ImantSoYSBFXNtIG3acp7vhGVs7ERMg6UlYWChbPE0H366urhQWlmwlwitixjSB2zUEx4nYTiAq/DavnZl9gxLbW5pdRyYRZsN79OpPifH6Rk+wVISFhajvr0cmJSfKx9/9p3r3p7kzf2B3+ow/03rowf3Wx8OOmtfLTy/1YZfBSLZA8LOb0ciMGhU8qUbtYPK2O0Tzl1+hUDU3hd7LNkmIS59HeHjykhLoMzSlNLk/Se4v0utvbGuZHBV7P5zwp0fc2AW8R4tSFOjryOEx6T9r+B6G3YtVYSe+Hi7sKq7nLOmXebK+P90JPUNHL5qGvKR/ZOolihQroZLuJejsQ8xrCrl7k5eGukcR3K+E3rlNPj6+JkWQpfvflX9zOMGL/JufPjuTg/kDDCKFChakUycyNp40rzetz5Gh18klPhN+r3nd9Mjwi3Qv5Hpap8vUfdKfZCrOR6ayx14hxVIWX305iVatXK7SSletWo2WrlhDC+fPU0onYlxq1qpN9evUMCRvGfPeOEPylqRE25Uqb565fqZZCQou4vngC5G5ylTpAHd65+kKtP7gTfrvwHW1/ld2f/PgalewUAD16jdcxWNYStud0TZVr92A8Lf8r3l04tghirGwnEBGz5He8YjfalgzP415MdnFx84h45ZMwzntHHkcGk8j+pWiZ7sUpdGTj9CZC5EqlthQJpPfXLt2jYpwIhVjQVY7bSIGr/isCd5joBkSkrarjVZeXi0TiItJ6Z1hueTjsRVZKAcMe4UHvfr62cWL5tDu7ZvIkycao9ilv2hQSeo76EVyfZBV9ouJY9iCb5ocrEfvASpJUnpEff3yU7tO3WnJH3MomhN7ZaUgoUxwSU/68PWK5OvNEz+snKqA0Ew6aVJCDHVrXVj9ffzDcdq65w6HeuhjbEsTbt++pZaBKVK0GJ09c1pVgT7j+vXkQWx6/Y0t55Rj9BNwdrTn5VwCqVwxbSyS9rH7T9+hmauO8+SZHTnwH+S5ThWpbNFki/cfm87Ryh0XTCqpXMKPXntKn0fZ0Hal6bPfj9KNkIwnFMuXz01l0DZpjJUf6jZoQvjDusULZk+lt8dPMqkBMaCBRYOoeMkyJtut+dChay/6+fsvlBXWmuNsLesI74h4W482Oo69RsJDsze3h/QnRvzz0NtMmtPKvUQiOFPa8mVLDGswxiNxTkSEwdJjKXlL23btVfIWW68aSW1KFnKncX2rGCmjttaW/nHNqvrT8x2DyVNZYNMvn1klnJ1dqEadhjT4hZFKGc2selOrp+OTz1Cbjj1UbGpqZbJiu7enE708oIxBGcU5EuNZseCZw0wRricB9bH48OD0hwk1qEvLQE7+ZJqIKFPO9aCS9evXUVBQcapeIzkbIZZygKVq86aNqgQyY3bt+iTBygHp1fsZTk6yUhIaKRryX2YQgDLas+9Qq6oqVbocjZkwWWW5HPPhl7xcQzjt2bHFpI5Bz71KSEai/dWu39hkf1ofSgdXZOtiA5PlStIqb8s+PNddWwfSd+OrJyujXEliPJsxM6s/ITuyc3jokjnmhfL0fJ9SKtbdlvbqOQZrkq77dy317p3s7giPmU6du9LKFcvV4en1N3rOIWVsI4DxSMXi3tSoYkHdFXjymqQje1Wnr15sSF8834DqVyxEizaaZpRvXCWAfny9qeHv5e76lFGtES91Lke+Hg+9cLTt1r46s6dPYNHi1h5msXwBzkgP7yAkWNQEuS02rlvNY49u2iabXt04oaOXj49Nx9pykApNs/ew5VCTY+KSvNi78JbJtqz+IP1JVhPOmfofewuphr1EiZLUp28/tdbRm6NeN8SRZnbyFmd20a1W0pcto5nTQWrtT+81wM+VPuhXhb788zhdvRPFbl+Za401Pz8SFjXhYH0opNkplavV4nirAJ7F/DlbFp3293OhCWzFgDXDWGKj75KLsy/ZcUKijEqSox/FRdwwqWZE/9JUurg7/bzwHIWEWe8ihMo6dOxMWIPU88FaaJh8eZ8z2kGxxML1b7/5Os2Zu1DFVWPx6VFvvGrIqrt82VJq0rS5Wk8QrtIRnP140IC+Jm2UD0IgIwSCK1RWiYysqaNKjdqG4ohRT+TQAKxXaizItok/W6VZ60507NB+Cg1NO27Slvp9vZ1o+DOlqG3jQiaHx8Wwi7yTT6b0J+Tgw+ESpgmaOrUI4D7Mg8Z+dYRu3U3fBdekcQ8+IKnZxi07ODeAs8rHsGP3ftrAE1tvjXpDlZg4YTzNmPWbUkQ9vTx5IngprV2zSu1Lr7+xdD7ZljkEvFi57N+ypFWVlQ70MikPK2l+r+TJSW0HtmVkjVEP9jpqUb0Q/b31Mocc2T5ewZjAVjm4bxcvY1SGvDm/CLzptm9eT0GcGRdLwGiy/t+VhIkwuAVnVKrVqEvXLl/MaDW6jr948TKVK+3Pa50j1MlGYe8tRxd/unp1j40VpH3Y5K++ocZPNCGE0v00bQZ7WcRSo/q1VQIp6U/SZpcb98o6pA/uWhV21R04aAiVL19Bue9++83Xas+69Zvpy8mTOEX9YvUZMTCnzl6i5k0a0tmzZ6hQ6Rq673tCTCTVKELUua7pYEN3BZlU8NtlZykk0ZczwWV89tFSk5Li7nGK/7ZUtlwlS7uzZRsy8M6e/j3ZuVifVEhvA10SbtC375YnP5+UyZkcHN3J3bcCx5HuS3a301upeTkHd0pyrUDhNy2nkt+6N4S+mXuD4llp1SshV09RbJS+HyHEUAcEBnJ2zCsGLwLj83h4epIHTz5cv37NeLO8t5FA/qLl+Qf+ofXKxmosHpaYwP5Z8VHkwInFiJN8JOEzT0zBQpKYhHX2WEmz5/gxThKW5JiPP6f8XlusOAs2JtwPoRdfe8fmmtf/s5LOnj5O/hwu0KFLT8MAchK77BbgwY03x4AVKFiIatdrbJNHBdYPXLL4T3J0NZ2IsrnBfKBTwl16pU8halDDND4NdTo4eZK7T1myu78/I6dQxya5BrPLcSjHFia7yxpXeDc0lkZMPE6xjoWNN6f5PvLuNavixwrzhCEmsKCEmkt6/Y15efmcNgHPAkXJzTt1y2dcdCS1qehMDcun/M6lXXPy3kNn79DuEzcpnJcte6ZlGfL3Se67/mSX3X2nb1OpAE/ycnOmOuUKUlAh256Vzxadpng325afSeQxV79Bw3gdS1MFWs+1oczalYvZ+rmK3Nzc1bIsfuwl1KvfMCron/x8hIeH0uSJ79Lz3FcFBD4MYdFbv6VyP3z7Bdm72MbKUn2pbXPiLLstmzYkh9gTvDaUbS63WNP48s0EOnzsZGqnsXp7zL0wCr1uam1PqxLpT9Kik7v22T5NnLuuM93WHjp4gEa+/gqvLeVJO3buo82bN9G+vXuUe0ZayVtunGGFQ6dUDPKm9tVKU7zOOLH4+CQKiYzhNUgdCC4y5oLlXSL5z9vdmVzY8qpXXuDYoQlzD9FtXgIgswVWiSfYMgqLs954OCQhCVdJSPKpdUhN25TElk64yCSyOwtbHDF61iGIien2ZE/67ZfvsmQNQbjpvj+qErtB8xI7vB6sucTF8MDf6QY5ORYiu7jkGU+sCxgVFU+eHDvsZHa/YLCOvBenZoK9PZ2VkoA6kxxKUtRdzorL9VmSOpVc6ekW7MY75wBFx6afrMhSHWltw725dDH1GVu4t+NPJHMI3Ll8PHMqMqoFyUrcef3i8tz/1C7rR4H5vTjuy6iA2dvrHLe1/8wdOnIhjMLux1Ikf2ezUxB33qJtZ939h6W23bh6niddIujmtTjuP+7wgDLZNQ35AGDBS2CXu4N7ttGW/1bRiJFjDTGmluqytA3LlDglRtP1B/GQlspYs83VxZ5e6FuKald0tfis4/l3dOalU+x4Oam4ZEXSlv6EHLy5L3VkBfKcxeZ5sj7xzqBCHKd+mMIjMv/3ASdNa/Iqvf7GYqNlY6oEIm5fJvylJt48rqhbsoruMYl5PTdvh6qJhZDwaLp9J5T88iVbMovn5yVF7LwIv8OXbobRhJkn6ZUnq7JrsPUuqR2re9DMtQcoNt763zcvb18eGzna3Jc0a9GaPYFaqCRpztxvuD/wJtLGNvlcnOm9D5PjSbVt5oys/ZwQFUa3Lp+29jCbym+MuU1VKgeTc/wVHmxY97wnOfpTdFIIbVi9VlksbWpAJhwk/UkmQHxEqhCF1OxGYHB9ixMwFOWELlBIMyt5S0FvV0Kgvl6Z888p2nToGmdZdFYDwpI80/hil0qUjweW91gJ/Wz+ProdGq32I9Ndu7rFqHODEnqrp1e7lmf33WOZmugIymI5Xle0XqPmutuRVhKSY4f306J5M9UyB3CRQf29+w+nEqXK6qo/P1tA2rF1ZPnfCzjRkWWFTldFZoXcXB1VzFWF0mnPut4PP0deBWtQdHwETf1tK4WGxSplNIJnk5vU8afmDZJnWY+fCaM/Vl1USqgDJzOByt2rY0kKKlWe08DbUcy91AcUaFrnlgF0+mIkrfjvWo5nUzZDJR9ziADmbWCZqBucn1rVYOXJEd8qfVLY15Xa1Q5Qfzhi4+GbtPnwLQrlbN3xGXCd03d2bjcPIus0aKq3uMVy3XsNUNvnzvyR/luzgjp2e1p9RhiBJg2btKRJE96hM6eOUaWqybHS2j49ry3bdeH+aUaG+xa4NrZ9ojB1bhGY5mmjIs5zf1KTojhr6tQ5e6zuT4oX86EkZ57gCj+f5nkq8HrJz/UuSVNmn1VrWqdZWHbmWgL43rWplfZ3Lr2La1otgPC3+8Qtmrb8GE16rr46pFrp/IQ/TZydHGgzj2dsUUjLF/NSE/J3wmO06nS/+vg+bIPug8wKYuzh61fAbGvWfcS6x3fvZE9M5rlz5zgXhSuV4TGVcwIrwfCe0SGJrIwmORWnbRs25qgyqqOpUiQXEXjsFVK46rqzO8aOHdvYey2JWrRsRUWKFKX9+5Mtn0je8sqrb9DUH79X6zLakrwFgfkjugRb9bUI5sFD18YlyYOVn5i4RPqYByCbD12n1rV57TgeW3Zh5bNm2YIq1fr565E08bfd1LhyAPl66svuigy/PRoH0fwNF9iy9jBA36pGmhX28fWjzt37mG1N+yNiL9p06Eb54BLD8QFTJn+kkpA0atZKJUIaNmIUFQ4oqipZtXQRrVyyiF54bXTalRrtxVIz58+cpL28NExmSaNafjyATN/tOimRF6EPOU6OHuWpRZN7VLlkrFI6r9y4T9/PPkG1quQnLw8ntdD9kKfLUOGCye5OqzdepeVb7em50j4UeeeQrma/PqgsHT4RTucuZzxmVdcJpdAjSwDJy5pW8VfxV5nRyCaV/Ql/e07dpaU7rqgJsqyMQS9eqkxmNFvVUYBd627dtOxODkusOy8Lg/UwbZEgzqiJxG0ZnewKCnSjVwemf80JHApxL+QE2ecLppZPRFKlUva6+5NVm2/S8IF1eemKW2w5Tn+w275pYdrL65X+u9U0I7EtnOSYR5OARz5HalAh4wobrq6Qbz4KY2+u+IQki3GjPuzFdTPU9knhhpxwaen2tCdmLVH2Z/fw3Cb+hQPpyMG92dbso0ePqaV7KlSoyt4XV8g+3nJ/qRpkn4/i7ArzxKQnbV2/QbLqZ9tdejxO9NgrpG6cEvzb739UMQLh7Brq5uZGb458zeCmmNHkLbBU1C+fn107rUONmAtNnNjtBUH9+dnKCoGVtLbRfh5XqW1urinderU6LL1WLenD1o9bdPZahKXdVm1z4XUon+w10KpjUDitJCRBJUwtyvb2mKm0/ge0been6CSv7xXJ9zejUsDHmUZzVkq9Eh8bzr64x6hiBUxI8Axv3DWeUIgiV3ajzMd/kGKB7upV/efAyRNcOXmJfQi7Wh3gSRL9kwXjXq1AL3+wn+OzstfF8mHj5V1OEkC/UCnIi/o0L5ElzajF7r74W7nrGu04cZvjxqxz8dLTKEd2+a9vhYeFcZ2YUNy5bQPVqtOYHNlND67+hzgpiVYfrA53b92kMuUrqcNOnzhKN29co5Kl9XlcGJ9Le484+b27tmgfrX71dHekca/o709io26SM6+1XKlaQ+5O2JU+7qryIEm1P+EW2bOrr1fBwhR9/zZFYy1TnfIuL2F14Fgo3Q7RZzXRWa0Ue0QIFHownrClObuO36LSRbzIjyfAscb5+gNXqWSAl0EZ3Xr4OtUq569CicI4FGXr0RvUhLPu2iqYEFu3/7ryDrOmDsR85jZBbHt2y/HjxzlT7g2qVKk8JxCqQ4mxd8jJDpPb6OMdKJF7nbhEd7J38qBTp07T0aObs7uJcr7HgIB1WlIeBALLaN1a1QhZRKGcXrnCGd2MUnojpkWLLbUleQusFa1r2t4Rr9xxkY5dCmXrmh9VLWWqjN1gl91N/ENw+moYDWhb3qo4Uu1W9mtRgiYtOkb3LcRBamX0vGK9v0IBRfQUtVhmAychOcNJSMqVr0wV2O3XWI4fPaQGlvciw6lzD+sssFo9zTkzJtYpRaY8W8WeTdN9uwVZfXh8bASF39pHoff96OgFdzp/MYq6dW5ETuwqQ8pBN4mSeEmHY+eTaO/hO7T/wBEa0MWblVEjRVXHWYMC3Kh2ZV/6b3v6FhAd1UmRXEQA1o7uDYOoOlvVs1ra1wlQy0TMWHMm05VSV57Y8ivgb/Ml7Nq6iZb+OZ/dfn2UQlqjdn1q0KSFqg9LBSxkF9tYtojCIyM2NoZ69O5PfvltH7TWqNuADu7fSfFcty1Sp6ofBRlPSOmoBBZOLAMVGetP+0/408UL5+jJDpXIiRPuIVkVBpDEawMev5BIB046sEIZQ63rhrAyyhNiVkqfLkH03ewzyoJi5aFS/BEnUIcnym2VK3fu0fRVx8idJ8Fj4xNUMqMhHSoaqoMCOmvNCeWxFcETV3XKs8dGzWRPJ0MhK94g5t2dvcUQrmSNeHvrT/ZnTb1ZWRZeHfDeyMhYxZb2YQ3xzZu3cQIoD17irYDKlO3h7kmx3Lfdvx/F2fYvGtYNtqV+OUYIpEfgsVdIAQgz67dvpT2ItyV5C+IBO/Bi0xkRuLkksnX0dli0cq3FwFOTKO6cw6NiKY6D/a/fxWyW9XEOcN0tE+hBB8+FatVa/YolXjp16231ccYH3Llzk9d9T6C7d3kWnxN4aElIUAYJj+DOi8y5EbwGWH4bBqxI/b7+n2XqeOPzWvPej5dk6NrK9vt57dpZWrPmPIXec+Mf6nJUjuM2HDkLcHxMOC/DcI8Htkdo05bTdPUGd/53K1DRAOsUUlzL28OD2aoRRnc5XlXk8SCApGYjOgfzsguskGSTFPd3U+soYzLrBvdR3IVmihTOwKQWYsxHjBpLMTHRnGgrnLy8fJKVtActK8SucGM++EIpquhP/PKjv9QfW2vpAv0LBZI7D9rCbFgCJj97W7w1zDbrLNx3z5/dR9u2hVN0gjeVLFGcKrmVZBdeR7afJrJeep8uXT/Fk1uH6PDR81ShSAUq6GO9AtKN10Odt+QS3WKlViTvEMDvfq0ytitr3RqVoE71i1NIRAwvR+TAiRVNvbNGPV2NoniSO4yVUV8PF5smy81pV+BY0ps8Ca9XHDj209PbW2/xR6Yc5zsneJxhfdOckEjOfo2/8+fP58Tp5ZyPMQGHfPnyjX+Mrz9LLx0Jifo0K5Ghc1QvU4AaVuJ4nlO36fItjhsq8fBHBPXX4P11yxeiH5ceoXIcdwoXGmuldKAn7T19V8WqWnssysO1tnqdBrYcajimQuXqVJPXLEXsxDW2Ugc/cKtDgSLFilOV6rWVBfuvhb9S42ZtDMdZ8wZK7ml23cUEhLUC6+iQniWofDqJjNKqtyCvBdusfmF6opY3vThmDVXlsai3612Ki75DCezaWybIlVo1DiRPjiv9eMpB6tu1VFrVWdznwFPJR06H0cWrtsfrWKxYNj6SBBCb9W6vSmQ8UZVdDUU4QqNKBenklQiV8CgzzluzbmP1vGekLiwdgmUaMCC1JC4urspCmlFlVKt7/57tdJ8ny6yVOlV8qWUj293z0J80qOFNNcs70qDX/6RKJe+Tl8tNio64yInQrlFgAV6zryYnhMlAf4JrcuSEWLsPhWbapIO1nKR85hNwY/d+xJlnRPCbCKslVgGwJAg18mAPsYysRWpcLxTfnSfuGG9K872jo5MaN3h65S6lNDqKJ6f37VTLzKR5gbJTCOQxAuwIIZJVBCrbkOI8tbYU9nWjO5xa3ZIgFhEZNe/akIUO9SG+FctC2CJYYL5x87a2HGrxGLirhIZa/tEp4F9ILcOTaORSbbGSVDZWZqXWna25toivlxN1a2O7S7LxOd3dHHntUle6ftOy0licXfhu3UWCCNvci/uym52z2bIyxueX93mDABa0f60br1uqM4MuEuSGcKZcZKtMzXMdcaGxnETNGnmZE7YV9LJ+IszSOQoH2u7WZ6m+7NjmZ0MGTizT1bdL5qxbmNX9STf2CkH/J5J3CORLRYl8lK/Q39vFut81njBTays/yhdloW12nCuDW25hj2wSAnmbgHzrs+j+Yv0tW2cgMVhcv/8qu6kmDwyx3MIuXny6TGDyTB+y6p64/HDG+iAvTn0nIppKFLZ9MWUkK7FFkAQqsGiQLYcqS+WOres5/io5LkRLQlKiRLIb20FOSBLGcQ0QxFNs37yegoqXMixyr3ZY+V8Bf9vieQsVTE4oZeXpVPFjZ0JVbKhmmN28+wZdvxVFlYKT4/3WbrpKN24nK6cJrIT+vvICVeZ9jmktFplGQ4JLepIHK70ieZcALBOD25YmL06Ko0f2n75Db0zZQhN+3U2fzN1Lb03dRqcuP0zyhZCA8bN200e/7aE3f9pKWHYqNaXV0vle716eJ7YyprTAsunnZ3s8p6V2Zcc2bx/r+04okWX5ObVFsrs/sWNLWKECtvd/tlyjHJO1BLzYsyK3CbxAnG38Tcxt1yrtFQKPIwF9o5nHkUwGrxkZL/08be/0sQbp/P9OG9YZrV+hkCEpAJIITFt2TMWUwvUmNi6BBrYtxzFCtg8aGlQoQP8euKHiPqy59IIcl5URSSsJyc3rV+n3udOV+11cbKyKHe3Vb2hGTsfZKWvSuTMnrK6jnY5lXlKrNDo6gcZ8sY+iouLVOqRY0H7sK1UosJCbOuTMpQga/78D5OXpxPGzCVS0sDtNHFk9tep0ba8U7EWbdt3WVVYK5S4CmOxqXq0wBRVM/v7oab0nW1NH9qpOxQomxyUv2niW8De6Tw11+ML1p1XitKealFL9ysTZe2j/mdu8tJS+uHS47fVtXoJmrztndeIRrf3OLi688LxtSppWR068+uS3PjazMj+ftkpO9CdtuP87ejrc1ibLcY8YAfcHGd4fsWal2xzk5RDJfAJYqcGPLdDwtilSyFVNQBXwdaGCfi7KY+b23Wi6fjuGJ9JjKDQiliLuxVMk/4kIgcwkIAppZtI0qqtI/uQ1JY026X6LzmFsv1pqYBh2L5aVUtOkAMFFvXkB6gYqwyWU0fxermo9Ut0nsFAQbr/5nO1ZIbWwM41NFSsnD2jTKJLqrvSSkLRq35VatOnEbroh7KrjzINV2wdxWiMqVa1J69cuV0lPtG3pvfqwu9oTdfQNzC3VVaNSflo5oxWFsBUqipXTAE4Ig/gbTZ7vU46G9ipLN29H83Iw9sqdV9tn62vrRv60Zfcdysr1Im1tmxyXMQKY6GpRzbr4r9KBps+OA3//0G9AsHbgwbN3adyA0uozlMvavGTD3pP6FVIcGFzUk8oV9VLx6KoiK/9zdLR9As/KU2VqcaxFao3g2cfzaavkRH/StG4BmrmIE7JF2JZN2NZrleOyhoC25FjW1J51tTqJhTTT4Dqx8unn7Uyli3tQ15YBVKeafk+PMO4H1m6+8X/2zgO+rer64z9bW7Jsy5a34+y9dyAhIWxCgELZFCh0QMcfWqCbAmV0sLpoS0tbSltWS8sIOxQoq4QAIQQyyfbesmVLsiT7f85TpHjI8tNyJPucfBQ9vXfvffd+n3x1z73nnoPnX6+Fo92H5lZxopiwBzOKCxKFNEkPf3xxbHsVe1eHB4ZGfXjFlh2KBDzbxWcm1/t+7K2zmWa/1AoPxMaRp9h4hZ2M8CucZJJjElsMe7TClcXnOJbpYM5OBstjoOeQQ6uX8Qg/L943OpiweW5wxXSwNNGcnzbBSk6gNHB2yixmNNxSPS33CZccPz7marJ5/3s7GpTJrAuPD/zttnd2KfuV83s5RMujPaG7qqL3vH3BqnGKkyOnK3rFhUMdpKOw85RohP8up06MbyV4uPsT7v/0NGEpMjIIpKtix46SROIjwAsB+bk6XHrWWKw9LrYtTNwfnHNqufLqoDHGr/+6Gxs+aoajLfp+P77WSO6RREAU0iQ9zbGF0YfsSFJVVBdbSArTXtqfqlY4iL2V4v2lm7AjpmjEz95g0kzsZGrDM6AiI4tABZncluSFn6RS09IWmnBiqwonhYtyUFzKIvqbD8b26z3YY7PgWGITa8kfx5IpeXiFzP9FwhPgv0s2h0s3ScNuMN0QS32FQNII8CQWm+CeSaGcLlybGIdqXFneD//dq6Yqk9+33bsN23a3Kya9SWuIFDxiCUQ3Mh+xGBLfMA7Jkm5ij9JTZrQrjZF46PU6WoXMov2iJpqJZ1fxGrCDH6/PR3sv3WhzdijBmSOVofaaJcuK5qYGtckpZmh0KyCqC05ywkzZb5NkwsNbfBY5Mjp7RXwDiVVzS8AvXiW9/9ltZPq/TAndwC3xUTxj3SHvzF10HKvn7bVLy7BpTwvFKFRvbZFokiajAbk5bCVgon1RWsUpWg9F6OR+xeX20P6nTrQ62qmP8Sf61kOW19tcf8jEKZQg16pFI3n/FhECo5WAhcYnBr2e4hsHhs4+mtxzd3koRnp4j/mpwoknG+dOy8ZPvj0bvF0jGcKOFH9K5XMc9Nt/uw2NLUeu/09G+6TM5BMQhTRJjNPRaUBuv+DWQ6HJzIjffEZLSyoF+TZy6JNFM2wU0L7DDa+jg0wI/dRxZioDSKNBh5Iiu+KNt6G5NW7F1GhS7wyGGeSkaciD5PzsDPWtkOvJImCkfd4c+iARUmQzKSukvH/USiGj2GS8kYLcB1dfOcRUbtbgJuZD1aGUVnGPhEKq02lRaM+DyUgrv7QhvrnVSfGV+5qRmQx6GOn6FLsNjU2taGgKePIeqk2Jup6B9PzLzFGc9HUkCoOUIwTShkC+LRe2XCvYWqqLogIEJrIyYCTP4lYau5QVa9DS2jbsfYkagLxF4GwKWXfFuePUJI87zdzpOXjkF0tx1Q8/wJ6DHRK/OG6io6eA+DWK0cMqqpamo9MAVgCjkYwo0/cvm2cbJ4wtB8fdqqptIqc/TnKqxPvZAqsWfoo7wYNJh7MTNfUtZELoRXlJIfJsgfA3/ctT+9nXb4A6VD5P1/CvogxVJzXXWYERGTkEFkxS73Sif6s3bm+g/eGB1S0Ob/va5mqML8kmRTRDec2ZkIe3yLM3i5u+7xu312PBlNgdeR07pwhJmojv37TQZ+5PxleU0zpoBqrraT9Te8cAZZQTcx/DfU1VbbNikVFRXqJMfIUKSvIBOy5LR+lK034wHVlLnVODAFtaTBg3BmaLiVb82ik8W6vSd7Q5XWS11akc19OkVn2jg/xgGDB5QgWZsMa+pSLRrbbn6nH9F6YMmzIarD97Q77/xwuxbF5+dLFjgwXI+6gkICuko/Kxh2+02RidAmMyx75PljvtMWXF1Mm3oVOla98OWkHt6vIi35YN3pjfRKulsUhWlN5686lTT0exZsmfdzo+t3B1ZmdGx84uCndJ1bmqpg78+YVtZJ6rA4eNKsw14QtrZoTynrtqEn71xBa8t7Ne2Tu6aEoh5k2MXSGdWJKlxCV1dPZdnQzdMMEHPHBkxbKhyYFOMslVIzzx1dDcRlsFLCinvmjfgSo12eJOk52mf5d5tvTsB+N+YFLAqCTA24cqqF9oIkW0g7YNRZIu2lrUTJNc5i6DMq6pqWsgBz/q/XFEKjvWa1aKUX315ydhxaLY+/FY7x3Md/t1M3HDPZ/g7Q+agqfkXQgMSkBGrIOikQvJIqAh88CS4gLq6NUro8G6eGkw3UiDyCJ7DsXsTP29G8F6y7sQiIeAmVa7jXF4Of3M8nFYu2wsmdF6aMaavEb3M8/nGMa3Xr4YLc4uCv/E94pucipc23gf/XAopLwns7S4MDC5pVIZ7V1fXkm15WTRtoAC8EBSRAgIgdFNgE3/2RqrqXVoZbQ3KZ5cr+9uVfoSN1lieOh1JMRAvxWXnj02KmWULcFaKHxLUYGJJvwHr3VTi1vZ4pGTrW6C6rZrZ+JL338fuw+Iuf/gVOUKExCF9ND3wGazgUOMNDU2hv1mmMg5htlsRlOTzPSEBRTFSTvtGXW5u5Q9XlFkCyXllY0W2mdaZM/Hno7K0Hk5EAIjlYCNYhHHK2yey4pnJLEl0BlbBXka31+f/EGIPc8GD1lOsAVFrMImvKWFeYoJb2dnajsoibWNkk8ICAF1BHhswT4tYulT3LS1iPuTooJ8HKgMbINQd9fEpGLrMY6b/tmTy1QX+IO7PsArb9dSOBiDErt87XHl+Ool00L5u2nv7O8f3oF/v3hQUVYrSi3440+PDl0f6uA3N8/DJde/RxYp6qxXhipPro9MAqNeIS0tLcWj/3wCdnsB3C4XqqurcPddd+DVV15Wnjh7aLz9J3fglFPXkDOdTvLO2oQvXnEZamqqR+Y3IsmtYp55uTmorAmv+Ku9PZvlWcwGcoZkQRutcIgIgZFMIFoP2KnAoqIgOudhsdSZB195ZMLPe8zjlXbylJlPfZMopPGSlPxCIH0JsPm/yWRAVV1zzI3gvsRsyoWF9p4Otwfewjw9vv+Vw8qkmkYcs6QIP/jaHKqzlsZmHTj//17HqavKaU9+lpL9jt9/gl17Hfjx9fOxaI5d8VquptxgGj1Z3Fx3xWTcft8OtDuHZxtH8N7ynj4E0tO7QgL5+sgE9Jabf4iZ0yZi4fxZeOLfj+P7N9wYusOa09ZiwcJFWLZ4Po5asgAbN26g6zeFrstBdASsWWaadXSRtzryrBKndFIsxZzs+ALMx1kFyS4EhoWAPUHedYelsoduUhxHvFS19WTv3Gxtwab88QqvhlgskVeQ472H5BcCQiC1CVizLLQ6Gv9KHk+a51iHd3xiIj8g3/3K1KgBn7KyTFFGOWN5iQXjx2Rhw+bA9oW6RheeXH8A135xJhbPtSsrpLztKlpZMi8PsyYPL49o6yjpjyyB6L9VR7a+Cb97fX0dXl7/Ermmpih19OLjKVOmoqCgULnXqWvWYt3TT1IszIAZ12OPPIyTTzkVmXF6mE14Q9KkQLPJSF4uEzNDxns0TFSeiBAY6QQKctLve242aGGg+HfJFO5P3GSumwjppv7f7U5MWYmoj5QhBITA8BPIspgV54nx3tlNE2UW8/D221PGZVG80dy4qt7c6saufW2YOSVQzqatzbTHXo9X3qnFVTe8g2tv24gNH8Zm4fY9WrnNSdO47nFBlcyqCCR3tKCqCqmVaOWqY1FdVUV7RQN/cMUlpaiqPLxPsZKO2b23LS/2EAyp1eLhrQ0HlfZRHK9ECK+yRth7n4hbSBlCICUIGHTp11VznXVJrrder6P+JP7V0eBD9voT0zcFy5N3ISAE0osAOzTiWKPxClttDOfCRXaWDl+/dGJc1fZRTLDv3/khVh9VjNlTbUpZtQ0uaGhrxJhiM668cDIWzs5XlNKPd0Qf5SDLrMXiOYFy46qoZB6RBEb9HtLeT3XylCn4zvd+gO9867qQjXxOdjZ5SjtsvuHxBBxn5GTnKA6QiibO711E6FhrSP7+qdDNEnSgM/iRVz4VOpV1N+l7VKcNVtGclQVHRxd504rfiyeXqTMYo66DwZKDwZ5bsJ693w3mNrpH6sQW6123SMcmaz61c9KAJC3Vu9DlOrIu6QdUSk4oBPLLp0Eb5rtmNHXT+fTqU3TwI7dgDCw6dTP2up6uqP+WrdQ/d3qITXdipqb0xFht/xf8yuqMFuRXTIdWp241xJTdkpb9idGSS/3JmGCzQ+/O5hp0tNSGPstB6hCw2sthzikYUCG92Zl2/Qk3wpRjR5FNXRiTbp9H+VuO+u+ZxhQZGh15kh2ALeoTsYxPdAYy9S2sQFaRLqr7FZsbMG3ywGetthDeRXXb7zYDGiNu//YSYhcAwH3i7JnFOPf0gCnwkgXl2LGvC29scmD+nBK1xYfSfeWSGdhVY4Y7I7xi6ulwoLV2Tyi9HIweAqKQHnrWRUXFeODBh/C739yLZ595OvQNcDgc0NOqXlCMxoBi4nAEZofqdm8KXurz7vMs6PM5HT54PeS0qXKX6qqWlFWA80QjnU4n/L6uhK2SdrldUdeBO7zBnlu4tnjsdrpH+nnedLU3UTv3hWuSnEtRAk2V28PWzDt9CnyeBIyQwpaenJM+jx/tjZUU+mWvqhvk2vKj/ltub2tDt9KfJCa8Qhf9nUfbp3ndHWg6sE1VGzlR/iRrWvYn7o5W6k8+Vd1OSXjkCfDfH7/6S5eliPqT9NvP53I0oq75YP/mhP2so3Eb/y1H+/fcRYsOPX5vQvxceKmsaO/P6R31B9DhbAvbrnAnOUzLFVdOjblf8dPK6M2/3ExxnD34+Q2LaLmA9uUfWocptGXgwMHmPmVzHTvafH3OhatXuHM28pOU2VWPusp94S7LuVFMIP3swJLwsMZUVOCf/34Kf//bg/jNvb/scwf2pls+5vCsMB/zimlLS/xeHfvcaJR86PJ6oSNPu4kQDe3jZS+bIkJACIxOAtyfaBKxlHEInzYGZx2jk7y0WgiMTAJeMtfVk9luvKKjfonDpQyH8L7ME1cUxXQrruM3b3uP9s/78aubFpNfjr5tXzInH3VktvvOBwEnRzX1nfjfB/VYtiD21djjjg74aImpwpJpxBLo+80bsc0cvGETJ03GQ4/8A7+45y48+shDAxK++MJzuPqaa/GH+35Lf7BunH/BhXjxhedDJr0DMsiJiAQ4pILZYqEYpLHHDAzewGDQoTMB5QTLk3chIATSi0AnecbNyc6CMwGRn3hyy2g4bA2TXiSktkJACCSCgLOjk6zidOR8MT6rCyOFj+GIAsMh7HQoVnGRIvr2+/VK9qPPeT5UzNiyLPzrd8dSaD09brxmDm78xYfIzdZRWBgXrjhvElYsik0B5husXV2CfzxLq/cd8e/VDVVYDtKewKhXSBctXowSclz0szvvUV7BJ/rrX/0cd93xUzLfXYeVq1bj3fc3w9nupBhK7bj8souDyeQ9SgLt1NkXFuShlQJHs1fLeMRMHb6DTPZEhIAQGJ0E2kkTLS22o7WtEz5/fM6NLBR70EWhGkSEgBAYvQSc1KeMKStGm7NTibwQKwnuT+oaYvNGG+09l1FIlVjFQo6G3nt6bcTsK5cU4/kHCsEOjux5Rhgormg8wiu6fF9RSOOhOPLyjnqFlMO48Gsw8fl8uO6bVyOL4kllWbJQW1szWFI5r4IAm8O0tLbTrJuFBpGxO9ZhZZRNYhxxlKGiupJECAiBFCbQTZ44mpodsGaZ0EKTXPFINsVIrqkPmKXFU47kFQJCIH0J8KQUr2zmWM00RonN9IL7Eh9tJ+joGJ4V0jnTcpIOnGOPlhVbEnYfq0VLCm7CipOCRgAB2UOq8iE629tFGVXJaqhkjc2tsJj0MBtjMzPhjjEn24L6xqahbiXXhYAQGOEEmlocSl8ST8w/G/UnbP4/XAPIEf5IpHlCIK0J1DU00xjFGFMcUROZ/bMyW9fYPCwMtJoMTByTOEVxWCpNNykpUOeVfLjqI/c58gREIT3yz2DU1cBPpnU1dY1k+pFDA0lDVO3nVVF7Xjba2trJfDo6D79R3UgSCwEhkBYEuD+ppql2uy0bPBiMVnLIWoOdmNTUyXR9tOwkvRAYiQTYMq6yuhZ5OVmwWtSHfONJsYL8HOqP6sn5ZXx7UNVyNRp5TBTdOEpt2clMl5cbfV+dzPpI2UeegCikR/4ZjMoasOOAyuo65OVaaTZR3ewed/aF9lw4HO3knly8HI/KL440WgiEIcAmdgeqapTJKjaXUyNajQb5NispoxocrKqNa7+YmvtJGiEgBNKHAJvuHqisgZmsuQpoEjyS5109RQ6wU1+SQ1sHuC8Zzslyoz49h/F2W/op0enz7U3Pmo76PaTp+dhGRq1ZKd2zv5KUzDyUFuXRvg033B4vfD5/KAYY/wgYKJ4Ym/j2kBOkGloJ4XwiQkAICIHeBNjcdt/BahTm21BSmEf9hIv6E4qnR/1JbzGSB00TORyxWozKfva6BjH9781HjoWAEAgQYKV07/4qmrjKUSww2A2jp8sbCOdCHzIzMxSPvBp6b6WJ8gOVwz9R7vPH5xzySD1rHs+JCIHeBEQh7U1DjoedAJvGsHkLK53ZFL4hl/ZecDiXjIzArJ+XHAN0ujy0Ito8rLOOww5CbigEhEDcBNhM7iBZXljMJnKclkXKaS5AoYrZ+RGHdeE4o13kWM1J5v67yQMmO1kTEQJCQAhEIsD71Plloi1GJqMR7MeC+xW/j5yqtbTCdQTDz1nM8Xm8jdTuZF6z28RkN5l807FsUUjT8amNwDp7urrQQE4AZBdXaj3czMxMFBUVo66uVmLvptajkdpEIMAmvMMVAzBCNeRSGAL5djs6nE4lrneYy3JKCKQsAV4x5ZdI6hCQ/iR1nkW8NUlP4/N4Wy35hYAQwHe+9wPsr6zr8/rrQ4+GyJy29gxs+mgrHvnHv/DB5q046eRTQtfkQAgIASHQm8Cs2XP69CXBvsWSlaUkKx8zBi+sfxXPPPuSEtf71tt/SitN6bm607vdciwEhEByCLz+1oYBfcr5F16k3Ez6k+QwP5KlygrpkaQv9xYCR5jAY48+hB987zuhWgT3dfAg8s67f4GLzv8sPvxwExYvWYq/PPgQFi2YTeZJwxNbLVQpORACQiAtCLS1ObBg7sw+deVtFyw33nQL/vvqK/jJj2+FxWLBs8+vxwknnowXX3iuT3r5IASEgBAIErjskovw1puvBz+CvaqzSH8SQjJiDmSFdMQ8SmmIEIiegN/fTfvovKEX7+llWb36eBw8eEBRRvnzxnc3oL6+DsesXMUfRYSAEBACYQn07k+CyqhOp8PxJ5yIxx57RMnT0dGBZ9Y9jTWnrQ1bhpwUAkJACDABn+/w+IT7E/YHIP3JyPxuyAppnM9VbwqYI/UvJiMj/UyRuM46gwkZmerqnkmuzjNVpu3P50h+ztRoMdhzC1evzEwtMUm/uRuNRhe2nV6PCz3dgVnGpUuX4a57fommxkasW/cUPt7ykYKguLgY1VWVfXBUVVWhuKS0zzn5kFgCBktO2L+pTDJtzKDvYTpJJgVs1xktMLEDEBWi05vAf5vpJlznwZ5buLZodJnUTnV9bLj8R+qcRquHyZo34PbeLhd81KewmExmpT/pJIXz/fc3Kkonr2jY7QXQanV9+pQq6l8WL106oDw5IQSEgBAIEvjSlV/B6Wd8Bnv37sE/Hn0Yzc3N0p8E4Yyw9/T79U+xB2CxlYStUSb9+KabaKjOxmw7tDqjqqpr9QakZTt1Bgz23MI1XKP30l6n9HueWppcsNjyBzSpvalSGUC+t/FdtLa2Ks5FZsyYiSeeehaXX3Yx3nzjdeTk5A5wOuLxeJCTnT2gPDmROAI6g5n+pgZ6H+TJIrUTRYmrTXwlZWT2QEN/azqtuv4kk+KBpuPEDz8XVrwzVfYRmdou8vibfgopK946k3XAl6KbJrdYIW1uasS9v/4FvTehoKAQN9z4IzL1X4Ybvv8d8qAe6De4DwmK2+2m/iQn+FHek0DAai+HOadgQMl6sxNa6mvSTUw5dhTZ7Kqq3e3z0AS7WXmpypAiiXQG+p0trEBWkboxh0XXrCwkpEj1VVdDT31J0cT5A9J7Ohxord2jnH/4ob/BTR6MdRT+7+RT1uCiiy/BaaecKP3JAGoj44QopHE+x5bqXWFL8HsH/nCHTZhCJ31eN9obDqqukbGsAr4ut+r0qZLQ6+7AYM8tXB29Y+zweQ8PpMKlScVzns42amfVoFX7z8vrwa+guN0unH9BQCF1OFop/E5fRcJI7u4dDkcwubwngYCzuSZsqX7fFPAAK53E7/XD3d6Mts7AHsKh6p5Jkyd+b9dQyVLuup/6BmdTtep6ebOtFC4i/drp9XSirb5x0HZWV1fjF/fcFbr++uuv4eFHH8fNN/4AbW1tynk9hfcKKqWB/qQ1lF4OEk+gvbES/OovXZYimkRIvzGKy9GIumZ1YxQdfdf4O8uvdBKur6P+AHmiDvzNDFV3bbGR2jh2qGQpd73L1Y663Tsj1uu+394buv7An/+IN95+F8tXHIPN5NeCRfqTEJ4RcaDOlmpENFUaIQSEQCQCdbV1sFLsRpaamhqUlZf3Sc5e7Wpq1A+8+2SWD0JACIwqAnW1tcpeL4PBgMbGBmWfeln5mBAD7k9qKY2IEBACQmAoAuzfgq0vrFar9CdDwUrT66KQ9npwWtoTycHTw4nJZEJ+/kDzx3Bp5ZwQSAcC55x7PszmgNmWvaAAnz3nXMVcl+v+2muvoKJiLObNX6A0ZQntNeV9YGzOKyIEhIAQ6E9g1arVSp/B5zmcy5e+fBU2ffA+2IEROyN55T/rccEFFynZ2Mvu2tPPxPPPPdu/GPksBISAEFD6kpWrjg2Nydmh4qTJU7Dhnf9JfzJCvx9isnvowXKYC3ZD/63rvqF4FA0+b1ZSb//JHTjl1DXo7OxUZmi+eMVlslIUBCTvaUvgs+echzvuvEdZDeXg0k8/9W/85YE/Ke3hwPXf+dY38dDD/0BDQz34+vXXXiMhX9L2afetuJGcJ/G+Ry3t8WTxsydDMhVzkYmtiBCIhcDESZNw/58fJLP+VloZ1aOq8iD+72tXhYq67Zab8cCDf1cUUSuZLT/7zDqsf+mF0HU5EAJCQAgECbBJ/90//xWFiMqCg3xdmC1mGpNciwMH9itJpD8Jkho576KQ0rO89baf4GwanGcdCuDd+/GyW/oFCxdh2eL5ymD85ltuw/dvuIl+aK/snSxpxwZzDqz5xTBb8xXvm37eR5aRqTgLYUcSne1NaGusSsu9nEmDJgWrInAhxRi1WrPJAUmBMsHSP77o0089ieeefQYlpaXkHbMqFP9LVeGSKCUJ5BaNgzWvmLwsd8PvcYb2pWYYrNDSeU3FdLS31KG1bj+6/er2fqZkQ6VSw07gz3+6H3/7619QQp64Ozo7FM/dvSvBA8njVx+D4uIStDvbaY+cs/dlORYCQkAIhAjs3LkDSxbOVRyksXJaSRNcHPIlKNKfBEmMnHdRSOlZ/vCG7ymvdzYGNkr3frynrlmLdU8/GVoZeuyRh/HUMy+QcpjZ54+jd55EHLN3yvzSSTCas+F2VMNRtQV+cq/fW3RGK/RZdpRPW0ZK6UE0V+/ufVmOhcCQBNrb28CvwYT3bRw8cGCwy3I+TQiYaELLXj4FPjc975pt5NCkI2zNNToTjDnFqJh5NJqqdqE9Cmc9YQuUk6OKAJvmBlcwBmt4bW14x12DpZfzqU0gmzz5ZtmKwFYX7OSQPe/3UKgfFra4aG+pFcuL1H6EKVu7np4eJf55pApKfxKJTnpdE4V0iOfFcRdfXv9SKFVlZSV5HzXAlpc3YAY4lCjOA14VLZ4whxTRGjTv2zhoaV53O/jlIq9zWUWTUTppAer2keJK5nciQkAICAEmYM0rRX75ZFJEd8DjHNxLKqf1e13oaNyLLmcTcqlP0VIImpa6fXxJRAgIASEQImDNK4GtZAK8HS3wtFairfIjutYTus6TW3pLHuxlk2k7gAuNVTvFkitERw6EgBDoT0AU0v5E+n3muItBN/V8yeMJhDnh+GlNjY1h4yhxulhjfHFsppIJc+Gs2wV3Wz002sAeLy4zknQ07IHZPg6lUxajZvdmSnr4hyFSvt7XdAY/8sqnqo7bZdL3qE7b+z5H+piD2IeLfzVYvQzmtrSM88WrYkUTJw1oFoe86XKJudwAMClwIr98GvUdpgE10Rm6Y+pTzNn5yKcBYVv1VlodbVfdn3CImfa6Hcgtm4UMUkrbwoSOGFDJfie08IPjIBp1uf2uhP+o6+lKy/6E9+Lmk6mz2vjNpuyWtOxPjJZc6k/GDHh4HKqog1bBRFKPQLLikNqKx9M2Ihs6GvbC2xkI3aPpHz+5p5smthqVlzl/LCpmHI26/VvB4ZGxNncAAEAASURBVMhiFYlDOpDcSI5DOrC1cmYkExCFdIiny3EXOdZRUIzGwGCRHTew1O0eaObL532egHdSPo5Gimhg01a9DS5aHY1W2mt30ErpFOQWlKGxMnJ8p3Bls1OT5spd4S6FPVdCcUjTLcYXN4QDLw/23MI11EMOfXiGN93ERfuL63bvS7dqj+r6NlVuD9t+73Qyt/Vowl4b7CR7DM+lAOuOqk+UFc/B0g16npTSloMfwTZ2vhJns8sd3SSGz+NXYiA6OvcOeoveF3IpDmk69icc17jpwLbeTYl4nD/Jmpb9ibujlfqTTyO2TS6mFoFkxCHlfegco7pl3/uq95m31+1UFFd72SRU7XyfVkpj+z2VOKQDv18jOQ7pwNbKmZFMQMK+DPF0Oe4ix0sLCh/zimlLS0vwVMLeefDY4++KSRkNVqKjYTcs2XYYs9StSgTzybsQEAIji0BO4VgaBLbEpoweQuHv6kRn4wEy302/wOsj62lKa4TAkSdgzLIhp6AcPPkdrdMzd3s9bS+qREHFtCPfEKmBEBACKUdAFNIhHsmLLzyHM888C+zli+X8Cy7Eiy88nxSHRuwcwNVSNUSNIl/u6fbD1VqNnPyyyAnlqhAQAiOaQLa9DJ1NB+NuY2dLJdj0lx2tiQgBITB6CeQVjyMz3X201zywdSlaEtyXsENIdoIkIgSEgBDoTUBMdokGxzpaccxKxb307+9/gILudmH5skVgD6McK20lBfx+9/3NcLY7FXf1l192cW+GCTlmD3U93T5yUhT7/opgRdyOOuRPXBr8KO9CQAiMMgIG8s7dQ2Fb2ElR/NJDzpCaFKVUvO7GT1NKEALpSEBvyoJWb0JbW3z7hd006c6O1pwUXkpECAgBIRAkIAopkbjum1cHeQx4Z6WUr2dZrciiAL3JcjHNA8igc4ABlYjyRHc3BbknUzsRISAERicBnuDyuuKf3ArSY4dIRku2hIEJApF3ITDKCPBWIE97Q9ytZk/f1hIx240bpBQgBEYYAVFIVT5QZ3s7rZC2q0wdfTKt3ohuryf6jIPk8A8SZ3CQ5HJaCAiBEUSA+5PErI4GoLCJnsGcN4IISVOEgBCIhgCvkPo6IoeNUlseh6sTEQJCQAj0JiB7SHvTOILH3NmDvGImStSGi0nU/aQcISAEUoxA9JGfBm1AT3c3dU+J658GvZFcEAJCICUJcFiXbr8vIXXj7QQiQkAICIHeBEQh7U3jCB5zXMieGGKHDlblbtqPKiIEhMDoJMADx8z+cQHjQKHR6uCjvfUiQkAIjFYCCZzhGq0Ipd1CQAgMSkAU0kHRDO8FVki1RmvCbqrVWxJWlhQkBIRAehFwU6xdrZGsLhIkWmM2oo1DmqBbSzFCQAikAAFvl1txapSIqmTqAlELElGWlCEEhMDIICAKaYo8Rx5A6k05CamN1pBY89+EVEoKEQJCYNgIKP2JOZdCLCTGTYDOYoOrPfGxl4cNiNxICAiBuAh4OtsTMmmeqdGRYmuOqy6SWQgIgZFHQBTSFHmmXk8nuuhlsBbGXSNDdpG4VI+bohQgBNKXAMcjdrbUwphbGncjDFl2Ze+YpzNxXnvjrpQUIASEwLAS6HQ0wJhTSHvJNXHd15BdCFdbYpwjxVURySwEhEBKERCFNIUeh6PhICz5Y6lGsTsP0ZFpnSm3GI6GAynUMqmKEBACw02gtW4f9ScV0OhMcd3aTH1SC5UlIgSEwOgl4KMoAB2t9TDnjYkLgim3DI7GqrjKkMxCQAiMPAKikKbQM+10NKKzvRnWoskx1YpnLrOKJqG5ejf8PvFiFxNEySQERggBr8cFVkqtxVNibpG1eCpctJ2A+yYRISAERjeB5pq9MNlKoaftALFIVtEUMv1vhtsp5v+x8JM8QmAkExCFNMWebmPlDvRk6pBVGJ1SmqnRI6d8FjocTWhrrEyxVkl1hIAQOBIEeGXTRXu/uG/gvVvRiJUGj909mWg8uD2abJJWCAiBEUrA1+VCA/UH1pJpYGusaMRiH0/WGmYlfzT5JK0QEAKjg4AopCn4nGv3bEYPrXbmVsxTNRNpzClG3riFijLaXLM7BVskVRICQuBIEWiq3AmXsw22sQthpP3lQ4nekqf0PT5/D+r2bRkquVwXAkJgFBFgs92mqk+pj5irynyXHRhll0xHJnn+r969aRSRkqYKASEQDYHEuGCM5o6SVhWBun0fw5pXgtzCiTD5u+DtaIHP4wwFptboDNAarOQEqQBemrXk9C4xg1HFVhIJgdFGoLlmj+IlN7doLHhPqMfZCL+7/ZBpf4+yesreudmbLktL3X5lv9ho4yTtFQJCYGgC7DCty9UOW/F4mgxfDHdbPXxuB/xeN3r8foqBrIOGFFG9JZ/GKHbqT/bCUS9+LYYmKymEwOglIAppCj/79uYa8Mucna+8jLYxIbM7H8UE81DsUseBreAQDyJCQAgIgUgEeMKKX3pTltKfGCx26MmMNyMjgxTTLnjcHWijlQ+Z2IpEUa4JASHABLqov+CJcIPJCktuIYy2CgrnYlReXncnvJ4OdNB+0bqDO0IT6UJOCAgBITAYAVFIByOTQuc725rALxEhIASEQLwEumgii18iQkAICIF4CXhopZRfIkJACAiBeAjIHlKV9EwmE/Lz81WmlmRCQAgIASEgBISAEBACQkAICAEhMBQBUUiHIKTVavGzO+/BOxs34Znn1+NZepWUxB9sfojbymUhIASEgBAQAkJACAgBISAEhMCIJyAK6RCPeM1pa7Fg4SIsWzwfRy1ZgI0bN+D7N9w0RC65LASEgBAQAkJACAgBISAEhIAQEAJDERCFdAhCp65Zi3VPPwmXy6WkfOyRh3HyKaciM1PQDYFOLgsBISAEhIAQEAJCQAgIASEgBCISEKdGEfEAxWSe+/L6l0KpKisrYTAYYMvLQ1NjIyy24tC13gfRBqHvnfdIHWvI46bJmq+4bFdTB63BBA25d0834ZA5gz23cG3R6rTQaNLvT0WnN1E7LQOa5CbPh+xVVST1CJiy7eRJe+B3jb9/6danZGozKY5yNiwGdX2E3qhPy/6En8tgzy3cN0xr6E7L/kSrM4btN71ucZIV7jmnwjn++9MZzAOqotHp064/4UZoqS0WW86A9oQ7kZkB+juj8DNpNkbR0DYxg4XaqBv43MK1U2f0pWV/wt/BcOMwv9cDt4QwDPeoR/y5DJvN1jPiWxlHA1957U3cc/edeGbdU0oper0eu/YcxOqVR2PPnt0omjg/jtIlqxAYfgIt1bvEy+rwY1d1x/zyaTToMqlKK4mEQCoQcFJosg6KSymSegSs9nKYcwpSr2JSIyEwCAEPhTFsrd0zyFU5PZIJDJyKH8mtjaFtDocDrIQGxWgMDBYdjlblFP8YiwiBdCLg98rqaKo+r862xrArpKlaX6mXEOAVUpHUJODpbJMYoKn5aKRWgxDgFVKR0UlAFNIhnntNTTXKx4wJpeJjj8eDlpYW5ZzMDIfQyIEQEAJxEnCRQioiBISAEEgEgS5SSPklIgSEgBBIdQLimWeIJ/TiC8/hzDPPgtFoVFKef8GFePGF59Hd3T1ETrksBISAEBACQkAICAEhIASEgBAQApEIyAppJDp07dln1mHlqtV49/3NcLY70e5sx+WXXTxELrksBISAEBACQkAICAEhIASEgBAQAkMREKdGQxE6dD3LakWWJQu1tbJnVCUySSYEhIAQEAJCQAgIASEgBISAEIhIQBTSiHjkohAQAkJACAgBISAEhIAQEAJCQAgki4DsIU0WWSlXCAgBISAEhIAQEAJCQAgIASEgBCISEIU0Ih65KASEgBAQAkJACAgBISAEhIAQEALJIiAKabLISrlCQAgIASEgBISAEBACQkAICAEhEJGAKKQR8chFISAEhIAQEAJCQAgIASEgBISAEEgWAVFIk0VWyhUCQkAICAEhIASEgBAQAkJACAiBiAREIY2IRy4KASEgBISAEBACQkAICAEhIASEQLIIiEKaLLJSrhAQAkJACAgBISAEhIAQEAJCQAhEJCAKaUQ8clEICAEhIASEgBAQAkJACAgBISAEkkVAFNJkkZVyhYAQEAJCQAgIASEgBISAEBACQiAiAVFII+KRi0JACAgBISAEhIAQEAJCQAgIASGQLAKikCaLrJQrBISAEBACQkAICAEhIASEgBAQAhEJiEIaEY9cFAJCQAgIASEgBISAEBACQkAICIFkERCFNFlkpVwhIASEgBAQAkJACAgBISAEhIAQiEhAFNKIeOSiEBACQkAICAEhIASEgBAQAkJACCSLgCikySIr5QoBISAEhIAQEAJCQAgIASEgBIRARAKikEbEIxeFgBAQAkJACAgBISAEhIAQEAJCIFkERCFNFlkpVwgIASEgBISAEBACQkAICAEhIAQiEhCFNCIeuSgEhIAQEAJCQAgIASEgBISAEBACySIgCmmyyEq5QkAICAEhIASEgBAQAkJACAgBIRCRgCikEfHIRSEgBISAEBACQkAICAEhIASEgBBIFgFRSJNFVsoVAkJACAgBISAEhIAQEAJCQAgIgYgERCGNiEcuCgEhIASEgBAQAkJACAgBISAEhECyCIhCmiyyUq4QEAJCQAgIASEgBISAEBACQkAIRCQgCmlEPHJRCAgBISAEhIAQEAJCQAgIASEgBJJFQBTSZJGVcoWAEBACQkAICAEhIASEgBAQAkIgIgFRSCPikYtCQAgIASEgBISAEBACQkAICAEhkCwCopCqJGsymZCfn68ytSQTAkJACAgBISAEhIAQEAJCQAgIgaEIiELai9D48RPw0Sc7cOnnrwid1Wq1+Nmd9+CdjZvwzPPr8Sy9SkpKQ9flQAgIASEgBISAEBACQkAICAEhIARiIyAK6SFu2dk5uO/+P6O9rb0PyTWnrcWChYuwbPF8HLVkATZu3IDv33BTnzTyQQgIASEgBISAEBACQkAICAEhIASiJyAKKTHTaDT47X33409//AN27tzeh+Kpa9Zi3dNPwuVyKecfe+RhnHzKqcjMFHR9QMkHISAEhIAQEAJCQAgIASEgBIRAlAS0UaYfkclvuvlWUkR34B+PPoxTT13Tp43FZJ778vqXQucqKythMBhgy8tDU2MjDJac0DU5EALpQMDr7kC335cOVR11ddSbspCRqRl17ZYGpy8Bf5cHPq87fRswgmuu1Zug0elHcAulaSONAI9NeIwiMvoIjHqF9JJLP49xEybg8ksvDvv0c7Kz4fF4Qtc8nsAPbw6Z+LJCarKKo6MQHDlICwJ+r0cU0hR9UjzBpdEaUrR2Ui0hMJCA29kiCulALClxRmc0w2BO/KR5T3c30O2BSeNDT7cPVrMeuWYdskxa+Hx+ZGoy0dLeBUenF+4uSqvRweXT0pv0bSnxxUjhSng9HaKQpvDzSWbVRr1C+pWv/h9eeul5XPON6xTO4ydMVMxx29va8MS/H4fD4YBef3iG0Wg0KekcjlblvbV2TzKfj5QtBITAKCLQ3lg1ilorTRUCQiCZBFxtTeBXosSo08Cg12BquRUrZhag3G5WVbTP14OP9rXgrU/q0ez0oJ0U1e4eVVklkRAQAqOEwKhXSO+77zewZllDj5tn/niGz+fzKudqaqpRPmZM6Dof84ppS0tL6JwcCAE1BIwGDawWHUrLypBny6OXFfl2OxobGtDQ1Iqmpmbw9629w0ffP/m1VsNU0giB0UyAvcCXUX9SXFwIqzULubn5aHO0oKOzE/X1jeAtJkH/B6OZk7Q9PgIGfSbK8s04fUkZxhZZoi5Mq83Agkl5yoszv76lHq9+VAdHR2CcFXWBkiFpBMbQGLew0I68PBuMBiN8ZELr6nShjvqT6upqZZEmaTeXgkc1gQybzSYj315fgQce/DteffUV/PUvf1bOnvmZs3D1NdfitFNPhNvtxo9uvZ3+UO34v69d2SuXHAqB8ASsFi3MZMa0fGEhzj1zCaZOm4oebzMyu2mPRHfAURYyMtCTaaaXFf5uPd7ftBWPr3sPm7e3wUnKqdvjD1+4nBUCQmDUEpgxYwamUX/idTdBn9mOjJ5D/UkPmUhSf9LVnQWtwY4DBw9gy5ZP+mw9GbXQpOFREdBqM5Fv1ePCVeNQUahuNTSaG6z/oBZvb2skxbQrmmySNgkEJk2ahBnTp9G4pBO6jDZkdDuBHnouGbRulaGDD9no0djQ0tqGzZu3iGKahGcw2osUhbTfN6C/QhqMQ3riSSfD2e5Eu7Mdl192MaqrxLSuHzr52IuAPc+AYxbl4/OfHUeroKUw50wAfI3I8NYEOvleafscZlrQoytFNwzoaN2J/Qca8Kd/7iPl1IHWNplN7sNKPgiBUUggJycHSxYvhNnQBV13NfUnh30cDMCRoYEvswT+DDvee/8DssCg/kdECKggYDXpsHpuEY6dU6gidexJPN5u/OnF3dhb66QJWVkfiZ1kbDl5jLt0ySLk51mg7z5ICmlkh0Ld2mIao4whpXQz9uzZG9tNJZcQCENAFNIwUMKdyrJakWXJQm2t/KCH4yPnAgRyc3RYtbgA13x+knLCYC6GKWc8MtyfAv7AvmM1rHp0xYCuDM7mrfB1tZEy2oU77t+JT3a2KSa9asqQNEJACIwsAqyMrjxmBXSoQ6ZP/W9RjyYHPYZpeOeddxSzu5FFRVqTaAJWclD05VMnkZluwGdGossPV966DVX439ZGuL1iERSOT7LOrV69CjlmL7T+/epvQRYYXu0kbN26C7s+pbGNiBBIAAGNyWS6OQHljPgiurq64HSSCYOIEAhDQK/LxOxpOfjVjfOwcrFdSaE12GCxTUGGaxvNOraHyTX4KTaXyejxQpc1CV5XEzmS6MHxRxdi/owcfPBJK5ydErZlcHpyRQiMTAKrVh0DU2Y9Mv11UTUwg1ZRM2jlo3TsHFSRdQ//nokIgf4EMmj7SLHNhO+eOwO5Wbr+l5P6eWp5NrJIET7Q0IkuWjUVST6BxYsXwZ6rgc6/L7qb0dhE09MGe/F0NDW3oJP2rIsIgXgJiEIaL0HJP+oJWGiP6HmnleE7X54KVkyDYrXPQaaHTFq624KnonunvRwgkzuNoQBdrkYlL5sCf/aUMuze70RNA4VvEROn6JhKaiGQpgSmT5+OYruBVjIqY2tBTyBkmcVahIPk7EhECPQnUJRrxHfOm0GRBjL6XxqWz+y1N89qwKfV7fD6RClNJvSSkhJMmzoROt8uuk0MptI9PmTCg/zCidi9e08yqypljxICopCOkgctzUwOgXybHtdeMRlnnlDa5wbGrHLotD20Z5T2eMUhGf42ZBrGwO9zUezQw8HnVx9VSKsc3dhb2SGzyXHwlaxCIB0IaDQaLF9+NLS+3TR2jN06IoMsNUy0n72+gcKBuA45QUoHAFLHpBPIptXJH1wwi33sJUzaKLxLBv3TaNQXWmwzQkdxTHfXOGXCNWFPYmBBCxfOQ5aO/Fr0xLG6yY7UtHnodPnQRqESRYRAPATIfZaIEBACsRCw5+pxyzdnYtqEw2GDguUYLCXI8NDgMQGS4auDwVIMr6dvqKEvnDeOzG10+NPj+8WENwGcpQghkKoEKioq4Ke/f0334UmpWOua4W9ARcUYNDc3x1qE5BthBNiB0VfX0vYS9XpjiMBrH1bj7y/vxD1fXQ5WalkaHW7c++THcHnIS3yXD0umFeHC4ybTymsoW8SDY2YVoLKxE+/takZPTwyrdxFLl4tmsxk2Cj2X4Q44JWJTbY4IoKWJg9xsHXKtOthofGMyamgivAdtTh9ayI9Fa7tX8fzPk+GuQ97/DRlNGDeuQgkxJWSFQDwERCGNh57kHbUEssxaXH3ZpLDKqFZvpTlh+hHtt2+UO3AXzSRyLFJdL9PeIESX20czwoCFyu4jviZozRV9TgU/nHlSGRpbvXjsuYMSuzQIRd6FwAgjUFRYAF0mrUAkwIpR092K4qKxI4yQNCdWAlpajTxxQTEKcw1RF7H9QCte/XBgxIF/vPYpZo3PwzkrJ5BC6sdtf3sfH+5uxILJAf8Kam504bFjsbfOScptBC/SagqSNAMI5OfnU+i5Nlhpn3BpoRELZuZiwhj18WX9pKRu2tqKzdsccJKlhd0+fsA95IQQiJZAv5FvtNklvRAYfQQMpExesLYcKw45L+pPIFNLHTvH8DokLrcff3h0J1odXYoy2k4OiVYuLsTqo8iTLkkHff7nc/twsLYTJoNGSXPRGeOVHwslATkQQPfgP8q8Urq/qgNvvt+kJJf/hEA4Apk0C66sYNAqiI5mwi0GLX3ftIo5XSdNhnTwaoanGxm0iuF0eSkguqxMhON4JM5l52STU6LKxNyaVlnNloFWHYkpXEpJNwL2HANWzCyIutp1LS78ff1OfPXMWbjxL++G8nO/8dGeZtx02UTlnFGvwaKphfhgZ3QKKWfm+Kf3v7CLlNoEzMSEaji6D3iVuqI8H6etyqEJgsAzipYIm2Avmm1TXh76zXhpUy5ee0UnoemiBSnp+xAQhbQPDvkgBIYmwN50Lzoj/Iol587U0Exzr9iAbAZ1/NElmDk5VzGJqqrrxG//tgMLZ+cjm2Yon3mlkrzoavDdK2eBA5E/uf6Acu5CUkqD0hNBIeU0bDp8wTUbUN80uOIaLEveRw8B3otlJrOrsYUWLJ1mx5SybNCpIWVvbQc27mzC1gMOeHx+eGRAOCSzZCbIzs4FOvcl6BZ+Mp1U8SVI0N2kmNQlYKDfm/NXRr9azhNYv33qE1xy8hTYc4x9Gtje2UWTWd3IJ+dEQcnLNmBXlfqwZ8F844stqCjIws4q2Z8YZBLrO5vl8jajC88Yg4vPXRxwwOiJP2SLwZCJ008Yg+XTj8LNv9yqxExvc0rM9Fif02jOJwrpaH760vaoCeRRh/7j62cOmY8dOQTFSKues6bQgPKQ8EoVn+PVUJZd+9pw7pqxITPeFYsKce+D22nvDDnZDRUz9GrVD78+Hd+5Yws5GJA4bodQj9o3g06DkjwTTltciomlWVFz4IEgv1gayGSOYwTuIScjnbSKKjL8BNrbHbCqmUkY/qrJHdOYQBGFeBlbaI6qBaRr4r5ntuK4+WWYWp47wKleBymrLDpSdoOip+NY+46LVo/DXY9vhfNQucEy5V09AX4WC2fl0thllpLJTw4Se7SaXqMU9WWFS9lDjtZ4rPKjb8zAxxQr/ZZ7t6GxWSbHw7GSc4MTEIV0cDZyRQj0IcAd7unHldDG/8M/tH0SHPrQ0+2jHaT6AZ19c6sH737UhAOVTpx1ckVIAeVQMbx3NCi5Vr1iLtnm7EIOHSuSMfSf6szJ2Zg+MRvvf9zX+VGwXHkf+QT4u1lAJnjnHlOBcUXq9wRFIsPlXXHSBDSRU4tH/rsP1U0uZV9YpDxyLbEEOjs6YOU9fhRLNG7JMNJe9sNbCuIuTwpISwI8aXXW0eVR1/1AfTuqGzswsSQbT721D/5DocdeePcAlk0vgvWQYyMfhW0J+kroomPeIhCLZJNPhWKaXONQMCLRE2B/F+eeWoZLzjq8Et7tI8+6xsLoCwuXI4Mtwg5PmM+ako3HfrkUV93wAT490CFOqcIxk3NhCUQeWYfNIieFwOgkkJejx2VnH+7UB6PQ7SdX6JkDZ53ZqVEHucH30h6b3rOH82bk4bnXKsnUpQXbdzvw0huBUDG8khqUDI065eK7V05BzjAHNA/WUd6PLAHeH3rGsnJ865zpCVNGe7coP1uPr58+BZ87bjxysw5NlPROIMdJI1Bb1wBvT/ag5bN3TLNJozhEs9B7UBEIl6FHk4vGRtlvHo7NaDrHvhDGxjBplZtlUFZHedUt8Ar8TvFxBsUvtZr1yqRtY/vhFbKmNjf1GX1Ne6NhvXJ2IY5QaNRoqplyae02A6774uQ+yihX0tdFJtDanMTUV2Ol8vqaY/PQ5fe3L8DyhfnQ60XNSAzokV9KbFNWI5+LtFAI9CHAHWz/WKN9EvT64HXTCmXeDLK3JRf47JDokJQVmfHZU8aCnQDc8YePMXFsFsaUWHDiilJkkTKxeWuLsq/DTrFNeYCZRd54FdHkoNunbmUkn36AJo6z4IOP+/5ABOsg7yOTQA59V75GYRvYQUmyZUZFNr573kzc+/QOVDV19p4cT/atR235lZWVmDWLtgq4D1Lf0KOY/JcUGDC+3IKyEhPyaLLASHu5guKiPoY9eh+oduFATSfFK+6E19tNe4H98CIf+/ZtDiaV91FKYGr54BMckZDYaDJqzdLDPhS66HvFK6XHLygPhX2ZMyEPb22pwTmrAl52N26vp+PYHOhwXWaNzYHFqEU7fadF1BFgD7rXkGOp5YsGejbu9nvgJ6VUq6VVUl+9ugIHSdWjLYCnbaCnZU5+C5nw3vjzrXjrg0b5nRiEn5w+TEAU0kMssrNzKC6TDQ0N9ejsHBgo2GQygWM3NTXJzPLhr8/oObLRgO9znzn8Ixy55T3wdtbTKkURMroqByRlJwCsgLLXXVZIWdk9emGB8uLEz5KTo/EVFDomMPFMez2K4OmoG1DOYCcuJodLH213SBiYwQCNoPO8il5mN+GbZ00b1lbptRm49uxp+Psr+/DxvlawSZ5I8gh4PG50OuuwcuEMLJ/dSab8hyarBrmlifoYk0EP3vM+b0ZgJYQnwt7dlonXNwGtLQ2D5JTTo4GAlpYbl8+I3rOuWjbnrpqEXz2xBe/tpPEU7TtfNKUQ8yYOVIzUlsfp2HlSu5iaq0JmpFXJz59VEVYZDRbgclYhy0axZ/0Uj5j2gPppc7CD4oyyg8UBoeeCmejd2eElp2hskUHqg9aO7p5MeN2Dj4tv+eYMfPkHZL67X7YJ9MIoh2EIjHqFNCcnF/96Yh3GVFSgrq4WBQWFuO939+KXP79bwaXVanH7T+7AKaeuURTVZlJIv3jFZaipCZhVhmEqp0YggbzcyAPA/k12OyuhK5gLeOtQVesAB5IeV56lKJk79jgowHQXykkZZQluv2AFdH9lh2K6e/GZEwJFamzoybTA0/lJ4LOK/+fPyFW89za3dqlILUnSmcAE+g5xQPsjJZ87bhz+8foBxSNvcC/ZkarLSL1vPimV560px/mnZyGb+pQMzy7A74i6uQajCSuOnoX503dg7vhpuPeve9DYQislEt4napbpniHbokdFlM6MBmsz+0D44/XH9rlckGvErZcvRgv5QTCRgsOhX+KV2bRKurdWlJqhOLKyuGppAfmpKIuY1OdpQZeriUxqx+GZ517Dex81KqHmXOQUsbzETN54xyuWGFwIj1H+81a14gODxyl2mxFfumguegzj0dn0ccT78MXf3DwPn7t+IxokCsCQrEZzglGvkHaTN5mf33MnXnj+Wfph9mPOnLlY99xL+MejjyhK55rT1mLBwkVYtng+mUC5cPMtt+H7N9yE//valaP5ezPq2n7C8qKo2uwnpwGejloYjBPIVO59PPbsPnhJKWXvuryadNbJY2CjPaksTS1uilO6S9kjYyTHDxecNg5jy0hZJZPfHv1YuNr2RnVvTjyxwgK1CimHgGCX8Pz97y98raioWJms4b+V/iKWA/2JDN9nO4VSiEYZZd8jjo4ucqDVAxvtA0tU5I/zVlaglcrdflBCMyTy6eeT6f4xZG539WWTlGLZzK6jdScsubSq4dlJSmkUvMnxSI9hClztlfDSQHT5ArvyeuKlaoqBXInaRnciq07WITrq9w5vV+hdeL7djg6nE273wHsO1d/0LkeOYyfQHZwFjb0IVTnZvDdRMm1MDta9W03KEXVkIoMSKMw34DtXTh30eu8LnY5PkZk/ExUTZuOE5Q0wkVk0m/b/7qEd5ByxifaABhwfrfsP9RH1ncrYhK23ejLM6DFOg8uxJ7AftXehYY55T/v1X5iM23+3A220Chut8MIQj0/CPXvpT6KlmbrpR71C2t7ehmefeTr0hHz0pXe2t8PhCOzBO3XNWqx7+klFGeVEjz3yMJ565gUljlu4AXqoIDkYMQSys7Q4bln05k2sSGq00zF24jz6gchCh8urrJTaaJ8fzzIGJZ9mG6+6aIpiAsMKqyLKAHIy3J11NIsZvXndicsL8d6WltDqa/Be4d5v+tGtyumbfviDPpdPW3sGfvzTO9DS0oLcXBu+ff038NKLLyhpxHKgD6ph/8B7Rq89e7rq+374aRP+8sJ2xemI5pB3kCvXzsDk8oA557/e2IvnN+zvU96scXn4xjlz+pwb7MOXT52E2x75GM208n+kxWyx0Ky/UVGKsnPzkGW1wmg0kyJOTsWc7crL0Up/G1TRzo52mig68nXuz4xNbW+j2MJTJ1j7XGLTOEUptZGJNm0HyPCqsNQhszpeyXC3H6BJsso+5Z11UikNRAtx7e2bsecge8TsczmmD0uWLsNvf3c/Fi2Y3Sd/+Zgx+OOf/4oc2h5jybLgqSefwM03/iA0ERapv+lTkHyImwA7QEs3Ye/z7IjJTfugRcIT4JjT31WpjAZLcDZ9Qt75p0CnpxVVL+1R73GQGS5gowlPFgf16e9tacSXL5iiWHX16EuRqa9AR8t2Gpuo33+6eE4eZlEkgLc/GNy8N1in3u+WrCw8+/x6fOu6b2DjuxtCl6Q/CaEYMQejXiENPslx48bjoosvwaLFS/Ct678Z2kdaXFKKl9e/FEwGdi5hMBhgy8tDU2MjKRyJmwEM3UQOUooA75UoyI/NQyB32hbap6E1z0KWlgb83QNNjlg5zSOlNCQ0gISuggaP1fA4Dyqrl6FrKg/mTLPBYjHA5R44wuz2U1ianm6ccOJJpHDeicLCIjz4lz/1KZl/BO68+xe46PzP4sMPN2HxkqX4y4MPKYNMthQQy4E+uBL2IVOro3BBvWYrwpRsov1B56woJzM49d03m+hdf/58lFOQeZZ/vbEbj5MS+r0LFyifeYX8mDmluPiEKcpn/i/g5TlyXUKJ6eCrp0/Fvet20T6vgSvpvdMl+phraCIllLdfzJ63GDNmzyfLhF5/TxFu2NzYgE0b/4ed27egy+OBm15HUjIyejBxjAn33Tp/0Gr4PM1ob9wES85EaMxkueGjCSs/TaD2DgmTSe0nZ2g9GlJGezLQ2bINPk9r2L4km5yf/PEni3Drvdvx9qZWeH0D+4xBK0MXWNHvoZder8eL61/FWPot5a0t/eXGm27Bf199BT/58a3UN1mUQeYJJ56MF194jhTUyP1N/7LkszoCmZkUa5Je/SWXfhvoL7z/6ZT+bCRlVK+jFbzuge1J6YoPW+V6aAIrC3On50Z9x07HLuipL3n7IxP2HvRg8pQZmEbhW5Dpw/5aP7Kyi7Flfz6ef1+PDprYmjNhGxbMMIftTyLd/HtXTcOl33ofbR2D/0bw2ITHKCy33vYTnH3Oecii/qG/SH/Sn0j6f1Y/okn/tkZsgTU7G7z0z8rmxIkTQ2lz6Lyn1yCFnUuw8CwvK6S2ssmhtIk+8He5Ycjw0I+9F36fD0aKG2aiFTQeLnAIEY/XT17SyKxTo4enhzyz6gIzWomuRzLL48EMNQ7UNHpjUw6K4EnPQKsJfDWZPbedB+rd9APaTYP1TM3wzu5m+uqgiYOt27kfelMRjNaZ1EgnORHgASSZ25EjgZBwLC9yw96jKQo837Z9iiv1WO9bWmJAti0fxkxb6BbBA0cdmQ+7O5SJFp5sueHGH9H3qO+P/OrVx+PgwQOKMsr5eGayvr4Ox6xcpaySiuVAkGZi37MLKqCl1b3BpJti3JaZnJgzOToT8sljA6ZXwXL1BiOKaN5Dow/0Gfw901PfwvsMY5WCPAOWzRqDDfu76e9l8DbEWn7/fH6vB5qeLsyZvxjLV53Q/7KqzwWlY3DSmfw6Dy1NDfjvf15EdTWtOlL9MzKGd8De4/Ng5lgvbvvGVBV170Zn2y76ruRQVfOhNRVTH8nPLjCB0EOB7zm0g5esK7zuRqW8ofqSm785F3/850G8+I4Lftq3rlY6W8lxjaOBrD+6sHrVcsxfsBD3//EvfbKzCe/xJ5yIE48/VjnfQXFVn1n3tDKxxQrpUP1Nn8Lkg2oCppwCmLLzB6S32Vyhv/0BF1P4hNmaCz2N00QGEtD1tOH6L4+Peazi97Zi/X+2wO2zoKWkEKuOnkae/s2oI6uKpk4frZp2YWZFKz7aVodv3Lodv//xUZg1JTrlN4diKa88egze+IjGcTSmCyddnW1oazioXPrhDd8Dv97ZSJ7Yeon0J71gjKBDUUgPPcwtH23Gdd+8WjHv2vDuJrz55hvY9MH7ZLrrUGZ+g8/ceGjAFjTpbdyv3tlMsIxI72xOZyY7/rJ8Ew3u7JhSbidFNPLAiF2hf7S3hRyL1KCFzCucbm9CTK8i1TPeazybzoPi8WQqMm/RUSgtryAz6L5KUf97NNOA8eMPN2L71i3kcbKdzKgHekPunycRnyfQfkwfTQ7EI76u/TRoO0CzkIUw0EujG0NjR1oLy9DSsyLFlGYFvbSC0eX6NKLHumjq4GlvRFOrCpO+MIUWFxejuqqyz5WqqiqwxQDLUJYDfTLKB9UE2hoORFwhNeszcNEFM8hlf2wreVv2NuK9HQ1oo3i4Fx43OVQOK3db6dofn3Yhm8yBF08tJKcnfc1F1TTipNk5NMu+BW2e6FbZ1JTdOw2b5U6fORcnnHqmcpon7+KVbDLtPf0z58DR0ox1/36EJmBqh9Wcd+p4E370tXngZ6FG2p1eMqdrRr6thvZ+9e07eZ9wEzssovfCPCNN4qlb6b78M4U00boLL71ZRQNQdXmUScUhKmy3FyiTp737lCrqXxYvXarkHKq/GaJ4uTwIAbezhX5PBlrlOLQGdHsHKqqDFJMyp90dbfQ72pEy9Umlikyu0KG0MJMm8GPfgvC9qwKTYd/72Qe461ef4htfmIGtH+5Gcw3tO5+9iJqrxYwJZdj8SR1efmM/pk8wR43g82cU4H/vbUFrc/jfiODqaKSCpT+JRCd9r4lC2u/Z8f7RBjLjKi8vVxRS9qbLtupB4WNeteN9dSy20sSskGZ4nbAZ/ThlQREpodENBNkB7Mq5WfQK1PPdnc1Yv6kOngwLMnWxr3gE25yodx64aOFDaVk5Vhx7IuwF0a3yFJaMwXH8OvVsuEkZ3fi/N/Dxlk3kJIhWeuJYwRyqfYVF7oStPnfTLKTr0P7kwe6bqJVuvTkLNvPAQUd7UyWZ77kGu71yns0f+zsd4e89WwywDGU5oCSS/6ImEGmFlM0ip9u7lPBTURd8KEObm5xXQQeXj/bKd2Wg5NAK6VRaQc220t5LWik/WO/EHY9vxdVnzcb0sQNX2Ie699qjJ+KFT9xJ6XtYWcuiCbuzz78U2bSvORmSV1SKy75yHbZt+RCv0YopdDToYrv6JIoJDbjv9nmq7sCK6Be++zaq6zphJ2WzqdWDy86aiC9eEPgtev3dOvzolx8pTqu0WnJYRqXe/q0FmD9DHa/vfGUWmjt2YEc1K7JDDxGCK6SRKp99qN/obW3E/QtbGrEM1d9EKluuDU7AYM6GwTJwFasg3z/oCtXgpR35K7m5OWRhFN346MjXOvk18HtdOHcNTXQnyHpsXEUu9pHHfy6vgvwMvPy/hj5la2h10+vX9DmntpX5eToKsWiBVxf+OfIEirO5JmJx0p9ExJO2F4f+tUnbpqmr+GzyqmsxW7Bhw/9opaoHxx1/AspIYeJ9cyxsTnT1NdfiD/f9Vhmgn3/BhXTuedo3E7CB72iJ/IczVC00ZISal6XBRceORWleQHnsVkxXh8o5+PVF5AiDXx/uacHT71SBwkbRgCryKuvgpSXmio68pI2pGIczzrmYnI0E9t3G0049mYAtX3mc8nrj1Rex+YMNtGJKqyRJGDj2FBrJ8QZDTDNhr5xtA7+ffu/QM6hsAWCgFezeYqR9eWwxwDKU5UDvfHKsnkBrze5BE+fSyuUpq3l1NPJkwqAF0IXl023Ki1dJf/fEB7jzymVK8pljzOBX4EMeMsk867X392JKSd/vQCBB5P8XjTfihXd2o7Fd3Upf5NIOX9XS3/z0mfOw9uwLlZNDTaoczhnb0eQpUzGGJiAf/MMvaU8kmdknSTisy09+OFe1FQZvbbjisxU47igy0yWLmm2ftuKSa9/EmlUFKKS97lZjN35z01xMGheYPPr1g9twzx8+wAN3LFfdgtuvHovzr9mQsDANbW0Bj8BsGRNUSgP9SatSp6H6G9UVl4R9CLApNb/6i89eRCvx8VsV9C832Z89HQ60NNcm+zZpV35uto5iFE+AT6V1Re8GsjXFEy8ewOnHl5M1oAaNzW688Oo+nLOmQilvwfQs3Fbdijc3VGLZggLUkLfdN945iNuunx/T/fjex8wz4Y//2NW7GlEdS38SFa60STzqFVKzyYxf//Y+WnWwoK3Noaw+sDevgwcOKA/x2WfWYeWq1Xj3/c3kfdeJdjIVvfyyi0MPuCuOQM255BJ97ZIyLJgUmLnu6fGHyk3Ewdzx2RRvLhvPbKD4UTsayZS3157FRNxARRnsLCWHPF2e97kvIv/QiqgaEy8VRYeS8P6xo445Do8//Cfs3/spdZKJVR5NpJj1hAl5EqpAih7kWjNRU9ceU+1qampQRlYCvYWtA4Lxd4eyHOidT44TQyDLpCNz/r6mmbGWXGQzweH0wEcxKLVhzDlzyQlSfWvsiu+k0izqcxKnkLKJ7pKjVyt/57G2OZZ8Rvp9uPKa7+GRB+/DgX27ydlGYvto3qJx/tpylBapt2TJIg+pJywvCTWHy8gya8nUOvBzPpscmvUWvl5aqL78YN4bvz4d37vzYzhp/1i80khWRxwGpqx8DPbs/lQpjvuT2tqAcjFUfxPv/SW/EBjJBPIOhZCLtY1PvHQAd97/iTKhxab+px5bhvNPG6cUl03ejW+8Zg5u/MWHYMW3ssaFK86bhBWLorNw6123tauLKRTeQbR3xNa3SH/Sm+bIOT6yy2YpwJFXRpcsnItVxyzD+eechQVzZ+LJJ/4VqpmPHOrw3tKjly3C2Z9Zi5NPOJb21lWFrsd6UEChP7712ekhZTTWctTkW7u0FJeeMB5WGtAOp2g0GkybMQdf+eYPQsposu7P8evO+9yXsPK4U2A0RT/4Sla90rXc1157BRUVYzFvfsALK4dy4H0bb77xutIkthw488yzKJxGYAWtv+VAurY7let91PTYnXls3N5AIVkCCqKfjDte21yN8SXZIWX07Y9ryUlawOrDQSYVb2+tw4yKvopNNGyOm1dMZSfm54UdzS0/9qRhV0Z7t/fCy67C2PGTep9KyHF+nh7nnNJ34kdtwZU1HfjVX7bhZ/d9jB9ePZf+FvvOL7/5Xh1upkHk9j1t+MrFgb1hasvmdDMpRMMs9rSZAGFl9JX/rMcFF1yklMZedteefiaef+5Z5fNQ/U0CqiBFCIERS2DZ/LyY28ZWFn//+TF45aGT8JsfLcF//n4ibvj6HDLHPdx/r1xSjOcfOB4/v2ExXn3kJHzx/MD2gFhvmm3VKZNoseaX/iRWcqmdr+8vWGrXNWm1Y1PdxoaBZi29b8h7S/kVr/Bs9eQyKzhu33DKpFIrvnveDNz9723DEiuQnT8tXLoCK48/dTibiaXLV6O4uBxP//shel4BM7FhrUAa3WzNaaeDY5BarYFBJ3vOvZE82rFJOgeu/863vomHHv4HGhrqFQ/U1197TSge71CWA2mEIS2qaiFlIx6FtKqpA39+YRssRh3tufajMNeEL6yZEWo7K6APvrQDNqsB7eTwaPG0Qhy3IDZFiQstpAk3C3ntdXQO7t4/dPMIB5k0qcVOzxYtPSZCqr6XeBKxzdFCJucmJZxI36uBT7zlgiexopELLr0Sf/j1z9DUUBdNtkHTGih8zzc+H/vvAD+nZodHmUjYT/u9+ktDk5vC2PjR6uhCA5nhlZeo95wbLIudnFz6rffIedLQVic8cfD6WxuULRk2mw0b3vsQ/6WJrW9ff61S3G233IwHHvy7oohas60U/3sd1r/0gnJtqP4mWB95FwJCYCCBOVMCe7EHXlF/hsPbmU0Dw6sES2AFtaw4+j4kmL//exZbdEQeduPun/8KK45ZiYKCQvz+/gfIyqILy2lxiPt46U/6E03/zxn0wxHe1VX6ty3lWsDmq3Mn5OLS48cf0br95LGtaHAkb/8IxwBcdfwaRSE9Ug2tq63CP//+R7STGXa8cuxSO278v8OD93jLG678X7t5E+0vi28SRUt7f0tKSxWrAH8Yc8Us8kyaZcki07uBe1WHq52j4T55ZDZ1w4Wz4moqm+e20CqpnmIs5dB+1P7i8vhIgfTClmVQAtD3vx7t5/ue3YWdVfF9/8aNn4wLL/+K6ls/9fhDeO+dN2Alp1yuDifKK8bj4su/2sdqgkN33XvXrTjnosujXvXkv4Hf3XMr2hMw2VVWZMTf7l6ium2DJewgk9rTrngZv/7RUsyeOnBV++W3avDzP32CZ/98wmBFRDx/y6+34rUNgdAxEROqvFhcXKJsfWEltL8M1d/0Ty+fYyOwek4RTl9WFlvmI5jrzse3oaY59q0ER7DqSbs1b7l49JdLkEchVdJJbv7VVrz+bvz9ivQn6fTUI9c1uiniyGXJ1SEIVBSYo1JGfRSgvKHVraxYhCua9qIrA0x+j0a+fe4M5NA+pGQIm+nOXbA0KmWUZ7vYaUi4AQrXkWfFBrs2WBuKisvIgdLnaCB6yFHLYAnlfEQC/Gx4P3U4ZZQzstWAKKMRESbkop1WHOMVHrgU5BrDKqNctsmgRTHtLTUMEWZKbT3K8uP728vJsUWljHK9Jkyciu/fcje+/cOf4vu33kMTUm14f8NboSo//a+H8dObrieLmNhWObl/W/OZ88k81hQqM5YDnpw8/7QxsWQdkMdC+0fz6LnW1ocfqI8ttdAKKe8Xjm21+rLPjoWFVk8SJdxfDNafD9XfJKoOUo4QGCkEjORXIN2UUWbPztwSIdKfJIJiapSRuF+Z1GhPytYimxTAaz6jfh/PQy/vwhtbasCOj5wUZ3R8iRVfPWOmMmjkRrKXzL+v30kDBR06KO7o50+einmT1O0x460BXzhlIv7w/KdK2YmENnbCZBx/ypmqi4y0osFmdU/+82/45KNNtKqjJ/M7Ky754tfJSdLAVYBwN6wYN5FMhk/Bqy89M6zxBMPVRc4JgXgI2LOj93Ybz/0SkbeiMHbzLg2FGzkmBnP/2fM5Vl5AOHh6NzmKy807vL/qjM9eBH797OZvBZNF/T5h8nSUlI3B3t07o84bzJBj1WLtcYcdEwXPq3nftptCR7n8mD8zX3EqzntFaxtcmHkoSP36N6oxh7wpF9lNNJHUjX8+v18JYB/rnl5WaDnOaQf9DokIASGQWgSMZPqfjpKfZiu66cg43eosCukwPDE2j7tqTXSbwKeMycWZK8YrMffY2ciPH3ofb26pxYmLyuHu8uMvL+7AdefNxfhiK3ZVOvCrJ7bgrquOVr26UW434+SFpVj3TiXtKYtt5rw/ulxbHs6/5Mv9T0f8zCsaJ635DEzk5ZhXQn9z9+3KisbyY0/Ax5vfx4G9e/Ddm+9Q9iU988SjeP7pf+KCS9XfY+GSFVTGbmz/ZHPEeshFIZDKBNgJWrpJSb5JiYEZpQGH0sy8fDtmzzusXEbb9v++/Dx2f7odU6fNolAxc6PNPmT6s86/DPf98sfo7Bi4d3PIzJQgHq+Ybrcf379rEymlPljpt8VF+0R/ePVs8tQbWJHefbAdN/9yM8WV1Sl7SMtp39dt16mLcTpY3VcsysOT62sGuyznhYAQOEIE/NGayB2heva/bRIi9PW/hXxOMwKikA7DA5s3kWarbdGtcCyeWhCqmY6Cm3Onk58TKGPL3mbwigkroyyTKXBxDoVp2La/WfUqKedbPsOOd8j7ZlVjeFMvTqNW9OTQ4lQyZYtWIq1osEI6Z8HiUNzSRctW4Df33E634CGu+kD1nznvEtoztlecHEX7cCR9yhDIJ2dD6SYm2qvKjnvcXdFNeOkpzNIpZ5wbV3ObmuopVJMfzc2NpJS5KJzX4M46YrmRgUx2J0yaTpNm78WSHccfVRhTPs7EK6PPP3ACWsgPgIuU05JCsxKPNFjgVRdNVbxg1je6YTRkKua8wWuxvp+ykrxs/rcOniifZaz3k3xCQAioI2A2JSYUmLq7JS5VXk5yto0lroZS0nATSM+1/uGmFMf9eHX0zGWxe6t8fsMB/OJfH2HW+DzMmZCv1KSVHJPk9TPh488tFFcwWrnw2HEwUTDkeKWwqBTsgCRW4RWNP9/3iz4rGo7WFtjyAm3mcnNz85UYox0UDzYaycjIpBiGq8i8Tb7u0XCTtKlDoEeZhEmd+qipCf+5aaL0ZMvlckgQdkYUj5xNK5hf+Or1FLpASyb7z8VT1KB5jz/lDLBTr2iF93wdteCwGXG0+Tk9ry7wvlH2eslhG/oLm+fyiimnSYRMGW+lGISJ2fOViPpIGUJACAgBITCyCMgIPYnPM5NGDavnFMd1Bw5O302ro400G86muiwd5A1Tr+07CNHTAKTDHf0en9I8EyqKYt/rxfVhx0GnxbA6ynmD0n9Fg8+7XJ0Uy/DwLJqW9oSxuN2dyns0/3E4mGB4k2jySVohkAoETPr0M2bRUP+nDaMsDcVz7sJlQyVRfd1eWIzW1ibV6aNJaCbv0qYYVl7ZadS48vj63Gjqmai0ftrTLyIEhIAQEAJCIBkERCFNBtVDZfLq6MrZh01vY7nVZeSs6HraK8oz3s9t2K8UYSFvmF4K4dBbOLYgxxiMRc5dUaHsVY0lL+cpKCpBnj12EzQuI9yKhtlkIc+Qh5VsHwVXZzHS+Vhk2THH0cpCX0U+lnIkjxAQAskhYDSZyJrh2JgK53jSG95+jawoAn0Gh3zasmkjxo2L3XJjqIqwR/Fohb0dp6OYKK6siBAQAkJACAiBZBBIv2n3ZFBIUplTy7MTVnKxzUzxtwIONDh4fVO/OKK8gsrxA2MRjnHIIR+cMaywZmZqsOLYk2K5bdg8vKLRUB9wnpGdm4sW2gMWFD7mVVJLVmwK6cKlK/DWf1+mkANtwSLlXQgIgRQiwOFUOLRKrLLx7Tew7t+PIpvikLJCOn/RMhy18rhQcY8//AA+3blVufb3P/0GGoqz++0bf0Zmr7HNzc6j1dy3XntJseYI3WSIg75TiUMkTqHL7IjpYE38/gZSqElSFSEQEwGlv6DJ7e4wsbljKlAyCQEhAFFIk/Ql0NEs+KrZsa0asmXU6x9VY/nMYnLok4lWZxc27qjHsXNLldryftIHXtiOPTXtmEDhYNjLbhsFtJ8+Vl04lHBNZsdL6z+I3osim62No1AvsQivaLz7v/9i4eIVpGhqlUEir2gsI/NalplzFuCVl9Zh5eqTFUX0vQ1vYubs+XQl9hUG3pMqCqmCV/4TAilHYOz4STHXia0fvn79D+HxuBUHZtnZudDp++57POeiy2MuP1xGLt9gNEalkPJvQzoKh34REQKjiYCWJqx4jGO15oQsweyFRbR3PLDY0Ol0UkzjWjQ3NqC+thptNAnW2elUfF2MJk7SViGQCAKikB6iaLPZkEkz802Nh1fkegM2kSmZ2WxGU5O6/UgWozZqz7q978cxSB999VMlDqmjowvLphfhuAUB50hGckLEprw/f3wzcsx6tLm6cPkp01SHfOl9n+DxMTML8MbHdVF7xMyzq4t9GrxP//dIKxoc9mHX9k/wYwpkzysnPPD7/Jeu7l9EVJ9nzl2IygN7o8ojiYWAEBgeAmModnC8YiAvvfwaLuEBa2tLs+rbmdLUK2YXhR8TEQIjnQAroRaLFRU0ObZ0xbEoKIwcL3j8pKl9kDSTh++N/3sDn+74hCaqXBQDPXrKhSE7AAAt1UlEQVRnk30KlA9CYJQQGPUKaWlpKR795xOw2wvgps6juroKd991x/+3dy/wkVV1gsf/SaoqVUlVHpV30uluhOb9EJpuWhGQReTVioguCOuwOuPqjp9xx/HB+mbRGXd0ZN1Z151dRxEdQHRn5NG8BBUZVAQRERC6gaYfeXYelUqlUqnKa/7npiukU1U3t17dVcnvfj7pVO7j1L3fW3X6/u8953/k5z972PoImMrpr7/8Fbn4kkv1ztekjGpA+mfvv076+/tsPyJtjT7b5XYLTeuxz713s5XEyASjDdoU1yTCWDptPb5VNh/bKqPjU9KkGXZzbHG2WKTfp5VwtY5bl2XlecLJuY9vt9ITDdMsxjzRiE9N6VOPmDbDy/0JcPJAT9aA9LGfP6hPSSPJWfxGAIESEDD1QVv7QiuQEtgdx7vQ0NgkfT37HK9fU6ZPGgP+NX+54Pgcs2L5CZjrjVp/nZz/1u1W66xcjyDY1CoXbb/S+tn5wrPyyE92aGK1UZr35grKdmtGYM3/DzOjyYBuvOFz8tOHH7JO+vv/9APy6c9+fjEgvfSy7XLG5jNl25bTrbtdN9z4JV3+BfmLD3/Q9kNydEf+496ZJ6FeT+bAVvMcSUuB0vqbgwnUuGREh5RxOrndHjl604lOV8+4Xn1dnWzc0C31Ab8kNHHR9PSs1adrVvtnuFxqoIFyNDallfq4RCayz7C79I09nmrtN5Zb8qel5fAaAQQKK2Dqkzod2qlQU02NT2pr9Gmp+c6bylKnmZkZHbszLhPRSUkkFpKk5ft+S4emyrcstkcAgcMvYG52b33jubLlDedlfHMzvJJfh6Sq9ri1K5W5hpjX+mRWx+ZNWNclc2myUB93wilifp7XMdUfefheGQ+PZSyfBQisdYE1H5AeODAoDz/0k8XPgXn9+Ru+KC0trTI0dEAuuXS73HP3nVYwala64/bb5K4dD1gBU7oKKFnQ+pbcEu8ktz8Sv1vrvbJncCFxkpP3NxeQ9Q35PbVsbWnS8e38Mh7Vp9ODI5pVN7VZmHlyUuOrlpamoDTUB2TgwIgGra9l33Wyr0vXqcphKIql2/MaAQQKL+DWwNGrzfLzneoCtdLU2CAV+j2fik9bP6a/uplMYGoC1eZgg0Qnp2R4NKStLxJ5vWWgAC038toBNkYAgZwEzFPRru6NcvWffMjKY5GuEJd25WpqapBGvfaITSXEjGgwM7NwnWKSLJo6q7O9RcLjEzI0Ekp7bWK6CpmfH932bdnz8k7rxli692IeAmtZYM0HpMtP/rnnvVn6enu1r+hCX9L2js5DAtaenh7tn1QtjcFgxv6mpsxgGQ4i3lxfvZzD9u98smGaILO7q13vMYr0D4VkNk0gmnxzczFpLh7NT71ebG5c3yU9vQPWk47kOtn8rtH+IaFRZ32BsymXdRFAIHeB+fnUm1HZlmYuDH0+r14cTsqkPglNO2kji1GZ0LqkRl63YZ30Dw7JWDj3JvwJTaLEhAAC5SVgWkudevpWufCyKzLueEAz+ne0NcuEXnv0DYb0hvnCWPDLNwiFKyVQ65OjN3brDfPhjPXJu6/5U6vL0JO/flTHUydj9XJH/l7bAgSkS87/pmOPles/9Rm5/hMfk+TTT9OcNB5/7cLGZHA0U31dvRWQth516pISXntZX1cjrjIbzL5Zn0AG1/n1TqHDpxSJiLirMzcpfk0j9VVXR6uYQHMsPKFPMlziOrSLbOoGB+dEp7SZnQ41s3HjetnbM5D2bmTGjQ8uaGjukGnXQpa8ldY1y6trojkfp5Pyi7WOzx+U1qOOSik+1P+KTE85fxKeUgAziibQ2LVJM8Omfqfc1RVan9QU7X2LUbBLZiTQ1CnVbfWOinfLdF7fs672Zh1nuFKGQgvBpUtbcNhNUR3mKjEzIW1tbeLReiyUY1AabOmUpnXHSZXb2Q09byCc13HaHVMxl1XX1Gt9ktrHNxoalOjYYDHfmrJzFPAHO6WmPjXxoKdmsuzqE0Pgq2uS1vpgjhqvbVY5F5fNZ26VzVvf+NrMZa/qteVWiz4ZHdH6xLS0MNcdLv3JNE3otUlidlLrk1ZNwFgjo9rFKN10/sXvkNauDfLYo4/IfJXDa610BR2cV+MZK8v6xOPza32Sev0cnxyX8OAemyNm0WoVICA9eGbb2trl5ltulf/zv78h9+64e/F8h8Nh8SwZOsBkezVT+GBfgKG9zy+uu/SFW14vMwXqo7S03GK+ds3HJNRnMtA6G5YgoKnPZxLZPx1oaWqU+dlpGT544ZjtMY2PT8v83Iy0Butk73775FLpyp7RYCzTeUu3frw1KNOaVKncpqnomB5nT8puF+JJVEqhzCiIwJjeLEj3/Zs56Wj9rpVXdT2TmJWJ0QEJx1I/g+mwGrT5fy71iSmrrbXJShoyMpZdH63ZmWkZGExIW3O9xCajVt/SdPtmN286rsnu+l7SVZzVm82u2rKsTxJ6oTi0d08qxcHm0KkLmHOkBaKhgbQ3CxJ1LfpdK7//02KRUb3h1J8Xq1v7gL75gsvktNefkbG+qdWnnU0NtTKo3YhMoseYJrQ0Wf6rqlLr4Lm5WU14qTetNTfFrF4fDug1UasGsvHYpIQjE2n39bjjTpD5mYTcf/eP9Elp9tdQSwt1t1WXZ31iXYe9vPRQDr5e6F6RZgGzVrlA6rdrlR9wusPrXr9ebr39R/JP379F/uGb3zhkFZNNd1139+I889o8MQ2FQta8ea2M0k/l96Xy6GPK+TQd89Mfn2hGuoD1lDPT8nTzTdbiJu2/1TMwnPW2S8sbj0yKr6len1TrkAtZPtnwaJPrzOdt6bskX5ffuTR7bgLP7I4zebz8PlICmb5/C5/AMvscaqCSzWfQtJhI9vXMxt/0CfXrkFwDw2M5bT+tiY5Gx/RJaUtQk5Pk1nIg03lLexxlGsDp2aE+SXtCS3emdfMxXbVhfQbTLSjdY7H2zNQRGa+5Vt5302f01NO2yOazzratK0y+itHQhOzc+Ud56je/1NYPLr3hNSfNra2yddt5VnBq3u2pJ34pr770onhrasU03Q/qaA1nn3ehjIxVSavWJyYgzVSnHXfiqRIaGZJHNev/rNZBOU8F6OqQ83vns2Ge5zKft2bb0hRw2FCyNHe+EHt19DGb5Ef/fJd88xt/nxKMmvIffOA+ufzyKxaTbVx19Xt03v2LTXoLsQ9rqYxgQ51ENMOlXZ9Rpx4Tk3FNcuS86a3TclkPAQTKR6BZExiZpGjJbha57LnpbzqtyUqCjc6aF+fyHmyDAAJHVmDdhqNs+4yavWuoC1h1icnsX6OB5oWXvkMuv/Jaefs732MFji/v+uPiQbS2dcjl7/4Psv2Kq63fU5MxefXlXdrEN6F92BPWzffFldO82HbOBXLMsTpSgebUYEJgrQus+YD0zC1bpEMTF/3tV2/SPomDiz8f/+R/tT4b9+64R37/+6fliaeekV89/pRse8PZ8uW/uXGtf25yPv6AJiWa1ECyEJP5D8OtT1w92gSHCQEE1p6A+e77NAP3hAak+U4TUU2api0umBBAYPUJ1NU1yFXvtR+uzxx1vWbTjR68RmnRgDOg+ULMVKXXGu3t62Swv9f62/zTveF12ud/oe+4SfI4L3NSW7tQh0xqIiQzgsBK0zuv/o/6nvmNVrDSe7AcgXIQWPNNds0wLuYn02TGrfvYRz8i/kBAx6Dyy8BAfv0XMr3PWplvmsxMFbBvrbkT6dO+HYUaU3CtnAeOE4HVIFCj3/2M2XSzPMCY1iXN2i+dCQEEVpeASXa27Zx/p+Oar3zJ6/N6ZGg0fUKigf4eCTa1pOC8+Nwz2t+0Tzo6u6Wze7213FznmPd1MpmnsD/+4ffya7rr5I1YB4ESFnD2bSnhAzhcuzYRiRCMFgDbDCRdyMk0/fVo/w4mBBBYewLmCWlyTMBCHH0+4xsX4v0pAwEECi/g1wSMm896k6OCExnGON/1wnMS1qRpJ5x8Wko5kYlx7Ss6JxMTEc38/9q4xolpzc7rYNp0/MkSDKYGug42ZRUEVo0AAemqOZXlcSCeAg+FU1FZoU9IF5rMlIcAe4kAAoUSMM11MyUNyeU9TH3ChAACq0fAPBU9/8LLHB9QVZqhXXr375Hnn31azr3gIk1olDos15Zt58ib33KZVOq2f/zD7xffy4y37nS6+O3v0jHu8x8Gxun7sR4CpSZAQFpqZ2SV708ikUc2uTQ283PzEtOEJEwIILD2BEyTfc0nXbADn5stXFkF2ykKQgCBnAVq/XVy0mmbHW+/vBXX/r275beP/1IDzkukMZg6puvSgk1/0+jka0O9zGYxasG69UeJ72D/06Vl8hqBtSJAQLpWznSJHGehm9e6dKgap81iSoSgrHbD9Pk1Sb/MbyYESk1gWm9wmWQihZpcrsKVVah9Wm3lNDU3L2atX23HxvGUnsCGo47Jaqeq9JoiOb3y0gvyzO+ekPPfelmaYHRezHIzHIyZpnTcURO8trS0JzcXd5Z100mnnLG4LS+cCVCfOHMqh7XofFcOZ2kV7aPpo+WtdmtadGd9K1Y69GrtQ8YT0pWU0i+//lOfkT//8EcOWfiLX/xc/uTaq615l21/u/zNf/+KNeZuQ0OjfPLjfyk/efCBQ9bnDwSOpEBMB5Vv1KGkCjEt3CzjCWmuliefcqrce/9DKZufePzREp2YsMbz/sfvfE8zGdfrGNa1ctedP5YbPv8ZHQKssHkFUnaAGWtWoKrKJVvfeG5Wx28a2Xq0mW9CE1r27Nujn92I3H/3jw4p4+K3XSn1+n/iK7telN898Svx6fAwJiDd8LpNsun4k6x1KzWhUbYjAGx5wzny5OOPWmOaHvKGa/SPR3/5G9mwYeMhR//JT3zUSkS6rrtbqE8OoSn7PwhIy/4UltcBmDFITZ/PQgSktT7NrqsBLhl2c/8M3PGDW+Uzn7p+sYBkf7xav1+++rWvyzVXXWkNe7Rl61ny3VtulTPPOEVisfyH2Fh8Q14gkIeAuRllQkhvtcca+y+PoqRG+6OageyZchcYHw/LGactXJAnS5k+mNjl81+4UX7x85/psGlf1KExaq3g9S0XXmSN9Z1cl98IFFLADMHS0taZVZGmDqipqZbE+Iycd8Elttu+9bIrNKnatAajMR1+qsYaGia5QW2NV8Ynosk/Hf02ga2nWt87PuVo/bWw0nXvvUZ++diji4eavIFFfbJIsmpevNY2YdUcEgdSygKjobAEar1ZN2VJd0x+LWcsnD49e7r1mZcqYLIUmwvG5I8Z5shM559/gezfv88KRs3fTz7xGzlwYFDOOfc88ycTAiUjMBoas+qUfHbIpU3r6gM1EhqjPsnH0WybrEuSv808t9stF7zlQrnjjtvNnxKNRmXHPXfLpZdtt/7mHwSKIeCvy771xGhoXOsTn45x7qz5vsvl1mEB6w4JRis1mVGd36eti8JZH1ZH57qst1nNG5iAP1mXmN9z2i+X+mR1nnGekOZ5XqtcngwllF+sXyEVUlnl1rGznGWGq9B+hU7XTSKZymR4NCzBBr8cyDDWV3Jdu9/m4tHcKRuPRLPeBzM2WObzlvquZv1sjzO1lMM/p6KiKu1xzs3OWCnqzR6dddY2+bub/qeMDA/LPffcJc89+wdrR9vb26Wvt+eQne7t7ZV27U/KhEApCYyFI9oMNGBdAI5P5Pb0vrHeL8MjY3rhU9ika6XkdDj2xTwlMvXJpAacTz31pBV0mnq6ublFx4B0H1Kn9Gr9suWssw7HbvEea1Sgpa0j6yM3N2VHNJBsrDPXKNkHlOYNG/X6JqLN1HPpTtTa3iUvvfh81vu9Wjf4wAf/s7zt7e+QV1/dLT/8wW0yOjpKfbJKTzYBaZ4ntrFrU9oSqjzlNxRJlccrda3d4vKkpjVPd5AerwY8uk2209jElPYh0qY0zUEZGYtku7n49e6lX5vD7OsdzOn93b5ayXTe0u2M2xuTKnf5nc/qmjo9zq6UQwoP7pHpqaj89sknZEzHVZvSfngnnniS/Piue+V9110rj/3ro1Jf32DNX7pxPB7XC//s7zgvLYPX9gJ1LevTftZc+vmrcmf/XbN/t+IurZqblZr6FqlsqHX0Rl7938iVQ31iCh8ORWRdZ5tU6A21iWh2QWmwIaCJeuclFInl9P5mn+taN6S9+ZPuwD01k2LOZ7lNHq9fGjsbU3Z7KjIisciojI4Myzf+19f194gmdmmVz37+v8mWrdvks5++XuoO1humDklOpt4x/UmZiifgq2uS6ppUY1f1vH5ey/AzqP+nNXicBZlz+mStvWtjTt+1sfFJbbZrrlEaZXQsu2b8JpCtqqqQ/sHRnN67Q/c50NSV9v+BdJ+U6lpTn2R6MJJui9KY56r2SUP761J2ZjoelWho0Jp/263f1+bQU/pE1CUXXXypXHPte+Wyiy+kPklRWx0zCEjzPI/De9PfyZpNlF+2tJlETMb6dzsWcXetl5l4dhd/ycL37t1vXUAGAz4ZG5+Q6RlniS3Mkwyvu1L27tsvcWvIh2SJzn8nJiOS6bylKyXR3iwzifLr0zEVDelx7kt3SNa8nz78kJif5DQ1FZOrrl4ISMPhsZQx0bxer4TDud0xTr4Hv+0FYuPDYloeLJ/mZteJucAqp2lOn4zFJ8clmnDWDLbSH8j5GGNqs29/r1WnuLSBx5i2nEj2h85k5tbEJY31tVZzsN7+A5lWW3H+7ExCYuGhtOct3cYzdR5t3VFe59Ich6kDo6HhlEOanU5Y8/r6+uTrN/3d4vJHH31EbvvB/7cSF42PL3wGPB6P1tsLQelCfTK2uD4vCi8wPTWpWWBTn/rPzfi16WPq/MLvQWFLnJ2ekpje0HYyzekNsYDeCMn1OHv089zZ3iKtwYCMhvUaZYXWEyZDd0NdrdY7s7K/94C+b24J0oJNTVpvhrU+cdZkeMYteo6dXT85cTtc65j/z2J6M2v5tPTz+g/f/Mbi4pu/84/yr796Qs5+0znyzO+ftuZTnyzyrIoXBKRlcBorNVNcjd7pdFfXWHfcTEU7k4iLuZM0qXemzd39cpx6+galpalROlobtfN/TCYn41Zmu+XHUqUX6CbhiHkyGtO7ZXv398lMGVbAy4+r1P4eHBhczGjX398vXesO7ctistr19/eV2m6vqv2Zjk+mPR7T1N1c6JTTNK/11Oy0fqdjzoKvWU12Zuq2XCeTbOuVV/dJW0tQOrVOiWidEtObVvHEa+9v6hKTmdvUJybb9/DomJh+7flM83puMp23dOXOzQTEbFNuk7mwT8ScPy0aHBiw+npVa5KW4eEhK/DvWtctu1952Tp0U58M6DpMxRMwN5nNz/Jpbtarn8Hcv2vLyztcf5ubH3GHLSBMV5u6gN7kyuNaoad3QLsX1VnXKaYumZqatuqT5PVHsj7xeT1ap3i1PgnJiNYp+UwuvVFWMT+jx+nsuzYb8OZVb+azr/lsawLPeNR53WuaUpvWFwE9p9Qn+ciX7rapt+JLd1+LvmdWRZCh/6TP55MmvXN1OCdvbYO0bThJNpx0tgQaWzUVuZ6u6ahUzSV0HLdqaWxdr8veJM3rjtXmN3qbrAynoZGQ7N7Ta/2n0dJUpxeSQWkJ1kl7c4M0NQas353tQU0wUKlNYIakb+AAwWiBzvO73n2VNkuqsUprbmmRK9/1bqu5rpnxyCM/k/XrN8jrT1940r9V+5qafmCmOS9T+QuY5tz1Ld3S1HmMNGm3A/Pa52/UvtLl/V+CCdz7B4cXblrpHXjzBHRDV6t0tTVJd0ezdGldUqsZNE1SnZd278s7GC3/T0LhjuC888636gxTohkb9gP/6UPy9O+esqxNMpKf/fQhufrqa6w3rNUsu9vfdrncf9+9hdsBSkJgiYD5DCafxi+ZnfXLUU109tLuvTKhGXO92q+graXBqlNMvWJuptf4PNpNwNQne/MORs3OzehNvEqHT0ezPpgy2sBcf5x73psX83eYhIrHbDpWfvP4r62bW9QnZXQyHe4qT0gPQpk+jWYMtU987C+tjKJJPxOk/vWXvyIXX3KpPsGbtO7Q/Nn7ryv6k6KgXigGGttlcnSfDL/8csanI6YfiLehU7pPPFuGe3bKxGh/ctfL5ndCL1YGDgzrT9ns8qrY0Svf9e/lK1+9ST/L/WIGl777rn+R7978bevYzLiB13/io3LrbT+UoaED1vKP/9V/YciXMj/zjW3aP6m5S+a1yWhCm4XNzyasp3UmGU2gsU1c2gpjfKRXxoe1FUKaJyvlcvhT5mlGfFQODGsLEqbDInD0McfIt75zizbrH9Mnox7p7dkvf/HhDy2+95duvEFuvuWfrEA0oEmo7t1xjzz0E8Y1XgQqwxceb63UNa+TWm3BNactteZmTDDl0uuVOXHpsml9oj6u1ySRkcPfsqaiskKqvc7yYaxEbxqhmQzchyMLt+lfTkCqQ3lpF6Gv/Y+/1yGi/BLWXBc1tTV6TfJXsm/fXut0UZ+s9Kktv+UEpHrOvvilL8s79eLcr0Hp8smkpT9j85mybcvp1sX4DTd+ST792S/of7QfXL5qwf5u23iyVGllGtrz2xX7P8zqfwDR4VclMTEsjW2b9EKgWkKatIYJgZUE3qNjjAY0XX2LPh01TXGXjy969113yn337pCOzk7NjtnLAPYrgZbwcvP0s6X7eE1mNS7jPc9psJl+fLxKvcHl0xtc647boje4dslEiCaVJXxaS2rXvvPtb8n3v/dd6dBM3NHJqJW5e+kOmgvJC84/R9rbO7Q5dUTMTS+m8hVobD/KalkRC/XJWO9zMptI7W7gqQ2Kv75NGjRZ23DvLiv5VfkeMXt+OAV27dopWzefZiVIM8Fpj97gMi1gkhP1SVJi9fwmINVz+bnPfsr6efzJhY7SS0/vJZdul3vuvnPxYv2O22+Tu3Y8oHewKg/5cizdJp/X5qJRY1EZ738hq2KmpyIS3v+s1HefYvUnCA/tz2p7Vl6bApHIuJifTJPpt7F/375Mi5lfBgL+hjZpWX+8jA+8JPGIfTME84TDusEVHZXGdr3BpdnCQ4MLd6TL4FDZxSMsYJrmJp9gZNqVgYHya8WT6VjW6vy2o07V65Q5Gd39hO1N84TWI+an2t8kretPlNGB3UfkaelaPU/lftwmMZ0Z/9xuoj6x0ymvZeXdYegwWJtxF3t7ehbfqUdfmyQNjcHg4rxCvQgEOzRFu45fNfBiTkXOzU1LpP9Fq0+YaUrDhAACa1vAejK64QQZ63l+xWB0qdR0LCzjvc+LX+ukQFPn0kW8RgCBNSzQqnktKjSPhbnWcJrBNj4xIuHeZ/Um11Hi165ITAgggMByAZ6QLhdZ9rcZd3Fpx/h4fCHluBk/bWR4OO04SqaIXMb4MglGIgO79Olr7gmKTCrtyZH9GpQeKwf2/nHZ0dj/6XInshr/yqOJnspxPD2TrTjd+FeZdNzVs2U5zpfHF9DjbEk5rIlR0z9w4XOcspAZR1TA9O9MV3eYcebSzV9pZ1u6T5Do0B6Z1Yzc2dYr85oFcXLoVW3qe4pmQxyXWa1bspnMOKS+umapqHPWj8vrrijL+sTUgYHmbseJ5Ty+qbKsT9zVtVqfpI5DPDUREvPDVHoChR6H1PQXNf0yw3qDK9v6ZE4z5EYPvGJ1HTDZmrOtT4yuJ4txSLWDvLi0C0K5XaOY/TXjN7v9zY4+UKt5HFJHAKy0agQISFc4lWbcRTPWUXLyHuwkbxI3mCndOEpm/txcdhl5axtaNUiY1EQj+f/HHh3ZJ03HbNOBlT3ZDUegF6BTmujEaYf62upmx3dIjUmpTNa4gWnGv8q0f7MzNXmljs9UbrHnmyE3Yjoe4/Jp6Thfy5fx95EVMGnw040/NzdrhkTJbtxA82RzdkbH7RvLPaGIqY8mQ/ulrqVLRnoXhutwKmSGW5ieikpsOrVvWboyXJp5NdtjTFfO4Z43aw1fMOZ4HNLZRldZ1idzZrzVSOq5nNUhyJhKU6CQ45CaeqmhrVtCe5/JmGRxJQXTfDcW7te+p+u0T+lLK62esjybcUjNkCymPim3OsXs7/TUhMSmnN00Xs3jkKZ8AJixqgUISFc4vSbZixkvLTmZ1+aJaSi0EDhmGkcp2zG+auubZSo8aGWnS75XPr/j4QM6jEODjhsXcVyMGQPQZMVzOs011JfnhZV1Ael8/Ku5Wbf+p1aGY7bpBWQ86vz8Oz3vrFc8gUzjPM7NtWU9bqBfb3LFQvvyrlNiY/3SuP71Mrx/Z1YHbupAk6k3PunsyarPU56BmjnObOrZ2WkdG7Ec6xPNzJzp/7usPhisfNgECjkOaSDYLlPjwzITz+//FNOCK3jUQtI0k403mymbcUjd+iDBfM/yGYc0m30r1LrWjby41pvaKsXJtFbGIXViwTrlLUAf0hXO34MP3CeXX36FlYLarHrV1e+RBx+4Xyu67CrSFd5GvNq80mTALNRkyjJjDTIhgMDaFDD9yBPR/FtcmOyZ09rk1/RHZUIAgbUpUKvN7xPRkbwPfk6HmjJBrZf6JG9LCkBgNQnwhFTPphnr6E3nnGull/6/37pZB91NyNnbzhSTYdSMlXauDvj9xFPPyERkwkpX/77rri34Z6DK402bNj3XNzLNNT2B15oa51oO2yGAQHkKTMcKd4NrVpuQeXx+idFXsDw/DOw1AnkKmBvc0aHsmu1nestp7Rrkra3L2OUp03bMRwCB1StAQKrn9mMf/UjGM2yCUrPcHwiIXwfoLZsU09oUxuPjCWnGE8sCBFa5QCH7Ts1rv6bKKv67WOUfGQ4PgYwClS7tuqLDQhViMuOnuzyBQhRFGQggsEoEuMJweCInIhF9Qppf3wm7t5rXJsCVldqHKsvEJZnKrNCLx7jehWRCAIG1KVBRQY+MtXnmOWoECi9gxoQs2FTIsgq2UxSEAAJHUoArliOpv+S9p7WfVqXbu2ROfi9dnpqsMuzm925sjQACpSZQ6Spck/2KKg9DBZXaCWZ/EDiMAiZ5V6XWA4WYqtw+rU8K87S1EPtDGQggcOQFCEiP/Dmw9mByfFQ8tcGC7Y3b1yCTkdGClUdBCCBQXgKmyX5FRVVBdtqtZSV0CBcmBBBYmwLxyXEx9UAhJpf2RzflMSGAAAJJAQLSpMQR/j0ZHhJvfXtB9sI8HTUV/mR4uCDlUQgCCJSfwOT4iFTXtea9426vXoRWVHABmbckBSBQvgKmPinETfPKKrd4ahpkKrowlnv5irDnCCBQSAEC0kJq5lHWVDSsY9lNiK+hK49SFjb1BdfL+FBv3uVQAAIIlK9AeKhH65OOvA/AF+yS8WHqk7whKQCBMhaIjPZbN7hMc9t8Jl9Dp0yMDuj4oDP5FMO2CCCwygQISEvohI70vyKBtqPFeiKR43756juk0uOT0OCrOZbAZgggsBoEYpERSegA6zVNG3I+HK8+Ya10eSU8tD/nMtgQAQTKX8AEkGMDr0pty1E5H4zbGxBf4zq9PtmTcxlsiAACq1OAgLSEzuu09tE6sPePUtd1Yk5BqbeuXWqbN8rQ3hdK6KjYFQQQOFICw/t3aleANjE3qrKdTPO8QPtxMtyzK9tNWR8BBFahwNiBvTI3X6HXGdkHpebJaqDjBK1PdpIgbRV+NjgkBPIVICDNV7DA20+EBmS0f7c0dJ8iJsB0Opn/IGqa10v/7j9o8pEJp5uxHgIIrGKB2ZmEDLzyB/EGu6W2aaPjI/VqAFuvN8YG9zyrfb0YPsoxHCsisMoFBvc8p62w/OJv3SQVlc6SpnlqGqW++1SrpYW5xmFCAAEElgswDulykRL4OzLSJ+ZpabDzGPE2tEs8PCjxyFDKGKXmjmN1oFmfgHRaCQJ6d/5WzAUoEwIIIJAUMDeo+nY9KS3dJ0jDhjNkaqxf4uMHZH5+NrnK4u/qQIveCGvTJEZVYuoTbm4t0vACAQRUwAz/0v/K09Lcdaw0btis9UmfTEUOyFyaaw+3r95qoeHWgHREW1pENXkjEwIIIJBOgIA0nUoJzDNPJfpeekpq6lukLtghTa1Hy+zstMzrj5msMQZ1nGpTwQ+++geJxyIlsNfsAgIIlKLA7My0DGg9UVPfrPVJp/ZVP0amY+OaWORgfVLp1iEddCgGTawW1gRGPMUoxbPIPiFQOgLDvbvEOzYodc1dEtx4pjbDjWlQGreems7Pz4m7OmDVL+Mj/TK+50W9ATZXOjvPniCAQMkJEJCW3Ck5dIfMcDDmhwkBBBDIV8AMBcVwUPkqsj0CCBgBc+OcJv18FhBAoBAC9CEthCJlIIAAAggggAACCCCAAAIIZC1AQOqQzOfzSVNTk8O1WQ0BBBBAAAEEEEAAAQQQQGAlAQLSFYRcLpf87VdvkseffFp23P+Q3Ks/HR2dK2zFYgQQQAABBBBAAAEEEEAAgZUECEhXELr0su1yxuYzZduW0+UNW8+QJ5/8jXz6s19YYSsWI4AAAggggAACCCCAAAIIrCRAQLqC0CWXbpd77r5TYrGYteYdt98mF118iVRWQrcCHYsRQAABBBBAAAEEEEAAAVsBsuza8oi0a/Pchx/6yeJaPT09Ul1dLY3BoIwMD0vb0acvLlv64v891CsXndG+dFbJv/72w70SXHecpmuvcbSvs7GQ9Pf3OVq3lFZ68YXnM563dPv51Isvy/O7y2t812deCMvktE+P85iUQwr1vSQJHd6DqfQEmtYdL65qX8qOfeuhnfLn2zelzC/lGXf+ukdqdYgZb0fQ0W5WzEzKD2+7Wc45/yJH65fKSvfd/c/StP4Ecbm9jnYpOt1XdvWJObDfvRhPW29OjPZLNDTg6NhZ6fAKBJrXWUPHLX/Xx3bulFM3pY5DvHy9Uvr7iV2jUuVr0M/g8Y52a356Sn54683yrmve52j9Ullpx7/cLnUt68TfVu1olzzzQ3LjN1+VKy/ucrR+qax00y09aeuTuGZuHhvYXSq7yX4cRoGKxsZGHc2SKZPAzx55TG762ldlxz13Wat4PB55afd+Of/cN8ru3a+k/UJlKov5CJSCAAFpKZyF9PuQKSBNvzZzETjyAgSkR/4cZNqDTAFppvWZj8CRFiAgPdJn4Mi9P09IV7APh8NigtDk5PUuPL0Ih8esWYOvPJ1cxG8EEEAgL4GRnhfz2p6NEUAAgaRAZLhHzA8TAgggUOoCdIRc4QyZJqnrursX1zKv4/G4hEKhxXm8QAABBBBAAAEEEEAAAQQQyF6AgHQFswcfuE8uv/wK8XoX+gdddfV75MEH7pe5ubkVtmQxAggggAACCCCAAAIIIICAnQBNdu10dNm9O+6Rc887X5546hmZiExIZCIi77vu2hW2YjECCCCAAAIIIIAAAggggMBKAiQ1Wkno4HJ/ICD+Wr8MDPQ73ILVEEAAAQQQQAABBBBAAAEE7AQISO10WIYAAggggAACCCCAAAIIIFA0AfqQFo2WghFAAAEEEEAAAQQQQAABBOwECEjtdFiGAAIIIIAAAggggAACCCBQNAEC0qLRUjACCCCAAAIIIIAAAggggICdAAGpnQ7LEEAAAQQQQAABBBBAAAEEiiZAQFo0WgpGAAEEEEAAAQQQQAABBBCwEyAgtdNhGQIIIIAAAggggAACCCCAQNEECEiLRkvBCCCAAAIIIIAAAggggAACdgIEpHY6LEMAAQQQQAABBBBAAAEEECiaAAFp0WgpGAEEEEAAAQQQQAABBBBAwE6AgNROh2UIIIAAAggggAACCCCAAAJFEyAgLRotBSOAAAIIIIAAAggggAACCNgJEJDa6bAMAQQQQAABBBBAAAEEEECgaAIEpEWjpWAEEEAAAQQQQAABBBBAAAE7AQJSOx2WIYAAAggggAACCCCAAAIIFE2AgLRotBSMAAIIIIAAAggggAACCCBgJ0BAaqfDMgQQQAABBBBAAAEEEEAAgaIJEJAWjZaCEUAAAQQQQAABBBBAAAEE7AQISO10WIYAAggggAACCCCAAAIIIFA0AQLSotFSMAIIIIAAAggggAACCCCAgJ0AAamdDssQQAABBBBAAAEEEEAAAQSKJkBAWjRaCkYAAQQQQAABBBBAAAEEELATICC102EZAggggAACCCCAAAIIIIBA0QQISItGS8EIIIAAAggggAACCCCAAAJ2AgSkdjosQwABBBBAAAEEEEAAAQQQKJoAAWnRaCkYAQQQQAABBBBAAAEEEEDAToCA1E6HZQgggAACCCCAAAIIIIAAAkUTICAtGi0FI4AAAggggAACCCCAAAII2AkQkNrpsAwBBBBAAAEEEEAAAQQQQKBoAgSkRaOlYAQQQAABBBBAAAEEEEAAATsBAlI7HZYhgAACCCCAAAIIIIAAAggUTYCAtGi0FIwAAggggAACCCCAAAIIIGAnQEBqp8MyBBBAAAEEEEAAAQQQQACBogkQkBaNloIRQAABBBBAAAEEEEAAAQTsBAhI7XRYhgACCCCAAAIIIIAAAgggUDQBAtKi0VIwAggggAACCCCAAAIIIICAnQABqZ0OyxBAAAEEEEAAAQQQQAABBIomQEBaNFoKRgABBBBAAAEEEEAAAQQQsBMgILXTYRkCCCCAAAIIIIAAAggggEDRBAhIi0ZLwQgggAACCCCAAAIIIIAAAnYCBKR2OixDAAEEEEAAAQQQQAABBBAomgABadFoKRgBBBBAAAEEEEAAAQQQQMBOgIDUTodlCCCAAAIIIIAAAggggAACRRMgIC0aLQUjgAACCCCAAAIIIIAAAgjYCRCQ2umwDAEEEEAAAQQQQAABBBBAoGgCBKRFo6VgBBBAAAEEEEAAAQQQQAABOwECUjsdliGAAAIIIIAAAggggAACCBRNgIC0aLQUjAACCCCAAAIIIIAAAgggYCdAQGqnwzIEEEAAAQQQQAABBBBAAIGiCRCQFo2WghFAAAEEEEAAAQQQQAABBOwECEjtdFiGAAIIIIAAAggggAACCCBQNAEC0qLRUjACCCCAAAIIIIAAAggggICdAAGpnQ7LEEAAAQQQQAABBBBAAAEEiiZAQFo0WgpGAAEEEEAAAQQQQAABBBCwEyAgtdNhGQIIIIAAAggggAACCCCAQNEECEiLRkvBCCCAAAIIIIAAAggggAACdgIEpHY6LEMAAQQQQAABBBBAAAEEECiaAAFp0WgpGAEEEEAAAQQQQAABBBBAwE6AgNROh2UIIIAAAggggAACCCCAAAJFEyAgLRotBSOAAAIIIIAAAggggAACCNgJEJDa6bAMAQQQQAABBBBAAAEEEECgaAIEpEWjpWAEEEAAAQQQQAABBBBAAAE7AQJSOx2WIYAAAggggAACCCCAAAIIFE2AgLRotBSMAAIIIIAAAggggAACCCBgJ0BAaqfDMgQQQAABBBBAAAEEEEAAgaIJEJAWjZaCEUAAAQQQQAABBBBAAAEE7AQISO10WIYAAggggAACCCCAAAIIIFA0AQLSotFSMAIIIIAAAggggAACCCCAgJ0AAamdDssQQAABBBBAAAEEEEAAAQSKJkBAWjRaCkYAAQQQQAABBBBAAAEEELATICC102EZAggggAACCCCAAAIIIIBA0QQISItGS8EIIIAAAggggAACCCCAAAJ2AgSkdjosQwABBBBAAAEEEEAAAQQQKJoAAWnRaCkYAQQQQAABBBBAAAEEEEDATuDfAA2+zjMotnuSAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6QAAAJYCAYAAAB1mCsLAAAAAXNSR0IArs4c6QAAAERlWElmTU0AKgAAAAgAAYdpAAQAAAABAAAAGgAAAAAAA6ABAAMAAAABAAEAAKACAAQAAAABAAADpKADAAQAAAABAAACWAAAAAAL7lmzAABAAElEQVR4AeydB7zN9f/H32Rm/7TILKukIRIyEkoadkkhpSGUykgplURZoZKiZRYKJau9RCGUUFZGQ9lF1v/9/NzO/V+6uJd7OY7Xt4ece873fMfze33f3/d6vdPkypVrj2kRAREQAREQAREQAREQAREQAREQgSNMIO0R3p92JwIiIAIiIAIiIAIiIAIiIAIiIAKBgBxS/SKIgAiIgAiIgAiIgAiIgAiIgAgcFQJySI8Kdu1UBERABERABERABERABERABERADql+B0RABERABERABERABERABERABI4KATmkRwW7dioCIiACIiACIiACIiACIiACIiCHVL8DIiACIiACIiACIiACIiACIiACR4WAHNKjgl07FQEREAEREAEREAEREAEREAERkEOq3wEREAEREAEREAEREAEREAEREIGjQkAO6VHBrp2KgAiIgAiIgAiIgAiIgAiIgAjIIdXvgAiIgAiIgAiIgAiIgAiIgAiIwFEhIIf0qGDXTkVABERABERABERABERABERABOSQ6ndABERABERABERABERABERABETgqBCQQ3pUsGunIiACIiACIiACIiACIiACIiACckj1OyACIiACIiACIiACIiACIiACInBUCMghPSrYtVMREAEREAEREAEREAEREAEREAE5pPodEAEREAEREAEREAEREAEREAEROCoE5JAeFezaqQiIgAiIgAiIgAiIgAiIgAiIgBxS/Q6IgAiIgAiIgAiIgAiIgAiIgAgcFQJySI8Kdu1UBERABERABERABERABERABERADql+B0RABERABERABERABERABERABI4KATmkRwW7dioCIiACIiACIiACIiACIiACIiCHVL8DIiACIiACIiACIiACIiACIiACR4WAHNKjgl07FQEREAEREAEREAEREAEREAERkEOq3wEREAEREAEREAEREAEREAEREIGjQkAO6VHBrp2KgAiIgAiIgAiIgAiIgAiIgAjIIdXvgAiIgAiIgAiIgAiIgAiIgAiIwFEhIIf0qGDXTkVABERABERABERABERABERABOSQ6ndABERABERABERABERABERABETgqBCQQ3pUsGunIiACIiACIiACIiACIiACIiACckj1OyACIiACIiACIiACIiACIiACInBUCMghPSrYtVMREAEREAEREAEREAEREAEREAE5pPodEAEREAEREAEREAEREAEREAEROCoE5JAeFezaqQiIgAiIgAiIgAiIgAiIgAiIgBxS/Q6IgAiIgAiIgAiIgAiIgAiIgAgcFQJySI8Kdu1UBERABERABERABERABERABERADql+B0RABERABERABERABERABERABI4KgXRHZa8puNPqNWpatmzZwxZ3795l69ats6U//WRr167Zay+ffTnLpk6ZbI917bLX+/oh5QmkS5femt/cwn7+eaVNmfxekndQrlx5K3XuuTb+7bfs999/S/L3UmrFo73//Z3HHa1a2223t7JKFS+yrVu27G+1ZL9/qNcp2TtK4hdq1LzcsmbNZt8tmG+LFy9K4reO7GrJuRYJ70179uyx7du329atW+zbuXNt48YNR/bAtTcREAEREAEREAERiFICx7xD+kDnLlakaLG98O7evdumT5tqHe6/x9avXx8+y5Xrf/6wm2Wv9fTD4RFocmNT69T5IbuiZjVbvWpV/MYyZsxgXR55zD768P1kOaTV3SG57fY77etZM1PVIf38y6/tQz+2hzp3jD9mXhyp/e+10yT8cGLmEy137tyWJk2aJKyd9FUO9TolfQ9JXzNPnrw2+KVXLG3atPbxxx9a0ybXJ/3LR3DN5FyLxO5NHOrOnTtsYP9nrG+fp4/gkafurvb3byp196qti4AIiIAIiIAIxAKBY94h5SIs/P47q1/vGkubJq1lz5Hdypev6A7RozZi1BirdfllsXCdovIcMmTIYNmz5whORMID/Ouvv6xShYvs77//Tvj2QV8/O6Cfvf7qy/bLL2sPuu7hrJAtezY78cQT/7OJI7X//+z4KL1xqNcpNQ732rr1gsNNRp3M4sknn5KqQYnUOIfEtvn9dwusXp2rwrmRkT7p5JPt7nvutXvuvd9mzfrKPvv0k8S+dsy9t79/U8fcieiARUAEREAEREAEjjiBmOgh3bVrVyhl3Lx5U8jUjXlztI0bO8bOLnmO5S9QYL9Q7253n014d4rNmj3P5n23yKZ/8Km17/hAfAkwX3y6dz97ulffRLfR8YEHbcCzL+z12cUXV7DhI9+0ufN/sK++nmvPDXrRTjstz17rDH1lmLW4paVlzpzZWt52hw0aPCRkFFmJDFHjG260tye+F7bxyedf2YtDXrXLqtfYaxuJ/XDV1dfasBFvWMGCheyxx7vbR59+abO//T4cI45jwiUp5876+zvWa+vUs6bNbg6b7NtvYNgv+y5foaJRnkiGtI47GQkXHNj723ey8e9Mttlzvwvs772vg+U+6aSwWvkKl1j3Hk87/2zxX4vsn/MfOXqsLVi4xN6b8r5dfc218etEXiTlnF4dNtKyZslqlSpXiT9mrjFLYvvn/f/973/Wu29/o+z72wU/hOtb+sIyfBS/RNiT6SNr/MFHn4VjffnVYZY3b9749Q72Iquf+5M9e9mXM2eH73PO55cuvdfXcGxg3ej6G/Z6nx+e6tXHOnTqvNf7EYb7/r4ldp2Sex78XvV8uo/NmDXH5n+/OFyjhx5+NBwf+0vqUq9+Q/vyi889c9jXTjjhhP/87hxoO8WLl7AhL78eft85Bti9NnyUVah4yX++FmFBefbrw0eHY/74sxl2U9Pm/1k3KdfiP1/a5w2qNQjM4Pxv2rTR2wl+9OqNKWGt5GS8D3Zf6dXnmXAd9tl9+JF72rPPD94rw36w7fHFpLI60L+pw7mfJXYuek8EREAEREAERCD2CMREhjSxy7Ljn3/C2+n94X1/y+WX17Jt27bZ5Env2kZ/WCxWrLjd1fpuO+usktai+Y3ha2vXrDEcnaFDXrSFC7+P3xROFOWlQ4e8FP9eg4bXuUPQ11avXmUvD33RChQoaLWvusbKXlTOqlauEN//V/GSSp5ZzG5Nm7ewwoXPsA0b1tua1avDdnDQ2tzdzj54f1r4c/rp+eySSyrbPe3ut/enT4vfV2Iv8uXPHxytiZOm2OZNm+3rr2e6M3yaXXNtHStYqJBdU/vy+K8l5dxZeX/HOvOrGfEZUAIBW7duDdvesWNH+BtnYP36P8Jr/odz8taESVbMy6vfffcddz4+s5IlS4VzXbNmtY0aOdzy5csXjj9Dhozx32P/ZcqW9YxmllDKSyl2pUpVgpPNQ35CJkk5p40bNtpud5j/2f5P4M6ONm/eHPaX2P5z5cpl706eHpzkN0aPCk5FrSuvsjfHvm0tb2nu12h63Hf/ZT/h3cnh5y+/+MJy+u9BtctquDPwotW9tnZ4/0D/y5Qpk03wQEQh/52YNnWyrVyxIryuemm1vb6WNm2awGn+/G/3ep8fLrywrK12ngmX/V1D1tn3OkV+h5JyHlmyZnU20wwn/N13JtiqVT9b0aLFrZn/XhN8OCFd0m4vBI5wKu99vo3Nm/etLVm82HBQXxw8KOFp7Pd1ocKF7YLSF9rnn33qfcsr/HftRKtZ8wob5g4nlRNzZn8T/11YnHfe+ZYzV05/f7ZznhIYdOve01asWG6ffPxRWDep1yJ+w0l8kTFjRmt4XeOwr69mfJmkbyXlvvLrr79Y6zb32AuDngtOb2TD9Ne3vO1OG+3/vghAsCRle6yXVFYH+jd1OPczjkGLCIiACIiACIhA7BNI2hPjMcYB5+fKq662P//805YvX7bfo2/YoE68kxhZ6cGHHrHb7mgVsmJ8f9So4cFpuv6GJvZIlwcjq1nDRtd7JiedDX/91fAemSIyQ1MmT7JWd7SMf/h7/bVXbLw7Gc2atbDnnu0f//3S/gD97MD+9pqXqCLgQ9aLpWnzm0Om6OZmcQ4x7/EZGb2kLs89O8BefOF5I3PM0vnBh+32O++ySypVji8RTMq5R/aX2LHSB0fmr+Q5pezhLp3t55UrI6sn+vedrdq4o3+2NbvphtBbGlkJ5yBTpgNn0tauXWt33n5r/IM2GedpH3xsre5qu5dDmpRzatv6Dqt66SL76qsv7d572kQOY79/t/IABfu70ku/IwGJQc8NDBnshz0LjAOzc+fO+O+/MXqk9evTyyKOORlfem0JTqxcuSJ+vcRe3NrydjuzSFF3dJsFAa7IOjzUExQ5nCWxa3ig7SXlPNq0vSecV+Pr6tsXn38Wv7nkHi/OJ8GF9ya9E7YxdswbIctcosRZ9sMPC+O3u78XXIOypUvF/76z3oBn+nimdI7Vq9dgL4eUzwigNGt6gy2YP48fg0P9+Yyvra6vG3FIU+paEFygYoKF+1KRokXDv+ea1avYP/8GzcKH+/lfUu8rb3qwBIe0Xv0G1uupHvFbq+33QZzgUaNGhPeSur3IBpLC6kD/plLifhY5Fv0tAiIgAiIgAiIQmwRiomSX0rrKVara5VfUsltuvS2UdObPX8CeeLyrUTK3vyWiWEo/4fkXlA5lsWRGWHiQZCFz+fFHH4SHVR7sIsv1jZvYp598HO/wohBKNo0MRSQTwbrfzp1jZC9Qj024vOllxb179Yzvk8PBo4SP8r7/uYBNRDmY7/DZhx/EZeISbmN/r8e++cZeD+dkd1kSljAm5dwj20/sWCOfJfVvHHicQISOEi7ffjs3vJ/wvX1ff/P1rHhnlM/oMZ3kWdYLy5QNmbjI+sk5p8h3DvY32eVPXGQn4oyyPln1V18eYoXPONOzvOfstYlXhg6Jd0b5IOKone7Z34MtOESzPZuHGnRKL8m9hkk5jytrXx2CJ5FzPJRjDuW5Xv6NM4pTyvLWuDHh3y2OalIW/s1Egi+Uq/N7TnYPJdvIv+OE2/nCS4Mjzijvo8i9bOlPlvAapca1QGV3+fLllj59ehszboJdUevgWfOk3lcIvPHvq379RnuV5tZv0CioFqNczJLU7YWV/X9JYRVZd9+/U+p+tu929bMIiIAIiIAIiEBsEYiJDGmhQoVDP1jk0lB6R8ltwnLOyGcJ/6ZU8JFHHw9ljjwkskQyW+kSlBuOGP66XVqteniAHP/2OLu4fIVQavvkE4/Fb47SWxb6rvZdcrjQUp68p+/1duQBOuGbOLKjRgwPgif0n+II4aCMG/umrfv994SrJus1DhzZGEorI0tSz531EzvWyHaS8jeOfB7Ppk6dmvQRMAfb7gp/sOeBl+xlJPOYnHM62Pb5nOM+9dTTvBx14n9WZ7QQC6XQONX7WzZv2hQ+ypgxLtCxv/VwzAr67/HofzNZ+1vvUN8/3Gu473nw7yVfvvzJCpQkduyXePn1yaecYpPfe9cILLFs8dEoM2fOMISOejzZ7YBBJdaHXbv72odS1Mjv+C7PWqfxfuyffvyRVQ66bPKy7cg1SslrsXzZUmvSeG/HOkeOnEbfZZ9+AwI/HNX9Lcm5r7wxamTodeb+RD8u5de0Czzy8P9XdiRne/s7poSs9rcO76fW/exA+9RnIiACIiACIiACxx6BmHBIEQq5p+1d9o/3L650ZzTSz3igy0Fp5Ni3JoYMZYf729ncObNDDxz9eogIJVzoEyTLeUOTG31G5jj/+6aQVaGfMbKgMsnS7bFH3IH7/xLOyOcb1idt7iCjIMh0UI5aucqlRr8i/aPMT6XP8lAXHJJI5jY5536o+0v4PTLQkWxJwvcP5/XuPXGZ7z0W1xeXGudEiSXHvX37tv8c6rZtcQrCmRNR6024cuQ4E76X2OssLrSEk7fl337WxNY5mu/tex4Z3FnHcTtYufXBjrl+gzhnbd9/c5Hvke08mBJtDxeBauAZ+JEjhoXs6k8/LgnjniZ5729Slz1UUrgDy5La14LM7ZAXB9nA5waHUvyE95F9jzc595VJ7060R13MjKwoDilZXgJRb48bG7/Z5Gwv/kv7vEjIap+P/vNjat3P/rMjvSECIiACIiACInDMEogJh5RSvwNlqRK7OtUuqx5Gf9CbGClnS2w93qNHkOxDa++ZO//8C4KTOMDVQBNmnZYvi+tVneslujjIh7NQAskfFCopPXz8iR4hA0Rf34FKkPe3T0ZN4FxRlsiSnHPf3zYTvs+4nQMtzIJFYZSMWkotbIuH7cj80+SeE2wPtmzYsCE4iJGsW8L1Ixnvg/XOJvzOgV7Dh9LTU0499UCrhc92745zwg/XGTzojg6wAuXRHDOl7oe6IIpU04XFmDv68Ycf7LUZAgGdfMYwZbsHckhximvVvipUQ3Tu1H6vbRzqD8m5Foe6D641y0knnXzATSTnvsJ98J2J4w2l5C4PdvLy3YZhDjAOcGRJzvYi30nq3/v7N5XS97OkHo/WEwEREAEREAERODYIHPyp/Ng4j2QfZf5/nSMUbhMuuXPHjSBJ+B6vETciw/j8C0PcUUwTSmsTrjNr1szwOT2siS2JOTX7rocyacL1cD7pU0UJlNLUXD5+5FCWxt7vyvKZq5CyJPfcw5cS+R+OJktkbEsiq8S/Nccz0JdVr2m5vT824cJDLGWxyVko7WTsyxeu1Btx0JNzThz3/q7zvseBUjHObpYsWfb6iP3jADADN6WWhQu/tyqeFY+Uj0e2uy9feooR3DrjjDMiq4S/c+bMadlcvflILWThihUrHsrXI/vkWMuUvSjy4wH/ruU9lARKBjzT14a8NHivPy+9+IL3bn8YyuRZZ38LatX0W+/775hyaxzeQ12Sei0OZfs422QxWajMONCS3PsKJd9Z/bwZPUSP82i/byVckru9hN890OvE/k2l1v3sQMehz0RABERABERABI49AjGRIT0U7Aylb3bzLWHu5Yhhr/km0gTHo5GPZEhsWfXzz/bppx8Hh4ERF7/99uteqyGS8sboEXbjTc1C7yF9n5RfokLL6Je1PoqjvZcGH2jBmfjwky/CyBgc0V9cXbaEK9MiCMT2/1i37kBfj/+M+ahTp7wXMm5kWG+7vVUQjYmMv0juucdveJ8X3303Pzjh7e5tb88OeMYyuiDU6tU/249LluyzptmT3R4L41NGv/m2Pf3Uk6HvE2emhTvwI71H90DlyAhWNb/5Vlu0aKGdcsqpduddbYIT0qN7t/j9JOec5vtoEQRlEKZavHhRcIgR1Uls6f10zzAvdegrr1vPHt1DVpCsHdd0YP9+oTQ0se8dynsvDxkcxtm8/OpwV18e6o5FNru2Tl1XBb7sP5v7asYXIbvImCJ+NxDNanHLbSE4kBRl2v9s8BDeeKZfH6tStZrPlX0vjFzBASxT5iILJZ1J2B4cERT62oM5iS0TJ7xt1WvUdLGyK+3tt/6/7DThujhClOgisMS15NoWL36WNW9xS5jHG8mgJ/xOUl4n51ocaHv/+1/uoLLMOjjJ/Mw5nXV2SXvl5ZcOqiKc3PvK7G++Djz498I9i1E4CZfkbi/hdw/0OrF/U/QBp8T97ED71WciIAIiIAIiIALHPoHj1iGdOGG8lS1bLswCreoP1Swz/CG/T++n7P72nRK9slPemxQc0tdfeyXRzzt36uhlscvcYWodnMjISjgI9LcdbPnLZ3m+P32qKwXfHnpII+ujsNv5gQ6RHw/6d34XM3nhxZdDyS+CKTh79KBGlkM598h3E/7NvEgEU5o1u9lGj3krfMTIm8QcUjJON1zXwB7t1t0Gv/Ry/GZwRua7Q3WghZmyMCVLzLLMhWIaN6q/V3YyOef0lDuWZKnot0NVmfPYn0PKXExG1fTq08/eGv9u2D8Zyv7ujD3Tr3f4OaX+xzkUKVIsjBlizA8ZeY4LUS36lhMuT3R71M44s4h16NQ5vI1j9mT3x+x2Dz4cqYVSd+arMtKnSJEi3oO9yiibZbTJHXe2Nn6f97dQCVC+QsWQFY30Nu+77rRpU7x/d7vV8z7T/TmkfKdtm1b2wuChxsgmFkpuBz33bBBFCm8cwv+Scy0OtPm8p58egl6sQzafEU/Ml23d6jYvr51woK/Gf5bc+8poL+1n1NMbb4wMv0PxG/r3RXK3t+/3E/s5sX9TV9eumSL3s8T2p/dEQAREQAREQARih0AaH1US15AWO+eUrDMh44Ya5do1a0K25kBffn34aDvdHzCrVb3kQKuFz04++ZRQnrpq9apkC9XQF4cqLaWIZHh4wE7Kcker1vaA992VuaCUl5NuNY4BJwEHKrElOeee2PcTvpe/QIFwnjhGB1s4rzx58tgaz44dTMRn0Y8rjLmUD3XuGDKZ9PPyUL+/JTnnREbvJC/RXu3XKOEs0cS2jQPLKCHKhX9csjhJMyQT205S3uO4zvRyy2Xel8wcyP0t/J4U/rdsF9XfSPny/tY/Uu/3H/i8nevzZatWKn+kdhnKnIt6xp0lJa9PUq/FkTrRw7mvJHaMKb29xP5NHer9LLHj1XsiIAIiIAIiIAKxR+C4zZBGLiWlt/uW30Y+S/h38eIlwqzTrglGKCT8fN/XOE0Hcpz2XT/hz4glUW53OAtKw1u3LjvgJpJ67gfcyL8fJkfcByfrQI5WYvvD2aK882BLcs4JYR7+JGUhixcZL5OU9Q9nHY6JzOzBFn5PEstGH+x7KfV59uw5PMtZwWZ8+WWY+YnjUaPmFaF8duCAfim1myRth3FN33+3IEnrJmelpF6L5GzzcNY9nPtKYvtN6e0l9m8qJe5niR273hMBERABERABEYgNAse9Q5rUy3hry9tDT+bYMW8m9StaTwRimkCOnDm8/PqVcI4EGFD9RZCJ+b8vPP9sTJ+7Tk4EREAEREAEREAERCBlCMghTSLHb1wsZOrUyUkun03iZlN0NYSQUH7dsmVzim73aG6M3tefDnOMztE8/ljeN2Xu1zWoa8VKlLAcOXLYut9/DyI9EfGsWD53nZsIiIAIiIAIiIAIiEDKEDjue0hTBqO2IgIiIAIiIAIiIAIiIAIiIAIikFwCaZP7Ba0vAiIgAiIgAiIgAiIgAiIgAiIgAilBQA5pSlDUNkRABERABERABERABERABERABJJNQA5pspHpCyIgAiIgAiIgAiIgAiIgAiIgAilBQA5pSlDUNkRABERABERABERABERABERABJJNQA5pspHpCyIgAiIgAiIgAiIgAiIgAiIgAilBQA5pSlDUNkRABERABERABERABERABERABJJNQA5pspHpCyIgAiIgAiIgAiIgAiIgAiIgAilBQA5pSlDUNkRABERABERABERABERABERABJJNQA5pspHpCyIgAiIgAiIgAiIgAiIgAiIgAilBQA5pSlDUNkRABERABERABERABERABERABJJNQA5pspHpCyIgAiIgAiIgAiIgAiIgAiIgAilBQA5pSlDUNkRABERABERABERABERABERABJJNQA5pspHpCyIgAiIgAiIgAiIgAiIgAiIgAilBQA5pSlDUNkRABERABERABERABERABERABJJNQA5pspHpCyIgAiIgAiIgAiIgAiIgAiIgAilBQA5pSlDUNkRABERABERABERABERABERABJJNQA5pspHpCyIgAiIgAiIgAiIgAiIgAiIgAilBQA5pSlDUNkRABERABERABERABERABERABJJNQA5pspHpCyIgAiIgAiIgAiIgAiIgAiIgAilBQA5pSlDUNkRABERABERABERABERABERABJJNQA5pspHpCyIgAiIgAiIgAiIgAiIgAiIgAilBQA5pSlDUNkRABERABERABERABERABERABJJNQA5pspHpCyIgAiIgAiIgAiIgAiIgAiIgAilBQA5pSlDUNkRABERABERABERABERABERABJJNQA5pspHpCyIgAiIgAiIgAiIgAiIgAiIgAilBQA5pSlDUNkRABERABERABERABERABERABJJNQA5pspHpCyIgAiIgAiIgAiIgAiIgAiIgAilBQA5pSlDUNkRABERABERABERABERABERABJJNQA5pspHpCyJw6ARa3NLSVqz6db9/Sl9Y5tA3fpjfvPyKWtb1sW6HuZX/fr3JjU3D+f6wZLllyZLlvyvoHREQAREQgaggcLzYqFNPPW0vO7xs5Vr7buGPNnnqB3ZT0+ZRcS10ECJwPBFIdzydrM5VBKKFQLfHu9rGjRv/czgrViz/z3tH6o1zzzvfGja83ro+/FCK7rJO3frGeRUsWMhqXl7L3ho3JkW3r42JgAiIgAikLIHjxUa9MXqkTZ821U444QTLlSuXNbr+BuvWvadt2bJFtiplf6W0NRE4IAE5pAfEow9FIHUITBz/tv3yy9rU2XgUbTXv6adb2YvKWfv77rG72txtderVl5GPouujQxEBERCBxAgcLzZq0Q8LbcrkSfEI3n1ngs2d/0OwWwqexmPRCxFIdQIq2U11xNqBCCSPQJUql9obY9+2osWK/eeLHTp1tr7PDIx/P0OGDNbxgQdt+gef2sLFy2zytA9DhDd+BX/RtHkLe2noa1a8eAl7ccirwdjOmDXH7m53X/xq1zW+werVb2iZTzwx7Jv9jxw9Nv5zXgwb8YYNfumVvd472A/XXFvXdu7c6Qb/PXtn4nirdElly50798G+ps9FQAREQASilEAs2ah9EZMZ3bVrp/2xbt2+H+lnERCBVCQghzQV4WrTIrA/ArlPOslOPvmU//xJly69zZ79jZ177vl2feMb9/p69uw57NaWd9jSpT+F99OmTWuj3hgXHMkpUybZPW3vMqK9PXr28u82if9ugQIFrVq1y2zc+Hdt8+ZN9tyz/cN6997XwUqeUyqst2LZclu5coUb4l326ccfxf355OP4bfCCTGfp0hfu9d7BfqBc9xPf3qZNG+2dCePthHTprPbV1x7sa/pcBERABETgKBI4XmxUQsQ5cuS0Dh072zp3Rse8OTrhR3otAiKQygRUspvKgLV5EUiMwKTJ0xN72+peW9tmf/O1TZzwdnA0e3R/3Hbs2BHWrVO3nqXzPpfRI0eEnxs0ut4uLFPWrqhxqS1c+H14j9KjnN4Hc+ddbWzUyOHx+9i2fbtdeflloZeTN18aPMhmfTPPqteoad8tmG8zZnxhX8+aaeeULGUD+veL/17CF337PG3bt21L+NYBXxcrVtzOOutsGzzoubDeD+4s//TjEqvrTuprrww94Hf1oQiIgAiIwNEjcDzYKOh2fugR69S5ixHgpY+UhaDt6tWrw2v9TwRE4MgQkEN6ZDhrLyKwF4F2d7e2P//8c6/3+OHHJUvCe8OHvWaNrmscRIDoaWHh52nTpthvv/0afq5Spaqt+vlnK+aluPyJLBs3bDCyounTp493Zrf9/Xe8M8p6u3fvDpnWsmXLRb520L8HPff/pcIHXdlXuNYd6H/++cemTp0cv/o7EyeEUuH8BQrYzytXxr+vFyIgAiIgAtFD4HiwUdCmT/SD9+MCxLTA5Muf35o1a2G1rrzKateqYVu9hFeLCIhA6hOQQ5r6jLUHEfgPgS8+/+yAokZz58wOWU96O3FIyTSWOvc8e6pn9/ht4XRmzZbVmre4Nf69yIu5c+dY5swnukP6XyXfyDrbPNuJ05paS5069W3zpk3WsdOD8bvIkydveH2t95YOHPBM/Pt6IQIiIAIiED0EjgcbBe2F338XbGxC8tOnTgl6DDVrXiERvoRg9FoEUpGAHNJUhKtNi8DhEBjhWdJHH+9uKNXimNLj+WmCvs4//lhnO73ns+41Vx7ybvbs2bP3d9Ok2fvnQ/yJUmIizQvmz/PsbfG9tkJm+Fov25VDuhcW/SACIiACxxSBY9lGHQg07SW7XIyv3MXl5ZAeCJQ+E4EUJCBRoxSEqU2JQEoSeGvcWNvuvZ9Nbmxqdeo2sJHDh1lCB3L+vHl2josSFS58xn92S+lRcpe///rLMmfKZAgrJbZc4IJG5/ms0qQsderUC3Pc6te92q5rUHevP4OeH2ihv/TskknZlNYRAREQARGIQgLHso06EE4E/BDgW7zohwOtps9EQARSkIAypCkIU5sSgaQSuOrqa2zjxv+W037w/jT7448/wmZQxJ04/i27887Wtsf/Gz06Tswoso/BLzwfMqevvD7Cej75hM2bN9dOOeXUoIZbt16DIHYUWTcpfxMVxgjf1aatj2iZYHnz5t0rI4uiLyW4ZUrHKfPub5vp/lXSnTrlPaMseN+Fc3rARSRwWimX0iICIiACIhBdBGLZRiUkXbzEWXZFrdpB1ChrtmxhPFqj664PAnxvvDEq4ap6LQIikIoE5JCmIlxtWgT2R6DLI48l+hEquxGHlBWGD389zBVlhue+c9FwWBvUvca6PvaEDXzuhXiFwI0bNxxSmdH706cZTm7TpjcbI2FwJosXKZjocR7ozUsqVQmzRt9+a1yiq61Zs8Zmzpxh19Spaz2e7LZX1jfRL+hNERABERCBI0oglm1UQpCIBfKHhRmkv6xdYyOGvW5U8mzZvDnhqnotAiKQigTS5MqVa58mslTcmzYtAiKQKgQQJ8rvIkd/bd1qv/76y2E5eUjf58uXP4guUTKsRQREQAREQAQOh4Bs1OHQ03dFIPYJyCGN/WusMxQBERABERABERABERABERCBqCQgUaOovCw6KBEQAREQAREQAREQAREQARGIfQJySGP/GusMRUAEREAEREAEREAEREAERCAqCcghjcrLooMSAREQAREQAREQAREQAREQgdgnIIc09q+xzlAEREAEREAEREAEREAEREAEopKAHNKovCw6KBEQAREQAREQAREQAREQARGIfQJySGP/GusMRUAEREAEREAEREAEREAERCAqCcghjcrLooMSAREQAREQAREQAREQAREQgdgnIIc09q+xzlAEREAEREAEREAEREAEREAEopKAHNKovCw6KBEQAREQAREQAREQAREQARGIfQJySGP/GusMRUAEREAEREAEREAEREAERCAqCcghjcrLooMSAREQAREQAREQAREQAREQgdgnIIc09q+xzlAEREAEREAEREAEREAEREAEopKAHNKovCw6KBEQAREQAREQAREQAREQARGIfQJySGP/GusMRUAEREAEREAEREAEREAERCAqCcghjcrLooMSAREQAREQAREQAREQAREQgdgnIIc09q+xzlAEREAEREAEREAEREAEREAEopKAHNKovCw6KBEQAREQAREQAREQAREQARGIfQJySGP/GusMRUAEREAEREAEREAEREAERCAqCcghjcrLooMSAREQAREQAREQAREQAREQgdgnIIc09q+xzlAEREAEREAEREAEREAEREAEopKAHNKovCw6KBEQAREQAREQAREQAREQARGIfQJySGP/GusMRUAEREAEREAEREAEREAERCAqCcghjcrLooMSAREQAREQAREQAREQAREQgdgnIIc09q+xzlAEREAEREAEREAEREAEREAEopKAHNKovCw6KBEQAREQAREQAREQAREQARGIfQJySGP/GusMRUAEREAEREAEREAEREAERCAqCcghjcrLooMSAREQAREQAREQAREQAREQgdgnIIc09q+xzlAEREAEREAEREAEREAEREAEopKAHNKovCw6KBEQAREQAREQAREQAREQARGIfQJySGP/GusMRUAEREAEREAEREAEREAERCAqCcghjcrLooMSAREQAREQAREQAREQAREQgdgnIIc09q+xzlAEREAEREAEREAEREAEREAEopKAHNKovCw6KBEQAREQAREQAREQAREQARGIfQJySGP/GusMRUAEREAEREAEREAEREAERCAqCcghjcrLooMSAREQAREQAREQAREQAREQgdgnIIc09q+xzlAEREAEREAEREAEREAEREAEopKAHNKovCw6KBEQAREQAREQAREQAREQARGIfQJySGP/GusMRUAEREAEREAEREAEREAERCAqCcghjcrLooMSAREQAREQAREQAREQAREQgdgnIIc09q+xzlAEREAEREAEREAEREAEREAEopKAHNKovCw6KBEQAREQAREQAREQAREQARGIfQJySGP/GusMRUAEREAEREAEREAEREAERCAqCcghjcrLooMSAREQAREQAREQAREQAREQgdgnIIc09q+xzlAEREAEREAEREAEREAEREAEopKAHNKovCw6KBEQAREQAREQAREQAREQARGIfQJySGP/GusMRUAEREAEREAEREAEREAERCAqCcghjcrLooMSAREQAREQAREQAREQAREQgdgnIIc09q+xzlAEREAEREAEREAEREAEREAEopKAHNKovCw6KBEQAREQAREQAREQAREQARGIfQJySGP/GusMRUAEREAEREAEREAEREAERCAqCcghjcrLooMSAREQAREQAREQAREQAREQgdgnkC72T1FnKAIiIAIiIAIiIAKxTSDdCSdY9qxZLWe2bPb7+vW2eevW2D5hnZ0IiEDMEFCGNGYupU4ktQicmDlzam1a2xUBERABERCBQyaQMUMGOylXTst64om2c9cuy3faqXZzvXpWMG/eQ96mvigCIiACR5qAHNIjTVz7OyYIEGU+NXduS5cunWVzQ69FBERABERABKKBAJnQvKecYqe4jSpasKAVyJPXPnr1VbuwZElr4c7ogiVLrHjhQtFwqDoGERABEUgSATmkScKklY4HAjncCT35f/8Lf87Mn99mjB5l5xQpYq/2eDKUQB0PDHSOIiACIiAC0UcgTZo0nv08LdinrFlOtFzZs9ud119nFUtfEN7/ff2flt4DqLUqV7bFy5fbdbVqWaaMGaPvRHREIiACIpAIATmkiUDRW8cPgQzp04dypwJ58lgO77vp/2BnO694catctoy9Nn68nXpSbndGs9vpp556/EDRmYqACIiACEQFgVw5cljunDltz549RtD0vBLFbfrQoUYrScPLL7eZ8+Zbk6tqW59XXrVSxYrZlM8+t2xZsljJokUtz8knR8U56CBEQARE4GAE5JAejJA+j0kClOT+zw39Lu+5KVqwkN3V5AYrnC+flzkVtvWbNlnTa6+1iR9+GAx+jxdftLOLnBmTHHRSIiACIiAC0UUgbYJs6DlFi1iBvHnsixEjLGPGDFa/Rg17/LnnrYTbqmlffBlEjLBbf2zYYDe4YzrinXfsonPPDQHV/HlOi64T09GIgAiIwH4IyCHdDxi9HXsE6AelJJfe0Pxe+vTN2DFWqngx697uHhs3dZrVq1Hder70khUpUMC+//Eny5Qho1UpW9aWr1ltN11zTYg6xx4VnZEIiIAIiEA0EEAdl0DpCd4jyt9tbmwSgqRF8hewJStXWJZMma16hQr28y+/hKDpyEmT7LLyF9vA4SNCNnT37j1B2Ahb9sGMr+zyihWNUl8tIiACIhDtBOSQRvsV0vEdNoHM3kdD700uN/alihUNpUxXXVrVBgwb7mIQeWzTli3hAeCqqlVt8bLl1rJRQ3tu5Ei7tFy58PdpJ53kZb25LJ/Kdg/7WmgDIiACIiACexPAvqCSi/NY+uyz7bPhwwy7RSD0mwXfhQqeZ0eMtMsvucS6v/BCCKju2LnDyKQ2qFnTvvnuO7vuylrW99VX7Ayv9Fn966/hs6svvdRO8SCsFhEQARGIdgJySKP9Cun4DpnASd53Q8SZaPNlF5cLjmjvjh3DbLbbGjb0CPIMa+l/P+kluTU96vzUkKHBcf1nxw7bvXt3KH/6aOYsa3RFLevx4ktW4owzDvlY9EUREAEREAERiBA4IW3aEOi84KyzglbB5BcH2xkupteyYQPr2LuPXXJhaes/bFiwSVv++stYv1GtK2zOwh/sRndUsUkXnH2WjZ70XtA/KOU9o6t/+83t1lWG83qmV/rMmr9AfaQR4PpbBEQgqgnIIY3qy6ODOxQCyOFTmksfDX2hGPrvvAQXOfwOTz9tldzQDxg+3A39qXZipkxme8ya1a3j4hDz7NYG9a3H4Bf9u6Vs7NSplj1bVitzTkn7ee1aa3L1VZZFI2AO5ZLoOyIgAiIgAk4AJVwqc9K7oB7tIWVKneNq7kWD80gA9fRTT7O/tv3ttqiBfTRzpt3hSrpPvjDYalasYP1efc3yeMUOVTt/b9/mYkZX27uffBwCqlT80I6SO2eOUPVznTuvr779dhBBEngREAERiHYCckij/Qrp+JJMIFeO7GFuaFqPJDfxKDGOKRHneYsXW3ZXHSxaqKBt2LzFDfz1buhnhb+79B9g1Tx72stVC087+SQvm8oSDD2Dxd+a/r7VrlIlPASc5mqFKBaqbDfJl0MrioAIiIAI/EsADQPU2lFzx+ag5j6ydy/72rOYdze9KYgQNffAaJdnnrEaXrHznGc58558SsiM7vKKneZ169oXc+aEwGjXgQNDxc68RT9YxgwZjBaUOQsXhvLdvu60YvvoQd3699+eVa0VyoF1IURABEQgmgnIIY3mq6NjSxIBJPGZyZbPI8ufe+Yz7yknW6sbGoe+mnbNmtpLb44JfaEP9Okbosz9X3/de3BOtZ07d9ruPbvtZjf0n7uhv7luPXv8+edDD8/7X34ZsqfXeA8Ohv5678950jOnDCHXIgIiIAIiIAJJIcAsUOxTTq+2IYPZt1NHW7JihV17WTVr7xU79IwiQERVzyn++d/bt4fs6KfffGO3eMVOt0GDgnBR31dfDUFTnM2NWzYHu/XKW29bxQtK25CxYy1n9mxewnu2LVu1yhpcXtOeHvpyyKTSi6rxL0m5UlpHBETgaBKQQ3o06Wvfh0UAw4wzemaB/KFfpsOtt7iBf8pqVapkOJ/negR60iefBEOf0x8Itv1r6D+bPdtaNW4cenBYt/crr4SIcu5cOUNEmb7SUd6Xc0WlS0J2lPfpH0UoAln9UOZ7WEeuL4uACIiACMQyAUpzcQS3//OPt32cY4+2aRN6RnE6zdIYgkPLVq22ds2b2ZtTpthtLqbXdeCzITuKE0q7CWPJdu3abbfUr2+ffP1NaDvp9vwgH/lyhi1yAb50ro9wfe0r7VP/7AoXPOr/+rCwj7PcXtFmck21S4N4X6HT88Yyap2bCIhADBCQQxoDF/F4OwVKkYg6I1ZUuUyZYKR5DxEjZO+vqVbNVqxZY2RHJ338id3pPTiPuqEnIt3lmf5h7uivf/wRvs9g8RnfzgvbeGTAALvQI8zTfbYbTmfd6tXtK+8rRcWwlwse4QDT+0PZlRYREAEREAER2JcAyrcF8+YNgVDUcs8vUcL6PtDJBo9+w9redKM92K9fUM9t+8QTQcl9gAsXFT79dNvhFTu0mzS84nKb8/3CUMb71EtDQnb0qSFDvHz35FCGu2nr1pA5HTpurFW44IIgapTNW1IuK1/e5i1aZHUuu8ye8SoglHvLuY7CcreFOL+IImkRAREQgWgloDtUtF4ZHdd/CGR2J5HyJrKi8yeMDw5ox5a32vOjRlv7Fjdbl/793VA3sPt6PmVVL7rIJfBfC9nTlWt/sQwuIFGjfAVbuHSp3ecRaSLJdatfZo94Lw4PA0Sad+zYGUp7iVbXrlrFer/8SjDq57sK4k8//2yNPRLdffDgIETxn4PTGyIgAiIgAsc1AQKju/fssexZs9gd111nD/Tta+XPP9+GjBlrJc48w35a+bOX1mb32aKFQmnuHdc1cjG9+Xav26SnPehJ8LNz335WrFChuFnYHni98eqrwzqMI3sstJScZV8vWODiSOlDP+nUzz+36u6MPjtihKGjUO68c23hT0td/6Cy9XvtdcuZNatdUrp0KN89ri+OTl4ERCCqCcghjerLo4ODAKINGPq/t20Lf994zdXBaFcsfYG99vb4YNzn/rDIHdVcYeYaY1tudEXcBUsW2z1NmxmR5CZu1Dv26W1lvXRqmmdA6bep5nNGcTRbN7kh9IdWdKM9ygeNZ8tyYij7nf3993adC0L08LEwqBoyy3Tt778H6f1MfkxaREAEREAERADRvDCr2m3EtKFD3IZktVqVK9lyL8m934OlH8+aZV3vusuGeq9nmyZNrEOv3tbo8ius7RPdrXTJs22aaxZg4y4+/zz7dd06u/umm0JfKEFQnNr8XpmTxv/btv2fIMY38t1JwX4NHTcuiCQhajT3hx/syspxTmgu31Ylrx761t+rVOZCe3X8eMvjFT5aREAERCBaCcghjdYro+MKQ8LJhlI+e06xovbx66+FqPIVl1SylV6GhNGmpPaB226z4RMnWodbWtjDXnZ7c726IUta7tzzbPR773kfT5ziILPc7vYy3nHTpgXRiPZP9zJmtzHXLV26E0IZ1LQvvrD6HqWmhwfV3SIFC/i+4ka+9PTyqdNPOTUo96psV7+gIiACInB8E8jqY8AQI8rrbRz53Rl94u67g34B/aDtevQM80JbPfpYcB4RJSrp9oYgKA5s2VKlbN2G9V6x09wmfPBhGO9y/1NPGYHRke++G7KdpVwHAVtHJrXnSy9Z5QsvtDcnTw6qufSHfvbN7OCE9vFqHhxaSni/W7LErvIKn2eHj/BMbVZX4L3UPp89J5TvHt9XS2cvAiIQzQTkkEbz1TmOj41oMwaWEl36Njvfdrvd6wb+/ptvttbduoWez9sf6RoymfTZlCpezEUfvg4ZUpQM//JsKiVOyOSTAcWY165cxR579rmwvSyZTzQc1DZNbrTh77wT+m5Yh+9eWLJkKK1qXqeuPTHohbD+/3LktN/+WBeGjjOnlHEyWkRABERABI4/AvSJIljEWJUKF5wfVG2xCYtXLPdqmtyhHzRD+nSheoeez6Z1rnXV9+/t4VZ3htmgd7kKPM7n1VUvtUcGDAzq7b/9+aeDTBPsFgq7zM1mBEzZc0qF7Cf9pQRbJ3/6WQia9nEHFzt5abmLbMGPOKFVvU3lVfufzyGt5I4r6vBVypYNDiwCS+glMOdUiwiIgAhEIwE5pNF4VY7jY6I8FyOLwMPlrhp40bmlQu/NV/O+DRHoX9b9HgZ/Y3R37NoZVAR/WrnSe0hbhChzR1faffTZZ8MDQEcviypVrJhHh2eHnh5KlxYvXx5UDZ94YZCr6Fayl8aOsdzu+NLnM9/nlTa99loXnXjGFQ5PDyIQ6zdttBb164Wy3QJ58gbpfgSRyKLSl6pFBERABETg+CGASi426ouRI+wC1xfo3aFDEM97/O629vr4Cda1dWsb6NnJ+zx4+pDbkjt97vVdjz1uV3pPJwq55xYrHrKkJ2bObNUrlLdlq+PKel9w0SNU3LFbZxYoYJu2bAkKva1vbBKEi2p7OS7iRmRkCdQuWrrMW0quCMq8p+U+yS7yjCs9qnGO6WuhlBel+A9mzLCzzzwzOK3M09YiAiIgAtFIQA5pNF6V4/SY6NEkKzrrzTfsTI82P3HP3fbeJ59aj3vvtbemT7cn721ng9xoP+by+Y+7Yb+3WXNr0+2JMPi7U58+oQRq4kcfeZbzJDvNHxo2bd0SsqNs41YXO8LRRHUQ5d0TM2UOzuxXrrBL1BlBpGIFCwWVXjKnt7sgBeNgShYp4n2j6+wvj4QztPwpF57I5zNMixUqKLXd4/T3VKctAiJw/BEgWIqWwB4XLbrfA6C3PNQliAq1cmfzau/hxJG8rPzFYcwKjiqOIG0fO310C9lNRowtWr7MuniWdNjEd4L6e7snewRBokEuzHf6qaeElhACnnc3vckGv/Gmj3LxsWQvv2yn+n6rkgn1clwCpARdC7kYH7oJv3jPKVoHzNDGWUbVd+HSnzygW9H3M9E1GDK6cu8VXgY8yQX5VNlz/P3m6oxF4NggIIf02LhOMX2UWTxSjDogZVAIQNzapYs1c+evxYMPBWXbO7p2DSNYUB+selFZF3sY55nPojZv8aIgTnTWGYVtw8ZNQdXww69mWidX3sVhbXLV1aEcCsXCn11pN23aNEGxkD5RBo537N07zBelvPevv7dZG49EI5dPpPnLOXMD89saNfL9jfEe1mK25rffQ5kvAkn0k/JAoEUEREAERCC2CTDyK4eXu77Ws4ed432g559Vwh3T3XaWZx6ZM1ql7EX254YNXhZ7hSvc/mSP3NXKsEUP3XFnsClkS+958kmrV6OG95j2CU4jvaSZMmbwapsaYVwLmgg4lcwTRawP/YTKZcuEz1DsxV5RFrzTq4c2btlsdza+3p4eOtTfy2fpvVrn9z/Xu0pvjaDWywg0ynaxYxe6aBJ9pf/4cVLZw7paREAERCDaCMghjbYrcpwdD0IQWVwY4k1XEixasGCQuwdBgdPyBAe1lJc3oSxYrdzF9qv3cN5ct6734nxn3Vw84q1p063LnXfag95ng4N5rz8sUJY7wgUh8pxycohm/7Fxoyvt3hTUc2+oXTtkQot4OdSWrX+FP8jtPzdyZJgHN2rSe0FAiUzo2++/H4QoxkyZ6iNh0vlg8nr2yltvhczoDlfx/d37fZj3ls57c7SIgAiIgAjEHgHmXTNTFGG9Eb2e9r7Pp0OlTnv/+yG3PQ/07hOcz/t69vQZoze5au4ToeKm+QOdg7DQU0NeCuWy2Kyc2bKHEt9Vv/xqnW+/zW3Se0bA8+7uT4axLO9+9HFwelHKZf1b3aZRuVPijDPs519+CWPJWjVuHDKwF593no+CmecVPbvdNtX393yWqbeZIGJEhvXqS6uFsmHmk+IEvzFlchBeQowvj2dbtYiACIhAtBGQQxptV+Q4OR4MPFHnrD5iZfyzA92Z7Gk97rs3lNV2b9fOunpJUjfvyenQq5c9eMftXprbzdp5iW7Lhx8JpbMtH3449IBS1nRm/gJBxIj5b8xxmzV/gYsg3eajXAbb9VfWsid9bAvZzBN81igiFPTkvPjmm+GBgVKp3C5YRJSaXlN6cpgHR3SaMqyPZs60mhUrGLNJGSyO0MTzo0YFGf6zi5zpJVaS0j9OfmV1miIgAscRAQTuyH5ecPZZIVP5hiu2M2rsuREjw8+jvAT2wnNK2pipUz1TeoZ9/9OPoWQ2TZq0oUS3eoUKtvrX37yXtLlN/PDDYMce6NM39Im269EjZC6XepYUhXeCoAgZoaZ7n4sdkdVcsmJlaCEhO/rq22+HHlScWEqHb7rmGhs7dVqYt/3BjK9ckd58G3VDNpbSX1pe0EuodnE5e8cdXTeN7phWD/O387lTqkUEREAEoo2AHNJouyLHwfHQD0OZ7MU+wLvqRRcFA4+AUa+hL3ufzSXW95VXQ2nu8+4sVnQZe/pHMfjMFeUhAWeWWaNI21Me9VjbNmHweNsbbwzz3XAgEYjAMOc56WSf6/aHO7PNvP90dHAyn/Fh4afk/l8ozZ3zw0KPUje0Dj4CpqA7rfTg/OgiSYhLdHVFXn5m6Pgns762Kl4u/L73Be3YucsfCK52x3VIiJ4fB5dMpygCIiACxwUBFGkpyyUo+f07E4NT2dpnh85btDgEJHH0cP5oGbnX7cqsefODrsHEDz+yR9u0tkEesKRt5O7u3UOWkz5RSm9fGz/eCuTNE7KgtJgw7oUKHPQN2vq6zCNlH/SbomEwxoOgdatf5sq5r4VjwVaSFa1bvbr18r5Sjo/RL7SgVLigdAio7nTbdMNVV4XPT8rlJb8+i/TDr74KlT3pPCC75rff/FjKHhfXUScpAiJwbBGQQ3psXa9j+mgx9Od6L2ZuV8hdOm2qrfLoMeVG9NJQ/rr611/dwFYL5UmU1y5ZscKau+DQ1wviSnQx+Agd4VCSAb3HDT0CD21d2KiclzAhUMRcOAaC46h2vv32MO6lgcvd93vtNcvr80iLeFnwyrVrjdKnh11uv/RZZ9uKNWvDfNPWN9wQnOJzfYQMkfF169e76u419thzz7uyYS6r4RHvyZ995mVXJYJh/2PDxuDgknnVIgIiIAIicGwTYCwKCu9kITu4YvvNnR8MlXTY+AAAQABJREFU2gK3eWVOe59zfUfXR8PoMXQOOtxyS9A5uMUdymadHghBTFR1L/HezdGeyTwjX37b7AJ5J5yQNswKnbdokZf33hUczOZeaYMTyixSsqRpPMVJ+e47H38Ugp2dvYWlcL58lu/U04K9CuW7z/QP9guV3aWupnuT2ybmZaP4SxCWcTD0tjI3e7OPmrnWbSpB3RMzZ3I9hatcJOmNIBrImBi+o0UEREAEoomAHNJouhoxfCy5smcPhj6b97gg8HCdK+c+6H00GPZHWrWyO314eDd3Nvm7qxvt2x55xA1+C2v9eLeglHtTh452nZffoqZLpnKc949SenRC2hPsn507Qt8O2UseIh72vpurfRg4w8KZYZrX+0lXeQ8OyoVkNZnNhnObMUN6a+bz4Ub4HNLanm0d7SVZGfw9ot8vvjnGzitR3BV2f7c/vQ8VgaR+HqnOkTVbEIYY7iqJbJv+HravRQREQARE4NglQAsJPZdjXZOAGaPc+/PnOS0EN1GnpUqmhAvofeatHcULFbYZ3/ooMv98y19bLVvWLD4DO3doCWl4xeVBDfehO+/wUtvx1vHWW13IqK/Vr1HTRfYGuHL7mbbebQpBz1YuTPT29PdD5rXD00/bWWecGca9bNqyNZT6IlpEv+isBQvcfu4Iegj9fNZocbc7f3uV0W/eL8qoMoK0CAMiWvTm5MmhnzSH21pGolW6sIx97vO4aVdBBZiKI9SCtYiACIhANBGQQxpNVyNGjyVOuCizDXeDS5kRZUMIC03/coaXzZ5ro96bFMSI6Ous4qVNw91BZBj4B15qVOj0vCHii7HFiG796+8gcT/n+++te7t7giBRx1tutTbuuF7lPZ+vjHsrPEwUduVBMqH0n1IKXNf7Z4aMGesR4pwh04loxI3eh/Ool+Xi2KKs+/V3C4JKYv/Xh4WyKvp0Rrzzrp1XvHh4SFjtx13nsmqGM0pZFcPOeRBgPunRXsjSkh1GCZLoNyN0UFokms7DFWIWsGesDg9eBAj4mbl0rMtrSrz47BT/DpkCHmgQ9dAiAiIgArFKgHmg3P+o3Bk7oL899vzzNuChB92xm+IVOffY9C++DNnQL7+dG8psv3DnDlEiSmGfuv/+YA8YRcaYMNR1UdNllNjdT3S3y7yHk0Ano8KyZ8tqVNXQPjLShffuuO76IGiEw7n051W2ywWKWje5IWyPiiHsEMfV4PKa4RhqV6kSspyIALbw7Q8ZO9b7W88OlTwIGVHK+6JrKmT0e3aza+uEFhXu/5TtTv7003CfZ4wZGgvFCxc+4peTrDP26WS3T9gh2m8I6mKvsDnYnlNPyu2OdY7wOXaL9fg8rJs377/XKWcYg8P14tpRiqxFBETg2Ccgh/TYv4ZRewaZ3TBiTHB+3h30QshOPtP5ARv//gfWsWVLN4zzrWXDBrZo2XK7zuekLfcB4cxTW7Rsmd1x/XX2lffLoKb79vvTXfDoPuvjvaU4mHe580mZFNlUsp2TPvkk9HqeVfgMW7JyhUvt3xGyoxjyx73cFpVEjN3SVT/bXTc0DlFq5sQtX7U6jHEhc/qIl++eU6SoUVa8cs2aMB6GDCsGlH7SV73/BycaB47eoYqlSwc5/vWbNoW+VxzU1Foo58LZ5KEmYrz5mV5a2GLMGZmD4i/OP+uUPeccV1U8JYwEuPj880If7Jke5ce5xpEng4yzX9ZFOWpXqRwi/wxj50GF0QKoFNM/i0PK/iPiTQQFCA6wD5xc9g8zLSIgAiJwrBHA0WHGNOPErqxcxSi5pU2Dipx7mja1xvfdbw94ewhieoxloXLnnmZNwwzS2xo2shs7dAiBSZTeq5UrZ0PHjQvZU9o90qdP5xnJ8vbdjz+GHtPBrmuAvbuv51Pe83mBzXX9Au6tCBoxPxsn8iEvy+X+iyO6dNWqMNrlwX794st3Fyz5MZTqEgjNemIWa3xlbZ81OiGMQUufLn1of6Ekd8rnn7vOws7gpL40ZoxlSJ/BBf6utBe8bJd7OnYW+5xSC+dKABMHGHtLQBO7xBIJkkYcTPaPyGAhVwWGO3aV1wSFr6xU2eeBFww9vO191muTq68KTis9vehL8D3Wz+2OKhlpnFv2GVl4TZYb20SAFTvFscBZiwiIQHQTSL2n6Og+bx1dKhPAMPy9fXtQC7zKnZ92PZ70QeDXh1LdB9wZvblzZ5fNv8Nu9eHij7dt4yq6T4RSXYaM02dzy0MPhdLeG/3BoFmdOiGSzGDxV956252mQqFUiawgog4z3bFlGz1cTbe5r9ul/wArWqhgyGKu89lwRLMRhrjGpfDf8HKmLCdmDlFnHFmEkYZ6VpXobUsXN6LPhqgzY13W/P6bNfLyqwHDhwfnj6h3f59TilAShnTCBx8Gp664O8IY25RYcv6buSRKjNOJIWXbOH1nn1nE+5LyhfE4DFdHaIM+I5Qeh3Z/ImSXecgo7aqQ13om98RMmYMyMFFx/jDQ3TcYIvFslx/9jeBc83DDCIGiBQuEByRGFOCQ3udjcbq2vis44vB/uv39Vu7c86ywPxiEHqd/s6uIRLFvxg5w7XlQQD1SiwiIgAhEGwHuf1TG4CwhXPTbH38Gh5JZ1dwnuZ8hXoSY3vQvvzR0BT77ZrbfHwvZl3PnhvvfCg9cnpQrzhnavWu3q75fEjKdD9zW0sti3/eWlNuts5fq0gLCaJeLzi3lTugPQe2dYCnquAjxoTBf8YLzbdnqVe5E/uPjY260Z0eOCAq5CBZxrMwcHTB8mDtqRWyzl/Ou8XJinMpnXBuBey5CRszLxhk8t1jxIHB0lpf1Uua7zB3buCzsz7bWZ2mjgcCxH4rNIhuJs0xmk79x+FjS+H9U2sAUxXraXQhwYnv5gyNZ3OeBI/p00bnnhnNitBtKxDioadOk9fU9YOrHFsySb5Ne3gz/zkylleYSDwKzHewUvbft3DbheGKLuvizxFP33xeOi3NFDKpYocLhM/gRvOV4CUAQnOY1jqsWERCB6CEghzR6rkXMHAlGIouX0swYNTLMED3bh4fjHGFEmTWKgS/vRmOkl8NW9WguY1QwTC94uRGOHhL3lPJ+PGuWG9g8IYvJyJVybtBXrFkdDP1bnjWlPOpejzYTYe7khh95/l/WrQu9NUSzh02YGCKsD3rU+wyPwKK6Sza2ZcOGLgbxQoi00hO6ePmysI0eg190ZyqX0QNEmRVGb7PPK/157S/BwaPXlIeVJldfHZSBMXKU9aKqWMB7iZK7YIgj5bKRKG86P08eKqo5lxce7eoCGRjhvKGfqMIF59vO3bvCqBwM6w/LlgbDzjns2LHTNmzaHB52yFpS2rxz187QY8tx/rXtb9uze09YH4OOkWbZtWtXMPCZ3CHf7Z9v3LIlRNM5NgawM7bgpJy5woPBlr//Mhx8HiwoLyMiThSbh7VCeU+Pm6nn2WYeVlBSpr+XBxgc28hDQGS/yWWl9UVABEQgJQhk9vshwT6cqSd9xFhjL7vt1bGDdejd2/p26hTaNKjMmepZRu5vs709BNXbOQsXhgqbma6qS18oWUgCoa95nygjy1Bqb+MjxW7t8nDIRvbxEt6zPRCIfgG3W3o9cWoZA9PR55de4QG+dz7+2DieRl4h9N4nn3plzjX2hNum/C5mRJULQn3oF/T3jCjOMwJ9r0+YENTnmctN+8v1niVlfFmmDBm9DeVqH/3yWih1xSmjvYT7L60w9Kry+rKLvY902rQwuuxAPLlX4+xSFYNNhxkVQrSCEIzELmGfXu/ZwzO+54c+2ssvqRjWoV8Vu8P4mR+WLvXd7AnzxrGfGze7nXI7x8i3bdu2BztFIADnEzv2b6Q0vE/WlwX1YNTts3uvbtjGls1hfY5ph9s55rQSxMVuYetwOAkQMAqOQMAgbKk7tAXctl7qasUEaFmHkmCC0Tmzeymx2362p0UERODoEJBDenS4x+ReKRnFUcK5oQeH8qanPKPWy4UZ+j/YOZTWEhFGbZDo7ipX1UW5dt36DS68cGHISmKkf/beTxQEv3F1XQSOkMZ/8t52od8zTtnwQS/xrWVPvTQkRIwpj9r2z/bgECFWRAkuA8zJHPIwgPgDQkoDhg0P5alTXCkX5UN6QId4iRURVYzmH+5s8eDBAwGGm54den2IkmfJfKILVfzo/ThlbeHSn8Lw8eoVyrvT/LU7cZtDadbBnC0ePCLlTBj24Kx5NpH3MJavehYZsQqMaumzS/pcu5+CEAUOJ44rPIgk47xilOFG5hRRpfWbNrrzvz2U7f7PDS1McDDZB302qC4SeebBKM4hjfsVxLHkT+ZMGcM2//57W1gnu0ePef93305mV2nk8+3/7LAly1eEkjKyn5w3D0TnlSjhDwW7bPGKFcHJ53eAcyUz0Ltjx1BGjBOLwc/oDx30CZ128kkhi0qpsRYREAEROBIEcEIJlqLWXtwFiqZ8/llwDBEbusUV22/xih1KdZu07+CjW1oG9dyurVsbKruP3902iOxRsottQ6n9zkcftUY+uxqxvWru6BFspb2B+y7CRK28RQR70/HWltb2ie5xJbQumHeqZ2BxiuYvXmz3Nm9u7Xv1Duq8ZEm3euCPLOmTHiC9sGRJH1u2LtibFvXqBz0EsrdXVa0axIlQ1d28dUvIeFItRNUPTl0dnFEPoGKTyFhSWYTNQwNhrDujBDYvr1gxfB7hzr0Ypxf7QlCTDCLBRY7hCh/LRjsHZbU9PROJ/aEMmHNY6QFbArfZvMqGdeZ8v9A/t+DMUsVEUDOtBye5/2/avCWMfON9nF2cx12eXcau4ZCSIY5kSHe6TUF4kIXXnGeu7DnC53/jyHrAFKcSe4btzuDO6/+8nYSRcIvdTuFIozCM7fvey6bJzLIuNu1WL50mkEpWFgVjqo1OPyUukI5TyrnDmWPUIgIicGQIyCE9Mpxjfi/cuLP5jZxy1/IXnG+jJk0K0dz7PYOJ4W5w9z1BVRfDTjS5jRvn3h6Vpj+mp//8yMABoeTmAY8cU9aDui6lPk1dTp+M5r09enoWtXwYBk42DocIQ9PGDcn4Dz4wyoARkUDYiHKpbB59vd6d3qmff2E3+4NG5779giNFpHfBkiWhX6e394jy8FDxgtI21UujcIZR6sWgYaSeHjI0RNHpvaEPhxlyzE6d9PEnwfGil4UsbqHT8wVDjAFMuBAFxqAThaU8iogxWVp6hCjR6tf5gWAwMZrlzz8/ROJxnil3pV+U6DgPNoU9u/uXO4oYUpx9ysZwBHFAKZNFVGnVL78Go43Dd4qXkZGN3uP/ESTgO1s8Y8pCaRWOZsR53uUPJv+42iMlu6y/zV9z/rm9/4aHji0+toAsKv1A/M1oHow157Rt+z8231kSBec4Nng/7Q9Ll4UsN4YfhUeuAw432dWqZS8KAQpGGdAThNOfwY8Nw69FBERABFKTAP313JNnvjE6qN8SHEWv4EK3WelOSBdKYanIoQWkbKlzQpVMpTIXhlJYAqfPjxwZZni+4/2eJdzx+sZF8E7z9g2cL+6rFUtf4I7PT0HngCwmbRWMJKtbvYYN9LYPsorcDxEgauP7JlB7nTuzL7mDigNI+8g0t1eNfeRZb9dLwDEky4l9q1W5kn00c2YowWVu6eMuvIQDVbtKVQ+aTgqBWZxJsrllPLO6yStdGCdzYcmz7Zff1wWHlSAn92yOEZtRwDOclNhyb2dfBBG5lzMfld5N2jdwOOu5ICBBWAKlBG/JEGMXOOaiBQq62vDcoGFAoBHbQRCYQCm2FpuAneZnWKG5wDrYb9pCNvln2KC07izjkKI8jN1hweGMlOxieza6M8tzBnoN2z0Avd4rgrCvrI19I0CKbSUQi4OKjcvvZcHsb6EHnPN4EJR+Utab/d33QewJZxibVdhtOPac7XHulF0zJg6HmAAGdlSLCIhA6hKQQ5q6fI+LrWPQcLZmjxsbMnN3uQO61o0g0UuM1BwXbyjj2crXxk8ITh9zPRu7k4e4Q9NrrrUOvXq583hlKGOqW6NGGOpdzdUJUbgtWbRIMKwoCzLDlJmlzIOjFAmxiTsfe8wa1KxpL7hgBAYQ52fJiuXhs/a+XaLWM+Z+69dhTyinen7kKLvco71I9tOjcos7nqgjYlgxWKxLpJnyKYzjzZ7lQ+0wizuNzet4xs/XpbynoZdOsS0eAugzHTp2XMgEEl2lpIksYVzmMVN4EEF8iSwvjy44dJRN8YBBpBejiXFn3mqmjBnCLLmffM4cxpuoc8kiRf2zBWG8DQaZ46QXiSWrb4ueWEqZWTJ5JpN+GzKkPCTxIIABR7iDBSMdlyGNy0zymocLSqFYMN7rfWg7zjUR87+3bwtOKE4w36Wkl4eMs7wMm+8SvWch0gyvBUsWh4cbrjsPRShSMhSe8l1KjImM8zBHeTFlXvSk4nRrEQEREIHUIMCdLnI/psIGoaLH27YNonh9OnYKmcg+Hhwd/+EHdr+X6M710txGHszEcSRQSCVKeReG435c6cLSQfW9mbeJfONODX2iY6dOCdlTnMRO7si0crE95mkPGDYstKhQjrph86agoPuyZyoR7GNdRoZxv2W8zL3eD0nQFDuxfPWaUNZK+e8jA58N2yCgiTI8YnRUDOGg0VfKWBiygpTyorCL000Z7ZipU4PDSuXNhA8/DPdzxqURKMYpw8l83e0xrRRUEuEYczxkOP/n6rU45QQpccQ/+fobv7fvCNsgw/zF3DnBUUSn4dc//3BOfwZnliAjwoR/eVCVICsOLefCOWLXyJCifI/diGQzKd+l/xb7QOks+8FW8x9VN9gu/mBLsT0nun3DXiDYBDcCo2yL4Cw2k2AnTuxWt2k4mozYYdt/urox17O0Bx+w+1RE8XzC+UfsVFUv5cXG8T3O82z/bkEPflNqjXOsRQREIHUJyCFNXb4xv3UM5Xo3tvTFYOh7dWhvt3ftas893CU4afTazF+0ODii3PiZ24bB2L1nd3DCNvsMN8pw6APJ6o5Vdo8g0y9CmRBZwFvr17ePZs0MzhxRY8qoyJ4yk5SoczF3lFjIHjKDlPfIqOL0EvUs5kaTBwwk9h90g1/EjSRRYSLJ1/s2EDGK682p6a/fDGU8OIw4fPTDfPrNN8EBQ1J/tI+n4djo98HgY9iu9ozsZC/JIgqMwceQ0qfCvLfnHn7Yt501OHtkd9/1fiG+g+HGaGMUI84pRh6jerJnN3GqP58zOxhinGycuB8925jeo/j8zDZ+XfdHcDbJLuJQMk4g9OV4aTEGn/ImjCusCTjjWLLs5ZD6k1qcQ/q3H6MrEfp/bBtBJ44Lx5aHCXpoeZggC0oGl2gzDPmZ6zfPry/BApxfjoMHA7LORLoJIGTw9yl7pqzrfR/1g4NKAOP7n5YGJ/YXPxctIiACIpDSBLgnnezBwUmDXwjBTTJz5xQrGrKeqKe37d49tHhc77aL0S0tOj9oT7sNI1ja05XdaQshaNbt+UFu2zqEv2lDaf/002F8C7YOxff23j9as0JFG+66BYU8E0qLA0E32kdwIBn10sHLclHiZZ5pRi93JRM3duo0LxWub08NGRqqaHAgP/hqRigDRpuA1glaSwi4krXFEf3RleQJmuJc7vF7PePLnh0xIjiFOE98j0Dm9bWvtMGefSXLx3xSjg37hJOJw0nQEn0HjptqHBxVAqVUAKE3gHjgHrfTqARjm8kW4xST1cRpxY7xvd1+TDiGOHhzf1gUbAzZTzKq3P+xObS8cC1wIvk5ozuo6d024eyT4cTJ5M92SnbjEqTB1gaH1NcPdsr3S08p20Ef4ff1fwbHl2A1DiMtQARWCRhvd7tFhhjHkmNFYJFSYux/Vj8Wnll4BqBViH1gX5lnXqp4sWBPp3z2eQhmY+O+9nPWIgIikPoE5JCmPuOY3QOy6jik1cpdHG7i9GT0dafxDlfTbeqR54e9ZImenL4PdPL+z2fdsLcPTipqeG+//35QxsP4UaI70RVrH23dOvS99OnU0Xr77NDH2rYJfTf3e/9nyy5dQlaSWaUhG+elRzhi9NrgHN7f4uagZEiP57duFDFglAo/52VW9NOMmz4tGMHbGjUKjmf18uV94PnSUAbU0rOkyOgTRScCTbYTlcDcLubD6JlL3GgRHUd1EaOMgAKvET1iP3MX/uClQl62W6iwnX3GmcEwVy9fwR82pobeGASaVnikmF4bynERX8LgYQgZtI5xpYyKkqnS7ohjHMlSkm1lPM33P/0YSl7JhLI+hpaMJwYf55UHCxxFyop4KNjsXCjNwkEl6sxDTFzkGYc0zgkl+8l/lDfRs0RZLw8ErPvHxg1h2zxE7HIHfN0GH2HgDwIYdgIHBArY7uleVky/EiqOiFZxLGRJceZxYHGecdQ/9ExwRR9zQNScB5JlPm6HUTP0D8EBhlpEQAREICUJcP+kf36Yi+7c7I7m4EcfDVU3qLYj+kbwrZDfs5gnyn2dYGYDr3bp5G0jCOXd91TPME+UAGgzdwppCUE0qJOLH2EnELnDoSPgmsudoPxe7rnWK0baeY/pG+9N9r7RW+yuxx4PziVCffT6Y7vmexUJ7SgP9x8Q5+R9/11om0CF/okXXghOKyq4OGtkU7v7e7R6YLPGuANLSe4Wv/8T0LzGe0JpG/nT7QXKveOmTQ/3fsp/ubdy/8XpWuh6BKt+/cVKFS0Wgo04xThrl3olEraYoGc5L8clg8mfk/z+jX0b73aZDDOZQgKM3NtxptkOysS0cDD3tFjhQuHeTqksDjC2gNd/ui1J70GAuBaP7aFcloxx5oyZSISG7CQ2if1jnLAfYfHPsIs4r9jJ4JC6XSOgEGfTPGPq2VVsHDYV8SIC3gR6Kb3lWLHZfzjDUh4s5effPNAKD+wvdotMKL8jrL/FA6uffP21XXROqcCH84Ivwki/uM3SIgIikPoE5JCmPuOY2wMGAscHeXkcGHoh6dWs5TPEKK1ZuWZtULZ72cepkE1s92SPIG9/axdGuTS3G9rHCUa0cGeV0S9NXdmws88XRZ3wrhtusFsefCiUyeDEklnE4aT/BmGDLW5QEB6iDAmVXQw+5bM4kZSy4hR/5eW4ZFI79ekdlAoxUmT57vDvPeTz4ooVKhREgnA2GY/CKBh6WIhY09eDk01G9GUXPKInBal9RrwgY09GFuEIFAZR/R016b1g2K/xB5RhEyeGqC+CE5/Pnh0MIsfN9t6f8WXosaUsiEgtxpps6PklSoTtwY3jx3B/MWduMNBkITG+ZCDjDG9cafR3P/7kxhvRiCwhy4yDFxGAoC9z46bN/rC1w7eRNjyQIfiEWASGHwPPvvibhUw1fEKE2h1a+nkojeJn5o1i6HH8MeSU7UYeIuDJWAEeEDb4gwG9WAhscLx/uAOLImU577elN2vNb7+H6HXlC8uEB45ZXn6cx0ulyGDz8KNFBERABFKSAI4G962rXJiuv4vZtXa7Ur/t3UFkjb7O57s+Yu+4AF4L1xcgUEivpN/qQpAOR22tB93o0Vy2enVwrn70qg/aELjX0TZB5pLAX10vfeVex1ztl98aF3QSKNm9uV69MGqMMljunThHdzW+IfSL0vqBcB4jTM7Ilz+0alCeizOKveBYcBhDVnPiOyEYeEv9BiFby9gv1HfpYz2veIlwn57jAVG0DdgHThS9rGQEEUyiQiiP90J+OPOr0MOJiv0IF+rDUWeMF844nNgvDjOiTAQOydR+5yJ+jD7D1nMv/2J2pIonV5h7OnP+vGD/KRku6D2pBIJ5HqC6Bt0Dyne3e2A0o6v/oomAzeNnbAIMqdpBjRfq2BtsUrxD6u+yLawUzxs4lJwT63Bt+RldBapuCHyyDgFOdAvo/aQChyAtGgfYUSqVCOKSGUbpn2ww15JnADQvMrmDTPvJIlfcr1mxQrCflGQzhg3lfi0iIAKpT0AOaeozjqk9YDgwCBhaopqoCDa5v31cFvS5Z11G/55Q5krvJhFoHCUUYj93Y3bxeeeHyDEjTRByqOHOJhnMmq72h/NX0Y0gBhHHjwgxPSyIL1CeijM50Z3Qbq6OeI/PdEMR8XEvo8IJCn2NXoKDWuFAf/igxAnpewxxpTJlQj8o41mGuNOKYi0KvkPHjg3iO2TsUAG80Ue5oESIciBR8J4vvhREd3B2kdRHFbee97cibsQYFF6/6OdASQ9jYhCeoG+FhwXKXHlIoQ+TBwAc2J3eJ8Ox8hllTzDkwYHyV/aPgaxw/gVBcIlILyNVWJ/sKA80ZCB5UEGsiB5OMpaIRBDpJ4IbiTrndMNLRhOJfK4PggwYeXpu4h63/u0hDaaebKkbejfcEVGJuJ+3+3vb7bTc3kfq0WyyrWSFQ6+wP6zg4C5xRV0eVBhOzvaXeBkZGVWizWRjf1yxMkTB6cOhFHmGl3bl8QceHPmNfq14oKI87Dfv69EiAiIgAilFgHsr/Y2oqlLOSmDu20WLgp3p4gFJymfr+1gXKnbauVjeIHdOB40eHeZfY2Po5/zM7VVrdxJnuQNDr+achd97Nc5NNv2LL62bf5dAJH2njz77XFBwb/vEE0EPoaeX+NJuQkYS5+lGD3JO/vQz63LHHfZA375hzBmOHKWzbBcnln5OhImwJU3dNqEGTzZ05do1nnH9PTjN/XzeKK0lfP7siJHBAbzY+1rRWSBLS5B1/PsfhL+xE4x4oT+yhlfqoBSfLUvW0F7CODPKW+mJ3eRtHXCh7YO+03e9WgmbTY8/dpB5q5ndmSzrgVdE81AAxlml5xRnE7uFZgHzPrE5VM5QTsucbuwcgVKHEDQOsBXYdIKhrIMTizOKbaBah/eo2EnokPLswEIwlsBonB3bEca78D4/4zCjv4ADio2jbJdKIlTc+T7tJ2RDS55ZJGRZeZbAcS/zb/kz2gs45OX8dwW7RckxJcDoNmCHp3qWGSZaREAEUp+AHNLUZxwze6AfkV5AnFHKcYlyMlftyiqVfczKU0HgoYn32TzjGdPHvYezx73tvL/y06BYu9TLOlH8Q8UV5w5j/T/vHU3jcu9kCnF6yG5i1BrXvtK+cqNNBpRSp253tw1ZVqLIjHOp5v2ZM+cvCP2RZCPpS0RlFyXeS71Hh4wiWT/WR0n3ysqVjawcpak316trXV0ognNATIgeUXpFOQ8MJM4o2VacOZR2B44YHowwx4RjSt8LKoijvSQLg0g0FdVe+iaLeOSVB6ExU6aEKDGqvZQBERnO6+fMg8LULz4P0V1e4yDSgwNXxJtQop3vDwj8TAkwRn2eR7mJ/hK1pzeG8jAMJA8GKAL+5qISGFSizkSm4UkJLxFkjDwPZ7DlIcSRB+44nfzHNQiRZ3c+Od/I6BcUDCm1IkNKxpNsKyVMkYcNlAnXb9zo62z0c3LRCP8u/VLf/bgkjIDhOCin4oGG0i6cbRjAmN5SHFey6ESjeTjQIgIiIAIpQQDHh/shAbv+bodwAh9p1SoE9sgAMh+ZbGGtSypZV6/AYdwHc0gZL9bSdQ9oE2nlQnkov7d+/HFXfr8/tILQTkJmFfXVZp0eMEa/UNHT5KqrvL9zdLjPIdqGU4lzR9DxEd9mZ5+BTeUNjirlujhrBCFxijt66S+ZSBw7snBUBzEfG2EhSnQJ4ta9rHoIxJItZFRJL29loVWGUTNoHhD0ZJTLUA/o0nJCxQ/v46Tx+rUJE8J9nxEv9ExSrRJn+06zdz/6OPRTBvvojjdzTU/zbdA28v6XXwbnkTLkgv6Hih9GsyAaxLYZd8ZCWwvKxAsWLwn2itmi9J7iGOLQBefT7TzaC2gFYIMQOKLHFBuBLUvjQU/Wo1onLnAaNh0ypLzCvmCnWJesKM4sNvEf/5msJraQ605ZL2NlKHUm+4wdxaYSHEYhn2wnWVKuDbaT3wfUeeFc2NdHcX+TH9PHM2eFCi/O86efV8YdjP4vAiKQ6gTkkKY64tjYAY4NDhLlN/28J5Q+G4wzRgxjQWZsmIsmkIm800uW6JG50WdQDnzIy3TdWR3oc0kHDh8RZpi9OXlKkMZ/y3tX6B+lZJa5cDh8fbx8l96ahzyijMGnr6ZTn75W051GZoxigCmlWuzODPvoNmhQcByfGjIkHANlVd8u+sE63Xqrj5R5xuemnROiq8wha3V946CMyww4+kpxdumvoRSIhwkMO9Fs+knImKLky4MAY1/oByWaS2/OZ7O/8X6Z30IZE8YSFUKMGRlfzg1jealngdf89mvoDcVYVvZMLdlfMpqcAw7oJ977QxSXaC6iQCj8IsbA+medcWZwrHm4IsuJA4tKIH/YJ0JQGOJIuS7Gl3JdxIyQx8fZRH0Q448RDmW6xKD9fV77JQuvuXZcV4w5jiILDwUoJ5KVze6RdT5DKp8Sp0L54gz9Vnf46XtlXMBpzhznnKADziuZXSLaBBeI8POAxoMIWdZf/PeFUjHWY3yAFhEQARFICQJkBHEIO7W8NVSmdHQb9Wjru6y594++5M4l9okgI04Z2Ub63FEvr1KmrD3nWceGl18RSmlxMrE5KKwjXkRWkmoc2jieeX1YUMIlk0rLAi0HOFPc4wiE3u8K8KyDmFG7Hj181mcFfz9O6KfZtXWCEFHLBg2DOi4tCzifX837Njib/V2VF6eyttsYqnWoHIrr6fwlOLVUEWFbEEFCxIgRMvSNogJP0A8nlaodgqYIGgVb5tU15c49z/7y8ljEeXDCqpQtY2960BRbQGaQACbHzjboKWXeNf2WOL6MeUEDADtEgJIROWRVCVgy5q1U0aLBocYBhQPHj32iQgbbhi4CziAZVCqImEfKewjmEcQkUIqji8jRDrdD/BxZIhlStsuCQ0oAEzuFvcM2M+uVgCsOPJlwyoCp3iHITW8p28PZ/8ezn9hcN3ueNV0f1iGTjX0kqPuNO+ucK8e22u02uhDwxw5qEQERODIE5JAeGc7H9F6IFCKYg5PIPDQUBYkk3+LO5vM+IPzDr2a6kbsoOCH0FqIGSHnsdbWuDKJESO3fRJ+oO5DN/O/H3AmNOK0tvY+0gxvxlq5IixFnTimiEziYl3q/JRlFsosYIQwnZU6ISSC3f8+TT/rA7kohy0mJURPPblKSdLsLFxGRxkms4GI6kz/9NJTpDn9nYuhVIcNJSS5OHpHSoPzqDyVI1PMAgGAFmU3KY5khR6YP5wrlXIwZxoqxJ/SXjps2LYx54SECNUUys+cVLx4yk8w0JYvM9zCSS39eFZxNBDR4EMLow/Zif2BALALnDTVDRBgwkogXoaxLbyk9MHFR6H9CeRLRdiLQbIOyWpxTHiDIWnIMlEEx45OHAzK/9Ia6PxoeQnAwcUR5IMFxxGgzi5QHHB54EJOgLJjXZGZZjxJeyptwhHGY41QO14cod4nCZ4QHBI6HKDzRadhzHN/6eXHtznUmPCww/40M6gVn+Xw8P18tIiACInC4BBh3gpMy/eWhfr/+NmQiman50pix8XOwEdejwgbRPO7btzVsFFRgEYrDIVq/aWNoK1jizlTI+nkPJU7jkuUrQhCR+yiBWe5/jBFB6fbr7xZYV3d6cWjbt2hh7X37jFDBoWQbjOVCAO/em5vbg8/0C3oHqK3jOLMe1TgNXWeBElu/PQfxJKp60BZgX/Q4XuNK7mQkcb6wjWgz4MQ1+TdoSrUL7xMMJfiIngHBTcpqsSXYhfe8HBd9ghoVKsYJH/n9HJVc7u+IH1HySssMLSw4nNyjsZ0I1iH+E8au+T0cx5JAJBlo1OSzu12iioegZlx2tHBwULHVtPfQeoKju9aDAFRH4VzSNoMziY3B/lCSm8kD3WwDp5MFx5F1WCIOabBL3u7BdcbeYcewMdhKzgP1XFpVqMbB1hR0O8Rx4kxjX6mIwmEmsIygIaKAiAayT2wtx1fB22jI5qKJwHqU/GoRARE4MgTkkB4ZzsfsXjBilG1+M+ZNzwzOtlxeasNNnKhsu6bNrJ4LRbzU7fEwc42B2vMWL/J+jTND5JEB2fSjvOXGlqwY0vV1vAQJZxFj3McNL84f8zwvvaicG9TJwRATUcboE5HFsN3kUvbves8hZcJErG9r1NB6uEOJqBKOFY4kzuwjnlmtX6NmyKSmT58uKCUSra5z2WVhHiaZw9uva2QDhg8Pioj0uRI1Z9YcKrP0CzH/FEP+gxsk+njWeiaUklyUcjGEH7iTicNV3vthcYxxtiiNwikne0m5EmW7yPljDBlxQlnRrAXzfd3MIVOK04swEQ8csMSAMoOUjCYlUYgV4dgRISaST4kVjv7/sXcfgHZVVdewt12kC4pCgEDohFBDkQ6hSpduAxQUBISgKB1EegdBKQmhI71XpUrvUqRJryqogIqVfzxz303yfp9+FvwDvu6Nl3vPObuug2usMeeYY7bZUfU3kxaRdR71n64jk4mUkysBdkSUBBcxtUgB3uWrWyQ0hDT/+Mz4cc4VZeZ8CPxJchlEqF3lrCsrLnotWiyzybACUSaB1hLAdyVz6jgLGi7BCKhFDrdgNVNIq5pUmVZtctSW6lXbb/0I9CPQj8BbGQGKE3Ol2s51tx3ZjNln76huLq1SDDhg/tEXVCB1xwQyN4znweE77ZjWLvs1R6d+dFRIq5IPde5M+BBIBn3mMSUhDzz208qS3pCeylqLXXjN1cGiLeJ+e0w5wwuiwpVDTjyhShYEHs2remur69xhU466hxeGUInANG3I9j7m2CoxeTTBypeDAdUTO5hIbaRfJtLM5fXp1G8iTJ9afrmqveeZoLTkvB/8oAgZWS9SqfWZ1mNII5kqLFJfykUXWWTwJLgqY8inQcbwomuvqaGHQzDi+qh93p8x4zKv9hIhZlw3UwKgiORtKZWBATBICc7Djz9RpI2zLjkyEqotDZKH8Mla/yYy29YY6I3CWeSRVPaVKJFssMq+lDldVhQl5buAmMr42uDLqyHlroHkBr7aOtJInmErpZFxl4l1X5Q7CKiAq8Dtz0NcPbP1DDIMc5k5CWbAMs/quWAXoiug3G/9CPQjMP5GoCek42+s/+OuZHIWFT50hx2aNbfaujl+771KuioDaqIHZkwbNkpNzSGJOuvpdlBkuiecd37JYx+IsQOLeoQImZMtVDdCWsokgfssMoZ0kfAAI1Hbx555unqJXpQalx0326zZ7YgjKsL8zYMPrn6ml99wQwESIqln207JvNoHGD8ZIwjn/OpnPlu1okskG+k1aasaHY6LaldFtzUu13csRjtvXJosKpt7gMZd7xPzzlNZxWtuva0WB5EEvQHY9VFVN3ryhReU/T2yyzVXBhRRJYGyCBH5ZXCkKTdJL6v8AvmAuYUPUEU0GTDcHMkW0GQu4fktiBBLhFImVIYS8QPygNd7xpRJhLA6MDeWpMYWO57B+fWiA/LAVd2o8yChFh7ZqQDdbxFh0WHyJWDteATVIoKbpCi35+FwjBhbUPhxnPtUXzpk2unqO1Hj4/4tYjyvaz6XBYP60gVjjsFcQ2ZUTRKZb7/1I9CPQD8C/+oIkN1y7FaLef5VP0w2dP1mjS23ilHR7s0Bo0aXu675h0KEvHTMuedWFlIrFw7vnHeZG3159z2aI0JSSXMPilnRISecUJnPA0aPbvYbObLZOYRSXelWOY7i56vBus+nNcye8UpYLnhw5Y03VWBOANZcp/WLchLtY5yDs6uMqfrFb262acjoMaWkQf7uiVz2K5/esAKz5lUtsUadc3ZJSGUJqWn4NHCxpdRhqMcdV4DQ+zKU5twlhw+voKPSEEFD7cpIc2Uf+Rncl4yv/bjSUulwjjfPwxOy2msSVDXPywpzplWaApOZ580/x5yldiGZFUhF2rSa4eqbKT5z/yTV4xM+UBEhmfAeppnvYRPFjcymH+uA15OlhQ+wyvpA0PPPCY52W2VIw0iNkWvALVlL2U/nFoiVNaXM0RuVTLc1N/pjkXOlOAgn4yV4aT2CyPqO/PfADJC0mFuxwDJfhJtD2GXMKafIkPutH4F+BMbfCPSEdPyN9X/UldjCq6f4ZKKqHGQB7Bpf2bI5cf/9yuVvg1U+WWAlirzUQgs2u4QQIoYb77hjo3H49gceGEOI7cpsYae0dLkiJFL9jszfunGl5R7LMl/2keutespvfnHTap2yRxqU75gaHhJhzcTXW3mlMmqQZSMtlXUTkWYmsXWI557f/W7V4iC2TH/0JGVYgRAxMrgxkW2tYo4+4/tF8jgvHpUaHJFopDE2+O9CRpFs8l21Jeonr0wrGxFm4Bs51LtEgFfOeJx0wYUF/CvFLAkgi0Yjqhx1z0lmFGjOMWTGsrq/PNlAgCsjCERlUkV/Ab5FiqisulL3SSIFBEmkHMPB1n5AE1gCZnUxItVaFZR5RzKVpLayqnquyWoCeZkBsqsC8BBSm/f9jK0hjZ1+3gf8jIzIshFemyzrL375chFq4yJzirRyNRQ512dOVBzZ9d8A2RUJtHuUifY9W/jMMsPgqotl+uTe1NaSm5HF9Vs/Av0I9CPwr45AZbOikglXqVIO85KWWYKkm6R1GInuyGRB94rzuxIM7rCCfCSnpJk8C2QamQtx1N1st92r/lTvbNjDzZ3j7ldCQrWNGbnf/s2GqS/lhYD8XZPaSlk5QTylEvwT+CEwLNr5sMNLOQNDEDh9qfUIhVsyqwgjfEIeN4rcVpaWLJZjO/XRfCGA/BCuvPHGIqjVFzOqHXisDOKnTz9T7zOHuz8YqrZziqhZ4A2PBaUs1D+IIcJsP07B5vIlF1igMq38Briey45SrfAvmDbtWdyXICqJMPULjPxJssQ/TZZW8BNhhRO3R/Vj/p8wWKl8BWbAAiSWJFldpyDqCz9PDWc+K7luMFqQljzaewKkcEfZideyot2GgMIm+6s99fr3f/xDBclhm2sItLoHaqy2LvjDFVCFjWS35MrIJaL9UmTWpLrUPEg2POMdwTVeb1L3p75Y0ICDMWVTv/Uj0I/A+BuBnpCOv7H+j7mSrBiw1+aDFJYsFJFC6tZORHlUJLokSICXXFZ0c6ZkyE6OCZD+a9sFuL+eKPKmkTLtM3LbRl+2Q9SQHnJo8530IhUd3idRZxFsn4sy77rFV5qvRmr1tY03LjOIjWIoccCoUSVxZbgAAOcLaKgPUnO6U+z7NSsfc965BS4LhlBekjoZ1vz7Hnts+rsNSrZxlpL6IrzkwBxoN8n9HTxmTAjVNEUAuROq19EgXW9TPUfVbF5+w48a0tuhs4iqn1fOwNUMPc8og7j8YosGvF4s917Ea9mFF6nMqIbl6ktnmm76IvJAFBnl7shlVtTW/gCQjBdYI5QWAcaZXBmgI6iO48AI5HPzRWiBqcUPWTEJkwWCjDPAJdUCssihRZIspXMCXFtHSN2TZ/AaORYt1s8N8IswM4ewEADqIs8WJRZV3iOZIhX2nud4442/lNmRNgfuQ6bU+X+e6L3ggGi0hYlMu0yye5Nh79u91FfS/6sfgX4E/oURoAhhqIaMyFzCHHWa1DCIE+JGorvn1ls3m8TU6Jg99ijSt0kMgchmp5h0ssI4WUPyWNlC5RrHp6aTud1hJ51Uxnej0h5MEO2cyGMRN/OzrKwsH2noCostFlJ5cznCfys4hsCqAYVVgot6lep1+p2UiTAj0qtals79IYyMlNSUmr8FbA878aQKrpo3KXL0rZaVFPTkBq8vKqLFQO9nmWPveOD+wpIpc0+yoQKjPAtOiruubaXFF2t+Fnfbm9Ob23gpU7n29ttKZiuoCDdJUwURzdOIMLM5pRfu0+eyslRDCBt5tKwjIqfkgqrGvO/cT0SF1LYke2+VlFg/OA9cgjUytTLAXTkIPJE1fT9CGmyGjd6rLZFSrrsIreDse7OfMaL44WcA32CkDUmt9i5RH7nmBPlukFv/LVD5cArm1UCR47sX0IbRSC3SzROCCmiefL+CtbK8JL/wr9/6EehHYPyNQE9Ix99Y/0dcCRFFQtigI5GixNsGZIGiyKGI8sY77NgcuWtMiCJb2jvRZ61T1JPIjjHeAYiyl1ql7JJI8Vaf+UzzpUSf1d987hvfrLqbzbNAIH0inUJ6dw7B5GarvnPx+Rcoa359KwEeyc8ma61ZhJfMinsuQCenJdvRQHxMZMKbrrNOMqlnBBynqKjwqRdflFrVlQK4af6dGhFmRxYLQHuZtIc58fzzKwMK/IE5kkh2y813lukHl4viGWnvAuTWXn65hikSssgmH9CJxiNlI/K8F6Wu6NevvZpjZqjaHRJg4En+o/m5RudImXMNn3NoZYbVBSHa+rhp22LRYIGFoLonzoBaBMheWgDpyUr6+1SkuiRQCCdQBbZA1g8yCMARVZHnV7Of/mo20WgLg67tS1tDmgxpjgG+ji0HxFzDYgDwP5+MqKyCBYdoO3KrllXNjWefZKKJC+i99/QLz1e7GnVDou3AH7iTIbtHtU/MOT6cxaD9+60fgX4E+hH4Z0dAxgshpdrRy3nXI75TOKQXKDUOIx7zk7ILQc+vbbJJs962I4NZuxQeMdWTEaTQQZg4z5oLkSEqFgE/xEtZiZ7TiMx7QpjMd+b91ZZeplqDwC/+Bzvnmtvss28ypKuWy61g6JSRj1LPbJ3M67cjA+bqrh81UgfnEE81oYKSlCMcfXkrUM1wKT/9kkvKVwGxUve5ylJLV+nDvZHnIpXuEV4sFG8DJO/S664v8z81r2fE2A9OqT/VauXGHC8zOiJB0+tCRmUBeRUoeZGhRWzVW+qDffeDP2kee/aZwiCBQ3JYZFjQEvFUg2l8qXYELl2bCkaGskpI8mUKXsLR3wY/BB7JguGb8hSklLsuIkidA1PUiFa/62ALDOo2OIWQ2sdP1ZXmteyq76s93/vzvaW2NAFVEubJs36hIvI5vHWv/kaiKXrgHHUWjORs7z3nQ7iNEUWUsWOC1G/9CPQjMH5HoCek43e839FXE3Ekg9GqhWyVKyBHQqSUgyAwJrVcY8SI5qt77d0cuP32FX0+OvU6sqNapbBMlzElBRJpXSAyqTMvv6ys7DkRrhUQtkjgdHvkaae+KYElV+UMKEqrLoTUlMsuqdVOkU+JPm+ZOhu/NfV2LwjOF5LxPDA1OrKlsqDIE6C3UFhrxHJVr8kw4svJ7h58QktGlw2gH5fIt+znzCGeeoqKkndk1KIAiSJVtjAB7GPSIiYB2pJJcZvVP3RQ5E2i50ybgOwcQ2Yqswj93SwkZo4kWPsWoK+GBegjvTKeZLnMgtj+A3WtatRjIqiDpxlUBFQkHMlFQhFZpBDwc/+1MSGSzbVxGgTAwNf4s+SX/wTAxtOm3xvg/0sWF5Uhzd82iwB1OcwqXN9P9q5nUOvjHLICVUuafZFhGVqyZotD0WpE2nP9MuNg/MjHvCeSbmzmThZaH1VRa/Wjrt9v/Qj0I9CPwD8zAoJdyMnZhx9WbbkE6RYNdijbkA2lxmFuJOs10YcmrPlVtvALa69dDu4UOV9Kvahe2Xp66nV9Scgc/GBys+oyS0cC+2jN8zKt5K4UOlxsLw2h1FLm0JNObPbOeWRgN19/vcIk5RowQYBwvgRnr0qNp5Zl38p9yaI6p/n5i7mPA48/PhnOT1RNI8Iog8rPAGYi0d+/5NKqiUXGBD3Vfz4VbwS1ooz2BIeZCyGMsEN7F1iktZggq2yjbCqiqVwFeVdWc1X6r7ZkdKo6Vt0rzPE5h13ZX6UVvAdkSgUqZWDdh36jrqcel+EfzGBwqP4SRhgrGc4PlGInWcoobciMzfdQBkbwbpARRaaRfMFRQVVBZ3jz+xBXgdBuGzdDCtNsyCICTwmkdGXiiSbMuzwPWvL7h2RLp5piygosCDDAHriEbHLZzSVr/JQKOVYw2Hj9POUpd/7kgTjzTl2lJ9YX/daPQD8C43cEekI6fsf7HXs1bUXeF6C/NmB7+qWXFEiJoJLZIqWyocAYGUN+ACpXW31E1030efRe3272OvroMiHi1MdQAcEx2QNp0lQSIfU7opXknGpRZOAmD1Eh5UTi1ML4jAuh1jHIKDkWKTC7e25/3GSZM2wl+pxrqjFVoypiK/p86AknlnuvaLJ7LQfEvAd4V8ziQL0OSdWQQdO+cUFIJzLqs3NT48MmnzvhuZFoiSIzyzg9CwThXD3f1KCoj/QMxoddP1kswsUYQosZQE76O2PuVSQeoRNd1+pEZNnCAmCLpFtg1X0mkiwYoLYIybQweDZSKW62nG6NHTmUKDQwB9AkVdoKWKDIjnbRZNlRizGZUUCtLgf4+y78/nMiz/igqL/Fgki0bKxINnMpCwQLBYDOIdH5SXkRYmPfyqF+Xd8doqrO1fcn6o1Ek/Gq91XXKnKt/si5PpHxch6Z037rR6AfgX4E/pkRkPmybfO5zzWrx8+Ayd5ZV1xerVoWmWfeZp9jjg3B/Er1rz5w+69HjXFbgmPTVXnB1SFjDOh2SzZVZvOLqRPlcbDFt/asvtrMjJBV9Zs8EI6I+R31D2d4GFfYFo8EbWMEZ/UYhTWnXnxJKWmUMpgn9Sw9Le/Jmh4SzBk+dK5yeNV/edN11q4+pysvsXi1+BLUk0E9MoFaslJ9MBkCIo9dZnT1uAMz5Lv34UeqJlVGF/6YS2UiyX3Vb3KBP/vKKzOfv6syv/BDZnVQHGSpgXgjIKhwBGFW/4osIrILzT2syCiiac6mdkIGEWyYQDU196yzhLz+shQ7cH3iiSaqzKj9kFGklEIKlsO0lyLTlR2FQZQ67nXSBLyRST+wqpXrvq8CoPABrsGibnsjf3eYBpeQVthKucM8D8llRgSTBF2dl7zYegNRl411TiZL1hmCpzBdRtWzWIvIjnMcNm4kyOpzue729aPdt9D/7kdg/I1AT0jH31i/Y6+ECCEOOwZEuQ6eFCMI8iIZME20d4jBEFK6dbKibPORDtJNhf9AF0Cvv912qQ/dpZx2LQaQyS0//ekiX4vOO1/VHZL7AC6kCxiqkUROkFtyYMRRuxQS4T2OOrLqcSwggPKl119XWbpZBg8uIyAtZr515FHVow3wIlRMJQ4Zc0LJebneMuCRGT30xBMr86oexwIDkbS4Sc3ou0i+9FLzvCLASCV3X8BtgYCYAj4S4ZsSrSahnTn3MCwAzU0XYC6U/RB61vsIH4LLkOjqSIVFxaeLRNgigFOu+9JiZvYhaYMS4kkiJav8wWQ7LUqAo4juEyGesp2MGpBfkWFkVFZYhgDhRKKRSsCvVim7lySMIRVTI0TYgkBG1H11pFR0W4by3SHwweH6+w9ZZABvG9JYhhHZx3sWMsimMQP0DpL9VCP1Wv67QbYtQhBR3y/SjjAzObIQcawMsAi6cejBvoa5/1c/Av0I/IMjgCjpeymQSKr6lQ03qJZj30sfbCUWAmOUM9QyyOBGMdc7YuedqjaU0zrCYV61z7Fnnhn32zUL15BTXgff/urWzebJnO6betQvxBDJb6/126YQ+uammxaZ5UfwnZBV6h3u6B8OyZJVe/jJJ6odGX8EhHnPKHkWmHPOCtQ9kuCpbOn+keQuETMkWUrlGpuuvU5labnvLhxSGHO9UtwwuZOZXDMy33sfeThBzCerrvWB4Ae5KRxDBK8KvsDDEMg3tIj5UDBEZlT2lNMvDGvdh6+qYOas2VewFTn91auvFS5xwb81xnoCvMZ4oWFz19x+e85hjucVAOs46vIAgAcyqM4FFx967PHM5y+VBJbc2TVhomcsrEqgkmoJqRXwZpQHl2zvDf7ACXJeBPwPOU6daCCp5LyeEdEU7PRDZgtj1Iwy+fO5oKz7zmEVfGVc9ErMmiibPhKHX1hJnQRPqzdp7o9SyT3KgnLeRUDJjp1bxhrhh7f91o9APwLjdwTeM8EEE+w+fi/ZX+2dNAImeYSHk54I49px+dt23/2ql5s6UE5/QO/o1GYekMjxtqmVAdZkrsgbENKbE1ADYZ9t9e29mqNSr+M8FgWAWP3oqDPPKrJ54vkXNFt99kvzpn0AAEAASURBVDNpCn521ZPuP2pULPa3rPoe0ehdjziipE3HZv8FA9TqQJAokWMEcZvPfq4i1sD3kSwykKDPRXKlPnT1ZZYuOaxIKXmUPqTqYZHLUy68KJnb+SqienUixI73zBY4ZF8yg52zLoC66JprqvZx2ZhdqFcFYMbJ4kdGlpRWqxnALSuMxJEeI3vXx8DIPZMBzz37bM1tP763yDeC5txqkzQgRyYnCPEHiqLZSKeIM4AlkZ0pEf73BLCfTDT9hewLrCdKLQ4nRSCvFlP2mVSpdcn9UIGxzCpp1Mupj+E+KRptAeH6JLnuGVkmkxKTtjjw3wIya18W/LKjQN+9IMeIO+OjzrkXaCO8yLjanT/lOuqPLVrU7DJy8t8HN0cBD0EIZiL62fZbPwL9CPQj8I+MgLnFXGo+hA8CkIKiTIK223//5ug9do9r+mlVHjFFAmZnX3FFM/LzG1Wf0VGUO2m/QpJ76733Zq6apAJuyN0ikcee84Mrm/XSe1T5CNO+fZNl5XkgI+q1YOan49rL/G754AUckGkzpyJ1/BKobL6+yRdKNuyeTkh5xywxxNP7U/0lIyVtZGDFr199pVQy2rwcmjpSBE62U1ZVYFbw777c24YpaVFvb37nkWDOFLhcY5llq1zirkiS1ZpOPdVHm4uuvuZdgoUjFv1EeRVQ1sw1y6x17ituvKHUKUpnlOTwMkDyqHNmSrnKzffcXRikrn/BtCyDpe7Z3O6cFEPmbfWwAormc0FTQUu4LKDMLND7sE4Q++mY3iGpsINaRz9xBFFdr16pDJQER+GR4+CHgCgFkH1sSGr3udflhRCM02rM9m5YFaLrPhwLz5DMN/Lfid9IKqxDdJ3T92UfXgakvsbAs8oAwzPjAf/cG5x3n/3Wj0A/AuN3BHpCOn7H+x11NVFHgPDhREGPjPvtFbGof+iJxyuaKyrMBOK0iy4ukjLPrLM2R51+WvVsY+BA1sQlkAmATaZv5SWWDLCfVuSTlf7e225btabfTRQbOd0zUehdIvMVdUY61fp8LXU4B6UW1cJiu403juzqmDIiIoXlcgtQfhFABMokuztu9qVy6UVOgaEamC+kBufgkFGSLLUhorCbrrNuya9ItoalzuWM1LGqB0JAb8vCRC832U61nCtGQkXCI7KsjyhpqrocILrE8AUqe4pkiW7LPHIllLnkyvjks89VRBXQLZZIvPOQOn0gkd+hAXNZTK815raP2lTxX9nSl3+tZvRDVXPpmk/ETII8CwEs4J82PdQC6GTSzwckRXABvn1lKkV+geevAqwWBQixRZvvE0gjpJ7XYg7YfiCEW2YV8ba4cDzzIRck50VoXY88CoADar9bUto2NVeb6nw+E6nWPxUpbRcWE2fx00qnEF3Nz9XuWFAyZiJpQ6rVFvVbPwL9CPQj8PdGwFyHEKnVV7epfGOLZEdlO29KIJEhnvcEPvkCaOWl3l5d/9YJen49Ettjv71nBTuZIFHCUOowsjGHaf+hZELN5A/SYmWZAYI5Ii629oUHt99/XwVtBf6YElGEIGiCoIKmu6YOlev8hmmFJmBqzp8hRnY33HlXucYfcPzoZpG556nMICktgsrUCHZSylAFrTliRGUpkbwNIgUmxRUwXCvGS9RBsoqrh4zecu+Py81WYFXWF8FUMiFresHVV5WcdXjIp2AlPG+DpgtWkPCGu+6s++c+L/Op5ZgAohIRDsKymspJBD1hn3H6ReSupLyylzBvzqiaZB3JjSmQqGWQPwHVSSacqN4zTvBS9lMQ07n8LUisphM2GUdlK+7DZ7LCsMozI6vw6v0hrAz+bGS6fwwZdd7Cq/JDeE/w84NFXH3uM9Jf+MSECe44N3NB57WWkCVFzAVG4ZdrKrlBVgWEkWMZUq/7rR+BfgTG7wj0hHT8jvc76mqaVpuE94vcVlZzly02r7oKtTekudvss0+zb+psLoyDrNoNWUb29SS5COsB+X18Isd6eIo2clkF4Jxpge6Bo0aX7HbHQw6pXnDfPOjginBzyd118y2anfNbm5fdv3Nks1nkuscF3JdOvQugdG9qQR57+plEi1dpvnv66dVfVJ0Q8AV6SN7nV189ZkUnpL5m2ZL9cgXcGEEdM6akRupUL0ymc/Vll0lU/YmKTuslJ/qMzK2T6DiC+liIoFobgMU1WFbYgoF7IVBzTRJVRk3TRJ7KBELDctlM0tvFUzNbkqpHf1rkTLRZppSLIrD9SIhZRZtDWB9+4skigwCehMpzkvI+G1fHdyVIgLjOOGiaui6nR3VDgFY0GBFF8hBBJNVizXfjHmVO9V0jkXo50iWLmBbgE3HOAoBU2LU4E5NcI6RAumRSWYXIftoH6bZg+M3rv6uItKi0fUTNRa2dA+CTScvMAnyLAYsP0WcbKS+gfyUGSF0vOPdiwUXK1W/9CPQj0I/A/2sEzIPmm8MjvzUXySLKhu5w8MHlEYCE6Lu5Q2o79QiFS4KkjI4oe7Ry2XyDDWr/Y761R5kQUeKcFIXO8p9YNMHLR6vUwDxoPuNkLqCI0JpzmfAwz1FzqNYQvpn3r2ZYlPMePOb4kvLunrIS/UNJYRFB2VH76IetNpUR0UsJPgo2fiGtXdSnzpnApDIH9/+pBEdvDdGUHVWXetblV4SUNc36K61c/gUCx1qOIabwjcvv4wleUthQ2zDGo+ZRwwk/YYL2aMieIOmzL75Q2ChoqLxE/SVJMNyQ7R0608wJRD9RhNg5KJ+0RZPpRPzt57vwXHABfsncCmIio0NSw0rlA09lRrV1sR+cQPgFSq0PyGwpZxBpQU/BWITTeTyXz+BIS0hbOa8sJwkPvINVyKzvAxFuDfxa1Y/jeCUIsMJKf/8lP/wXEOi2XczrhVnIpvv2TDCtcDIY7bdSG+uffutHoB+B8T8CPSEd/2P+jrgiYiNbN2yWWavlyZGp/9REfN2VVqys2Flpg8L0YWQym6z0RWI5viJmh0XGxGEXKT3oG9+oukwRbA6wSMeQmPlck76lqyy1ZMlkRY41E98ykW3W9pulPYv2LlrIjD77nKrPvOS6a0uCJOsJgIcks6lmhUkE0wfRbfWqXAgRUWZFZE1HnHJyWrIsXyTW4sH9A3y1M0gYcrlh2s+4f267yKiItOioljAi2u559QC+eh2klYQKWHEhtMBYesGFyq3w2dybjCtzIgsJ0WXElavsjVkAWMRYCHW92zg9AlfGEfOkz6gFiQw0hCWRmm3GGQuAf/r0U7UYAeIWEbOmVcyfQwKfyUICyFsQIKNThGx+JO0EIqKta3VuhSW1zedcbGVAAbi+bB3h5Kzr3Ewe9GhjWCSraeGAbDq/zcLAvsit61m4VO+3jKt96icAboFhMeE1eZSFgvG0QLSAMGZkv230+fe12HA+YwPsu+vVRft/9SPQj0A/Av/HCJgvEI7r0g909yOPrGxdtSKLU/rpUd98OzJcDq+yXdqcqAGVKd1zm6+G0MXoKERIpvLia6+pdmA7H3Z4KX622XefIq76jG605ho1jy++wAKlWDEfm+MRMgFPpnRqPWEJt/fN0jaMdJe5317fO7rZJn24lZsgiNxszX1c1JV9qHFVqjIiMlwOuQxzNlh5pXJ/F7RFyEiPuf+S/JqPP5/7oQKSpVth0UXjXH9B4YS2YjK+8IzjLkwj31UPKwNqTpUN9JngqiysoCl1D0dzZSCI4cLJ0noe6hxKmDmHzFiZQi1OYBcCidzCGJLowuKQOQQd6UTkBBSRdngCbyozGqKrFdnPokyCKa3HwYcqqKw8BL7CKniJLJLjcohnjCQIgGBaW7RZ0D+9mSEVOHU8DI0NX2W04RXMCR+tzS8B2DYTyi/hL5XNdZ0/Rq1TpDRYCyN95hn+EDxzTzBMsNT9IMQCqMi8Ptv91o9APwLjfwR6Qjr+x/xtvyIg0QQaeMjskfwcFCv60w46sNkj4I+k6tX5vdO/XyBO9iSDyf7+2di+r7T4Es1BiQ4f+I2WlDI8kjldZcmlYmjz0wI7YMMogcEPR78lFhhe5hOrLL1UEcJlQmBFkecLuSOzlRFFfmTPZGLJYrnoHhyTIvU2CC2iR6KLbDEw8p6IsrYqJKuyoMeccWY56SKsDAssOhBQslP7jjnv3CJtIs4lR87Ch2mSCDPA1BLGseS75F9kSyLfIrPMkNRzqj8Flu4TubshixFAOWMktjNPN31JgS0K1BDNFXmUxQJHPwsDZE5knJEFEHwk0WaGRN7X581iSOZRA3TAD4gtzjqZrkg+UyDtVUjOOAsD90kz3qK+wNtzMHYgk0X+3p3Mp8i3RYhWMzKhJV8KAFsMiBJn6IuMGkeLDZkJC8IC9b+0boedFMr31JJS7WH0MY2UKhJd5/TflPvRqB0pdY/AX4TcGFkM9Vs/Av0I9CPwt0bAvGGu4WfwvShjzjjk4MIiipMVFl2s2SGKm1MO2L9UM4JfZK/HnXV2EU0uuDtstmlzUYio4J4aS+UXcEDLML21OcYfnECq/qA7JrvKdV1bl5jclUT2yhtvrL6hTOq0MmM2tMNmm4UEHx3Pg6+kZ/bh1dv00BNPKMKp5lKwD9aR+cItLWXUlyJqsqPOQ+Ujw2o+hE0Csqcko4vIrhQyOSqSYzWl1Srtsssj+52m/oZfSOGSw4cXTpmvV0qZiXIRcmO1m+pJEWEGctqZwVMqIEHFIdNqPzZjJM53lyzXuCDOApaCsEia888eRZA5mnESAinridg6v17gngW2wAbjTrqM6JHiChL/Hh4FDxE95/MbBpH9tv2w/1BBT8cjmhQ9jocZVETKSJR8wB0YBYdgX14Whr0e9RKHeDhTgJX/gOCjQCp8c17SYpt9kFKvlbpY88A/eCdwrXZURtZ19DtH9h1DBaW0pN/6EehHYPyPQE9Ix/+Yv61XRIYU7pOLnhFgPyjSVs2huchuf+BBzbGRNnHIRTiQ1b2PPqY5YZ+905P0sPT1HFHNwhFNTcVFhw/avu1TeuiOO5TDLekS8wgkV8QT0CBaTHmArcirDKD6Tf3CgDMSJWOrVhIwn5P2K5wKGUzIjCK73P/0CgMWMqJHBdwZSJz3wx9WZFc0WL85taEyq6zeLTIsVIDn8qkfHXPueQWuAJ+seJpkLpdMdPy0NCG3KNAvTkRZbQxnYI23r06mF7EURScfRqhEVWWEH33qybLjJztaYK6hzXsDbiS6xteCYO7U3SKGpGHIJ0fAWWaIO2Gi2qLP5Lh/CpkTmdaDTtaUmYLP1NogkkDbuWRsyZJeTPsAZhr+lkkGsqRYk+Qc9ifFlZm0ECFfAuZAlzW+2lGRZFlQUWby5DdJZoDezvkomyzpe+t7eV8WGGp37Ec2heAyhADsJRPOdUWYLRYBPVBnIoG0ItHdgkKd6y+qFcDLb+t///3F+xHoR+CdPQKUO8iR7Jv5/KtR4hy+004VpBTw1PuTuZ5eopzOZbaWClk7OAqaI+KFoDRkyw03rF6gAnVafainRAD3PfbYZp94G5D4CqR+M/LfvdLeZZ+8v3vIJpf2b3zxi+WkSxl0QLKcO6f12C6pEZWF1QbNuY889dRIcReuFmXmQYSQamZkHOL3O+64Ioz3JwiJ9FDi2B9mwr/nQ+4+s+pqlW1F6hj3nR4MUtIhqKmPtT7giCPzPIRba5eLoyLynme99tbbigTCnQlDHGVJYcGyqX1FAO8MBprv9SalXhFgFehELmeeYXBlUclxzd1ku1RNFE76jJO3yjy7F7iIpPnsjyF4iKSa0KmCSeZ7PbHhMq+BwoPsz/SPUge+wGGE9/WsBeD8+5HMnAPmVSuXwM4r8Cy4AdPgjH7ZMAtJRDIRTjgGcxDW1tcAFc0/wRnBZiZHfBusZeCUazknrJJ9FjRV46rmtAuUIqXIMMwi7bVOYHBYGdh39v9F+rvrR+B/5Qj0hPR/5df6tx9KRBLwqnEUTT58px0DpDeEIP600UoF0O++1ZZFxLj1kdt+IwCv59t+xx5XLrUWAABvg0+uXAB/UDKlFg2H7PDN5oBRo5uN1lgzWcub05tz1pCrFys6adKXzdNbDJEKDoWspNYxkdi5sgC5O1HmNbP4OPnCC0sirKXL1p/9bPOdU08JMV6geTIyGuBBysSlVzuXE0NAybIsYMiePr/6GtUHNBgVGdXSVZNKguRHj9FqJB5328sD8tqPIOdavAB77QTiVlhgJZvLtEFGmAOxGhvyKpFu8tzpA+q3BLheTM2PczgWWTWG7wvxmyX7aMIN8B9NptRzA3HZUq63JLpIqwiwSPK0yYoCYDVKanBkFQErouk4vUZJmqr9SgguQHZOCxDAjhCTSQFihN3C47dZDADrNuPJICL9RRPFRzDV8IiyV0Q6CwDfiddAv7RQ+W0f15AJBu42keYipdkXaAN7z+A+a3GRfbjzWlhYhAhIIOFqbC0m1B4JQPRbPwL9CPQj8NdGwFzzsczpx8WISA3oPQ8+VA7sspqc2alGzNl7br1VlZjsmMzl7ffdX7X8a6+wQrNXsp5H7bZrtWhhOnRzDOUExbTU+uHNNxU55G672xabF3E94OtfL2M9PUcRWeR0lwRfd9l88xgVtX22d0lGlL/CrqkV1Uv0hPPPq4CloCoS1qlotkhdKZnuWssvV0Z2pk2+BHqLfjoZUqZJAnoURpx4hyVgaW68Ivi78pJLZO7+dRFHih1E78d5dkZ6MoZcdmeJKy6jP8TXvMx46YlkSbV4gUPw7Y77H0hg97l67fyCvLKxApt6lZrT7855XUvWcI4Zh5TK58GUqpApe56PB3PgHCwhX0UqYfZkkRIj91xzlZJ4n2swvBXAhgOceRFO2dcio/kNZ4wF5/cPBvMnjpIH0bTxIJA9hScIZIdZrmet8r7cDwIZOMrvdxW2/SljiLjqWeofv73Wxuz9GRe4aH3hmsi1c5PpWoP4bLLcP5Irg9qa+7WO855dtrvf+hHoR+DtGYF3TT755P6/22//RSMgErj2CsuXERCwZb4g4sphrwyLYmakZQoSBpD0UCNX+t7uuzU7JUIM+EhGH0495Horrdx8L+1hDg4pRXAPiwHFNyL9leHUKmbFZB1lGUmEyYtmS3aUfJVkiCkQGax+ahuvtWbV14zceKMiuXqbkuuK8MpEAhxZUrKqzdZdp8im+k2RTS62G8aa/9S0ddFqZKFhc6Uu9orKfiKxLPJlgEWnH3vm6WblLAgsJhBDsluk7UepyymDh8idjIWFg3pVxMr5ET9Ra7U2zmOR4xlEWRFRJHKKkF29Nxk+qLUBgjLRgwdNU4ST7InkGbA6n1od34Wm6TKisqiAmPug5xLdB9A+k2FkumBDAgGrrOiEiUh77frkziRSnclQSZ8C6oBWrQ6HXkQXwCO1FhwdsZRRtRjsFgGezz2Ksnvfc3Z1NsYkWF/mR85pgWJfpJM0t7vX7lmYMBmH4846q56nHqL/Vz8C/Qj0I/A3RkAQERbJbDL8Gb3XXs1mu+4aJ/clan47PwHIo4NHAqGbxMTu5tTwM5j7XEzuDk996JEhpUpNPh3PgCtvurEUOLJ91DOw4IzLLour+0YVZN1n5LaRAR/a7JX6U0Z7yKlM6M6bf7lkvVqWIZoILmXNgsEXhj/hQYVnP7r9jmaj4JcsKAM+dauTTzJp4aTaTz4IrmeuhzdnRI6rN6pgLDM77vAwEDlaJffmfpVALL/YovVc6hqXSssYAdAfP/RQ4RRi6pnN3zKr5ui7fvJAEVWOuXAAERVopFYalAApaa0aUnO6tmEymWpbvU/RMnkI6jQhnDAAViGoFodqNBFNWVM4AzeY5jm3fWEFDCDRhW1UUb8MDvw22WFY5D2ZWJjlO3A+2IDIlponGE0qLKPqvSKjwTSkFcbBL9lSzzi2/KM10nN/cE5A1H1MMhFpbptVhVcwkWIHNtW9hizLMiPoxltgmNmSDCpiy2G33/oR6Efg7RmBnpC+PeP+tl8V6SE73XfkyGaLPb6VzOf8JcfRw+20gw9qvpRm4QgZoLj+zjsSkd46RPOgZr+R25XMV30LoDCBy0zKZKrLQUo7KdQOm25apHL9ZFLPDkFkuiC6u+Lii1WUW03nyclyfjaLiOPOPLN6lAJ+Vv5kuiS0FhAI17xzzFHZTwsOxIazryjsE4kAb5wm5+pJueKSB18fAwryqB/deVdI1KvNOiusmDpSzoXvymJkiSwYriuC6/ws/QEywwfZP5IdQK0NgNrWF0JARddlSkWi1bDKWiLDosQdOSXFdZ9PPvd89XUTMRa11pxbr9HnQkRFaI07gkYODFy1RhH1R/DY3ANgNaeynq4FVO0n6zgWeNXffKgAm7QWWbS4Ic3yfXkORJaMSUaURFjU2v35ziwQLGSAsSynffUJtY1LYi0gEFnHq5VFYpFNhNSCB4BbPFg4eB6kU3N2Ui7PhEB7Ztc1Hmpv+60fgX4E+hH4R0ZgmtR/agVGrTHm3HMLlyh4zKuCjnqPyqR+Pa3Dlhy+QNXi33TX3TEb+lzahx3bHBH1z44hmKvGt8C8TrJJsSELpge11mKbb7B+9areKbWkeo+S5wq+7rjZpnUOWc+jz/h+s27c2M/74VXVh5p6RlBPZpRUdpO11moOP/nkwqHvx2CJOoaRHfzZOLWrWsOQxPIkoEbS1/SSYJC5UbuX01KjitAxz0Ncq6dosp9nBbPU4zMSVEpCJbNQspyIm0xoEdwYGykjeSq4o0RintlmK0x8OBlPGUtyX+PnmWUEtQST/dTz03MgmIzupv7IRysIyp9APSh1C6yQRaXiUQ6iXOTV1KhWQDJY2rm2C0b6Qf7M+a1CpiWZxolMV8sxcl9YAQ8QROdxffsjt8bDJouLwLq+Y7i+wyD4DatgnX0dQ5EjeAyHnPcDA6TXcQioa3hW12gzta1pH/xUBoPEIthIK4m1tUC/9SPQj8DbMwI9IX17xv0dcVVgMXzo0LLS14oFAeGMe2hqcb6b6POeMYEQTWSScPrFsdz/1h7Nlnt+u0wbzkqUl3GRRQMCyIFQE3GuuyLTWsLsePAh1eaFI6Isq4zpxmuuVbUznHa/m76m3whp/XauQ46lebim5N85+ZSqwdFiBclBBm+8685qJcNBl2z3vpBDILPKUkuV/GnZhRep/pbkSupYEWDZQwsVNvrqkWRpmRchlAulbketDoLIfEK2Vh+2oclwksjemtYzAHHhAD4ShhgjVXPNOktFgEW2ASJ50/Sp/5Q5JdsVyVVjql5W9Pfp51+o34DYAoJpkfddC6F2DkAKIH0uulu1t/msMpIBbBtwFVm2n/si2QLOgNn5yKidS6SXvgmxdAzJk2sjlq0M9z31mX0tHhBTG9JrwZLD8vPuNwG+I6WuSVbs/I6TUUV8keDcRj23BQpCTZLlvy2RchnqlxJNN4aPZsz6rR+BfgT6EfhHR8CcyDmd0mb3I48q53fmP7/89SvNFiGTu6Vl2EHBmgNjyocImuf5CuyRshOSW+Uke+Q4pE5AUdkC9Qln2WUWWrhMiDZaY43mmAREt/r0p+PQfnL1OWVAxKOAtJZZn6xlkb1IZM2Fav5JhSmJDom5EXxjqNf1mWZqxzVXoHThYcNqzmwzuKuVk67AqZIWJkizzTBD+Skgt8OCLzDvR3fc2dZ7hjwy+EP41I4yJhKo1ILFfkpdzL9qbpEyz8j4Z/oEUbmyI6oUOwia0hQY8sQzzzYvvvxSkTzeDfqQIpMCp10piTmcUzE8EKz0+SuZwwMi9fxwaOIQfGOhhhP++E6QQ5iU3aqMBJmEIepc7esDuAU/HGP/P/6pJZdIqushv4VdwUX3y//Aa0QVKYWPjmW4p9yk9UJIADaB1tYv4X2F6x1WwjXE9LVIg9WTkgm7BlykQrKfv09JuZD76bd+BPoReHtGoCekb8+4v6OuSh6133YjC8gfjamBRt87hEySNAF3QLPeyis1R5x0cnPS/vs1m++xR2RGI6rVClKiVuXS668vosqtV13ON2KQtG/O2UmgdsnigKPh3scc03wzphEi2CWZSkZUVJq1P6t8CwH1n1fFgVckfPKJJ2keeOyn1Sz86AC+Vi8XRrYLjBlJ6BOKgHIYBHZ6vpFVkTRpE0DyRWIFqEiQyWwnirSIdT6iWy1qbr2tgI88WMNzxJLMie3//Y88WhFUboOIp6gyMyLW/Gp6SIZkUjt5rnPKOtpH5FVmUSSWgRNPwJczloAfESSfJXOy6CI5kt0U/QW2orn2Fym2nwynxRTC6/2qEyV1Coj7DhzjXgB2B8yIrkUAsK0azywEkE37tPUzscBP1hN5RUgtFMYF5HEj1RYVTCNc336e0cKg60PaRbctHOwrw2sRJcLP9IJsG3Hut34E+hHoR+CfGQFBQ7WYe8ZU6Cvf2rOyirJ1SNuh8S3Yaq+9q7ZT9hE5si/nXGSU/8GuW2weGe/JVXLRZTcZxalPZdzHpR2GnHrRxVHrrFZ9SpHgc+JuS81j7ppjpiFVbmE+pXBR8sGs6NgQ2a0TTBXELaO74Keeqcz5Tk4JyRrLLtO2JIuKZcVkZU9PBpWXAFKsFRkzPq7x6usZ73FdfyzlHkpZzLHKRWAULLwhGVeBRUFkShwlJ/pmIsqccZWDwBqkGPbAJQFJQVPnYEbIo8Dm+jCuU+gIGMIBRLSVtH6osqGypbAB5giCIrYyr0icrGIXPIVnAsSwpZPcClD67jocgYVwS1YUiURAK6iaY5Xk+Ls7nicCLIFdfmCa1wKdncme86ghRW4dL8hqq2BsruW7cr+Oh1uuR9mDdLtfP87nPgWvL8sapt/6EehH4O0bgZ6Qvn1j/466skzntp/fqKKIpEwnpF8b8F8mbVCQJBlE/dd2T0RappQBhFpSEhdmO2pc2NO3JPO4ENztitQyidj1sDgUpj4HKd1tiy2qtYz6HJHrr39hk3Il/OYXI5E69piS1172o+ubGQdNW5FW0k/tXPRnUyt0YgwihkT6JLJ514M/qVYusrcAe+jMM5UUWDScU66+n6smg9rJnT6ZSDdSiiAtuYCanJfK9l6PNRlNgA889YnjdouMIlbku0wguOUieUgnqawFwMsxOkIquReKBj8bIupY50GaEVlAqA7IIgFxA5TIGpmr89leStRba5k3azkDqAgoSRFAdYwFSlnWI4LZ13kRSyQSmANiAAvMSXWBcIF5SGh3PMD3oz8bEwmSJ2YQspnOYQPuztnt2y0wPDOC2V4jPUtzXse0CwyW/a1JhMWLe6iMaWp6PAMpW7/1I9CPQD8C/8oImHPgzehvf7t6Y5vvZRiPj3P66fEs2CwlJovON2+VUVDJbBwZrdYrByY4yiH3y8lgksbOOnhw8/O4fevzzDxJTaZ+ntfdfkeVc5wfI6XVIvFlnARHbrr7rkhzZ260WJGtQ9ZkP5V7kNduk/KSA0aPrtZhzoGozRVFEaMiRkYlwR2Q0l54zdXNcot8ovwFno1z7adWWL5kw57N+QRazdOywZeltAVWLBfpLudbpSHKZKb7+NSFYZnCKxCMECLHyBopLtxhpuf9KXOvDPhgz/PBaWqWSTMfc8+VKVQnSr1ifkfISIVhkqApdc5rCSAifDKUiB3MgleInDkfiTX/V0Y09yPo2wVBmRd57b5s9vPPa8m2Io6yovVeIKcjkvbzXIUvOdazMClyTtgKj8qMKNgE61q0eqPutSWpbfsyOFTnGsiYVkA3GdrK1gZTO5xFoD2H6/8mqh/j2G/9CPQj8PaNQE9I376xf8ddWaZundTKAGjy2SN22rkymmQ9s8eM6MzIdNnvj9xv32anL305EqUzqs8b9zzGPqvHnIEDrj5we6ceZ+9ttqmebd/aeqsisn6TUe06Dinlpjtyo41i2X9C1dtw2dXPTSQXcMyfv7nibr7+Bqn1OamalCPBiOByn/hEzIsubxaYc2iRtZ/89LGSd8nquqelEykH8moyRZUR3cmScf3EvPNWb1QET283UfOHUnND7qUWlFkE4jdjiCdSaTEgSkzaRBaG7JJCdeYQ+pjJLIsmA03ZU+cSDUZCkWoEDznUK1RNDhBkDEFK5G/gaGEAfGUYyYa5EHfRYJlI0Wy/1W46BqADcFlPAA3Au0WAyLhzyRi4J3JjtaYizf75c96XWXUeC4DfIqT+Ccrb501r/bpGS2KLmCK7WRyo6UF4XQP5rAh1ziezS6brvi0MnNtJb0tAo9/6EehHoB+BtzIC1DwHbb99c8pFF1ZA8StpwbJnSj6O2HmnalGGMDK2E4SkyBEE3XfktmVOxIWX9Fa9JCJiTlfryWxv/mDILT++p0joVZHIcna/ERkdMlPzVNzPkTEBQiRuqeELxlzvquYLkesqLyHNPSs4ZM6fLGZG90QO/Knlly8JKBWPeZJjLiNBwV6kDzYJ0ukRKmjJRRdRRLSvD7H1W1ZWTSziJUj6zIsvFM5wlheU1QJHsBgued1lQN0rjwNz8oPBLs8qsDrTdNOXkgYmMdKDFd5nrid7ScEie+g3LCm8iixXltM8j3gKzCKzCKXzI4jmf0QabglCwhvP7PMuE2l/EiY4B7dgAyMl2OC3YwJl9RtmwKBOuovU1k/OqWTENeGdY9yj79G9uVaR0bz/hmsH3wVt7Vf3mOMFFTyPa2jTpi0PZdId999fY/lW/tvsj+1HoB+BtzYCPSF9a+P3v+7oTh7FeXf7Aw+sOpprImklK9owjoUcDA8P+JP0rhdZ0zWpewEQMoQ33nVX89nVVqtaUTIpjcjZ8+8Wu/zdIgP2WsuZ3b7znWaXL/v8qJa8Rr7LGAIZXWbhhUqmRHrE9RZQAHe1PMyRSHRFoecN0F+Sv1dbZumKbsvKjUj0+cxErUWKLUo455IzidYimepzSF+BPKMijr/AH1gxyWBSJEoKoEW5tWx5Om6KjB20ftH2haRKnzR1qO5R9FmmFcgyzNBXrjMZ8lmwsLKK5USb3mxtDebvymgBGS1gzPUBq3trZbFqNdusJxMJxBlx7Eie/+iA7LgZUYDtOcaCd2tCZD8LGgsFCxOv/SCqwNt9O07k2n6292Yx8ruQVwTUosK9jLt15JecuK1RDfkd+NtnIvHV+y3nJ+vS+kcfu37rR6AfgX4E3uoImGPhE2XOlQlW6j361ch2ZUEFHZWYLBtlD8KnV+k2MUKiyDks7V5kPRn8qHVHwhC66ZN1vPeRRyrj6rMFh85VvbRhACktTwBBPwZ5QyO3RR7h3Pe+f3rzpXgnHP39M0piq8+yHqDLLxZpbvqKrrzEks2dwS9KlJWXWLwkwTBH4JfJEvURF/vHgjOLzjdf4cgjTz5Rhn1cdu/MvagFZUykvtQ9CNYy6WFk1JkWaa/C1V2AdPA0gwoDBG0RT5nNQSHKmZZz/78pnwUY4VjSY3P+y8EpxAw+IIEThrB1sly4w0xJxhWpNK87V2VDQ0LhFZLnPNQzrWyXykZf6tawCIao9XzXAJ44p/ecB0mtf+cXStrhUwVO87wwCEb6jSS3JScd/ml9Fs+F3LfNNTqsKiKMpAY7A3EtUc0+zjuuYZJzw16mh/3Wj0A/Am/vCPSE9O0d/3fk1U3SXGyP2nWXZrv99q+aFBFQBA+x3Pmww5u9E3U+cNToqsvRr1RdpMzjJdde23w5ZhOI6x5bblmZ0d1CQmVCy0Y/Bkd6vBUZ3bStKSV7UuPDUOna1NWQJv02AAgo9VoTfbYAOCU1OcwbAMh9jzxcRPW0yHUZTLCxv+GuO4uUahNDTsusCPCrr2R6dEuMirQlsSh56vnnKiuKSFvgMDHy3HqKIorqi2QVZxsyY2U61fXITspuTp1rIZvIKjyVdSXjZR9vgWMhgORNlMUAV0OSVVFnMijnBpYAtiWhamyYGk1QYA+oRXzbCHQrh0IabQC8osM5tiWf3e+2rrQgvfBd5Ph9RYyLkIZ8ulZlSHOSlpAC70ibcmrfLeLoMrKkouHGzLXaDGsrzXUfyPHA7dT9WCC0i4VEyXOcKHmXNbVYYIjBWdkz91s/Av0I9CPw7xgBpI6vAYImS3n8PnuXlJdfgLnrtnvvi+HQp8pU6Mjg2Mh996vg6hmXX1Y1nOZ/89skUbNob2L+VnOpbZd2KRzbH3z8scKVV37zWgXuyGXtoz5U4PNL668XE6RTqk4UbiG5cycAyk+Bgzy5ruync18Th/FPBt+Y48EHLr9XhEyTw2oB4xiEjo/B1bfcUgFI6h1YpvREcFZZzd1pYWYunW3GuOdmrn8oyh4ETz2oulg4pfxDrengqacpsug9rcMQUUHUKaJ4MokrXWmd1v9ceDFRAqatwc/7at5GUJE9v20wR9kGdYzANUJPZWNDQGU6GfV1Wylwgmeu1SJYPqm/C2gK0GCRrYho9ztvta+DVcE6f4dH5nfbm1RA+D35W6kJYqzsZNzzuE9YZZxkTuGcLGjbR3sgM5trdeRUEPWGBNP7rR+BfgTe3hHoCenbO/7v6Ktz/9vv619rxqR+08SO4GnyfURku18/8IDmM6mRUSvTtimZsLnnoQerpxriKIK9/6hRJc/dM5lRZHSv2Ol/c7NNm32TEW1lvcfUfmp99Hg7/ZJLixCqwwQwTIVkNmVmR8dZkenDvQ8/UgC82PzzNXq8LZuMqhqblxKdXik96i6Oi646GYSao67osBrR626/vSLCCC05FxLGQffxp58pEFdDqkm5HqlII1Is4+nciOQUMYEgefpFiKhm46Kxsp5MJZA5xAtJdV6SXX3owLBodrnNxsTBAkhEWSaUdNcztk63rbut/byH+NpEjJFkPy0BbWt0vEYdB/5XC42WLLbncSRCajEBbC0U2gxpazrhGvYvsln7trKnvF1X9QwWFq5jH7/tr+5KU3J/u7j783m9dGi2Nnva3mdHTi3GyMg4NVos9ls/Av0I9CPwVkdAoI+i5qvpec3TAKaceP75FRSbe9bZihBS5Ah+HrbDDg0neUTwxihkpk6ZxaupG/xdDHE+HtJoTteWReaR3JWxHRLIPZ3EllxX0FV7tEvjjKs+VPuxcuI9/7wisOZBmUplL/Bq8ZBLmUrn0HqGSRKMmSMyYGSU/FirluvvuL0ZNsssNccLhE778Y8VwVTm4Lr6iiKPDz72eB2PaDI0khmV5YRx5LzKXARRHY+owSrlIgKETIyQUbj1dPY1D8OB6iOd95VhwHjvlwNu8Mr83pLQATluzo3EteSuxY/OUAjpgzMksgKU/gYMfne44noFMQNfvNftG2Pfr/fyeQtFA++3L+o87TnyvnPlfdjUBmnHYqWjYFT94/r5p+4n50WuEWWvBVeRXBitHlYwWEDZ737rR6AfgfE/Aj0hHf9j/h91RdnD7VLj+WgA8M70PmNatNfRx6Tn6PYB+u8mQzpHZSNlAMljr7zxxjIf+t7p3y8Suud3vxcX3S/VMRYMyCgjo/1HjW6+vonfo8pd93tx12U6RJqkRkaE94kYSSwe4slgYv1Ew/VlI69SX8OcaI0RI5oL0iBdjav6G/JbNTsAiFnF0lmsqA8VYeZa+KtXI3V6xIJj+spqypgijwBfFJl8ihRXXY8FyjMxnkAsnZsMjBEFSRCzCLb9yCSZ7+sBb+SL1NdvoKfWRpYXuCF4pFN+ADwSp77UmCGNwLUleaRQ45DPLBIcWwA7QABdvyOSSGFwtc5JfitSPoDdFcXuCKlz6wP3Zg1pQNiB3ndtn1lYIJPdawsTixr7uGeb83cyX2DfAX2dJ5+7L66/Beg5ziaKTSIlOv/jhx8q4k4Ch3wbv37rR6AfgX4E/tURMF92ap6v7r1Ps2TM9Z7/2c/L2OfzaeeiFZmyEcFQQVKtWfQPZVJEwaHkgPQXGVWDiYzKkPIPoPwRiCRXRV6UedyXgOgaI5ZtTrngwuYzceQ9IaZKSK4WMObq+eecM6Uk1yZ7u3JzfrwMqGcQT1lPQVQtW7R/0bqMeocaxt/XRX3EWGe+4CnZL8LpXgTyEFOZywUTZIVnsEqwFLFFeJk4fSAKGEQUIVUigWR5D2GFj7BLYJU3giynnqzUO5Q4vAl81hE1YwoTkFWBTTigDKMwJkFJ94zQyTi2NZoFJ/UVBkKK5NVvaFT/a3HFDvBl3K171aJF90mLa92r9rc97N3t2R3ZnrNe5dzOD8cQZ/cNu/zdYl0bWM2L6tH9e9ibz2Cd5/lVMB4xhbHOh5zCvH7rR6AfgfEzAj0hHT/j/B99lU4eBaRZ2bPT3+mQQ+NkuGaRRRFkoMfMYfVllk2tzEUhrhvH5XB0s1OR0WRGN9202e/Y40JGv9AcEBI6cqPPNweNGdNs+7nPl4ESu301PwvONawAG6hwUbzq5lsq6+ozEiYGQ+pUSHm1d1l47rZPKKBmFKGdC4dZNTlawbCxHzbLrFXfasGAmN75wANFThFoJE1UHPCrMQXciPBEMXuYbYYZS+Lr3ACLCyEyDKhEvQE4d0LjAwi9Vk8K5JEwBHSyRJ9tIsiVKQ34dRIioAcwO3MgC6TKRiaKDShFs8mi1O3YgGorQRLBDTC3/yuyZ7HgvEC7SOWAZBcY20TaLSqcn9wJ4pJZ+dxnssJ5hDrWa2TWwgT8+21z/SKb9ss/bU0PsG/lT87XSY3dA2t/J3Bf9nF+iwTfw5ORzGmNI0NARt3JwupC/b/6EehHoB+Bf2IEqHng0ncTCBXMnGPGIc2FUcjsufXWzY6HHhoTvs3KFG+NGO9RbFD1dK2zBCH5BchSqiWdPXJYhkEIHhfa6oUZt1cZxwWGDg0m3dx8LnilDZlAKaMipkJq751nreVGNCeHsCKn5kCuvPDqhzfdXMoYru1qXaeLQZ7spuCq30pPqHcmicLHde4IEZXF5R7PZE7va3gAlwTzHnvm6ZpPZXK9j4hToZDTygDLHHqtlASxgtNTTDpZ3QMSrsZTUNTcDIMmCP4gvoURmadhgvke5pifs1u9bsldiwEktS0BHPvb3N/+tHhiz3bLGZwkm1/OUz95BevqH7sMvG8v9+Z1t8HhcTef1dnH/muc1wP3mPuBc8YDZpX3QZ63SHXdSZ4/z4vAGw949UKyzXAe6XZJ6qdx72Pce+j/7kegH4F/zwj0hPTfM47/68/SyqMWbj4fae3eyZDqMbrvsccmIzl7SZmeTx2Onm4XX3tN8+X11m+OOOWUWgRU31Fk9Ljjmq9tvEmjT2mR0ePHVP82zrlbxinxO6eeVsRThlX/UNk2tT3LRabL3VdU+pJrrwtwT1UE8K7U0qwT10Ky3YoWzzSkGoir/VGXI0O6wNA5i8xxUewah/tbBlZPUfsA6rlnnbXAl0svUigyjfSSX8n4lYFR5LkvRf70s0SvYR+5rkWN+hXgDryBnqiy+3l/wO23kfIivK8lovznRNgBG0BkZQ/8SHcRSUTRpjZHBBtxswDpAFAtDIC3tcTzfxpCWAgBV9HqynLmPlzDQqIIbj5zPa+RSyTY6Rxj/7GEdKxEC7G0IZ7O4fqu3d2HQehIqeeq82VRYXNOfU9bgwvHtVldsmab57LQcS5yMhF/0Wr3yKm4e+7auf9XPwL9CPQj8A+MADUP1c19jz7SPPTY4+V+q8aTXPcbBx1UPgQc2AUen37+hZqfzOGCkEjo3QmoykLe8cD9VUv6k5yDg62MoG3KySaPlPfp8iC4IO7tArL6kGrlogWZOZczriCqHqUXBQu1BNMX9Adx9+UGjwSS3io/EQiFcYvMO08F5wQ+1cCS4v40rVvglLpRQVhqmyFR6iCr/BPIZpFYpR+eRV0qMjnVlFPUfO28r/32N0W+BEVhmLIWzyLAiWAKDCKvjkNovQd34IT5X49q83rN9Pmjww5qlwqk5jdsqIDjAKH0mfneBg/dZ+FM/jbfC0hW1jEYIOiKJMJ6bcjsBxfqtfPl9Zs/dcaWEI+9pzao6nV2rQ2+ul9ktrK39Vd9VP8aeJz83T5Pke8cA4eMhfvxd5cthr0CAYiqe/Pa3/3Wj0A/Av/+EegJ6b9/TP/XnhEgkUftlZ6iOx12WLPWiOUqogvMpk9di+juZ1ZbtZqSdwZGO2y2WWVGZUwPTkb0q5/9bMmout9bbLhBc+Spp6ax+TpVd7P0ggvFXfCBqgO1wLgzi4N1U5Oj39yIRRYuEAcK8yfKfMWNN6QNzPxVJ/N4wHzEwgtXrSiQAez6irZZ0bmriTrgFLUmcyLjVSdKkntvAF6gFBEFihYDZDsWBDK/9lc/RL5EqkvuxHmQeQQHRe87DykUoEZQkbGOAFb/sxhWTJjIPeB0HzaAaRGAzNpkdjnpAtUO1OuDiuIWlNZLUdsWdPPvAYT1yz3bOqJnnCwKHI7sIbtthDgLiVoIDBDSkHCyNFHybtFh0VCLg1ogWBi0keKWLLaR67pYXa+uWtd1bde08LA4Ae6+Dz9dXSqw99r4uCc3KLtq48brHLKmsrT91o9APwL9CPyjI6DtC7OjQTGeY2C078iRzY5R8+wzcttmn5SLmP852VLECFwigYKYgpMLzT2sMGPxmAzxLhgal13ElorDnE3aOWP8CBgTrRy/Ai3HymwviiAmQ+ZI7cC0IzvnyiuL3Jrb9QXtTIwYB82VTOzVt95ShkczpjyEWeBHPjx5va+XKRxBkMl7yXEZFumZ+uBjj9U9TJOgrKAnhYksHkdcxJVTulpTQVDBzo/mnHBCllZGlULHfOyzyeMcD2vMvSS7yk7M+eb3NtDYzt2wC9FGHisgmU/N1AKxwAf+mMfhSVChfpM3m/s59joGwXRO87q1QtWg1r4tTsBcuFTGSMGbDnvcCwxqMaf9L8C+3QZrYUm3dbjndZW25NgO/2Ryu6Aw7HHeIp65PwFUZ3Udn7kXzyw4DRPdr+/kNylroa6yH5zs+rB21+9/9yPQj8BbG4GekL618fuvPJp1/QFpOH7EyScHLD8G86o/GuMGhkadLHf3rbYsd101owclI/qVkM+jTjutyCerfGSUQ+KX1ls3Fvrfj0nSapHhXtrMG6dbJBChKvC+5dZyLTwlbWHU45DCioKvuNjizWXXX18LBk6GgF19EDInqsy2H8iJRGsFI2unBkjtjEUIWZbIMimy1jAWJ6+HmCHCJLuIJVMI1/MeoCR/AkTAcNIsBPRxg5FqRttaoxDKgJVaUosegA0ofQYERchbQAaAbVQYWAPCym5mX/vXcQY2/2v/lYu0/ytABIpv/gx8AKztDlydb9yMJtLcZixbp0KfdwCMrAJ2z+Q99+lYoD72Gu39eta6pYHrdPfq/bHbWMJaz5F/WbAU2c2CpCLzGR/HWOh5/qonzYm7CD2JlO8fiTXe/daPQD8C/Qj8IyPQqXk2XOWTzf7HjWr2+9p2zR5HHlV9QGUvZQTNW+osuagjn5xuOeWOWGSRCnT6fV1eD4t6Rm2psgzzo/nfe0zySHO5vK+Z38pDmAaR7iob0Y7s4muvraxqV0O6UMpLZCmfSDCUOZJsq9IPZSRPJxCHfMqmwgXmfbK3cAqW6bv98fRPdR/uQX2rdmTwlyz3+Z//rOZtNavehzGwq3wEMtfDMLX7AqCCqCSyHaEyFshZNy/DEUTO+9rPFJZknkY8WzxoSajPTeJwwj42b3ntfIKShSV5bd9SziQr2835hVN5H9m1r32cH6GF4V3mtIMWn8Mpv/243+6evHYP3vO36zoXzLH57mAa0owsI+N+w3TPKjihfzYs8l5OUecApo6tsUkGFUm1D6WVNYqs6itkvjmm3/oR6EfgrY1AT0jf2vj91x6NoDGJAOb6ry0673wFwNt8/nOpHT2+2T61ouS5jIwOGD262SwZ0OPOOrsyqCddcEHz6Tjnnnj+BWXNj5x+IRb9o/L5p5ZfLue5royEkEmA3RkbrbXcclV7M3EylCLIaoGWWmjBymgC3yUWGF6OhcAFkOthihgyLRLZ5F6rj9yLaQouuvzx1NkwIkJEyXBIoCabeKL6DFFleDTtxz5eMqcXY14k2g3YLRS41iJRQN15AarPAJRaHYsGoNcZJnTkEGiS2Gr1AhABHeAFwBYi6lvaKHCQMP/zWb0XgIWSwckCbLQQkBqjjjwCYccCYvtZGHTgjHR24G2x4D7s10XAi3zmgpx0/d2dy3/gzmVRUKCbF+7CeWsRkN8A2+Y4iw6vK3KdfV0DGa0oei0OxpLVbl9jAOjfl6i0CLraLsRdpF9rnT9kESIi7zvpt34E+hHoR+DvjQAi0ql59MwW9Px+PAeGxLldb2e4Iqt5TzKj5LPn//CqKhk5/6of5veIlIL8ICZ7S0Rqe3OZ9SGlkyYraY5HBheca2gM/G5K2cgK1XMUwaSsQfj4F1wYSa/2YgyMkEk9srnzyuAqF2GoJ/MJX5gbUeIIqgqemnu1s1Ey4j5laEmHyXB5FCClM8eYj5pEqQwcmWrKKar0QsaUQZG5WC0tkmwjvxWQ1EvVDA4DYCPy3hK0tte1eZd89k0MyHngjs1cPu5m/u/es0v3cc35Gf+Bw1qCN4AZMo2tFLglkF0QVlayApbBP3N9lyV1H9AHzsEVUmJ4UuQ2mOaZ/A3P/HiuwrzgZnvulpB216n79TiFrbCpPdZxf8i5lc0gxN2mLY7zwjNP73gYxTzKOkR/dt8lWfRrWUMIovZbPwL9CPxrI9AT0n9t3PqjMgKAcYNPrlwSoKuTxQT6R55yahkZqS/dIrWhx8b4YZNPrVXtYkSUAf2qSy3dnB933DWWXSaypyvKIGL02edUzQ/XwpWzEBCB1vMTYeTOumJ6v5175Q8C9vOW3JZkdskQ0Euuvy41p4PKTRCwA3JGEBYHHHcBiki0DCmyqDVNOecOmqYWFgDewsB7ItRti5fJyhRCLc/PQ3RtFhJkTqLR9imJawBSFhSwA1P96pAooIWAeY/kpyVcHyhy6T1gK4LdkUIg6zhAiugCNeBrYQLU7YewdqAqwtxmQ5E/QN7W9NjfsYhjEdO8BqLeb6VHbV2qc/txn0UEswgA/O7DddpFQHuca7oJ+zpP1hW5D4Q6zyaq7RlzLpvPkWTEsn0GpLeVIpM71UIh+wB/92gcbOOCuPFBni38AL/rkvVqx2Px4Rp9xrSGrf9XPwL9CPydEUA6OcIfmOAotc3zMf4RWJS1lMnUU1Tv7M+uvnqVjHDm1TpGwPSUSHHXjJO7HqGw5NG0AJNd1UKFUdFiIZ6XhGSuGX+DC6++prKj5lXY88kllyzZLvXN5Nn/jvvuL1M+WMSZfYEQ2keeeLJKPxaZe57m8WefqUDorDMMrvnxxw89XCRnugFjJXWuUyTDyWUeEWWwZJ5ksmdORESVOXgPVpmfBURlgWGRuZdKRrlJF7Q0v/46/Um9Ngeba22FM5nHu3m+CGBea5HS4UFxuuxf/+Q3wug+nMvvwos6X/tZe26ksp37XacNtgaLgiOujKzCSveNALakuJURO6/9xs2QwojyXKhjBTPbIG+XYa3jQ0zLMKnuBQ9tA6LGo8Apvz2LratpbXFbsLhVDlFWwWtjK4vqWSl33L+x4Rfhvwv9tgUWBLdhVb/1I9CPwD83Aj0h/efGq9/7/xgBEVb9SVdafIm4Dp4RN90vVoaUcRFyuvqAGdFycRkkl2LgcONddyXr2TYAZ1rUtXU5KRlTvU0tBESX7/7JT5oJEuVlyX/jnXdVY3EyqMHTDCrweujxJ5pl4qyLiCJtDCmuuuWWsuoXbdYcXYRY2xZW/oBk3iws1JuKPH98yo+U2QNTHSST8YNIJ7noz17W0+2DRXQtMgA70Pe3BuhIKCJGEgWAOlIFUI0J8itaDveAJlC0MLB1RMzfLS6OBUnPAdAB/58HorxYoOwp8HNAEU77ZN/6yXvAGNzKpgJ/94O4wmH7dwsU13RuzwGISZUd84fcY0Wlc53K1gLu3LPz2q9Iav6oxUmORyq1TADsda8WIwMLEdf3j//Z7NP9FIHOtZ0HoNsX2Nf9529A/sdEqGtxk/O5t8pHax1EAABAAElEQVQ6Z/FhoXDTPXeXjEw/VIuCfutHoB+BfgT+XyMg4KiMRJCTmkUdKGwQID0pbrhfXHvtIqPUPQePOaHMisace26z8Zprxrvg3GRBV6z2YoKd6kHN73qX3h9HXgodZFQ2lcQXfshm3pEWacjutbffVvWICK2gLUdchJZiR39spIo8l1pnmpzT3+a5ubM/FY9WZFrPDJ5mmkbA9OW4/gqCwiobqa85k7nRlAne/i6ESYuyTqrrXu1vru0yn5Qm5nRYkv8178scay5HvMzl5mNYILgIe2Qs3xPyCky831E4ypX3DBDV2j/HwkRzeZ0n+3q/DZCa613Uach822BkhzHehylw1dzf4RcsKlzJ5905YYl9ZSntB3O91xHRcUlxh0XOURiUu4dljvdeF0DtAsiOdR37lrQ4v42B78QxyCfiDL8opCiMtExzHzAaiX0gWW7k9eWMcymFPFy/9SPQj8DfHYGekP7dIep3+HsjYLJmIjRyo43ivHtcakU3bEadfVZawCzTXJ4G4HOmX9rDcapDDMmQpp966mo8rl4GMH9i3nnLSl80+vRLLql60TMuu6xZaNiwihwDSC1gfhi7/RUWXawILaAdlOixyDNJrozpkzGUWHL4AuViKLM5P9lTIs/kvLPNOKSA9eEYWmjfAtCB+SuRb7HItzB4MTWjiGfnSohoIqfAqrPMB+yOEWUHNsCXWRGpD7LFIAI4AbqWMIVM5h8ABuSMlc/qdYF5S+iAXoFnANHvcUG1iFvI4QCeF5AC+doKMDn0kv62Ut0PBKjB6Lig7tpee995LBzcC7LneuRKFiw+swCxv/dF0UWmO6C2cHEssO6yqYA4uw5sAxFxr/JmR7Cdz9b+Gvu3xY19nNOC6APv/0CNK8JsgdFlRWWQjZsggQyAzITFi+8G8e+3fgT6EehH4G+NgDlj/fQGRSoEMNdeYfnyO2C2d8DoUc2X1l03jrlnNdsmkMp8b6M11mzGnHdes9GaazRjzjk3SqBPNmenDzZTJDJcJEhbmLvj9s7ESD9s5JRTu3lLyciP7rjzTddcGU5tyVzb3M0nQUmJ+W9YsE22lPJj6EwzldKG6Z5gKnmvkhKfeU01JHj6XAKq7uFjCaqaO33+at5HtmTr4CPC9afM03BMMLabz7mqI0xey5qqgYQF5lLHyFDafN797ubt7j2v7ec4m+u6D5u523ncn58Ov9pAY3sfRVKzD1zwOYyBA3AY0lWGNHjk/uFSbdnX+0ggEs2cyXWcC/GFUTDHb6/9DXDco/tzLcaBcMt/B56uxcC0RAu+6L3qM5tnMG5w1bk64ukZO3wXLKUwch/wXLADTnWuzDLh7rd3jq8h7f/Vj8DfHYGekP7dIep3+EdHgDxq9y2/0nwnmdGlA8633PPjiuxyqDWRAwCkAoCQdZq4RZOBL8J54113V6T57DgUrr1829KFzApJZBq0cKRN+repVxUtJlFiMKGGA8G06OCWqE4I6KrHmTZ1ocjkI5FbATuSqKdik++eRM6BEMKKZGoizhDixV+8VPWKwHSqKaeox1cLqm0JgoQIcTn0PEBP2xYEVbQXeAE5RBWYiSxbdAB7gFvR5oxFAWjAFhDbvHZuoKnvXXeeNpPZZkC72hpksKLdAXKA7EZaAte2ZTHWztFdFxgD/T+ljihv5pg28/m+2u+DuVZqNLO48L24fncf7ouE2LPk7XyHqe8ZkPXWIqMGwOVbEiqyjMAC9W6hgsD+PnVJ5F6IK+LeHeu/BfVE9rXQ8cyub/OZ/0ZEwS0e3ID7VF8qMl3jlM9uT68+tV2+Q8/Zb/0I9CPQj8BfGwHEYdmFFyrjotEhmVrEkPJ+44t6Y48ecMy9sAKqMEw5CrXO5yLnVUqyYWS8AqXaiQmsmrtlLhHLFRZfrLnwqqsLx7RoefbFFyqgyjV32rjicsK9JzJcwdPf/O63Jf+VNRXwlAWVLRWM46SLUDqvOY1xDmf3ifOeUhS4xXCvzIyCf4JxyCgCKvNqg1PmSPN5iwXMeD5Qr31u7nQM7HiTYOW9Dp99jmB1+9Yf+Zd5vv6XuRrp68ipeV17tBxW2GIGNxcXcczc3RFAeFpB0tyXz83nA6ds7yXYoU1Oe3wb8LR/YVxO7nngAhxSH9uSwJSZ5FwtduV0uUV/ew8mtvu3hklKTApP3ajnGXgOB9Wz1ZULat4MGBufCh7nmJY4tyU3nWNxqZ9cNBuc8t3BQBjru1ES1PpJ/Kn3QKhR6v/Vj8DfHoGekP7tsek/+RdGoJNHXZHMKKkQYNCP86MfnqKksoAXmUQggTFgQVrIjGaefrpkTH+SiPMijT5vmpiT6A6JNT4McdxSwxes7Niscfq1IHj4iccj1R1WklwAN2cizPc8+FBFZhFkTrpATQ0pgBe1ZJHPjZBUl1SVmRGwFMVGLBEc5BYJJdNF0BAjNTzAmkQH4DsvRG1lpYhTKx1yHNJIvsPoAFy1gNlmHQv3vAkX89s5gR3gRloBG3IGDIGmz5E2wOw+EUTn50jbgXHOVOfwHtBFhicMOLpHP2/kWO6KNvfiGs4lQ4pQe89+nkVm1zlcE4n3/SDUxtc9uqYbRzLdo8192t95PRpQBuSe5y+51xaz24f2XXomW0uO23N4Pufx8+cAuu/Gfu7Lb/frvymHek6LCEEN92RRZ2My0W/9CPQj0I/AXxsBc9SCUd6Q5+6bNjDbbbxRc9hJJydDuk5UPedUtlMv7PVWWrE5LWodpSgMipDTkyPvlSlFSoenBlQg1VxEAnzrj++Nz8FiZVykXMQ8RX7LQfee9Dc1H84yePCbwdNqaRZZr5pDgVC9Lils4NczwSEGRojox6acIrj3fAVfYRKDIwZ7CKW5FyapC4VtXenIBxJEZMhnXjRvm0/VPrZzcCt9Nb8jjNqbOA9sMFfL8glkFmZkfu3ImNfmdvO+8xSxyyvzMnKqpYrrtX+3GUtj7ZxFPHNOUtcPRuFinpc5hHFwxyDCWPM7Yo1Etudp77/DBd+n6xUm5V48GyxyLvipzYybc6zvRfATdrkP91+B3OCKrc6Z3+1n/B7GYq17tr9xaUlom/F1X/6pscv1kXz3YxOohUldqzLB2TKVis8GhZcyJd+Dz3tFTw1Z/69+BP6vEegJ6f81JP0bb3UEACfgRtqYOIgEy2QtOXx4uRYunfpQ9TwizT9++OHKVOqhpmZy6ljbI5FLRHrLTGLVpZZqroil/qBEmT/0wQnKAn9Z1vwhvLKrwFy9ztyzzVZSpqeefy6uiLMXQJPkalTOVRGZ1VcUUD/74s8KFCwkEBokBrD5HL4wQuoMIvSHAzruD1kFggjhRIhafqtlBNJAsasVBXyBzgLWjpQBOYDWAvzYEe6kVIDP3x34AtU6bwAbCPqfz7v6FmcA4FUbGiDsFgKAtCOzLXlra2FkVN2fcwJOixGACrQtRroFgmcSwUemZRS87jKzzt0RRs8DzNso+ICMN/dai4yMif1snqd+D7wG34ikcWjBXiS+JeoF+AMk13Xdn32cy7NbvLyaZu/dogDgfzhmVL4TWXQLOWBPgiYo0G/9CPQj0I/AXxsBLu27brFFtS5bIz4HnN2XWnB4yWzJbe9LfegSwaurUiay8DxzV0uY1ZZeKrLdK5t1Q1bPvOzy8ix44rlna24STCXH1S7mmttuq3YvAp23Rr1D5iv4+lxas/A5YFiEwMApPVHhjYCpshPY9LHgGsNAAVIlIGpLlTP4DHEzr1PymMeVppgXkdDJJ52k7oUiRdDUvAjPBErNpQhWRw5JV13XLO1v2GY+Lzzybv4HW7xusSeEL3NzR0CdFxZRuDivn79G/szdXfDUse4ToYS3HYnz/cAgnyOkzmWzj+eVgaXggQk+c/wfYU3wyDkKG7Lv+32eH/ftmWFPR3r93WGk4IDng2HuR7kKRVVXeuI61i5URu5BmQii3mFW17PbuBsHA+S+Ck9zPteClc7/aowOQZ979nNZjI9IrwW6+60fgX4E/ucI9IT0f45H/+rfNALIwoiFF2nmCxiz0t/wk6s0p0b+pCbn+MilOlDnRviDm24qB0QyKJKXSUIa/U2i+4ObbmxWWmzxgPytFR0G1ACdmdGNd98dEHh/RZ5vuvueOBB+vJk45g73P/Jo1akCbrJdBBlxVYvDiGGGQdNUzQjABz4fTRRa7YcIM0LDRMKxv4oD4WshrAgZsGEcAWQsBAB4B5Yyhc6DIPqNcDkPYJKBRGYdZzEA1DrC2IHkuADsM+fxXIgXYAN8wLRdTOQLCsAVOcwfgNS9AX0RavfkvM4zUaTK7s357G+hArwtVNxnEc4AqTGRjXQNpNDzya4C67FktHXg9WzuF0gzeGivRVYlMp3saRYOzmPrrmuhYWHifPY3FnDcfs7lx/12m/ddVyTa/o63Twv4eZbcn888k+9BBtazIKci0D+6887UGGXBlZqqfutHoB+BfgT+2gggjNunRzYyqrRDOzD+AWo0zV1kmepEOerKbt6dTKdSlEuvu75qUDnEa//yVDKY5qJZZhjc3BRMouIRgHWO2UNuzUcIq9fcwgVoZTiffPa5Oq/5GN59dIoPh6yEiEam+/rvXy/ZLsL3csiseY3XAWJmjicDNZ86RhkDh9iXYniEpJnb4ah51r7uzaalC0wxn9r8to85/z0DZLM+83GmcLO4eRtR6+b39nUbIOzmfseYs+2jpRnpMUURvCLlbYljm6FE3iZEOnOPNvfmPAjpn/P3h4JZ6kPdFzIosOia8MFzIXXu13lhLGz0GXzwzDCiiG7GyfXrHvO3cyCiMNL3oFQHaW1JuOdrCWv3fHVzA//yfH7sC3ds7sG+nsf16xky1jUWOZdr1f1kLNzbyyk58j15JvuQZtsQ337rR6AfgXYE3jPBBBPs3g9GPwL/7hEANBwJgcYXPvWpuBWeE9fCtZoxqcXRc/TkCy9s1l9p5bLGX3fllaqxOCnVT59+quSmFgYPPfZ4SZ5+cPNNzdILLtQ8HFddADTTdNM3N9x9V7PwMI3Gf5XM2Ashr8OaB/O5680REyWZWZP90FlmrgwomdN0MVMCdHpbAgZ1OjZ1Ol53RJR8WG9VwIEAI2dIj0yrWlNkScRaXRBgBTjACikEoAwSZCOBX0VwBwC9HeMWxAr4CvLb+tE/A92MmXMzf1CPimzZz7WAaEWoA4AFhFk0WJw4BiDW57kHG3AcWHIUKJNKIZKesUhj9reAsaABqK7nXgH4ewPSxgiRrvsZ+Myiqe4lmVNE1z6+47rfLJqc27ksXnxmPES738zE5hksenxmXN2gCLvfzuu9kkLlXkWmEV7j6rm6Z/tNvk9j4l78eF/gwELF8RZpMt4zDkrAIeDfEWP/zfRbPwL9CPQjMO4IIJ633ntvKXcoL6hiJplo4sIU0ljKGfOKeUYvUSodfUu1HkNKmfYx2qPCgTW8B+adbfZkWe8o9Y8smKDnIsmwKiNxrlkHz9DcFfd4ah+Ouw+lv6lNKcvPf/lyKXvIeSfM57wOfh88+0hIp56XCPNruU+kbKoppixsETTtTIuY9an5z4WKwJoLzZOZYDO3vjvz9lh3+DYgyQm+dYCHY4U3wQnECabAUvhlbjdHI8eIpvGAHeZyc7Tf+Tg/A/vl+NeTUTSfI6fdVvs4FywqzOINIDDZlqt4z30UFuSccKzFpjYTKQPLhGlckuv5PJtAtPtCbN2/90llA6N1747tspR1v/kAfnlGJSuezWvP6T334LXnc64Kkua1chbjIUtqbHzmuT0rLHIPME8trICGgLber0j2ZMlgq/+Fe4Lbzimg7Hvqt34E+hGIKqMnpP1/Bv9/jYDJXc80EeYtP71hc+J551dftzMvv6xZZ8UVm7PiWrjq0kuXe6G+b2p1OBaKRJO1iGBq0TJ8zqGVIdX37YlElQEnydVNkUj5jQg+FDK6QLKxamlEmDn4WmQ8meOZHAEMsl2AMVUyoiLHiKhI6dQfnapA6Be//FW9z8lQhhJJY5EPMBw/aepOgQ3QBFbqQ1vQbiOxgEbWEJkD3EgZ8LP46KK4xsQ+weEiXmW5n/Mhja7h3H7bDwkOdtc9IbiAFzl1Tkhe+2Q/pBCYiw67B4AvWu0fQNtGgkWH20iue3GOlpCG2GYf73kmCxqgb5HgPWNgrFwLoCOjiHABfn3eGkiIGJP/tlnMPN8AoCO5Fj0ysC3wtwucIuoDCx3XdW+u57yI5++BfRYW9vO+84k4y7yrQzK+sggWke4vH9di0vv1HPn+ZMYtOi0U/DfTb/0I9CPQj8C4IyCAeN+jjzaDggHzzTlHMpz3NEtGuntzfpPs3vWTB5rBU09TZBGJM7/AESUi19x6W7PiYovVbzJfZEU7sXlmnz3qnXvKadfc9XBI5yfmmbcyovCEsdETcX9HJJFZhn3Pp2YUQRV0VHpgvuVG73j1pIKDCDG8QHQRUVk4BJppHxySRTXfOZZihPs7TwAEypxYc2vu0W81n+bXN4N22WfczTnMuX4QQzX9NUfnPEifcXNO8z5M9aMOUwbWsW1w9vf5+y/NhzJfO49NOBYuCRh6VsfZvyWPyWLCtuz65n0PEEWvYZ/zuH8n8rxeI3e+G9JbWAgrjZtNWzPzv+O9Byv8wCX36hnU0TqPW4RhcBvWkQC7P5hW331w3X4tVjMubNvkdPfkO/BT95HzWgd8OCSUSsk4wzXfjzHTck79MPxCen3e3XPdeP+vfgT+C0egl+z+F37pb8cjA9PtNto4ZkVXRZ47a2S3DzbDh85VEidNwm+4865Gjc45V/6gWWWpJVM/+qMyeBA1NsmTTDGOWGz++Uqyi1CJKpNGzZT6G4BtoTBXMqKc7X6WFi4zRSallkaU2uSv7ga4/y5EZposQAD1r15Nz7ZEO6eMOQRAtUgowM5ngE6mDiEFdAhVyZICVIgbgASkPkPgOpLYAktLBoO2zXtDNpE+wAV8bX4DPr+BEVCy2QcpBYDO85f8kNTaD7i7fpGyRFY7cAWqfgAgkomUtmAdSVDkwjK8XBq95xkcB6CZN+Wkb2YdLTyQONlTWV6LCvft2ZBqJN1CwrUqC5vruN+q+8n9GgcRbcf4fnwnPrev+/KczJbelc88O+I97hi4b8dZ+HRRecfbfGcWEPb3mf0sDj2z1cnvcr+yCcYMoZ40CzXBAwsApiB+d86SdcL+X/0I9CPQj8DACJiL1Hfqg33smWc2n119tepR6vXJF1zQLL/Yos318T0gwSXRNT/rHUqCu/j881fZyfAcz11X3efsQ2ZMTemPm9lmmKHwS2B2/ngmPBq3d4HSYcFALckQS0FVxAQRNf8KvL2UjKwMWwVHQ6raTOhrlVGrQFtwyrwqM2tONMe7JySVkqfDKnOuXqHme7hS5CfHed/x9ocR5llzNKxFwnwG3wqvAllQqwtomn9bOWyLZfDEMa3ngIxi264LHtjDZ+Zk+Gpf53Tf7qd1qw8GDfTydH+ex7kQO+8rNWmzu22rGgFO98uoyfvwpzAQRuf8/kYijaPNa5juN4zJwRmrtuzE9+5chbV5LhhrK4wJkXTMuBglKAyHHNOeqsUyz+gzAVzjKAAKuSoQmj+QXqov5yKd9t26J2TZz+WpLXXP1h/91o/Af+sI9IT0v/WbfxueG5B+etVVIpl9oQAP0UEc9OmaOsYNj8ZpUE9SMqiVl1i8uSgOuxYJMqy2sth/4P6S8ZLvAgtEle2+4xGURyP5ne5jHy/Q6wDehM8uH7EbFIddIMcMAjkih0KyXpFpC0AASGQHaFok6IMmw4jQvTuA08mBkDXgYz/AJNrrc6ALdJxDJBRhtSFHAMh+wA7gd78rG2m/nMv1XMNGhkTSY+tAFXByzAXmHQhWBjLnrgVGANZxXdYTEQOQMs6yjUip/QEyp2HHkBVZiNiPbNl4iID7TDS7qxdF+Fqy3mYsycgsgpzX9dyjZzImCLsxcE7j0D2rz7pxc24Eu10koPNqkdqedJ4ZMfaP87hfRksWAhYt7rdMmpwv17QYsDgx9hZOQN9zkP9OOdnktdgjIXf/nq3f+hHoR6Afgf9zBBBOap7RZ5/T1olednnzmdVWLXXPSsGky390Q8yP0tIsZkVTBs8QQd4Ew4cOLaM+7rvMh16Jmc3sMw5pboskGG6Zt+wnI0rFI2A6y+Dpi5g9k/2nCg5xy9VflIEOF3pKFGZt5nxuu+ZN85rAGkyaLF4LiKY5XiDQ3AZ/ZPAEEM2L5uY6LvOl+dxc6nzmXGTMZp/OMb0wKvOuedk9OyZTcO1vLvY/94nQmu8FHZFA+zH4MzcXVuY6bdkKnGwDjHDYNalluvl5krwnqGhOhr/woc6R95HqjrjBL1giMOkei+nm/uC163sm73sWclkZTq/hhPu0uUeSWZ/ZHzYbI/fnut29df1I3Zd79T58cY8yqDbjaAyMkePzK+caG2S2P+yG+85tPNugtjVA7jvBcXiGVCOtviMBdVvvFF/D0P/rv3AEesnuf+GX/nY9sgn93kceianQoDKReOyZp1vZSmosELWSQ8Uld9iss5Tb4TILLZyo9B3lUvh8HApFVbkRctVVGyoSTXY7V/ZXM2riZ0Ihgi0Lx8gIqfx1FgdkucgKklrEKxlTYKUGFcgykxDFBfakV4AGaAB4f4tcuv+qswxAIWmRu9c52c0jUkDH7854wsLiNyG/SCAAFIn2Xp0nIOl9wFbSpRA7EdICv7znNwCt7Gz2lZ3spEWe0/mAmftznH2BonO6X4SwA1uLBvt4v1tEuK7xRqwRVGBpcVVkLyAMzAvA857xej3PDvgtGoByRbZzH54F8esIuuuorXX/xtWixPn91AIgwGtfm8WUzb4WWAi2hREwr9/GIT+u6V48x++yIPPcngMpt8BQp2QMLXJcxz6+HwEQCwILQA7Os0w/uFyaZYY9S7/1I9CPQD8C446AueLemOZ9cZ11mouvuTYB0nmKhK685BKVxVoyhkVX33JLs9yibWmJuU4Zg0AoyS8Vz2xpSUZhIis6LP21GdiQjjIgeviJJ6tfqOyd8hPzlPYuSIjMKeWOiVN7skyfNYeZD1+OrwHiggyav5CgX0bdI7hqzkbCaj7P++ZShm7Im/0QJ3Orz83Ppe7Ja8cJKJpDbdUqLJhmX6RsbFa1JVU5Tc275k5zLRxyziojyfybN+rzyg4Ga4yLZxF47LKmru95HOs99yYbWlg1EOTN5F/3CeNcy74ThaBW67JgDaKKzLX41ZaUIKI24+r53AN8F0R1PDLcZmODkeo/c23YJFjqc2Mh0+q5nVvmuGpDgz++CPdnrNqcsCuFjPonxxtvx02QH8/ie0Nm9aPtAqeup1SHhNf5KXq6IPgU8alAuJFz14CHhdN5/n7rR+C/aQR6Qvrf9G2/A57VRCtTZdJdeYklm6tvvbVZYv4FYhbxYElsGUPYh6PgvQ8/3Cw097ByKSSHeipmREBs8DRTl0nErIMHF3GScUVQX/jFz4v0DR40TUlxGRCJNAMcxNWkj2Sq4xHBJuMFPECPJApJY51vQ+zeJIMBEgsPYIQAAheA5/OO9HVEyudtNq913EUkETrnroxmPkekbAgikuV5CzwHotn2A46Oce/+sfAA0KK7HaCLqroHtS6uUaQt+4jqAsTu/AidqDmwa+tb2gj5BKkxQhJd23UmzTMii8bDYkYNEoD1t/EA4K6vdY5zIn/2dV0R+RqjnMd7v8n4IKr+NsaeyWLBIsLzF2EdGAPXdg6k2GZMbRYrPnO8e/eMFmTG2IasWhghxTIETJPcm8WZwIAAhuyB66ob9tp3bnMuNT391o9APwL9CIw7AuaMO6O6GRE/g8ee5n47RRnqzT3rbKXG4ZJLvqtHqVYvylHMU8/97OfNnDPP1Nxx3/0hpTMWcXrmhRcHHOSfraweJQ+8ghGUG+pBYYlz/H/s3UmQHdmVJub3MM9AYMw5mWSSLCbHKnY1yZKqqqvJ6u4yqVrayGTWa8m0lJm00FLSRhutNOxk1iuZzNpMKw1m6l601aCuoYtikUkyB+bMnDFPgRkI/d+5fiMCSDCZLCKBQMR14MV7z5/79evH3c9//nPOPZcT0FhSxIQu5QTlIDVEg252DH2jx6yj52ACAoSAcnYW/ky61jlVVDP4gZjCCseCAfS57U2fQkdzwtLptruQ9jsmNUKLjLV5rVUvhyuWchBqL/shZOX0zHo4CTM4Zo1vbVvHOZlj0u36DbsKa4Ih9qXLYREcsMAvfUAo4SAdXtXg02e4Qj4wpBM+slkIsbPtYhyW5QDNuWhHMSHO4sIwWJF2RSk5oBHVmr+0+pz+pQ/lkE6vtaG/zhfGFDPNcSyO58TIv5+HbdWV8F64l/7Bzz05X8eyrWsn6ms5mGwkeApXDU3SpMJUMMqwI5hJtmMZEtgoEhiEdKNc6TV0npS5OULfjxf4n2W+0v/zT/5k9k/+nVYc4g++9a0ip6rbinq9C+RTNVc1xL//1a/NXn/nHWgwU4nQlC7mEgWa5oP7jWfaWBzpuE89+lgRHIq9VcrdWQaDbZFU4GecDvQESqrwARFzsxUAZp0fRSUZBkAK0ABOIAIsEKaK5gWZnBMvLZAGPEhrK8pzowwBYAgEAZJ2yjMcsESMeE4ZKBVhzW9AVsVY/eANb17cBn7Sa/WJFxg0AldgyRjQhn7wAANR5A+II2tAl5e++hWQcx5IJBLISEESyaFAO8dnREjp1T4ybD2jgCFQRk2MgjJE0g9jYxgSwJicakk/bK9N3mfzoNb8eDlWRVQjI/vrr5eItiJO+u28yMpn16SbVWRW1yJtIOmOqW0pygirNhhCPc2LMUR+2jmRFDnHQ0x5pHmnyd15Of5YhgSGBIYEugTouJ++8krw5YkaxsBRSk+I+hn+YZqY7//kp7N/+J1vVwEj6bdt/uqLqQL/1OyHL77YSGkcZkipVOD3k+WDfDwW7OIUpatU84UXIqIq58KDU6nwTkcaPkF3wQzVdRFVet5CxyOOHI324cBE8mgyepje9rLQ9fCq41ZF9LKPSB296Td6HQZW1DTv9oE/dCyshCN0OxKrT/R6cyq2IRgIMVyjc7VBpcIx+ttQCoBSpDBytZ8+N5xsw1icl/5yJEp9ReSK8KYN2FTETXshifqpvgPcq2NEr8uGgRmcjGQjutnSfLcWfl3M3NpkKpoLE2TO6E/HNufpemjbb4gsmcJUzmZZQeSx+kUOztUL4XQOXvZD9EVPnZN23U+OISJO1tqBPSW3bMsmcZ6uKWe5e0hkXVTXPTOWIYGNIIFBSDfCVV6j5yg9Stl7pNRcpKKhf/o336/KhX+RaV2AuFL3iJ1U3OdfenlmjM7PMtYUkErJfemNN6oaoVM0RocBAQR5q3m2Acz7GZcDCHgkERpeaQAGiG1rnSgcAgUUgAgDAKgW2AccGSOIoe2Bi7ShQv/8AUxAVntIDsLoM2Dr0UGGQ20nuhdwZjz0tkQ0HdM5SZvVFsMCgVJJFjEHyEgiUsZAAb685Ppl3x691Li0YuDLOACCvL6Mhb0xDBzT9vZHUIH+YsDaWEv9dm6AvpN0gA/ky9Mc4skoAaSIPWDl3QbqvNL667w5AMjReWnPi/HRAVm/XY+ayDzn2iO+QNp5t/Ns42zJz9x21urz9gD+3qSYOY7r47zISOQcudYGQ0R/W1GMlN5P/0UYGDn6f/bihVz/hVon7Y1M9W0sQwJDAkMCXQL05KupX0DXfO93vlOVdxUrUsVdpW/YoL6Bonwcps89+2wRS06/J1Mx9/mfvTwzzQusUFhPvQOORlHOR48cKXJ3OnOHIh2ch7bhaFyII5COlbVDZ8myof/OB6foYxhBzyE/MkSQrTaUxNjRNmVWxwPngBy1oSItm6RjgH37Z7obESryE30IE+hw5743uhMxo3/p3MKtyfEIl2AsHOptkAv9zmnoPPShxp3CorzsL00YIYQLXk2f53eR03zXrn7DjkoxTpuFTWkPNqUr9V3Ul26HC36n6+Hsof0HMkxDZVvRUtOncbDuLZkhtbaj91Ub1r6UYH0GPs7F8Bqy1hf2gX773N9tY95U3/XfMQ3Pca7adu6mboPdsIhtAdddp9an5vQ9lGgoMnshx0NObQObtG+MshMlm5HN05/K8b6eJTAI6Xq+ug/BuQFnqbkKRrycQkVPP/ZoSu2/lHlFv5FpXX44+63nnpu9EgIKoHg2ldD/2he/WOsQG+RHCrCIKa+uwgA+AxZEFDCZbFvhJGChaiEAQUqhVPNWpmJfwARZ4e3UrvL6QBzIFflMgzzKe9IPYCM91DsABWyABnEGwEC9pRdJWW3TljQwbeN9ADGAKg9swMaCELX006v1HWA7HoJmLAqSyBBBWtu6VpiHwcIbbF990a7z1A9jgIAZQ8Gr/8YgICtjL20LIBUosjBEgGv3zAJ8hsjBgCP5XEq7+o/QG5d5KftqD/AaH6N/PVLqnBkn+l2AHDJO9mVEBbQRSMfnFbcuYiwgBsL6Z1vHdjFdF+fgWpApGdvXz0Dc/eFla7J3XzEMXUvHL3Kc/otiP3rkqFOtY0qbey+GIDlqbyxDAkMCQwJdAoiBbB5FiP6jf/KPZ//q3/xFihr9dlJ6X6jquLJxzDP5+YxPf/7ll1MZ/vOzn3/wfumkowsHZy8myiXaRXcpXsRhqgru6URIjSmlN2GTLA8F/rRHt6n6zgHKMSp1VHSUc87SM0DoRORMG3QiZYjYOBa9CJc4/Tgeq8DORDCRWft2omfsKD2NZHOc+l2qL/1b5DPORiRLo47HCUlX05cieo6DFNLZdLnzk61C59tOG+QI70r/B0MKf3JcbXSccB4IHv3dpheDTakSH91se/gDJ2XkyLaBTUizSLLfqo+RD2zSbuFQMEifOSmlJNvHb4207i8yLeWW3BBgOOtYMopggnNA/Mt5mmPBGrKDS95tax3c4YBGLhFb8obTtnH+yK3rCDvJWnqx3/THSx9EyzlnnTMSbBup3MYXi2qT01iGBNazBAYhXc9X9yE5NyDwk5+9MvviM58pBQ/gKGFA/nzI6lc//4UC9icQzSw8yV985pkqoY9QAmvzlT5ypKW9SJGS/oQcIaUFAAEkY0p5IYG9NJwC1Ch+0UEpOY7bwKMpfl7dIpwBQcADOIACkAX4CN8KmLfiDq2yXouQFpAFdAFPRUuzvQXgAijpt73oAgKIIAJu5LYZFtcqqgl0ATGSpS3Arq9AWIQTaAI6IMYbay433lzt8PwyUIzpFFkE+M6RsUMuvdiEsbXG/JBREd/023WRbrQQUk9Wzl8/jHFB8PRf266Bc2UQlPzymz4yAgA/smlfvzl389I1r3HSu3JuDBGA2xdGjTQx+zJsFLPQb98ZZa6riAJZW2fh9UbCGTxejBAvRoh+6T/HBJCXLkdW9ncuHBi+k21FCHpHxvuQwJDAkEAkgCiasuU//qM/mv3rVIH/9te/XlOW/buZ8uWl114vx59oF+eowntvvvNu6V5j2l9JISNElA4SXX06NRDoVhlC9C5d+MGJk6XXDgWb6CuZG1JdkT/DHegnOr7I2URM6VPpqfSlcZmIJAckTKBT6bIitSFbdCNd7cURaBv9gT+2s57ehI/WaYeeha0IV5HF/N4rsouKwh0LLIBNsoPUHYCP9D0sgzmIWX3PJ3obhui77W3j2PoOj/TJd+Mufa5U5eCL7bRhH/IiI5hm+IXK9Jy2zquRUcQTMb9R+l3/bV8pucHgStnNuVUbosvBGotrZRiLRR9l2IhSOz+41R2osIhjE4lEYuGGbcnosihp1jUHcX7PfjAK0S/nt2yffO8E2nnB/oqC5vw4G9gmcAm0uS84euErhze5jWVIYL1KYBDS9XplH7LzoriBORKhaMSrP3+rSA2gfTdjb0xOztusWERVzg0AKm6k6IQoKVKpWASvM3KDtPKcSndSSde4FOBFoSsUAQA66AJ7x+flBUTAETg38hkQTduIE4C2Hsgjb0hfK+6j8msr7lCe0BwDqFc0L0TJMYHepZA7YNbIJ490S8WS+gNsASQPaR/3yNhgIDBCEDwR2Q7s5X2eSCjAA9LaBua29Vl75Fnr0wcEzMIAEeFFwm3vPBBX/QSU5Gm9YzEMnDfDgIzIV+QYcJoj9cjBhWbIRKaizGTo/JBhqWT6oH+7p6JHCCVDoeTEiHDu2YZcnV83qhgRjBdg3w0XfWeUIePOwauMgrRnvI7rSS6uj8WYLoZDc0jsLUPp1JmzdSz9dl7kq2rvl5Nu98Jrr5UcnftYhgSGBIYEVksA6aIjZPOYf1T9gh+88ELmIf2tjBl9qaZmoYdOnD5TQ0wMIeH8RCrfCEFFROm79zOc5PFMP4YUnkrKruio4RQIKt1Ix8ILx7sRMorI0KGl84IrCChnKaJXS36jQ5EiC71G58ENhAc29G290490qHdjKpEdWGTIhv3oXr/T/0hcG9KRtNOQS/q4E0ykyxQvXT/DVQsMoGxhRthX9QOuSgkWdUx3q69SWsmGTGCU/iJ9zpMeJx94tD+kveQRnEaQLTC7zjHbwR1V4KuWQY4rtVnbsqG0zV6AxUcSsYYR9qXj/ca+KNIdzFe13zqylP3jN7LRFwScDbA5+CV6DKdcky2JpOq7YlJkzfFMfl3+fS5X9gd8rWJLOYZ99Zc8rSdr5wt7ObnJHRnmsJCdJNsHYa7tYGWONZYhgfUmgUFI19sVfYjPh5KVHgWIjdkxvcszTzyecTfnCwQRNUT1uRQ5ej+RT9HLo4cP1djRowczXjSAYQ44ler62FFgIm0TCLVo3/4CEIQIWfEbkAKElL1FhFBKDtAIsma9sSGtAI8qg1JpgWcnT7bTd+0Aeem+BUrZroE9QivVJ5HObOdYNR4ohAwRA0wMAu0AY+NXnIvzrVSlgC3QAk6WDkrlfU57DAHEs/bPtnrt/BkogLKDXkUj03/nXn3PMbRrsX19zs4ILQ++hTFUnuSAdZHPGEqOTzRSjHjMydZ3UWnncy4pbCKtyKwoKZLtvLohYBvy68WISm4ayOI36ViMLsWYGAi8+13+tiFDY5o4Hmr8T4y5ltq7Ut3RuWhXYSbXRhsMDYaCKKnfRaFzuTLVwtEYg2eLSJ+M88I9Q0ZjGRIYEhgSWC0BjsefvPJKOUY50Dj1TN/y1VR5fz7TxXCcnk10k94yFtAQEpV16WYO0yczRzZnnSJJ9CVdxkmGqCFy5h1FjDhTLd0xiNhUFk/Ij7b1w770H/3aM0xKb0WncRjSuQguMkif6oO5skXyLPov+mofzs+qslvpq4tNd0Z3N0zbXHhAp9t2fwh0OUCzL2xApGATooZA0rX0vv7R+bBM/5Eq+/fxpHBEcSLr7UPv1rjRrIdndD7SC4OkJMMkhE0/pUmTLz1Orzs+TNPHsguCTfrSsGle5BQZdEx9KEdBHLSin5ySjks+jrUj+NdwV1aPOg5trK1tOUDJzbYimbAV9iCi5OA3Dl6LYzkH610D+8B5xD4fW1ZPzgnmkafzh9l9v0cOH6lrK11cu8YlSx12T3hpcyxDAutJAoOQrqeruU7ORXoU8Db329/85CcF/iKhKtFR9iYPl877dsbqGK8B1Mw9qogRUFKxUOoOkqUtoMrbCcRF7YAaYOG9BahIG4MAcQEOBfZR9i0d19yYpmdp6TdE3EGXYeCVHeu4HYh4TIEQ0GAUADRgaFvtMyIWAqDLnuj0AQlHXkUXMUr7AErRWWN7elqU352jPuivfiO4wBqxdWznhMwCesaPNCTA7TzIRNtFnEPorO+gyiggT20AeUaFVCUEk3d2S7bXT8c/mDTeii6mH/rAww9IHZu8a4xp2mEQkDmDqcA+56gfPNZXAvbaICfngjAjw80rnXS1yKmNyWmVC8lCO/pbkdK0T77aYoQgsoyE8k4nPZe8GS/O0faIaERbxo9rzAAgJ2O4yOSJVM40Ab1IhXOwbixDAkMCQwKrJUCvyOYx5vO5z3225ramf44Fn17LegX4Pgjh5HST5WG6MmMBYY5pXcw1Ks1UJJVTz3L6fKuqbtoxkUVOSXoQmUNe6CsYRGf1BSGh22AKwkJXOqa+2A8uIFZ0JH1GT94IJiBfsltqTGOIqsgo3SqLpaKA2cc5whypw7JpHBdporuRPgTWsRAsOlY0zza+05uwwLnQuyKUZNX2bTgHQ8y7imRb4EYV4QsOwB5YAb9ggwim9izlLE379LjjwRc4isCeSx8up8+KHdoetsAmuOhYSLr94ZrPnMJkKDvIuVj01b7wCBBr12/kCXdqdX6C9bYh23oPvjs/5+t6eec0tQ/85vjmCLCeY5yjAM4i6lKzfSY3Q0/IsBHyRNDjrHAfHAn5Zsu4Ls88/nhNC1PXvTpUXR9/hgQeegkMQvrQX8L1eQKIj2JG3/32d2oOuKfiHWQEfDGTjktzQsgAO7CX0oKomGu0AD6IgGT0IjvGDAKLUvIBOJEx6asgx9gOKT/SUAGPYgYApggl72aAB8IAYwQVcAAZwABUOyh4t87vDA/AA714NO0LbAGUBXkESCKbyCnwZTAwOgCifRE6PuxTosNpE5kyLYpiGKoeAmGAaj8vgF4pWAF4UUt99B3wMopEG/UNuDkOI8M2+mJdJ9Ad/MmLJ1d/eIClTTXvcyu+wJPPcCB7yylForIY+2JhKHg5N8YI+XSPNSOAg0CEF3kkRzJnfNhGX4Cz74wDhhOgJjNgzrAim3YNFEBSqTdGSYCdUeb3PrZK6hZjy6sAP6SVMeE+cVwgT76PpOolGTrfzz315OzFjAtj8OjDWIYEhgSGBFZLgL6SzUNn/N5v/73ZjxM1fTQ1DIAKvJGlY7yoarr0rjmyObzoMXNOin7RiaZ4oTPTXNpaLNKpEB89Vw7F7EsPIUf0ovWWTqAwM5FIqb090qhvdBtcELlTeVd2DsyTIkvnyvLxTm/ano6lexFc3+nofXHWFTakn84TVmiTTqcz6Uo4wbmqsJ4hEtpTkIj+NUQFGUSk6XHOVDqbHtYG3UoXO4bjyiyCNXBDtJgz1DmLWMIax/a7fpYjNr8pXHQkKc4wXGSa3B2jZw3BXtejoqYhqmTuXLTNyUoGopLOpcuVk5JMO+FXQZ6zllwQdvvoM0zRDwTSZ+u8kF7yd82co3a8O0fvftOGa0g2fb32RW7hP6y7EBuI81zbbB7RVpFz52dfMiU/fR3LkMB6kMAgpOvhKq7TcwCA5uL6yuc/XyRjV0iMFCgFjURHgSpgeyeGQfM0t2JIUnlYBpWGGUCULguEGAbAHSgBRWCOZALrDhiUeyOmbQ4xut5+CGsHE15nZebtC+wBEi8o4odg8noiogryAAyeZoAJpLXF24oc21+byDeQ0TfgA6DKu4vIBnguh0TpL3DSvzPxpu9PKipjADEEuvqkHd5fpextz/MKeLNZXqnEmGPZllEDFFtaUosU2r68wOkbcG4R1ni+85lsgZ9zOHb4UB2HPEUEnJuKxfrN4LAvw6CPJXUNGRhI4sK+TARexlVLRbOf3wE2uZU3OiTVmCSGDePDe0t3nlKj4njgVddXXmcRXedCjtLSeul9+/T7ozkcpE4pQLGlSLRoqlRwpLwKicRJ4ZwYh9YxVjguGA51r6zTZ2yc1pDAkMDfXQIcWhyh/+h3fmf2ty+8WONKj58+VeQJOVHL4KlUjlfsRi0DFb7pPJFHYxwRJes5IOl2usaLo4/OpeO9w5ZOHuEXLIFxdBwdiBBaT3e13xXfa+NA6X1OSPpROnA7RsssQfRgj/3oUzqYPrWuiFv0dh+PSUragQmclfDKucAdeKGNNn+2iGUb24lQ2tZ28AaphG1wQFTXMeCGSGM6XNjJ8QnX9eFGsAFOwhDjVel5Dl/9tI6MYQFM5OT0Gf74DOtOR7ZkCMNsD59gJNLIcetcWsZSG9qhnoA0Xc6Bln0V0prjkz2cknHUs504e0WhyRTOOkeydxzvzt1iP1imb2SGeDs3OG9/C/wkp94m8nkkw5Dsq4+ur+En+qZ9jo6yDXLMHqWthsafIYGHWALzhYWF4V55iC/gRug6oPtWqhp+9oknZm++926U+6Yq/KDqoQnKESxeUONzGAgAV2EIQNlJFACnyIGtFF9kowMGcAM0tgHiSCPgREYAAuCwjgGg0h3DAbjYB9jla/2G4dq+L9oCPNoC9jzU2mJgeHde+gMg9Y0n1jgc3wEcsNY4Y8XvzlNasnQuhSaMQXKO2pOmZPxjkeb0STn+hQA9YLQAVH2pfufdcRFyBpHz7PvZVjuPHT1SHnd9F909OaWXIdgA0vEAoXRe8+Zpn6HB6NB/fSojJOuNPXUdrCMfbbbxsBkzm2vl2B3Aa5yrYhshnuRn2wg5skLuM/F71pE5+TkH2+uT4/brYh9OApUXEWaXx++MAfu67vrCYHFupq5B+pFRkWPRXgbCzlyv7//0p9U/8h/LkMCQwJDA3SRAd/zTP/iDmheb7jTERLVdZJWebNj1XvRQyFGK63yQ+bUpJkQJSaKPEFQ6H+mjp+j9PnzAOnpNBov0U841+tx2xpDCEs42WTHWVVZJjksvc775zfZ0Hh1c2GPfOO56aiyd2vECJsAKEVbTuCBIIndN77fhJPovAmo/kUqZO46NlCKc2tB/jlQ4Bjds/2GG1Ig4Wg/TkEd9IxBFghBo50qvaw+Z685U+lwf6X7HNFc53IE1sLHklX5Lw0VG4YNjkrH2yNSx7auPiK/P8B0W2daxbYMsWo8Mwm7T5yCT6VTaknFkDG7LoOq45B3WuCbsFPKvcwmJLjIdDOMYIEvbtHTpDMnJsbxq/+zjOrdMH0S+DSnSH/eBa0AGzhWxVuyxprG724051g0JPEQSGIT0IbpYG72rzz37udm3v/b12Y9efrnGk5KHVCheZ4Aj9UZxI1PGAF3gAmwYBIAfaAF8IMcri2TwtiI6oprGWgJNgFKEJ9sBbCAEmIM1RWaAAvAA2LYDOsDOd+QnPK88uI4D0ERXgT7QBSTa4n1lFCCU2rIU2ZzGumjnWEj1mYyL0c9OAHm0TW9j/BFgP3b4UPqQ/dO59GvJuepLFt34Oy/p+1KAdB4v7FLOa96BUqVEhTuQcSlaoovS0MikF7Zocr01ezQRVF5ofSYjHt0O9tKuEEgp0yK5PN0Al3zIaTqHulbkZL0TYmCQVxlg+cyIka7tmpUDIWBPBvpL5rZzTMYEIw4Z1T5yqk/uCfeN+Ugd4Gyipv1ecE6Wv/jBDyoizmAZy5DAkMCQwN0kwLn1ve98pzDB73BIVXjTvtD5sOmdDz8o3S8adiLFauggOEVn0kVIGr2DqHFOalN0tYhhHJHekRg6SjStkxjHgzdedOHqz7CEPvSydP0KI+lVGIYkibbS0UiOPugTPU8/W28dvW3RZ/oQ7h6OwxHwiUzKFBJRFPW1II76KAoJC1r1+evpytKvhU9peonsRI6j9+c1LCV6/dS5s0X+RS3hMcIpi0jWjQir/hq/ezDZOggfBzMZwF4yhxnOu2X8tCwk8nEOsJzMyFd0F4Zb4A7ZGi4i1TaXoGwKv7EvJrEXftmPc0DfpE83B3dLtyYrcnbtOADgujZdF985GTg+tCm7R1RaP82Jq27GWIYEHnYJDEL6sF/BDdZ/EdHvBvR/9NJLVSgCwRTZFPVEkBTtATwAkYI3xkM0EdBQ5gCVN5rSL+9o9gcmAAdIiKw1Emm+tlY1T8qStpAbXk378n5674s2CrAC7DeNC0l71gEwBoBtgY1XeWhzXICuD8DUut4vnnIRX7+3Sb+vVOQXqOsHAA1oLgHKLCud6J35FN9z/KV4b+cAXtQSALNGRKcBOW818uy8fWc0AE7yLRKa9b4jiQwCZJZ8/I4kAncg67SIlydZW6sXUQDyJwufAT5jTjsIq7G21mmLvMmJIYCQWqTj+kzm2j6YcTmulfvHNWYEtjGrIaq5Zxgxr739dnmh9XMsQwJDAkMCd5MA/fGtr3+t9CHyydmpoNFrP3+7SNzO4IvCRrJI6EZjSA1BEK2DU0gHTKD76S24AZfoOjqKDkUrHcd6+k4l2ivBQNvSc3Qf0oRM0nN0Lb2lDY4+ulv7fUgEZ6D2bF/DG0J+HISedgxEjeMUMaI74ZQsHZlFdKyIqDaNK+11DfQzWTpZdeu+4lNEU45UMnReMIis6fTTGYfZsEdab4hpZGPc7+XIXNVeDgAOXjhCnhyV8Ed2k4rxZMsmKDyJkKUTkxsMISeY7zvcEtWsa5H9IbRr0K5Zey+sD3apcuy6sls4yaUMw1Rtdhx0XfQJiWZjyEriNFCt+N/++McVKb3bvTjWDQk8bBIYhPRhu2Kjv0US/jDTwrz29juJbB0oz+z2pNRQ4sZ+GGsBnHlsASaPJEXPOOCBBgbICEAGWvYD2ICGkQBc7AdJeXX9BmyNCe3oihRagAywAELAi7HAIrBOG4BImhRDoIyMKVqKKAMVxwSOjgksexTXGJw2lqVNARMvb0U/03rvgiM98AVBjUznDCMpRKpOInYFoJF1T48VDUW0gbwUMPIjGwYOctkmEm8eaL85SdeQDMmUMdVL3nfjrLUhZTegnm16ZEDU1X7a7cDfnQpdxuRucT/wOBu3pF3ODAWgRB8UyBBt1QZjwZyDHAUMiLEMCQwJDAn8IgmY1/g3n/vS7OXX30hxIE7HHVWNV9YI/cJhKnUX2ZAFoxYBwlcZG8EbBKqNVQyRLOfnrKKPcKSTUrgFf+he+EHHduyBWfQhPVx6MpE2BAze0a3e/eZFF2oT2YF/sIeTVJQREdU2xxw9iOAhSsiQc+iFm5Dp6P0HQUB/0SXo65ecKycqkO4YImMK/isSKKLrGolWcj7ajr63n6hwTxPWIFyxHnaTl+sHW2CIBam1P+zqhN81gi2ul/a8c2x7l92jTa9ORu3HkeraOIa2D6QwoM/kDzeR7L/80Q+runEdePwZElgHEhiEdB1cxI14ChT2d7/z7fLUwgBAYr43pAiJMOgfqaDARd4odQCPTEg3kkYKiFELgCQVqlKgAgKA3AKIrfed15KnuIFPi9gBfSBhf+ABKCw8quUhzbE60fXOMNBvnmXA1Meu8MryyAJ/C8NCe6vTeeuHNf4nl2Ep1XjnvegQUAa6UoyRVNeFrJDxBs6KQsQbnPMVCQbKyKXIKePJ/gAfzJv/1f7dAGOYdSMMgEth85trwDHA4eBaM74YAzzQohOi6TzZrqlpCRDmmo803mpkVX/cMwwW14v3333FGHPPKKqlgvNYhgSGBIYEPk4CKsP/7je/OXvhtdcqSir6yKHFCQYPZPcgFnS9caGwAfmES3QU0kM/0XvNCdeqpEvZFSWj5+BP1G70nLGkrdo43UYn0p8WehDO0Zl0Gp1qe+3Sw6VL6eUcTxv6xXmqHUTUZ/rUO11uSjb9sm3GLqb5Xzv9tvp5P/4EI5ai2+dNbrPZI8nmcW7OGS5zHpM/xwBcQs5FR4uY5pq4buRKZogpERvqoz145DfXimOArMne9dWWq+G9EdRgVhwQyD27RHvScjnPZXspzufauLatxoWCfW2KOvfPX/zt31af74fMxjGGBO6XBAYhvV+SHse55xKg2L+dYkcKFShmBEiQO5OOW4BpS+m9UpG4IiPZBmj0dF3jFoFGEZaA0eVEUhkOvM4NdFtqKLBBMoGNNNGKymU/QFT753efgT1PK4ABXtY5HqDjddZH4AakRAeBvu9AXiGmjA1ZQn6yNGvCp4dwiZyWEhGdG5vkVEQe9wZozVfHsEEgRbKBtu/AlxzJCgAjlowq8qtXtrNYB9RXikZIpc61yb3Aky2iTaYWbYmWGtfkupC5a2p7hiDiywnheuqL390vNcl6DEOFImynHYWORDd+/LOf1TYMy7EMCQwJDAl8nARg0O//9m+XI4vTjbMLkVQFvMhhHG+748DkgDNNiqmrd6YIAAAAQABJREFUCjuii+AHzKAXYQIMorNEW5vzrk2nQm9ZisAENZDNIkVZB0Qch0OW3uuEyj4IMAyFTeocyBLxbi/4aPwiZ50+w1hjMbUV3beUPj7U+JSTLALuPGUoPZfiSCeTPi0rSUEhpFCEGF7DDkWNelE862ASGZKf74U5kQgZWzqWdSyyruFRHKe5jq6rayFaLm1XezCPU4A9YH+LY8IsRfdgn/m///z73y9nQm0w/gwJrCMJDEK6ji7mRj0V6VHPPv1USuwfLwKiCMPxU6cKtHkxER7ggVwY4+gzoEB8gK3vAICRAOgBuugkUPebd9X0Nhk/6l8IDE+2hfHQvZ8ApnuiETEEVoTVPJzScSoCm230SUrQxXg83z9+otKzjp86nS48PJ7mX+FeW8oUMHPnDHR5d4E44id9l7dfQQnXiKe65JntXAvCJD8GE9DmNOiLa2JbxgIDSiVJhl7fRkQVwO+MsSdF2DUytlSKFMLpeBwP2hEx5502LorHmscbGWWQuZdE30V13TOI6N+++GLdOz2i3fs03ocEhgSGBO6UAFKBlIqCwg/psdYhoDJuKn0TAcl/OlE6bCdCMAUZoqfoG2M1Re8QGk44Oo5epc845GxvMbxEgzVUIdshNTDOfhZFlSzIjwid3+lT7SNkqrQ7DvyjB5HVYCV4e+iJaJ34qj8hiksZnlFRUxHgwovIFC50rEIcZc/AosKFRE2Rc/ImtxaDbhlB5GxBPMMhqw1EVVvd0S3bypznnAgEqsARbCJz+yOvHAbk7xi+w60/+5vv13HrAOPPkMA6k8AgpOvsgm7U03ky6VG/lTE7Io1IT/PknounM5NcT4BNNkgoYEdkgASlz/vM81zgHSBHSqWWFkHKvgwI4K9N4NEBA0hYCpQmDzRwAlq82cD/UgwFqTYIle0ZIowLY28QnKQYr0uQL8Hc8Yc8eKSB7OPHjpUxRHbK6iOByCAst45B5gu5M5q8I5mML6TTPrYtg4xBkC/Wk6l15ViIvF1rcve79aLS3QgTGWX8uWYIMmPB/KkqCSO37iPrGWuMAR5z56C9n776ahFV98hYhgSGBIYEPk4CyIhsHsMCROKQG9NhmSvbAod6ZIyuoofoHvqOPuTQ0wZ9xklHF4mmdb3mN45SkVb6SiXZ7jTVPjyL4vKxdKtIqGggfUnXal8fevqq42hfxgn82yDLUiLBc9hh2A2iLirpmlmQRdcCfrMpjPPFz8nJOtei4xJsMfd3vWebhnOZZzay1qb12byuKdkjtIbtMAa0pU3XsR8PCf6rHz1fx9CXsQwJrEcJDEK6Hq/qBj0n6VF//6tfnX2YOd7MbYZA8kRKg0I4KXfznAGARjpaUQHKnzFQ5AJKBDAUP0BwgAcCIpIKLIAEMGIoAHO/eVmQJm0BJsDDa43sOK6IKKJqonT7piCE5tqOtffG+RP5L8X4mXMOeFW0FFAnAl2VHGOMWciNsUSeZNydCKKdvP9IP+LoN6m5CCUvM+OsRVzjhZ4i2a55RSXK+dA8zntigGmLocEIQEBdZ/eNaLpCS5wVCmddj6GnYJZ7jBEp/e6vYyBI9xrLkMCQwJDAJ5GAbJ6nHnsslXZPlP6i/05luAnsQHykxdJuRYSiB2X00H90IR1G53Fwgg56E97U2MPoPfv0oQwdk+xLx8EhjkDbIkqmXxFFhWF0nd8QT1Fc+JbhLUvBxA2JTxFujTMlG/KGB0hqObojp8XgBcHAjS5D14bMvexjIXty79V3ybWipvmtHKzZjhPWUCLyh2mippyetoV9nej+8KWXNDmWIYF1LYFBSNf15d14J6d8/re+9tUiJEgEULAAF+DAc6wiL0AB6BaRM4CCxLTxmzydU6pNUkeBCJJjf4BhPI5oqrYLYNKYMaVABWFFbAGK76Zq0SdjXK07eTqpuRuUiJawV/0JQVwK6Z8/HQONMUT+ABjxdI2kjvXUZ7LsxhXgdj2Jkae50qGMycr1Znz1qojliQ7JlfLG4+3aGjNsP4acY5VRESOCYcgAcGykllHBScEQETlQUbImro8xKLLw2NEjNZWD9YzLsQwJDAkMCXwSCSh29OXPPzt7L0NMVHe1GCJgbCiCogAcfIItdI8CRhZRVamdisZxeMIjwwngC51X5AWpCeHsuOcdAsIebdKjHKLahWnaE5mjG5FfwGfqlrGUBJYeP3p0LsupO5o5DWC61OqaQzSytJAvuboGMAnG+GsdDOljeBFW0U74Yn5zqdH2tbge7BBXDC4Z8uM6v/T66/X7+DMksN4lsHnnzp3/zXo/yXF+G0cCCIe03ScffawK6ZQ3OYgsZck4ToAhfRZIAGtjQ5BJi3U8lwiH3wA+QCkQz2dkB0EqMprta/8APGACHAoitRRO+94qQsWoQFoUxVFVNwucGkskEK//PCR0KR7oOfLXpoWJpzjXi2xFH0VAAbbr5vqIXHMgGOtkHdgH8sbnuvYcAq6p3wD8zpBRIF/jd3OdiN93EVXrXA3tMdpcb9fYeFHRUcetqEX64b7wQpyNeWU0uravvPVWbS+CMZYhgSGBIYFfJgHE71yKu332ySeLbIqIIR90oLHzdBd9YqoxelBRNmPkaz1sygHoLN8RJVkdCA6cotBE9OguupADFhnyottk6diHDoRtxs1/cPJkdOisCuolmjfwaeUCzsk2uLK0a9fOZEQb/5sxnvkHlzgxq9ZBZO6aNAdom4fU57pOuS7k7npxnJI7h4LrKi3ab5ZORmGZdGyZXI4NX8YyJLBRJDAI6Ua50hvoPCn5n7//fqW+LGQyaUAPABQpAAKWNm5RdcGANuKZl0WabgP3ViEXaIMMYA/kvXsxGLxLx/FeRkCOYZtKg8qUImdDWhBR3m/rx3JXCRQZTXRyKQbW3NgpxI8xxUiC1yKnroMIppdryaPPi0zuIt2uOTD3HfBvjWHXiGccEdm2CGPas86r7oNszxBQ4IMTwnWU1iu9m0OhPscQFJk4vHCgju0+EcUwyboCGIoeKXSkf+Ma3/X6jpVDAkMCd0gAJpk+6jOPP17OTNkddBGnmmwO+oTegT2IJ0yi+xDXIqvRd9Z7iZD6jcOO/rPQkfShRcS0skQyTp9j1mrOOPqTHo3+XMrLxm2H2mv86RKILOeIO3k2jGl4Dy92TBFrjlIOStjvGsEwY31dH3gj60Zk1fXs43Rb4SmR8GCVrK1sez7RcNuejhP7rdgwYxkS2EgSGIR0I13tDXauJwL4gNmcpJWem888xO1zhBGAqfSbGAHNiwwujE1spBTBUF1XGqelSGv2QZZsx2AowwF5mlJHlfD3Wbn8pHIuxVAYIF/S+/g/QJ9H+FpkKf3MuCbA3gk+wknuAL4IZlKmfGYUlBEQA8D14VBgHAB4Bp5KllfNP5vDM9ikxTmOcVTuDalrDASGIINCuhUyymHBCFTYwjujwbjjY4mOSmlj5Ln+xmQ9/djjrcBRDLyxDAkMCQwJfBIJIJZqChiy0CKdlyrKBlPakARZJJmmLP+MrffOWeY3eq+m1IpiowftT0eKtvpOl5lai85rhKiRJQ5UOs24VbrWPMt07yfp70bfBukPViwlMjpH/JFT2EKOCGhl7oSEwqD2fUvJH1a4ZnBGFpVsqi0ZSmLpjlPXTNaNNswQMIaBbPS7bWOe/yCkG/O6b5izlh7FC/z4saMVaZOqCUh4qIEEslFez4AKQiMdFzoDdL/lR9yzRcCQogA68BBZ9W5bnlDjQXiqRc4cExnOMoCeFH6FRTQU6IdMVtEj16i5CZL2FEdBjwAAfYQS6QT+jLhK6c367THKXFMGgPZcBUDvd8SzOR9uJZ13WxHNtk0bRyrdl5GxJ+lYZfSl3f2psCuaIE1LO1KJVesV1Wjl+s1Ba7xyK3TxK5zu2HRIYEhgA0ugZ/Oo2KoC+WINKzGswPQuV6eoaRyg0WEqkXOWIbKwp8bMRz/RfXShCJtUUbhVTjS6Meu6M48+tC+HXJxqS9FpA59+9XtvzqGt4jtHdTlN47yES/BC3Qp44vr47hr5zdAhjgDXquyKHJeNAZO0wclpPSKq3sRYhgQ2ogQGId2IV32DnTPyeebc+dmxw4dq/GiBQggkgEZmKkoacEE4kFIAjoeqWCj9s4inFVk6wCMijIDyQCca5z1TuNQ0LgPof70bjMc+RtNSjKsSehXgEC0to6ul2bpArgtQt7iGAN11EFUVZXXdLVtCZKWquXbWIbg809o1v16arX3dC+WoqHtiewyKVKS0f+4BTg1Tv5y9cL7uGVWcFRQxdYOUbNPYvPHOO2XwOeZYhgSGBIYEPqkEODBl1hw+sFAZPIrnGcsuakavITayN0Q7ZYpwrNFXSBEcuhGiSpFV9k7eRe1gmYgoEupFT8E+Fd7p2E/at7HdRyUgWpprsJTrMXd9yJps1R6AS35Xq8J6EVHyB2cdr7zDLO+wxcV454MPavjHR4821gwJbAwJDEK6Ma7zhj9LgCAV5rGjR8vTbNwfL7RIJ1BAVmyjYEGPdnFL8ziLwjEGbMML7bv0KQZDcaYYANqTohvSNID+3txt5YluXuc2bQ6g79MauBYMAcJGQqXUilJ3T3UVs8qPrpXrK5WNA4LR4JoqLGFb311DqdaKSSCz0t8UA2FUiIT2qr0MP04LkQzTJjg47/YHJ07WFDDun7EMCQwJDAn8XSSAfCKQhgWIsqnGKt3TEAV6rCqOR8dxpjW92IYrID1FSkuXZcx99Bad5p1+Q15l7dBtppXJMjDq73KB7tgHqQ+ZXMowoDknJ4cprIEDMMY1YUuQe3eeErxtOEhl+bjOnAhvZ7yoirtjGRLYyBIYhHQjX/0Ndu4A493jKbUfQmFKEXOuITGAw5hCgF+e5uC1saPAo5A7fxAPIMMrjRR5tyg+IAUK2c1Sm/swlnsjAYZXDKtcoqW5iCYSioxuznsuR0Dd2Kp2faTbIpkVBQ1xdI0YAsioa2xOWvtaJ9JQnunsjMxaL92K4adokSJHFscz7cLupMv5jbGh6Ihrvn/P3tlfP//8GO9Tkhp/hgSGBH5dCSCfCq4dOXiwyCS9RHeJvMnUyJeGQ6Wvmr6j5xBP20nphVN0ne051ZAeGSd5H/j0616gj+5fjlNDOXoKr7G7uRTlFDAEqDlSV+wH26oSX5HuZOG88c675Sz9aNNjzZDAxpLAIKQb63qPs40EVDcE4vt27ykvss9AgieZNxOwW3zmafayDrC0peG6down4X0ey6cngch+vphKkLlGc17liowikjG4ENBGJl27pSKjgN41dd1ET71EOV1Phpt0a9eyXe9WCATxdY0Vm3D5EU+GBdLKGbGQqsmLKfnPGWH5MA6IH7zwQm336Z35aHlIYEhgo0mA7jkZR+cjhw8XLtFBomrIpXoFm6P3RN5ETyvLgw5ESvNOh1nXhxlYl0rvmUHm1iCjn+KNJPuGI8Ci1sHmZFS5FtKwVzuzYZeX32DOy2++We+fYtdG00MCD40EBiF9aC7V6Oi9lEBPYTLPJGAQJUNcEMwCkgm+a9xiPkvRVXm1lhAWZFT6E+/zWO6LBOYKcSTVac554IpIb0MsGWC+KzyEjEqvNlAU8PNEi2yqttvJax+HxfBjyIm8tnlHMwdp0nWlcZv4XFQ0F52ru07QtZam/YOfvlDX/76c9TjIkMCQwIaTAOeZAjcHgk/0FVyS5imLg15DRlXg9Y50crRxzHmns8rBls8pkBMFFuU4lk9dAmQejKmCfBwCHKKuiewr73CIY8FnWPTTV18tJ+mn3rFxgCGBh0QCg5A+JBdqdPPeS0Bqp5dxgkADiREBM0cbooOEQvLGSfIp/6XgKECRwhDDs3nvL8kvaxEpLVDvYN+j2KIHQJ4DwdLBf0einNLYLiY9G/m0fkdSchl4xgNXsaOsQ0LxTpUsOStMG8NBgagiwIqKuO7Pv/yzcd1/2VUavw8JDAncEwlwfNJDHGXGhLZ00DZWkYOU3utTVdF9jZS2yq7RV4OM3pOr8MkbEYl2TWCG6wanOA3YE7CHM4Ej9CevvPLJGx1bDglsEAn0HMQNcrrjNIcEbpcAYvLqz98uLzOwv5axg20MobkrG7kRMa10qJBRlQp5nZGfsTwYCbyXccCuG480oAfwvXhEctPKCOiElTHA6dDnHbU9gsrLwNngu7E/iK1ttVsRiKy3380QUW09/7OfzX4+Jip/MBd8HHVIYI1IgL6438tb771XKbxIjrHtPTUUAdUf8yEjonQfMmToAudZFipuLPdZAqLUUq7L6TldgiKmhSmXKzJ6n7s0Djck8FBI4P5r14dCLKOTG0kC0jylz1xcvFSeaKAuTQr4t/TdhusZi2Ps4BiPswZuDulsAB8ZRSYZYRUd5ZEO8DMALAod+eQ6lgFXHuukX1uXl+gCJ4T0N+lUFtvyZhtjyrD4yx/+cKRml2TGnyGBjSsBBdRwvGef/VIildvvqyAQTI44ZJQztDncFDNqn+lB6+i4D06evK99Gwf7qARgkul1zi+2+hKujUJ4L7/x5kc3HmuGBIYESgIjZXfcCEMCkwSAPiJqShDjBWusYQAfOVFpFcBIyRkCWxsSQEhN3SOiySuNSIoU1BjSdNF6UQXGGnLpOoqCW6zLDqnAu2N5UnLFjjghGBPSezkpzmau0bEMCQwJDAns2rVr9pWv/NbsypXLs2ee+ULpiMXFC6V37od06CxDFg7u31+6jBONI66TUe9TZPR+dGcc45dIIHg0v3L12lIwac7p/XbmGR3LkMCQwC+WwIiQ/mLZjF82oASkRyGfFSELiCCn5hg9e/6CtN1BRtfYPfHe8RNLpjhAQhFQpNR4T+nWiCXSaawVorp6sV2LqBo33CryStlFXI0P/v5PftJI6+qdxuchgSGBDSmB7XFcIRX0hgwM6bGipN/4xrdmjzzyeGRyf6BBH158/fWaJsQwBMMW6DZZPVMBow15fdbqSXNgGwdsurmxDAkMCXy8BEaE9OPlM37dgBK4lOk9RNx61V1zwykoMZY1KYH5hcVLS4lm15QwogR9nBeiuS3TJMSGrIq8DDfVD5FX6VOip+YoVbIfOU1W1eyl19+oKMSaPNPRqSGBIYEHIoE9mXP4i1/48uxqnF9S/emWG6nEvSVTfFAwTz39uZpa6vLlS/elfyfPnKnhJVJBZYqktoFu3R9WfF/OcBxkSGBIYKNJoA2a2mhnPc53SOCXSADII6EIi+I2Y1nTEpgb25tqyXNzy4oabDGeKk6Fm0lpY7Qhm7575eflqKizEhW9kOt94o0qBLKmT3R0bkhgSOD+SkB0lA4x/6c02V27dod8Xs06cxaHB066ZmHh0OyJJz4ze/PNV2bnz5/91Dspm8e0MOfbPNiDjH7qEh8HGBIYEvg0JXB7HtuneaTR9pDAQyYB6VEiaWNZ+xKIYTjPdD1L0m0V/mCd1fx8KWok/XrTphQpyvW8lfTd7dM4Ut85Ht6MYTfGXq39azx6OCTwICSgmNEjxx6vaaI4tCpVNsTUHMeNmLY5qpFWwwOOHHlk9txz3yji+mn31xj3GnrwaR9otD8kMCQwJPApS2BESD9lAY/mhwSGBO6PBEIw57t27qx0a4xU6q4iRdv3bE9ktFWjVAQEXeVsWEwqNgI7liGBIYEhgbtJQErujsxNvC2ZMooZtUjp5hpD6nNP272RLAvLrWk6ML89+uiTte7tt1+vdN76Mv4MCQwJDAkMCdxVAiNCelexjJVDAkMCD6MEziVigIgaK2p6BGNKpeTujFFpUfxDpUoVDwcZfRiv8OjzkMD9k8Du3Xtn+/cvzKTtGj/axoxm2Gi60CKiPiUbIw4v40q9G1OKmErn3RpC+8QTz8yefPKZytKojcefIYEhgSGBIYGPSGAQ0o+IZKwYEhgSeJglkPn6lkQ/byRdV4rd1RDS7SlghKCeOX8uhYteb2O/HuaTHH0fEhgS+NQlkEBnEc9rCp+FbG5PpPTqtSs1JGB5DGl6Qc8goN45xKTRSt/t1b5FWZ966pnZsWOPfep9HgcYEhgSGBJ4GCUwUnYfxqu2DvrMu7x37/4C+3PnzqyDMxqnsIYkME+kdClVkueKfqiSbDzpux9+uIa6OLoyJDAksJYlcGD/wdnCwuHZzp27KmX3YuYcvZYMC6Rza6Z8MU4d6exLFTjKl0ZKFVNr/n7bGCZgPcwzXYz5S0+fPtl3He9DAkMCQwIbXgKDkG74W+DBCGD/voXZkaOPJAVqy8wk4x988M7s+PEPAtpJeRrLkMCvKQHjSU0gLyq6mCqUozjVrynQsfuQwAaTwLXrVyva6bSvxKm1OYXRkNMLF87FwaVY2paqvKto2rVrrZq3XN6KjmafhmVby+mKvSKsleYbYioNePeuPbOzccZqbyxDAkMCQwIbXQKDkG70O+ABnf+Vq5erMIRS+kB6z559s6NHHp1dXDw/++D9dxPVGtVtH9ClWTeHzVQw6+ZcxokMCQwJ3D8JSLHduXN3YVNFNC9eqPRbRYwQS2NKb966kfHp12pcKQxrc5PeqMipnoqIVmT0ZqvMa5sipPlN1e+bN6/MDhwQhT00O3Hiw9nlgXn37wKPIw0JDAmsOQmMMaRr7pKs/w4Bc57moHMBu9L5fdmyeevsyYy1+fKXf3N28OCRvnq8DwkMCQwJDAkMCdwXCSCkhw8fnZnyRSEjKf/eRUXDSOv7rRBNRYu8VO3uVXg3JWIqnbcI6Kak6i7dbONK04bxpUVeQ0iNL63iayG5SOlTT32ujndfTnAcZEhgSGBIYI1JYBDSNXZBNkJ3kNGa1y2ElBeZ15nHeHPSd80TyQPN2wykv/jFr8wef/zpAPXWjSCacY5DAkMCQwJDAg9YAhcunC/SiUBymBZ5DD4plKauLnyCVdJzVdbdFOKJvMIu1XiRTphmHGkbP3qztl3KtFMwLz/Ubytkd0uOd6OcsE888Zkirg9YBOPwQwJDAkMC91UCg5DeV3GPg5GAIkaAXaS0gL1SmvqYm4B9gBxoL+Xlfdeu3bOnn3p29oUvfDlFIfYNIQ4JDAkMCQwJDAl8KhJQeOixx9ocojt37GoEMkdCNm8mEopgVuptvjfiuUnQNNu1uY6RTOsRWdsbloKIIrdXp2wgqb69Cq/120JmW/pvG8JyKNlBx46OiryfygUejQ4JDAmsSQkMQromL8v67ZR53aTiIprNgzwv77NxOptUJQyyV5Q0v8t7ausyz1sILNA+fPjY7NnP/cbs6NFHC/TXr6TGmQ0JDAkMCQwJ3G8JIJZqGiCVop+IIlIpAnozuBSEqnlGe78Q1LZM74hqSGaPosKuy1cuVWpvFUMKYb2aGgrw78rlS0Vmtet4nLRSf5HaHTt3VpaQ445lSGBIYEhgvUtgENL1foXX2PnxBj/6yOMFvsbP1PjRAHh5n1d5mH33aulNOYmAtVSpW/E0X0+K7759BzLm5rOzp5/+XIH4GjvN0Z0hgSGBIYEhgYdMAkjh4uLFimyqAM9RikTWK9FOWTvIonGiHaOQVlTUd/u3YSeNYBpbuiXDTXr0FNnctg3BDPlM2yKmHK2mgeF8NXxFGzsyrEU/4F8IMegby5DAkMCQwLqWwCCk6/ryrr2TU+IeoawxowH1G9evF9lEVBWJMCYHCNc4nXiQN21ut6j0pluKQiCmE/BLh1IJ0WTjn/3sF6ti4do749GjIYEhgSGBIYGHQQLSdR999IkilTAKEYVHnKcIKrIJdxBTxFEUdHmZcClv2a+l717P1DGiq8gmYqoAku+IZ33Puu07dtQxtqeQ0mKq+Wrz2rWMQ03D2snSQ7DLhxofhgSGBIYE1psExrQv6+2KruHz2b17T9Kethex3BxgViiieZdrVE6Bve4H50M6p7L5E/AXYY0xwAhASBkLNuxl+K/G89wmMd+dFpYyp+n7HczXsERG14YEhgSGBIYE1ooERDIPHTq6nDYLmSoSWliVYSRZREcV4FsyRjSEUUqtdUCrcCnbioz6vLR0vdVECHZpx35SgBXpu5x0XRk/3tuQlRwtjtkdGbd65szJOtbFi+f5ZgchLWmMP0MCQwLrWQIjQrqer+4aOzeeYSm2oqA8xZYWDUVN8y/k05Kf2xIYLqoa4gn4W4GIRE0D2hbkVMovcEdsy4Odd17uR5IW/JnPPJuCSHtaW+PvkMCQwJDAkMCQwMdI4GIilK3qexsDKpvHotAe3EEqZerAIvjTX7ZRqM82vXKuSKff0Uk4Jl3X79Jzt23bUcR0Z8aJIqT2OXf+bE2HdsV4U+NVR3SUWMcyJDAksEEkMCKkG+RCr4XTVEqfdxhII49AulcfrM8hpdhoRUABuShpPMtb5q1qIfIqsuqdJxuIX0uJfXPGSYkqD3RIL8DXHqA3l9y1a/vruKdOnVgLYhh9GBIYEhgSGBKYJMCB6AUTEhGsKuwTGbuvMpLBw2nq2IgjTLl+41r1QeQSNll8ru/5jJxeuxZM8y+YBYO8pPpu3hRcyracpnBLISPFkuASh+ylbGdaGNFRTtWOi4a1ILN5d8AA4ViGBIYEhgTWvwQGIV3/13hNnCHAhecV5Yy3GfgilSKjvM8NzFtXIbDvliKZjIHgskqE2zKm1G/XM/aUAeN3i/E4ly4tVsEIxSD271+YXTl7ujzNvh84cKiMDeD/wQfvlhe8dhx/hgSGBIYEhgQemASQtl2pBcB5+JWvfjPFfnbMnv/x92fHP3xvdv7C2RCz80VUP+0Oikp+5ulnZxcVGKp024wXDUZZoFFDmvq6nM0TMGq/5A2RFQVFJm/eaDhla+sQ0T68BOmtqrs5HvJpaplzwapdIcQwTF2ES5cu2rWBoE9jGRIYEhgSWOcSGIR0nV/gtXJ6pnsxt5qIJ29ylc+fyGQR1Qn4C+AD8uWBnkgp44DRwutcn3muE2lVIt/YnatXW+EInmfzlJqYnNda9ULALoJ6NoDfS+rv2bO3vq8V2Yx+DAkMCQwJbFQJ0NXf+vbvz45kSq9XX3tx9vbbb5behhNf+MJXZp/LNF+XLy/OXn75J7Mzp0/OLiSKev78mdLx91Jm0nXhiqUcpgEm2TgWw0wU1uuL791pWpk7lZ6bLJ1svymOUkT2UvrMEWs8KaerBUbtDB4hvSrFw6pt27fXtvinbW/cuJzzOzuio13Y431IYEhgQ0hgENINcZkf/EnyHvMAA2SFHbh+u/dZpHQlRatNPi76iYSKgPq9EdIQWeCe34zXYSDwNvNAHziwUODvM0/34uL5ioryPO9JOpj1oqNnzpzK50sD7B/8LTF6MCQwJDAkEGJ5ZXb+3JnZCz/929liHIgIngyXr37lm+VMfO31l5PV8k5hh4q0z37+uaqEa90777xVKb5SfUPiljNmflWxwhf+zxvBKWm0qrlLx+0kFNHs2Tg1hjQIVqm7gCwYBYc6ifUZfsG0Hdt35vdLRaLhDwfp1kz7sunypsIkztJzOfedNc3L+RnHre851oiO/qoXcWw/JDAk8FBLYBDSh/ryPTydZzDw/lp4jZHGa5M32lgdoF4B0VDFm7fM+9ZSpURFL4dMKrvv9ypiFEAH/uVdTtXe6xmjI0raiOjF2cGDh+u7FKltiaI6tvFBoqS7d+/mbR9g//DcOqOnQwJDAutUAvQ43Sz6Se/v3r1v9qUvfW12OJVu33v/7dmPk7orcsl5aZzpFz7/5czRuXP25puvzE6e+LBqCBwIeX3uuW/MvP/87TdmJ09+OLuYNF/pvhygn2SRUrs/EUvOT31CHntqrf15MPtUL+KkbagJh+lsdj0YtXUb56hU3TYljH1hmP22pq3CqrxfSX8Qzu0hqnAJVnGWyvypmgiFZVey11iGBIYEhgQ2lgQGId1Y1/uBnK2JwKXL8iy3+dxahd3ucZZ2W2Dc06XiffYbw8A7UmoS8Vmyqa6lyASSCfzNYbpl1+6KmKpMKAUKYVXUaEc86RfOn5stBPDNBdeKR7QxOw9ECOOgQwJDAkMCQwK3SUBk0DQnezLU4ktf+nqmXDmSsaPvz77//X9TEU9OS47Gz6Y6u/lBEcyfJpJqXClc2B0iqXK7SOM7SfUVJeVtVGX9q1/7e8GbzUVsOSMRQGSwOztXd4RT9MDCoSKHsEgWjkhtxygRT+tnSbG1WL85UVWRVdu1aV42za6mT6K8zotDFC7BvhvBrfqcflaUtJyyW8tJqu8XQp4PHDg4+zDjZkNQ8djhNC1Jjz9DAkMCG0UCg5BulCv9AM/T1CvHjj1WwD2fbSqgroJGE+lEPMMYi4D6jDwG8avKYQP8Vrlw85aQ0JvXy9vMOBAVPR/SCdAZGcYiAf9Li4s13YuJxhWNcHwGibZj0Aywf4D3wjj0kMCQwJBAlwCip5jR7//eP5698+5bs7/+qz9NZPNcORY5Lx999MkinOoBvJGo6KlTxyvKSImbL/Sx/A4j3nrz1Zo2BQksvAkhhQUIHpwQ8Xzyyc/Ovv61Q5WZI7q6umASEongIpqtcu7Vwh/95PyEHcaN9sUxRTUbXiVKGuIsPVdkVB9g2IQ3dezCqytXZvsztISDFC5Jz/WuffNznzt3tvqcInyDjHZBj/chgSGBDSOBQUg3zKV+cCcK5BuBvBLwNeXL1jIirgag/VZpTnlv4I6ctiISIqfzqlbYqh1u3mRc6eYC9B0xNqT+SoWaz3cVqPOOL8TLbYyOz9KwLkzjiqSFiZxmGWD/4G6FceQhgSGBIYFlCSBiRw4/MvuzP/9XpZ979fRHH3li9plnPh9yuTvjRN+cffD+u4k8miM02TLR/Y899mTSeo8ZfjH7+c9fqyJBfrP9kSOPVEbNyRMfFOFDNDktjUuFPQivlNs9IYS2hRMya0RdYRD8EJWVgWPh7LweZ6dK7jW8ZFPzaUoj9l3xJf9FVUVkOVtN8YIEI6ciort37a3oK8eo4y1KQ576xakKt0xLdunSheEwXb47xochgSGBjSSBQUg30tV+QOcKkHuaVIF3yGdFSNOfYocxAqoKYb5AYx5qaVBIp/UKSzAOpEFtvgHwb5WXG+BrtwA/xgXw53E21ujcuSv1eWcMFOOJ9sUYSUGjAfYP6B4Yhx0SGBIYErhTAnDgvfffKTxAND/z9NMVEZXd8m4ipi+99HyRNxFI0UeZNlJ3RSPfe+/ns1OnT1QaL8emIRvGntL5xpFyStpPpFXUFMlU+VbaLwxxPJiCVMIOfUFIe5RURXiLaCiymffymto340kDS7fmsnbmN40lvbWUDJ25Ps7TVtpbSiry3DHjNF2S2ZPpXOaXMgWZPiG9IadLpiNDltPX1Eiay/IpSLxTTuP7kMCQwJDAepfAIKTr/QqvgfMDuAX26YuopyhnY6L81LJzWwRUxLOipFkHlRkG84D0LPWNeKOvB+h5uJHQqykEYdyRfRSFqJSpjEVCTo3VqehoyCmPO+OGl902YxkSGBIYEhgSWBsSoJ8VE/rs5744O3r00dL5b7zxs0q1LfIWnd/Hdz7x+GdqnOW5TPnyyisvVOVaOh1hVBxICu/W4MPxREbPJ/31aqKeflPdfU9eN7KtAknIp8VvLePmWjk84Q1CWQX08ttMDb4AFGIqmpklpLHtE+Qq3yo8Epm9fv3m/GpwZ3emFNtyc2u+L80VMGpR0htz84se2H+wju2zc07K7hxpViFeRBXRHcuQwJDAkMBGlcAgpBv1yt+n8+aBNtF3I5flSW7gHk+0pf9tRNT40Xios972vaAFAgqspecad8MAEEW9HGDfkfZblHSxIqO83gCfYSFNVyEL3nEE9cyZk+1wdeTxZ0hgSGBIYEjgQUqATv/d3/tHsxMhkc8///0qOsShaBjHpujwhYXDsyef+EyltHI8vvrqixkreiYOySvl5ORsRETNcW0qsA8yZlSWjBRcRBZeSNU1Rcti1jseLEEkveCMFwypZdX3cpcGMSotN21ZEFLrOVihl/2s27w582RnfU85RmARYmNkt2eeUcc0fypM8vlciOhCoqOcscaOKmiUaWxGBk9JefwZEhgS2IgSGIR0I171+3jOUqukJQFwwM0IkP7ECLDU3wA0AwQZbR7oVrnQNn2dIhG3AvI17UuiotrzeXO83irwFuDH4GB8+MwTvjcklEGClPbj3cdTH4caEhgSGBIYEvgFEpDOirD92Z/9y3IuInMImirqx44+Nnv88acrDdfYfxFRRBQphRUw5NDC0RREOlZRSTpedV7jTLUDR/ZkChlFhGDOxWCDVN2OM44remm5liJDN4MZFjgBP8ot2jHqVgirNJ2glbbKeToRVBFaBZeK0C7drP4Zm2o77SiWtG/vgRwrv12+XOfJSes8z547XVPVOKZxsMukuHoy/gwJDAkMCWwsCQxCurGu930/W97kAvApFiqyeWMuZUqwcgpY5o0HOygdQyJjcpIr1QyDkM54tBkuwB2ItyhpGw9knWio6KfIqO+KRkiNYjzwSO9JCpXfTp08PrzP9/3qjwMOCQwJDAncXQIciYdSYZfOlmp7YOHg7KlUwjVVV0u9fX/245/8f+VQpPdbNHJz1QM4EiLK0Sn99v3MVypF90rSXhtZ3VrOyE5GFRC6GFKLPMKjbVu2FRlVn8D+Mm5gixzcRjYbLjWXaUvZDWMNpLThJsiuOUlV3YU5t7ZI9W3FjLRv3mykE9aJlMIhdQ1si1DnILNdyRpCVs+cPbW0f9/C/MqeK5HDqQkQ7y6vsXZIYEhgSGA9S2AQ0nV8dXmARREf5CJ1VjSzpTk1EJ8HmGucTjrGCADUS0spKhGvs2IPyOncPhmmcyOgHj5agD+N40k1xlQtTOoTzzTi2gsZGatqCjeeZwUutK6gEUPF+NOxDAkMCQwJDAmsEQmEmNH9v/mNb1W1W3hlTOVbb71meEVFEw3bsI2IprRWVXGbw3E2O3nqw9np09kukc8im8ECKbwyY/ZnW8SR/u8pvL2dLcENTkqL2gRwBY4go8hiYKOW1Y5UK2yDFBf5DEG9dfNafbd+164Q0PTTC8lV48D5IK0wWASXc9S2xpbaTvZOor/zkNJqsx11/B0SGBIYEtiYEhiEdJ1ed2C8Y8eO2X/6n/yXs3ffe6uKRABm4M3bDCSvZX62yxmv4/untdRYm7iagbvop375zBAA/p2o5mO+51uAum0H3G+UsSAKyuPc0qCM07mauUZDSgPwAB/IM2QYIjtjGDjHVNQNKd1fhY/qWLPFycz4tM50tDskMCQwJDAk8EklsDPk8dnP/UYRtddff7l0tiq45pM2PAM+II6IqBReRezgw8mTx1Nd93hlx8Ax5A5JlKJrG9FIJPPcuTNTdDUpuUUkW5ouLLE9/JPee0v0M0uLkN7Re/wUTuUY/iUEm323x2kaPIsDdSmFd28ioGlLVNdx5vNUfs95iLAaPypb50rGvJreBUZpr9KH05a+KsR39uyZOw48vg4JDAkMCWwsCQxCuk6vt7GbW5Oa9Gd//i+LfAJKxE1kcm/SnZTHr/E3iTQibOZAO3H8/Uovuo20BvB9/7tGWkVIeZwbyZQS1YpDNPCvv0VS9c2LMbItUdIqJJFrA7xN+XJlfqVIadsu074wRALwKigCfEaJyCivsyJGiC+SmtL7RWTX6WUepzUkMCQwJPBQSkDWCtL4b//m/y0d3xyHIXGJLO5FQjPFi5oAMl84JU3zgrhdQVqnyCl8QDCT9ppUXmM1t1da7Nk4JKXEwgnYBw+QW05a04lZ16OZMEU7tmkO05aSa51/lkrfnTAK2W0pui0i6ndOXdsbXiL91+tS0oSXlna3SGnwSbquaCgSKsMHrp4+fWIpGDlXZXcsQwJDAkMCG1kCg5Cu06tvehURxMuXlJ7fVoCtrL7y+CrTAmFjd16LZ7rSWhMpvcZbHHK6KcC6L6BpbGb3OANgVW1PJ5VKwSBpR1evXSnPMNA3QTlv8+rFPl6OZTxNZhstoMZQa/62coKvAv1sB/oVmPD70lKqIGabpU0I6JXal3HSSGnIa7zSor5IKKOEQaAAhv5Yh/wC/bw0PCKkqy/O+DwkMCQwJPAAJYAQIqQKFNHr0mwfyxyju4M7SCMCp/quuUZFEUUhpcPaD3G0j6EZe/fsjxNyd0jmjRpL2osfSePt2+6MYxIhNXYTfti2fp8ctSKehor0LJ6lYImoaJHSfO7zYdvXmFPTjVl3a3NIKXxLv2ANHEKKMVhwZniJY+3a2ZykRUqDobvjNPW6dPnSXHoygjyWIYEhgSGBjSyBQUjX6dUvb21SiP7wD/9pATFg7gBvjI4iD7y6QLlHT7sXuUA+qU+7d+0tQlkgmrE6yN6V7MMoQHhN56KwhLGcJiPvKUva7e0XMkfGm1IWv8aGBtwtN25IbUq01NcCb5wRiPM6Z9zoloy/2ZyIbn50Lkvpp+iphWHRDQXHSjGI6gujxDlYF89zeaEZCOfOnR5ktCQ3/gwJDAkMCawNCcCT//A/+GdFRJE7xM0UKB+kSNGZOEsRPEXtEMAePTWWlLPRPJ4ijUgpQnhZgaBERUPwpqhoxoUG82ToqNq7JQSyts06kVlTsng3x6hhI5vmKaYXnPGqJW2uxivbtOyehke20Zdan8+cuKK2IrmOA6OyQzUFPzlrZe54OdfFbKe2gXNBTGHWWIYEhgSGBDayBAYhXadXHxE7eOhIKhC+U2lCxlwCPQTUfG3AGgUEqrzHCi4gl70qLXAVEVU4YnnfAHgnryKfQFeKEq8zLzfSe+Pm9QB9I46MAQQTSbxzAeBB/GYEhJWWIcDTnJdKiVfyzgutsiGvtH7a5nqR0nmBvnZ5tGtMafrq3Jz31q37inwzDkSBs79THaT0zoswvg8JDAkMCTwgCcASr1dfydyiiZSafxRRbPNMZ67pqG06H8bs3oGELiSF90AjdcED+KRY0NnsW+S19m0RVMq+Fy+SAsxhaoEtXsvR0WCWpTlC8/vNBhNLmeqlOVGDTbeyjtM0//SncO76jSK5hsCAFwCzbb6t+g5nbSc9GE7CLuviGM26XYVdCHKPlm7aNMywugjjz5DAkMCGlsDQhOv08gNA6UIvvvSjAlCgCWo3J2rKg4uEGp+jxP6uInHbyhgA8h8aS3ohZfTj2RWV7GlS2uhRVGS0A30gu0gukL929VrAPkZBpUI1sC+0bji/DOwKRBShDCm9NW8l9wG9BWHexHOd44m+bpk3Mto5pfE20nKldXXQR34d98KF80s5v7kxOvp4K4bFiJCWWMefIYEhgSGBNSMBEc4f/OAvK/rZdT9MQOB2hICaz9MQk70pTrc9NRGQPENFjA3laBRhbU5WjtLmZHVyit/BBhXbOSi3bwsOBE84M1t0dCXqCmPS8GqZZNWS8nqFPxyeihTBK320vdeNVIXXluEwNTdpMHDiskWy4wxdikN1XjiZvrTz2lq41RynuyvdWK0HKcZjGRIYEhgS2OgSGIR0nd4BNdVKgJNHFigD/4WM0ZHWujUeY55dRNN40EZAz6VUfau+C2gBfAfg8lIH5BvA714moq3q7c0yCrSFJJpkvDzcE3jbt8Um0dYsvmY6F6DeSen8VopIZFLxMgxCIKVG8WI7Pg96A/1+qzIItlbfjR/derWV8Jc+vGXLtaT6bpmL7p46dbzG8vBQj2VIYEhgSGBIYG1JoByShn4Ek6Stmjd0394DqXGQgnxxREIMdQqk8R7/8P0ioo2ANidpz9aBJdqSmlsEMA7X7nSFN7Dp+tXgU3Chp88Wgc1+IpubDR2xYb2gkM/5LfijuJ4Xp6ljOGb9Br9u3Vi6cuXm3FAV/Z3NZfRk3lL7bdo0dyyRW5V2EWpFBm0LX9VcCKGO83THHF6OZUhgSGBIYKNLoFv5G10O6/L8v/e9Pw7xTGGgeIdFHS+GwJ1L5dlEEatIBALJawywAS0g5Um2AGVpuCKU25N6hHwCe0BfxRyyXUVQE4k1FkZbquGaNxSQWwC4/bzzNCOHRRCBdvbXL8dpxLcBfqVpBeyN36k+pT39A/jAfFu83Zs3ZQzr1KbfGCzSexWT8JKq5bg80QyPsQwJDAkMCQwJrC0JKFT0ve/+cRhgc1DCEJXSkU+puJeNvYRR0fHNydkwCgG1wAC4IFOH3q/PNX7TVCvSb28WLpkTFJFFSFs6cKs4XxgHk4JzDU821ZhTn8thmv0t6iXI2JH147dbN1vqbraZd8etPjq+VFzbwyXbeoeTho/oo2gtDBUFTvbRfEo1dkJY8FiGBIYEhgQ2rAQGIV2nl1766osv/mgaWxMgBsYhZzWGBvHMCyHMnyaBGAWipry4AL5AE9jz7iKBxsrkn/0ZDsb6APoC+SKiiWgGsBvRlB7cyug7Tvco1zidbKOd7tWu+dwYBVlnW8bJpqlPZRRUXxkQrRgFIBeplXps/rcbN7YG3L1frxSuipqm38Bf1HR4n9fpDT5Oa0hgSOChlUCrL7A0+9GP/iZkccKR6PDCp2CESut0PgzwKlxIpJKjkfORc5SO37ZV9DFkNJ+LLKYgHuzjaEUERVg5JuFAJ4/Gh/rXsne6QzRr6pjLZLNkK1uHA1al91qyTSes+mXp0dZyfmYdbBIR3bLlxoRPyejRp5zf5cuns//mOofqf7D15s3T1c74MyQwJDAksJElMF9YWJgYyUYWw/o7dwWKjmS+0QL0gG9fgHBFKgOKwL28tiKfSZMC7n1MDC8vly3DQNGg69dUJkw0NCDfxuJ0kOe1vt1z7Vg1j6hS+v7lmPWKx1gxI71pYA78W2EjZFYlxUaUQ07vMEp4u5FOjmSktL1CRhHlGAGMAdFZfanPZQA0I8R8pGMZEhgSGBIYElgbEoA7R48+Esdnm4Jsda8QvpZNE+fj5FzkIG0kNM7G4JTfOzHkaC1MCvEUVVWZFwm9PpHQnv3TCW4/VmXr5EvHIBilTZgFUzhX+/esKlK7GutWO2DhVo/itv7DqJDnvBRH0ofqR703rNJHFeKzHiSOCGm/MON9SGBIYENKYERI1+llX1w8P/vsZ7/QUm6nVFsRQ+m3DSQboANPJe8BLYDsEc+a4oWHucC9RSARvQ6qALhHQ4v0Tt7iFfIJX/MKyHsrxM02RUbzS9uH1zmgH1JqO+nFNxWQSF8s0nbrOP17tmnAH3Icr7pDNsNFKnAjqQwYr5tbM1dcDBKVDccyJDAkMCQwJLB2JAB3zp8/N3v0kScr40VxH7UOvDhFNwcLELkaw4kk5iXLx1zZhVPJ0OEc9VoZLtIzgBqGNOwI5kyZQMusLzgi6mlBPlcvcKkyeqzMZySziGr2aVipeFFznBbWwcG8LCK3t26ZvqalCkvHtU0n18uO1Gy3Nfs4T+cSh+ntnajWxp8hgSGBIYGNJYFBSNfp9UbQ/sE/+KNKQwKQgE/KEIJZY2oC6Ncy0Tgwr0JEAfqKMCKdIYC3bgLaBrzGdXbv8mry2VhmE2CBdYwG6UiioIAYyWzeZx9bJNTW0Fc7q9ut7WMLAO2lTPWiz1KobiVVynegX9+ti3f81lJIZ7ZpRNo4nSv5nuq8OU4ZMukHQyD7Ldshrafj75DAkMCQwJDAg5QAp6H5rn/3d/+wdLvsl0q1DU6pSXDp8sUVfCqM6hk5k1N0GaOCB1J74cKEU3CpuT5zhlkHh7w2Fz41jCoyCZ/8q99bVo/tCp9q15Yy3Aln/ZIfZQ9ZVxFS+CQFeMm0Z8Gj9KVw5yaMkrnTMAruXrrUCvW1egqtH34fy5DAkMCQwJBA7P8hhPUpAYD5p3/6/xRwrgbrBp4NaDu5BN7NM9yIYkkEuN9FNMAb+WyAHlAF4NP3vnmD9OlbGQlpN15ly+rjFClNP4vs4o3shvoztQD8TVhux9ypre/V22rHObZziHHQP+e9DBPveQ3AJ7yxDAkMCQwJrB0JwCRO0j8JRi3jU+nurtMbJjX9jmE2vb+abHYsufOsCqOCGw2bgiWclJWF07a8DZ+yCom07qZK7w7V/hQudZLb/JoNEYvA1h54bvZMJDdv2Z4ztfVfE8sZRHVezqf9Vlg1nSssHcuQwJDAkMCQwCCk6/YeMObmXOZqa0sxveVzLYIHSPOv/vs8RTCXf6t11vdXI5+FvMst9Q+F4jA4S//cvi1vUcT0diOjGxv9fTWpXG6rN7D8Xr2ufk/0tfq+OUbBbctkwJw5e/K21ePLkMCQwJDAkMCDlQCiZ0zo+XPTHJzBmdVLI30T4ZtwKgjEQzlh0qT9J3xCOBXIg2MfXTom9V/gkM8NZQpRahNUdDVGrZBjOzSCydHZtmmttTZ6yxMw6fH0UZ9a9DWu3OmIfqwDVoaSb2MZEhgSGBLY6BIYEdJ1egco5PPd7/77dz27IoBA1b94ajshbO8r35t3GPiurLttmwmY+7qV7ad98nuB+OQNbl7m1hZA7vt5X/Ym51jdK91+b31cafsX9CVtdCPDfhbR0Xy+3dK5q0TGyiGBIYEhgSGB+yUBaa3Gf37zm7/z0UPiaqXPm67/xbp/BWeWseIOrPoIlqxqV8YN3GmO0EY01TTo+AFGqt2OY9pexrwJh5ajn1Nfqn2f87rtN5jU1jvhfgxR4rEMCQwJDAkMCYwI6bq+Bw4dPHLX8wOGjSg2EC3QnojpMjEs4G1grdLu8njSPq70tnVtO8BuuwLiWylABNy1w0VceNxAuv2eX5eNgQmogXjbMB7m7DNRyXmMF1PBaKKBej8t+/XPH33Xl9Onr3z0h7FmSOAuEti1Z99s1+49UwRmirYsR2R8b+tWsgbco9P6ul/dsLkh6397r/vVsaYbtRuibdV08y7f2227trbt3+/6dvNP35bbqlb8WTlmfV7eq447HWWlD1Mf227tONWAZmrjtsfqz63Z5ZZWtdv2b7tN+y2335/Pvs3d3u88J/ukmEwM9dWycvyxrB8JSFU1jvRuGOUu6o7SFTxqBPCjuBUsW8akNl3MyveOS60WwjLuwCnYM0uKbuoRLc3dc57diWTm/lvdRvUl97T7sZ6J+tOuheEqK9OUTdFZ2/VLtfpzX7fq3fykXmMZEvhlElC1ee+BhYxR3rI8TGo1FvUst2VM6tjE/po+Lx+jVHHTx3kC2n3t3QbT/b1a/658bvvUlrVx7e2PHftbfa410/r2edph+mH52/IzkjXtf9u/Nri9zalr7Xd/p2002fatFf2HqT9t3W197ue4fMD82tvKh/bxLu/TfoIdph0cy72VwIiQ3lt5rpnW9u7dP/vLv/qTZkRPxnLTS92wzrt/PVWXwlo2vtsY0T4+tBUsMianpUXd7cGlGG2fRlKIKG+RhFdPoKLQ5gF+itHD7uX42m5ATyFkre3yK/vA/m3L+pA/+uvz6neftRQCXB7smBkxUCgMRSeybTuU3cYyJPCxEpjuQfeTG83/vNd9P61bPV66bePO60ubw9BNWs9CX33He+03reufV9paOa51bX17Hvt3z0z77HmMQVzfp/d8Fn1SeIXh4rP3TSkWVt+nKZM2+x4DRxGx299VN83+U5s1T3A999Ox9Gn18abvTTfYpsmLDPpz7Zm+M8uirWvyvn27pdn//s//x9mpD9+bnTtz6g7Jja/rRQKq16pKu4xR7iP/8u7e6ff6R9/bvV/YNOGRe9X9VwX18tmSO6ugo79bt9wWnIvDtO7jrG/1dkEPqFAx132ZtyzVH23WihVsAlC62pZp4/rS1ufvdB5WWtc27qS4DNpbCjTdaE2Mv0MCv0QCuV9zo7Gi2n3Y76tlG670crvX6n7zHNV9WFtOrfs93/MMWHvXxe/9t2rDptMa7/XZRtPn294bBlSfJixoeNFsvbmil+lnw6gJnzo2war+Odjk8wo+Td+jM+BVx6dNnuU6746D7fsyHqVvte3yNvrcsOxODGrPvWd/5XXnNqUj8vv/8F//54OQ3vXm+fVWDkL668lvze4tWjmlrOaZWvH83tnhPJ7LeunjFE17wCsgvV4AAEAASURBVJuxSQGUEVDvTcH4naLsS3+oPdB9td9bXzroT5HaSQG0felcRPZjFF6UjHY78TTpuLnoav7RGDqO3RQW5WPjsQwJ/HIJbM3ciNszH283Gt1Ht0wzUfdni/ZrxR1Vxm8nbp6D3P+rAXr152Yw9OO7HT0ndW/WynrulgGzgWV7vjqxbO81r2GiSpuB8kQ0VwB8hVgilMuLvvcvdR6iPyJHN2dXEpkxf6NopCqn9Z7zvW16J55gzp1svyKXFX2y+jm/7fPKUfvRV72X1qnnvMnBT+TR3jmSVFwdy/qVABxQ5V2tg37f9Pc7z7qr8Lprco/U89Kfn9w0t5HTydhcwafbiWpvux+rv7fbFVZ5PuDU6le/3+1tm6kPObZ7Vr+WSUGty/c8z56ZIp7BpIZPoirts/3okLEMCXxSCUSvz3ft2VNZZz3NvNl419v9Ot23dU/mT8eobq+tvkcds56jel7cv6V8W1emaECtAh6FTd32a/d2d/70Y3Q82hJ82lKkEdlcRThXE8wpwlsH034eqOmtPjd8iv0aTLpyeXF2IxgFDzpGeYbqBZdi91U2w6pZIcrGnDL8bn+Oc5TCw/Zs1/Hv+ifnaP3Kn3rO60mf5GQKxauZ1mks91YCg5DeW3mumdYYld/77h9XJUNTuyilr/S8udFq7rYYA30qGA96NzpLGeRBv3NpyqspLoqtjACGuOlVvMcI3jIpIAqwKajNTXnG+NgccL5xw372aSlUjrVpSp9qOM/zFy0w6cauMBkXlIw+Xrt2pSmmMqCvJyq61Lxt2Ua/TLhue/PMmf7l4sXzd57K+D4kcFcJIEKAzr2MnK6ArfsvsRP3KhDMvdwJWgFe1mdNGaHuO/c/BJtu4wLBuqlXg37vge3q5Rnq9y1y2cC8ni+f8+okVbv6043dNk0T4zfg7BwKpG9NBBN4rzzfy6QyfZ7MAPbAyjM3PX/NQEnf6rmajP7pGauIa2RU/cl7e9bizY4hwiCpuYAzx+LWem2fbU3xGs/lNu/TqxstSLbX5q284c37/b/+T//dbMuJAU39FlmP7+4h99Y//IN/r3AINl2ZpiQrjMrn68GtmgrG/csIreeuOVM8d6uXjhvLz5JnKu33Z0bRu82bPEdTxkCwwmftVPpunofNmUP0huc3x+tGcT0vdzh027Phkcm/Ok4z1vVP5LccpGnDNGt9HtOuFzzjO7burH5ZB3vHMiTwSSTgXrseu23TZGdt2rytsApG+K3uZc9IYdT0nNDzucdv3riZbW4ub++5aEofOcvHvO4WNa3725b9eVp+jlZhEgzIvMGep8JMOJF/juv+Z2d2XCo7M/h0MwSyHJ8T0WwEM8GE9Nez1567qWN3CEfb6VDr0+p3xy37Ms/2Vs9+c+TWNICRGft0GaOCTbAKLsH6bdsnnAo+KbZmXUVop4hswynnDOO2zv77/+o/u6NX4+u9kMBA/XshxTXYBoB/5dUXZtvzYHnAvA4uHJ5tPRollge3KwtzkIqSMAauXJnIar7bv004fi2KI0buZAy0U6XcVhRCV0LAnFLaEuXEGHAM2q4DPgUErHtbNb6UWZxttFdpjqVrJkMi6xzbvKkN3JthrQ+OSYn0YxcBzjrbX4sCvBTPGkWo3bEMCXwSCSzGeeHZQDbL01tEqaW1zjONhHsMGG3atL3d38DTs1EAi6Tme4zXW9fjaCnCZsqiZdqXLrjPpf/l43RbelsGUYCZY7Z9N7XPq4lo0pPq/s6zWc/RRDx5iT3DRUTTn25MtwM5c8/q9J7zcx7zOo8G2M151AwMx9+a52r79p2zbTt2zHbs3NVeu3bnfXc9c1uiU6qfaUvfK003n/XJs3qN7si8wD7zcF+JE+z86ZNNp9TvV7Nti8p2Q6TmPc60G3TC+VQH18ZY1q8EELGLF87N3nzz1bqndgSfduZeW1g4VA4ONyyjlA6nz8upejn3k3sqztWaP9s82v0+qvu+3fvSbmuwRtooXMm9WY5QhvMNz3F7zmCTpeOT56aiMDGiV4zils3jmS3njGfJP+mIwZuGo20O1ZV9Y/hPz5m0ZFOXlbMpx9Ufz4n+X7q+ODu7XAl//V7rcWb3RgLu28poublY9+AWpApB6pjh/s49uWV7s7+o/MKCCaOaE1UGQMt2QWzLPio8asQUTri/bweprEH0kNHYdjCwPVcdD9v93UjurBxJ5ZjJM97J8c3c89dvNGLa1wkyrCyOsfLalGNs9dzmfOChcy9nEnxCJNm0waftO3Ylq2kVRiXjApkshzKcq2c/7eY9f4NB0R2waXqHTV4Xzp0tvOr4xRlWGJtzWI3vnTBfvnhhpevj0z2TwHxhYaFp5XvW5GhoLUhg//6F2bGjjy0DZwfIDsZbY+h6qKVM7cxD7b0e/Dy4yJ90KqQUsWMEUITAn4HQvdX9PEs5dYVVXugts61RHNYzx/tDzJimlLwX4McgAOiNiDZlRAExkCmBPlE6BWqfbrjXuUyKitcrP5QSvBolAugd19gDbYmQnutTC/QOj/chgY9KYGn/wcPzAykE5n7r6auMTPdqeVbLC5z7ahVAuscsBfwIae7bdt9nZe5tz5v707paPxnB9nEfA8pOCAvo057t7Nd/t23rD0DPMdK/6iPDuZ6llYyGdpyp3ekZKU8vwyUgX898yOXOvHbt3jvbtXdfrSuSWuSyEXLtIoWLF87PLuUZunTxYlJ8L5ZOKKMoeqAfu597OaDS14n7Tuecvjj3nKfz6c93efnzjHpOy1NdBsbOMi7+9f/xL+r5l1I8lvUpAZGJI0ceme1OEbF2X/R7Y7oncl9s3bKtjE74hKwyRD17FgYjfc+YFFGFVYVbWQc34Ee/H22PkLZnzfPWCKl7rztF+z3cSOVKhNQz7IYux0vaqTY887mnHeNacNE+8ImB7f7u54Mc1LOd43hurya7Bz7pX42NSz8uB1/PnDlVlEA/xzIk8IsksO/Awdn+4BNnCBtsNUa55xDTyqTJfeW94Yr7cXPhU7PDYEcLALhfG9Fsz1TDjhbZ1If+fQXv8kzmGbRY1+91zwQsaLbhyrOz4mxc/SxOWHgHHlTfkdC0j2DCp527g1EpNLhz155a7zj1yvHLhszzdzkYsRjH1qUQxEuLwafoAri13JfCR5jZoq7s0ZzZhFFTX/Isk5+227PbCPCmKbgie6cyfGIjb/dK//6v/+1/KcJKFmO5dxIYEdJ7J8s11RISuTvjDRBL41c8oB2glxVNHsACzSgvxI4ykGa3i7EqGiK6mgeQsgGmHv5LHvgC1YmcTg+8SoU8zUsZd98e+lna21qAD7z7MakC/yx9nc/Ng92Uqu9ptn7v4L5t63Yrah1FSxkyCBBmxojPW2LA6HMZuVHOPFz2H8uQwC+TgPsEqBXx9Bzk/uF9BVKAfyV98Fo9J7c2c5I047aMgNyP7rtbt7a0NLyAvvvVfeleBYNu+7r3p/dyxljjOczxbF8e7jw3Bbz57h6+niwGzyAQ1hdAj5C2JWA6PQ/Lz/L0HG9LlHPXnpDOGP2inVvzDHk2y1BIG4zhs6dPzC6eP1eRTJ7j8gqnz0U2Jw926/PtoM2oF0ktD32O16OpO3MsRHe3isUhuzsyJlc/6JHqQ57PMl7okBjzRSyiq0q3hPgyLq7Fez2W9S0Bz8WJEx/MDh36au7vltp68+bV5ZOGDV33u9fqfsvzVQZr7uVdMVLp+t2cKrnnRGRg3qU4TcqB6rlxj2X9Eodmou9z+LTUM3faoTwz7m/4k3K5jbjm2PUv77X0757TPGt0g/5fj5HLmaqfnv16uqfvtnMOsHLxfMOovt3OPAv0jGPKSrKewTyWIYGPkwC8uHDudNloZevEiYewIZZSedl4yBi84eS7lXvwZl7L5DT3aH4pHIEBMEabhVG5F5cxKvdtWyZnont6agd+eAY5FN239vecwY3mJI1z5rqU3JZ+mwepnoMir9rwLE/PMfyQdbM7OIHkcZYWhsK59E+b506dnL3/8zdmspeuJkPieg3ZmvAp23Vbs9uSnWA7nmewtRlnbOzaHQIvRXT3LOMT3dGwKRiV42/Ls6mPpTsmjPIMXw1WXl5crKwODlrHGcu9l8AgpPdepmuiRRHPPj7n8mTwxRNbKUKLU6SjpxhFizUAjufNQ3z2LOBPNCUGLIMS+COs+xJ13RMFCPAXFy9Umi8l6EWBlHIL+C9NhQOpNQqBsvDbfFMUCaMg6ykS6yxlEES5UQSAmQKgjBBpSs/+Fn2zDWVXx08/LEUechyK0rY85hdi2DLgy9CorcafIYFfLAHE6tgTT+e+a+nqUoy25D7rXufdqVrtfi3v60SkGJVu5jaOOWPQcm8CbgAH8D0T8bnWPe8+rHs+fwPvrSNu67z85r6tezXfAftS7l3jpfWjiKgoTF6Ol43ruXCscr4ghLn/eZL37NtfoKoPnhfPuD6fP3M6xsyZEL+LlbJUUZ30rxvCjl99qDbjac/+jBoOKm0htrv3Hpjt3X8gxzgQvdDIOqOGUe5ckcmLSX06f/bU7Ph7b09GxKUCd2OYbqaqqEhRGEI78ZxrO+7kmc6xyVC61ZVLo2BEu0nW59/SzTEa1TmAJ5dDzC7GIXQmqd3nL5wtHV6R+NxXCKul7s8JJ9z39D1SyoG6I06PSvvNvVr3Yu5z5FQEsxHTlchNNdagZzbfNi+s8yDeSnl4kASjgFjdph646T71PMHBSiHOMwWf6AQYZfFeOiDvnKSV/hdnknU7QqLpEn327JnqxXl75v1+69aYj7SEOP78QgnQ8fRwGwpxabb15rbCGQSPs29nflMACG54duBInpK6R+n5LZtzr+YeptPdi+5DZFaWQC3R4wUwvvpoKVxo+tmjYH/3fHcqwpbmLG0E0ufaTUp7ti2M6jjCQRryuZoEitqy9a7m+T936kRhyOXofs9sr32wbCemL54xbZLFamJbGT979gef9s/2xE7lFK203WxfGJP3y4mgwqgLZ8/MTh5/b7b46ouJql5oeFg4OxHd9AlWs0vb+U/HnY7teTVcTB/Hcm8lMFJ2760810xr+2I0fulLX0s67u6QyL0z3/dGGVBEHnCAidSdyRgW41gAJGLJkK6HcXr4PXwIH+BHcvf0NvLQdiOi0qUmYkrBhHkGZFu0E6mlRNo4HUb27Sm/5YnO7wwMn0ViGRTltct660qpTb8bPwTIS8FmXQP5BvTW9zndEGrgvxgldPLkh2vmuoyOrE0JiOztDZABOvfbtdxLVxMxBOru/TYupRVCQMIaYDaDFDB2Y7kBZovoSN8tTzGAZ+kG3+ptAvvy4mZfbbuP7attS0UrYzDYH2C356oBo+O1NNftRULLwzwRSNvbt8A3nlzv7blulRg7ASznTm/Hsx2jfnfIbKWFLRwur3Ujm41IS909k+fobDzWF4vYqtDbntVW6RDJhN95YvP8d494J8wrxHZfkWaydjwe8hqnilSE5JLB//zf/hezt159qdobf9avBKTh/uY3vlVRTriyPxileqV7QJ0BhinH4ulE8S/k/qP7y5EyGb3IXGEDjNqWjIZtMdjzHEvxde/CsouLSTeHbQz1wjfkNvdoOV+zX3BCZASewEXYIyMBYe7PnCtQZHQy4isjJw6W1Tjp+bUNg5wD2DbOo+7//LbsLJ2IaGViTOuPH39/KVjcKcD6veDjzH4tCezL+GpEC/l0b0pXRwjddw2fgiPIX+5p93NhVO5H9yF9DH/Yc3R0OVPTG/c7UIJz9PYy+dPTbFf3fdqEi4VxOVY9n9nPseENZ6PnUjt9bLWMn67z98SZu51+D0ZpAx5Vqn0RxEQ+Q0ZhnGeuHXbCufRVuqzMHufs3DlE9x04lNTlw0UK9bmnMJ+LM+vMyeOZLuxkiKeIaojtZNN6Lj2v9eynDyWTnIvzq76SW0gmpy485XSFURwArY5C+r8r41WjW1760d/M/u9/8c8rclsdHn/umQQGIb1nolxbDZmH9NixjCHNv/7wIZaUBG8yA+BAHjjbAW+gff58oht5MQKkEvFMU1Ae+lJ6MWC3BfRFTRkT0p0oEeM0gbCHv+0jlSn71PbNG6cdSqEXoaAwLRQUJQm4KzIaxUZJWu9fGd8UUxSHwku2KcWYPrc+batxqZeSTqFN5wf8/YZwGz8qYjqWIYGPk8D+gL3nANBL2xEVBPLSR6UK1b0VwGqOjjhZMr5EmpSUeF5m96n72Ks5UFqakHs+t3IzcKdnoIG+yIrUqjh7cqz+vLi3K80ekBYZ5en2DK4yDnjDEcg8uwwFC6+5lOMG9BfKAC8jw1PkWUn/PBe2B6x7Mx7JeFkTrRurx2HEgBFJPZ1USlFOKUqrySwwN+9bJ9JFiiMj/ReZ3bvfGKdDZTCYnmAnL/X/z959B/113elhf0FSotjQe++NAAGwk+qURK13LclbPC5ZbyYz2fUk+SO7TpRJ89gZe+JJJsl4/E92HGcmtuNdy7sqlCix9wI2ACRAAkSvL3oH24qEkOfzPe8FoZVWq4gAiBXv5RB439/v3nPvPTjnPN/n+ZaTe3oPzyXUidFw9NCB+vuNrDU+Rxaco6/088kYFM7pj1/uHhiR8TJu3IQ2tjMXaowGo3gfkMrhMT5HxfhEGOGGHDHr+amMI5gDCzojFsZV2gmPfvBNburHM/ZMPuSwO7/Cg4NrGcqFi4gkwclh7BmH2m0GbMOnajvnYYzyVmus5tw2HxrpNO9jkWc8twJ88Mec7oiq1BIY2+7XMMr85BX2fDC3P/oe+Fk9gJCVkDG0jiNpcMEa+sOMu5o/hVEZX5kHcKYTNrWLeBmXzrOGwzeFiipqJd8bj/DPPOjEmGrTGl/nCkNHWhPFFryprYxiqyGTDvOkOx9+wgSCozFvzkjLIJCK0kEWm4e22Zed06EwKtcihQj4qDHjgyMtz9x9kOAjB/cV8eTthHuNzLawvM42FFLciaEwr6KHiszCqLFFOFt6ibYvrzmoZgGx9diRg9X+yUQUwtS6x5A4XOtCeK1nONUXJKt/9/P5R09Iz2dvXkJtjRkzbmDSxGkDI0eNLnUZ6JWKlWcs4zcLk8WNqoxgjoxxwIvqsyKn5wC/ay1SzShuqjK16xqhvENqHGOhVbaV89bCj4owZvFkUHQLHUD3HF17FjFE2UJmYVGYwkJq0euIsAWD91O7zq/FlIEQ45gHFOH8+BARdS+/I6MWQgbIiRNHmzR2Cf379I9yafXAyMwXBM3YBELU1Ko0m/F0RVRaIaQqxjblFzHtQD/FSmIMMIyBagfKJbLkHCDfQKyN6QztjGvv3sSWijwIuTSPjHdhSpUrk7EOfM2Frs0GrK3QA9XWAdzNvXfyfwecnaHcGQfORV5HjR0fkB8dIemKAHDCJEM4jx3eH0U55DNFiypXtQxtxkVTj5sn1hqBxI6qPhoVEoHAl0GT+ciAPx5l+sjB/UVmtVd7nOYdKuJCm3ln76ePrAul5HfkIcaHtkfEM8sI+df//J8kr/V4vV//xy93D9x9999IUZ/DNYaRzvdxIWMkmGBdNw+vS6qICrzGISx5g9gYgxA57Tyg5qy5UtdVukk8GjGkCTJEzo6UGpM8sPAMiUWAVYZ3ve+KdOZvvzvMZe2Yi9YHGJVf2tw0lvM9QQfuWAf83sY4Q/x0QtdPlfFurnsfz9gRUeIww/5IjOD+6HvgZ/TAmay5w6y91m1YZP2FCeXhz/jr9pWu8TyET2wg6zPx1PiFCQ1Pms1lbMOcfFVYRVSpA06ZS2zE3IPoqC3gBWeIl13eKjgrQsnWGyKTIm6M9w5PO0GyCyVuxLHhQCeSwpTRKXSGPCKw7oN0whV40Dyef94TG3s09/GMvJnwY2RI7Oj0Ey+nd/UeRTQLo/aV2PkTZNb75t2c25HjTnB9P3qoeWYP7Nkx8MLjDwwc2j/4M/65+q9+kR7oc0h/kV77K3CNvACge8vNn6qFCHE7Fq/HgUyiEyY3gzQA6v/L35A3erRN6iwko2OY+1/O6Kmce+LksbMAWmQyIAtogXxTooXzXp37NXVNYReLHOPCef5GOgF8A3mJ9NS45vmxAPjd9Y2MDqlmFocYxoqv8Bo5j1HLS+W8NxKW4RkUibAIZ0kpI+W9tMWDS2UXkhwDZZjz+qPvgb+oBwAs0AO8I8eMLdUZ8LfxGI8Nj0u+o/C+l3OLU2Y02wJFQQbgyZgFaghokcuAKuL6HuM1N850DN63yADPoQ3nyVt1jaMjlaU657oO6IlGABaxZOwCeNtmdF7RrrovowFAM9zl0owZH4CPsk7goVDv2ba5FOAK5Y1nknFfYVYxTBQf6kjv8Hg6x8Q4GD1+UhkZno3Bc2jfnoFN61bFwxn1OKRAzlIZ93kbYM7g8Qzm47UUaV7T9OfosSGxo1sosHdwuB4RpkhTnHdv21TkWAhXf/zV7QHGof9rLGatrsicMpAzLvP5VfHQDx+esRmMGRvDsbzomTu8hAcO7K0UC3UOGNL+h10ng0EHD+2rsL/r5IplDI3JmOI1iuBYhJYgWl6Uwp2GPaevOl05pgjl5Zk/7pHavLU1k7ndYRTjuQSTzEciUiZMjWv/CmXUZl4jonDKYT6bm+YiMipCxzzoyCgPFRGVMMroh0W2qajPQlCJXARg+HbkSB8NUJ3a//EX9gAhlCBvvbe2i0B561S8d8EBY1W4qRBTuGCdPvewpnNCsPkaNnUYFVGU8Ji2EcBYW4UH5sUQwBWeDcs5ZfdlfMO4FqrbCuw58bISjoS7XlOEEB6WfZZieW9n/MMp9ptZY7yLsiucSRVd5BEuXBl8481VYG/X1o1t66/MH/d1FInOPEI6i/RGoBo5NutHdpLwt3ady2upfsG2DWsLz803+Op5an4Ho6xLihxZO+TdSlPhiUX2hQTDJ0X59GU9f57paNJVjmRt2rtr28DhYCAhuD/Ofw/0HtLz36eXRIvyRceNmzRg+xfkTOhTV2ZfHieSmdyVUqffLg9PKyDUqcEWF/uWKhhBwa1QqUxMyrQJntldE5vhgZSqyguYkUQkVy4osK/2slgCfIdF1eIEvBFSBqzQqpYf1HLynEflZqhYUHhoLagMAAqzdqndFhntegbKG7Xcdd7X+SezEOYx00bLl9Vuf/Q98NN6oMtJ4Z1EPoG+8SYXxdGp0T7jjWSYMjo7AgbsEClj0zkVhZCxSGVlMDRAb4JLI6IxBqjPIblNtQ6gVkgSEE74KnIb8CxyGQP+6mtSiTAGrTFP3UUuGR6eQxgto8I8ALCIZLc9gP3SVNKVW8OTqkgSY0NIU+XP5f4qNY4OcR0/aWqBtPtqe9/uHVGB91ShIkaI56pnlx/uenMv1wPwkfG+jp0wqTyoiCiDwzWH9+8tEovIHk+4bpfTWkZ/+rUzNCjxHZFe9cyjZwl6dX7/x4fWAwQW48o6a7yo7tnC1ltBIcV65H2OjFHXEUyhuFdkDpgLMGZ3PAr+VimzvKApbEUEQea6rV1E24zh2YhxyrhE5AiohxO6bV0nGDnMLQTXuFNgD0YRP2COon0l0oSY1jw0f3JuiTM5189IJZGVFxTZdTBQq/Jt/oZhcsftzy2U0fub5/52vnmcKVjj1hwwVzwrQ908LvKdviKi+r/Emfyu/2CjtBOk3DPBtYZjPxLFhOOaXv3R98BP9IA1WoRLq/A6LGkXMOqqsnuQVIS0wyjYAR+E4xb5CgZZX1vBo/dTnmrrLfMpY1N0DHuswnbx0Yx3a7Oxb64hpQZneUdjw5VgGoLJvrPWI4pw0/1KRGIHBm+qYrr5UvfRViJtgg9jJ04p3IARhOCj8YLaf1r7be5aH4IJeS9zhfd0TFLQxk2cXNiFWMsV3R+MQhY7gdW1nt3aAhOtDcKGRQYRRbUhGue6CGLmrtQUGHVw764QzoThWhuylng/MnLrB201e9S7IqMH9uwsPPuJf6j+gw/UAz0h/UDdd+leLKSWikyF7SYogoes+Wx8PB++B76An8GAdFpM2vktTEmRCIYCwAagR7MIUJkZAIxjoGySKpzEcGEglwqdc7XFMLeoeR6LRRHSfN4tHADcYnUu2FtMtOschZPcx2dA3c8NxFPBd6hdz0VFvzKLj/CurEf1LpLhvS/vr7Cw/uh74Kf1QMbfmYQJDRO2y5OIhJaROgSwPHnGNWA0BoE7wAeKQI+3w/kOwsj7QMZjGFDNvGOwVvhuxrR7sD1dI5+TgWvMmotdZUFz0H3OlsXP/GEMA2+e225rlI6IdqTymsxDYeoq6h6LMc+A8bv2GQ+Mj1KyY/gjoEKkzCnn7du9feBwQPktinbeo1O0PYc5LpSKUTQ2RsG4iVNjUAxPu5cFxI8VQCOwx48cirIcT1WuZ9z7vuazfkgb3ndExDEEeIw1KMZBV0CCMYJs/x///X9+VgjQp/1x/nugUi7iIejIpTFqbPucCEnAtO7zYCo2BCuIfYoL8WLuzljZf2Cw1npjnmjZ4YxxDQuIlMJsYY2Im/LSBzdgzZ7BnVWvwNpt/DF+tV+FiYqcjqvrPJf1/vCRg43UZp03RxiTNX/yvNfmPUZlPMMS5NV6X9tEDGGZdxTBI+zXWCZyatPf5rV5gSQyOj0LT5I5k4mc+4SQx6ODyCLFonjMJfcmpLZt0Ia22vBZMMk85q31PrxBxj/SWtE8WUP0cbc9jecyrxXe8yz90ffAT+sB6yThh+CIfCFNQkn9D4eQ0m6dtlYbx4gTDygPZo3X2Efl3UwRIuPaf0grTIBH2uEpbfgEky4rQseOMujhFy+mv8ujmrbd61wyWikkeRbPWBFD5ukQjiGFIzNPXQM/1StQKI+QezriT7cGiETivYQRE6fMqHd+N+sEArp35/YSWJsY2605TfiFzwrlEWTHT55WHs969kxk4bW2jzkYYVT4bhNYeV8b8W7YmDUwApt789yOicA6OngHn4issJht8I1/+b+XF1c9hP44vz3QE9Lz25+XTGsmN9X5K1/52wM7d20dOB71uMA/T1iqVoCzMxgUP7JgCeU9nIImwN+5jjISQvIQTmo0Q6B5S48H1E+V0Yk8lqckBry2ATqCiGRaGBkEV191bZ0LfLVt8dNWkcwiqm2bl+6erpEbBMS9C/DXtlAuC6Lqva5lCDEufO8ZnP/GGyeKmDKsFGliePi7P/oe+Gk9wMNnE26GNXA1riilDFLkTTgRIKKaAksGZXCsQJURDtAL8PO3MW98AnsgbuwCSp8pTtSFsnsOQg2SZx74nnfW/KBwM46NZ0o4AHddGdkZyyIUGAt1feaccCNFigg4CgIhhZ6Xgev+JQgFTHmBJ06dXsq0d1W0QQgS8gqgM1UzxxgQTclWlAL5nDhlZoXduufxrA17tm+usKiz1wm9z32sFfqCkSQMamzWFYaB+zJGGCinsi0Mb+m+3JeRIESrDP18p8t4x6jlvLr9ceF6YEoMva985W8NLF1y09l1H8ncl38b0TNNIGwGnzHUjW8Cn6ib8TH6RNz4OcOmwttcvyv/H42hVoYvkpprO7zpPKkTEmY3KWII4YbX3jX79u0uPGlju/P4Z5/Rq68rUgx7RNXYFuZQ8p5PGjc1D2zb0oRWJJrYijyqzHsyY42gWXM058A78znDrIgrXKj75RnNecQTnsCv8gBl/iKTRM5GUluOq/cx1h2dMNsJpvCHZ9TvjGEiKZxEcP2MgBJsGfTWEW0h0LbqgJn90ffAT+uBEkuzvlubYZS1lHhXGBEMcPi95lrwomyhikZLFd7YduYvYghX2lqfNdt/Iaa+IxZ2hLSJpyJ9Lquxb023BlgTrNUVIZdrO/yCb9pFQitkuJwVLToOwbsmIfZyOnlQEVFEDkZVagbMybUdsSVSjsva4HdCsPDbw/sGS8A5uzZkzvCcwk6eUxgzfsr0mtuefX+8l4M7tlQ9g7eSElLPO4QtDdsiruZZiLHj4qnlrYVX+hVuIr48oARWhNk7aaOLmDB3eVU9X3+c3x7oCen57c9LrrX/6O/+/QJ0ACukaefOTNT8bXEpL0wWI8BIAWckyHUBmDYtV2ihzstiBPQRXCFVJjUSiJgyKHhCLGpXZ2GyZylDoynQrSw4cNau+xXgU9nKe5LQk4D9u++1fUw71U1bDkaAwyJL/Qb2qv/WAka1y32E5SKvjAbGPFD3Pv4H9BZSxne8wOwmtkh/9D3wYz2gEMLwKNDv/vDdgOqps4ovsgSkS4nO2Pb76dMMy1Thze++4w1EouSklLiSMVnGbO5g7DWV+f29eBvYJ1w97E84EVCtCIEQwgqHylh1HUCuKoX5Xn5oeUYD5sYyQ6G+z5z17OYLYwRBLCKaedJCpLJHY0C2A3nzUFiUMCeEj9rtqPmU+cK7CpwnT59d3k/vR1FGQIX8tnCqlh/bqfEiKOTeULKRV4WJkBCGBKOAKq3IUVPBXcvIR1xDetOH12ZvU3mu42JUMFo2rV018OT936771cP1f1yQHkAkJ6fPa69p63/Eh3Fj41mIQSj8tuU3RoDIeBFyu2vn1iKCXRXZ9u+IdLXoF/iBpE6aNK08q/lnLqK7bdvGgcEYdzAFlmQANKOZIDqEJ1MmT6+fre0H4j11PvzoxEjrOyI5KmNr4oQpuT55l0cPph7C3roH3OAJEtIujNfzOyqEN+0gjZ7X/ORNNfZEAAjvRV5rLuYzhJmIQzDt8LEM/KHzEWDeo/ZZ9sotDyvBNPM/RnXNw6wf8rJb5EI7R1vdnt6EUcIRPISTfndf9+wLG12Qof7L0OiZRMAME67aCaXWdUfVPYiQQlBtv58o4omQ+h8BhEeieBBLHnvjsUTTzAljF950eNaRUt/7DvbBGgevZBHS4Ivx7ju5lsih79iC/q7xnzmLqMIDOGYuE0thFILnMF88Iw/khKkzg2UwOLZaInuQSpjGpvN8bE7t2fJlQsjnpOmzah2ASbu2bsr525u4qXhT2rZGtGuCa2kf8XTdqITt2obGWgObYBuBtNaCurbluXo/7+0dCaqwbXzWNj//yb/657UtWeXv1pv0f5yvHugJ6fnqyUuwnTI6MolqYciknBTgl+dDNT4o7CqGhlAiAGkCMrSHZ7JODDFlBAB0OTwNRFOwIQsIhVx4lJAsC9DxFJTolN0CfAtUri3AjzHQqdgIousZD4C81Kaoc9qzWJVnKM9RhkMWnwqRykLKsJFL4PkYKb5nBGkLIZar5FkQXDk6FjhKuDBki9I1MUC867k5Q5fgP1X/SB9iD1BLO4IHzN4M8QTwigEBfAALmIwtvzuc7/dGIv+sxiOVGckEuOYU9aNTf5sWwkP6fp409Vg7jGnXmCtyPJE9IbiKVDBagbiQLCotY7iAOXNQ+JP2jh2JNyhgL1Sw5g+im2fnobQNC5CnSB+OR5KB4n2EcVVYZe4jdHfKrLllsDAo7AEqp8Y9O5GoiMfVMTByzwkhnx1pZczvDVlRiILH0/UMIM/h3ZvHtBkSlOwJWYMUOfLscskVMxrM9Xt3bG3VDxPdcCiKOGOkPy5cD/Buzp9/fXk49+ffTQipcXLWmGMsZmwSIcfGiJs0aUrVJED2GIgEy60hm7vi6T6Z8Wl9dTEhRNiqdV3ldgSV0EmYefOtUwNbM7b2xRv6ZsZJRyQRRGv26ITMT4thas1GYEX2HEwIObxyGIN1XsaOZ0IeeUuPyI+OMNRhg5oGyKv5B8NgHMLn2eCQ9r1DiaZD9RPgCXHFeGawOz+/1Fw05xjqMMnhWs9SOGYuDWFS8662fSFhIVwz37yf+/KUemd9Yz3wjlcl+kJe7v7kamuvP/oe+PM9EIw4E1wZVukbIXfwCWGEEcaiqJNO3PR55ZRmzCGZxq7Imm5uNG+nFKlExMCoXN/I11U19l1vrPvbtbCRuOIzoqI1m02mAB58koJRxYgylt235oz5HMI8OgIX3LSWi8aBY+Ysu6wjouOnsE/bOdJFROC0e7DzsgbluxGJrpk4bVaRSjc/GsyAUc6Fv7XuZBs2ZLsE2ITawid4Y56yC/ds2zSwJwIp7ywPsferOg/ukXcpj2mEUaS14ebYynUVVowc79mxubymft8Xu5mw61374/z2QE9Iz29/XlKtCRGaPXtBkcMyVAF6DIwxiYsH/IwEquyu3TEqYmhbLCxO1NuR8byMC+gDYcZHhWEFqC0m3fdAFtgjhoDX4iYk6dosYu4nnwewM84BtPNNYnuWAmaHtvzclfy3SDiPgeF5LLjCcRVJeu/dKOEWsxhKFbqb7xn0ntkzuAeDBUl2HcPDe3kWIVN9HuklNTwviYfJ2DgT1XWYsFxkqiOBKhgCKf+r3FdjO+Bq/L0RAwBpVKCBsWlbB8avz5BSQE9JZtz6jFJ71qgNqTQHGMfa9t2ZgGMR0hACY7V5Dtseo4wJXltk070BvFAjqjMDgOcS0Hf3qpzveLl4Ook8wl95K72bh3Q/3iY5MlNmzq25RB1GKpFDYcOOruASNXnC1Bl1rp/dZ/umVwd2h4A2z+fbabaRT3ORQeDeU2bMqdArobpCuTwD0so7W2p03pUlQYVnNOh/avv+wZ1lNPT7kNY/wwX7A7FE6j71yS8OTMy/l1xPnyFF1npkc2cMOMJet4YTThiJBBEeUddNjsAwOtf+KOMC0dyyeUO8nHvLK2ndN2Z5B6+OwDNmdHAnhuXY4A/ytiPt74iHQqqIsdqt7byck5KjPC4GIuNUrurgYASSkGZjzTMY5zy69iq19svBFKJLmPS9UF/vJCTR+7Sw2R+274ILSCECLsIGAfVu5oX0E5gnOqc9vzzQVMoOfhQhjQ1KaLk8+KJAkfngucvw7Qz/GPDOEVYMm+BZkdzMYYa48z2zZ4BZx9PHcuhSSTjNnbGU9EffA2d7QDiponFInXGlIA+SZ6zLdzQG1QCARzDFHqHGW4mBGWPmls9g0I+JpkP2lTaRQnYY4tlF+JSQYk5kPGsPpvkfQbXOW6/du6J3ssYjefBFCgxSp10EsEXXiFJ4P/KHhxOhls8JG5xHkIUHhSOpT0AoFb4LT4XRqsKOfBNm2XdC4j+RdaWwLAR04rSZbd6FNG7fuC5Ekqgq0oJA2kQk2CoaqkTVGbMLS817BfcGQzphlOJG1kHiMDz2Hk1YRY7HDDz+/T89+2/T/3B+e6AnpOe3Py+p1hSluOuuXyuQ3bJ1Q4Fgkc4sTCq08aBOnz6nCJ+80T2UnyEPEIAV3sToAJqKGQF9eZ0WDcouFdp3p04dL/BluAitFfqHGCKRZQjUInZFhVNZwIRQWSQczmOcWPAshjX50wbSaiHyuwUR8bU4uB9FjHHC2EeAgbsFSs6o57OwIqN+FmLFwKFAd57cS+ofqX+YD7UHFOYBNsKGgC3ipwogcETiuu8pozyaQmwBIpUVYDMCjGV7snXA5fMW3qpQg9ChVtjIeYr9OJwLkI3pdt9Wkl/403V5FsTTfHor6q7nGBYjFhFQVIgRwiABokhpFV4R3RDDZXJA1j2PRESSB1PXxij/WNTja/OuyOXE/H86hS32D+4IEd1WbTC+Gc8AGymfMrMRSs/KY7lz8/qmLqePPDPDo4hJzmVcIKCIMqNEm9s2vlqGBjJqPpqf7ZpW8XBiBDEqtsIVQJ6xhYT+m3/xT4sU9/k5ev7CHbyI1kgktBP+rLOq5vpcXYEpk2ck/HZckU9r6Y4YbFu2vl51Bs4lY9Zk7SG406bOKo+o8b0/oXAbXl9bRZA67195Io3jeDmLnI6ZEOPvrYHtaRv+tDVb3QHiaUhsMGxqxmsR03hy9w15Eo0nRE9osZxU+aUiYXhEEccOvwirAYGE+B4qjyj8IWh2obvwyTwzN+WQ8jSZC2WQZtx29RGQV5V3HQRS9+ABdbhXiapwLnNP+zDOM+kbz8ob6mck1DMSi4Xqyon1HgSqeHrPRGjtCWn1av9H1wOIHwKooFHhUMYO0oekGW9XZ12v8ZlxzK5DLhG3LNMlgFjTK+IkdhMsQvjMeThGpTRXCSXWbhE3vnOt83yOzClWBKf8bN1XPMj3vLXWam0VGc2zIs9EF1E5PImezT1gp0rsSGaXHyo8l7PA9zWfM1+nzZ5fGIToIohHg2XwtkhlsFX0jzSPabPm592vq7XBeUTV9/EGsW2RQoocEV95P/Wjc7Zvem3Iy5rUlYhPWRbqmb0TUq/98rLmGtV5CbRI84HBXQP/6n/9H7t/mv7v89wDPSE9zx16KTWHcE6N4bfshluqAAWPJUUaqCOADFeLwMgipgzZyyqHZ2+8FAihxc7iI2/U/6ey+BwKKeXh4DECqEKAGeBA1ufIJeBVmdE5rrGli0P4l4UH2Lu/g8eWMeB3BNSCqfw4QpA1osAeUeVBpUpbIJHmMkiyePwwi5nFynM6hBHb564zKhRjopAzHhKipcke8Kun+j/0gGIRSKfKtbyOQBcoI4tA0zjyPdX4nYCyIkO8M8IUheqVlzTAV8Qw7SG3Ch8JbzJuzQEGq88orm3cx3Ma4x/wGY7aNd4BLrUWOXacjKf/nTxXzbV8jowySk4dP1Y5oLyZgB/QqwgoPwaIy4k5lWsVUSqyMDwep3imhDDJMS0VON5Q70o1N6eQ0Kmz5hW5ZLQLcdoZ8sEbrD8YzM5jCE2cNqOMAc+ijW2vryv1mnFS4bremeGQZ7b9DGBHWhFW+a+MENfsyj0QUWTDcXnCrnh0u0JH9WH/xwXpAeMCGf3v/tv/pcanSBle0W0MQOHfWVMdNT4YwDEC5Ygikcjqdcn9tf/nhg1rB7Zvz79jxh2SZl3uCN/EeDlnRNiAQ4Se9etfrgJGxERjrCOnKvDOjMHoHirweo7mNczWSsEDGOHe2lMwaHBwV4XqWtOLeGYc+s65VfsgUQPwwne2P3N/RrYIGaKkKBxjE4lmDItCkGICe1TiRSQRY2NZ7h2iat5qkxiDVBbhTJuFSRGDhCN7J9vYEIjcp6KNci7BVD8SX7u0E2uI/FzPWMZ75oE5A6v6o++Bc3rgTOoEDDM2jCHYgBh1ZPFEvOvsMFiC/NX4zM/mIUxqImCwJ2PVOmuswSjjjhDUif7aM36dZ73XDnJLyCS2EDZ9Z451FWdh3JsnRcG9Xe3J1RwVPLWdjHBaa7treTIRWITQumObFiKn69mgcEUthJnzF2ftuKq+35lIC1jWbEIktJHEGXMX1f09z+bXXm7RPxF/HOZvw5yxA1NnNizTD0eCKdsijFWkUDDzbB543hnOj0s6wtSsP4gyjBJxtD/i2LbXXw0BjS2cucxGhc/ugfjC0f44/z3QE9Lz36eXTIsAXq4Q0gl8GRIz4skAwntS2VBVREp3GbXx9FCjhWAB/b0Jv+IRtUjZVByoj8/1DAsblHdeyY6UonnAlCcT4Lv3Ndm8+e23smhR0LIwCc9VeEIbRVJDD51DQWs5SAq9pNLhkPpsUazw3Fyfx8hilj0dcwgProU278UosrgyWo4ePVTnW4SA/YiEtjCs5OH53nYF3q0/+h4Y6oEzETKGjU6IK+BUyRbgU5PlLSOiwKkjjwCySGPChJBN49B4JYYAe20wQn2GyBrHVBUgBnQZuAicgyeUFxTglqobI6AM4pAEBoNQIwYF1dq1yCbPqOepPJu0A+gZB/IyeW+F3MoTLcMjz1FhjQFZRBSAD8rTzJz2nt07Ca2atXBpGQrUX0SRYVPhV0OkGRGePmdhvK9zylDZHu8nsKbQm7vmGzUauAvXnR6FG7gzog4M7h7YGtKiqq7+0m/IrXf0fAoideo1Y+D//KdfL3I79O/T/3UBewARlJZhTbZewweEU2GjscEC3kN5nK/n30/YbHk5sxAbO8Y8Qjt92uxE2cwu4nc8Qsn69WvqGoSMsIjQdSkeM2fMLe+p7zYK+4Y/ESeNH6RPYaW6f/bPVul365YNqfh+qOYVryQPv+rABNSD8ZrsSfi31I3yEmUuTcjY8x5HYwzDLmt/zamIKPZGRYThlugFY1OOK4H0REQXuOA5hCLDvLOEdGg+I6QVUhhsY6gr7gTTeFCNZ8Y9cYmHGebBHLhpmxjPAceaSPpWYZGoIveBq0ePHil8hl/u2x99D3Q9QGy8KjaSrbKOZ72FBeUBzRqNpFlH4RIbjxcPdhFJzU+kyTj0HUwi1jtcY85XrYOsx+YA4hlzq8goocfe1u7tO3hC9DdetYtcCp0nepoH7EeeRxhlLqhMy5PrcH7bKmxKRREheA1fElqf5xCNNDV44V6uU2TIc3uWiurJveADwmje8myKwFFMEBbDHR5kkT/IqighQvKmdauLOJb4lXB471HRP8F3UUTaJEbD5B0hvzCt88R6bmucvibAItJTU2PBHqbOe/Bb/65EX+f1x/ntgZ6Qnt/+vKRaA4IWkbkxJhG+Ip5R0xgbs7MIAFSgvidqUCnKmYTCW6dkcl+XUt1ygfbu3dWAPd9Rm1U5BMwMAqq4Nl2DzAJT28sgm+4NbN2/K3oBoClYrn97SKkSOmUBLOI4tOB14VLapshp1wJoEe3AXnVezyxUxKInJKoAPiT02PEs3Pne9a4V1sUQYWTz5PZH3wN6ICB9JuGiwxijtk4BZIAIsaLuIowAD0ACeeNPFAABBFjx5BXQ5WcH0ud34E/5fVfhiCKkLUcH+AH2DOW6vtTnkMPypsZ4N455KinRwJ4hwHAGsv73HFUdN21Qmm31Aiwp2tRfIVKQXKGJMTHqAS8jWLXbwxFjmsdH/l3IR7Z/EWaLUHZFjAhF5gzgVh1x5vxF5d30zK+/8lIZC0K3Ko+vCGi8ZpOmDcyYtyhhwDPLiNixaX0p18Bde0Ql78DgYJgIxxIyPCrkk/E0uH1LEdZDidpw/pE8J4OlPy58D0zJ2Pnd3/2vQzhfiVcy+VlZz1U8N3bLs07ETDjsTN6GCAzImgJIPJ1CbBm4vIklbmQOjEhu1oyQzukhtQqM8JyuT9s8k8Y0sUYY7tiE6aptMCLGKBHz1VdXl1fWOTWuM/9E9kyYOHngREjulhBTXluHdV9uKIxSGG9Pws55d41zmDMq43b06LG1zvu8yGDmitBdOIX0yTVlqIvYQXJhBJLs/oRbz+mzLtSQQV8eUhiavkFyteueiLLriE819/P7G1lH9CFP6omMZeuFa9wbYda++3keYq05p7+IqO+882babqLVhR8B/R0u9R6wZgIM6ygi+GbmKJJE2DM+u5BVdQhE7xBFpYXAIJ56UTRVAT6/qwprzBZ+RVRxfYt+EdFyZd3D742QxqmQ+7gv8kdINaYJts0OS1XdEkxT8C/jnLCoXWIp0TTTq/CT4In4SS9RKA8Jtl4QeycnXcx1ajTAoDdLpGmhwvZdRTClc6hVQNSEySWU5j4wTI7prIVLCgcP7d0zsHHdqkTYiPzJGgbHMm9b5E/WpLkLC9OQ901Zb3Zt2Vj4U/M2opL+8kzwFEYRVhHdw2mPSMtjC5f0gwifHqMuzMzpCemF6ddLqtXf/y//UanRm5MHRlGmBDMMeE9nxdhAALfFeBDuxGNjIo+MIqfw0cksEoODuyrUiBoMwCfHCOVZPRjCSkVHGp0v3ImBQd2mXqnYC8wVjmD0A15GjQWPcmVxBNAIKoC3+J0bDgW4eVuRac9s83Jhx36uxS8LhPYZIjZsd23zrr5b90E+hUkJJbOQAf88b5ZKlKA/Puo9gORRdos8Zgzy2B1NuB/V1lgEbECpvB8ZNRTpTik2R5zjd6FUSBewNTYVfWCcKiTh8Dty2+Welpc1v/PyU3214TreTmMZ8WTsax9I8hxq69iRQ2UcMB48e+f5PBAyyqPagH5EqbkMB1VvET4hVb7zmdxQBR0QSyFPSCwjxHxyL6G9M+YtLCJNDd6V8EnhzMKTeWFbG3MHZqVCq+fldd249qW6V/UFMpO+cR5CPDNk1XMy2gejfm+Mct0ME33TvG0IsHL+VOjv//H/XSGU1XH9Hxe0BxCiG1fcXl5JkTM8o8ZBRzphgjXTv52131pL3Juec2fEK0qE5Il8Jf/+u+JJtcYb24RH6zzSOGf2whisVxX+vPbqmiqSBGPKO5JzkFftmTsbQl73Jdy8ywGFH56LJ9d91EFA5MojmrnYkWSVeHlwzS+G5eiQUtgmvcS+2l10ztgYvzDnaMa8onnI77miKYEThvDoquwLF0ugSZtCepFS80hfyCflAZYLCp8QBKRTX4lAEs1TczvXSRvpztHnCkWZ59oW+qtPkXZYSDj1f3/0PZAeOBOcGUbAQ/K6wkPWWdXOpVNYk5EzBMl4lkaBdBmniKJ55TDfHERJaROia9hKthQbZs3O95clZcL3Ukv8bP9Qc7VSVzKuzS1rPlxyv04wHZlnkdd5MuMauZQqwvEgSgamCJkVvaNdz+vZ5X+yyVS+VURIGC1M9d2chTcULitwt33jawNvx8bMTet7RfJgD0yEka+/8mJd/27mI5w1f+WwOkcKioOYilRWGktELPMUHhOhEVXeV7UMjoVMb13/SkX/8PBqk20A29kJYyLOddvEeJ/+OP890BPS89+nl1SLwG7JkhvLS8qAkD8q70feDBWJSmybl8mTp4WQHqgcU2CNDMoTmpXJWiG+8aK2rVSuKKIptPdUtmgQBotMMlYUtbCAKSABzH2GqAJmRNICxFBhFBQhzeJAkWYwON9Cd1UIpPN9xjiyaLZQSHvH2R8uxCGLic88l71PqdkWLGAv90iho1IKc223EbnwMoq5axhZ/fGR74HKzcG8KLi8nQCxvB8ZfyrKAiif8Zi2UCg5NVdWiG2FjF8dwzVjj2jCk2rM8doAfN8Dd157ZBOYE17KIIhy3dTn5PlkLPrM9dclhBAwMz6o3CrPvh8Gla0tAsyeDxmdkPnKW8szar4wKOThAGHtAXpk070R6U75FR5MbW5VbGNQZ65Q4ecsuqGMAR7KjdkLlMFhnmqXMs+bOjuhve6vYBHg1mfmOwUecUc8KdZILeODsbA553W5RJ2RxOiYPmdBKdGMFoa+Akzu+/QD91SffORH50XoAOvlvHmLz5JOBMmabY0WOivEFkk1hnlF/X8kgqOQ76q0mbWXN5K3U9iu9VoRo/UROoiSxobxIxRX8bx5cxfnrc4MvPramoGtyU8m9FRuZTAIuRTJY8y9nvElMsd80SYME9GjYN6eGKm+I6KYmzANqa0Q3mBUeUQz1xRjEpIrJ7XyMiNBei/Py0OqErv38hnR0vOKviGuVhRP5h9S2nk6Ow+pMSxvFHl16C8k2XshmcdiyGoDrsJH78dIFhYsnNc9tdWwKmGX+c4a4jyYezxzv691UF37kf8DCYITxjpPH6KJECp0J+XDmLEGE1AJIUQRaz0vHlvL2u4wj4wthJa30xwzr9hbrjMmu98bSW3iCpKpTeKluax4krlhvMIih7oL8BM5PHFErY4WsTY2Od22TlMTANa4h2thhJxNJFXkDuxyb+83PeIlkngw6WLbNqyr+9b6kH4QgTNn8Q0lRm0JpqiD0O0BDidF9MAn7SPsr61+rvYZPTdP1T2mzZlfnldFi2znsuHlF0Iyt9S99Ad8h2WecUbWxkmp3Iv8IqBCe7/7b/+w2u+IfnVC/8d564GekJ63rrw0GwLm1GKKrZ9nRZkSsjs4uGuAx1R4LaD33dyESJiUwrEAuZ+ptjNiTDBW9gTwkU0KMWVZzpHfD8er1FWzZQgIswL4rmcU+LtK+2dhpOa53xtvto3PAbfwKUqxUEAFiVrBiPcqPIt31fWMBgZCLWz5GalkLCCnQocp1Rba8mrlHsgzhd19kVbFj+RF8OgK7+2Pj3YPBBzPBOyHUUqBC7AE+IDN35RcBi8CB+R5LTnWgT+ANvYo0MCvAJ2BkM+QQeO1PKIx3I1HoVNC8swR3zu0CeSbgZDwwYAuA8QWMrydgBjBZJAoYkHddU+gau82z6N4EZVaCBXQRATl4djX03O5p31IZ4dsCgkAqK7pjJUMeR1aAABAAElEQVTR8RjNW7KiPMPbE2q7I/k578Qo592lbCtG5HtkmlLNo4qYe1+f6QvhTTOjRus/RgI1WtgWw6YU63zuPhRreTt+3hOvKkNgV0jJ22+0vCaklkHv2Sv0uHqp/+NC9gABcVG8EV/72t+t9d+eoq+88sKA7VgIhsYxQok8ESDnyCOePLVEvXUJe+PRVLTOuC5BJQImEjsvhiUhcFPG06uvra6UjTRW5I23c/6862vrF3uIrjVeyiPYct3q+4wV4k63hQyRh5dVvuvsPMPRI4eq2q9nZMwSG3lsj0VEgVGdQAqf5KYeiPcUDjhXET7PCrNcLwTY1jEEUfsVmqvD8x4EUUa2Q+SEeaxqPEJqLiGk+sdh/WDIwqA3E01gb2z3Eo3EW/xejHrzoXlAj9Y4J4wy9kUcwS94ykt67TXDi1zzNvfHR7sHrP3EQnggiqSwJGPO2mz997c0EY4FZBNOWIe7onpEUWuq8dlhkjaMO2s8fIMT5prxC3OM0xJI8zsMRG6Rxg6P2IG8h67rBFP/SrZ2cZ8Oi+AUEoeMujeS1+11fTC258HgkKMTSwmeRFBiKYxxP9dMGoqykc7xejBD1A8SbQ4L5521YElhkPda9+LTA3t3ba9oouqT9IX+Q1RhGWL/2prngnPrg+uNUBcBTT8jnjBKLqooD8/RRf6ooE9k1l+bE+UB/9ia/XH+e6AnpOe/Ty+pFpFRIUwVQphFxAQEfowCW7dsSew+EDfBkEHhuIyPwSjRClrYHgLpk9PDOPG5fB6kkvEwavTY8pICU8rw6FHjspikhH2IKsOAB5RBA3QRTWG3SClCaVFj1FsAKtwrUG8hqVApnp3cl/fTAoBUUqJVHKVKq1YI9B3uIyyqQnRzDQUaeejOYwi4P8PF8ydHJ03+qFkT1UL/x0etByo3J0BpLFJ7qbkM3wojzbgCrvYra5uO2+4lYzFjFhED2ICa59T5gA75Etrj83wUQtoqPfvd+EY2nUexFSJlbIodB/bGdwsTvqzCsKjMci6RTF6k4wF7RgSFemLCbV1DRbYhOUOFl9H7IJsKE9V8ybyryrrJiTmUc+XAmBeen4dyfoime/B22t/Nc5rfSDAAZyCo4LjuxWcqJMr6wNhgBPCmMgQYBq+tWlltAPgiMAx8BCGkRDjU8Kw1SOb6Nc8PHBzMM2eumuPA3XnO8T+P77//w/+t2uoJ6cWZjdblcREIVIatPLD8exAsVbydkFoB1vS1614aeD3hbtZbA5YhSLx0Do+nNXXnzi0Dq/PveygGKCInr9LWRbPirV8wf0mt2S/HEFQ9Fwbw1liTpwRnEExr/6vJ/yphMzfhNeSZXRiyTNxcvyEe15DWMorjkSGcepZt27Nn4JFD9bl8VPmrzoNnxjrcsnUNI7uKMiWfzjweKyIiWAIviJTwMYO3cjid6/3M2VaXINuG5VmF3MIZ7+ZnaSdEXhEI7uXZWnpJy+9GOBn6nkE6iXcmuBKA4e/xGPWwUTV732kbfppTfpZP2h8f3R6InXMmpG6YMXF1QmflV6pYfiJ2lXSIFi3Tqs9ae+WPvpdxCFOMcVEpFbkSsgUvGDv2IIUjxqXxas7znopmYRfyujoXvsEvdTgIpsigtd99fa+aOjsMFvDYHjucLZUy70TPjBCZkOckjHZk1HXTZs8rW1KFWtXjCTvW/9mLlkaYPVPipDoH5ZTIvEAMYQxBWKQNwuvwbryX85feVGKttBJCKdJe0QyuDZbMS1SgLWZsf/bqi882vAyxNNfgnqr0Hc7Zz1URpE0hmy3kOB7iPB/bYEzy2BFV6Sdjsib9w9/7rRKs62H6P857D/SE9Lx36YfbIKNQGBLAR9KENFHBFYJQ2VBZfzk6iGEp5IuWlUK9IaAPOBmlzhU+JdRJYQoAzEhASiluqiMCforw+MTV8wzxqAr1BbLa9X1X1t7G6UJtqdQAXHEkpJPRz0C2SMpJtVi4P0COVV1Ga4Xypkudh5xSny2GPvdMFHrX2DKCscOYYGh4f0U6qNvOdQ5FXLVdhobn64+PZg9kjpwJkRsGYIA5gmYrFYUUFFCg7gJCIO2QmwZUhbkXUGVe+Z7IAwR5TI1P4ebCyuXQ8OiUx77U1XjyMx4Zuwgp5brAPeOVF4aR73eGAO+sOWyzbwS3NhXPeQyE8THgWRaInbApBoXiRIz//YO7UmF3bwyNeFHzHrMXLM39TxcRFXrMAGE8zEwYUnkpk89JKWaQeHZhV/OX3lghU8jrpoRVUt+9L6VeqNP8gDwiiaRSkPUBcolsI8qunxilWR+ue+HpnwyrSvh+KdppC9kWMrV+9cqct6kMH+uBghGMnv648D1g/ZwfY+tv/tZ/Up5RHk1ePQfPXhHPEFQezwnjp9Rezi+teiYEdGutqdZrES6TYgDCmHEppGW/51WrYwAmJI/ha921BdickEhFlBDM1WtWZv/NFJfLWEbYFMqTVmJ9f/nlENsYs3DCGi6HdFJEUqR3WwgtUYdRqtqu4ki7dm+rEF4E0n0QZbgjtNd8Q7rtpW29VyMBaSSiuq/fYYb7uFZUj2fwHZyDEwgi8eidGOXep4SkGLAw6ooQecwY+UQcyuuZOcc73PJpEwKYuS7qQQQEEdZ88hmhiXdWKosoooroyTPALvdpZBi96I+PYg8ga0JmCYXW3EYiL2cWnQ2frQJHEWhgF28lLylccL4iR82T2DykohgQMXPOHDK/iJlSQ8yTj2cswgFrvpB8aRpwCh511edF/chbbdjT0kms1QREIqhnlhqi8B4s8hnMmRZhytouRNffng/2EiJ5UUsszXxCgBU5WhCyqe4Bb6TQXqKRvuDF9B0xaN1LzwQHd9W7tLzU4FdEVlE4cllfee7JSmfxbnAcpqtnMHfx8sJHEUHE1CqClPmLTLMVibtyWG1TBodV9RXNI/QYVhKH4Vt/XJge6AnphenXi9IqEB6ehaN5IUdUGNTiEEyhSowLFQ47MoZkLs5kBIKvvrpqYHDvrnpGgK2wEW+nohE8iCYiY4SxIq/G54CbAcMQ8P1gjMkioEMGCQW9C/MdM3p8GdkAn3pMEQbCFHdeKM/bKc6AH0h3IWJ+B/YWM+DvvowIxo+fi1iG+FpQGQ4nQ0i7cF6feTYLR+eVZWyo8jsiiyUPq3aGCCm0z/LcHx+1HkBAETeA3Lz0zfsJsIXROgCU7wCZ8ChgjZhSU4USAdYagzE0/ewAqLyoxiCSZgwLqa3woYxl4KhN9xGqJP/n3fyO8DEAqNrAHjDyeDJkKeLIJALnGioyI0F+0MSQUUR2XwQiarQ51go6LC7Vemeqk7o/4lr5nQuuL8KnyqDQXIr4yPTFghturvAvSvOuREx4TkYDksoAcO3ehHO++tKzAfvsv5p55lmQ0AXL8n0Iw76ESr3y/JNDIVWISEJ6Q4xn5Z5zFy/L+0wog2RtyOy+lO1ncFTYc+awveuo1femoBFlvT8uXg/I8V8Uj/fsEE+eR9ExR44eHFiXfF74YV03nq3F0jEWzF+a0N0F5YlZF6/maxEuunPgQxcGPCbjd08quL+cEODaszfCzdWJQpg8afrA9TEcMzkGXoxRuTc4xEOCZE6OMbgw+HUsQugra1+sdZpHUoXc64Nd1m85qnKnzUf3UuNgTwxTIilyCGsIp0diJO9LZACMHJ0x7tkVa0JMvYvqwci382ACfGRcSxExjxDMLjpHCK9wXVgKn9xHJVy4RfRhICPwwniJUNq3rQuste2L+UQk1g/mor8JVNYCoha8sh5ZL7Rp3ktjQU774yPZA2ey9g4zHoiHcOHajGu1BazX1uAK2w1+ECpF54iW8ZlzkEsEVVVdpNLYEtJqrJl3bDJiJwJrbJZHNOOyotOCP+7L++lvc8018IjQepINlzHtdwSVYFoRRvm5y99U14CTARlV06Ajox322T5M+yJnbANjjjqXJxKp3ZFUMsXyikQjopnP85auKM8sDCKwNuxtRfgWLru5wpTXBn9U63Ufc7hIaPY2nXv98sLL1yJ+bsq65p3YlJ5fFWBpKcgx7Ce0iuZRFRhxLw/1UGSSPnv+8QcqEukjOSovwkv3hPQidPL5uIUJiCQic7ZkUTHw+sVRhGIUKhDx8ivPxzBoCqzwpXkJyZVX4ztl9Xkgyyua65Yuvbk8i2sD+gAYmJYnNYbJgShWyKyFivo9MwuKBYinFCHkYaRaA29GgBAtYVsAHuBTmRkmPKcIqFBZAI00qtgLvL1HW+ySKxfPJkUZIfWZa20JA/SBP6PAgkrta+p4C90tpRmRDTkVUuW+yCejxfswHiwgFhkLsc8RWGR01KixpY5XGNr5+Mfp2/ir1APlHUWmGtAnJzRjA7FDJhEtIUlIK+IHtHk1kUIhs87l0TT+Aanzkcoau/nZ+KYoM5iRwfIS5WcGNwOBF6ULz+3yMYE7bQT51I6Kf6ogIp8UciA9NqFDwL8Rz49VWXrhtTbwplC737h4goC9zwC6AyjPvX5ZGSZbXnslijMvagqWpc1GFMcXCCOi5hcDh0q8eMVtdQ0DQEiv90BSEcsFN9xUlQnl86xZ+fg5VRJT5GZI4bbJOUObN3VzSMtbp5LznTwcZFxJfd5Ue5v6bHc8pBTvVU8/Ugp9PXj/x0XpAbhy662fqbzM0z8Sbts8o0J3F8i9yljYk/H0QvKz5JgyZq2910VwmZqc5YXxxCtaZK/StSGo1lTrtbV4asLuYBQS9txzjw/sSG0C8wNRG5sxD4cYjjyme0MqkTBr+YyQTHULVPndvPm1jMuEq2duyU91ndoH9slWy4C30+e2KINHyLMQXM+2L4axz91DKop3dR3jHGZp81zRlBFtyxZtwChiLE8mAQrxLEE0bXnOMurTV4xm7YmIKPzNM5mL8AzuuUYEkWvMfVFLRFRCsggkz6HPYPrRY21bGIQUXvfF9y7KFLjkbpLxdiZYU2K5MdvGV9tBgFCKQFrDrcewSeoIcdN4ZrexeVTbhS+8g+28JgAamzCFfeXnTkwlihr3BFE3hofOg4nET+s6stth4vjJU8tbqiq9Z4IZ7DVRL9okyKrojhzCImKue4iQ8U5CbasycK4hts4LaSRGEkVhq2dGFhffeHsw91S8mc8V/rHlFFJScIiIaXsx3lD5s120jvDahTfcUjiLXKprALddq6+m5HsirOgiQurLK58ozNTPwpy9uxDjedfHvg6eHgu+EnGff/S+wmT92h8Xpgd6Qnph+vUDtQrQi3zGeKOsjs/EpBADaqD+YowD6qnzeAKFKS25/sYilytXPlYl8rs2EFOGwcYsAOcSzemZlFTxzQnPQ1oZwgwLuaVK2ju3EdBrBpTuB6iKTMiBsb0LouoZKNw8HeOzqFiY9iePDUnlcbUwKjSRda5+RxIRVOQUWAvhtTAivm9lEQP6CK9F0f0AOWWaQWGhpdAh5BVanHsBbYsbQgu8O2Kq7xBQ51LAqd/CuBB11+ob1YG9c398tHoA2ABLh39/wAdgKNBCoPwNvKinTWFuVTeb5zIgH+MRkAN6W7H4uwG8glxRnDP2Twd8r8wYNzaBKw+MMHN7wgFNBBPBA+7UbGqxdlVP9GzAHckUGsTQnRRhSSiV/NAyuDPXkDrbpwh5sp/pxIRKIbLK0iOy5ozfkU5EdkuAHuAi0FRrOZ7yeeTNeH7EW7jV9TfdUQR7zXNPVNiVcCnl/6cGoBctvyV9NjDw0lMP17WNpDZjhUqtuNGJiFAvPflwgH5bEVIRDdfl/ebEeKBUe1cq9stpX8gV44pwpN/l8fRgf3HnI3z5+7/39Wy90op+SOtYk3xPIbXWY0am6BK4wDNqXK2JkafiLtLFO4NkqbIrAmdUzl0ZkeL1jesq0sW/fxedI2dUPqpCR523kRC6bNktZQS/tEqo776aL8JYF8cgNIfWZluZYxFrzLVW2GhBcGd3iaTmA4FRiok1Xd0DeIS4ihTaEy+tmgfEyKlTZtbPtpDxXp6LQIlI+l5f2EcbcfTOjGgEFVaVsR6M8v5wSYE979aieeSZtj1FzW/fw6arI+7AO6H8RUxDIhBY4irhtaIEhl1eeGst8q5ELj8jqZ6tPz56PUBENI5UnD2V6s9+Rwavzhh7J3OOEAk7fE5URfQIJ4QipEsRHvjVcCn1DIj8Q8Xq1AmRE9p5H+WdWoMRNePRNTARThJmjW94RYRF+qz5REnCor2jia7WdHikhoFz3Jswas4QM5FSJFK6iPaFwfLoIs0z4plESG3LQkg1d70f0VOUzetxmvC4+pyQi9DyZsK59aufK1yEfyPGJNIn0TywbTA28trnn64aCIg7zzFiuSAYZX9uAuna2ND6jhAMt+WlIqlEUs8rb1WorhBli5M+PLg3W1Ll+RHp/rgwPdAT0gvTrz93q4xVIUHULURKvgtVmUK9d+/OAncqL9XKOTyiS5fcVMrq0888MrA1YXnIGtCzfQtwRwQZBa7rKuIyFoQ+MTaE5SJl1NnFi5YXuAq9smgJq1LGH0kUslUEMhNWhcVwxIHNW9afDcO1NQBlWwEjAMtLCvyFRQF41Xx9J08OwAt/QGKBrgq48mc8O0NAzg1DoIF3U+kssAgw4C9CmnBfiyXVrhbZGAj6z4KKWhbIZ6GzKDOWGB0WVAZF20funSKoP/c/Tn/iL1sPnAmZHIZ4ARVAayzxgCBrJpm5wxgQWo68KeogvI4BANgAMKAV7oskIqcMSd5A462N07ZJOcMSaVX1sMZtxrsDYFORFZOwrxoFGgEF9sBZe4imA9Cb90Jm3dv507I2AGn/C7sF/iNHj62cUAaB+1GJveeOVMe1n5u5xBNLcUa0eT7Phj7mHktv/mQBMaIoj9Mc0j9IpNyb3dsC8gHxUt1jlPtuTsiuvB3qPJIqdBiJMTflCAF4nlL9pN2tG0JScu/Lsw7YVkeF3vlD3tb7/uT/GXjxiQerH+rF+z8uSg/AHCTPmCcGTsi/26KEzSKYjFwkcVPETASS4MiTRwAV5itn9IUXnqzwWms8sqaI1fwYngoS2Wbr2XMEUuu8sGBbzexMPhlii9hZn2HH8njlCYerkqfKS2jOCCG25Yu8VcKpuYeAylnlYdwUAi2CZ2Tmxdw5i4qUyiuFCxNtPZG5haTyaPKcMj4VXxJeK5TXM9vuDLhJNYFDcIm4SUTyHNryLAiieWRed4a7Ocvri5QTQc1dmFMhgRGTusichqNJVcl3wpARXXhFIOUt9bm2kWXktT8+mj2Q8Xkm82zYNZmXIlasp8ifNVRaR1frAFFC8owbBSaNSfNA6CtBtQRT4zDjUf7lD2NHMZLgVUX3RGhEQhFDRfQQUPdzH/jkOmOfnSiv03iHLbBKtI7nQOicK28TPhJMzScFiWAWMkrILTIaHHDfHRvXD91vVIXKEn02JbLCed5z6qxER2SNcO3WkFTPBJ/tjT0rBdJ2J498w8svZj4rtBQvKnv5xjvqHjBGPqo5SWBFMkX62HdbPqooHMS+kdS2XzeMmpTcVBXoV8eelvtKMKoCfnGqwLfZIcFw9x/+3t+sd/Bv0h8Xpgd6Qnph+vWntgpwyvOZyepvYMvzOTM5nEdD3J5+5uEKj+oUVCCt2APP6IYo0nJuFOox6ZFJhgOwFsK0OkQTkDGKVShcsfz2PMOZgWeffXTgcAwDIDg6eTQ3JEwKGL7MGGBsZxHQhmvkBNnPTRvycIQ5ydlhWADPOSGqgF0oFW8lQ4YXEsHtAJ7HlnptIRkXDw0Dv9oMqUSIEVLG+6jkLnleBglDhYHuc6FewnAdiKiFqkIks7gissJxhfEyLKjIjBnXWWS8j75huPO6OBgwjBwGQX98tHuAkiz0CCk6PUScqMAjM44VQhidv5E0BUhOHT9eIATASoE2tggjIZEOau3bbyacPCHnjAHjHUktgzTAC1yRU0Ujrrr22hq7Qo+oua5FiF0jz9J4VSUQAR4XI1roEoBnJABc5PSUqpwhxNRhnlMeSOsJ8Ef+VMt1jjbs18bwsK+n9xOGOzVzfEpCG3lK5e54TmHJCKq5VEUgEs6IiNr6ZlGELW0LebLvG8PBecCdF1UlxVVPP1zhvsg844Dhsmj5rQmlWlLGiRBcIVzUeAaCqocL065wK2HN2rZfXOcVtUG6/u6Pi9cDIlmuj+jwxS98NZE3T1Ul3DJys44iSrNnLQi5XFrkbs3Lzw28FAw6kbFrnHSRMgRUhOyJJx8MaYxAmjlClFCsiEAK64inChOZK87V7oKE+27fsSkFlRiYrSquSrnyQjcF084S0GDFDQnBs1XY2pyr/gBBk8gqsub1YJR7wsQ5vCfxitpvW2iwQkrwjvcUNhB0keeDEWuNWV5U2MtLyiubiVo5nsg3LIMdMERFXbiDnGoHdsGnIqeJKOLNgT8+I37mksyxRPgEtxRM6jyt9kAViQQHYSCsMxf3xbsEx/rjo90DhD44Y63vRFPRM8aqXGvbErGDkKL8VGOziGjGVKsWn2izjGWFfthEiKS1l9fPtd3PrkG6EFJiPm8r0oo0Wv+t2V2FeVE7HV7Zv5PgyRvKtoNP5oN13jPBIhE+iGNhZ+YQ4dIar4iedhXs8xlCC1uEynvvxTfeVmSQWOp85HdyigvBDJj4cnJEEWafE1uX3vLJXPvewIuJyDmc9BGimveAP65RXOmlJx+qugb6TJ/yoMIoWPRKCu/VvYKR1jPEeWrE3oVE0kQE7cs64np7evM6a49w3B8Xrgd6Qnrh+rZaRrbkuEyJcQe45V/y3j3FmIt3EwhZGGyXotiDUvqU2CcD7nsGdxTgIX3Tp80eWBo1hxHw2GM/GNgRcK+FKL8rr79s2a0VLitXh8IrX1So77IAOTLG2ADePJc8oFRuhSuoxzyX46N2A3h5QryglDGfIcMI7+EQVaqXAkj2jduT8ArgezafNL93gC98lgrNKFdMQp4Oo1WhC8TT8zFSGOwUZFV3eUeBt/7SPzxUjH2fKRZTYB1jhnGA/DoPWXVPebBdKC9jR7uMAfvPMSL6o++B9MCZKK3Dho8eE1CzpcvojJ+21yIgA8S8dgjp8BimwpcY1QoaIWJIIyOVYeBcn1GQiSXyPZ2PBALXUnUzps1PHlYKLy+Kn5FMYY6nAsbK8AN4IGdeIMuuP5bfzUl7sAnzVfiBwTt55pwihnJyPPOECFrjJk/NJuJrC/wp3guSm2mubFq7uox877lweYuakM8J0JFWnkvgKzdG/qiDCiz3Rm6NCoRCq6oIWd5FwYnrb7q9FOQXn3qonrkEtohM8n+ESzFaXnjigTJOsnBVSNakCFuLVtxaqre8ISTVljUMeX3IoGE8fO/f/V8JNR4sYlEP0/9xUXqgRcq0quq8l/PjDRBaK2JmZbDEum/NFSUg9UNqCLFSGO2LLz1dAqnCKSNjCC6M15TncnDvrhJCkTneG6GxSzI+tLtKYRHjKsYrwgfvpsXodL8ioDGyCZcrYjSaPy8Et8wz2OP5eEdfSSidmgGwbH68JjwiQoHNO6KrKKPdwTGROipQi+SRTyp6B+4QX6WWIINCho1VkTzwzLMSYGvcB0vcWyEzeONnqSRdzQPYY64Zy0TcRlJV0G37NiKa5r3K8LZ3+URwHt4pvORcmCiKyXv2R98D8MZckmrBy2lc8kASJ5E4oinCRQhFrrq1HGHtsMs8RUKNvcuGCKl11hjj6JACgpw6bBVDnK2fc28YZCyLpIGNnsFWM0QYmGStqFzSeEfd87rgJGJoWzGFljybyByRO2odXB0hVlVb7cASBLbyRZcsr7xSuANTx6eNuXGuEEphhINYuuTmO2vtWfPs40VekWyYd8Ntn645L6dTgaNafzLvr4+4aqszJJMYW1EMeS+eUl5Uz2YvU0QU4XUdfJybdWtecJO9+kq8rETStq2OcN+RCeOdH2wcM/DMg99LusmGer7+jwvTAz0hvTD9erZVlQBb+FO2OQko8VQKX1UMYkHAH4FaufLxCnvq8mpGZzLyZM6LEbgjsfK8nAoEmUAF7smtAc6KFfGMWmAsOgwFhSIA6vPPP1GgB7SF/9oPjrdT+JXQROFLN910Z5G51QnLQvIApfsCZ0UqnIeUTpo8LfuVbiiAB+jydXhB7e2GCPLwUqCPRMViAAjVpVBTvXl5hd1ShBHPyy//WFTnhHrEsGcAIN/+puYhotpT1IjBglQzGoC9qoaXxTCiZCGvjGHnM2oQbgYD44BRsm9/9jsM2PdH3wNdDwBLQAtIjTUqNEAHSMJ2ASPABpp+fveHChNdWYDIIHcUoMfbiNCab7wyVGcTpfMg5oJSU6nK5qVzkGAKKwGFd5RgAvAo0Tz5Stu718TMX0owZRogM8IVDkJSVTCk4Mq/LMM7Rov91nZlGyfhU0K15N0g0ApDNPCPxzIhS3I15Yp6DwbBkpvvqPu/nGIQVHFE1t6i05MjCMjl87heXqcKhBRnhgJCi4yX9yvPesOtnypDaeWj3x/Y/vqr9V5AfSLxLV5U4Vcb1rwwsPrZGBSZ8/rd+8slks/jfd1vVbxncnYqX0dH98dF7QFr8e23fbaIJMPVns/ETKkhomeOxBj9MYE0/8ZTE+YGK5z3TMTV1xLBY70XSSOyZvny2yLsjBx4NGOjKzY0YvioEj0nZ9xKHbEvqQOmLV92W639z2QswB/PhEiq9L4hqSPbg4NEGmG484J96+NZgTFXX3XNwNyElBOMVIPn7kE4CaGbg1meCQa7x454OhDEiXlmud7yVd3H+QeDXzDQeUgjLIbDFcUTQ5331fx1DiLaeZF5fLRpC7S3QhTMDQSZYe8cY140gMN3sAvmwej+6HvgnB44kzV8GEJpfCGECs8hczyhyBjsglfWSZii5kBF72Rcnk0hyXiWJsJOgkEwjvCJnHXCElwyz7vwXYTTuVIvCJ0E1C5ShbcTeXNPe4x2mIQswyRzQmEheCh6BxZJ3VAbQZgt/EM8zQfEcHYEq62Zu0irSsByNrUjWkY7PLiuE7YLG4Tuwlj5tDfc+unCSZVupZXAcJ7OZbd/pvrquUd/cLaYH+F3biKFFmUdEmFEKPV3YdDIUbW1S+Wppm+ef/z+8tQWgU3/iZQioiqaBAfXrHyiiOqBCG3wtT8uXA/0hPTC9W21jCghYr/3u18vhXlDiN4zzz5SXkMqlu95LJeEZAI9gKzoA0Il/2VSFoTlUYsnBeSffPKBkMoowQE8OS6uWxzvhHCfHyOgIYiI6dZtKR4SRYgB3JFNOT7P5v5K61tEFCwan0m9Oso10ojgtRL7p0p1pggLa6JuuzfvJ5V6RtSm7VksFCbyOxIqd8cChMBa9ITqCsHVJqXdYgfwGTgOqnqFRGXBQUoboNtz63SRS0SUh5OybEED/P73M+ME4CP0QJ4RgRQjsv3R98C5PRAgrk3GgbYQWsAKZAE0jydlGGFFEpsHNMVLMh7NGyLQjzLmVNilJlOshdcKGyolOgYnMin0idFQuagZnwgi8mY+dIaBcSukCdj7DkF2b4aFnxkIBwLU2uO9PB6jFUh7Np5EOTruTS1XDALQK1gkt0jxIqG8wqIYGPZRsxepwgzvg/+CCpelIJfREK+r84RK7U94Eq8oUQeYI6KIowqFvKiMasaP4kSU60P7BgPk9yWvKJ7ekGrbzSyJwCVceOv6tRXO63k6L6qquvYxRfZXJd/09XjY9IF5T4VnkHi3/rj4PUC0/J3f+S8qB9O/FyxRgZ1XD9GyviOnyCGv4+P5d1et1vwROisndEm+twY//sR9Q4WJPhbRM6G28X4L3dXmWQKaUNVlwTRi51NPPVhEmBEOZ4ikyCFPqvknrPXGeDdg0yvZQoa30v6j8+Lhhz+8sUgwgRd53JSqvDw5Qn8VF4KBwvWItXJiVYJ3vtBdXlOC57ixE0s09W7CdlV+dj/YZS4Js4UzChWZH1V4L9eJwukIKYwjkMIlz+F9YBcMg/OOQxGeTqRITX/0PfDnewAJVA+AEFmkJ1gBN4il18ZLJxycIA+PuroGQs9d10XzwB7z1xxBpDpsI4TAHsKmcNuuajzxUPuwzrhFeH2GKAqnlV4CC+BQJlF5H33uf0WE4JDUEQIpUinn2u9IH3KqXduouK+KuVMiUBI2jx1ONengqdBZci6hU04ojytsYcO9vPLxEn5hmwgaIufqZx4LbrX2CavL7/hs+mh4PJffrQJL3l3aCOLq/LXPPxVS+1Jh8idSG0Vho6W3EFHHDTz/2H0l0rIH9I9II15U25SpvIukKrKk34gEyCy86kN2//zIPb+/94T0/PbnT7Rmcl6VCc5TaOBTY4XRKhIklPXxJ+6Pt7FVz0ROeT6Bv5yVhx5OiEBCcx08k82rurTCbM8S0ChKKt7eHCDfkwmkiAR1F0AujAdWewpT2FS8C8MF+jvSLg8rUJ0UY1eoFiWa57MDeJMROfa3fFfPvj6hVXJ4VNUdFUNyWwpNyMcD+Iihd2HgAHkKtsVqQtpHPKlp47Jg2P+N8QL8/czw8LyUY0BukXIP4cnCjAE6govQIqQOyraFThiWQhD90ffAX9QDAAioGH/IXoF6fi7SOOSNB8SAHvlrwIx4vlHhrVRm4UeuZxzwuphLjFPzp37OZ4pHAFMkVBi+cNuWm5LqzjF2O9WaioyYjcmaYBsW45gSDeiFBQJv1w9mv07Pixj6TnEiAIyMIqdAUqiWwkCAEtgzAqjOI2PYIKNItjxVQOw+a7I+IM/Ud55SivQLKSZ0ynZN8cjaFNw2MZtffXlgY3LKzV99osIusEZQhTQBcgaTar3adjx1/3dCbLeX8eIaobyUZsezD99bZJmYVl7UeNiWxIsqdPief/uHA2uefSzP0Od5V2dd5D9gy7ihYlrWYdXX1S4ggr6UAkMKF8mxlL8vJBZ+CZWVLyo31L6axBQ1BVbEqPP3008/dJaA2ut0eYzKqVNnJRrosSGSOCxFhMYN3JxiWtZ8ONj257y2onngzXMhsdZ2BfaEA9uSRh4rIVKEjxQXKSY8nzylzjkVLw9PqWcVGSR6pjBpKJIHRsIZ7wvXeEkRz5GZIweSw3x5sMY7Ho7Qg3DDwjciGBFOGNyIgSgeZLMErby3YoDmqfWhzi9hK5W4YyDDqz2Zt8hqf/Q98NN6IOPoTNbtYZOyJr4TzCB8Xpf0CduJwRgpJDDJ2u87dpCxB2eIgYRRXlAk1Hfmk4gd4qnwXmOzsCrCjDWb95Vdajyzq2AIwkmkHZ65ao1utRXG+7hET7hHlJU7CrsUpBOWSxAdGXIqlHZXbEzeWbiGWCswxLbjGYVJqqiLlLk2kRK8kzBRsSH2ndBf9QwQWIX4YCWSu+z2z1ZFXZjj/WD5sts+k/bHDDz70PeS/rGn3pdgu+LOzxdWPXnft0pg1RfOJ5TOXrS0PLNSRvSl+Tw69qw8VGIuEfWFpMmdW9BP1JDnRHK//tt/rZ6zD6//aSP4/H3WE9Lz15d/YUtU3n/2z/5lVQ98/oWnqhhPTYhMWuAudBcAPvbY9xMG2yrjqhpIdRaeJKfz+SR0U14BnjxOQI7kUauBLm+nz2/K59uzMNga5t0sBjyj8kuvyfdPJfdLviXi674WAsYG8gfghVnJW7VFDGVXmK/FZ926lwq8qcqu9X0+yFYBc8qbiTTz5lbV3RBSJHNSQqsY7odiUHgGBLKB/7UF1J5dW9Q85NTPFD+HsJAqWJRneDMgL8zZVjQqF1L9GNYUeop2f/Q98LN6IIB9Jipv8DuBTxk/gAzxUQwB+AJhnlNjCmhTnHktKbjCpbr93IA2IPN9I7bN8wG8gTt1Gth34VCuRwZLYMk8Ky9sDP/LkheNXLq3UCREUhiW33ktGRhCWYXqKoKkiBDP664tG8uwAJ5Cq3ZFCEImgaatVoQ2mRv2TnM+LyiDhZKMTA7GaFf4CGGdmrxweaVConYkt8fzjwv5uPkzX0x47+6qNqgvKNbyRhkf9hvdtiGhvJn3ck2pybylGxJquzZrGvUY0VQ0YllyfIT7UqFru5k8hzntOwaAPB+quFBd5FwUxtF4j+RK9cfF7wGROQoM/dZv/scDT4QYwhtEChEUmgs/7Gn9XPKr5I0SPK3nSOONK26vvUDVNdiW8HFqovZcowieIkhETTmZI0L64A7x8qkQVmQSaUN8b41Xg2j6crygGiF4KoiEbNqKxnnT8gzSX9bEe6qOgfsgzoODu2oLGM/LW4vEIoG8mnJU3YdwKXQXfgohhm/lJQ2OILieAY7CHVE8CKfPiaan3sj2KwkFdo3iRLCKoe17YhScU+egPFYZ54xpe43uS9u+64++B35WD9g2heeyCGQww/iBSTylyKT1GRGVxwivCJ9+Z5udS5BgnN9baDgsi1c/56lZAN948/3ctoVJAb6MXWKryBfrtygYW7q4L5J7bjQPcqgte2U7xz1Ufve3+gLw6nAEHeR0eub99kTqvJl953lRp2Xdl0NqrUdUVb7dF2EI8YRVRM2xiaJ4NZhwMsIoryyxkmgKQ1wHW1V8t+3L6mceLfwjLI+PkHvTp75YxPmpB+4pQqnP5KXeGIKK/D79wHdSmGhz/gkS0ZE+XLzi1vLO2h7tmZDaI/mbsAyHpZIsTK0Wx8qEACu6ZBu3wxGu+pSS6pYL+kdPSC9o97bGKdCK/wDi5YA6atG6eCefTriSfTqRUzkvK0IIqbr2eGsEtFWTVYDo5pubh+PBh+6pgkEUabk4t2VTcxVvH3r4niKolGLtL0mInEq69oMTdjRl8owCeL/LIzWZgTvS+eJLT1U4kep/K2JgIHoq7gqBYFQwkuXsWPAUUALOckpNfKX298cTKidmTBYq6vHuhDzw8AD5vTEWeFAZGMgplWt0FiVhu8AckVa1Ue6pRbNyRtMfwsUYFNRpz+E8RoKKvv2G4Rdh0P5y3OJMAHCY+YVI2W7ENkhCnJAn4F1qdAzlqpib8cgYYEQiUB3JAsQ1/mKMNk8qj0jb4sUYZoxqs/PCmifmjOuAPfGGsVpl+qOAd6oxgONxGZ95wtBAyMbHyDdfgb1rkVNkk+ItJ9O83ZZ8Te8EPBkUSJ9wrzkpDPGjzDVKNLFJOX55MAo12MD82pBkKrT5tDp56d4PEZaDg3AD9Dcy95HwefGSzk8hGmFPVOzK40nUw42f/Hx5c4VJIcVAngrdlObl8aC+kHDdR+u5GFWqJGofCUVchV0h+gwRBo/wqvuz5cuuvKO1oT8ufg8Yr1IuFLBTlEhxO1EuT0bAfC1kUuRL1QpIGCzR0nePRQgVHcMSRNqE5i7O+Fsb8VIBPTmdxpvtX0T8iMZZ8/Lz5X3pwnArx/SR7wcD4zWJkX19xJSx8UY8nZxUGCTVRXVdxwsZO/BBlA7PqIJ8KuXCja6Q0p4Yua5ZtHBZbRNz8NC+whpEtKvYC19hlS1j7FVKMJLygmTyqqpIz0usEFEjvarBJ3c078Nzqv6B+WOe6RdhwdYLqTDWGGRYMT1pJ/3R98Bf1gPBkVhTA/GOzsoYe7vETsSIINjNIQJQlPuq1g6nhgevFN+DRdZwIiMyibjawqWF6rYifd33jDYiE1wimpZ4mkgZ45RIS+S0DoiSgQHaQN5sgwLreAnVIkBip8bxoQCda4TG8rQObk+UwhBplP6hcN3IREAgkWoS8KQW4YvHEZ4Ji+VxXSpEN8+ggq6/Ffm7Ph5NBY7gDjyenL5ZEdyRjiKtpKvUu+KOzxV5fSIe0WOJNrwytq/ooRs/eVeFGYvKOXnsaL2L1BQeVBiMhPLewn+RPLygCiIRldVDUKfBsyD00+MQUqV+ZdYpz9wfF7YHekJ6Yfu3WhceBBQZr0gVdVlezYpMgpkhqvI8uxBchi/yeksIKEUWAaXwMlK1cestny5l+sEHv5OS+Zvrc7k4tyW0AUA++si95aFUah65FC7F8yrXE1hTqFUJtMUMhZchIoR3WxYJ+Tc8nYvjhbFQrXt1VT0zgktBEtILwIUOA3UqNO+n0voAnwp+FvCjSMsJsrAePXKoKuyefu90kWbVdnmZbPnCwPA9A9rCxoiXo0OJZvjoA+SV2ux5+6PvgZ+3BxQNuiq5IzyFUB8gIkPG2Kix44o0GbOAscsLPX065wb8ESZKMlLVFTtgIBBhOpAXzirfjOeVp1RolbaBPyVark6nPgM4eaL2cgPqVO62ifjV5cU8kLL5FG8eUYCuPWrwqYg1iilQmhUxspcnQBY+a04qVtSRU5+vX/18tT8jcxZRtPea5x6TPPHlWSN2RUja/Jp5/LHaCkZeJ5BnJHhnhY2ERFGGW5jU6bo38KeSP/q9/1CeXEYKI+rmT3+xDJan7v/2wN6EGHs37ynUyh5u9oxTUEKerPa14Tl4dnlcn0lawuaQlT5c9+cd1RfmPOv4Hbd/rsJsESsEzX6iahHAHgS0q4LbeTqRxc3BDAWP3nzLvpqtgjvsUoTv0eCOfTaRWcInj6f0kdeE6WXeTAgGKqYkKmdVPndfWHnbrZ+tsF4k1tgmik5PzYKV8dILtxXNgzR7HpEyBF+kVxrK3mCSKr0zps8pMRb+TM/P5hMchYGKLvG8WhPUaDgYz45oIsWOiKYM1VFZKxRXujJ5dDDZ1jAVxZPoH4a7A976DFYSZbv9TOvL/o++B/7yHjgTEXOYfT2NIRikmjo8IlA6KtLm1KlaV5EzwiRMabmlbauXTxBPgztIJKyyNpcYGmHFeUgmrDK/nONc93AOzFAP4e14Zn1GbBFWi0xqi7fUmk1EVc+AiIgAi+bhyZwcp0YrtPdu0i+uD6a+kRDbLfXdwgimiu515FRUzvZ4RRFbuaHyRUXGqFHgmWGCKBp4cTK1CZBH5NT8ex6G5BkJP0tTTE/F3Cd/8K3CRu/kups++YX6nVfVuxFZ7TOq+N6O4N7zj91fOFTboOX8FXd8vvpXMaTyhGaN0LeikJYk0lBFYqkktpXx7n0Ez18+oD/oGT0h/aA9+HNcD1SR0X/wB/9TkUkFhOTHCMFV0VABhpuTh6VAxGOP/6CFxKZdSjLSunjR8lKdV60WhvdeC32Kp1W1WyG7cmZsPTE9BuJtAXi/r6Yk5T8A/8k7vxAw3hrQX1mGQG0hE++HcCpFIXgi7VsqXOmVFLOwKClggXwqbkF5sxcdMs0zWgZGSKkKwBRjlQ8tCjtCkOXjuGeFYzGwA/LIJKNdiX3AjfRSz4XwUtd5RS14Xf6NYkfIqev210bF7/0cvfzBT/nElR/P818VQ6SBwQdvsW/hw+qBjOEzAfNhQqFazuTIGoMAmkfT5wCGYmx+yt2h8AKyyy5L8YjMAUYsoKSc+rvL2TFWmxrdthdioPKYFNhHdRbGVOJTyK+qskDdfQC5vBmEDRG2TYqfKdYMEGRUO4f27okiPT6APKoAHSAjd7yIQqZ4UV1XntCsK75jbCB/7sEQ8CwKQ/h8UowGlXLtNWovNcT8xjvvqnB5YOy9tIdcelYGgXeWh7o8RFR+DyJ6MGtFgb/UgE9/oUKpnko4lHfiHXYP7crFfSLGgvN5dG1jIHyKEu0Zqc2Itrwn4Wryhijo/fHh9QBS9xu//tsheivKOH48ONQVIRIai3wui3G3L6F5Dz/83fIwqoIu7PXWCBg8nA888O2qYwA3JoX03R7hwVx58KHvFpFUE8DWZTODd612ws4SR4XZ8nIK41VoiGdi2Q1JM4kh7TMeSKKr/VJFFsENBFpEkT2xYY3feWjXRzQVegt34I09Sjs8Ux8BUfZsiKqtyZxDRPHz6PxszovYmRiiKm8W5hF32zYzyTOPR8ocRYpVj98ZT470k/7oe+D/bw9Y+4TptkJ52VIoQgjRjq1k3ihiZD2HTXCEmGrcIoIldg4RTrmlvoMTxmf9HRzzdyt81OonmAfWY55YbbgGyfV5V2tABXlzAAlFFqVUSfs4mvnBJpO+Yc9RpJZ4CcPUMhByC0Os5YRVQufRiDs8pzytUj/kaXbkFBlVlA+miUbioUTKX4mn1MGjuSzRM1JCzq2NANsIpd1n0k9u+eyXq3aB6rvejddzcZwxIojWJLzX+UQm4cTLElE4/wYi7HNVeK8q5uf+woYJpWyAF1NTQdX3igzJ70g1jJR72x8Xtgd6Qnph+/ds6zx9wBvp6jygPJ6q6r6cUCYLkPAjOTGAVkGgh+M9AK5dGO4tIa17Y+QhobyFto+56cY7K8/noQfvqe8Yw/PnXR9l+6ZqmxcV6aUoz0y40qOP3lsVBBkZ8nYUVuKhZZQjnbynq1LIwqLIUKCOC98VzuTZVM5lALhezioDwGSfk8WJoXA8IRKTY8AKYTycpHdkVf6nECmVeu1BivgyBKjO8kOHxdMjDFfYchWBSOiV52JMX6xj8sSxyVO6YuDIsRN5nzNn3nr7nSaDX6wH6O9zPnvgTLyDw5DAClPKGGuhtm8W6JkjvJg89oxRB8DpQqGQTR77RkhT9Tlzk2FAnfa3z51DXe6GqJ8Z4hXuGwMBYCOq8mBUKVRJlhGh0JG93FSn9f34yVOrsq7QP8RNlV1zjtq8N14cBoXCPwwGqjTQVz0XyHoe5/HaInr+lp9DDV+XHFLvr0IhwwfJ9I7jUvzBPm48qbtjzCOSCg8xLp6879ulBMuTVQFxWvZfW/nIDwrseYoVV7r501+q66jN74P/baUor0veuvweRhNv8eIYITdkzVKAiQf1SOa0dUYBJwTV5uj/4h/9fhFXRLg/Prwe4OkjgBpDFYLLsxASejJVYR8KoeSJZLgqWISAWvtVyLUfqZSMCsNN3hfseSRROi1V5GOVVvLJiBSq1iKhcAt28KIyROGWgj8K5PHQ8oAqfERMhZeIqrzVo0cOVbTPzclB5hkV0UPAlatKJIWXo9PGvBiWnsk8FK0Dm1TjlY5if1J5qsL21TsQ4WOuwCthuybzpBjiuxOhIIrJfCa46o+TyYfz/jCqclSDUQhrf/Q98Iv0gPUUxsiBFMFiLTdW5VhKw0B+RLiI0hGRo6qtNfKKbJsHs2CJPP13gg8IrXMQ0CqslXlVXtCQKfhRqST529xG+tynq5GAzMIzIqKIohIKs0YTYNUmsN2KaB/F9xBTBwLqZ0RzZ/ao1z6MEr1j7Z+dyB4RQUJ1ETyYxIuKjMo/vSFzeH1sTgWSeGJVy+VVtR2Mfpm/dEXdl1fUe7jXbZ/7lYiphwdeSjQGTIeVtwSL9MOzD91b7+95pIfIaSWU8sYShhU8IrbyRD96zzeKYCLNcOimT30hqS1zKpUEGW7hzNkGLbYwnPRu/8N/+uu/yD9xf80v0AM9If0FOu0XuQSo/fbf+89KwVqZ/C1KFm8i0qdAkcXpgYThInsM0i4MV2jvvd//D6XEIrXySe+8467yHgJ4wNsBPIL7/R/8SSm8I3I/BHZ4gPj+GIPCY4Xn3h7Q58kUDsXbgahSt5sRMFD7zql+qCiSvDHVFDGzV1NdFzFeGi8HVdgWK56Nir0lBoK8G6G7CltQ3XhhkWFVC1VX3LFzc4U/MUKQTc+qoiiyqh2GiDAq+UQX87giRWbmz55WZPTkG2/VYnfsxKmEoL0TPnymJ6UX8x/jPN0L4eN9Ox0CRugBKgDoz+K9VF6e5w+AAx+AyADgGWUMMAQUCxKuxFhVAh+RA9B+R0jfzZj1N9BFKinHSOsVV7SKh0KkGAaIL1HFvYAfYmqeMwJU82Nw+B7QysVxT5ULqdPaU3RBiBQQ3xblmeFhOxbqsPwdOaW+VyDIJuhU5j+LYQHsEXChSt7RfqONnN5cXtinkysKyAH9LZ+9u5Tq10JQnYN0AvXKHU1uqn5TLh+gU4pXJ4RJPyDGcnUUrJDDoziSEGKgj7ROSjEcXtLNWTeIW3KQkFDGCc/uMyE5toXhpVbYSZv98eH1AIFFbv9/9Q/+SaV4IHwWfp5A264QOBWzE8GjCF0Xhgu7kLlHInTyJvK0qpOgUB/vpmvgGXIpUgcmSE9xKIrks9c3ri0SifAJz5UiIqXkRIqZjBo9pjBrSwzfTfkfztySeypMZJ9R3kt5rRtTG4FYKjpnWvKu10ZENTeFCtsv+0g88Mgm0ikqCP6oZM9rimQjn0gt3CWOwkskWzEkxZKIv7CZINynjnx44/SX4c7wosSdVJ/1N7ERDsAUmKF4nrUUaURCRezADJ87x7i2XjYPaLaFGfJ2sueQW6GmLeInHv3MyS7EF67BIhjERvNzl8YCP5BHGAUXOky0nsMqrgFhsdIyiK+Tgwn7I9wg0kJtRd7YXkw9BGTRdiv2IrXeK3gkJYSHUsXbVxOef/xIcrjT9vKIW68kPxw5hb9I5r6IPRtS/4Q3V9rK3LSvwBCPrYrxPJmKFj3ynT8u7OxqI/ByPhcBtdJPgtdEVvgGYx7//p9WJI9UGWQTCRaV9Ni9f5ronAPV79Oy9iCovNEvPpn8+RJ9360+6bd7uTgz7/JsSfKPL86tPtp3YdjxEqoU+6W7/8bAl7701QrZVQRCeK3wKGrwV7/6d0qdFWr0Wow5ZE/J/C//yq9n79AjydlJYncKTfwwRvJf+5XfKAD22dYoUAeiYt31+V8rVdp12+MBEU70+c//aoVeAFRAjjguSngTkrh/32AZ1PY6HcxCoNqvxUkJfeArVxR4KwBBJaeY2/+UcqzEviIUFlXPxminWntPC54wKiFSiLRFsPYwDbArWIQoUKyRUlUUPVsl71/EYTJ+7KiBMaOSN/GxVLW70v5dEv+zV1f9/vFh8ZJah3tSehH/TT7orYAvYAaaCCM1GRAjlcYcD51xCowBu3ONO0BvzCJwHdkUMsVQpyAzWOvvnKddYKk985qRqy1KcncuoKb2EoyotMMykoRIyQX1HSXZz/J1GOye+3CAm5GhsIOcUoDOg7onYK79uRGPjgSUW4jU5CKuPKG8q0KiENr1a14o42VFAFdBivUBVSGQt3zmS/Vs1GRCE0NBISJe0cHk3o0KOb7zS19Jf3xi4OEAvftMzDrxha/9nQoje+Sef5/n2FxGw6fu/moVo1A0QoEIeUOI8t2/+ffq2Z/4wTfLgGBoCdP90m/8doyWpQPPpWDEw9/5o6jlG8oYkfPDeOjB/oOO+g9+ffPwf6yETntTf+Urf6vEShih8u2qpHcgnHfd9dcLY6RTvJbieyqwI2h3B9MUJeKt3BRxYlPWdEXzYBQM2hoxQ40COZx3f+lrVayOAMnbOSGiys03hWQGf2AMb+inY5jCjF3BKziEWKp+uytiqEgcQunVyQ8f3LuzvK+id3gsRd0w5ifG2CWa8r7yhnoGRFr+KLLpXCTZ3FevgKjrM/OXdxRWXZetLnwOF9VP0Lbv+6PvgQ/QA2eyHg+z9l8hgidrNjLKcykyxfiq4m7BC1gFawpT8rPPiXsMkiKwhUmnC3dgivZK2Mv67vvLL0vOadqDZ22/TTgoyufj1VZOqWuJsaLzRLzwngp55SlFjhUClN8PH4isyJ0oG7UW1EBAXj2Xgj/IrZDeEiHzlKrVwjfrPe+ryrnr1zxX0UETpkwrAVWYrWghAuYtn7m7qrnv2Lh+YHiEqE/d/bV6n6cTRWELHAWL7vjiXy+yC3sCicG9O+o8hf1gEYydMX9R4ZY17eFv/1GF3xKJ78y1XwyeqTj/WFJQbGEGb+/4wq8OfPk3f6dI+MP3/FFCdh+oirr259bXx2MTS/XpjwvfA72H9ML3cd1BqK5QAx5JIasVhpsJJnSJUXvv975Ryi0wpBLfkYRrAPqD+/609mejDFOpV8SQVP2Qh1NhEmFJn/7UlyqsVmEIIG47FirySzFW5ZMqDqSYEQX84YRTMaSBsXCnJ+3/FqXIPqlI6bPx3gLmyZOnVdvUbKxsSYwNm3pTzoVGTY1HB2EWcrsw5BaB1q6qijyoFi/eXEaGxZFyvSc/A3jXV0GKGBoXm4T6x6A4Llk4O4UsTseY+mH9+4wccV1Iwrs8o9kG591amC3YdDGBQAAAQABJREFU+w9eXI9tPUz/xy/UAyGE2eJlxDCEE0jK9UI4uzxSgOtnnwmdBc7CfHhFFTICTsYAAmksI4HA27xt17TtYOxPag9TRSgqHCpjXThUGRbOzVz33XXJAVUNEdl0r/LIBtgRMB7Ma0eMSD7OrsrRtH+bEKnJKcByKvNMqXs5maoEUph5UBHmjhTOW7K8be2S+y3IuuB5NwZgPReVd0dEqp2bXw+BHJNiD3dVIaPdIQVCiG+Naixn01Yu5TmN4TAvVbmBNA+t0GUFH2zvgogK+2KQUJsZIA9+6/+t0F7vLqeHUWCbmbUvPJ0+aDlHN8WjKnRKvqiiSV042vLbP1OGyJb1a5OX+o0yZOSg9seH3wPWaN5JIqJ/ry4MF3ZI2+hCbgmNvKY+f+65x2uvUucTLuGWCJt7YtipWCtC58YV2SIo7d533zfLC6lmAa/m2DETkl/6nRJmXQvHtmTLGd5NaSYrch3x5NmktRCAYJDxquKuFBJtKNaHLPKUIsSvJPcLQZ4bTz8ySuhU4d0z86iKVFLICF4pkCJUGS7xkv4wc1SKjIJIf5ZIis2p6qlSr3ndH30PnI8egDcEetEuDsIosdTarogPu6kJnh8rQdLWX/DM+CfwXTt8eJ1P0LT+ur7zpLIjXVsENHggYkekjSgfHlOeRG3wMlrTOUcItl24LvLIg4gId1E71mZhsxMj6thjmugqzHhPSB1MtMZvyfxz8Dyqjit6R9iud9qYaBgeR0WCeD1FxcgP5fW0/zURlWdzRqrZPpsUNbULeGLhhHSRznN62+d/pdU3ePz+WpsmBA/v/MKvVVE/EULuNT1k+Pa7fq0IMFIJt7vaCPb2fuS7wZu8g7Q0IcZEWuvWw/f8cW13Jn9XkSbbyBCCRRI9KbowfQW7++PC90BPSC98H//YHf6br//PVTBI/o3CRpQxRFFlQUUbVCxELCWTA2nhuTyJAH7vvlQny4JxQyofFpl88oGBDQFWC5wiRAwEJfOp2s5TqIiRcd/93yxPjb1BhezKW91/oOXc3HH756tU/+7d2xKeNa7yShVdUm3Q+VRuxY8uT2irfVEVJRLmNDWE1j3kClGuEVwEFcCPi9eUIs6gQbCFQiGwNjb3vPtjYDOgP4xjdDyio0cOHxg7ekSU8bdDiJO/kQIzI4ZfU2T+TZ+FpPKU+psxIoS3Py7tHgh5zBYv44ZddXW8kglbQkZ5NymjQqSEICGpwJ3qC2SBGGIodAfQAljklEJMNS5VOYYDUGdAKICgQh+jgdfx7TffLAIorKrLyQFqGTQFrD5DKIXmAvZmWFCcj1URCAUhEDghsXJshEwB0N3liRxTuZ/2H0Uqp6QQzMYY6ojvnIha25Of4xnnLL6hDA/Ks6qCqttSi+WiUrJt0/LSU6oEHhj6/a6qHFiVe0Mc7gioy/EsckpcCsGkDD/+/W+GLO8oMs2TKnTqoRBR5FiImDygRRHHbP+i0i8vL0Pj1uT66GdE9lgIiRD9uSEKSLHnRULtdaovfM8g6T2kl8bcQhQJn3/w+/84/54RSe/9xsDOFMNTaVbhvTsTci1S4AchlqrZmi8K68EUnk0V3pE6qSGfjPd7eASZe777RyWoCnlVs+Caq69LCsk3izTCpk9/5su1fczqjF9YAcPgiTxUeaSIbCuCdF+tyWoVEE9XPvdYRQbYbkZoL++r8OI5EXmRUp6NxRl3PKrSQFSGRzaF686O4XoiXh8eT+RTSC/jlRAMmxRKQsr/KhyE1BMnI6j1pPmS/+eyviOWiKS5Y+3zv8gs66ewXLgkneKaeOcNYt8jjrb1QlzNSx5TjgdpKRWSm+vgFiLKQ0pIdfi9Sy/RDrJJKOWtfCOiZ+WgBtPOEG4jAPGESneBS0RZWAQbpIy4r7UfWXQtryZvKBHVvtq2F7O+K2I0NqHIck9Vz/VOsEIVW1E3U1IdF/lU08Ch8BC89TuPrnoGIoSevP87hSNwR+rJU/n9XHKKeCOL+gTZvP2uXy1vLDzSP4oswTb9TEAVUtzVRlClV+TQqtQ7gO2elYhrSzQ4qEqvQohwTpX6/rh4PdAT0ovX1wX21FqeGBt235EKlggpLyiSB5ABPJVZ7sr993+rwqQA9O23fa48jowEYbcMPSX5hfmqeqh0PmNCkSNVBL/7vT+uBWJ8JutnA/ovZmLxSsrxuTPty7dBPJFKhsLxLCpCsxDKW5N7KmdUaBRSKtdn9ZqVRXyp0hRpOZ+q//Kaep6ZKXJBmRbKxWsrpFeYlPd8M4slRVp7HyZwLpo3o7y9tUn7iGtD0t8tUno6hPQTn/j4wLVXJ1QrHtJ3QmjeTTVjuvjRY63Yytshrv1xyfbAmeQoDrvqqpb7KZanC70FQsip3801cw+YI5UdIaUyAzjk1XnIUoVAhbgKkWIgXBfPCjAH6oyACreK8Y3QaqtV0z1RIIagIrDGOs8nVRwhHJ3KuW2/t8vqfDmi4zK/3N8m4rNiNCOBfqc221wcYZWjYw82qrhQW7k6DAV7fPK+ysmkrquIi7QK/VWxd1GMdfuqUZ0ZDPMieD1275/UOzImlmaeP5289WOHsy1TjIBPJhSXB7Yjp4wFlQ4VJEKY9Y9iRyok2mx8a0gxtdlec7d+7suV2/rsw+6XvPbkC6m469mFUm1IXqvD9jNCszzLH/ztL16yA+qj+GAMWZE88IOYKD/U1mHCcm37Yly2Qnp3xDt5e+Wa2luU8TotNQM+8/+xd99hd5bXmei3DEiACqoISUiI3hECRBVIIJDoxg3bieNJnGTiuWZOzpxzzeSPc2Ym55okJzPJJLGTOI47mN577x3RqwDR1YV6BwPWuX/r1SvIdZyY2KCC9muj7/v2ftt+9t7P/dxr3etekdkierfcelXty7UWMbVAvO22a+vzq83XhONOrnISZkWyMQfsf0hndOqhb7zx8sIQ5nfj8rm7J9kQpBGGaXemJhWpFPxEUh9KdpZHgeAsoyFEkrsuWS4sU+cKI59IgNdr2yuL25fymfW7+331tQSBMmfsmu8CmTEcg2uby7brqGEhClvFKHANJQ+4apjI5vICtqD7hCk+d+okEVKZOYodgRBzPByR4YQlAnoIYp7I842jO2UAwudYJAzRNPfDlyofWZdlhTnwLQc7vIKxTLycxzngW+8+O5QKZ1DWojKhVDUwwnNUA9xxkTw1q0yV9LOek8AOAiw7qocnkyU9rPWiRlgZ58EoWGfOfy7rTdlXpnqOhXUCrzvnu/ZY6jM9NyamQa77VPpkI64ylpQ7+lXDGiUdxgx+mGP2jCz/gMOOKiXPgpSaGUuZU2MrAGp8kGhYZH1865UXBG+X1n4Ip6wt/NPH21i7n8Pj0CtgfUeypAi38h7lJXwQrA/+8o9+vzB7C/qobtSX2iWkG3D4SVX1+DwoErm7A7YIHAkrEnlIojPksg/nyykyjAgeFyKJpF57bWq6AszqMw/NIkGNz/U3XFLZSnUu5LnqZK648ryqfRF5Pn7iKSGBzxYwk+zqNcqc4fY7rsuEtVXdBwdcUW1fejU4omCPPHpvkVT3pDZV9JhB0ZAsWGVK1QAdPOaI7Hdfjdz+ydaoAf1ZJpZ9MxExsbAxtSCXej2tYSwqNubWr296u+48NO1mtu2sWJXMV8jmgP6Ru7wTie6at4t8IqT9+sSlLsTTfzKkSGnPnlt33lq4VM3u2jzWBfyN+Ub+4muvDSD20G8UkAP4NoIssrxdotIynR5HTGUtEdO2dgcQkuQAKNlHWU+1MxYMzoNYFjnNd8OC3ELB+USsgamMkTpRGVMAziQJyPcPWAJDwGqRgMQye0AmgT3pFIIpi0lGBNxJq7R80WPNMXNjGqHfqH0R0FFxvY0DdDKoLxWRtR+5kuPY3L+WoA+zCGRTvY2WLr7bernZhzOuGlHEFVFX6wmM1fqQAANw2WIGTMed/LkC7oacblORbAsEsqrpzz1V51HTSv6rqflTD92TRcZnKpMrMu26Je1NVHy7Pn2qDQATJGTZokCW2OJDdL27bTojQNr61a/+25Cz12oupzIgcUUsSXGvve7imtcRV3O/4KlaUsoc3y+E8Lhjp1RW8q4EQ9SwUfhMnHBK9Ql9OA66FtACqbKbAqwceFvMEiRtpLUDUkc6uUpO4Jj7kol9OkSzDPVyThnNqfnsWdweGgmxUhGZWmSVPJHMmPcBoyJu8AK7JLuIK2KMuGpzpkZVC7bNadt/712LjMKw9zKfUfbM7ZLSTfIttK4iPUfcBGB8XgVAYRJsscEpRLJKSUIe4YkNQUWSEDKBPt8d60Ob/qGCpDCKgZ/NHCwuYX8415JQfgS+nzbfaeRTEHPZksUlT10UwijoCvPgYYNVaT8WdQ+1HqUPkyD9OBE/vTr1kfa6BDtfjirHulKgUesX93pAMqMMkZBWZkfajyGbMrcIomsKoBaxjLJG2cecrBkZ9cl4+lv9KWxU/4nUPp55xvEM/Ch0SrVT5HRQyOkpRYhvueynIdyIqHKVSYWFN176k2pXA/eUmLj+cykleSSY+N57jZ+DfffYf0zhpvITJN79yxh3tw0zAl1CumHGua5iwumfL5d+bsccc2LAe1iI5WWpVXm+pAUcd8fnSwGgb8jjZYcfeQXQtygg212wcF5JoY5IPyXtYy677CdVR0PeOyHRHmBNkmuhrKaGDf9114seran2MEcF1JFSxkPOiajemTovPdVkZ5FmUmILDk3Lp0VqwSyJkZE+ciLPFiauLTrusV0SQQP+6njU7pDuWtAsTy3Bxt52Hz2io7/ottsGCLJIJtN9N0BAsot4rl5XM9o72dE+vVNrEZkuGa860q0yua9ZE6nLdr3SDibtalatCef5eZeUbuw39UPXFxEVKQakIseIELBH6JBUAC7KizR6DiBpU8EkwYaQMiyQCbU/qY79REeR0lbSS76DVFYaIs+39TqthArIAzAZWEZd7gt4I59LFi0oOa1IOHKpj+icSCHZ0bseEkgKVVHogC1CKCOJ1OoBCrTVbnLf1R8NQKuBUZtpwTE2BPOVLAIWxcRoRDJNrinqbMEybsJJZW70wpOPVE3oUZNO77wcKZUosYUAg6I5MaR4KtkmCx/ug655c0DdooUMFznlmvjkQ/dU3bpm48B/arJm7oHcmQzryBNOqZrQRkr1s/ULC3U590Tm+XKkvWU4ExdUiyOSLsZL3W3TGQEKmZ3z/owJWZSVhBNc3muBlwUr53ZZ0zvvuqHzVGrCYJqyDuRxRuZ8JSc+58jehJBQOCCz6fuhrARuVb/SSH4RRHWjak25vAu+qk3l+s6113fLffgpWCugKnOq//UbMeJCdOHbAw82eIewPp/PlHtW/rIsQQ+mSLtFsaPXNTkujCVB1tNb+Yma8c1p05ps112GJbPbZNyofFrPg9XBqq7nwab1boZ8rs1arEfJdBMUlGVsyGWM7QqTGod2ct5GjbOmCKfvAqwR/MwTtT40H/suIJ2CoXCPoZz9fL+c1/xaAdIEZJBVuLUyqoX6GZzhC7B6hbrUGCYJ4Obz3xsxDUaZ6/UYZU7kmoyNeBd4zP0Jrgqowiq4hSAioEovFs2fWwZ2ZLkLBIXyXScflk0dEgnvbklWPJ7SEVghM4p4UuPAOmUlD0VZw29BPSnzozbj6e8xceK996Yrixxy5p1w6hc6LwaPBGPhs/NR89x4yU86C9e59cInOHjTZecm8Dm//By4x9e5U0sKe/Qj59NweLKsb69a1bn1qkh7Mw7eK6UrSl1mZa4xTt1tw4xAl5BumHFefxWRYGY/3Gv7RjoB3ElmmRSRRVnUDhmc2ppIBiwOrr7mgiKo/ddFiNXyXBoSqsYFeSSTUrdza6R3ZiY1NxqS3xpnMvJZ/T657Kr1LNIYeYbFA1de9Zzqbo7IF/7xRKbJntybHnP3RNNv0iLvdZxFA2deWR3yJrKp3ll8+52kVy83ta+zZ4s2r1r/ejfWLwC7MS6SMXs/pDQTcBZKKyNvsvXru30BOYLq+ZaQtiQVKZFN7ZUFvw3BUauTx0JK13ZJaY3Kxv1HxFmUV2bUe4iUAkERaItigCOjCchlN+1HnuS9RFJFmhFUEV+1JGpqgHgjrwL67xQQI6KA1Dkr0ryO/Fa2NN8H+/teCAKJeLu+/dUDIX3s6pE8fdj0I0XGViVYwzpfKxV1OxYjSxJsGpXvr1oZ52MY0cqL9ht7eJkGIdgks8DY690/C/i5AXfnRgqBsNoYxFgmVC84MmDXZ9agxmbFssW1qGBcxA6fmYXo9bFTPltGE9rKiJYflSi1DKq6TyRfhPzYk8+qHqcyokg5F92jTzyj6lL1IPW9kblFfB1z8+XnVoR5h5DosVl4sOwXJb/k+39T42uMu9umMwLbyqTkc75rFp3evyHJVsCLEcNHxovgyprvy7MgRPDoSLKnvfBUkUVZGe1WBEVnh2zCMp9pQc4JE07O3zdWxlUAE96oL6Xy8V1EEvXevv76SxP0WxF/gtEd/UZvjSxc5lIwlAfBfTHzU2t3RD5Ds7NI5iSPlMq23hMivF0W8fAU2TQPHJjAyfR8lhnnKTWBb8/FoV7pyOa4yOzbZ/u4wu9Qqp3+/aL8yPvDlE+AlaInQ5kg69shpd2MzqbwjcrcuTYlDT0oRBDJCpKGQLWEElb4nJpHt0mQxONwyhsp62k993bKRZDMJtC5vMqmBEsRSfWRRVKDCeZdJLUx21tRKh91pUirEhIuuhQ7MM78LwvJJVf9ZsmEc01ZWcFT7cRmv/FqEVP3ptyE6gbOwJ9BwRgGecovHI90asOC9L4aJcLQrAcFZJFGiiGk7+mp99Wxh0+cHP+D58r8CCbtnjXlI1EL5gXEuf2Yun9mQtaesphw1N+wVe0n5c+Nl/w44/R2tRwbHzyi/OHsC8sdQzJ8/UU/igQ3rWSyvhUoRaxvueL8cq9Hrpss6QnVfxTxNH72gVvKTeAiUyXB4u624UagS0g33FjXlUSFAew3/+CPQvpuXid97RHAHxWJ7uSKOF+dTKhaGXU8QF8E+rLLz+ksTMalf44fn+wqsnrV1ec3NTchhydOOqMktc8+F6fNfDFFi7dLhsQiQqZPLQ0Z8M23XFnX0PTc86LXIs8WEtOSZdGjdHgWH8jn3VlUWHyMS6T8qWRDWeEDdgsOmdj994vrYSasqY/cG/LbLKI38HD+wsuNHDE0xkUxiInhw9JlK5MRi5V5wDxtXIqEmvAHxNho+YpVBeieR0h7b7/tuprS90M848ia9i8F9LkKZ15/L16yIiZHy7uk9BeO/IZ7EBklvy35U0DdArMIaRZpFtJAmzwKsCOcSCASCozaKLLPQQvg7lwEmFzJOX3uRZotJJBd0WfkDHGVVUVSLQhkV2UsgX1TR8rgyCKAu26/OoeaZc8hpqLQs9PLbXDA3GKEdFUUuMlYDqqILwIJeDntkv+SR5H1ckYcE1B+IwsAkVzElOyVhJfpkTpQwO81qY2RJdVXTn81CwqOtyLpIsUMkPQPlWFFEo0ny3vEQu2ppuC3XH5eyarIt4475fO5/7md+1PPIxoD9NWckvQ+lf8sVLj9ah3zYupFXcu4cStEWC1MbrrsnMoCq8OV6e1um+YIWJz92Z9+t8gfkmi+L8+CmNodEdXMoynXMOc32dHdy6NA8JPyxqJbQPOEuF0KUD6W/6ht9Cal2Ln8igQo8plXLqL12YPJjCoNgYsTQ1yVf7wQVQ6cOybY93QWtbPyfZBxRTZvi1+C7+1hydTyPSDFHZbndglGUvbwSOD0/ljqU+GbUhgqH/Wii/Kd2Vy3oUMGxONg+8IywdRtgkWcwWVHf8bvIGMCq3znENW587tS+I35XvtuwB7lH75PWukhVTCkDVy+GyzxWYYD3M8xUMZ53kulFY5BUGEXQtkETt/rbB9cEewkXRUktb/rUMFVD9KcAwatXhUCm++AWlVzLmwrRdDKZUUkOd7yGpif7zeCyt8AbvJiWLJofgU4KXVkTAVfZUdHB6uUj8BaAcpXpz1TGVa/azmGoMKGp/NddC3S2icfvBuslDmRNl/OMyr4BpceSvsWr+OwYyfVeRnkDQwWwZZnH72/lELUQRNP+2IZDL38bIwz+w+Iw+7pFbSVOTW+ewV71KDecW1KCrjJ5z6OmHhyBV5vuBg5Tc2p5EuyobBQO5g3E9BC9Cl+9NmudjA8FkJ2vU8IuxZr3W3DjUCXkG64sa4rWSRzM+QUyEyBZEkUGAlF+GQ9yXZbEkpmpM6UbFct5yWX/qikSDKteo6S8N51142dbbJwVgcKtK+48qe1j8wlkCd/ch7RZESVrEqGFTE+MMcwk/ClPjxyKvWez097shYMSOm9cfIlHyHfYiJh4U+2xYRJP1TEdFOJNvfsuU3nsDH7FPFk9iC7uVLNaIB6UCS6S+OW63fkAvlcsXK12tAC9h36JXKZSUjEGRndeuvPhEw0RAeh7xni7XnR6LcWLllfZ7qBPz7dywW1Q556ACU1orI5QJ2yABG1IJMJrQxpgBXgyMIBdmQM0AB7UeE28ux5xyGYFgfOJdqLVFpUeMxn3KIcqKv3WZ2oM2OH5YsXFVhbIDB0kG3UYw4RRPLIdtWJqsFRd+oayKQsInAWTZYNVUu5e4gnWatrizCrnyF3zZezotO7ZaEt6q3nG+MF0WNSWvsMSw3545HqA2IE84kH7yrSzLUQ+Xw4UWQRcC64MqCvR9lgEYJoIq5vvPR8XfO4Uz+f55/vPJPaPAsKxJbF/nUXfL8WRO57YiRTFg6PVcZKlvSwqvF5JPPKB+T0kJDTM2N08Xznnjj2IvcIs9ogmdw/+cOvdetHN9Fvs2CnGsvyLEhJxyHxE7jnnpvKBM93aHSyp8clayrTKMAp4DIygRYk9PV8pu8JZphj99k7QYtgGZd3PUcFWAVd4dxdcbKsYEgCnMjmdaklVVJxQBaWXHq1J+uZ+ZtCR29stZ7qQY8dPznPXZvM0dtVbrIki0YOuzKogwbuWCUlXN4PDHlWX8olWHB3c95GjxzWBEczR5Hs9grOwS/lJQgpUz64pL7c1iWlG/fd9tmnmtk2gX4kE860RFTmz3wusFmGRsEVm4AeXJL5gzeUANWuJeTSsXAMIbWZlwVAkVAb3Ns25SakuMpOnMPxPg1tZhYmIpvIq81aBs4xpVsZgqrGUyAUjpDiuh6iCMeY7fEnEHgl71VaQr1DnktRpAc1F13n5FT7/GMP5Z57lELn2dRimvv5B8wIuSX/RV6RzCeDUYKnykaefvjezrwQ452isuCqy99AxpcChzGSGlABZQZ6h8Tt+5bLf1rBWGUsE0//UnDw8cIxY9K0FjsqWdIf1jkFQ9Wg2vcDctrUnPJouPPaS3P/T9V7ph4W5n37v/1h4b9MdHfbcCPQJaQbbqzXXwmZ/OIX/k1lJ00yZLXjI70dxZjoip+WYy5JkxpORkGXySwkAt3W3FgwIJ0WsmzrT0wGgqmEaDHzB6666lDvf+D26kHqPEyHZENJpibG8Oj1GDsgnoMjDyb7vTUuiOQhCK2J4Kmnp4Y0jyhzonvTosY1ue8+lczGa4k2WyRsStuwoYM6Ow9Ls+kQUXU1ftrUiIom90od6arVa0I4342xRZ8Cb3+LLnu+fwgpEyMkVTTP7/qUbpWJFbF1PpHnHvmfSX32vAW1jwVBd9tgI7A28tYYGLHP36YuKpCCLAJc4CGaDKA/bKWPnAJpj2vLIvuJkIrybp9Fg/cTOLfnfD/vu8UAACSj2ibtioAqMun7KkBDKoVgWjwgrf62+Xx4HAEmIZIB1fZFpLWpE31tnVHE2qrtQfBInoaP3j2R2TVFVtWvaNrtvBYI5EjqTTkZMowgLbI4UAfDpRc5RTiR0XHHnVhSI3IwwK5mdVoylsgnsyGSXSYNMrDA/s70HjUuiOu+yWJdd9EPyliD3b5o8p2pt5kXcyVZUrU7FkJ3J4psWSNze+yUs3LtmxpzpYytrO2RKRHQuFxdqoXWXgl6iXjPz2KE0VFrZtRtNl4fmU3uHwobdZd7JBvyTAIeFrWkt8pIyF75Hvi+UPWccMLpCX4u7tyQoKbPET+BSSGmT6aNC2d3hnqHHXpM4chFF/+ggq9wjoz31tuUlcwqIySBWbWg/tZSTOBU31LGf/pvC9Teced1JfWVOb0/wRelIVqbKX9hVOQemfshxLK6q/Md39y3g/bbvbAKzgSWaqFP+WPOQ0gLp4JVVD425LRIR3b2+5x5C31VHdrdNsAImO8qy5jPvQ1Jq58hqYI5iKp94BQDI4QVR0RUPddKdgUVkDUBUJtaSYHTIpE5dyv3lQnVq1T9fyPfDS4GE51UVpNcl7mPOlL7mvuViMj+wSVZUuSzDcQKpjZ1oo1s1z4wllJnz5iYTU/5lsCrUhTZ091C6CgemP/ALUFWSh6tXgQ24Z+2YfDPc4jsDjnnkw/cVfelbERgEx5zcFdviozC2sMSvHKfTyewxP13fEpKFqZW9dEEPtV5yoD2SWCaiZHxRFaPTO2o49uykyMi1+VGf90FPyjcGbjj0JznrGr18k/Iac7FxVfG9fknHs7rmVevuQa/+88GG4EuId1gQ/3BhZBGNZinn3526m527Vx51XmdNxNB7pvo07jDji27/avy2PRImRDBI1NzI1t58SWRHsi4ZEKZZCGQxaHaUQsGRklkuPYB1FqvjDtsfEWnGVLskfYrMpuuhcjq9wbkb8uigBxEJlVvt8XJ+DCEICshuSLz5QqM3HLNZRSxKW2ikQcfsId5PRH93iW59cf2keAil4B7u5BRgO1vAIGQrl4dQ6NIeG3kvAinli/2B/4yqTaGSCWPygRPtmsD+KLRb86aV3+rQ+1un/AIpM9oHP96yB7aALYMC7D0n7+RUqDdElTADGwRTb1JEVBArT4S8P/sZ2/nPd2qIs2OU/NmYUD65BjnRXLVqba9RhFSnzlyqvffj3w3wEjqJKMJ7Ju/I7df97eIrQwSJz/PAXbEVLTYT4DtnKS8spS77JkM/8qVAc/5qXOJ3PCJR+qeEEQGQhYCjnsu30390zxONstVVPaTRT5iMC7utyRI5L3DRo4O2I+r3m4+/9wEjcUjd99Sr42kdmYW9NOemFqLBFlTdaxT87y+rizwEedrzvteLXqQ2ZJQpY5VvaqF1EGHH1PtXG6/+sKYMKX/XF4rgyTR5ntvuqohp2nUvteBY6smyEKou226I0D6yql9fIiiFmTXRsHzTr4jVDawx3dAGQl1z07p+TcpEjpBUBlT3xt9P7nEI5XI4sAsYgVCyWYFOMl4GRxRDJHhCvIcc/Skyp6S8cLIySelpjnS4JkJiOgdyh+BLNixR2ffqQl4MCs6LDjnu98SWsGjzX2DRwfvv2eNpcCpABt3+B1CRrdOkEwgFRltMqRN/WjNgdnP5nvOD4G6JzWlgay1XVL6CX8oEEDBT4qUdrNWgDHWJAipHtjIlsAlcgmHlIh4v7RjQSpJbJFW86p9OOhune+J9Qc8kjHdKudkzoeIMjZy7Rb3lKXAlX7BOWQRNsCvtEYrUgZDlkUJx1DorTmzCh8EHdV0avlC5kv6uzhJh50TYKLU2SnrVd8rRkd7JZDZYsXgKP1eSSJE1tPnU2nJPnkezpECa1PG5I9ShkzX/o/ff0eR4rHJmmopBpP5HSDNzyeQJXg6IRj0QJIkC2J6h1CqDb3r+ssrIMrQD/EUTHUNr2PSmV8pdVHjnxCpfjCO4dJ1F/6gyLCM7HGnfK6CvMip8aBcmhBFkIyzutRG1juoxtF4yBR3tw07Al1CumHHu64GULn7ieaS74ogk+TeEnL5ZMyFquYmUiaLAf1E2d73y6JYPeluu+7dufDC74VcLa9I8uTJZ1UdzrRIDkh7EUsyWvJaZJaMal4Wl4Dd8ydl/6nR9yOXan3UhLLeF9WTWWWuJBuLAI/IBHVnrPtFm1cl6rWpbUMG9e/svceoynr26rVNaoZ6NX1DsyDqHVOjZSvSziPA3qf39iXXNWGTsiCZK1bKkLV/bxPAlxV9t6LOHrcvIyTyKPFlgLF+ywQKaJDcWXMX1KJh0eJu8fv68fmYfwmgr01UtgfJqXH3P+SxzXhaHBd5JFsLGUMua7/si7TKqAJ6z1m4Am8LBOCOmLXGRr4DCGQr562IdRbcyKn9SGQFapxLvSlQQ1aBv+xl1eQMb8yLRJZlAvU6mx2Jk1od8idEzbmQUCA/I/WfJE8zX51ei3yLAvWku+93UJ2PvFeEedrjD3c+k8/yfvm+kti6PpL5RCLN7lnNJ1OhvKzOkZNOLXCeG1AFykN3HhXgv6YWJkedeHoRWy6H6k4ZPshaei3kSwclaHXLFefl/lZVLRCJ7e1XX1QyYQ6H5FGkXQ+G+Fo02V8m9ebUm74a2ZbxGBcS6ro3R1ZlMSOIoEaHlPicb/333NtTJfX6mD8m3dN9jCMwKJ/fgQOG5Hv08+oDqjwEflxy6Y8rI0lWOyEBEKZ4F138w8qKDB8+supCtfpS6kGJQHEjUHpBMItr/Oh85o4Kjt0WrBNcHRm5OfnvDTdeVsFOBkecdi+PGZYFOOLJO4Gx3tAsIOGVvtucchHcV/L50gpmXpWONEHEj3EYNsqpBEhHxQdBGYmgKcUPdc528Cg4l2mtiKjyEiQUWS3MynuF6JgLkdHt4w6v7MSx6ae9Nj+7pPQTekcz760NYSs3XQmCvAlFtAqt8v4gpb5LniOFXU82g1mV2czj2yb4571r1TyIZavugXEUMzKmMEgfbD4G8M3nQYZT5hJhNAevzHyuxITCwPcQ5ljIFFZmLQMH3ZNMq5pUJSNMimRH1XZq1QKL1FNSspDSmstbbwNBWKoa7VFkYD3/4lOPVuAS4dZDG3G0bmKsp0xDkBZ2IZywQCYThpDsqj9lmsQlXqaUCgfGI6JUTTKXXr8AJxL/cAyHYCBi6nWT9HpNjoVpN116bjnk9h88JEZ8n6u6WOQU7iK4cIzc+KZLzqkxErSlAPLe/M//9Lt1rk9DYOsT+rh/YqftEtJPbGj/5ROLDH/7WxeUqdF9iRhrXrxP5LkIpXYqJLj2kckkb7rm2gvjcPhcFgWDijia2JBVE5ja0YMOHNe5MjLeVQF99vqizQwkNPrWExTIaxFjUkJ+60sd0jook4Tzi2Sb1DynBcyDWdwippvil7Je8z67dvqGaPYLaAdsE2FPe49E6MiY+vZu2rcAafsipYBdVpPcaXUmWe1cPG4Br93LmhzX7gPk21YxEFyU2bEIKKJqA/xbpc7U48yRHBsjiZwtT3S3j20EgBDjrD6RsJPlAJ0a5LyvwI6xB8AC0nmzK6LckNKf5R7s2ZgVAV8ky0+fiZZ4IqEi185LOeBx779jyaRIXoE/IAdmpEOizv0TZUZERagdB1jX5v6AqE9AS2YBnOPIpGQdd04QiHRJxlEEtmcW1gAVGKu/YfYjYov8AXI9Qu0n4gzE9WZzbwdFNfFUanCQZCZFajeNBQDnbigCvl++8zK+7PZJftXRIJcWQFwGRcoBvesdEzMi1v3qUEXWj5l8Ru53dlnf9+7Xr4yJEMsbL/5xReb3ConmyitKrQedY44+6fQiuddH9vtWXqsFyPjJn61rs+SfHyK7IlFw49F1L/TJ3HQ3QVFZ0v/6X/465PCcCmDKWh6dzANX20tDTGfNjpQ7pBUx5QJ/CffLqA44wZ904pmVsRTg9JxsKQfdu+N3wDRFiYrv3O3pa0vW6xwI6iNxYFYrigDfkTrSpfmOHRAzJPdy3/23pr50aNWhPpA2MMyQSIg/TduOgwd0BFrViJqnqHbMR+Y6mMQnQVsyOIdo+s6/a77KVLe1wFymn7ffzjyW4Kz9zFt8EjyWOtO1UfN08enj/cCsjSFRSiatB5qWLN4L71cFTUNCMcYmU5r1Qn6HZz1D2uBOKXry/llnIXIClubHtvSEbNff3mdqH3M3fLFf267McY3JUdMT23Myqzb4ydEdxrQyXb4GSkEEFtWOwhclGXwRZF9hF7XP8OzDIGiP9KjWogVWMuOb8UoTRHW8dSQsUQ/KQX5k1Dsc4PkOCMq+lNIT6h8k9NlI+HdMNhNplP10b/DhkXR04LHgPILDD+Z7ryQFBqlBFdAV2KXcqd7WkQdzAtbaBXF1/17PiZ/9atRCd5ULPNUfDwO+Bdeen2BYiLxs7/EhonOSxXWcjW/DcSefFUx+Oa1mLqrvGrmv96u7bfgR6BLSDT/mdUXZS/KnxpGQ3GlhSKcvxHsdctuTIqN7NVEq5g4W2wfnS8zgQYR6bqJYO8Z6G+hr5/JY3MgslE+MbIqklslR70xKE/OFZTzB3EHE++Qpn+9wzp0bO2yR6L33OqB6zNnXsS9EeqFGdP782esW5RtpcP6Fyw6Iey7jIgZFA2OBjwxC2N4hlUuWpr9W6kH1DV22XAb0/XLTXZZ9ZD8BNqBeGemuonv1pEMGZ8IPWJNFFeEMiW2yrRYEhSVlGIHcOl+beQM4NnJeCwdEddacBe6nG4mukfm1/1kbQAs+xiAihBPJFDCp7Oi6UwNPz3tPgDLyZRHQ1teUaUSOEOwRTVUbTQ6FJMqS+tuCwLHAFqh70wG/KLXvXUuCgSdy6jjnFxBCVC0QuOmSG6nhXBoiiPy15JOECdgvW7Sw9rMgeSfEmISIwYMoMuJpYeBztGjB3GrlojWKfTgDAkhg7VyysIdG6vRsiCkplx5uT+X7bWyQUf1G1Xnq3eZe1JyS+Mqy3prMJznWsZEuvRxZ7Ws5r8ytKPNdWm5k4SJb6/zXnPePWQjJko6pa+hL2siN9yjgl419OvdIniaLOiJgD/hdk3nECWecbV3WuT7yKIsB0Xb9Ui/87l/UwujX/nR0T/CJjwASyKPgsLRjYE4ki/lU6pH1CdWq7NAoey697MdFVgcmuHH8xFOLAGlV5s3fL1ly6p+rr76gZL96V3ODdx61ompJKXy4xZP77pcaNWT3qvQD9N1jgKS1CxyEiYck20pFxAl+Uysd+TjeDOZFsqPmAWUlSkxkR/2NWPZZZ2RUtaPmwpAUpPQzmfPgkMCp/YuMhrAKuAq8wqYqWVmxOuS/V0l4c79gs7v9GiOQNcDa1GX2gCfWEwimrdYGec9s3jueBL4Q60lp3g/HCH4KyrRBf72x+6ZPqBIPuOQ89oN9zPuaIHhDYkuim7WigDh5LVVP3UeuJ6spGKg/aP2MUoexD5JJyeMnU0Au7mSrgod8CahmmPpoy4JEIrB5AXUMCet+VUIytYgm4qgkZN9IchsC9/NgzPjOo/fcWjWiakthBDmt4CvTIrjIgXdq2rwgnIenrESJCYMn9aKLQiz13EYuD584Jb2wz63XflDmGvd7d8zxZH1lVFclu+lY5BsxNVYwTGD4kCgw1LPCMAojr2VSyOrszBv33JguE/kukRKrSdXa5cncpzUGjFSj+nSyuNRN3W3Dj0CXkG74Ma8r9sriuU9qBvT9BMZcDZHQ3r37dS686PslbyLpVUej12fV3WThzAl392jxL45MSn81FvdqfWRDkU8LCHb6QH1RFof7ZUFpQXHxJT/MhNgpUiuLKhI9NKRWdvTeRKhefqWJNm/KkaG9dx/VGTFsSKJ/79VED7znL1hSBNLEL0spawqwG8lSG2VuajwHDojJTEAZiGsivmPIqFrRphdpk/3s2XPrSJ1S4xE84VxYkqfso17DAuD9/BfsKYC3CAAI2wT4/Y7wvvrmnDpWu5nu9quNQIhmmRdRCAgCtNFidZsA3IaMtgDvvbfoQiw5Fa4npQHsNojATRDpRCAFfWQmyZ3Ui3qvyxwioC7L2Vjlh5Dmeeckf1JLqQ4V8JFSNeA+uEBf70+mDv0iXQLyiClS2EalAfKs118pqZD+brvte2BFni0ObDKtCB1iygBIXYz75C6o3+dOkRMh1G9EBsVBUP3psiwqALpoNCIN0J+P3J/09rDxJ+Z606u9zJ6Jbqs1ZTwkSzvh1C/GqOjiquvRUNxzjIu8JsZDHHyfSYDL48eHVJLhIp7uVTRbhvP+9IcU4WegtGeyV4Bf7RHH4BM++5WSfyG/3hPSXVIoFvucETkzkod1t01/BJjvwaAVCVTUIi5Yoqf1o2mp8mAy6RbUh8aB98gjJxQeKe3Qt5TJ3qwsYGU0t9++bxQ9k0OSti9FDzd4KhwGfVen3thiGpFVZuK8g+NMLTh6c9qVyag6/47JytycWrNZychw6P00bsyLbFtlfqH6WRMsW5NAqbmNbLNvH0qM9wrXYBaC4ifc2Tbz1DbBLX/LoCJAbWbUd7CMj/KYn7DPz0WR8GZubFjTp3FAP+HXZD62oCqDveBK1YEG/1sFTr1v7sGiK/9VcDQ/YVkFUfO+IEHwhcLmvQRHYZoyEsoVwUBEFGbBQYRT5hLpVDMKC5Ez/iAUBzBNVhRBQ9baoKp5vepO8zmqY3Ne2UPHaecCeyhkBFkrsJtrmOOHjRrdZEcTJOKgy2zI/Zi79zl4XFzY7y8jPq9NGxhk7oUEq0qxEwL58J03FnHd68BDqk+oTKVspGyo18fMCI64JwRTUJVCh9Ee13jtW+DoCWd+OQqfOzqzQiY9Lnh6+zUXB1+XlAmRXtlX//S7FahVx4pkcnXniQCXJwWPlix4q3ppe4+UmNhHWYr7pfphjoTAKjFRArM6rsOwvrtt+BHoEtINP+brrygC/fWv//vIbQ8rOa1IsP5ramN2ypdJ3Y3aTZHlySc1tZ/kvFULmuyoCej6Gy6taDLnwR0ywVx91QW1KHcOk5gG5fY/5eQvdB6IMdGsLBpIeg8ec0TnxpsuS7T5lc7SLG435Y186dgjxyQrurIzbMdBVbeJXHLQZeowZNAORUy3T93odpHuLkg9p0yp42RKEUuyXJHHt7O/jOgO/XpXRHnVqtTorIs2A3fHmJhFmhvDiAB/JmKPIZ/IC5AvwM8+CArwKUIaYrptFgQysghx10ziX/+pCjiuTZ1vD2AtIuwzDnyNs/fAuPtp87yFWfseAH31MqLHHhNlbgmtjA1wBtwyozlJWdgXQc1xottqRS0OLBgqY5qAjwygxQGgBfYAmfV92xLm51noWUiURNf+6ndkSxPRbUmrRuQWLjbk0X2I3I7O95Dd/O4JKs1OewoLD2CNvAJ4/Ty9lt0iuddfVDbVRkYlGyr76RpAmRyKNIux0SuR0DJo4LLr9U17cmqBuZ5wJLYWQdq76On2auz89WVDNq/V2iVzhugxMnzNed+tsSYJ3je1e5f98Fs1prKoanluiSO4LK/s7olnfbXMI+7IYsHYkx8fl9qd+2+9pvrQyTBzC24WVJu/+2m9EZ/yf3wezW3/7b/+TdVZCXr6fshWynTqGXqPXtWCEzEWYoYnUMpsj0vvKad8IRhzeTKcLxWenXba2Z0HI7V9IZ+5YcmcwCQtx96KKmCvPYNJUQG5Rs+4WiO+2rWoRZ2T0hG1cJ/GTRbzqMMOKGmuea1X5qCt8hjFjjkLdqklRTbfziL53XcbLIJJJLx8E7bZJgY370e6m31t8KndEFzfRxlSTvuwD65RFplLFy9d3u7a/flRRiDmelGj9RAk6BUiWLgR0lgmeBlnmOT//kE+KWkalQ1S+kFrMu7tgqu+Ow12aPfybuGOo82T5m7vkfYx76QDAmKpjKTIZ34vJ/i8p/Zp60CVkCCXMExN6vIESHcMmWReRKUyf86MUrAs8HeyopzPBUzJYqlhXo1KTr2n1i4Cql4f1QuVjYApJ3YZUa93l6jsBEH1nyabhUXKSpSPwC2/m/8FNyl8/M7FlwPv/XF7R6hlN/WshsmyorKkSk6GJQirp/X1FyaRknEScLX2chyiemxktoK7Mq/qRCeFuPp7agKvgstHxlGeckmpCKx3fURU1vWV59ONIjjL5EiG+NqoeBa9NacIrPYxSHp32zgj0CWkG2fc66qIIlJKAsX8QbaSwdCzH6q7UU/DOdcXlqRpchaOWr4gktwNTzvtSwXyWr6QAH/2zK/GefeazhtvvlJEliOi7KiFBFfDAZEAckKclWjzykgQN4dNU3ByJvU1spnasWjTMu+tRZHkxrAmEV8EEriL/pLXAmm8Rda0JarLkx2tzGlIJ9MjkijgbCGgvxsy+l6OfSdj7XzrZboZJCAP2G2kUYAd8MiakuvAIMBgH1Fq53t9xpzqrbd0eTdbWgP3L/zTZEV3ivypZ0WLgbfFMAmOsf1MxrMdfxI10t0ipnmPAbR9EUPSVcfI3tjf96ZZEGSRln2QQXb7zTFNthNJdDzSpM9nazzhd8DuGHJdAEp+agEBkJG3fpFYLX5rfkWQ1VzKZooY7zh856rBFFm2GFDzwrhIBHh65LI777ZnyXp79tquItVz833kTog8kixZfJBcyYg+du/tMZwYHlnVqLjrPpRFwbjKkFpMMBR6IWYSQFSN6LQnHi6ye2hMhMiskFdR6kHJdj2Yer2ByWCR2JI3icrrD2dRdE9qSdXFnnjWb5TNPtAu6e2ZZ5c0yr1b0Jz0ud9Mj9M7Y4z0cBYXg8swwgLotjQaN97kVWpJAf/0EF7jc0wUGyN336vzx988u17Xv/Ax6D61iY2AejdZUq3J1HXKYAqUrkwWRl/sk6Lg0Y+aM652MRMTEGF0pF+27yfvAtLec87528o6HJKF4b77jOlcFBWQ75xsqU2ZycCUlZx+2pc7Tzz5UDm8653te/pp3QRJx+y/R5FNeKPvau9IauEUwgl/qIBgD9xCSo0pjOKTAGc853GYBZAE5cxzgq81J+Z35lBtwFRQFSbCPptrxJCvW2ZSo/Ev/1NZ0ewCW2AM0givSlIb8um9qPVAAAsWUep4vzhIV6lJ/m77j/4cZgVbEFvnQ/zUYzoHbCFZbwmsaylHkWCw0ii5beZ7OIX4CUQKkhaO5bpwSk2m+lNlGP4mC24zqT4XsoUNVuYzlM+A+3NNmEdaSymjRYvsqIwoMiqTylhQEFKwk7s7QqffNh8Bihs/YZdSEi7uyOHYoyeWgRFiyk337rSNkp097LiTyoGd0SSMYHi0OEojrcMQxvvizq7XN8y5/5ZrSjm0R9bAHOSv+PHf1VgeEPXf3gcd0rnq3H+osYOXylUu/cG3EjReWqT5+NO+WA7zL1tXZ46hEpIZFXCF5zKrMqkX/P3/qMwqrO9uG2cEuoR044x7XdUCDtB/4xv/sepshET32/fgcsbVjgUxJW2SHe2ZaOhlcRKzHZpm5QjsOef+fSLHa6q2ZuzYozrnn/8PIWTR4+dLahHBlp9hhFrThVnc3pv+TXMTbSb13Zw2E+igZESPP+aQzusz53YG9u9XAA1c+yfT+dbCpQHnrUPstweuBb7IJbMjLrl90w5GzSmZbu+0g/FcQ0ZlykIkQ2Q9Rp7bkNHU55BEZaJuzAoiyc0EjnAivRYPWJLrizwbc8CuJtXEvn2i1gCpT661dPmKytJy/LVPd/v/jcDaRDyD3Wzv+1U2EpDLUNqApN9LEhUAR/69ZzZgT2Jb74Poc94znxULBPuLFvvZGkc4RqYTAIo+exMtKJzHQsB1PLdm1aqKrloMOxYB1ZO0Z+SFvUIgkT+Aqc5E7bY2S+7Ta7DQEMW2eEBkuSJaNKgPsgBxPe5+wyI/0n9UD9Hpzz1ZPT0RWfdCmiRzKlMpC2qxImP5WIzORid63SuRb0612qrMjqMpEGdKxPGQFAsxFeldmAW9BYBsLrMkkW/RbK1ZRNS1blHzo4aItHZcFgiXJgtqDI+KOzeielvq/7we7ry5uZI+kTQjtdwKLQwsnEietI9hOsHif0AI8AlnfKmOJeklIyOdEm3vbpvPCJDtHj7u2PrcPpPPkM+7fqR6kMqGktXukc+VbOedd91QbriDUq82JdlxMtw70qZFT+0pUz4Xt/eZkfHeniDioM7Jef7xZFeUo4yOCRKZL5kuTwTmRr4Hn+aNd8Huu4yoLOfykMPyPghuMDFiQmSO44WQ2S5YV4ZE+a1R6ciYevyd7IeMqhNFOAVXlY34ma+wr2ttAqjGU7aUP4Igg/lO+QqDP9eUaZ2/YLEjnLq7fWgEsk5bGwJTGNWSQHOy9YD1l1r+9xDMdcfAL1jgDSh5bt43c6nfKX8QNkE8hNAa0HsjGOr95V1g/kVKlZXAFi1e9LZ2nOCqaxfO5XcBTf2r4RwCunThgspsmvNbItsETgeVJLYCo8EMqphZ+TmKo26c3kcn26kkZLd9DkgG9PkKmJLQIt0yjTBCIFSJCAd42ELWCjeUdOhR6l4FSQU5kUvXR0z1vlbDiphS6CCmFDa3BYecG9bcd8tVWR+9X2qfNxNEhSG77X1gDPuOrR6izkXaq5/pEzFQIsed8sWvxz3+6gR6o8BIIFiW9L4QV27AgqdTPv9bFeCFm2TKMIwvAyLq3vUtPeH0L5Ufg2Bt9cdOltf6obttnBHoEtKNM+7rrypDqsWK+lETzaVxwrUQPuCAQztTYvhAkvt8pG6D8yUukE9fJrb3jpucBr8kvbekvkbkanKiTHNieKSf6JAhwzpnnvGVavcC+OfFyKiip+uvvHn9IlIsorxbQHynHQd23pw5Lz/jHJfso5pRzoQLFy+tiVq9jcdN2r17p9l0iOLKVauLjJI5iRB7zAaskVRyqLfzWFvrgTwyh7A/Ego0RK0tFIB5uzkeqLDgt3Dw3MrIrSwMSkqTRQX7/SeefXmdtFhPuPXY1Z5mi/yJqCGhTQZyecYujrkBXtuHo8+IYiuzzZtazxtzW5HVAHa9P0hp3iMSH+9DQ0qbTKkIcTvwCCbwoxrwHhWBzPfIuVyXPMq6jDSIjT7zIjVwK1K3AlhJcN37Vp8JeQ0Iq68E3q0EiomC7KQsKPntqGQHZSpH7b5PkdA9UkuDaMoaku66X83COe2OOXJCNQ1nMoE8qydtW7pwKkRkn02N5wHJNC1dtLCMjtTAvBCysDJEmRMhp1xRcwCsBnRu7oUE2Ot7Ij3ggPe4uJ7eUq01tio3wzkz3gh4P1ytaCZ/4bc6N112Tr2mlmhe8v2/KnItwytCjWQyvdg1xmiTzvpK1e0gwUw0yIER9OsiATbOjiGtEln/NGe86gP5KfvH90PGk7uuDOmDD91Z/gPakPmb98GFF34/JCjOzVmUTolx3kUXfz8KnDc7u0bmd9qpZ3eYHM2KAgDxZGLECGl5Pp9jE3A5MAESfgevp+aLl8KWsO0ycqcqPekXnCKZNZchlJmgKtCKFQqkwh1BVP0da8vcp9QE4WwVPLAMmSxH3exPIdSSHPjnnIKm+ZHHm7nT443UN4G5nEv2tYyScqyfbfZ0S3gvfslrLGM9dfmwQDBRMM74KuOQ0YQxpY9aj0tb5ZRKe/Jo/ivMCUEtIpn5XFBAphU+FTFNf+oirXmDZDIF9xqpbmpHQzYFWRFOhFYmVcYTHilNEeTz2DYhrjAJlpK2uz/3i7whf4KAcQKu+ZsM3z0heILuyLO/BeUFX5WWrEh2dccRI0sCu9/Yw8vZfZ/I6StLmue1h0FaZUSZ75HhUvDIQOpZTQHEGZjHANMgWVL7Io+OHXv08Z3bo6gZMGTHyozedOk59TrIcB+8/YYK2CK1xhex1R6NvNZ+zisDilhr4+L9UBrCcfjerINlPsdnHWzcOMobt6PSBo28+LJkTWWAkW7B2EcSjGVg5Jghw0cmiPtYZYZ/yWei+/QnOAJdQvoJDu5HOTViaZMp5VR4ciLJJqaL0jpBzccBqdeaMvlzZXQ0Ky6bo9M24sw0Ab45EaXp0fIPyxeJTPfGtG3RW1S0elIiTtdHFvFSos2Mjkw4n4aN8yAp7J67jayMJinu7PQBHTwwdX4B0or0hvyRzawJwQT4tiXJjiKWzIfIfYE3YtOSUbWogLkIZ/YHGlx7/RStFoUmC84hAfwmelZAE4CvyTz7AQELCPRvTXsAAEAASURBVETUvVg0qAMqqVQe6xdC7fyvz5hbEuK3Fi7xpjQrBDe5BW0hfWtDQnsAZlHiqnnJGLVSWWSGiRRg9nxJi/K+tySzAdEmo4nMNVnPRP7zHpMfkUVV7WjG24KhotP52WRFszALCKu/aaW7FUkOUOuTyAwCKWVKhLi6F9lO9woMvWFqa5gYcc+VnSR1tTiwv8UJous7DPy0q1kZ6VBb++P+kG4RbFFcdvNkRswUEFVOh+5ZvzfNxw+MNIpsyuKGgRBbe06IiIIFghocCwASLZlRclpAzuX24Ttvqut4/I1kY5FiWVf3rd2LKLNFgMWB12YRoE727hsuL6ktZ0J1n6Li6kRPOfu3y6yCE+KQnXauulEgzk3RmDAvMk5MJrwv7P0RZAYVJFfGtLttfiMwLO/14Bhi+YzslQDEySd/vvpcP5zAp+wnEyItYS644HuVGeIGv3uCL6S9vrsUO/vkM3teMhMyP1qbkQ9y250ZTCP/3VK2A/fdPWSwZ2GTwCVMKHIY7CDVhSdwpFfmMvgBe3z3C6syZ60KAUU6kR54BwNhlHPY4KPN/s4FZMw5MAnGrQ72wUHBP9eBi1qm8VoQVLVxAqcuQlS30G1tJKU9kDt4AB9gCHx6992Q99WrK7gn+Om98ZlGKv2ef2otYOzzBtR7gBzZCquSdLDBnzpf1njwwvrBJjhr/haAdV3XR36RV885Lxdd8yxC6TvZNy231jD7yrV5Hij1GBgZrfl2m3UYBp8qcJr1oJ6hHNtJctusqN7XvAFeptbZf13ANNlTbvGyutzeYRP8eDoGRBQ7sqHuda8Dx1bAUcYReedfgBRq3wIT21pSZSO8BRBHBngyprekf/WAzC0Ip5ZiyPbxKUN79L7bKiBKviurqcSE3HbKF76ejOs1dS/u/7hgzuU/+naRbYFbpkWXfP+va0z3z72SBV917ncq8Gv/EyP/VWfKLJBsWGsZWPbtP/7fi5BTNHW3jTcCXUK68cb+n1z5B9+/unPnnTd0pj5yb4E7kEdWzwfymWiAvH6jPz3vO1k4r6pm4xqK//BHf11RMaYSQP+qmBqJNi9OG5lP4zZipyGVIR02dFAyostK1tQ7k7t6UsCKhL61KE6nke8CXK1gkELSW5M+QM+vDelMZlRNKkAH0EBetrTkT8mWAnBGERYNH5ZC2Ve0uf3ZGk0Ad+DTqyKYTQNziwpgv22kUhYNFhBMj95aEKObkOe4BG8xxFR0dtsAaQvuCBtyCdBFev3e1M00zcIpBurNCgiTQAF975H9fCdaggroMUWPkdQCwZ8lY9OS2cp85jHSJ6SU7Ne53IfIqg3xbKLWP4v0aUDt1y4C3Kd7lxWt9i3JDolac5pFLjnrqrdkDNH2d2t+vhn33N07c2K2MDo2+MwguOgidI2BxDORSu1bRhPkWSzy7SObqT6HxBZZJ48SVX40kvvBqRsXZdaEfGzkUPrDLVk4P/3VUusZ2RH52DHs7G+/vrLFk876apFBMmHEdFZqz197IW6+yVoyS7rpsnOz2BhYtvhMJ1xr7/Q+ZeF/5Tl/X8TXcQi1rKkIul5uxpZTIZfUIxMAQ64Bv/fvgNQNTjz9i4lg/7AytEAeqe+aRdRHbbP7R9mHOrj/+//6X8mGfi/z2dIinKee8sX4F9yRXtrccXeMn8HZaUk2o1qV9U225sQsSrVn0WtUsPW0U9MDMM+rF52dn5tb6civ88bBomPGHVj4w/8AdjAWggeUPwsWLS0iCGcoamQpBdXMe+S8CKZsqTlK0Auu9EmQ0/6yqTV3ZX/KHoSy9gN0QRfz3dY53ryJ0CCaK6IYQlRJePNQlZf0zO/ppV2EVzDWfKrkBPHdQrYqH/FakUHGQ7AENgleVg1nxhJWGEfPWVPAF2MFhJr3x5g3QWp/wyfKEL8jsUU+s7/jnEMAFQFtHxcUJLM1l8IXpkYCmK6JcLa4qaZTnaT3tQ2Sku1W5jW4gcgxMUL+mA4hYA2Wxbgx/3NPMNDnoMn0duqarq+9mJ6hMI1KhnfBmPgDMBySUUQOlZwwIpp6180V3HQPr8WwTJBUZtOYqA2VqeTwrlwERg0LIdbb9L6bri5DJWUlN6aHsfuFLddf9MPCZwFOngoc4wVjkVmtxbwf9psZyTFyjFCe/CVE9dr1cuOTv/hv4mtwQQKx0yrDKrgqePpYiK77lCGl5mHURyZtP+9Nd9u4I9AlpBt3/OvqosukT6LKp8aZ8IFkHB55VO/QHWPycHbV6VxzTSzys9jmPoioMo2wSGBapCbkhrgVijavyMT1ad4QQcRu/OEHBVTXlLlR6xQ4dMjAzpx5CwvQZZCQTfsDVwYQQN4kCdydAyiLQANt4KPmEzmV3STdLWDPZK2uUIRZZNl5na+2YFBlVnMOx8u0Av/2eddEUpFh98rK37nIj92XKLR7tADJQiCJ3bVQ7dO2rU00twfSiSwCUeRIVLiRQAkARHImCmzMAwo1xolG24C2v4G9MfOzifvnbQtA/zzH+Om/qi+1RwBaNNm5EDrnRW5dD/CKMPvZXCey24B/1Qbl+4Q8OY+o8/Kliypb6lxqcxgstFlV8iiRaERMKxM1KmTBPl9A3gICaC/Oc0wiLAgYQKhTEd32OSC/kq0kqd0v2UTtVkSTZTxFpS0IXp0WgD/hlM7jkdo6Dol88qF7apGwNOdy3mMjWdLbzcKHTT4gtmiS/bwrDcCR78lf+Fr9viaGDWo9SYEtLhDjsUdN6FwZMilrxdzh+SemltviyDilOjfpLeKOKOvxdtH3/rJqapFkdawX/+Nf1evdKxH2iVkoaO8i4u51y/6e93d/FoK/xWZb8onc/Dd9s0lu9QZVYnLOuX9X7uzaijHWuyKOy1zih2fxe0ZKRfS7Vg/Ky+Csz/5G5/7IyB9JsFX/UQvtLWlDOLnE8zrYIX4G/m5xir/BgoVLogjhsJsWLsElRBX2bJV5yN8yokikuQVp8fvg9OC2tVhFwWMObOS5WpORiTKroQiR9cwveR4mwT9B05yuJMNKVWAWYgsXYSBHe/OtTK37gXMJpDrLpw6jMq5FRCltYATMoJJR14koIoc19sEM86osHryQoRTgtA98aQkNfPI+IaUN7vSqoKvnkUDBPHM1DPImNKQwJSQ5D+xxLFIoq+kYz8PPNcnMeo4cV7mEACklDhySSfXWwFXEc3HqsGGY1+JzITv6Vmq4BUrnvPla9eaEOyPisOtv/UFfSRkJY70Xn34srrRHlnGdrKmaTOcUgF2UkjH9SJ+MoufgZDgFRo0V47zHU6t5QPxNOPS6d87td153SRFNZnd+V7tKLSP4uu/B4/L33vX3LnvuU4Z4ZLiIKdf26+J+a4zHpzRtZupcpz/zRGfUHnuXf4GSEUq4IyPHNT5UPoydEFXqpfvSUkYZzIkhojCY6geOc+6Fw1eek+BpxkbpC2Mj+NltR5aP0EbeuoR0I78BLm9xOiySuKHJfizNIlhzcNFmbrjPZNGIrJ5x+pdLgnt/vvTkU9wIZ858LUYSN1bUeU2kG1vKJotJAqt3GwAGmMOHDk67l0YSiKA3brvJbIZEikKvr9UJCLTk1LGABmkE0oD+3RgbyXJ6XBR7+5gd2USYTfgV5czjrQwH4tvXdUS0nbOJbouKkupkoREAkw0F+stXripyy96fOYX7ch0Rb4uB/L12XUR6swb+kMK1cVjtQdLT1olaiCJ8QBqYAnVgL5uJePrbc8DX4iDDag1VIA7Ajb1MpbG3XxvVLXluJL6A3j7eD5voswizXqNlqZ9jgKfggfuq6+W6jrGwUJcDdEuum4xlEdEAf58YL7iGY4AZYLcocD2yriGRvs6dBdx3T0T5tQJ5YM9pd2EAHPiSMTEr0kyctGl66i0RPCRU9FeEtn+ySK5PJkU++3Dqb/Y75IiA8fS61iEhgLKYu4aUGhz9SJkLkcxaJk6IPFY0mmHRCcmYauPSNxFzgK4vqPE4+UtN5Nj7AJzVGT336IOpsdm3am2u+EmTFSW1VRfLEMJrdhxQZ4Qhc+vvGy7+Uf3NEOPkGEx4nuPv4J2a/m8Anu0+Et7NjtZHcrP9h7kRIyMmRgKhel+PjMvu+Rd8tzKdYw4a1zkhmfIf/fhblRU9yN8Jnl555Xmd5yL7bkpHGuniZjsIv8KN8zY4/JD91pvtMeSbO39hYVC/kFEKHlgFg5A/3gc2wTKYIcjJ34AUF0E0HzLg41fQKHuY6sm69Si8KTK0bv5DiGS/zG+IK+O/BpPUkzYElBoIERVwlaWVfXVd90bCK2hLWaLN2osvv1lkOsqkT0UPU/Mh0om8M9dhCIdwmvdhCLdV4wlr4E5rLITIGFN4Zn+kEenbKrhlPeAff8OnIp4ZP+eDPa6pntSxMpmFYZ7LeQRSYaF9vf+VGU3Q0gYvHUcB4zr2l+1Un+k8iCichV3I7NZ5T5ctXrQer5RcqCX1XEuKBTgFTvvFZMxzZL5at3j9XhOCLIs4L9imTEQAEwYJiJbHQe6R2ZG+1w/cdl2ZHbkX0l79QvUilU1VdnLvjVcUbnkOYRWM9Tp3TED34NSEylrqUYoYkwUjpiS+/AwERNW38kRAxKmHXP+EM75c+OI1q1ElI778R39bWMhXYWTccy/9wd/UZ9396P99yff+urCec/DEuO1S/Tz54N0VfIbn3W3jjkCXkG7c8V9/dS1gvvab36weoWpt9AbdJ19OMqfLLv9JR5sXvd1En/VmI+1li28i2hI3ZE7G8cD99ggZHVSAKttItisjuTL9RduI76KlMQLI5En6BABWJlNqE43U/qWt+QTeFvYmSqC/dYCI6666U5lUpMTmp308DpgQziYLJyIqihoAy3+Mk5pzJ0qZ49yD8/YMoCxasqxZiLQy40TJ2+vOTpYXOVX7KjK9GW1rA3hVGwroAFtDPHuW6QIQBciAWZZURrGp/8yiKItcRNR4qtERGbUBCfusQ/oCekTSfhZVleXMcbKvzSKhcS/0u/F0TosOlvjAshYXyT56o5kXuRf3hVgirSLNFn0/i3sil95aBOQeACsZU68cK8sr6opoLpw/u55zbtdyPqDOiEEz79bIaM9IlFjiqxNtXAz36rw1e0aynr2zkNihgF3dqBoeUly93NT6GL9ZIaSMhB4M6A8P6SV/mvbkI0VGGRy59lEnnta567rLKit7ZDKqiCCplt+vPf/7JfM9Ji6FN1z0o3pf1IPedOm5GeuGmKpBVX+q3xygJte1aNLj1HumGTkSLnL9ehwQnwwJZmSBiDJosvhg/28B4b2/KdeX5RVtN+YWQd1t8x0B3zOZ9j/9k++UcZ76z+3y2Tx+4qnVbuzcnwpkbN1RRjJ69B7Vmkz/0cVZ6G6pm/KRXXcZXh4HzIe0LeMCL2jJNV4glQyXQkbLF07wMAn5NP97HpFU7mGugyutIkcpiceQ2WYeTFYtWGbOE/g0/yFFtjbwioy6D3+3Pgv2LdlvyDDCyrHXdXOiIp9UQ0pgkDbyXsT5+Rdf7wyKbwMcXLRkeS6z+Sh78jlem5KMHlpeyaghaEtDcvJyi9wZs9aVvSS1wSWf63dKwaNFXLM+aMZcSYngwQeSXeexOU+LQTDM++q98T+EkiQYWUVubY3Et3FhF/is9zE4V+ZFqcsURIVHnnOzCHKb/ayMKWxK+YTSikaVM7wIqTmYxJXXgfYmAp+7RIk3MzJY2VLO7oVjWUsODWYhn7sHo+DQganfZFrEaO/ZOLiPCDYIMprL4doL6ZMNH2QXGe4pJWFsR5lDxivbLDMqiKo0pWpBg1HMAT9M/qzJYN3hwTi4zwBP2QisvD545bzwCjEVSNXqzPjef8u19Zzg6D0JhgoG75n6V21d1JXCYeR2wmlfiIrnf9UYMNjTRub6EF4qHucmPRaY7W4bfwS6hHTjvwd1B70TrSLJHZpsxLHjT6p60R/+6G8CEKs7h6Yma3yiUFdedV457oo2m+y29E3UFpiSQ82YNS8AGtfWyKHmp54UOIv0Llq8vLKXwBQrLBlvJndAbJ8VyViSOwEYWCIj6ueaRIffD+H0nM0ECCRakGkfR3qBvOecA+hvtZUziHI2UWggjrwiwqLaFneA3iYz6loi0iTBZLyyrYMiyXojLW5kS5HaTXUDpKLLorsWLUgoeScQRGQQT2OHWAHUIqIhfwX2yULKCCKCzBkAdAPMjSTa76LzNfbr3h+/15Yh9rtraqcCyBBVpBDAWVQAPfu00mARXwEcC2u1j55zXWTYvSJSHkMQ3w5ZbX7vW9Fcr0dEWePu/okaaw3DmRBRfSvO1qS782fP7OycmtF5s2esjzbLUIq0OxaYqk8V5RXhVc9Z9TmPPdQ5NBlRhFC2UVbVhxBBJZ/V0uWRgD6nRFlYJkNqd4A/Un1U6s3vSQRahpUJhEylLKaFxZ3XXlKRYfb8DCQ4AHMdvOan/1jnO+0r3yhpFMm0jKmou8WExcrkz/9m52otW7IgEhl3PwyLSNaOTdbV59g5t8t7rtebzOyVybB6D9QOyQT/6R9+rV7/pvr57d7XRx8BpSL6kFLsnJ4M/KyoAG659eq0cRnYOTWBUwTluusv7sxIBmR5vktb+gYT9MneddSwUvCYx6lnmPDJcCJ+8EbwUvARJlHvbBdVB+WMICiyKsgqCwpnzEn+gzVkvQKcroOYwpgiOXkfqG5s9kVAy8gov2+duc+85ZqwynFvZ150L3DHtWGojOuSJQmIBq9IjKmS+DS4LnNB55dR5WzfZl030fd7bYKEPVpzoiar2C+ql/5VqsELoDKieV1+hxEyoYidcbV/QygbD4OtM25bbx3Jbn7CvApO54Vr+yKrCGuM+XqSmnN4HIkT8NamrDAuc6fzl2lRArCtKstx8AiGwraSB4e8rs4cbF6FI6XgWRfYhVlw1WugaJHRRFopfoYkK8q5HeFclsBQZYPzOtVuy4ZyPR8ZJ/gZr7xU2cQZkdwjgcpEZCq1gxFkhKXOp80XEsc86PH77qhepIz14K3sJI8Dmcnngmfwi/fAbVdeUG7zrvf01PsqE0kx84s2JB0+jQ8OcZ/nHL9/JLUINDWOAOjpX/3dwqvlqU0fl17bMqu3XnF+/Tzpc79RNadtL2/YBv8EgEckSIa4PhSjpedTD7vj8FH5++udv/3j/1j45DV2t40/Al1CuvHfg/V3wPhhchqNP/7Ew4mM9eqIPo/IQpfs6dVMDotSK9Dd/ukIjNhpcOREO5SkCNC/GWIq6wnoRaPJoUWbAQcyKspMfmsxjeyJNANnWUsgszoEUVQa8FoQyLaCdlHqkk3lWGDcLgxQT5sIaNWj5nc/l0Z61S4c7ON63BXbmpyqZ80x/fv1LfAn1QLsffs2RhUMm1x75pxN6z0PmK4NiPaQCUTsREzVQQJKdvGfyaKm37r6y+ByQDCvJ0DzdsgYMtiSP4QUqQN0xhpItxLaIpU5dz2eMSjQz/MZ0ALx/FO/Cw7IYAJ8m78da0MwjX9LTCsTmsWCTR2oc2+b7KQFXLnoJjMK2AGh18A8YnnMikh+ZUSXpCaHvb2FBYJJxiq6rE7SosDiQsR9wdzZkSbtH+OggPo6cFdfoy60cTF8ogyDSHVFoJ97/OFEdQ8u6avFiYgtR1xA/GT6rTGSeBXo537Vl7LOV7cpqmuxxMyIudCgvAcWBZ4nr0KE9YcToXZvzB/8TtbF/ZDsV+2ohuIWHYDe7zLJyOR7aUdw383XFNEG7DfEAVE22H0dfOTERKC/VZlZNv+77nNARaSNpUwuKfLF3/urqk2yeELEu9vmPwLMjYZnIbdP+gNOS5/cEcmonHXWb3ZeefWFzu23XduZle+DNkjd7YMRQPLM/adOOrIzc3ZqztOyzDwWM7vyEoA9yCecEty0v/pNcxeyCbuWxhSPbBdZdax9YRHsqv9CKmEHQttkQ2u3OgfZreNgkufsU5nWHAMHXY/Cx1ZmR+vUQ2pX++T6joGbiKmMryDr4siMHTcg2KUE5dU3Zn/wgjf+b2uDAVHpNLJbwU7zNpyBE4Knfm/m/CQBgk/mJzihfQpip4zEPF/4nfeOggbRtMEi2VVYVrie96FwJ8FQzvDmQDjmWPMuyS/8k9FE3BzrHHAL+fS8Odk9UaTYHA8n1WHCWBjkJ9yR8USWl8W00nHOTW4rGOmaK5YtLYM95nRtUBh5G5YMpKyogCbcar0P1JYWqc1329yPtCLDXHXVocIJ2MUvgCGQ+R6WyIgqjYJ3nGzVhao7JeFdmXuQJUUUBTFh2lPJesrOGp9ftsFu98mPQFkK0jvmyOMqSMr8qCWmTTnI/ODY8VVbenWCrDD0+DjMy3hSFFmbMDh69YWnE2i9pRx9BVrJmW9J3TsS3y0n+WXvyIZ7vktIN9xY/9IryZIyj/jmH/xRyRmvSxH4mzMSbc6irrv98yOAiI4eOSyTdmMCwWFX5BZoiuySObHYF/0FziWjXZd19DfgRxBlPYGFjCZSun1AGXgDfYDegjrXXQuAngEjzckRxyJJuUW/Iw8WGo4FSmRQ2tC08qqSEifyTTaV9i8lx5ExdR9cDoG+bC/iO2366//8C/+EnwF2gNHrQegAlZ/IjwkdUAKP1mABQJrcgazjACLZjNdpX4TPc5U1zWNIaAv2wBkgF1hnfO0nMm0xB4wtEFoAN6Z5uiRKn8lxFmj2tQ/ptOfds+NIbLnokTeR/rqvCkask0Ehm46tyHl+B8hACvBbnDAzQjQtKER2ATlXW5FrphGs79Vfas49ZLhINCOk1CTnWhYf2/exeFgcudKOZX4EyJ0HYXSvFkykTGpr9o+LoPoY9S6P3ntbXctix/7kTPfedFURwqUJTJWZUbKUjCJEwJHRe2+8sgwnXFerGMdo9WIBIqP5+vTnqs2MyLX37NnHHqjWLOzwbwjQI9mnf/X3ilyKspP4ygKIMqsLRVrvuv7yOidp1MSY2Vz+42/Xa1brKpOrZkd/VKRcpJ0hRnf79IwAAz79RxkZ3ZHAxgNx2Z2bReiWWjryUd5ZGUa9sccesGdhglZl/RJ4JNMVNIUVCCBCIVNJngkLYIlWMLCob84hI4qgypTCKnODubWVg5rzBE5tsmtFQHOuHFZzjefNjXV8zgnHzKPwsD2WqmjbzNUCpIKqiK/ep54nKYaBpebJPVP8CJi6v42wrTW/J5vZoykF0T+68QWAK8ayX/8BFfRE/tRaIkMrEzxE6GRBZR2RRMFR2CR4ZrOf5/WezoCVCqUMhzz5IWxpxh3ONGPsb9ddT7r87pj8C7u8X3CEWkhJSNNfdh0O5nFEFA45h/2oh9p7hFvOpb2L+/e34OkOIaLOX/Wiw0YU3uYm43o7rPqIIoMwGVGD5+Z9ZE/Qc9+xh5fsloy1AqbxMlBWslfKS6Y/G8kuj4NIdZFRpSE8EJBk5FnQ87nHHiylDq8DpkTue25UExPjjntbvAwYJmktJvhKRmyOQKo/6gaLlZBMjsQWVunpfdixk7L+GJ5yk5+sI6a/V/4IfB0EXEl0OedaF8C8XklO3HjxT0q9MymGfzYuvvqXCqavyv3A0+62aYxAl5BuGu/D+rsAGHqJzp79ZrV3Wf9E95d/dgQyZGkFM6j+22XnSFHeWlxSXtlGNToAWNYU0QSygAGIAF8yGvsgQogKaa/n7KMGFBm1IYdcD4FvLQwAWoiOiLPjRJBbouQYUuL6O8eWdDfX3hYZzvHAHkkmjZKZlTkVMSc73S5EyALAfc6dt6gi0HUDG+GfPiFismeAGmg37n4hXAG27fsmOh6ihXhx+itHwAA/YDcegAdAIaUA2Dla6ROSKBptnEVl1ZJm5xoviwnjBsDzi/9na+pvCujzgPPa3+a+/G1h0S4gKhqee7EPEPacxYtrOSFw9ncTgU6tVKSI6jC57XHLRTZFh5FVdXLVazSOfe6TrIucVX2osXEtixUSXFlLQP1aWreQNyGCXAWZOKjPIe0dtsuutVAYFXdBEWMkFGAfOn5SItCNS6GIcAvG0558uEwjyGhH77VfLXaQ1xPSi/j2qy+s6LMo9tT0HGWEJDLMOImtvfNZ4HAavCsyXhmCqreJvNf74XFW+K9Pn1bZUq/HOdXznP4bv1dZTq+XWyKCfvNlP03EeWjn1C9/o879UiRVXBJP/crvpGb1nHJCLIOjSKH+/P/8Ro2VTER3+/SMAELqu0nBMz/ydfNkd/vlI4DEIZuHHbxPZRphkaBpExBNT+SQQkFTeND6GpDSIoCceQVXq192iKjHBDthlrKTrbdJwO69Rn6LZHpPkFH7waF6LHOheXXrzK82sl3PbZNjW68DOAnnSISRZGoeLKjMjsybedzr0LZMAHfbzJOvvvnJZkcFBWsOD8GWkjRPC24uCRnrl8+i7CdCgXAKSCKlcMq8B29a0x+PN6RsmypBMBayoz1TJoWYIDAeU4fpp6ypn/mnfiodUfvpsw/fYE7z2YdDMKkx2vO44yh1Gqlukw1V/oOweszrcQ7YaH5032pLvS4BX9eWbRXsRTyVTDT79659HcNoT7CQEZMAMex6N1jEJGheui0YA68JAR02cnS1b0EoBTI9ZxxlhZWBCLDCrznr3HcFWQcx2KxxdR3S5VVFDl8JYS0/g7QVOyySWfJXY6ztmRISuKNkRHCTIy4MGj5q9zLe8578KpusduHMl3+78+DtNxSOCtr2Tbuymy89Zz0xvTP9rmcHa/dPiZt7o9IxtmVwFBxWVwr3laYgun/xn3+vPi+/yj11j/lkRqBLSD+Zce2edQOPAHLTt892nf333i2TTqSwO/RNC5zG0Va20QKgMWdgCNCA/pJIo4A6YK56wBBEUV+kE6ADY2QSyFgAOG/VNOaJci/M455rNxO3/+znpyi27CiCKqOah4rAFgkNGbYAaKPQFgDuk2xq2YqVdU+vz9i4hfb9Bw4pkEQoGfpYHIjOAirR2975W/TVWJDses0lX82k3zrTqtHEKYE5wljjEidBrVeQTxtSKTrsv4Y8NgEB+8qaWgS0QQLAbAPY9R7Uz5DPbLVYyLnss1VAn/Tq5wEkpNk1WnBHbLdL5tJ7KULqfZHtbCO4+nJ6UASa3b2NK6CoMwMM98lYaHb6izIZemvOjAJ210JONfpWu8Pl742XplWkWYRXfaeosogz2/wDx5HsPpS6nYPLSVdEHxElgzoozoRcB8enp+gjkRppOaMOR+aTA+69N11ZZJTFvcWI7CQibHHFAEJtp0URG/ybAtpINwmUPm59cx2kUr2nsTotmc/7kn3lBKyHnLG+L83L1d3ImF7wnf8R4v1O3YvFwfXpLyoy7zrT01P18fvv7AzdeVTntJxTZtdrnZ1oditBqwHs/tMdgS18BLT7giuTxh9aAUjET/YU5shSyn7KlApYwhX/Me+jrEFW4ZHJlMLG3GVzHGIEY5Aac6YdBT7t51iEVKYTqYUvNvvCtjY7Ct8ETJFQWNWa7il9UX8KmxBTgVRY6rUsz32//NrMOt8n9Y/WVzAaVlSLk6hFkCgEUPZQDWETFHyn5jhBxjxZJAmJoowh36WiKWKXnzBMzeaKqHeoWQRRkT8KIIZ6rb9AU+bRq/Dh3bzud4NbMEfeE9YY6zYHah71Pngcvghak7Qi+AKwMKMUQHmf/IRz7mnrtDyzXnCvOVllZmVH20Ankgp/3btjjAEiCVdhE7xBtpWOCKKau/1u/t1xxMh6jfDP/F+GRakNZUJH1aOH9dAQUb4ICCXvAhlVf6s/tb+A6hsJWMIuvUWPjl/Bw+nsIAgKHwUsPSdgyljv0XtuLWxQi/pwHhs/OaqZZCx93tznr7Mh0oKyp//G71dW1PWpeAQa9NPmdn9a8Ao2CvbuE2Ok4075XOeiGBoJkI9NmxpZ1EtCVI037NQyp7ttOiPQJaSbznvRvZNfcwRMxkwkxo3Zp4AXsQTogHh+sqbAlqRJZFHDb7Imf4syt+ZBDXgDe8S1qS0F2uSV5bYbgFdr6jHZUaDUREqbmwfmJFeWBZ5zT6181x7qcSw4SLKcr8yX1smwlqSWyIKEkQUge+7F15qTbqR/RU1Fa3sHzGx+5wrL0VYNCxAH7kgol1qSXYRK9k0kuCGBeq4yUlhdvSuRJIsL7oEixTbga+FQ41iLrobUi2ZmEOtx52jGuqm9cRzwb+WxVSuaazKNAMD2dX9QHvgARJlPiwz7+s+9W0h43gJH3Yx7QVIHJCMquioLzCjC/Yu4k9wyg0hLm7oGokoCJTu6cwwiRJctCBD15vrNuCFwTa3PkCKNFgjVtzR3iOTpZSq7yrmQM+4Dt16XjOfx5VIrkq4OFdnjMOin+wP6N8TN1sLKtUalXmdKXG7V1sh2Tjj1850rfvJ3MVraM0YU4+txmVk2/GRLO4dw6lt64T/8z7L+/9xv//siqcAbkJNbP3L3LbV4UUd67rf+pBZASLIxuSq93DRinxKnXa/bQmBgxscYag8jOt/duiPQHYEPRkAbGAHRPXfdubKN6kdhBhxAIJE+eGHe6x/skkVFTAVNgYr9quVLsA1WqQPN0zXHIjaCncgWua/zwhHkqNiOWTDnaHEJpgmalrHROmILI9uyEwTZuRgDOh6p7ZOgL+K0OsT2zZnz1hPcD17hx/sbySccMV+bMxEzGFKB0cULKshYpRUhJ/DEXGre8hrhEcKGaHLTLWO5ZOmQKJlRRE/JhPkK6a0MZc5RWcpggsddywY/nBN2IYY1hlk/yHrWG5N/myBCE8gub4NgkbWG5+GMY0iBPUayC++sQVyPAkUA1Xvimub8KiUJ5rovuNqSUq8LIXV//YMr8Mr1kEqBUKZ8sr8CjAilwKmSC/gtM2ruJq1lXPRyWjLtm3IPBkI8CjjcqtdEPsceNbFKSPTqZBSEhM5N9tVYwsE34rbOUO/uGy+PimdS56XUmnqdex14aBHT8VPOrN7XMBQeflwbLHXvSkiuOe97pXTS8sx64ObUhcrOnvaV30029brOK88/HXO9MXHW/VqkvH9TOLt/yksYA854dXrh/sd1X93z/Poj0CWkv/4Yds+wCY0A0GQcsfOwIWWt/15AWZ1On0R0RXZXhRAik363MADQspSAoQAjEiagToJLygT0PU7+BIktCGQ2HWsB8V6kUmRPQBwBRpwAE6AXTQY6BVQ52j42xwL7t+O0KGLtfixCtsu5GUmQRM2a+1aZW9QBG+kf0tSWKAJ6oA00RSQB64qY/hTpDHgioCQ5QEEm0uJARNT+SGNTKxowzviQzjYGEORNzYtDPj3n+CKf+d1m7G3GMP/UAsm12scAoJM4PyJqA9T2zTog97J93aNFiAyoSDXy5rzr64lyfwDeAqA/aW72Bf4MEbwGhNvCSJbY/dln7ozX10egnU/POG1cOMu+/NwTBcqymezukbPBO+3cWRw57Yhd96i/LRSQ2H0OPjyyp2RNY8xA3sQBV2Z057R4Mk7IvYWCPm8yo5wMLU522+eAMjAyvhZg7WaBsl9kwMjqPSGIB40bXwseBkmHRsakBsniwvVE9/UwteCwPwfdnfKen/X1b4Z8/mlOubYzKbJebWeeipHFHvuOSVuXr3XO+dZ/r4WNGh31q4BeFoJZhAzDeX/3/9Z9t/fU/dkdge4IfDACgqSCkkePO7DmIT21zW+ykjKRNuRyWcyMYAVsMM9pQQYr7AvnZDhlNpFVZSdVkx4CCncEYclE4Zdj7edxx5r7zLFkwq7TPu86sE/QlFmRazhe0FYpiWM9DheVtkx/deYHL+oT+k19fRnmhdAop3AP5mqPIWFrVgqY7lCvQQBs2zyOrFKKgA5lFzaBwyYbSqWTnuOZB9H0wq+QUwop5BWGeV6W0gmQQ5hhzGB5i4cwCDF1P/mn9jWOMAzBbMcYpghsyqyaT50TVhl/GOl6nnNvhUt5HN7AQ8QT4UXo4C0M9jqsI7i182JoCaa6fa8BTqm1JONtSkzeLudarbrU9XsORsA1WOa8zj802VTEdXT8BN5MdlGLmDpPMqbuB7a6n4Vvzam+2ZQ+E1Iretf1l5YPgd7Z3pfDJ0xJ+7FLy+hIOYha1SKjxuhj3nw29jpwbOeUL/12eRcIWhyf3qQ+F4z+Gk+E362g6rQEenklnPrl3+l850/+U7B43sdKkj/ml7bFnq5LSLfYt/7T+8KBMcJ3+Nj9qm5H1hQBnb+giZySSfmbk63osFpOWEFCVa1ZAiL+LtDIuQC9zCUgQDSRU5HjJgK9jnCum28Bkc2+wKTkwFk4+AnckU3PIaIADKl1ry5oIfB2wJ5EavonLIWqm/wl/5jwyYJIY0RwAdI7iey+y/ExfyNhCFO6pBewIX9IlGyp12NhILprYQQ8iyFmeCqrGTAEyEAdoLdypoosB6CRJaBM1gT0PQ7oW8JqIVELsLw3nmPu4bHmPeOY3BhENJHvyM5yLY8BRwuO6tkWqdbihfMr4ytaLmrNAAmYA9dVAX+EC3H1usjHuAiqmZEp/qBGtLHWJyGz+CDZJZnaL66DgJtMSB+3fUM+pz01tUAb6VQ3yj6fSyFiuHsypOpDEU4LCxFo9S76i8qaMpgQOeeyq05HbesvykJ6fezzmTggxRwXJ3/+a9UvDnmd8oWvV/TY75qLP//EQ1U/xOxIpphjIkdg/dzODfk0NmpP1Qu9+NSjnb3HHNY5IfLfc5Ix9b4hpjulTokUygJJnzmA3926I9AdgV88ArKfspcTjxlb8765H07Bj+Uhq6S9cMrfcEbNJgJqfoMZiCpVD5LZSFobkulv2FaB1ETk4BY8aTHL+Sh7ViWoCvvcg+ArUgT/zNEeR2DhUnavjOyyKIpIUFu8WrFqdeelV2b84hf3MT4qm0eqyfGclFaw03wMB+DR8mXxMcjvCCpckg2FO+bQ5UsXFbb4XUa0MdOLrNbryN+wp83ctQQUXsEdhNO5kFBEEZ4Vfq17bcYRLvnpP1v7d34pLKolQf6Bdw3OdTK279S5YZXzNcHRjHECi+ZtmU2vRzbTPSDb5nxGe/DLWMBcG7my+3ePMpZIoWCxx9VSqhkl463xyDng1T4HJxv65COleuE10JSczKxylCWLFtT5EVDYDzfM66S9e8ToyHGypo/df3thGMwStPbalK2MDw5o8wLXSGZhD0LufJ/kNiRmTupGBU8v+M6f1/ug1ygM5/TreaUn2qo9M/X+MtozxrC6u21aI9AlpJvW+9G9m49pBI467IA6k36e8GJueqgxixCBFmlmrY+4WhgAjsZltzEm6pWJX+QYsJMmAXl94CwIZEEdB9SBPnLpAu8G1JEn0GQxYRHhHADf/wJbtXCwL6BHUEWk1YvKlL6f/XpFIsyCn8TqmWmvfEwj8aufRnRZ3aSJW2S2rSEVXUXQ1JECS5FJIIlgtiRULc/7GZMyi8hYcZTcOoRSnSXS4hz2B962AvOMl62ypevGVT2ORZi9/C4CbS+HGW/jqUbH8RYkMq8WCMgrEup50XAbwmzBAfzds3tHLhFu12TUVBKvSKBEV/Xm9LoYEiF+xoEsCpBbAABbphKyna/HiGi3fQ5aZ3YUiW8yhYiyqDbiCPhlSvVUe+Pl50tyJHrc9IhLU3OEP/diEUBihMhysb3jmouqRmdODCcQcP1A9RwF+L8MVC3EmAydEYMiLV0sZpgVXfjdvyiJLpJ61Tl/X4TzjNTlXHv+92tcZEEtJsiHZVI56LayXsD+0J03lBX/AYceXXWlSKt70yT9mtSo/iKSXG9A95/uCHRHYP0IDIo7PHf1kSN27Azs36/msLlxWUcMW8IqaGpuQ04bM70PjPlgC+JofiyymrnOPu/+LFm5zD0wCBaZD/3ebnAJ6bQ5TmAUHsE1z8EjyqKVIZ117pxfRhRutRLf196cXYS4Pecn9ZM8U/nB6pAaGEAuSunydjKLVBnuT4kBYifIiIRo62VuR1KRUHN6ZUczH5ozqV/M5QgeIgorkHrESTbUvI0cOubDqp3CoYwvAmjzvjhHi0v1YP5BJJ1PcM++gqX2szlnzxj6NZnRJrCNRLr/FpeQ7rqnzKmIKVLqtWg9pue2Vi1wSRBhQNzblyU7ChSVisAJzytPgSX6Uc+MwoU7vLHgBeD3psaSVPeRKGSO7kx74uFS1rwQ9UyR1gQeGQNR5Bx1wmkJYF6/rlzk1mDXmAqcus+dgo0vpwWU4CfTO3Jf+OhaSlv+uZ6jNRgf4z/eL1le/gwMj/geIP1T0vJlRYIWt115YRFTnwu+DV2M+hgH/2M8VZeQfoyD2T3VpjEC4w7etwB0x8EDimiyqx8QwFe3yc0WWGgHw3pfTzWR5p4BY1FnAA/oRaxlQUWWkU8LArIo5wDciGlFnQFOgCn/r58fHgEAZjEA5AG/RYC/ybXUj7pWtUTJT4sQZFTkecbs+Z3FS2QUN+7mXpEx2UDACMwAI/KE/Ok5CFyBJ+AGQs3rjUQsr8V/xqUipDkXItkAvMVPEzU2RjmojgPkBeA1ng3oWyAAFoCjPtSipNmPqVEj3XV8I4OKc2EizO7VoqUizgEgxyPBFgHu1aLGe9bWXlakOdlCx8gI+3x4jikESazeblxzFyZKrT4YWdVMfHhs7Vtg0xtNi5MP19uQumrAzcWwfyL9JM4IqnGSXUaUW4K7W2piXnz6sSJ1991ydTUVf/jOG4tQMi0SCecWqM2LaLkFldf5UTZZBs3M94yt/21Xnh+7/yPqvMyOZEL1jyPX9RpPTF9J5FP24czf+oNq+TJv9pudY+O0a3F49Xn/WJniM7/2B53brrqgSPaYIybUYuVb/+U/5LWtqHv9KPfV3ac7Alv6CDAHEgw98bjDOkuCRYMG9EvrtxibpZZ0TbKYMIGzLWIJN2AOcgiT1HvalKHAk9bd3dxmfwFPGINgmnwb0hlCFoMk86y52vnsqyUavCPHFUAVjDU3y4ja1+NUPfb12LTpb9S1P+l/BNEE/8hPq1wE/oS8qcffJoZA8MhcKJuJXJpX7UfJYz9BSMRQ4BCWmP+RPyTynfgCeG02klSPI+c2WOc45RsygI5bvxU+BYkyfhUwDck1lm2k1P4tofU7nEKKnc974z5hkvtBoGETAsn0T/Z2efwZEGcBRURWwFSgV6swWUzn4S68Kq9JIJyZz6KQVceoFUVAB8cll7xYNlkvUC24lHnMDmFtMK7BD/tT8yCh056Y2hjwxfV9zJETOk89dE/5GDw99b4q6Zjx6ouVfYW17mOPYNZzKTdRSkLFo43M0phOUd68/tLzhbfrx2wD/eL94xLPa0HW9MJ//Mt8BraL4d7v1Bhd/sNvV82pYHJ32/RGoEtIN733pHtHv8YI6PXWL1nP4UMjW5m3MID7XmfIoAEFBKLPorzaqshuLlxE+tOQTWC9JjU1q7kZBlla2RNAB8BIK0IJkBsCSlIaCRVQz7mcx3EATuRSPYff7YtF2cd/zutx8qd2waAdgHqe8OB6bGObGX14+NVRciEsoheyYSJXd0IC5bUhV8ZBtrOIacajjf4Ca9LehlQ2CxvRZw67jkH8KsJsjLI5H1z3p+c/vDWkNOObsf1wtFlmszGlaCP+GomrCUrNVKTD/gOg22SxITqqDtQCoU+ykQ34qzXqUUYPFjIAnLuwx8h5gRvitzIyVOZAyBmAQ/LeTNNuGUhGDxZOyDbnPj1BAfWBhx1TP0l1WeLrkfZizCP8fD6R6L1jVORvxhAP3HptkVC1ogcfeVznxdTfWHSQqc2bpY/oZ4sA9hswuPNaXBLLTfLDA/RLfrcwIuFiejQ9Na4i6ZM++5VkOp+rbCejInVXzCy4Ju4WAwvkc9jI0Z0v/M7/lrrQP68FnKyqbDlizMzprK//u2Rfv1NW/M5l3Ooz/0vup/t0dwS6I9CMABM7eHB0VD08CmbOmV/1mxxu4YUsaYsdiKOAqMBlEc2cwt+IpfM0c2e+g3mcMyy8KpVOnmjMjaLgyfxnB99VZSUwzEK+CZw26h/k0zXsB6/gGbyChYK1G4qQCuDpO+neOJzDIkodczUFC9KGrCGkVDfmeMRO2Ygs6lZbRZ6bOZSa5+3M44gt/EDeBExhk+PghMf1Bm2VNw2uyWw2cuhmvJogc2FVMVB4tS4TWj8Fp4P7GTP7OKespjFGjn8Wp17B3Ax+YRQscb0246k8wusTxHVffhdArd7XwTHGe4KTnuOIK9uLNMt6cmeHzUpOYJP5Hjl0Hzvl+VdfeLb6WMMcqh5tyOCYIKJ7bvuecjF2DTW7cMY9+k+tqVYuepSOm3BS58Hbrq9SktbzgEEUNdCsZEjdk3vcWJv1iAArGbF62Et/8Ne1PuEkrDVad9s0R2Cr7bbb7v/ZNG+te1fdEfjXjcCB++7W2XHIwM6wkFEtU4DYzsPSpywZ0kXJOIo+D8x/8xcuqXYsotOkUaK/jI1kKy0CPA7kSXURRUTU7wBZJhNQ9Uujc33ZRKoLzAMwDbCHnOVYj7cR6dbESOS7dUUE8o1BRNNrjplEE5XuUX1U/3Wv/JPbG3GTmbQBfqAsemxjBKX1C8AjgW2jwBYEItceVz/aktD2PIgrkmih0JBbNZ5NWxiRYpFtj4ta21dG1pjXgiDXB/aVvU50WMABoItuA1TRZveCdAIlNvki6BYvfooO25+MRxS7jRbLXnKMJZ8C/hYGgFltjBYviK8ebpx0kc68tGrDMvP16an9PKhIaf9kEC3+ZE1lPhlJIKdkUKRMIs2HT5xSdaN+MhpiWMTJtqkjvaPAU62P180FV09S1vaku/tHWvVoak+1HzC2/5rN/hYnjCYs6s7+/f+jnHYFB776zf/cuT3ZTpnXz/32fyj51jOP3JeWMWfHaKt3sqf/UIYYn01WlGvv/FlvdL74jT+s9/ua877bGZosMHk3Au983a07At0R+OgjILtJPaJ8A4GESYyPtAzjvM5cCG5tn2Bq2wPU9xkBFWDlBg9vGB6pBxU8RVDNc6S69s20GfwK+co+pg6YJRPq+UYV9PPKnMrKugeEtGfNq2kZ0nu7RjKcuU1A8PWZcwsPP/or/NX3FFhEysyHMn5eSzvfI5dwFDYgok0mMo9lH5ghCIkYmfdhBgJaGJb93yu8Cn5Q0mQs7E/tU1nS4I5yk/dyHF0Ph3W18gbOTxjjJ5ypnzkHLLS5F2OLwLln9+f6/qtMaF6P1+R+4SjfArimLzfsQQCR45LpBm8RQwEEwUn+BogrUz3XIYdFKI2JLOqwUaMr4Oo6AqlKRAQUHWMf+2oNJuD4Utp1UcdQ9SBsHHkH5nkBWQ7ujhmc2kvXqHKT1JGOTduUJx+6q8yMlI3ArKdjdifLinjzV4CbSJ+AwcbcrDkEn73OGa++FK+Eszv3J+hrPLvbpjsC3QzppvvedO/sXzEC++65S2e30SOqifjLr88qUGex/0aIqejukIH9S2Y7b8HiPNe7JLskTrKkCCQJL8IJ1NXOqOkE8hYHwHm7gL8FAsD/oDanMKqIJ1Ax6Vc0OYCEMPk7/w8QBYwCKhYPjUtiakk48+b8rr1N9rcoYDTBSp9ca1PZRFJlCGXYgGxD+tL7LFIjq5zKPgZ4Rdo5HpK9kiQZD4TS2ItCe9yCQeQaYIu8OyegFsUWoW22PJFFgLHzvIWazVgBeM96btvci3O2roeOcV5Ar24VARWJBpSi6O6zBXf9Pi08FgdsBREQT5lfMjCgjYTNjS3+DgMHhVj3LbKpuTeJLVLHrVD9p329zoWJTO910KFF9rRu4VY4YPCQWkCIGpO/ihxz2LUA4Fb7SrKcTIz8TQJMAiUSjsgjvvslq/pECCvnWtLag2MmcXN6rSHZH4dJBBkc84k9Y1ZxXfqK7hl3YL1Mf/rtP6to+6lp80K6671joT/17pvKJp9smPRLHarars+HwD5w6zVVY2Rsult3BLoj8KuNgDkO3uwUl3h4hHCS5fbtvX15IAi+kfDCIooceMTxXb2nzKWtmRsjXc1x5JzvqCfNvAuXzJ1FUNf9XgfkHzjn2raat3NuwVzYRU5cGdU8V1naXP/pDehvYM4X3EPWZEFJXM2T5m+EUIawMqBVOtLMjV531YZWNrkxt0PSbDwEzKHmNdgjiAqXWmILL4yhDCrFi/EwNn76L//UeQwmQt9mQmt8DRjcb/aocyCfzqlvrIyh61XZSh73mpxbSYif9uUj4DW9E/zipAs7yHERY3iErMpUqhd1/4KjsqPqT5HIkbvv1ZkT/HGePqk9nRlSykFdxnRoxrHdj+Ms1c6YlHJwUFcv+kT6SSOraizHHjUh5POelIlMST/Rmxr1TgjdxNO+mPZeV5U8l0s8ifRO6UE9/bknO8eceEbn8p/8bZkBGsNNaTPWxpe6p7ttuiPQJaSb7nvTvbOPOAJ77jayIzsKlF9+bVZn+E6DC9BfCTEVWZYZnTn7raqxkT01uc+Zv7BAQPQXeMtWrlyZ/mQ5B4BGGDkUMj+SHTW9cisESjKfJdENNoleex5Yy475r6Bq3Xzc4hfCBOQBjywpcwiTtubiIM553f/jz7z0EV/1htltRLJ0JnIOsn5WJjKLAfcrmtu62yKDItCyjqLGCCvgtZhBBj1uzMrkKMcaB4Sz3QC6QXYN4+J5m0hnLahqfGUSGrLqOYsVB1lgGERmFvb3uP+QVhFfIM5VUdTZvZGmyhL2DTEtOW4WBOojkdn5kTGp1ZEVFVnt029AEU/E0VisibwJ8dIHjfEPIwWRa+f0GKnt/mm7AuzV7iC2FlQizbK1ovq1sMmdWxS5N9cWod551z3LHOnok86Mi+5lyVB+KdLY/4+9swCwqzC+/iBxd3d3Iy7E3UNIQrDgUgotUgptqVDqBdrSFmjR4hAIECGuxN3d3Y0EQsJ3fvPyqPw/aEI32d3sXLp5b9+77757z93euWfmzJk3fXtzp47zmwm+J6UWsKYK23XADZ5JZgA6s0sxZJo+7kP1nbZyokpVFPOlvtfdaa/95Te6ET6qXtNBfu5HvPGc3ySS7T8QQ8ZT6tTEdjIwAvny5PJ40rpZPR/9ckzXl1xS5KDOoWq5SwlLJ10iOiyMNOOaSRzyPk8RVK4xvMYjcYeEJ1JbXiNm8cjCNhlddlz//4WsovphzikLn+W6TNI0ofa5xKuv57OlBGUKTq+0LrAvKFkglbRloKLBCZ2kJIlS4g+xBgkqZPViHWciYYqqiXnTiTmcPOfal3wkdiXiVqICi8qDbTnJ1HfS2gGRBEePNY6OIyQcwZpRb7gUa6QM8V3bTiRLSV6rlURQQ0oTRFjY66M+dkb3ClQUSfSyEsfGgqcB349nAY9UR4m/Rw4f8CQgx+TKHSUVeb5z60YropnhxD+chRndslmxi+0QrxlRVlXO6LRq8B5SXQg3lWeSnyRG8S9Ahjtr0miR0w42R2ZGTWRSN2P8yC9nX+M1wHpIgb1PV5VjDI4WSk2DqdEbz/zeFTLgHEsg8E0QCEL6TVCLz6QZBMqXKW6N69fwgLpl2y6roCop5kPb1D9apmRRD6Y4AmIMUUKzSbdu3y157lErKJKK4y5SXcwiCMysQxCiN+eIekkJ/sh/6OuhespzMtKfKevsFVAFlCTJhBER5AnePPLD+mS1P5dDLxlvKqC8DrGlOpu4acBsAnImAqZIldYIKXIceiohHAQa773xzHNibAtVSEgVC8fgxFO4eXVUgZ73yEDrsD04E/zBGMJJdhlSmvw9+UcFRs4w9S/B3RcRTr6bGw/kUdxweNUVObFWT5Bl+qs0/1QyKG4qeI0eJD4HMeUzufLk98z0QRlHEMAZ0ULQ371ti1x2c0uuVFg9mxv0WhY3LYKkIfMiC71WVU2qnNzwQAwrew/oHBHJiv47GXBIJcO4MRFC9orJ0XI5Flar29CzyAwXZ84bvafrtW1eXzp3hqS8HUUCh/tNAP2kbXsOdDddejmx8Me58FxVIMmkc2OBjPelP/xcNzmZJN29UzJQykJTAABAAElEQVTeV223bljaq9d0r8a40CuEBLlZu24+axQC32PwLfbbB29zbBMnKv4NBAKB/xUB1D2QyCoVSlvePIkRMYwt49KYPbukuroGE4OokkJCiTVcB4lVVFAhp36N1ev/ljClgkfiVK9znWUd8U5dg3GC5xqbSBIm4xpJRMgoMmBeW6FRL8TL87kwwgrSRgIPdQgxlWtPglQyU/SoxxCu48QTqqPEhuN6HeUOJBHiRjuIx47Tah2OP6HMSSRIWQ88IKrEZv9dsYZtJLFKxnk+560jimGJ7QhTxTlA5PPJuMX+sO9JB13iI/tHVVdf7x4MxD88GqiGIr2lQor6hoQp1VA+i6KF+MpoF9pM6CXdsmG1P9JqwmgWSCkxjuQnyVHGhhHfOOZd2zfLu6CJj/iqVrext4KgzAFP9h8VUUKeW963Ra8oFVBceukJTa7L8RBTkeWisJk25n13sn37709KBv2ZlD67zuefRnzXBYZAENIL7IRmpMOBcLZpUd92qScUh8Kqku1ulkMtQbpiuZI+dxRDiNIli6gKmsWomCKbLVJIQ6UVxHfu2ufVUQI+RBKpLGSU5wV1Q0C/DUGaKmZCtpTINEMouYgjpyJg04PqhkdU8TzIcRYU7PhXgZ51WY9Hoj8yUQIelVgkrTwi5YU44wKclhbkrPSWQNAI8pA4ghKBmxsCyB7ZXyRRELJkUObmgWNkXYKwB3o954aHdXndiajWoWeJ9wGMz7A9FvAiw5yskPI7Y2PYFz6vFTzDzCNBm3V5nV4gJDr0/lAB5WYECRP7S8C8VPuMHIrvJEPMjQBz18g0a1OqaJZ0iS1kumzl6u5ayHEih1q1eJ6bGyEfg9RWqXWZ94gi490lUstNA5jtUGWUcSnMDkUONXfKWCebMyeOSmSg9TvyV+RQ9LeMG/a6mwyNe/91a9C8rX8OcgumEFsy9Enif67+PqiCsk/0Fr3z3B/92BkZ88yvHnY8+1x3h4197zUn7M0kz0I29tKTj/o+IheLJRAIBFIOAdQ7VC3ryqiPa2MuucJDOCGY+9RbSp8oru9cx7huIvGlx9SdciFM2hXISFa58pKk5foJyWVJrJ8Yl5VsQ0EddFxxEfUO7/M9xEJUKazDd89esNw/fz7/oUJKpY/rPr2fXOupNhJLIKFcs+mrpzUGLJLVSAhl0lwnWQ1NvJ8grpBGqqv4HDAmh9hFvIe4EqO45kM8iVOJdTUW7vT2wUQgOU7gynZ5CTkx12qIIW0gnAP2k6ou+w+uyEZ5D8O/RN+qzpsSnMQiSC6JR+IOcTPpX7B7B0S0gPscEKf4HER9k6S4tHlgcLRh1XKX5aISgjCSMCWJynUaZdCXhnsaKVa/eRuPMeWrqcVk/Ro5yssNXvJfKra0mXCcnjAWueazuRUvkQ7T2kECtaH6R6eN/cDnUw9//Tk7LOJMy0ssgcD/gkAQ0v8FvfhsqiFQsnhh696hmUjmVs+YVq9Szmd3EjSpki5evtYDQfnSsjVXVXTfwUMyOCrkQRXDIwgis98gl5DATxWAyDp79lmkdRevnQ7IVDdZsNsnYB87poAj8kNQUnzx7+F9gj3BiR8iEUSLGwpuGiCc3EAgBebzTmS1fR7ZDlntj2cvZjNpaoHEYZBAQE7KlQimuAUmAjZkGwmUZrfqkbsDiCuLBzYFVdb/V5JJUAY4f9R6PELcBYPjxiMY8jr/cYPAwttUSPkOiFoy4DPj1LPSeuSmghsWviJHzjwe9LHBZ98wHcop50BuFrgBgKTiSLhzyybfZwwg6DMlK81NEBVhZrwRtCGY3KQwI5T5nC7fFdnFwAg5FH03lWs1cKkUGWv2lRuLMqqEQmLpyZmrHh3cbKd+NMyadejuLoUtOvXU7+/Laber+jRHeRabzDb7yXEzj5QbjKScCxzO5QJ5x7ippyqfKyQ7XiVTiOaSEFMpH/rCU17Z7XLl9U5EOVkYWWCGFEsgEAikPAKoempVLe8mR5BQWkho7YAo5suby0njfr3GbG0qmclYxZ6wDtdVYg+KHIhVoq0EUzipebQ+19jEexpHovjFcxKmfgHVNpL9payHdHjRsrUpf5D/ZYtFVfmDkCY8CdQ+IoUK13nijicgFbdpBSH5CBlMvA4xFWklMartEy8gWCQ3ncCLcPHI579MmH75e0KqTOwjxhCD+B+fJdHK54hPJEDZD3D1iqle4zmmfHyWdVmo6GJeBPbJ6ijXWe8V1X5Bqmn/oKXkiNpHWMAbI7wDe3Z7L2h+VUhxc2dfaAHBKZYEZZlK1eSYnjgnJDAxwYOA8nnM8aqrGrpSUt1iwpDxYSQOGf9FXGE0CqqXOmrNWDpPc0jlW4CsNzm7lCQrzumoetZo1igGfHOUSG3d/QpPoLbRnOwJai3BPClZLfadj38CgW+IQBDSbwhcfCz1EChepKD179XWFixeZTmURS5XqpgytyuslEhqwQJ5bN6iVe60Sy/pgiWrXZpbolhBY+wL8z0xjcBJF1kvUqSkPIpgvFcVVTLFBJ08uOIqsOzZl6iccsQEbaqaWRVEIJMsSKbIKhOwnJDqNZdFKTgR+OnZgYwisSJYJsmWniSCo98AmM2ef/6zz34A/+WfYqXKeeAGE4InQZ4ABPH03hrtP06FBH4CPOTwn8FeFVDhysJx+w2D8EuQVLLbCddEsrAEcDLKfJbAzcLrEMEEturX4T9JqDAbIuiyH8mAr015JhqJFPvILFH6ZbhJQJpEID5xIiHbzZ0vv8t02T43PPS87lGQxzGWmwn6bgjsnP/tIqMY+SBbZTs+tkUBvERZjI6OuMyK0S6LNb+thkwh1ixZ4J9lJA7fTU8qxI1AT8YaGS9jYRJjYOaI5Nb1GwlwRgrM9/PdK9WvQ0UXGdf5XpCLVRZeg+54wJ777SP+9b00l3ShKr64Bjdu3cXoH6VSzPmJJRAIBFIWAchlj47NvRqKAggH+HxS85DkRLXziWIXMYiYlDtXTk+uHpBTLwohrpdcHzFBItnKhdWNj3SRhmTSosL1kriUIFOJ67M+5NdxvgOJLgs9pSRSl65c70qklD3K/741CBjXdGILRI5rdrICSVKUHk9eJ+7wOj/E2mQcchKpz/KIcy5V1iS5RMdEDEnGZB5ZuAbzegIPEVRit7bvPaF6n225pFdYQmjZjidmtT+sQ4sL137OD2SZ/UtId494zz2fJ4YhpYVYknCkWvuvC+s3bNXR1+EayxgTEqYH9+11R116/XE2hzDuVUWUazEGRsQYKquX6Du3a7wXRkUkUSGsJGKJdSQdSZSiiJk5YZQnRGecfuT3+lLp4ALfpG0XbyVJjiZrq15RHN9bdu6j/tIRTqTZTwh/LIHA/4pAENL/FcH4/HlFADJ53ZVdbcrMhd4TmlvEcuHSNVZTWWT6PnHVxXEXSS7Pke4SiFes3eSjWjA12i2JL1LeAvnzWEH9QEIZC0NGGRKL5Ile0cMyOiLIYHqE1Jf3k/2lBHLFbn+fwE3gTyyJyh7PPSOqmwU3PCLQJf7nAZ8AhpyKmwbkUMiJIcxpccH4xm9wFHw96CpY+42AAi3H4TcABHX9OEnUsSaIJgTztJxJB8Z7pJr9wVFIHG3yJiDxmMSJR2F5mtySIed9yCqLV0gV+H0/tD9IpVgwWmJ/yAR/cljmFk6aE2NqIKnIZ/eJeHKzUFgSVUyGqPAxbxUTCCRQzBQloONMyHMkvKtFMkvLpAhCSnaarDJZZizxmXcHaWQwOKNd6jVt44QTh+Jkzw83HdykMCaHyinfh/NuHn0npJZqaDJrjlxrhfpOuVmhryc1F3pnGTsDmX9NQ8b5W+h/0z32h0fukRHTli8z+qm5j/HdgcCFhgBXys7tmrgLPNJd4hQXTtQ+SGld3aPYwjWVeaGQU+ITyU8e+SHuIdXFsOiEfAwgVcQkrqu0mxC3SKTyGmZGCakv11iqponZ2tBT4hNOv1NnLUoVmCGkXP+59lP1hJieUpKTlowE6Uu0jSRiEj2wFyk+JN6DbEMYWfgc6ySTpTxngeCCCdui4knMcnmwYgfXZCHm77M+8QT5Lc95PSH5BUP1j/KCzgfxjTFYToj1nZ8oZnjilnsJTIz0w/eg3MENnkrpVy30i1aXSR4xDUkvMYvPU5UsWKS444LHQOkKVb0fldhURUqd9SuXJlzi5X+AOR/VVuIVFdW9SIN1vLikY34E+Zw9eYxf53FMby0zvYnD37ZWXfq4o26H3lf5DGx//cO3fNzLIsU5xpoxW5WYGEsgkBIIBCFNCRRjG+cFgcIF89lNg3vYuClz1C9a1uWzazdstaYaKL5q7WYf11JH/TYr12z0rG7dGprjuHGbk0+ceJEirdmwxWVNEFMs7SGBSHHz5cnt0lqGkhOY6dfJo6wzRCwZ8Al0yHKR4CL1ZSGgUyGlh5SLvP7nNwke3PQL6yYDPTcIyIDJmvI5MtUEL8yVxk+de14w/CZfgkECAdEDtzCAlBLcuRlKZqEhexw86yQDPDcPBGxuCMga8zvHS0WTmwIIrH9OO0VGOlE1TfSekn3OnClh3IFxEjcCBP3kd3LDgOSWntKkYRE3D3wH2WAkr/+/vkbktDVk7sA+ErxxuCUwY5XPzUspzWRDnst4GlxytynDzJ0Gpj/LF8zUXLdy/jeBfKpe09Yu1S2u17ixgDxy87Bg+qTEvFE541Y+PeutVHltd8sGN1WicoqJBDdNHAMSYeTCm3SDUkN9p3x+x5aNvv8Jkv5NzlrKfYabQWbV9VYPKVXbxXOmqV9pmd+UJSsGKfdtsaVAIBCoVa2Cu8MXLVzAiRIu8br0+jxQ4uAe+R0g1eX6kEdjzBgXQ0xB8XNUiVkqnMQq4hDXTJKqPBJ7iDvEIZfqar2kwRGx6zSrSjxqfWImryMJRm2UGgvXRuINlUaqlMQKKowkE+kRhWh7xZLj0+sQ6kQ8UnzWdZz3vX1EALIdMCO+JGIJZDVRFdYL/tp/HmPyGkx8YN1ERTURu5KxkDjIwu8JxY6+V/GK/YKEJuMlcmOks8y65tycybxOkoLEHZKYJEyJHTjdMlMUrwRaapD8ovThmCCokFKIKP2lzC1dLylvvWZtPGFKFZX4xXWdH4gucWrZaeUL5notu/S2KaPe81Eu9IpSSUWuW7X2ZbZ2xSJXC7Hv/78Y60DEP4HAN0AgCOk3AC0+cv4RIEN8yzW9bPSkWdaoXnXDUZeg3KppXZs2a7EH5fJlStjMecvctIg+0hlzlSWU7JYqKXIjiGPZUkW9Mrl241YnpgRzemk2a3tklbPLaIBRMfsPHnZ5kq7vvh5yKT31bWCfT8BnfQI8n0FGSoaU9QlgyKSoorIeGehkMEsGfLKwp8OgB1D2Na0ukBGCILIhiCkLgZcbGaq8HC8E0x0NqfrqOb+zTiKY05NzundH7/PcCahuoLw/VJ/nNch/oidHWWoy+QCuB9YlI03/KOuxIDuC7DL8nJ4dblYgfFROIXxkpL9qIXAjiYWI7tG4FbZVTAGenlGqpciZIME7t21ymS0yWqRO1VUBXb1kvpPYHCK8iSDfVoF8hjLXpRwbJFRIcSGVVBYZn1KrYQsnyXwemVT5qrWVwV7iMmB6dFh/8expnnlGBkXvD2T1647hq47tXL6Os2MV9ctykwop/brM/rncj9h2IHAhI0CytGXjOt46QkKVpbheg2xgvIcSCDlvDvkl5MyZLfGaYhJEk6Qn48pIhFIdPSalD+QTlQ7XVLZBxZXrM0lUyFoOOb4e0/WOay0xDWJLwpV16D8lYbtYvaOoilJjKSEVCnEEkkmMgfzRSkFc4BoJ6dQKX8adxLpUj4lBVE8xL8J4MOE8nEiYEqshrknfh8TYMWIOOPEfCU5PpPK9WpeFfSAGkhBN+iLw/Ww/qRBi3AyxD3UNrydVO5BTKpeY3p3tiCxIJAQWY719u3Y6EaSNhFjBbFbmX29QTMEpvlDRkh5nKteq5wlVjhEHXmLPZS3aa77oRKuiudkQViqw4IHRUjER283rVzmZhZwi9eURIyNkwEnFD0QU513IdSyBQEoiEIQ0JdGMbZ0TBDBvuO3a3jZ64ixr27KBS3Qheg1qV7GJH8+zqhXLODlavmqDOxJS+YRw1pDRkeKULV+9wUoULWSFC+Z123oCcQWRVzLEm+TKS7ApW6qYS6HoFyXgk3Em6COB2nvgoGeeCfgEeuS7ngmleqrvogJKYIecQVCJ7HwvY2Rw6oW40XOK9ImsNd/rmV6tSzZ1paz0t6qfNa0uSKYIrmR5WTxDrGM8KRxxlcXdkHjtvTTcGOiXJOGGnLIQzp2celzXPwB0+jVuMpI3HGybG4FERvyfPUNkwqmSJtdjHXpX6GmFMNLnCaGFjJ7JwvgSqpoQSSRYW1UhzVuwkAdzss1klZFEQUAJ5hzTtk3rNKalkQdybtYI0MvmzXTHwuXzZ3kGm33YLzfCqlpv4YzJPteTQeINL+8oU6Nx1kiPc/SIy+H8aRNcQjxLcqnWXftp5ugbusHY7Nn8tNqTAw7Y/seA8TP5K4t1AoGzQwBTvkF92nsLx3HFlTJyiOc14hm9oZBVCCctJSRkuYoWyp/XiSjXHu8t1XtccbkmE6cgrlQN+f8uZJOYlJibnaiOEteIp1ykSTbxnDjGNY716VsdNyX1FDz0PhJTiS8cAwtkEGIKQSQxCakidrAQI5LrJSqT/6yGuqJHx+axSOCxHVczKdGZ+EwiNiWrrmwPUgsxTfxA7JNGRrynmK99gGwmZLzaqP5HbIGMsn2SuRA6njOKhjh2tgvHQbsJBLRoiYTJE5JfYhBqnl16vUL12m7Q9/nnn4lwXqZq6GQf/0LbCOoj5LqYFxGDiEU15GWwdtkiN0kihnKfQsWVPlUStjuV4C2i78I7gdFgyWQ0yVOeg1ssgUBKIhCENCXRjG2lOAJUMIcM7GZTZiy0Hp1a2ISp85xYIluaoWpoi0a1DNku2VuqpXMXrvAg2rBuNSeuBG7kT9t37rFt+ilXWnM1FWBXrNroLrj0pObNnctWrdvkhBSJFP05O9VnigESAQcDJIgoAZqbACqtBHqyyWSbqbB6gNPRQ2aZU0p1lMgE7+LCTUaXR7aH+y43AWwP4jty/IwvP5/iAKbABiFnzCKFfHLXwrGTdU3c9KjfiOCkmyGMjb7Qo7NPvvd0wCczTbCnuolEiOcQccavEOQhlixJwkvW23tz2BY3F7qZQorrJFTyJ96nqsn3UsXkvSMKomcTICGyjC5hviefJ7DTl0O2G5OhLQr2kEIqgpBSZFdk6pkpSrYaAyQyxGSaGcuCfHelXGmRALPsEylFNrVIRkeQzYnD35ERhBx2NWO0ddcrbNLIoda6G6+/raHiAzVO5VWvOCI/pqc0lkAgEMh4CHRq3cj9DBhpRpzCW4BKJ8nUoiKj+CIc1BxtkqKQUxKc9JUi1eU55BUCycxrek15nQQoNI7rNoohHl2uqzjEdiCnJGn/qehJjIzh+k1ikfdScz42Ch1iBoSbGAHxJP4QP5NVUA6QGOyqEoKufice8DknqI4Ar1NhTcSx5F+XXkosfryJ8MVx8z/WT6ibEsSUFYkdkE3iFiSTr/N4JKKZiPGMeUk47eItgBM78Qz39/9lYR52q6593QCP72VGNTEH7wPmlK5eOt9bK1Cu0D5C0nPetPGu8jmgfSCuIM1dqHjVpE0XOeyOlnNuK1fv0IO6Y+tGH4FGXEVxBAAe14VBVn03JoHEM4g368QSCKQ0AkFIUxrR2F6KIQARHNSng1xzV1q/7q3t/Y+mWrXKGsehYLt2wzbr0raxTZy+wHKqklmvViVVUEUWJNXFrAgJbPkyxb0PZ77ceKlWVlQfKdVIBnuXLF7IezeTkqgCkulCRNdv3m5HJX/KI6KYX5VZAtr2XXs9O81oltw5c3g/DgGd6ijkFIJJJRW3w4Rs9SLvP2U/+TxZZoI6AZV1k+SVQIY0aloaHPfyryeR4MrMM1+004mscyLj7lnr0+Sa7DMVUTLIhHWOHTyY88ZNAMftNwN6PSnNTTwmDJHI0HKzBHHNpP5R5LwQeQgjRDEZ9AmIEEluSr6UbP3rDp/hc+RKdUUkyQhDICGl3GjQX1NW2WRMiOghhXTS04mLIfJazCHI2kNYyT4T1OfJkRCjI6qrOdUXCkb0qFauWd/lrQlS+rZIKIYRb1lbkVAqou16DXQLfXDBEThksGd48mK1QOACQwBFD0SUdpMV8kHAWZcYBmncuHWHPBKOuSM8pBKiyfxtkqL58uTyqimEEoUPRJTrCTEJLwQSphClw/q8K3b0nOsz12NmlxKTkusT1zKL7OgS7XLd7Pru+eod5btSaylXuYaoEcldCFKikovCCI6ZqJoqmanfueZyHKyH7JaqKb+T9OR9l+rqIJIVT45HEep0cjV5dIlKLL+xHUgnn8+c5XTSVNsjRvjcU2FFrGJ7kFRkvFRLeY153cwLJT4lrumw2/99ITlMLyiSX0zxUOyQSCU2UhVdsXC2ZpIW9/3euGa5S3RJmBK/IaS0ntSQzwHxqln77nLKHanKaztbNHOqJ2I3rFbLk3pWaV1BIUQMY8YpsWmpRpuBA9XfWAKBc4FAENJzgWps839GgEzvFSKhq9Zttt6dW9rQEerJa1TbM8YE5vatLrNho6a6uy4VuGWrNtjlqpCuUbWUcS4tGrPuVs0Y3esVUgI4lVR6SCGnPCeLXLNKee+x2SzpLsYNpUpIIqUgTIXUZ75lyeRElUrt3n3KPKq3FGKJSyHVTUjo5wqSEFOcDiGfyH0I6ixIoKiukoXmBoHeUh65SeA19pt+2LS+kI1leDhBmiCeIN4E/8TNjF7+cuFmxhe9xsv+++nn+oC/AFklcHOjwELg54aCwO79o3qN3hivvuqGCaIKMd6iHhfONxtOicBYvEx5H/VCEN+oYMx3lNUNEPM3s8sRl8wxI1qSZBXDiNqNWng/DoQ2V578nrFOSHLHqu+mufeHZs2WQ9vK4oYRVFSRSjXv0MNnkLbpfqXI6JvWvvcgJ6OZtB7E90zlxg5Y/BMIBAIXDAIoc3pKAYTjO+SztOIQM0iXLF/niU+IKTFxk0z3DsrMiKQrc7Wpnm7Zvsvd34kzKIeIQShQDijxSv8opIyWESquEFic4rkm81neJ57hc4Csl0euzazHNgoWyGsjxk5PVZwx1SPueMVOsQD5aTIpyo7xnidDtd+JJKhktP9CUJOElEc+6xVOPVJpJYHKdToZc8CK19gO63oSWZ9LJlCTQEA++TzKGbwNWO+YFDMYLeFLwIKChu9M6QWlDnOwIafMDSVGESdpKanZoJnMjhbr/GXymdGLNKaLSilGf3gmsLB/JE9nTxljLTr2so9lWtSkbVc3LeLzKxbOkgooMYqscq36XoXl8xgkRd9oSp/N2N6/IhCE9F/RiOdpAgFmpEFCt27fY13bN7V3Ppxo3To0s6kzFzkJpK9mkiqj7dRPumTFevXNHFW1tIlLX8kWI9GdMG2eFS2U38qUKmZzFi73AFu3RiX1k270oF9GxBS57oIlaxR4TyorXdx7Rlfofchl4UL5VF2VA6qC+q49BzyLTC8rY2YgoIyEgRiTec6qgEammWBGUGeOKbIqDCEI6olgShYXQx/mbibkvlRlh42a4q+lCeC/ZicITAToZJ8OdzSQRAIxx8Vx6iX9JEiq555PE1MqnH4ToZsECCy29XyG15Ae8Vl+J6iSfQZTbj7IPENUCf6YAFFBdelTCktaMW/ALbBMpeou/cUWH9kuWeL9klzVVfBesWiO38gkCSqZafpOT548YRXlwMu4l0atO/nsNsa/bFqz0iu72XLkUBV1q1WQ6cRyZa/p35kxYaTfCEz56D3LJXOkTWtXqEqLYQg3XbEEAoFARkKACugNV3Xz+dnEl6oaW7ZSrvG0h0BKIZ5LZMqHcqeIYlqpEoVtvaS7tJTQMgLRJAZRHT10mOoVY8gu9copMl7miB7UfFJaSfSWJ0NJiJJkJSnqVUK1Y6Di+VLNo2sw12H6SWcvSN352CT0PHYqdkAciTkKJE4a+TshsZlU6hBfeM5CPErEoQRR5YXES6cDE29rO0519Tl/zu/6SS48h9yxQDxpG4Gs8jqxKGloRIKWeEC8whzPpcPJjZyDR+IP312jQRMnjBBj4hfV0Eoik3t2bfPZppBRpLm1GipRukJjWmRgRT/olvVrvCeVCmmrrn1s6qhh1kItJdPHDrcGLdq58RGkle1tXL3cK78x3uUcnMjY5L8hEIT03+CIX1IbAchcd5FPCF3Ty2rYqPEz7aq+Heyd4ZOMMS5UKOmr6d2llWduS4uckhWmx7SZ+klxIVytqmqzy2rJKGi3bdy8w+rXruxZ4RWS69J3U7J4YVu6Yp36aE5aKT0nqGOIxMINAJnm9Zt2SBZ1zKujRUROkTXRqwNZZeYoZBIJLxlmKqn0qhK8CZx5FegJfvSJss5xfYbvQi7FI4EeYppV1dfJ2u/0sBAACfYEYvbfDZxEJk+KQCKd/Vc5FOuxJLPWSG9xrSWrzZII5mTmE5nn5PpJcwiCJrcOZKo3aNYZ61MtPROLfP+Cs/yHqmibHlfamqUL1I+T32eLYlJUqFgJzQktaCtVLaUfFPkSvTl1m1zuhhH0NmHug7MuRPPjsR9qkHkHBXHJn3RTgPSXWx9G0DBTlMor/ah1m15u86aOd7fFdbLjpzKaIOFnueOxeiAQCKR7BDq0aijCeNQa1KniyVLaSMqpIkqMocWExCfKHuLUOhFRiGnZ0sU8Obtj1z7FvP1+PS5WNOHEy/WSOEisQo1DPCO5SrKUbWF8lJTuQq6IWYyFYeGRhCmf5fmchStth1pWUnPB5ZXkJDEV8kkiM0kKiR2Ja6eOg/f1ezIpSgxJ0M0EAdXbHks4lgRp/SfxdEJ7GgviDt/nJFixDpLJ9/I9kEBGyECKIacYCuE3gHPuUcWCZBw813iRyG0uD4QNIou46WI8RL8qxkfzJcctXLy0HzutLS3k9g7xpH90u4yKwC85KqZJ2y728ZgPNXtUvgYjhlobzSCdPPId91dg/AsxDxOmIwcPnOtDiu0HAhaENP4I0gwC9FN2UqWTwFJOAZc+0IG929tr746xzm3U97B4pQdKzIs++GiatWle390HIYq9VFHFhZeMcCMZGk2cPt/7PWtXr2gfz0HCcolVr1TWpboE6/py6KVfhoCP0VAVOfUiucU0gmwnxDSXbgA2btmhrPMnbmyETOpSrUtvD3IoAlQu9ZQmjY3INnOzgBSY56ReIaQQU6q+kFAkvhwf7y8WKd60ZWeawf/rdqRs5eoemLkRSAZvnusXJ11fhnbdDHFDlLhRSD4mekQTr2tNvY81PgGfJTPyJz1mz5HLP0evCz0r3jd6unfUVzyH/2BG1LhNZ7kVbvbAXvOyprZRM9+YGVdfPTsLpk90yRNOvMziZJg4Bke58ubzWaJUcC+XeRGOuqzPzNKS5WTRrz4fqqgQWxwScTpcS5+pSComFBBtbhBiCQQCgYyHQHV5IhCjihctqHi3xONJneoVbMHSNTI3OugtKZBKekohkcQpqqiMMaMNpZAktcQlZLjbZdqHkzsV10IF8rlS54ASuMQqCBTuvIyFIUbmk5EfBnwkUiGfJ04kCBfX9EyZUL6c8n0aqkRwai+MNKECSKDxGKJ9gyD6C3otmczTU3/ucYl3FV94L0FUpbjR715d1TFmVpLUn2s94lCWrNo+UcjjGVtKzDBFscP1279Db5N8ZV+4lu+W9DWv4sahAxjqsT/nd8HtvFO/azwBmq9QEcsvSS5KHhKmuPoSZ4k3eB5g4IfBUfGyFVwNdFj7TOWZdhRku8wcbdtzgE348E3r0GewjXvvNSei+9WrGmT0/J7XjPxtQUgz8tlPQ8cOKWyvTDFZYfozqYJSKX1z2Hi7pn8ne0/S1lLFCvt785esUtW0o0jpVJclVa9S1j6aMMuaNawp2dIhW7V2kzVpUEP9o/uMbDPP9x04pMrpFkl4ZRqhkS8fy0iI4MbNAO8hgcqlmW6YSpBF9nEwioCsn1vGEBtUacUMiWBORTZXjuxOPHer1xRJFNlngj2SKrZLJZRgn+wrBWrWIShyfKz35vvjPPCnodPwlbvCcPJsIoz/thC3YZL/snDs/1x4ngjumZTRJahTBeWGgX4UbgQI+HyGuZuQMwicdFl6rjEvkvCez6WUjIoKa8RL4WIl1UczR4SyomfKIZvIl5jbxkw5COesiR8Z0lx6PzE3QtLMfLf2vQbZxBFvWy31kkI8sc+n74bjy1+oqM9KhYwunTtDErrE/LrzeYzxXYFAIJA2ECAGDBnUzRbKNIgY1OSymrZNyVViERXR0opFs+cv9+RlBVVMiRt4DhBDqKDyuEEmfMQrHHgholxtMSCCbKLkwecA0kr7CJVUSCwtKrSYYBhHohTPBN4nBh85ytxSWk0SBCstzMdOJkOJFxfRG6r44S0iiqf8R1whAeqVUT1P9oAmDPJESKXMoQcUMgkJ5XlmzQ7nkdhDPEr2lyZ7Rb2nVGAmkqYXuZ8AfzXEBbaDjJc2j9RecNel/3PLhtVeoW2gCumcyaN9Lumh/fu8wslrM9UmwgxSTI9ySLJLGw1J39qakT1n6lh3fidute99lXwNXvPWnL0y+gsymtpnOGN9fxDSjHW+0+TRQtSodlYqV8qzufTG1KtV2cZOmW03DOpuL781ytq0qG/0d+5TdbKXzB+omrbWZyCKGxWUr+jRxkaOm+FZYSqk46fOtfwitxDOiR/P96Bbu4Yyz+oZhShWU58OclvkvYVEMJHuYi60QyS2oORNmBvt103CFt0gELCYYwphpbqK8cRJBTLIc55cOT2o0buD7Io+nGQWmu/nBoGgB2lNWvGTfUZGRZ9relkgU3kLaKSJOGZSFiVYEjcBOj4Ct2eRdUDcCLBwI+Dz2RTAkcVC3BLVVWWf6RfVjQ83ApBQem6oTPt8S20vNRbOM8TzwL7d7kQIAYUkk3FGBlVUpJzjgGg279DTA3khkVf6anHhbS5p1GTJntpK/jt1zPsu82VWXM48eb0KitsiBhrIgU+cUFVCxxxLIBAIZDwEkMPeNLiHzZq/zHtGiTkfz1niiUpcdkm6MneUCiquuauVoGUudi1VT7fLtG+jlDVUMksqSYtJH3HsyNFPvApaXOQUMkpCluooSUEc46mQokKi/YQYRlWV58Qrrt8ofSCofB+J15kaq4ZBYGovtEbgO8D1+csfyCn/JYIQQTbx3uk4lCCSidjLe/gPcJ1Oktd/Pk8oevzzEFz1nyKHTTjnirTrOS62zOlkFAp9o8SxtLSUrljVipcu7/OhaTtp1Lqzm+gRa4qVLOtKnqbtutlsEVUc47dtWu/xqHDxkjLkWyJlELLdD6xtrwE2/v03HEskwGmBcKclnGNfzj0CQUjPPcbxDV+DAAGlZeM61lTVzaR8FqK3WO6C9I6++MZIu/qKTvbB6KkerDEtImt77ZWd7d2Rk73HExOj4WM+tpZN6ki2tNeDMy68OPRCMhvWq2a7du/3/pumqpZCRBcvX2v5NOaltgL84mVrbZeyx2VLFnOZEsSXXlVku0ip6NOhjwZiCXHNq30goJOJZluJcTDZZZJUwKuoe0WoyUSTtcVtl/eRXZGVhnRhLrFQkiyy2+llwXEWd79EQE8QUDLREE5ew7mQ7DPZa3pG/SZAr1MRJfhDwBIENCENYzYb5g/04TCf7XxXQ78Kd+RYnftf5zKoYqXKeWYcJ0OcdTEqwtkXuS79NcweJaDTU8RNAVXP9n0GeVCHsDJ8vIQkUvtFuMGESulq3TCwfpDRrzoD8XogcOEj0LZFA09edmjd0CZPX+ijzFo314xIxQViWOP61T22YNpH8hIfhFUyOmKWNslRDPmIS6ybM0dWK5g/rxNL3icxStWTyijJVqS8KIcgmplldsS6EE7aWFDwsD5yYBKlEGWu55gBkvQl5qX2wogtJ6TsCKQ0uUOQ0f9cfHdPk0y9x/4njoFHVuafxOeSpJV7EOJUUrVDBZTqIbJc4gEklGRiWsCCI/jPhf3HtIj2EjwMZk4Y5YodRpntE7GkrxQjvQan20zyFy7qyiT8EOgrXTxnmsaRXWETPnjLFUDHFZc9MfyfXxS/BwLnGIEgpOcY4Nj81yNQWbNBcRgkKEP+MBKC6EFSPxDJvOvGfvbXF9XfoAAOUdyrqmWfrq3sH29/5M66uOZCOvt2u9w+1PpIaS+rW1US3plyzi3h8trpyjxDFuvWrGRjJ8/2bHDzhrWclDJjlH0geFM9PS7zHfp0kDotEmmlJxRXQ4I41VGyzgQmbgjy5cnt/Tdsg8BOsKdiij1/Dt0kUOnFnAkJFP2jZKJ5D6L78tujvpRFfT1CaeNdgl6NBk1d5sQeJWz3NetORAvZLfIvDB2SQd97b9Qb6cZFusGBlNKPQnaZnlH6Q6k+psUFe/yWnXvLXXCZB+ZGl3dyi3ykvNy0rFm6UP2ifT3IFylRxjFhqDjDxqd+NEyzRQd4Tw4zTpFI0T9K1ZXsNVIzbnBiCQQCgYyJQFXFl7ZS/HwqNQ1yXcgnngLzFq1SzCructxJHy/weFGrWnmX8EI0a1Qu5/GM6ilxBXM+Ytwy9ZPSb4rTLvO1ke7SckJ1FIKJ23w2xR16RffKiZdkKfEIoktyFakurrvEXmZrk2SFrNHWkhYWRnMxRssXVDl6kogz/9y7JFmEoyaeJ0gnaxC7+GGBbMJJL9Yxs03RVMUmZ6o+U5qWDI6dvn5IaGr0hvqOnuU/KHdQ5jCepaHi1fL5M90VmPmjS+dMt1Zd+ngStbLM+TDbA0CI6YZVy9xVFxJLRRTjQDCIJRBIDQSCkKYG6vGdXyIACSVoDujVzp1uydrSo7lw2RqvjP7tHx/YdQO6qho6yfs7CbazJCW65Zqe9so7oz0o04uDW217jYFB2rRZBLVXp5Y2ZeZCH8/SqkldzzxT9Wwoskpmed2mbT6DNI+IJ2ZJBLiaVct5Pw4zStmnKhVLe3Cmn/XTT0/4kHKIK9uHNJNJzq8qK+NgIJpUPA8fOeaVQuS6SKwwoKDHBznVEd0IIOmlJ3Xs5DlfYpBenlARJFATxLktIMYjcYKI8vopXHOFCUGcmwKCG30sSHyphEJAIaLpYcEMokjxUgraxTzII9tFwnv4wD5D/gTxhHDiAvyZkhgVq9e2BTMm+03BxBG4FHbX8PHxVrZidTkhLvOfhENjGBilh/Mf+xgInAsEiG333jbQRilhiny2pWLTmEmzlKTL7F4HkEAIIXGKeLJ56y43NiJOTpu1SO997u0mJD/pJ6XXE2KKcggDPtpMiDskPfNIystcbrwPIFn8zuv0i6Lioc2EBBkxN7fM+ZD+IuGFnPJdtKukhQVHWBKBLKd55WnS6a842Uz2kDqZVBxCcgsJRWbLI/EHJpucH0qiFMK5e/sWj9e8j5ssKha2lR6XXHnyWa9rbnPiiRHU4YP7Zby0xVp06GWT5JxL3FqoGFVARBQJM+PNqtS+zF+jIszyydHD6fHQY58vEASCkF4gJzI9HwbVRjK29IFSVcQZkConPaF3DOlrT788zPpozAuVTvpqkOO++f54u1IklnEvZHY7t2nsxkeVVO1kTMvEaRqvoYooxIiMcstGdbyHc4Ey0pXKl/Sq6Lgpc/3CTPCnykpfDoG/mvp2FosQQzqprBLE2S+IKAtDy5EVE7CpmkIy+RzkFskq8l+Gl+Pim103B8ineI8KKZb7C5eudrOl9HbO6jRp5dlkJKeQzqRBBCQUnAnmxxTQuMkhE31Kj0cJcHovvS3IkZE4YXtPhRSyyfy2wiKpS+fNcIkTxkb5Chb2m6X1K5day04E/oR1Pj05zDddPHua9+zgHJxesu3p7VzF/gYC6QEBrv9DBnbTKJUV1rF1I0+ert+4zbq2a6o5o+t8RFlbJVXpEWVEGdVP1Dt4ILAQE5HoYtSHn0G9mpWdhBKXIGIVtT7tIWvWJ0howQJ5rHgR9f2LiW3TCDQqplyniUX0lEJc96j1hEQt/aReKRU55Tuff324x2T/4lT+h2sujrIcB4SUJCjX0uRYMV5EgcM1G/8CjhHTHtpJ6AEl/qDo2SXyCQkjXmXLrhmsik8kTdNLkvRMTkPhYqXs8m59fTbpKUmwK9WsK3fdCdah72CbNPxtq1qnoQyQ1ngCuWTZirZi8RzN+F7q0mRiVCyBQGoiEIQ0NdGP7/4SASqPZIaR4+IeiCNur84t7NV3x9p3bx1gT780zOqpj+aATI3oDb3xqu723KvDTzvrHrQlGqEysE97Gztptg/3vrxZPRs3ZY5XOgn+w0ZNFSG81J18x2gdjI2aytUQaROzSgn+jJqZKZOJI6py1qxa3geHQ2BxLKxUrqRmmBb0/tRdew74+BZmmlId5SYBYorsCskuEl8EQrxGsKe6Ss8OGehy6s35+6sfuj3/lwefTp5UqFbbAztOhAzJpuKJNDcph6JSeiEFNbLyva6+1WaKeDILj4wz5kXIdbHJr16/se3YvNENL+q3aGvTREI7yKVwogI/vTwfjx0uwybNsxVW3CTFEggEAhkXgdaKSczZbtfyMntP/gcVFVPKyy131PgZieeli9sYtZSg+KlRpZxNU7UU0sT6VEOpmJIMLS+X+EVKmFINpToK6cSZl3iD+qactkOVk1ExyHOpnjIaJn++XLZuwzYnplRW8+bJ6QoevBSQ6vJ54iKxikRvWlkKyakcYziveMpll0cqnFQ/mYeN/BayStsIRBTpKdfqPTsgnyc9YUiPKMQU3wJi1oW8UB3FFZ9qMAoed86VWREzRxkBg8s7CYydqorSRpJV5Pxczfi+kHGOY0t5BIKQpjymscVviADyV/pcIJCMX8GB8JZretlTz78jAtrD3hshEyMF1bIidZDKm6/u6ZVSemEwLnpfpLPD5Q09OK9ev9k6tW7s89ro+8SRd4WC+ubtu7wfldmlmERUlSy3hJwKmVVKkG6m3lIMjMgyYxZBPymSJzLZZGKpruZUZhnCfODQYSe8lSqUsswKeJBb7PupHHITUFg3FswtPaBqKb2vZKHJTCPXSo9LjlwMV0+46WJCdCFllr/qfGCr3773IFumnhx6P+s3SxDPRq07eX8oWfjiMntaPHuqzJCut9HvvGwt1a8z9t1X7TA3RpL4xhIIBAIZG4HKihG0pWDch7SW+doQ0U8U77po9vZYJU9PKv4Qp1ACocjp3LaxxygqojXVS4qPwWzFRGJk08tqOXlctmq9xy3ceKl4LtXvhzU3u3TJIm7At3vvQSl7drqyqIiUSAUUYxkfQ/wjWYq6J0/uHD63lAopCp9J0xd4LEsrZ4xrcO58BcQnT3llD0LJGC0kt5/SAnI62Qexwp+AGAWRR61DLM5oC8eP8d5BOQOj7pk6epiPI5s29gN34wW3IyLsKH2yZM2W5lyDM9r5iuP9JwKXZMuW7cf//DWeBQKphwCBNpuMGVZojijBkVEwrw0dYw98a7CMjd613l1a2loFZ7LBvVVJZRxMR0l1d8pBd8lpV94R46bLkCiXenCqOWmtr/ExVDGnzVxk1ZV1pgo6Vb2lmDk0kpkEroZInnDoxXwIx13Wb1C7ihwN99paEdOCyi7XqVFRboRHbJNuJsg6k6mmQgrZ3CwiSl8OEimy0zxHHrVHNwMMKue7Skr2yzFhwgRpTY9LkoTySIY6IyxUfPnJV6CQMeJl3vQJbo8/Z/JYH0SeTe7DazQGhmHiH4mMdtSg8vf/8bRn4oOMZoS/kDjGQODrEUD988CdgzU3e5pXNKmMYtiHq+7nn59yr4NObRqJYH5qM+UgT6tJAY2BoUJaXvGEEWhzF630FpHL6lR1BdGSFWv9S6mkkkglLlLdrF6prI9v2aLEK8QXVQ4J3MyqelIBJTnL+rShEOfwrKU6SrUVcoyLPOPI0pKiA0UOZnj0NyYktsyoxihQbSMinsklQVSPfelVkJaOIbmP5+OR40aZ07xDD58/2umKa7+U6+7ZsdUVPcsXzPYRZhkhqXw+MI/vSBkEgpCmDI6xlRRCAAKH3AiiR6VyUJ8O9teX3rPviZQ+//oI9c1UVCD6wqun12gczDvDJ4osVvLemTETZ0vye7nkTetdmsS4GNx2Ibo9Jf+lr5Tg2049qIx9wdgIGRWv0WdaWXNQqymgL5Vr4XrJeGtItsvNBNVQSCf9qcx92y5TJEgswbyu+niYo7pXtvq8rgSz95PSe8r3HlK2GgLKTQCy4PHqW0XaG0v6QYBMcwn12zBTtPVpuW4FmRgdOXzAdm3dLLOIrrLMf8O6X3WzvfnM79zkCMlYLIFAIJCxEUCiS2WUOHT9wK5fVj/7yy/h/Y+m+qzsJhpFhl8CJBFXXYyNUP20bd5Az5d47CFhSpyiNYU4ws8GEU4M+HiOcoeqJ9XUwvJQqFWtovr3j/uYmN1qMWGuNklUfA2IR/gj0FaC5Bc5L+0y+DPsU9XU1UBp6LRBOiFO//zRDGepVTJKUvSbnAraZ3DTxeRo7HuvWQONflm3fLE8EXbY1o2JZEaMHvsmyMZnziUCQUjPJbqx7W+EAPPQqDLSK7JABkB339Tfnvzb295L+r6yzMUkPcIIiSzzrdf2culT9qxZfWj48LGyOFfw/kwX5MmSHnXr0EyZ5V02d+FK69e9jQdsTIUwj2BUCwYT9IsiESYLTWWT4L9fvaor12706maDOlVst+zy16r/BtME3HeRNuHWi0y3SMH8flOATIhAz+vMH6W3BznUMbmwsl2OafmqDd8Ik/hQ6iFAxnn/np3WdcAQmyzTonpN29hWDUtn7luNBk3kajjCegy+2V556peenUcSFUsgEAgEAs0b1lZf4yVy0K1pb8mIr0en5gZBhHRCVOctXuVOuj07NvckK6qc/j3beLyipaS74hfxBC8DxsXQc8pncMmtp0oqMZL1Pjl+3FU9IL5u43afPQpRJQYRe4hTxxR/IKCodSC3EFNMjYidqIBomeF7WD+W9I/Ap/J42LZxnbXp0V9ztafYFsUs1D6faKwLVedYAoG0hkAQ0rR2RmJ/vkSAcSmMU8Gc6JH7brDfP/2G3SQzo6kK5pC7y0UcX5Gk93qNhWF0C4G7ryqkH4yeZnWqV3QnXMarIP2ldDlh6lxrrGw0ZHG6pFEQSwL8zHlL/X0y0ms3brWlGkZevUpZK128iJtJIH1ie5BLDJCojhbXcPLaeg0ZFA699O1ww1BIst1DGvGyW8SUHh0cDSvIhIIFuS7z4mJJfwggUyazjEEEzrkXy0CjXOUaNv/jCe6+O23M+97T9JmkZbEEAoFAIIARHjO2mZ9NDIGAvjFsnNWtVUk+BNlttMa9XNG9te1U3KJvtFv7ph5PqIoyV3uvyCLeBsQenOPnL17t6iHaUbbhxKuEaYWyJX0MDG0sq2X2V7lCaY9rGO1tUKy6SOqdBpL5npS8lRYSqqj0kFItpeeUGEsMYyxZBe0vI2hQIMVyYSDgs0WPHXXzIkyODu7bc2EcWBzFBYlAENIL8rReOAdFJhf50qjxM52UPvXCULnvtnRiSMDt1621vfjmSOvQqqFXNWeIXN5+XR9VT6cpCH/hlvpIo+iNqVGlvCz05/lzZL5kqanGdpJ5BL2kEMbLm9ZTdfVzDRvf4GS4acOaHvxXqa+1gEwlaoiokkHmBgP5E2YTmAiQaSYLzQByDCawXGcm6S71tyJDRgpMsD8h6W4s6RMBMsuMtslfqIjl1sw3hpAfUTWU6qnPW9VNXyyBQCAQCFBx/Mn9N9pzr42wTvI5oEdz+twlUvT0dqludo1naS4DvaEy6qujSieOtxPUUtJa8SeT3ODHT51nDTTmpbBaRjD3y5o1s5vxzVcFE5kuqh3GyBCnjkuB07yRWghELlcqTn2mWaX0nWLos23nHq/AUhmlYko8JXG7T4lR2kroL8Vsj89SMcXML5YLC4EDe3a7k+6hMNi7sE7sBXg0QUgvwJN6oR0SZg1keicoSCNBwvK+S7smnvGdL/kS80iHDp9kGD5kyZzZRsq9cJBGwNALiqvhtQO62LjJc2VKdFRZ6GYyNVrk2edeMklCEsw6vA6pnEcvqXpFqZ5icITVPj0+9IkSrPdIuovBETIn5pbSW1pcEihIKEGezDX9r8U0l7SMnA4PK/OcdNil/yeW9I3AwX17vTK6cc0K27h6mR/M0UNR9U7fZzX2PhBIOQQYm3KF2kNwzqWl5FWpeKhSovYhOYqih1aR7fJIILn60cRZmiua3Vo2rmO0nDAajBiDMoh4xusLl6xRvNnuah+I41LFkvIimLWqVfD4RcK0Ub3q7u6+Xt4IKHkgm9UqlfGxZCRQaRqtrfVpQSAWEqsw2ivO+DIZ70F2UfXEcmEhgDtxmBddWOf0Qj2aIKQX6pm9wI4Le3pMgg4cOuqVUGRGzBH9VNJdJE7MJWXWaGWZOzBu5UPJdplLykBwekl5vnz1BrfFx1CCTDL9Mlf2bOcS3Fnzlvn2smTJJMK71quezDKFdDIDDkMjBo8j112zfoukUaX8tR1yLeRGIbMknFRLyUojtaIXKKukUe6CqNf4bghvLOkbAQaw7921XVVRhtFfYvTpxBIIBAKBQBKBQqqOInuFVNI+cueQvl4JLVwwr7uwvztykg0Z2E29n5u8H/Sqvh1thlpIcMAd0Ludu8NDGKmszpOvAXLcAb3aav72Flu0dK3VlwM8BJaEKa0rGPPhXUDCs6hiX02RTpQ5mPZly5rFams/cPCFgGIUWLJ4IW9V4Tv4HH4JNaUeIpF7Ute3WAKBQCAQSA0EgpCmBurxnd8YAQIwWV2CKPKjGlXLucMuLoX33j7IB44zILuF+kvfVL8OQ8WR5ZJtpiK6R0R2iiqkSH0hiAwAbyeDI5bZ85e7uVE9OeeSLd6gG4G2LWR+pAotpBRpbuP6NVQBPWzLNXT8Ev2ONApSTAaavp1qqpQy2Jx1kEaxv3V1Q8DMuc9EqmNJ/wiQbcbhMYwh0v+5jCMIBFIagWOSwGIyhIEdyps3ZWZ0v2IThO8L/deqSV37xzujraNmZjNCDPf3267rLbK5xpOk10nRgyfC8lUb5RrfymPL7AUrvDr6mcadoOphvBi9pfgdrJGEt71aVmgNWb56kx06ctTHnuHmvk6eCMSh2tUrWO6cOWzX3v2eVM2ham2tqhWcqB4SMcUkCXOkWAKBQCAQSC0EgpCmFvLxvd8YAYgdJJPgTjUSS3t6RN/6YILdfHVPN4igZ6dbh+b29ocTXdaEtf1oSaNw0GWsDONXuCHAvmHarMUKzuV9ruhcSanYfge9RyV0iQJ+Q/XykJFeI9MIKqTtNTaGii1uhlvl4EulFqOIXXJPZE5pbhkZURkl0O/WDQCkdIFuNmIJBAKBQCAQuLARQBLLCJVsauvArAin3WGjptgt1/Q0lDiQv65tm2hk2SSfhZ0zRzZ//zpJeTdv22kTpejBnI8EJ6ZGmCERRyClEMvCBfPJhTcRp9q0qO+EFQ8EkqPF1SqCGzxElORpXsUiKqOMg0HCW1Zu8lRGMeKDODOXm1mlJGCRAscSCAQCgUBqIRCENLWQj+/9nxA4JWnRQcl3L1KVcvX6zW5YRH/pOyKg99w6QAPGl7n5w6De7V02VUx9MtVFEkdPmOX9PMwXHTN5ts8wLSnH3KmzFsn2Ppe1UL8OwR6ZVFdlt3ft2eczSzGFqFO9kuaTbvesNPNHi0iChWkExBXDCAaek43evHWXH5tXTzXfjeoqEuNYAoFAIBAIBDIGArSYXHrpJT4vVCbvXgG9+5YrZVK03GMWsendkZPdnb2YYhdS3p4dW/g4sokfz1dS9DKfWY13QjOZ6+EOz/iy0vImqCtTPlpOqKyJeAAAQABJREFUNqmlpI+UP7SO0GpSuEA+J62QUDwUkrNN6VddJ6JKS0qD2lXlbXDMYxXxDe+FDzVCLeZjZ4y/yzjKQCCtIhCENK2emdivM0KAKiQLpHCrgjASqRffHGU3Kxu9bNV6W6ggfW3/zm6xr8S1kVHGOIKgXkVjWgj2VE/p95mp7DXb69ahqcut6MlBCnVcMincDDGF6HB5I89II8di/ijBfJMIKKSYES/MNEWuu3X7Ht8WWerhYz/2weO+o/FPIBAIBAKBQIZAAJKHQgZTPKqU/Azu11Hxaqs7u+MI/87wiSKOBWWMV85bThrVr6aqZXZ32sU9XmHHK61V5FtAlXPGnKWuEGonpc5KtY5ARDu2buTKHpKfx0WE6T+lwooMlxYXCC1JUZzgcdRtXL+6t5oQq/bsO+QeBxnihMRBBgKBQJpFIAhpmj01sWNnisCnqkLST8oy8eMFnllGIjVYZhFUNHE0vO7KLl4FZWRLd0l5qZSSLW4lCe9k9ZFSce2qOXAzZbFPdbSnBpjjVIiUCdKJrIl5cgT1Dq0buhnESkl4MS5qWK+ay3W52UBK3EQS3kP6HkwqPv30hM2VMUUsgUAgEAgEAhkTAaql2TTqBT+CxcuVJL2ys6qbu2RmtMTuuL6vvad4haMusYQRZyhuyqtPdMT46d7rWbRwfpHSpd5WUl8jX+ZIvrtL8aWP5pWSjJ23aJVaR2oY8t81G5Sc1bxR/A+OfHJMs7W3+ZxsiC4jXkiWUlFlFBmtKPSrIiOOJRAIBAKB1EQgCGlqoh/fnaII4CRILydjXOgwZa7o4L4dXEKLE++3bugnQ6OFIop73dSIuW9HZCrRUVVPdzmU4yAmEphL8Nk+9PFI6kR/Dvb5GEmQgYawtlOw5yYDt96jyji3bVnfTZKQ65J1Zi4c71OlxckwlkAgEAgEAoGMi8DnmkFNjMok6e0kSXJLlShsmTVLlHnYdwzpY6MmzNQM0RPuUcAomNJ6n9EuyHeLq62E0WJT1FpykZQ+KHfma0QZZBTX+C3bdkvCu8oq4gav1hEqo6h2mKtNkhRp71Y5zmOoRNWWZCmklTgFGWbfYgkEAoFAIDURCEKamujHd6c4Aic+/9zlsZnktMsAcWRLzCndoccJ0+bZXTf28zmkkMrB/To4QWW2KMYRGFBQUe3dpZWTWohol7ZN3bWQ5xXLlbCqIqarVBldIalU13ZN3bxig4yMdot0Mi+OjDT9O5hQMDaGuXNItmIJBAKBQCAQCASOaDY1xnnEps0yxaskAomHAaNgcH2nWtmzUwsbIef4fPI1qC03XV7PmyenS22JUyiCcI1fKAUPc7n7yjWeGLR4+TorK6MiTPUwNiKxipHfJepl5fvWKe5BQlEE8T04zcd87PibDAQCgbSAQBDStHAWYh9SHAHPRIuUMleNYH73zVfaBpFNss23SyI1c95SkcpN1l8DzGctWO4Z5IEipbMl7yXr3K97a38kC90F4qlqJzIpzJAYC4M8l0Depnl9d+olA40Db1v9flSklOBP1pm+1FgCgUAgEAgEAoEkAlQtiSkXy+2IyiUjxFD23HBVN6+YYtiHC/x4eRxkURW1ieS4zNO+RLOPL29W1+MKI8xQ9CyVvwGqns5tG7viZ/7iVe5ngPs7I2HwO8AjoWD+vB6j1ms+ae1qFV3eSztJzMdOnpV4DAQCgdREIAhpaqIf331OESALjIEDpg70kd5zywAF/c3qGV3gc99wO6SKeuNV3T1DvUE9o9jtUw1laHlf9edQSYWI9u3WyrfFe9k1bPzypnX9BoKbgVZ6zkJlFNMIxsLwvRBWpFGxBAKBQCAQCAQC/4kA48Po66R/lIQpUtv77xxsYybNclO8DjIrgohmUytKs4a1lFxdIHO9izwROlPxCyM/KqUkV4lN/Xq0VsvIEY89mZWQRbVDgnWF5pPWq1nRCuTLoxaWnfquHT6je+iHk7xa+5/7Fb8HAoFAIHC+EQhCer4Rj+877wggj7pCldA3Naf0TlVHkdvSU8oAcjLEZKYH9+vkkt0t6qtJ9pESxAfKmn+dMsrIpHp2aimi+YmC/XrLIfMIMtCr123xPlGeM9+Uvhy2gcshlv5kwWMJBAKBQCAQCAS+CoFDR45KRvuFq2pw3W1cr7pXM49ImpuolM71SmnTBjW9zYRxMi0aaUSZ4hftKN07NnczI5Kn3Ts08zi1VJXRHNmyasxZFVcAMQamgQz6suk1vBGojEJiYwkEAoFAIC0gEIQ0LZyF2IdzigCGRMiZTkhC+96oyXbPzf1tgQIx0qZvqacUSS+VTWS6M+cu9aomPTz05ixbtdFuGNRNsqeNGky+XPLdJt4TSiDPmSO7Naxb1UnpijUbvGf0c/WwMnSc4ehTZy46p8cVGw8EAoFAIBC4MBA4pZiBCy+KHpQ5eBXkyZ3DDw4zIuS79JEygxRzPqS8TTXOhdmkzL8e2Ke9LVEPKfNJqZomKqWJ5GnzRrVsrUbNUEmtK/kuCVXIa8zHvjD+duIoAoELAYEgpBfCWYxj+EoEsNq/7/ZB9srQMXal3Aj3HzhsIzSH9JZreomUyhBi6VqNhOnspHTv/oNuYoTj7r4Dh6yHhpTTQ7paNwZUSnHMnbtwlc+RwzYf+/7imh9XpUJpr6KuUrBPmiAxG26HstCxBAKBQCAQCAQCZ4oA3gMY4eXPl1ttJlfa2ElzLLviWP1alW3clLk+i7RMyaI2bc5iy583txsYkSDdt/+wYlYzxakNHtsgqLSR0EPKrG3MkZDv8oMh31vvT4j52Gd6UmK9QCAQOOcIBCE95xDHF6QmAswQzaqeT1wHX3t3rPeLrpX7INXLe28faBPVn4PEtocqolRKqWw2aVDDZsmMiPmm7Vo28EwyJkX0lC5bvcFlUj5ORpVQSC0z40oWL6ysdmLwea/OLW2oZFdku2MJBAKBQCAQCATOFgFi1okTJ62NRox9pJ7ScnLPLV2yiI2dPNvq1qykftDcNm3WYieo5csUV7J0hRNZRsIsVVsJEt3eMj0idi1WgrRyhVJWuGA+2ywDPhx2Yz722Z6RWD8QCATOJQJBSM8lurHtVEWAgP27H99lb6l3tIqCcT5lk9/8YLzdqXmkVDcxhUCOixQKqS1EFMMjMtNVK5bxoeVkoGtVK++k9LD6R7spswwJJdgP7tdR2eat3ofTsE41yyrjCaRWOCYyYiaWQCAQCAQCgUDgbBHIKUntI/fdYB9pNmmuXNk9oTpq/EyfI3qx4sv4qXOtU+vG9qkqqdOl6GnRuLbiTxZvQ8mRPZu76lIp3aB4dIWUQWvlCk/Mw203R/as3n4S87HP9qzE+oFAIHAuEQhCei7RjW2nKgKMZJknye2VPdva68PGudkDkl2C/Pe/fY1NFGkke0x/KVIoho+XKlbYSSkZaPp1JqtqWltBPHeuHDZPPaf58uSymlXLubERcqje6tWh12eRgn239s3s4KEjIqxrtN09qXrs8eWBQCAQCAQC6ROB+rWr2OHDn1h7jX6hxaSBfodoDtdz4tk+VTiJWVfI94DnE6fNV/xpakelypkno6M6kufmVf/pSrnF00vavUNzbzlhLilO8q8PGxvzsdPnn0bsdSBwwSIQhPSCPbUZ+8CQ0D7x6N02esIsO3bsM2tUr5q98s5ou3NIPw0L3+BE8+are9poSaGyy3WwiiqiYyfP8UzzRbLVJwPdv0db23/wsE36eIFnoz/X7LgZcttFBkwGm7EuvNZCg8Zx6sW998qe7VSRHa9ZpCHXzdh/gXH0gUAgEAicPQIkP3/+/VucfObPk9sqlitpwz6aYoN6dzC8C0YpoXr79b09ETpFrSd33XSFYtpGjS5bbNcP7GobJcnFB6FNC83IVgsKah62ieqHMWcHFNNiPvbZn5f4RCAQCJxbBIKQnlt8Y+upgMDFF1/kZPJ19Yw+eNc19s6HE51wZtJctndHTHIp1ATJdHfu2W9tVUUlwGOn/4X+Y/7btf07+3y30RMJ/H0SgV+V0ltlhMSg8ekyk+ijLPPuvQc92FcqX8oKFsirGXJb3Plw9KTZqXDU8ZWBQCAQCAQC6R2BhnWreWzq0raJDRs1xTq2bujVzPc/mmr33jbQlohg4ndAQhXzvJnzltpNg3t468is+cvslmt7ebIU991rFMuYO4rpUe0aFXwMzAz5I8R87PT+VxL7HwhceAhcfOEdUhxRRkcA19v+6puhF/QvL76rrHEXe08zQXt0am7FihS0n/3+Bbvtut7uNnjg0FEno/94+yOf91a6RBF7/Jk37bZre0uym8sef/oNG6I+UzLMTz77ls8u5fkzL79v/WRyVKRwfie5GFBULFfCJk2fn9Hhj+MPBAKBQCAQ+AYI0BJy/51X2Tr1fDLKpXXzeoph79lVfTtYkUL57NEnXvLEqEnF89Kbo9wDgVnXb8sngXVOaOb2W++Pd1d4ZpX+7ZUPbGCvdj4+5t0Rk61V0zoy8dv1DfYsPhIIBAKBwLlFICqk5xbf2Pp5RiCbHHW/c9sA+4PII7KnEeOma67bpVa6RGGX7D764M02buocHwrevGEt+2DMNBuggE0vKZXN79w6wHtwcNmlIjpt9iI3huivvh1kUKzH4HHGwVAtHdSng2epyVRTWX39vXEaSn7sPB91fF0gEAgEAoFAekcAY70Nm3d4jEHZQ3zBq+CD0dPse9+6Wq66izzu9JF3wbTZi31mKX4HM+YucdO+8qWL2xy57ebKmd1qKklKZRTC2kyxboVkvYePfBLzsdP7H0nsfyBwgSIQhPQCPbEZ9bDq16oi06Hyfvi4635HEqfX3h2jamZrlyl9OOZju+P6vvb+R9OsptxzL73kEsmiptpdN17h7rmz5Lx7i6RQjINhbEvDetXlYrhEdvn5RWqLGO9jvV+4QD53LWTOKb05zCjNLvdCCHAsgUAgEAgEAoHA2SCAK/yTj95j70mmW7xIAStUMK+9qvnZD99zrcegeYtX2zVXdJKZ0RwRzhxWqXxJGy9joxaN69hJeRlMFVllNNmuPQdESpdb5zZN5GVwzEkpsQ6vhOmzl3jl9Wz2K9YNBAKBQOB8IBCS3fOBcnzHeUGAES24577+3ljv/YQgDh0+ybpoVMvv/vq6pFCDfT/GqBKKI+EbqmZiiV9I/Z9PINOVjJcMMplnqqCzF6yQVDe70dPzgfp3Gtev7jNHh6oPFdfDcmWK+Q1BhbLFdXNQysZNnntejjO+JBAIBAKBQODCQgBnXSS2KG2oiDLPukSxQvazx1/wUWV79h3w/tHWzeq5yqeRkqUYHvEZnHeLFS5gf/zb296uQsIUqS9eBwXy57E3h43XTO3LfOb2hYVaHE0gEAhcKAgEIb1QzmQchzWqX81Gjp/hY1y+9f3f24++O8TWrNtiRdXnWbViabv/J095YEfGVEwZaAaFP/r4i3bHkD7eezN64izr1amFS5oqlCnhGei/v/KhW+vTv/ObP79qN1zVTXb6Oe3PLwz1Gwee00/KDcHGrTviLAQCgUAgEAgEAmeFAEnRH373eu/vZDRZY0l3v//zp+2+OwYpNp20keNmWG8RVKqjuLxXLFvSHnvyJe8hZTzZr596xY2NLpKhH27ymBmZTPqosDIahn5SErG79x44q/2KlQOBQCAQOF8IhGT3fCEd33NOESCT/PwTD9lzrw33mWvbNAcUg6HuHZvb86+PsF/94HYbM3m2KqBHrVb1CvaaqqMPqGJKX+iqtZutmyqio0RmO0nmxCzR4WM/9psBZo9O16iXW2VyROV087ZdMj9qpD7TVXbw8BFrrpEvC5audtOjDyQDjiUQCAQCgUAgEDgbBKh6ztX8UFpLMNh74FuDXXY7Wy0i/Xu2sQ/lddBBcWevZo4Sm3547xBPnC5U7Lmqb0eX60JGq1Yq48qe4kULKhFbwPtJIa/0lCLpxQMhlkAgEAgE0iICUSFNi2cl9umsELhYjoOdWjey7z/2VxuiOWy/VSXz4Xuu8xmiuA7Wk+nD3T94wr51Yz8P0LWrVbCyJYvaL/7wkt1yTU/NbduhHpyThmTq90+/7q8xhBwZ701XdfftQFzbt2poy1dtUN7ZDCMJbPUJ/FVUfR01fqbPfDurHY+VA4FAIBAIBDI0AkUK5bcf33+Dk8VDSpgSh773s794wpS5o4xowZToD5Lj3qh4lCtHdntSsem6Kzv7XFLiF+8zygz/BGS8tKowhxQl0NsfTlA/aWPbsm13hsY5Dj4QCATSNgJBSNP2+Ym9OwMEKmvMC/2hx49/5pIkAvq9j/zRg/cbw8a5c+6lmS61SdPmW1v10fz6qVdlYtTPZboQTXprsNBnrlsB9aH+9s+vuRyXOaVURJtdVtPlTi0b17ZSMjZ68Y0R1k8yqIIF8tifnnvHBitDzU1BLIFAIBAIBAKBwNkg0FTy3F/84WVPpr6m2dk3X93DsmXNbC+rUtpbbrrviFzSEsIYs9/LC+EGkdKNW3ba7n0H3d8A8tmnSytvTXniaSVRB3e3nDmyeT/pVXLpRa47dvKcmD16Nicl1g0EAoHzjkAQ0vMOeXxhSiKQNUtmnw16wz2PucwJw6G7b+7vX8Est6Yik7c98Bv79o397WNJb9u1aJAI3M++6Zb6DBgne1yyeGF7SD07dwzp61nnnXv2WQvJcblBgHwWLpjPfq4ZcAwgz5I5k/391Q/Um9PGPvvshLsYYs0fSyAQCAQCgUAgcKYIoLD56fdusl2798vV/VOrrXaSB372Z7vnlittyfK1VkZKnkqqeP7gl8/KHb6P7TtwyGhHadawprvHD+7X0U35HpPa5/oBXe3kqVNOYDFE2qltblCiFDO+iTEf+0xPSawXCAQCqYRAENJUAj6+NmUQqCX5LTIlTCGGjZziVve33vdru+umK3wEC865WTJntikzF9rlTevaD3/1rN13+yAP1sh5+eyDP/+r3Xv7QDsii/zFy9c5iWWe6MDe7Q0r/sdOZ6+P6YZhssbBtBGpXS2zJLLQ1SuX9Vmmp3QjEEsgEAgEAoFAIHCmCJD0JCbdqKrmi2+OtLtvUjJVPSFTZi6y1s3ru5HevRpd9rlaSiZ+PF99pA3tNRkVUTEtlD+vTPle8IQsRkjL12w0elFnzltqNTSDlNnb7ypB26NjC8l1d53pLsV6gUAgEAikCgJBSFMF9vjSlEAgX95cGhY+2B75zd/tZw/ebPOXrPKAnStXDqPy2VbE8db7f+MVUwyO+nRtZXnkivuCAj9jX7gBoK+Uiueb74+3nnLYfW/kZBHRdoar7mNPvGhDBnWzPXImpJenXu3KbozUrmUDK6bM9lPPDVUfTxfbuHl7ShxObCMQCAQCgUAggyBQSoTxZ9+72fbsO2SfSmlTXYZEDz76Fx9ZhsR2QK92rsx5/Jk3fJQLMayvxrgUK1LQfvLb51yts0ey3QMy4atdvaLHLuJaEc3M/tWf/iGi2tUyZ8rkct0wM8ogf1RxmIFAOkYgCGk6PnkZfdeZD7p6/RarI5nTI7/6myFfuu/Hf5IZxFVeEb26XyfvxcElt7lMHzCKQM67dMV6N44oJZnuj3/znFvnT5+z1OgRJdj/UPKo26/rY9t27dVg8eMuo3r5rY/sam0/f57c9hv1oF6tvtETn39uC5etidluGf0PMY4/EAgEAoGzRKB103p230/+ZDerDeRZjQ57UDO0jx47brR/1K1Z0b798BP23VsHGq0nGB/hlvudH/1B6p9+cng/alt37Lb6tarYC3KRH9y3g+XLk8vnbTPy5fCRY95K0uSyGiKks89yz2L1QCAQCATOPwJBSM8/5vGNKYBACVUof/nwbfbOhxPtkftusD37DxrDwBn/gty2W7umdvv3fqtenAFuSHRt/y6WJUsmlz01b1TLfvq75yXTHaTs9AF3x61ZtZw99NjTmlPa1w4d+cRvCurXqmzP/uN9Zaz7WvZsWRKDxru1sh279jkZRe5LRfXkyZDrpsApjU0EAoFAIJAhEChbqph6R282pLanvjilmdilvU90iKqamBlBRDEjotUEH4Tf/eV1GfddpbhzUmPIlloLJU9Jkt56bS/Lnj2rPfvKB15R3bR1p2n6i8hrCXv/o6leUd28NeS6GeKPKg4yEEjnCAQhTecnMCPu/kUa88IIFhxuu0qidO1dj8q06Ar7lYaD/+A71ykzvFruhK0shwL1rPnL3NTh3h//0W7TLNHxU+YazoP0f771wQTr0raJPSk7fWaSnjr1hU3XrFGkvswzpUqKadIzLw/zOaXLNPKlasUyMpooYn998T138V2/KeS6GfFvMI45EAgEAoFvggDxq2Prhnbn93+nEWO97E9/f0djX26UsdE+y6l5oRXKFpea5892o9pFRoydbldf0UlzrrPb84pJvdRW8oGIJq0iefPktCeffct6y8BoxeqNVrZ0MSsnovvU80O9J5UE7DjFO0yQYgkEAoFAIK0jEIQ0rZ+h2L//g0Dl8qXsN4/cacsVhAnG9Mls08DvKsoyMzu0r4aL3/Hg73zcC0PECfpffPGFj3DB7OF7j/5ZmeXeNk3k84oebWQOkUefe0PmD83tg9HT/AaAQeIQXojtnAUrrI0MJqjKPvr4i3b9wG7uZrhILogx2+3/nJ54IRAIBAKBQOArEChfprj96LtD7JBktxernFmhXAn72e+ftyvVM0o7yMN3XyflzkGvfJYTyXz4F894v+iMecuslYz5ihYu4L4JJFYXr1hrdWtUstJKkj4mF3hM/Kii4qHAbNKR46fHfOyvOA/xciAQCKQtBIKQpq3zEXvzXxDIoorlNf072dV3/tQrlJgWPXzPtZojOlLS3SG2Zv1WVU8vMwjlvEUrrUHtqnb/T58SiexqrwwdbffceqV9JnddpFLIdL/98OOS6fazBUvWaEZpA5f8YhhBv+j8xavcmbeohov/QDcF12oQ+ZGjx1zmi7vv26qw0kcaSyAQCAQCgUAg8N8QuPjii617h+Z2072/dMUOc0V/fN+Niltb7LI6VaxI4fwyy1MiVIlW5mHfd8eg08T1YiVcS9n3H/urk05kuGVKFfWxMD9WvELNw9iYlWs3uXM8idgBcuLdpHmlsQQCgUAgkB4QCEKaHs5S7OOXCNRS3yZVy8+VBcbEgTluYybNdpOihx97RsZGHexb3/+9YZX/7ojJbmL0iYwismXNYvTtkEXu36OtPf3Se/bgXdfYseOf2f6Dh9XDU8rulSHStyT9xUSignpwSpUo4jcAyKOY//aFJL3MhHtGBhQ3XtXN1m3Y9uV+xZNAIBAIBAKBQODrEKioaiime0ePHnd3d2S2f/jbW05S7//pn30k2fwlq+UW38iTqq9qxAujXn7751e9reS44tWuPft9rMtP5INwq9Q/x45/auvl9F6vViX7h/pKiU1Zs2Sx8VPnufHR1+1PvBcIBAKBQFpBIAhpWjkTsR//FYG8IqAYO9z4nV/6uBfks48+eIt9NGGmyOXVtl2uuI3r1/DRLguWrrE6NSra9zVjdKCkUGSi77/jKsP0gUHhyJ6efPZNkduWnpH+rgjsZ7Le361gz2xRRsncLvkTlVR5RFhFEdEndeNw09U9XAK1YvUm27w9zCL+60mLFQKBQCAQCATskksusX5qJxlyz2M+2uUXf/yHqqM3SMmzyuNQ9mxZbarmjzZtWNMeUA/pLVf3tKmzFtkQqXtQ/LzyzmhrJ38Dkql3aVwZSVnaVnCbf+7VD73iSgV2uPpOMe7D1AhfhFgCgUAgEEgPCAQhTQ9nKfbREWhYt6pluvRSkcn8Grey1mpVK29//Ptb1qZFfbvrocddwosE9z65574xbJyT1N2aIVpDVdWCGiL++ntjNTi8vlvt33PLlTZ7wXLNI23mwf61d8e4wRF9o9+5dYAd//QzJ7hVNRvucfWl0ofKDcDaDVud6LItCGwsgUAgEAgEAoHAf0MAFc4d1/ex46poYrhXWmPHcNRtS/yidWRIHxs6YpKre4g/tJZUKlfKR70MkW/B+KlzZVbUQ5/N5l4HOO2+8s5HTm5x5P1wzDRrWK+ajRo/00egbdwShnv/7ZzE+4FAIJB2EAhCmnbORezJ1yBQXPNBH3voVpkKvaCq6M32ugjkL39wmyFvuuXqXpq79olVq1TWZbxLVqxzSdOPfv1369W5hfd/fvumK2Shv8jHulyiLPKmrTusdrWK9oBkUtdKkov7Lj2iuOomM8x/eeFd7805deqUrVyz0YeP/12Z6BsGdfeen6/Z3XgrEAgEAoFAIBBwBDJlutQG9W7v1dE7h/STidEL9qN7h9gEyWrv0FgxRod9qgQnLSE/+vXf3E0XBQ+KoG079lpJjTPj5+FfPG39ure2D8Z8bNfIfZeqqldOW16miug0+St0tmwaUTZh2ryYjx1/e4FAIJCuEAhCmq5OV8bdWbLFjTrfrIHhlSRZGiYDosvs2z940gP3bQ/8xrPE3/nRkx7AX35rlP3wO9fb+k3bvBcHIyTMHmpIinu3PjNYgfyp59912e9ezS8trV7RMiWL2iMisP3luvvuyEkuf6Iayxy4Rso6P6/h4zdd1d3lu+tUJd28LeS6GfevMY48EAgEAoEzRwAH+OsGdPGqZ57cOayYjPJGjJtujdQ+QnX0WhHJ38jE6CEZ9DHCpWObRhr1klPVzhnWsklt+6FI6p2S6a5au9lN+wrKGR41Ty+ZH7HOYJnwZcua2Y32WjauY0OHT4r52Gd+emLNQCAQSAMIBCFNAychduG/I7Bn3wFlg7PY4uXrbMzk2RocPsC2btvtAfnzkyetpORPBfLlsRWqZCKz/bVmkmIGcf9PnrKb1ff54puj7HvqM922Y7c10U1A4YL57FVVWbHGx1Yf992lK9dL/tvAq6zMGW0n1903h42XFLiH+n8utnly3a1Xq7L9Q708SKpiCQQCgUAgEAgEvg6BLJkz2fUDutqQux+zu+To/sNf/c0Tpu+OnOyPmBSRaC2imDR8zHQ36PO4JXnuOyKW99x8pXpBT9kB+RngZfC9n/3FZ2kzjow53Mwjpa/08qb1bPSkWU5ON8jkKJZAIBAIBNITAkFI09PZyuD7evST4973idFQxSYDbNfe/Xan5o3SD3qfHHIf+NZg+9srH9oPVB1dKFMj3HFPqLKaR5lm5E4vvjHSCee3H37CTSGwxkfKy8I2cdb94a+etcF9O7rkiVExkGB6c5rILOmFN0bYEA0rX71ucwY/E3H4gUAgEAgEAmeCAK0k/bpfrorlSSugymbhgnltlvwLmIn94KN/cdf4e6Tcwbtg6IiJ7oHAeDEceEsULWS/+MPL7m/w+6ffUNy6wrbv3GNVKpZWlbWg/eLJl+yK7m1s0scLbEDvdpZDEt5pMkLaEgqeMzk1sU4gEAikIQSCkKahkxG7cmYIkFFmlAs9N7gM/kpuhYUK5PW+Towjnv3H++4yyBgXgjT2+IyBGTdljldWkf/Se0Ow/9WfXvE+019rIDk3BLjwIqNiezjzdmzd2I0mIKc4GPJ+yHXP7DzFWoFAIBAIZGQELrroIluwdLUNvPURJT/7OwF96O5r7fnXhvv80WWrNtiAXm0NUyLiUqniRexxEc9OrRu5+d7dt/S3mfOWSeXT0zJnyuRtKMh/cYG/SRVUFEPMz86dK4dUQCOtVdO6MvQbr/nYJzMy7HHsgUAgkA4RCEKaDk9a7HICAbLAuOguV1CfMW+pE8gf3HOdTZmx0Ee87N5zwJpdVtNy5sjmJBKy+tBjT1vfbpe7ccS3JJ8i2F+t/hskuRBNTCUe0vDxQX06yHJ/sUwiZByRNasy0POtQe0q9pKkv5DhWAKBQCAQCAQCga9D4IsvvrCs6u1cq9nWt97/a8ufL7dt2LzD1Th/fn6otW5ez+7U3GyM8n7+xIueMCWW3TGkr8+9PnbsU83PLupxq0fH5t43ynv7NRcbt3mqpL9RMrVL2yZuzHeV1D3r9V2xBAKBQCCQ3hAIQprezljs7/9B4JAcdvftP2T7Dx62eu2H2F49f0huhJ3bNjaqpMxze0KjWx686xq58q5yt0PTeDYqrBXKFLefyvGwZ6cWnpn+tiRRW7fvVpW0mkbF5NFYmbd9rAz2/MyDw203lkAgEAgEAoFA4EwQOH78M9ujxOmBQ0eMiijtJVQ0ccJlNjaxi5nZ2bJmUQV0u1Uun0ic9lHiFLnut2/ubwvkJo8pElVSN+irUl7Kn+dEZLt5TOvTtZXlUOKVUWYxH/tMzkqsEwgEAmkNgSCkae2MxP58YwR27Nrns0I/O3HCRo2bYXMWrnAZFEYQkMvpc5ZY3RqVnKz21DgYMtL3amYpQZx+U8bBbN+9z8qXoZf0b3Zlz7aS+c51e32Gmm/ftTfkut/47MQHA4FAIBDIuAgwx3rTlp22V9XNEWOn29xFK63Dlfd4MvSBn/3ZE5445zLqhcQpju/EJLwTypYqZj+WTJdKKIZ7d8lxd8/eg1ZOfaaY+f3lxXc1Y7uevSrDvZiPnXH/xuLIA4H0jEAQ0vR89mLf/78IUOHcqT5T5o6uXLPJOg74jpXSaJdnXh6mUS9X2zK56V5zRWdjNtyRo5/4yJefP/GSdZLV/m///Krdem0vz1Tj0ptXFv0+cLxuNXtBo18wm4glEAgEAoFAIBD4JghAGLfJmIg2kS2KVe8Mn2h79h206jI5wjF36Yr1Vr1yOTfYI3H66OMvSsLbx2bOX+azsuk33bAlIfulgkp1dKJaSq5Sm8lajSSLJRAIBAKB9IhAENL0eNZin88IgQOS8DIu5tPPPvNZbfSI0sdTpWIZN5cgA43hEc6FU+VMiEmEWn7sUlVDS2mMzM91I9C1fTN7dehYu35gF5dbndEXx0qBQCAQCAQCgcDXIHDy5CnbKyI6d+FK275jj13e+04fLfbks295lXTJinWu3MEYKWeO7G7Ch9Nux8sb2eN/fcPuvKGvrVO/aJe2TS2X3l8o86Qw3PsawOOtQCAQSNMIBCFN06cndi4lEKCqSaA+cPCI9+KMmzxHZkZLbWDv9nZKNwX07mAQ8deXhllzzSV95Ld/996cOZJUXdWnvWVSRhp5VAT7lDgbsY1AIBAIBAKBf0WAdhDiFPFoo6qfDdrfoLhzqf1M/gYdWze07//8Lx6T6Du9SXO1T3z+uV0solpEcevxZ97wcWYvvTUq5mP/K6jxPBAIBNIVAkFI09Xpip39XxAgiGN8RPDHnZdZptNmL7Y7NMu0a7um9sFHU+3Gwd3t6NHjVql8ou/01aFjrHGDGvacbPoPHT76v3x9fDYQCAQCgUAgEPhKBIhPxKbPNbN0+8699tq7Y2V+NF/O7p96a0mh/Hntdb3WqF41eSC85EnVqXKVH6TE6ep1W75yu/FGIBAIBAJpHYEgpGn9DMX+nRME6NmBYGbJnMmHiP9a80j3HThsM+YutaqVytiPf/uc9evW2me6YXiEfCqWQCAQCAQCgUDgXCPAuBgqpbScLJDB0YbN261x11v899feG2u3XddHxHW/K3py5cru7SSh4DnXZyW2HwgEAucSgYvy5cunrrlYAoFAIF/eXOoh/UIkNbOcC3PbxHf/ZH2GPGSPPXSL9bru+5L8Hg6QAoFAIBAIBAKB847AxRdf5H2kpxSjjn5yzCqWLWlNpN6h3QRH+fdGTjnv+xRfGAgEAoFASiEQhDSlkIztXFAIMCaGTA2mEwR8RsrEEggEAoFAIBAIpDYCjCErUaygfaKRMMWLFrQTJz635atjRnZqn5f4/kAgEPjmCAQh/ebYxSczCAI5smf1WXAZ5HDjMAOBQCAQCATSCQJZsmS2L06d8pnb6WSXYzcDgUAgEPg/CFz6f16JFwKBQODfEGAweSyBQCAQCAQCgUBaQ+DTTz9La7sU+xMIBAKBwFkjEKZGZw1ZfCAQCAQCgUAgEAgEAoFAIBAIBAKBQCAlEAhCmhIoxjYCgUAgEAgEAoFAIBAIBAKBQCAQCATOGoEgpGcNWXwgEAgEAoFAIBAIBAKBQCAQCAQCgUAgJRAIQpoSKMY2AoFAIBAIBAKBQCAQCAQCgUAgEAgEzhqBIKRnDVl8IBAIBAKBQCAQCAQCgUAgEAgE/l97dwKnU9UHcPzPmKHspBDiTUqULJV17NnXaH1TSSpli6wlUtnXKEXWrNlSdpGUpbK30Sa92ZOdMZb3/E+eMcZzx3N172SefufzYWbunHuee7/33OV/ljsIIOCFAAGpF4qUgQACCCCAAAIIIIAAAggg4FqAgNQ1GSsggAACCCCAAAIIIIAAAgh4IUBA6oUiZSCAAAIIIIAAAggggAACCLgWICB1TcYKCCCAAAIIIIAAAggggAACXggQkHqhSBkIIIAAAggggAACCCCAAAKuBQhIXZOxAgIIIIAAAggggAACCCCAgBcCBKReKFIGAggggAACCCCAAAIIIICAawECUtdkrIAAAggggAACCCCAAAIIIOCFAAGpF4qUgQACCCCAAAIIIIAAAggg4FqAgNQ1GSsggAACCCCAAAIIIIAAAgh4IUBA6oUiZSCAAAIIIIAAAggggAACCLgWICB1TcYKCCCAAAIIIIAAAggggAACXggQkHqhSBkIIIAAAggggAACCCCAAAKuBQhIXZOxAgIIIIAAAggggAACCCCAgBcCBKReKFIGAggggAACCCCAAAIIIICAawECUtdkrIAAAggggAACCCCAAAIIIOCFAAGpF4qUgQACCCCAAAIIIIAAAggg4FqAgNQ1GSsggAACCCCAAAIIIIAAAgh4IUBA6oUiZSCAAAIIIIAAAggggAACCLgWICB1TcYKCCCAAAIIIIAAAggggAACXggQkHqhSBkIIIAAAggggAACCCCAAAKuBQhIXZOxAgIIIIAAAggggAACCCCAgBcCBKReKFIGAggggAACCCCAAAIIIICAawECUtdkrIAAAggggAACCCCAAAIIIOCFAAGpF4qUgQACCCCAAAIIIIAAAggg4FqAgNQ1GSsggAACCCCAAAIIIIAAAgh4IUBA6oUiZSCAAAIIIIAAAggggAACCLgWICB1TcYKCCCAAAIIIIAAAggggAACXggQkHqhSBkIIIAAAggggAACCCCAAAKuBQhIXZOxAgIIIIAAAggggAACCCCAgBcCBKReKFIGAggggAACCCCAAAIIIICAawECUtdkrIAAAggggAACCCCAAAIIIOCFAAGpF4qUgQACCCCAAAIIIIAAAggg4FqAgNQ1GSsggAACCCCAAAIIIIAAAgh4IUBA6oUiZSCAAAIIIIAAAggggAACCLgWICB1TcYKCCCAAAIIIIAAAggggAACXggQkHqhSBkIIIAAAggggAACCCCAAAKuBQhIXZOxAgIIIIAAAggggAACCCCAgBcCBKReKFIGAggggAACCCCAAAIIIICAawECUtdkrIAAAggggAACCCCAAAIIIOCFAAGpF4qUgQACCCCAAAIIIIAAAggg4FqAgNQ1GSsggAACCCCAAAIIIIAAAgh4IUBA6oUiZSCAAAIIIIAAAggggAACCLgWICB1TcYKCCCAAAIIIIAAAggggAACXggQkHqhSBkIIIAAAggggAACCCCAAAKuBQhIXZOxAgIIIIAAAggggAACCCCAgBcCBKReKFIGAggggAACCCCAAAIIIICAawECUtdkrIAAAggggAACCCCAAAIIIOCFAAGpF4qUgQACCCCAAAIIIIAAAggg4FqAgNQ1GSsggAACCCCAAAIIIIAAAgh4IUBA6oUiZSCAAAIIIIAAAggggAACCLgWICB1TcYKCCCAAAIIIIAAAggggAACXggQkHqhSBkIIIAAAggggAACCCCAAAKuBQhIXZOxAgIIIIAAAggggAACCCCAgBcCBKReKFIGAggggAACCCCAAAIIIICAawECUtdkrIAAAggggAACCCCAAAIIIOCFAAGpF4qUgQACCCCAAAIIIIAAAggg4FqAgNQ1GSsggAACCCCAAAIIIIAAAgh4IUBA6oUiZSCAAAIIIIAAAggggAACCLgWICB1TcYKCCCAAAIIIIAAAggggAACXggQkHqhSBkIIIAAAggggAACCCCAAAKuBQhIXZOxAgIIIIAAAggggAACCCCAgBcCBKReKFIGAggggAACCCCAAAIIIICAawECUtdkrIAAAggggAACCCCAAAIIIOCFQCovCqEM9wKRqVJJypShtQecOXNGYk+dcv8hrHHFCkREREiKFCnMv9DrwOnT1IEr9oD6vGEpTV2JjIoM+VNiT8bKmbNnQ85PxuQtkDJlhKQ015RQU1RUajl29HCo2cmHAAIIIICArwIEpL7yOhc+vk9vKVmkiHOGeL9ZvXGjPNiufbwlfJvcBfQBsmOHXpI3b/6QdmXt2pXy1og+IeUlU/gJaDD627qZIe9Y7mINJSbmZMj5yZi8BcpWqycNHm0R0k7EnDguvds1JSANSYtMCCCAAAJJIRBa90xSbAmfgQACCCCAAAIIIIAAAggg8K8SoIc0zA93uejyQfdw7VdfyrFjx4L+zsuFBW8tJNdcc42cOHFC9uzeLb/+us2z4rNlu1ZuKVhQdEjz3j17ZOvWLYmWHRgirfndpLTp0smTzZ+WwQP7u1ntish7TbZsUrDgrRdty9GjR2Xd2q8uWu7XgnTp08sddxSV667LLjt2/C5ffvGFnDoVG/LHaT3SIc7ffvN13DoFCtwsV199tWzYsD5uWajf6Hp33lVSln+yVFKnTi0tW7WV/v16h7p62ObTuqJ1JmH6dds22b7914SLPf/Z7Tnt+QacKzCwHWfNsOeYmBjZumWLHDx4wP72Pzfml6jISPn+++8u+fFdX+our/Xsfsl8ySXDP3k/SaxuXp8rl6RJc5UsW7rEc8rLPYZZsmSRO4oWk/TpM8h3335zyftTKjON5xRTczw/fhSIAALJQ4CANHkcp8veyqpVq9l1b77lFsmYMZN8sWa1/fm7775NkoD0+XYd5OzZM7Jz5w7JnDmrZM+RXQb26yurV6+87H0KrFimbDlp8Vwr+fyzFZI1a1YT7FwnzZs1jXtwDOQLfH34v01EHzQHDugbWBTS1zRp0kit2nWTZUCqAWCgDtxTvYZsWL/ONgzs2bM7yQLSSpWr2IBPH+C3bftFihYrLu1f6CQP3NdQYmNDC0q1HhUvcadUKl9aDhw4YIPIMeMmyt59e6V+nRohHcf4ma4yAWmp0qVtQBoZFSV16zcgIDVAtxW5QwoXKixRJkivV7+hvD91smVbuvTjJAlI3Z7T8Y+pl98HtmPFp8slytSPUqXKSKeO7eSrL7+QPHlukLRp04YUkN7b6L6wCkgD15J/4n6SWN3Mly+faKOXHwHp5RzDuvXqi95vtOEt5mSM1KhZSzaZqTdvDh8atJpmzpxZZsz6UCpVKBv09yxEAAEEwl2AgDTMj3C3l7rYPXzo4UfkpgI3S4+XX4zb45q16pjAoKNob9nMGe/LmNGjbC/U/EVLTfCa0bbWjh71jl2urb1Dh42QvXv3SMVKVUQf1BbMn2vXP2mCim5dO8uaNaviyo7/zXsTxsmnyz+xi3LkyClz5i6QOjWrya5dO+W+Bx6S1q2fty94GjVyhLxrPk+TPgR06NTF9k5oz+rQIQPjyrAZzv23Yf3auH16Y/jboi34f/yxT/oNGCwpzQuDDhz4Uzp1aCcagLdu004iTCu07veggf3sg2Yu07Ke8/pccqt5CK9Xu7rj9sT/zOT0/Tdfb5Zu5p+m/DcVkFEj37YP1YF98LsOaM/FsDffkeiyd8u+vXsDH3vBV6c6cEEm88PCBfOkmemp7t+3t9z/4MOyfPkye9w0n/aeBqu3+rtgdWnTxg2SP38B/fUFSXtLtR5pXdQXTyWsR5s2bZQGDRtJ/HrzeJOH7D7u27dPKlSsaAP9Fk8/mSQNPhdsvAc/TJsySaaZcrTxShsSAtcPLTp3njzSf+AQyXZNNlm1aqUM7N/HnGt/SMfOXa3JmdNnZNOmDdKm1bN2RMTgocPtOa6B7TFzjenR/SV56ulnzXWogIwd/a7jw3mwc3rxogXyeu9+9vzev3+/dGjXxnzWRnl75Gh7/u/YsUN69ekvs2fOsNehlq3bykbTc67XnWB1XK9nffsPls9WfCoN7m0kr/fscdH1S7ejZ49uVlU/O1eu3PbcyZgxg/XRX+g+ahDUqPEDdt8HDegvr77eW6pVryk7zUgADVw13XzzLdKn/yDRzz1oGlRaPfeM/PLLz/Z3yem/QH0Idj8JVj/0WAU7Ly/nfpJY3cyXr5ncemshmfXBXDsKY/iwITLxvfGSM2dO6dz1ZWn57FOW+ZEmj8mhQ4fkg9kz7bHT0Rr16jWUPea+1rVzBzsCI1WqyKDHUHswu738ikRXqGhH+gwbOtgEnGsuuh60bf2cvNCxi1SpWM7ev+IfX6frlObPc0NeWbJ0haxf95V0Mdui1x5tvNOkn/X+tCnxi+J7BBBAIKwEmEMaVocz9J3Rm+7TLZ6T+xo3kEYN69oHKL156xC1Fk81k1J3FZMa1SrLU888KzpkNSIildx2++0yaeIEKVG0sL3RV6xUWerWriGvmAfNx5o+EdKHa0+pDhUtYoZvas/jM6b8B+5vKA3q1bJBhj6o5M2bT9p36CRNHn5AypctaYZ47jAPdukSLV+3UbdPe+B06G7NalWkdMni0rdPL3m+fQfbEzdk8ACZMG6MVKlUTuZ+NEcyZcokDe9tLB8vWSQd27d13J5EPzgZ/zIp6kDRosVFg2KnYNSpDgRj1UaTGjVqybXXXmcCgPtl2rneO83rVG+d6pI2TNyQN+8FH6NDuocOe0tWfv6ZHUkQrB7pCgnrjZ4bOqR4zOiRUq703XZbostXvKDscPhBG3TefGOo7cXZZoIpPXc0TZk0UcqULCFlSpWQw4cPS5269e1yDeAOHTxkz+EpJtDt8cpr0v3lrlKhXCnT8POg7eW2GR3+i39OV6laTTQg0OtBr1dfMUHwXw1re8xQ/WLF77RlVahYSWrWrm1Lq1Chkh1m61TH9ZhFl68gkZGp7LkfbPjt3SVLy6Ahw2TchEl2uLleMzRlzJRZsmTNar/XfaxcpZoMMMH55EnvyX8fedTWzyoVy0rjRvXlpOkd06QBx9tvDZfoMndL2zbPycnY8HvhVLD64XReenU/sbjn/stkjssz5t5Vp9Y90vzpFraRSo+/BsqBpMctk+mN1KTHThtKKlUoI+PGvGt7NHW50zEsF13Bvsm4SsVoealLJ+lgjqmmhNeDwoULm5Eo6y8KRjWvk0e/Pq/LdjOdRe9NL5h7Ue069eLqe83qVeTnn3/S1UkIIIBA2ArQQxq2hzbxHStdpozN0Lz5M/ZrpJkTVaFiZRtw5jXDn1q1ed4OTdOeEu0R0V7UXbt22RZhXUF7HNeYYbeHDx+SzZs22QdyW1AI/x05ckTSmQBSh8XpELjftm+3ay1fttRug75RVIfhbtnyvV2un+GUKlWqKrPmzLM9Vtrr8vXmTeYhM9IEyCaoNsPscuTIYR8CnNafOXO6LFm8yP66cpWqQbdHe+LCMSVFHdC5mtojEUgzZ38k2muqSYMLpzqgwWfCFHvypH3onzRlukyfPlViTpy4IEuwent3qVIh16UePV+3QczYMaNsuYcOHnSsR/HrjQ4D1yHQ69ettet9OOcDKWk+V0cQhEvSYFDPp/2mR1SPmQ4x1JEFI98ZYXexc9duUrjwbaLHYNsvv8Tt9gLTq33SHLfNpjdzS/ES8sPWrfZ3v//vf3Jj/psumBMcWCnYOd30iSfNKI7pcvz4cdsz/sprvewQzTWrV9leJL0+jR87xvSG1rYP8jp8U0dgaNCpKeF1bvGihbaHMrD9NlOC/37+6UeZOnmSGVURIdEmGBn57lh5rMnDCXKZXtJB/UXzatIecu2Z055jTbGxp+zXn378QR57vKkdlaHzlnXYeTilxOpHsPPSy/tJwHHlys/sMdefj5iGkZzXXx/4lePXefPm2sBRG0mbNmtu8zkdw+o1atqGjw4dO9t8N5q5xBqMaop/PbjdNLbGxFx4bbKZzv0XzCMwPzmQT3vPS9x5lzR78ilb3/WdDyQEEEAgnAUISMP56Cayb1myZJUtZk7f/HMPzfp1x++/mwfp0rblV1tpt5qAcPLUGUFLOXP6dNzyM2aOaOCFQXELHb7RIUu3m3lqw98YYntJD5vgNJCOHD1ihwrrMK+j5vtQkg4Tfu3VHrLbBMunz21Tt+497aovdu2oTdIyavT4uKL0851ShgwZJdj2OOVP7suTog78ZB7Uy5aLlquuusoGE/c3bmB7LtZ8tdF+dWuuPfTaMzdh/FjJk/t8z4dTvT1x/ERIdUnnBeq8OH05ltYR7clIrB4lduz1pVnakBNOKbUZzRBrevUC1wvdt+PmpWh63k+dPsuMkuhmhhUOssOj9eUyCdPZMxf+TdTTZ047XjOCndPqeeTI+b+bqS9JS3t1WtMotko0WNWh1qNMcHxj/vxSt14DM19vg90EpzqecPuC/azTEwJz3bWBbP2m72wQHCxvYJnWnX379gV+jPvau9erpue4nulNvUde7NbdzJ++VzRIDZfkVD+czsuE+32595OE5QR+PmXuBYF7UmLX/PP5T5kpHn/dG5yOodYl7SX/1fRkatJzIdiLAXX0wKOPPm7zJPwvVA+d6//E403stW7suElmKsvbMvrdkQmL42cEEEAgbARShs2esCOuBJaYYarawqs9itqzo8Mq9UacL99/7Pww7dHQG3qgBdhV4Q6Ztbfs5R49bSCsQ5C0p6CUCYB1WJV+Vtmy0Wb47GL5/PMVUq5ceTvUyr7t8paCDiWKDTY0kA4Eo5pR92H2rBk2wL7WvNQnkHS4sM6NdUpO2+OUP7kvT4o6oA9WP/6wVR5v+qTl0pcYaY9ZILk11wdAHcJ2NF5DhpblVG9DrUu//bZd7m/UwLyx+ax07vKS3TynehTY9mBfdd7pPdWqJ9kLo4Jtgx/L1FuHtWoQqtcL/ae9lRkyZBANNufP+8j2+mU3c8T/btLGqITntA6rL39uGLTOQz9p3ny7e/cuO6ddrys3mPl3Olx/0cL50ub59jZQ1e1wquNut7GQ6f09axoadIhnYknn1pY1Pciaspq3i6c2L0TSpG/mnfPBbGndsoUsML1yhQoVssvD5T+n+uF0XibVfmsveUZTR/X+ovc3bXi6VHI6hhqM6jD/QP3XBotgb8XV3ladiqDTCgJJXy6nw3CdPA4fPmKHA+s2atLt3PL993YOc7u2rWxDcaAsviKAAALhKEAPaTge1RD2SYc0TX9/qrw5YpSkTpPa3gD1pQ76YKnDXXVopfb06NtI/27q3WeAHD12VCLMQ8EnnywTvcFq0p7Q2eblEtNnzbEPe/qCkcCflhhh5lu9ZbZNh3ueOn3KDg0OdTsmjB9j535pb1f8XpVVKz+3LzbSIZ/aw5YwOW2PPliGY0qKOqANBTqvq6d50cu9jRrb+cDXZc9u5mmusMMZjx93rgNuzJ3qrc5dDaUuaY+o/mvXtqVMnPy+NDE9HE71KNh26QOkviUze/Yc8q35Ew9TJk8Mli1ZL3tz2FB5tmUb+6d2cuXObV8YpH/SZNmyj2XB4mX2RUZquHjhAs/3U4+vDqmeNmO2fVnZgP7n35S93jR67N//1xBZfYmRzjHWXlZNTnVc/4zLpVJ1M1/5DjMHWl+Odvz4MdEXVek1MbH00YcfyMDBb0gtE3z8YXpKU5hrniadX5nXDGfWkRwadCyYPy+xYpLl74LVj+FvDPb8fuIGRxu/lphGzrnzF9tjpz/ry7ASS07HUF+s1ck0VumIG22oTW8C3VqmcSxh0iBVr3m9+w6wvff60j99C/yAfn0c76/6J7C0MX2P1RoAAAY4SURBVFavIZs3b7QNWuMnTjGNeT/Y4Nbtm+ETbhM/I4AAAle6QAozF+jCsVRX+haHyfZNNm9jLFmkSEh7s3rjRnmwXfuQ8l5OJp0PdtDMl4v/sKUP1toDoQ+YfiftIY2ISHnBSyB0Hqj2pmmP05jxE6WZGb4Uv2ftUtukLdQ6TPTPP/+8KKsO/0s4Zyd+pmDbE//3XnwfGRklHTv0krx584dU3Nq1K02A3iekvJeTKSnqgB5THfamPQvx65pur1fmwert36lLidWjgLP24r83eZp5OK1qG3e0t8jrlDp1lPy2bmbIxeYu1tCcT+d7okNeMYSM+rKhU+bc1L/PGUj6MjLtvdahtH4m/ezL9Q1Wx/3aVvXQBq74KfDG3aOX6GWNv06o30fXMC+Ge7RFSNljThyX3u2ayoE/9oaU322mYPUj2Hnptty/k1+v+drzHqxH06ncYMdQ8+p82bRp0yV6DwmUqfegdOnS22teYJl+dfLQOqLnrQao+jk6AiFhPYpfDt8jgAAC4SJAQPoPHclIc7MJzHG51Cbow3usaXX9N6UP5y60wejOnTvNS4cW2pfZhNP+a6CtPSUpTO9LKEnrwGnTU0xyL+B3XQoEpNWqVHC/cSGuofPb9GVfoabYk7FyJgkak0LdHvL5K5AyZYQd8hnqp0RFpTbDj8/PyQ11PfIhgAACCCDghwABqR+qlOmJgPZO+d3j4smGUsgVL+B3XdLGpYS9vlc8ChuIAAIIIIAAAghcAQIEpFfAQWATEEAAAQQQQAABBBBAAIF/o0Bo4wX/jTLsMwIIIIAAAggggAACCCCAgK8CBKS+8lI4AggggAACCCCAAAIIIICAkwABqZMMyxFAAAEEEEAAAQQQQAABBHwVICD1lZfCEUAAAQQQQAABBBBAAAEEnAQISJ1kWI4AAggggAACCCCAAAIIIOCrAAGpr7wUjgACCCCAAAIIIIAAAggg4CRAQOokw3IEEEAAAQQQQAABBBBAAAFfBQhIfeWlcAQQQAABBBBAAAEEEEAAAScBAlInGZYjgAACCCCAAAIIIIAAAgj4KkBA6isvhSOAAAIIIIAAAggggAACCDgJEJA6ybAcAQQQQAABBBBAAAEEEEDAVwECUl95KRwBBBBAAAEEEEAAAQQQQMBJgIDUSYblCCCAAAIIIIAAAggggAACvgoQkPrKS+EIIIAAAggggAACCCCAAAJOAgSkTjIsRwABBBBAAAEEEEAAAQQQ8FWAgNRXXgpHAAEEEEAAAQQQQAABBBBwEiAgdZJhOQIIIIAAAggggAACCCCAgK8CBKS+8lI4AggggAACCCCAAAIIIICAkwABqZMMyxFAAAEEEEAAAQQQQAABBHwVICD1lZfCEUAAAQQQQAABBBBAAAEEnAQISJ1kWI4AAggggAACCCCAAAIIIOCrAAGpr7wUjgACCCCAAAIIIIAAAggg4CRAQOokw3IEEEAAAQQQQAABBBBAAAFfBQhIfeWlcAQQQAABBBBAAAEEEEAAAScBAlInGZYjgAACCCCAAAIIIIAAAgj4KkBA6isvhSOAAAIIIIAAAggggAACCDgJEJA6ybAcAQQQQAABBBBAAAEEEEDAVwECUl95KRwBBBBAAAEEEEAAAQQQQMBJgIDUSYblCCCAAAIIIIAAAggggAACvgoQkPrKS+EIIIAAAggggAACCCCAAAJOAgSkTjIsRwABBBBAAAEEEEAAAQQQ8FWAgNRXXgpHAAEEEEAAAQQQQAABBBBwEiAgdZJhOQIIIIAAAggggAACCCCAgK8CBKS+8lI4AggggAACCCCAAAIIIICAkwABqZMMyxFAAAEEEEAAAQQQQAABBHwVICD1lZfCEUAAAQQQQAABBBBAAAEEnAQISJ1kWI4AAggggAACCCCAAAIIIOCrAAGpr7wUjgACCCCAAAIIIIAAAggg4CRAQOokw3IEEEAAAQQQQAABBBBAAAFfBQhIfeWlcAQQQAABBBBAAAEEEEAAAScBAlInGZYjgAACCCCAAAIIIIAAAgj4KkBA6isvhSOAAAIIIIAAAggggAACCDgJEJA6ybAcAQQQQAABBBBAAAEEEEDAVwECUl95KRwBBBBAAAEEEEAAAQQQQMBJ4P/DUEJ6udt1XQAAAABJRU5ErkJggg==", "text/html": [ - "
\n", + " " + ] + }, + "metadata": {}, + "output_type": "display_data" + }, { "data": { "application/vnd.plotly.v1+json": { @@ -2734,19 +2672,19 @@ { "customdata": [ [ - 49, + 39, "bronze", - 49 + 39 ], [ - 38, + 57, "silver", - 76 + 114 ], [ - 53, + 39, "gold", - 159 + 117 ] ], "hovertemplate": "
Total medals: %{customdata[0]} %{customdata[1]}
Medal score: %{customdata[2]} points", @@ -2767,9 +2705,9 @@ "opacity": 0.8, "showlegend": true, "text": [ - 49, - 38, - 53 + 39, + 57, + 39 ], "textangle": 0, "textfont": { @@ -2784,31 +2722,31 @@ ], "xaxis": "x", "y": [ - 49, - 38, - 53 + 39, + 57, + 39 ], "yaxis": "y" }, { "customdata": [ [ - 35, - 76.09, + 28, + 73.37, 184, - 284 + 270 ], [ - 27, - 76.09, + 42, + 73.37, 184, - 284 + 270 ], [ - 37, - 76.09, + 28, + 73.37, 184, - 284 + 270 ] ], "hovertemplate": "
Medal distribution: %{customdata[0]}%
Participation: %{customdata[1]}%
Team players: %{customdata[2]}

Team Score: %{customdata[3]}", @@ -2824,9 +2762,9 @@ "width": 2 }, "size": [ - 40.57142857142857, - 40.57142857142857, - 40.57142857142857 + 38.57142857142857, + 38.57142857142857, + 38.57142857142857 ] }, "mode": "markers", @@ -2841,28 +2779,28 @@ ], "xaxis": "x", "y": [ - 49, - 76, - 159 + 39, + 114, + 117 ], "yaxis": "y2" }, { "customdata": [ [ - 20, + 27, "bronze", - 20 + 27 ], [ - 24, + 20, "silver", - 48 + 40 ], [ - 20, + 22, "gold", - 60 + 66 ] ], "hovertemplate": "
Total medals: %{customdata[0]} %{customdata[1]}
Medal score: %{customdata[2]} points", @@ -2883,9 +2821,9 @@ "opacity": 0.8, "showlegend": true, "text": [ + 27, 20, - 24, - 20 + 22 ], "textangle": 0, "textfont": { @@ -2900,31 +2838,31 @@ ], "xaxis": "x2", "y": [ + 27, 20, - 24, - 20 + 22 ], "yaxis": "y3" }, { "customdata": [ [ - 31, - 79.01, + 39, + 85.19, 81, - 128 + 133 ], [ - 37, - 79.01, + 28, + 85.19, 81, - 128 + 133 ], [ 31, - 79.01, + 85.19, 81, - 128 + 133 ] ], "hovertemplate": "
Medal distribution: %{customdata[0]}%
Participation: %{customdata[1]}%
Team players: %{customdata[2]}

Team Score: %{customdata[3]}", @@ -2940,9 +2878,9 @@ "width": 2 }, "size": [ - 18.285714285714285, - 18.285714285714285, - 18.285714285714285 + 19, + 19, + 19 ] }, "mode": "markers", @@ -2957,32 +2895,32 @@ ], "xaxis": "x2", "y": [ - 49, - 76, - 159 + 39, + 114, + 117 ], "yaxis": "y4" }, { "customdata": [ [ - 28, + 65, "bronze", - 28 + 65 ], [ - 30, + 64, "silver", - 60 + 128 ], [ - 23, + 58, "gold", - 69 + 174 ] ], "hovertemplate": "
Total medals: %{customdata[0]} %{customdata[1]}
Medal score: %{customdata[2]} points", - "legendgroup": "Go Magikarp bar", + "legendgroup": "Dog Patrol bar", "marker": { "color": [ "rgb(194, 144, 80)", @@ -2995,13 +2933,13 @@ "width": 2 } }, - "name": "Go Magikarp medals", + "name": "Dog Patrol medals", "opacity": 0.8, "showlegend": true, "text": [ - 28, - 30, - 23 + 65, + 64, + 58 ], "textangle": 0, "textfont": { @@ -3016,9 +2954,9 @@ ], "xaxis": "x3", "y": [ - 28, - 30, - 23 + 65, + 64, + 58 ], "yaxis": "y5" }, @@ -3026,25 +2964,25 @@ "customdata": [ [ 34, - 73.64, - 110, - 157 + 79.24, + 236, + 367 ], [ - 37, - 73.64, - 110, - 157 + 34, + 79.24, + 236, + 367 ], [ - 28, - 73.64, - 110, - 157 + 31, + 79.24, + 236, + 367 ] ], "hovertemplate": "
Medal distribution: %{customdata[0]}%
Participation: %{customdata[1]}%
Team players: %{customdata[2]}

Team Score: %{customdata[3]}", - "legendgroup": "Go Magikarp scatter", + "legendgroup": "Dog Patrol scatter", "marker": { "color": "rgb(251,230,197)", "line": { @@ -3056,13 +2994,13 @@ "width": 2 }, "size": [ - 22.428571428571427, - 22.428571428571427, - 22.428571428571427 + 52.42857142857143, + 52.42857142857143, + 52.42857142857143 ] }, "mode": "markers", - "name": "Go Magikarp metrics", + "name": "Dog Patrol metrics", "opacity": 0.7, "showlegend": true, "type": "scatter", @@ -3073,32 +3011,32 @@ ], "xaxis": "x3", "y": [ - 49, - 76, - 159 + 39, + 114, + 117 ], "yaxis": "y6" }, { "customdata": [ [ - 71, + 46, "bronze", - 71 + 46 ], [ - 57, + 43, "silver", - 114 + 86 ], [ - 55, + 49, "gold", - 165 + 147 ] ], "hovertemplate": "
Total medals: %{customdata[0]} %{customdata[1]}
Medal score: %{customdata[2]} points", - "legendgroup": "Dog Patrol bar", + "legendgroup": "ThunderCats bar", "marker": { "color": [ "rgb(194, 144, 80)", @@ -3107,17 +3045,17 @@ "rgb(0, 0, 0)" ], "line": { - "color": "rgb(160,185,205)", + "color": "rgb(240,205,204)", "width": 2 } }, - "name": "Dog Patrol medals", + "name": "ThunderCats medals", "opacity": 0.8, - "showlegend": true, + "showlegend": false, "text": [ - 71, - 57, - 55 + 46, + 43, + 49 ], "textangle": 0, "textfont": { @@ -3132,37 +3070,37 @@ ], "xaxis": "x4", "y": [ - 71, - 57, - 55 + 46, + 43, + 49 ], "yaxis": "y7" }, { "customdata": [ [ - 38, - 77.54, - 236, - 350 + 33, + 75, + 184, + 279 ], [ 31, - 77.54, - 236, - 350 + 75, + 184, + 279 ], [ - 30, - 77.54, - 236, - 350 + 35, + 75, + 184, + 279 ] ], "hovertemplate": "
Medal distribution: %{customdata[0]}%
Participation: %{customdata[1]}%
Team players: %{customdata[2]}

Team Score: %{customdata[3]}", - "legendgroup": "Dog Patrol scatter", + "legendgroup": "ThunderCats scatter", "marker": { - "color": "rgb(160,185,205)", + "color": "rgb(240,205,204)", "line": { "color": [ "rgb(194, 144, 80)", @@ -3172,15 +3110,15 @@ "width": 2 }, "size": [ - 50, - 50, - 50 + 39.857142857142854, + 39.857142857142854, + 39.857142857142854 ] }, "mode": "markers", - "name": "Dog Patrol metrics", + "name": "ThunderCats metrics", "opacity": 0.7, - "showlegend": true, + "showlegend": false, "type": "scatter", "x": [ "Bronze", @@ -3189,32 +3127,32 @@ ], "xaxis": "x4", "y": [ - 49, - 76, - 159 + 46, + 86, + 147 ], "yaxis": "y8" }, { "customdata": [ [ - 62, + 20, "bronze", - 62 + 20 ], [ - 41, + 22, "silver", - 82 + 44 ], [ - 47, + 15, "gold", - 141 + 45 ] ], "hovertemplate": "
Total medals: %{customdata[0]} %{customdata[1]}
Medal score: %{customdata[2]} points", - "legendgroup": "ThunderCats bar", + "legendgroup": "Power Birds bar", "marker": { "color": [ "rgb(194, 144, 80)", @@ -3223,17 +3161,17 @@ "rgb(0, 0, 0)" ], "line": { - "color": "rgb(240,205,204)", + "color": "rgb(173,172,194)", "width": 2 } }, - "name": "ThunderCats medals", + "name": "Power Birds medals", "opacity": 0.8, "showlegend": false, "text": [ - 62, - 41, - 47 + 20, + 22, + 15 ], "textangle": 0, "textfont": { @@ -3248,37 +3186,37 @@ ], "xaxis": "x5", "y": [ - 62, - 41, - 47 + 20, + 22, + 15 ], "yaxis": "y9" }, { "customdata": [ [ - 41, - 81.52, - 184, - 285 + 35, + 70.37, + 81, + 109 ], [ - 27, - 81.52, - 184, - 285 + 38, + 70.37, + 81, + 109 ], [ - 31, - 81.52, - 184, - 285 + 26, + 70.37, + 81, + 109 ] ], "hovertemplate": "
Medal distribution: %{customdata[0]}%
Participation: %{customdata[1]}%
Team players: %{customdata[2]}

Team Score: %{customdata[3]}", - "legendgroup": "ThunderCats scatter", + "legendgroup": "Power Birds scatter", "marker": { - "color": "rgb(240,205,204)", + "color": "rgb(173,172,194)", "line": { "color": [ "rgb(194, 144, 80)", @@ -3288,13 +3226,13 @@ "width": 2 }, "size": [ - 40.714285714285715, - 40.714285714285715, - 40.714285714285715 + 15.571428571428571, + 15.571428571428571, + 15.571428571428571 ] }, "mode": "markers", - "name": "ThunderCats metrics", + "name": "Power Birds metrics", "opacity": 0.7, "showlegend": false, "type": "scatter", @@ -3305,32 +3243,32 @@ ], "xaxis": "x5", "y": [ - 62, - 82, - 141 + 46, + 86, + 147 ], "yaxis": "y10" }, { "customdata": [ [ - 23, + 55, "bronze", - 23 + 55 ], [ - 16, + 60, "silver", - 32 + 120 ], [ - 16, + 67, "gold", - 48 + 201 ] ], "hovertemplate": "
Total medals: %{customdata[0]} %{customdata[1]}
Medal score: %{customdata[2]} points", - "legendgroup": "Power Birds bar", + "legendgroup": "Dog Patrol bar", "marker": { "color": [ "rgb(194, 144, 80)", @@ -3339,17 +3277,17 @@ "rgb(0, 0, 0)" ], "line": { - "color": "rgb(173,172,194)", + "color": "rgb(251,230,197)", "width": 2 } }, - "name": "Power Birds medals", + "name": "Dog Patrol medals", "opacity": 0.8, "showlegend": false, "text": [ - 23, - 16, - 16 + 55, + 60, + 67 ], "textangle": 0, "textfont": { @@ -3364,37 +3302,37 @@ ], "xaxis": "x6", "y": [ - 23, - 16, - 16 + 55, + 60, + 67 ], "yaxis": "y11" }, { "customdata": [ [ - 41, - 67.9, - 81, - 103 + 30, + 77.12, + 236, + 376 ], [ - 29, - 67.9, - 81, - 103 + 32, + 77.12, + 236, + 376 ], [ - 29, - 67.9, - 81, - 103 + 36, + 77.12, + 236, + 376 ] ], "hovertemplate": "
Medal distribution: %{customdata[0]}%
Participation: %{customdata[1]}%
Team players: %{customdata[2]}

Team Score: %{customdata[3]}", - "legendgroup": "Power Birds scatter", + "legendgroup": "Dog Patrol scatter", "marker": { - "color": "rgb(173,172,194)", + "color": "rgb(251,230,197)", "line": { "color": [ "rgb(194, 144, 80)", @@ -3404,13 +3342,13 @@ "width": 2 }, "size": [ - 14.714285714285714, - 14.714285714285714, - 14.714285714285714 + 53.714285714285715, + 53.714285714285715, + 53.714285714285715 ] }, "mode": "markers", - "name": "Power Birds metrics", + "name": "Dog Patrol metrics", "opacity": 0.7, "showlegend": false, "type": "scatter", @@ -3421,259 +3359,27 @@ ], "xaxis": "x6", "y": [ - 62, - 82, - 141 + 46, + 86, + 147 ], "yaxis": "y12" - }, - { - "customdata": [ - [ - 28, - "bronze", - 28 - ], - [ - 29, - "silver", - 58 - ], - [ - 34, - "gold", - 102 - ] - ], - "hovertemplate": "
Total medals: %{customdata[0]} %{customdata[1]}
Medal score: %{customdata[2]} points", - "legendgroup": "Go Magikarp bar", - "marker": { - "color": [ - "rgb(194, 144, 80)", - "rgb(169, 180, 195)", - "rgb(255, 222, 94)", - "rgb(0, 0, 0)" - ], - "line": { - "color": "rgb(251,230,197)", - "width": 2 - } - }, - "name": "Go Magikarp medals", - "opacity": 0.8, - "showlegend": false, - "text": [ - 28, - 29, - 34 - ], - "textangle": 0, - "textfont": { - "color": "black" - }, - "textposition": "inside", - "type": "bar", - "x": [ - "Bronze", - "Silver", - "Gold" - ], - "xaxis": "x7", - "y": [ - 28, - 29, - 34 - ], - "yaxis": "y13" - }, - { - "customdata": [ - [ - 30, - 82.73, - 110, - 188 - ], - [ - 31, - 82.73, - 110, - 188 - ], - [ - 37, - 82.73, - 110, - 188 - ] - ], - "hovertemplate": "
Medal distribution: %{customdata[0]}%
Participation: %{customdata[1]}%
Team players: %{customdata[2]}

Team Score: %{customdata[3]}", - "legendgroup": "Go Magikarp scatter", - "marker": { - "color": "rgb(251,230,197)", - "line": { - "color": [ - "rgb(194, 144, 80)", - "rgb(169, 180, 195)", - "rgb(255, 222, 94)" - ], - "width": 2 - }, - "size": [ - 26.857142857142858, - 26.857142857142858, - 26.857142857142858 - ] - }, - "mode": "markers", - "name": "Go Magikarp metrics", - "opacity": 0.7, - "showlegend": false, - "type": "scatter", - "x": [ - "Bronze", - "Silver", - "Gold" - ], - "xaxis": "x7", - "y": [ - 62, - 82, - 141 - ], - "yaxis": "y14" - }, - { - "customdata": [ - [ - 55, - "bronze", - 55 - ], - [ - 54, - "silver", - 108 - ], - [ - 58, - "gold", - 174 - ] - ], - "hovertemplate": "
Total medals: %{customdata[0]} %{customdata[1]}
Medal score: %{customdata[2]} points", - "legendgroup": "Dog Patrol bar", - "marker": { - "color": [ - "rgb(194, 144, 80)", - "rgb(169, 180, 195)", - "rgb(255, 222, 94)", - "rgb(0, 0, 0)" - ], - "line": { - "color": "rgb(160,185,205)", - "width": 2 - } - }, - "name": "Dog Patrol medals", - "opacity": 0.8, - "showlegend": false, - "text": [ - 55, - 54, - 58 - ], - "textangle": 0, - "textfont": { - "color": "black" - }, - "textposition": "inside", - "type": "bar", - "x": [ - "Bronze", - "Silver", - "Gold" - ], - "xaxis": "x8", - "y": [ - 55, - 54, - 58 - ], - "yaxis": "y15" - }, - { - "customdata": [ - [ - 32, - 70.76, - 236, - 337 - ], - [ - 32, - 70.76, - 236, - 337 - ], - [ - 34, - 70.76, - 236, - 337 - ] - ], - "hovertemplate": "
Medal distribution: %{customdata[0]}%
Participation: %{customdata[1]}%
Team players: %{customdata[2]}

Team Score: %{customdata[3]}", - "legendgroup": "Dog Patrol scatter", - "marker": { - "color": "rgb(160,185,205)", - "line": { - "color": [ - "rgb(194, 144, 80)", - "rgb(169, 180, 195)", - "rgb(255, 222, 94)" - ], - "width": 2 - }, - "size": [ - 48.142857142857146, - 48.142857142857146, - 48.142857142857146 - ] - }, - "mode": "markers", - "name": "Dog Patrol metrics", - "opacity": 0.7, - "showlegend": false, - "type": "scatter", - "x": [ - "Bronze", - "Silver", - "Gold" - ], - "xaxis": "x8", - "y": [ - 62, - 82, - 141 - ], - "yaxis": "y16" - } - ], - "layout": { - "annotations": [ - { - "font": { - "size": 16 - }, - "showarrow": false, - "text": "ThunderCats", - "x": 0.07999999999999999, - "xanchor": "center", - "xref": "paper", - "y": 1, - "yanchor": "bottom", - "yref": "paper" + } + ], + "layout": { + "annotations": [ + { + "font": { + "size": 16 + }, + "showarrow": false, + "text": "ThunderCats", + "x": 0.11222222222222222, + "xanchor": "center", + "xref": "paper", + "y": 1, + "yanchor": "bottom", + "yref": "paper" }, { "font": { @@ -3681,20 +3387,7 @@ }, "showarrow": false, "text": "Power Birds", - "x": 0.33999999999999997, - "xanchor": "center", - "xref": "paper", - "y": 1, - "yanchor": "bottom", - "yref": "paper" - }, - { - "font": { - "size": 16 - }, - "showarrow": false, - "text": "Go Magikarp", - "x": 0.6, + "x": 0.47, "xanchor": "center", "xref": "paper", "y": 1, @@ -3707,7 +3400,7 @@ }, "showarrow": false, "text": "Dog Patrol", - "x": 0.86, + "x": 0.8277777777777777, "xanchor": "center", "xref": "paper", "y": 1, @@ -4568,12 +4261,12 @@ "categoryorder": "array", "domain": [ 0, - 0.15999999999999998 + 0.22444444444444445 ], - "matches": "x5", + "matches": "x4", "range": [ - 1.5910661709257106, - 6.408933829074289 + 2.219439616731414, + 5.780560383268586 ], "showspikes": false, "showticklabels": false, @@ -4589,10 +4282,10 @@ ], "categoryorder": "array", "domain": [ - 0.26, - 0.42 + 0.35777777777777775, + 0.5822222222222222 ], - "matches": "x6", + "matches": "x5", "range": [ 2.5, 5.5 @@ -4611,13 +4304,13 @@ ], "categoryorder": "array", "domain": [ - 0.52, - 0.6799999999999999 + 0.7155555555555555, + 0.94 ], - "matches": "x7", + "matches": "x6", "range": [ - 2.2763086278410687, - 5.723691372158932 + 1.7476290934803473, + 6.252370906519653 ], "showspikes": false, "showticklabels": false, @@ -4633,13 +4326,12 @@ ], "categoryorder": "array", "domain": [ - 0.78, - 0.94 + 0, + 0.22444444444444445 ], - "matches": "x8", "range": [ - 0.7163058440745815, - 7.283694155925419 + 2.219439616731414, + 5.780560383268586 ], "showspikes": false, "showticklabels": false, @@ -4655,29 +4347,8 @@ ], "categoryorder": "array", "domain": [ - 0, - 0.15999999999999998 - ], - "range": [ - 1.5910661709257106, - 6.408933829074289 - ], - "showspikes": false, - "showticklabels": false, - "type": "category" - }, - "xaxis6": { - "anchor": "y11", - "autorange": true, - "categoryarray": [ - "gold", - "silver", - "bronze" - ], - "categoryorder": "array", - "domain": [ - 0.26, - 0.42 + 0.35777777777777775, + 0.5822222222222222 ], "range": [ 2.5, @@ -4687,29 +4358,8 @@ "showticklabels": false, "type": "category" }, - "xaxis7": { - "anchor": "y13", - "autorange": true, - "categoryarray": [ - "gold", - "silver", - "bronze" - ], - "categoryorder": "array", - "domain": [ - 0.52, - 0.6799999999999999 - ], - "range": [ - 2.2763086278410687, - 5.723691372158932 - ], - "showspikes": false, - "showticklabels": false, - "type": "category" - }, - "xaxis8": { - "anchor": "y15", + "xaxis6": { + "anchor": "y11", "autorange": true, "categoryarray": [ "gold", @@ -4718,12 +4368,12 @@ ], "categoryorder": "array", "domain": [ - 0.78, + 0.7155555555555555, 0.94 ], "range": [ - 0.7163058440745815, - 7.283694155925419 + 1.7476290934803473, + 6.252370906519653 ], "showspikes": false, "showticklabels": false, @@ -4738,7 +4388,7 @@ ], "range": [ 0, - 74.73684210526316 + 68.42105263157895 ], "type": "linear" }, @@ -4747,8 +4397,8 @@ "autorange": true, "overlaying": "y9", "range": [ - -9.551331615120247, - 212.55133161512026 + 23.50474823321555, + 169.49525176678446 ], "side": "right", "type": "linear" @@ -4760,10 +4410,10 @@ 0, 0.425 ], - "matches": "y9", + "matches": "y7", "range": [ 0, - 65.26315789473684 + 70.52631578947368 ], "showticklabels": false, "type": "linear" @@ -4773,60 +4423,8 @@ "autorange": true, "overlaying": "y11", "range": [ - 45.3349989137519, - 157.66500108624808 - ], - "side": "right", - "type": "linear" - }, - "yaxis13": { - "anchor": "x7", - "autorange": true, - "domain": [ - 0, - 0.425 - ], - "matches": "y9", - "range": [ - 0, - 65.26315789473684 - ], - "showticklabels": false, - "type": "linear" - }, - "yaxis14": { - "anchor": "x7", - "autorange": true, - "overlaying": "y13", - "range": [ - 28.479946335263378, - 174.52005366473662 - ], - "side": "right", - "type": "linear" - }, - "yaxis15": { - "anchor": "x8", - "autorange": true, - "domain": [ - 0, - 0.425 - ], - "matches": "y9", - "range": [ - 0, - 65.26315789473684 - ], - "showticklabels": false, - "type": "linear" - }, - "yaxis16": { - "anchor": "x8", - "autorange": true, - "overlaying": "y15", - "range": [ - -52.568831942789004, - 255.56883194278902 + -181.1333473330532, + 374.13334733305317 ], "side": "right", "type": "linear" @@ -4836,8 +4434,8 @@ "autorange": true, "overlaying": "y", "range": [ - -49.80260628070921, - 257.8026062807092 + -23.47286821705424, + 179.47286821705424 ], "side": "right", "type": "linear" @@ -4852,7 +4450,7 @@ "matches": "y", "range": [ 0, - 74.73684210526316 + 68.42105263157895 ], "showticklabels": false, "type": "linear" @@ -4862,8 +4460,8 @@ "autorange": true, "overlaying": "y3", "range": [ - 20.099522200209776, - 187.90047779979022 + 17.627483443708616, + 138.37251655629137 ], "side": "right", "type": "linear" @@ -4878,7 +4476,7 @@ "matches": "y", "range": [ 0, - 74.73684210526316 + 68.42105263157895 ], "showticklabels": false, "type": "linear" @@ -4888,8 +4486,8 @@ "autorange": true, "overlaying": "y5", "range": [ - 12.356670061099805, - 195.6433299389002 + -117.89792785878717, + 273.89792785878717 ], "side": "right", "type": "linear" @@ -4898,15 +4496,13 @@ "anchor": "x4", "autorange": true, "domain": [ - 0.575, - 1 + 0, + 0.425 ], - "matches": "y", "range": [ 0, - 74.73684210526316 + 70.52631578947368 ], - "showticklabels": false, "type": "linear" }, "yaxis8": { @@ -4914,8 +4510,8 @@ "autorange": true, "overlaying": "y7", "range": [ - -133.52886836027693, - 341.52886836027693 + -41.04577611319182, + 234.04577611319183 ], "side": "right", "type": "linear" @@ -4927,19 +4523,21 @@ 0, 0.425 ], + "matches": "y7", "range": [ 0, - 65.26315789473684 + 70.52631578947368 ], + "showticklabels": false, "type": "linear" } } }, - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6QAAAGQCAYAAAC5y61PAAAAAXNSR0IArs4c6QAAAERlWElmTU0AKgAAAAgAAYdpAAQAAAABAAAAGgAAAAAAA6ABAAMAAAABAAEAAKACAAQAAAABAAADpKADAAQAAAABAAABkAAAAABUH4gHAABAAElEQVR4AeydB3wUxRfHX3ovEFpC7733jvTiXxEQEKQjKlakCSogIkgVpVgQpEhX6b33Jh3pHUIvCSQhPf/3m2OPy+WSu0suiQnvfT7J7e3Ozsx+d3Zv3rw3b+yyZMkSRyJCQAgIASEgBISAEBACQkAICAEhIATSmIB9GpcnxQkBISAEhIAQEAJCQAgIASEgBISAEFAERCGVhiAEhIAQEAJCQAgIASEgBISAEBAC6UJAFNJ0wS6FCgEhIASEgBAQAkJACAgBISAEhIAopNIGhIAQEAJCQAgIASEgBISAEBACQiBdCIhCmi7YpVAhIASEgBAQAkJACAgBISAEhIAQEIVU2oAQEAJCQAgIASEgBISAEBACQkAIpAsBUUjTBbsUKgSEgBAQAkJACAgBISAEhIAQEAKikEobEAJCQAgIASEgBISAEBACQkAICIF0ISAKabpgl0KFgBAQAkJACAgBISAEhIAQEAJCQBRSaQNCQAgIASEgBISAEBACQkAICAEhkC4ERCFNF+xSqBAQAkJACAgBISAEhIAQEAJCQAiIQiptQAgIASEgBISAEBACQkAICAEhIATShYAopOmCXQoVAkJACAgBISAEhIAQEAJCQAgIAVFIpQ0IASEgBISAEBACQkAICAEhIASEQLoQEIU0XbBLoUJACAgBISAEhIAQEAJCQAgIASEgCqm0ASEgBISAEBACQkAICAEhIASEgBBIFwKikKYLdilUCAgBISAEhIAQEAJCQAgIASEgBEQhlTYgBISAEBACQkAICAEhIASEgBAQAulCQBTSdMEuhQoBISAEhIAQEAJCQAgIASEgBISAKKTSBoSAEBACQkAICAEhIASEgBAQAkIgXQiIQpou2KVQISAEhIAQEAJCQAgIASEgBISAEBCFVNqAEBACQkAICAEhIASEgBAQAkJACKQLAVFI0wW7FCoEhIAQEAJCQAgIASEgBISAEBACopBKGxACQkAICAEhIASEgBAQAkJACAiBdCEgCmm6YJdChYAQEAJCQAgIASEgBISAEBACQkAUUmkDQkAICAEhIASEgBAQAkJACAgBIZAuBEQhTRfsUqgQEAJCQAgIASEgBISAEBACQkAIiEIqbUAICAEhIASEgBAQAkJACAgBISAE0oWAKKTpgl0KFQJCQAgIASEgBISAEBACQkAICAFRSKUNCAEhIASEgBAQAkJACAgBISAEhEC6EBCFNF2wS6FCQAgIASEgBISAEBACQkAICAEhIAqptAEhIASEgBAQAkJACAgBISAEhIAQSBcCopCmC3YpVAgIASEgBISAEBACQkAICAEhIAREIZU2IASEgBAQAkJACAgBISAEhIAQEALpQkAU0nTBLoUKASEgBISAEBACQkAICAEhIASEgCik0gaEgBAQAkJACAgBISAEhIAQEAJCIF0IOKZLqTYstHGTpuTl5Z1ojvv27qE7d24nejwjHGjStBl5enrRv6dO0vnz5zJClW1ax7e7dKPPBgymFk0b0t27d2ySt6OjE3Xv0ZNu3LhOG9avs0mekon1BLr16EWffNqfmjSqRw8fPLA+AzkjxQTe6/sh9Xm3L9WtXY1CQ0JSnJ8tM8iXLz/Vq9+A8ubNR84uLnT16hVatWIZPXr0KEExTk5O1LBREypXvjyFh4fTsaNHaNfOHSbT1a1Xn0qWLE25/P3p4cMHdPifQybTGp9cukxZKlasOG3cuN5qVpbWD2XiN61NuzepSJGiFB0dTefOnqHly/5S12VcJ0u/v976Dbpw4QKd/veUyVNatvofuTBjU3KWyz9z+l9Th2SfEBACQkAICIEUE8jwCumQoV9RkaLFEgXRq0eXdFdIO7/dlT4f+iU1Z4Uq8ObNROtq6oC/fwD9+ttssre3px07tlHXzh1NJcvU+9zc3MjPz08xsPZCE2Pv4uJMXw0fSdu3bRGF1FqoNkyvv7d2qe+ssWffP7SN7/eXQwfb8Aoyflbubu7q+bKzs7P6YhJ7vqzOyMQJzVu0ol9mzFJHHty/T/YODpQ1a1YaNGgI9X2/D+3YvlV/FhS4GTNnU81atenatauEaxow8HNatHA+Df18IMXExOjTrl63iUqUKElRUVF0+/YtypMnr3q3bN2yifr07qH26xMbbEAZXfLnch4c9KRX6tWiy1Yo79bUr0aNWvTLb7PIycmZ9u7ZTd4+3tStWw8elBtEXTp1oHPnzhrUyrLN8uUr0OQfp9OEcd8lqpCOGj1WtQNTOU6dMlkUUlNgZJ8QEAJCQAjYhECGV0hBAaO3nTq0NQnkyZMnJven5U5nZ2fy9vZJlkL1+httCB1FWPFgDc6ePQfdv38vLaufoctKjH1YWBjVrVWNnj17lqGvTypvOQEvby9yd3e3/ARJaZZAYs+X2RMtSHD7ViD17/cxbdu6ma2YD9V7sGSp0qwULqOp03+miuVKs/UwSuU0YNBgKlGyFL3+anM6duyo2tei5as0/ecZdPTIYaWYakUuZiX1CO87eeK4UlShLA4c9DnBWt+j1zv068/TtaT6zzx589KcuQuUNRUKqbViaf3guQFl9O7du9T6fy0I7ykILMVrN2ymCZN+oP+1amZx8RgIbdq0ORUoUNCi3x+w/uzTjxLkL+/JBEhkhxAQAkJACNiQQOqbJWxY2cSyiuaRbnRYTP1hFByj5n8sWELVq9dMkEWhwkXUsUaNm+iPubq60hdfjaBNW3fS6XOXae36zdTxrc7649rGrNl/UE/uwCDfefMX08nT52nH7v3UpWt3LQm93roNdeXRbcj3k6eqslAX1MkSadP2TYLb8dQfvycHthC0ZgU1MalUuQr9Nmsu7d1/mHbvO8SW1d+pwSuN9MnReYTVYMXq9XTk2L+0cs0G+qz/IPLLlk2lad+xk6ofOkWGghF71LlI0aL63a/+73W1LyB3bmVp3LnnAB345xh9O2Yc4XxYMr4bN1HV49jJs/T9D1PJw6AjhzTIE2Uay7gJk2jQ50ONd8f7Xrx4CZr5+zzavmuf4r7v4BGaO38R1apdR58uKfZxcXGq3oY80dkbO36S/nzDjYGDh9C0n35VnWJtP7jMX7iUcH24dnR+c+Xy1w4n+Zk/fwG2WEwjcDt64gyt4nuBMmAJNhRz9xScJ37/o+J8/NRZVR+cYyxaW4VF8p0+79HPv85U16+ls6TNw0r/Vqe3afmqdeqaUfcZM+eQ4bOj5Wftp28WX/rm2+/U83Pk+Gn6cepP8Vzxx0+cTOMnfG8y28FDvqAp034xeUzbOeePheTp4Ulw1US7wx/yNBRL7ucn/fqr5+bQkRN04t9ztHnrLnXfoNQYisa7dp26tGjJ36qN/vn3SqpTt55KBvfIJX8tp3/PXlLvmYaNGhuerpSH1GDt6eVFY8ZOIDwvp85coIWL/6IKlSrFKxtfLLnOpJ4vLUNLmGppjT+PHz9Gfy5drN7rOIZnFu6ma1avUgN8ufndA8F7pX2HTrSJ3Wg1ZRT7161dTadOnqCevfvgq15mzZyh3Hk1q+nTp09o+rQp6ngpVniNxdfXl+bOW0i7du2gubN1FlvjNEl9t6Z+eD7Rlq5euaxXRpH39evX6Py5c8ptOamyjI99N3oUNWxQh+qwO7YlEhkZpdyh4RJt+CcKqSX0JI0QEAJCQAgkl0CmUEjNXfypkyeparXq1JnnIhrLm+07UC1WDk8cP64OoWMOha1nr950+dJFVgQnK1cxKCp93usb73R0Nj/48BNasHgpoSOxaeMGNQcHrk+Y9wTBXCbtxxwdn6Cgx+oPirI5KVW6DEHxQqfsBI/mXzh/nqCgmpJ2b3YgdHgLFixIa9asYlevXVS2bHlWsCaq5KgfFNC+H3xE169doyVLFlJwUBB99Ek/atJEN+KOc9Fht7eP77qXLXt2td+w0w2LAdKuXLWeWrZ6lY4c/oduXL9OmO85Y+bvtGHzdqpf/xX659BBxRH17sEWCE1QBs5HmcZSuXJVKlO2nPHueN8L8HkVK1VmK8cJmjd3Nq1ft5YKF+LBBR4YwH6IOfZQXosWe+HujfmpGHjAIIWh4Lrf6fM+PeJBD3SKIeC9YPGflC9/fvp91gzavWunmr+2au2GeIq3YT7ado4cOWnZyrVUo2YtZf2ZP28Od/4e0vt9P6LyFSpqyVQZSd3TLFmy0BoeLGnWvAVt3LCe6/Eb4V4tZUXHWMFBW4UStG7jVvpy2NdqQATtHmJpm8fgBQYZHnNdZ838VQ2UoAP/ab8B+jond+OvZauoEc//O87WLcyXg7KDAQZNbt+6pQYvSrIVzFAwmNLn3ffNuuUHBwVTLN+7yIhI/TP49OlTfVaW3s9mzVoQBsDWr11Dc+f8TpcvX1TvgB+mxLeqae+GOazIQLZs3qSmFvzy6yw1sDFl2k8UGxNLmzdtoBw5cvC+GWogR6tQarDGfV7JgwkdeBDoBCt7C+f/QSHsdlqzZsLBMUuu09zzZSlT7Zot/cQzEsPzKrX55HnZ5RaW71M8x95YTrJCWpSndGAwLynRnrvAwPhTKjCnEgNf9x/cp0ED+iWVRaLHrKkffiMOHTpAjRs3VYOdmht1QECAeiei3aW2YODSHK/UroPkLwSEgBAQAi8XgUzhslu8REnatfegyTv3+aD+tGf3LjVaDhcuWAhCnndEYfFp/UZb2rp1i94N9h3u3EIJbN7kFeUKjEynT/uRYGH56ONPac7vMykiIkJfFjoQ3bp2UiPx2OnvH0B79v9Db7RpRzt3bGdX27WEzgTmHw37aqhS2vQnm9mAEgeXLYz0Q/76c4mai1qCrxduyppgBH/YiJGqI4M5plr90JnqwAoWBMoOOvPdunRS8ya1czG3yNXVTftq9efCBX/QD5MnqsAbOBlWHwQWmTD+O5o+9UflEodOFRSOOnXr09QpP1hdhqkTwLZqpbLx5oZN+WESW36OUhtmDzc9a9kvXbyIPvzoU1b626m5Vlq5rV7VBftYtGiB2gX3ayh1yL/ve+/olVQoxiu4w9+tW0/VZrTzjT9f/d9ryhLavm1rOnBgn/4wlOPoqGj13ZJ72pcHQ2CRbdmsEZ05c1qd9/P0qcqCOYznx4IRAqJoUokV9Wl8T6BIwe1bs4Rb2ua7du+hlNAe3d7WslR5YGAhpQIL1YxfftLfT7gaos1i0ADz6BYtmq8GTzp26kzDv/pCX9yb7Tty59mRoNQnJR9/+B57C5xTvI1dEq25n2+2a50gmM0XXw5Xg1WwVhsG28G74e1O7fX3BtcCi2Qxfr+0aNpIH6AMg1fwsKjMlm2tPaQG697vvEuFOUjOO726qQEMjReUX1hEDcWS60zq+bKGqWG55rbhpYH32FoedINCDMEgDER7r6svz/8hSBPe81n43mAeamLy2uut1aEVy/7WJ8F5U6b9rLw9Wr/WKtG5pfoTEtmwtn54p8z4bTYN/3oUYY7u4sULqRN7JmBg8kd+x6WmYHDrwuUbFBsbq94Rq1etVN45hu06NcuXvIWAEBACQuDlJJApLKTPnoUpVy64cxn/PX0+h3QxKxOwEEC50AQWqoCA3LRksU7RwH5YDxA8yFDhw/4NbIFDJwuuloayl91p4RamCYJkXLl8iXLnyaPtStancs9lKxGUUW0e0bK//1QdBWMraVO22vj4+NLkSRP0yigKhWKquZih447OLoL4GArc4rROsOF+S7eh3BgqPYhWCZk7+3e9cgGrIvZXrlKVA3XEdwe2tBzjdLA6ay53uCfo7MMqFRwcRAUKFjJObtF3RPAEi7Zt28dzzW3brr2KcIwoxxBEPYZ18heea6ZZTLEf1j1YbcqWS9q6q1nMCxSKbx2GBfwKu+pBLLmn6ETv5LaqKaM4D510DJoULFSYSrOF3VCWcod24oSx+sEXbf6dJW0egwqod1Y/v3iutMgD885SKn8tXaK/n8hrzu8610jcV8itwEBCEBsM9BhGAoVFG5FUce+SK9bcTyg4EFjkKlSspNyV8V6BGLc7vBsM7w28BSB7du/UK6P4ru2vWVtnqUwt1mCHuZOwppsTa67TVF7WMDV1vql9YD6VXbNh1YUrqiZ4FiGagqrtN9ynpTE8pm1jUBJTEPAuM4xiPoIVwqrValD3rp3Ve0VLb+qzWfOWyqKJKRzan+bloZVtaf2gWN/i+bOY4/qAIwAP/WIYe2IUUFZt7Z2HOsDTQitL+zScLmKqnknt27hhHU354XsaNXK4+oTHSy92d541Z368Zy6pPOSYEBACQkAICIHkEMgUFlK4oL77Ts8kr3//vr1qiQ8oF4sX6hRQKHb3792jrVt0HWooS7lz52HrVTbCPDZDcXLSofJnBdaw02KYRtt+wh0KFxddJ1XbZ+0nrInZ2ZVv/bo1yqqL80NCQ+jgwf2EQEffjRmllFPsL1hIp4AlFpYfHXh/ttJu3Jj6y5toyrODQ/yxDuyHK5gbR7+MigpGtVMkUNj79R+o3FphlYbAjc+OrRqXLl5Mdt5LFi1UczIxWLGPFQq4JsPde/iwF1a5gs8VXswTNBYfH29mndt4d7zvm9hNc+CDITRu/Pfsxtyb9nHbhDXTULGz5J7mzJlLzaeLlzl/uXzpktqVv0ABwoCDJoadWW2fNW1+0YL59OlnA9R8WSjCUG7+/mtpkpYnrRxrPzGwExkZqTwOtHMXzJ9HrzRsTIi+umL538rlGfdizLcjtSTJ+rTmfsKNfvjX37A188XgiuZ+7+iY9OsU14N74GAf331Ue2YwqATBIIetWeN5yc+BbTAwZ4mk5DqRvzVMLakPrPk/z5illlx5p3d3FUlXO+/JE53rNd4vxqINXjwJNh3cDnN6MXd8//699M3Xw/Snw+W9I1slO3VsF68sfQIeoDEUKILGngKjvhmhBiutrR/mHKPempUaUwi+5WkgmDZSslQpvYdA3nz5lBXVsB6hoaFqCoPhPku34U1kKJMmjiPN+t+IXYhhlRYRAkJACAgBIZAaBJLuQaVGiemUJzp5S9j1Ce5pUDKw5iFceP+YO1tv4fPw8FDuXbC4rFm9wmRNzz53jTR58PnOOHZ34oySSmL2WFtegw6CoDGmBJYjzFuEeLh7qE/N8qa+GPyDZUGzuhjsTpVNde0mco6NYyY2lO84MEs7tvrCZRiW40sXL9Djx49VAKqUFINO19ffjCYMXEAhhVUJisTyv//SZ4torRBYEmJiovX7tY2gx0HapslPuA7Wq1uD3YM/UcqVZt2AFbln97d5jmOQ2XuKOcG4pxEROrdFw4LCw3WRg934vpsTa9r895PGKwty3w8+5jnSr6jnB/NHR474Kl4UU3NlWnoclne4TWqCgSNYoDt1flsppJ06d1HLdmzetFFLkqxPS+8n3F3heg53Z8wnxDqXN2/eYFfghok+p8YVikvkOTC0tOMcW7P28PBU3gmm3FqN62iL67SUqXHZpr5j0AQBxerUqUf9PvlQzcc1TId1RCF4JozFnd/pEAS8MxYMOuH9inmmvXp0Vc+5lgaDA1AKcb9NybYde9TgQqH8usGwgf0/JePnTVtX15r6YWoHgpJ99cXnetdwxDLo/NabtGDRnzzH/W1lHca7Hh4br9TXWdW1Oib2/tWOW/u5mL2HEDuhdJkyopBaC0/SCwEhIASEgMUEXhqFFEQwB6ffZwNVYKBrV6+q9eQwP0cTKAJw+YSr64rly7TdNvu0t3CtRURlhMsmXId3bNsar3woIZ/z2quw7moKqeaumIcXj4diZixQ1J48CVbr7RkfM/yOeUMQzCmFEpaaEhurCw6UnPmrsPa04EBKCBSDNQYtEUvZw1q1etUK5cKHTmFb5owld9AuNLl6Receioie6CwmR6AYwO0Qf1jKB5Fv333/AxV4CJZAc/cUbRV5aNZhwzpoFlq43JkTa9s85nPiD4oiXKQRGReWagz2aO3HXJmWHMccWgykaC7MOAcKKizYH/Jc7goc2AYDSlM4+rQpy29iZRgquFoaS+8nrGao0/vv9lbKgHZ+an3akjWefygxOXLmNFvd5Fyn8fNlKVNzlYE7NNYihSXzow/e44HClQlOgTUdUqx48QTHsA+KoeaeriWo36ChikKO4E7du3XWK3/acQw2DBmcMFgX6tHq1dcI1sN7d+9qydXAiP6L0YY19atatbo6+8aNG/FywbO1b98eFYwMSivcvOECnNz3T7zMk/ii3VdtbnsSSeWQEBACQkAICIFkE3hhfkh2FhnnRMxDgxIHZa7tm+31EWANr+DA/v1qjiDcoYwFc4G0+WLGx5L6DoUQoi2vklRaHGvBLokY7cd8npm//Rrv77cZv9CO7duUZU2zCBzlzhOkQ4e31KfhP01hQRq4XRkvK4IOOlw/IVj7DlLouQuw+sL/8rKia2tBBxGBMozLgiLi5e2dZHHefByRbxGx2FBg0TBcWgbHrGWPc+DWiLUGEVgHczEXc0AdQznEnUFYtDC/ypRozE0dwz7MecXAgiawuP3IihU6nXCVhFhyT//556CKpgsrp6H877XX1bzjxFy4DdNi25I2D3dIw+tCXeFJgMjSCKyEoDGaIDhT1+492XLYSNtl9WfrN9qpcw7y82goCG4E9j/9MpOVYjvl2mp4PKlttAW44xuLpfcT0VIhxu3OVJ7GZVjzPbVYn2HvDkS+Np7HbfxesuY6E3u+LGWaFBdYKbGsUnVeXqlXj24mlVGcD4UTChquTQvUhf1411WoUInWrl2Nr3rBnNFZs3l5rD27qOvbHRMoo0iIgRAMDBn/IZo4ZNWK5co7Q30x88+a+l27dlXl9kabtglybcBKNCQ1lFAEXjI1WNO8ZStV5vHjR9Wn/BMCQkAICAEhkBoEMoWFFD+m7/X90CSfdWtWx5sDhABGU6f/quY4wc3KWL79ZgRt3LKDF19fzm5zE1SQJCzLADcqrCeK6Lu3eAkKa+Tff0+qTjSss9M4yqwLj/oHBt6gixcSWjORLxRmjKprwU6My1q1cjk1btKUl/toScuX/aUiysLVFNFSY2JjlEUP89mwIHqzFi2pfp0aNGbUSLVEyOKly2n8uDFqXbtixYqrNfoWcsdrES8Wf3D/PlXPr0eNUZEVYQ1q9erralkR4zrY4vsBnrcFSzCWzkFgKAQD6tmrj1LcjYNKGZaHTjAswVjGBPN5EfyjePGS1L1nL6XsBd68qU9uLXuciE4n8u/O8ztvsqUCUZoNBXVFO8ISN1CCMY8S1kpYLmA9uc0BSQYmsUQE7hMCniD4ENzuEPm541udVIdQCzqFKMHm7unE8WPVUj6zZs+jsd+NVlZwtB3UAcsVacqCYd1NbVvS5iPYYr5t5161xA0U0Tu3b1MJjnaKYFngobknIv8uXbpTtx69yNTzZap87Pvgo4/5elcT5sDBHR3r5WJeLeb2GQruB9aDhPIBa9m9ey+sVIbpTG2jnWD+KQIhod1gIAZBwyy9n1iOA9c1+rvxtOCPuVyEnRoQaG9iIMhU+Zbuw4BMarD+nZfqwXqtv3OQmrlzZvGgixcvr/NGgoEDa64zsefLUqZJMcFc3SpVqymXfCyvhEEOQ7l547p+/v98vh9Y63jCpMk0h9cKxWAd5js7sjeF4bzZfPnyq/V/0V7Rjt80ce/WsIeEKRdfw7Kt3ba0fgh4hcB8sP5/0u+i8upx4vmzr/F9wm/QvLmz40VyNlcPRCRGILJsz9eazl8gv/JswKAOLPCavMFKOlzgF/LvAAaysDwS1hdGZGb8Dm3bGj8YnnaefAoBISAEhIAQsAWBTKGQwkIzhN1YTcnFC+fjKaRwv4SFw8nJWblmGp8DV8nXWjWjr0eNprG85qI2aoyOMtYMDH5iOjiGcT6G3xE9FUFxurFCu/hPnSswQvubUkhhhapZq7ayihrPK9PyRFAcuBW34XmmUEghAz77hJXcQLbavctrjX6s9sHNFB0hCKwjnTq0U9f162+/q334h84G5lBBoASOHzuG+g8cTL/NmquUU8zbG/3tSBXpUSWy4b9vR32t1vwc9PlQlSsUqDGjR9K77/Y1W8rHH/UlrOmIoBsQuCT+PH2aCvhkeLI17A3Pgys3olsu4fVaTd2HoZ8P5mjKV+j9Dz5USpl2LhhiXmtSAgW3Nitdk3+cpk+GDvCXQwdzG3sxH9LcPcXatFjGB53wZSvWqLxgef5x8iS1FI8+czMblrT5WA7Gs2XzxnjtC9kiENPQIYPilQC3Rli/EXjIUilTphz16PmOPjmWFBnwWcIBIyRAxGsopOicWyPjWGmHZRpzhOHpgLYBhRRiyf1ctXIFwaVSWX+fW6ugMMN9Ewq0rSSM3zWpwRr1L1KkmFo+BwF40K5x/bACQhnRxJrrTOr5soSpVqapTwz2QDCPG3/GsnXLJr1CikEhREEfPOQLfVq0wR7du6gBK+1cZxdn1QYwiIllVUzJMR4MsrVCamn9MFWiV8+u9PXI0SreAQYxdXPFI9RSUt9PHG+qyonu68/tEhGPNenQsTNHku+svubP88J9G+8ttAftfYoE8ILA7wuCPZl6B2p5yqcQEAJCQAgIgZQSsGM3VN1kvpTmlAnPR4cII/OYVwiLkDVz1RLDAVdgWNMstV4llk9i+6FAw8UWltLbbMk1VWe4u/r7+9MttsKiLsYCt1m4lV7huZJQ9FJTMB9UiyiL6LDoBFkqcD0sWqy4So6BB3PzXlOLPeaA+rEV4mbgTZM8E7sedKCxPFBIyFN1rwyXzzE8x9w9RYcV9xyWVks4GOZtvG2uzeN+IWIz2hAs0cbtA1bHg4ePq87z2DHfGmef5HdwBI9rPCiU1POBNTtz585NDRvUSTK/xA7CrTubXzYewLmpD2hmmNbc/cRyGwiMhudLmx9oeL6ttlOLNa6/cKHC6vnGWqmJibXXmdTzZY5pYnWwdj+YFS5cRA3Yae6v1uaRmumtqR/WtcVSQpgriqXEEgtaZ8v64j2WiwdFoYDCNdjUUjW2LE/yEgJCQAgIASEAAqKQSjsQAkLAZgTgMoxlNOrUrGK1a7sllShevIRyqR/BHge/z/rNklMybZrUZp1pwcmFCQEhIASEgBAQAv8pAvb/qdpIZYSAEMjQBOCuu2nj+lRRRgEGc9pgKfrrz6UZmpMtKp/arG1RR8lDCAgBISAEhIAQEALmCIiF1BwhOS4EhIDFBOA2HMXz4DDHOTUEAYmwriOi+77sktqsX3a+cv1CQAgIASEgBIRA2hAQhTRtOEspQkAICAEhIASEgBAQAkJACAgBIWBEQFx2jYDIVyEgBISAEBACQkAICAEhIASEgBBIGwKikKYNZylFCAgBISAEhIAQEAJCQAgIASEgBIwIiEJqBES+CgEhIASEgBAQAkJACAgBISAEhEDaEBCFNG04SylCQAgIASEgBISAEBACQkAICAEhYERAFFIjIPJVCAgBISAEhIAQEAJCQAgIASEgBNKGgCikacNZShECQkAICAEhIASEgBAQAkJACAgBIwKikBoBka9CQAgIASEgBISAEBACQkAICAEhkDYERCFNG85SihAQAkJACAgBISAEhIAQEAJCQAgYERCF1AiIfBUCQkAICAEhIASEgBAQAkJACAiBtCEgCmnacJZShIAQEAJCQAgIASEgBISAEBACQsCIgCikRkDkqxAQAkJACAgBISAEhIAQEAJCQAikDQFRSNOGs5QiBISAEBACQkAICAEhIASEgBAQAkYERCE1AiJfhYAQEAJCQAgIASEgBISAEBACQiBtCIhCmjacpRQhIASEgBAQAkJACAgBISAEhIAQMCIgCqkREPkqBISAEBACQkAICAEhIASEgBAQAmlDQBTStOEspQgBISAEhIAQEAJCQAgIASEgBISAEQFRSI2AyFchIASEgBAQAkJACAgBISAEhIAQSBsCopCmDWcpRQgIASEgBISAEBACQkAICAEhIASMCIhCagREvgoBISAEhIAQEAJCQAgIASEgBIRA2hAQhTRtOEspQkAICAEhIASEgBAQAkJACAgBIWBEQBRSIyDyVQgIASEgBISAEBACQkAICAEhIATShoAopGnDWUoRAkJACAgBISAEhIAQEAJCQAgIASMCopAaAZGvQkAICAEhIASEgBAQAkJACAgBIZA2BEQhTRvOUooQEAJCQAgIASEgBISAEBACQkAIGBEQhdQIiHwVAkJACAgBISAEhIAQEAJCQAgIgbQhIApp2nCWUoSAEBACQkAICAEhIASEgBAQAkLAiIAopEZA5KsQEAJCQAgIASEgBISAEBACQkAIpA0BUUjThrPJUrr16EX1679i8lh67OzzXl+qUbNWqhVtZ2dHufPkobz58pGTk1OqlSMZC4HUIuDo6ES+vr4par8NGzWmLl27p1YVJV8rCAQEBFD+/AXIxcXFirMyTlIfH1/y8PDQV7hqter0ft+P9N9lQwgIgYQEunbvSQ1eaZTwgOwRAkIg1QiIQmpjtNdu3iVzfzt271elvt/3Q2rcpKmNa5D87D755DOqW69+8jNI5Ex0+GbPnU+nz12mvfsP0+69h+j8pes054+F1Kx5i0TOMr0bHcjvxk2kosWKmU4ge1ONQM9e7+jb9tUbd+jYybO0fNU6avdmh1QrMy0yzpkzl/668OxeuX6b/j1zkdZv3JpAcazfoAEdP3WOWr36WrKr1rxFS+rd571kny8npoxA2XLlafHSv9X7aN/Bo7RzzwH1PlqzbhP16t2HPL28UlbA87P/Xr5atavhX48ymd+ylWvV8VGjx5o8boudh46coMk/TtdnVbNWbeo/cLD+u2xkTgKG7+rL127RP0dOqvfZ+ImTqVLlKuly0cbv2TPnr9D2nXtpyNCvyNvbx+o6DRj4ObVt197q8yw54d13+1LTZs0tSSpphIAQsBEBRxvlI9k8JzBwQL94LAYNGkIPHj6gWTNn6PeHPH2q387sGzVq1FKKZ1hYGA3/aiidOH6MMGpfrnx5eu/9D2nE19/ShvXrLMbgmyUrvdXpbVq3ZjVdOH/e4vMkoe0IDBk8gIKDgylb9uyqQzDx+x/Jw9OT5vw+03aFpENOSxYvpM2bNpKDgwNlyZKF2nfsRFAWQkJCaNnff6oaXbp4kcZ9N5pO/3sqHWooRaaUABTOL74aQVcuX1Lvo+PHjpIje2uULFmKunTrQcNGfENnzpymvXt2p7QodX5UVBR14HY0edIEfmaC9HlWrFSZypevQLGxsfp9qbExccJYun7tWmpkLXlmAAJ4Vz958oT8smWjokWLUZu2b1L7Dm/Rh3370KqVK9LlCv5culi9Z728vakaW+zhmVWOn4UunTtQdHS0xXX63+ut6cD+vfTXn0ssPkcSCgEh8N8lIAqpje/NkkUL4uX4Hr9sbwUGkvH+eIky8ZchXw6jiIhwavN6K7py5bL+Sg8c2Ecrli+joXxcJGMR2LplM925c1tVetGCP2jdhi0E63pGV0jPnT3DgyNr9TdjzeqVygoMN0dNIb169QpNm/qDPo1sZBwCAblz0+AhX9Kxo0eoW5dO9PTpE33lMcDw919L6cOPPrGpkrh71w4qX6ESvd2lW7x2A8UYbe2Vho31dUiNjV9+mpYa2UqeGYSA4bsaVZ44/jtauPgvGj/xB7p44YIafEnrSzlz+l9at3a1Khb9okcPH9K7739AlStXJfQLRISAEHg5CYjLbnrfd55X+Uabdsr1ES6tcBOEW5WhzJ2/iDq+1dlwl7JOLflrOdWuU1e/H/Mefps1l4oXL0EzZs5Rnen9h47SJ/3669NoG8WKFSfke+rMBTp89BTByuXk7Kwd1n/mZ3fbX3/7nQ4ePs6uimfpjwVLqGSp0vrj2Pj515nK1c3fP4CGfjFMpUF96zdoSBUqVKTp06bEU0a1k+/du0uffvyB9pU++vhTdf1Hjp9WZa3ftE39UNnb65op6jJ+wvcq/RfDRhCuH39QGCCt32hLcIODKylcg3+f84fMA1FkUu9fREQEreXOBUbgc+TIqQqC+9XY8ZNo975DdPL0eeUeWblK1XiV+GXGLPrgw0/i7cM5xm113IRJ9OlnA/TpnLmNDh7yBW3euovg8oU2AkumoSTWHg3TWLINy2hMTDQ9fPBAn7xQ4SKqzZUpW06/L6ny3N3daeQ3o2nfgSP079lLtPjPZVSqVBn9udqGtF2NROp99us3gBwdHenzQf3jKaNaiXFxcTTlx8m0f99ebZdyJTTXlvWJTWyEh4fT3NmzqHvPXvp5x5h20LLlq2RKWcQcfrzT9h3k9sJu47v2HiQ8A3i3Ggvesfi9OHfxGm3bsYe+GTVGnVugQEF90mk//UrvvPu+/rupjXz58tP8hUtp4OAh+sPm3sVIqP3eYF519x69+XdiNrsH6xRg7ViFipVozrwF6n0O90ykE0k/Ao8fP6buXTur9v/tmHHxKlKOXdkXLPpT3Su8r9AngKeIseD3f978xap9whUYbsDoS8BzKTmiDfaVKq3rV1jyDPwwZbp6Jho2bKLaPJ6Zjz7Readpbc9Uu0T9LL3O5FyLnCMEhEDyCYiFNPnsbHIm3GcaNWpCsMZs2rCe3ur8turM16utU7JQSJUq1ZSrq2GBCMJRvXpN8vPz0+9Gx6Jhw0ZKocXo+/RpP1Lt2nXos/6DlIvMv6dOqrRFihalVWs3Eqw9cCV79uyZmleCQEMIPKQJ0q1cvYFgOUI6SAfuBGFuVIO6Nenu3TtqHzodhYsUVeVgXyBbhL19fCggILc6vpRdIS2RAgUL0aGDB+gslwcX30rs1ob5Jc5cL3QUQ0JD6MjhfwjKwMkTx+nqc4srFAbMJZk0eQrN/2MuzZzxC2Vnd9IGzKJDx7do+7YtlhQvaZJJwMXZhdCZD3sWpjrdy1euIXcOpDJtyg+EDhCUraV/Lqe32SVLc4WMiYlRAzGatTF79hzKlQyuwDgPrltQPtu0bU+jRo5QNcPAxKIlf6vAWHD7OnH8OLVs9Sp9N3YC2XO7XbRwvkqXWHu05vLgVv7Bhx/TA25bKEsTT74uPHc+3L41Saw81HcBWyMw+DNr5q/KdbJAwYLUvv1bFBoWqp0ubVdPInU3MChy6OB+On/+nEUF4X1oSVs2l9ncObPo/Q8+Uu0dbuHduveiw/weO8buwsaSO3ceevzoEW3kaQz3798nf1Zee/d+lzvRFah504b65Bi4wXsd+c349WcVaOvV11qrdyaePU0qsHUWz1RiAqsxnqlbtwJp+tQf9cnMvYuREL83GBBds34Tv29zECxfUPi1YwjeVZMV7FWrVrBVeiZ17NSZvv7mW3aBfxrvmVInyL80IwDvFvQ3EFgN/QgMKmJe6VJW6nbv3kVfffE5eXp6UV9+/6Gf0KRhPdVHQAVLlS7DfYL1dJrv9XdjRlFkVCS73dagunXr06mTJ5J1DXjPQ0L5Nx9iyTOAfgIGvHEtu3ZsV+edO3dWfSbVLi29TpWR/BMCQiBNCYhCmqa4ExYGF5U+vboTRtIhhw8fYovSMoIyCJcaayWcf1xaNmtE165dVaf+xp2VQ4dPqOBJmkI69IvhqsPf+n8t9D80UOSaN2+pFAutTMynus0dlTatX9XvX7tmFR059i+Pjveg8WPHaEmVItKpYzs6znNENcHoPNziHrJLjiXSv9/H8ZJh5DRnrlzUpFkLpZBC8VzISgdGQFeyu++OHdv06b8c9rVSsId+PlC/7/dZvylLsn6HbNicQIkSJXmQopOay4O50T169qaChQpTY+7EXLqoa7+ruUOKQYwvee5ey+aNVR32cMenZav/qRF4KK0IbnX50kXKz9YdeAjs2rlDDTxAKdi7Z5c6p137jgSlonmTV/SuZhh48eVRfHT4NYUUiXGecXtUmSTxb+iXw+lzHgCBIol5pBAM6mCAxZyYKg+DJBV5sObdd3rS+nVr9FlkY2tydZ5brQkCJGFwSNquRsT2n1CU8hcoQPv3W+4SCDdbS9qyudri/Yd5brBUQhHAoONnn5qOdIt0xnPibgXepCnTflEDMYE3b1KuXP7sWvypUuoG9v9UXzx+L2CpslQQZAbKaCDn371rJwoNfTFIYu5drJXh7OxE8+b8rgYCMShlKBjobNigjn7gcuqUybSCg6CBg+Egj+E5sp02BI4fO8bvaic1dxPKHTybzp87R93ZlV27jzt3bqedu/ZTz1599O7mw0eM5MHiUGrLfQLMj4YsXrggQd/B0qtAALH+gz5X/RC4t0MseQb+mDdHtaPTp0+pvoFxeYm1S0uv0zg/+S4EhEDqExCFNPUZJ1nCtStX9MooEl583omHVTRZCil3AjRlFPkhaMZlDuBRtarO4goLaC22mu7kUUV0GBITdOBgXV27Zg299vob8ZLd5A4MAiQYCkYpDZVRHPPkQDewdFojCPRRk8uFVSlr1qxUukxZi+Z0YXQWI/Jw74Syivmq+GF9wFYGEdsS+G7cBB7QiKGcOXOq+3P50iUaNOAzVQjcrWAp0ZRRreSVK5Yr6wg6IFBcoZCiLVapWo02bdxAzVu04k7qEqpWvbpSVKGQVuZR+/v37uktWvXrN6CbN25QMXZJx58mwUFByloDpVDrJJlqj1r6xD4xAII5VxCM2ufJm5e6detJLdi9slWLJhTKLryJiany6tStp+qz02DgxNT50nZNUbHtPtxPBwdHioyMiJcxBgOGfPFVvH2YRvDPoYNqCSxL2nK8kxP5AismXBp/mPKTeidt2bwpkZSkXBHRdhD4KFu27JSX2yEECiQUUljkcT14bpIrcLFfuPhPunvnTgJlVMvTkndxcFAwQTkwJRE8yKp50eA4ns2NG9fTJ5/2V5ZUawLYmMpf9iWfwJMnOqu5toQVLIcTx4/VK6PIGe/aI0cOU/WaNZVCikG6ytwvWbd2jf49m5waYGAR02yy8O87BjThWjt44Gcq1oaWH1zUk3oGtHSJfZpql/h9sOQ6E8tT9gsBIZC6BEQhTV2+VuceEa7rMGmuT1ZnYOIEWF/xMoZgdN3NzY327d1tIuWLXbn8/dUPRdly5VTH/MURUhbPu3fvGu4yuX2JFRWs5YUIrEl15nEyfpSg6LzJP1aH/zlE//57SlnM3HgOnuGcKJMF8U64RCLq68ccXKffZwM5smAwW8wW0E9s4XrELnAitiMQFRWtRsl37z5HsEKvWrlc30GBu9X9BwkHATBfGJKHj8MlGxZBdK4xUHLwwAG2itaiL4YMYjfFexzoajh9OXSwsobu3btHX3G4Ynl6efJ8vN76fdoG3B/d3Ny5Hom7J2ppE/uE8gELlqFs5k4/5qk2bdpcH9jI8HhS23B7RBRXc4My0naTomibY7gHt2/dooJ8TwwFA1dLl+isimhfWMIIbowQS9uyYX6JbcP6DyW0SdNmqvOtWaGM07/GkUMRcAbeIPCeOXvmNLvT3lSuktp0CqzjDPnnn4PGp1v0XbmS81xBTLP4ht3hDS2jyCCl7+KkKoEANigfXg0yWJgUqdQ9VqpUaaV84rcWyh+UTVPvbQwoIC0E3kroRyS33WlXFMvTNSIiIuns6dMqWj68XG7xs6mJJc+AltaaT0uv05o8Ja0QEAK2IyAKqe1YpmpOKVVQtQ4QArVAAlgxSErQccA5f8ydTb/N+CWppIkeu/B8rlYdnmdkbmmXGjwKC2V00MB+ygVIyxRKpkmFlK1rhhLEVjK4PE6aOE7No0L0yq68jIM/K9Yf9n3XMKlsp5AA5hhh7o4pefjwAZUuXTbBIYzEQ7AEkiZ7du9UI+VYi/fc2bPKsg/3XawzW71GTd1oNi9boQnyjsbc09daartS/RPKc0x0tKoPLKjWCCzBRbjTb06k7ZojZJvj586dUQMgsA5C4YMguq62hA/mQxquqWtNW7akhj9Nn8JeIx4qmq+p9FDURo76jnbv2knv9empH+SBF0GPnu/orVd4N0PgpZIcpQ7Kx8ED+1V00ynTfqIOb7YhbToH8rX6XYyTLBQ/v2zKI0i7BgtPk2Q2JIC+BH4f4YGFwVrMIYWU4fmhxguo+PrywMHzZwVzmyHG3lFqpxX/EM06sT6Fpc+AVpwdxe8HaPtNfeJ5hpi7TlPnyj4hIARSn4AufGnqlyMlpIAAggoZR1mElTM5gjmd6MTAHdJQ0Emx4w6RJrAoYK0+uLThR8JYtEAExvsNv69kyxkUF1i8vLy8DQ+pbYy2apH5ypYtr/Zt27IlXjqM1htK2PN5TnAHNhSNB65tIweHwvprUCAavNLQMJlspzIBBLvIniOHivRsWBTcr+B+a9iBRgCNshzZEVGmMTcZAss25hK90+c95aKoBUHCsZMnTlAZduE2tnLhmCXtEemsFbiWOXAH7vw5XcAMa87H84OgMXC1NBTjNi1t15BO6m1P5WBZCPjz9chvlRXQXEnWtGVzeeE43ICh/EVGRppMnjtPHjWnGgM1mus5EhoPRmrBYxoaLRlToFAhk/ka74yOjlKBa3r36kbXrl6leX8sivdMWfouNs7X3HdYeDFX/PjxoxZNwzCXnxy3ngB+y0d/N065fY8b+63KABZyTPPBO9pQML2ifIUKHMDolNqNKT4XL5xXgaoQPVwTtFtTEfq149Z8WvoMIE/0BVBHS8XS67Q0P0knBISAbQmIhdS2PFMltw0b1ql5N6+3bsMdiCtUtXoN6vtB/ABA1hQ8b95sld/Hn35GO7ZtVYE7+nCgCQ/urGluYchv5NfDafbc+bysyyz6+aepaj5QsWIlqGmz5mr+6cgR8edeGdcBbrqwpv38y0zauGU7/fD9RDrJcz09PTzV0jEIGoIyFy74Q0Xtw/mYzzWPrbL4wUPQGyismrsnjiMAByxPXbt1V3NjEYEXbp4/Tv2ZA5bsVZGKb9y4znNQS1Cjxk3o6JEjOE0kjQhg5Lsrz7scwZ3+4V8NpUePH6kospiHibZgKFA2MShRt159GvblEP2hNatX0YRJPxDu443r1/X7f/2FrTkcQGn2vAU0dsy3dOLEMbXUDJRGKLUIdpQSKc7zmTCXFZ02dHSwfFL7Dh3VfNglz906rckfc+sQgAvLdkyfOoVceRAJ7mhYnB4dQE2whIK0XY1G6n1CIcR7DO/OQoUKE9oTInNCQYO7LtqQoVjTlg3PS+727Vu3KSjoMXV+u6tq+5jfWY3f9R9wACOI9m5GneFa3ofXuK7PA26wqGJ5LQzuWCJa7CG8n7t2eYv+WrZKLdXV9o3/qQFEKOIQc+9ic2XhGerWgyMKs1so3ufd+FkoUbIUoRyRtCGAuApPnjxRUZih7LVu3VYNkg0c0E8N3Gq1QBT973+YSugTLFowX73/hg3/mt/PzvTz9GlaMvZAGk/Tf55BWE4O64gjQBui3eI9rrVPfeJkbFj6DCBreK/ABR7lBwbeIHeesnGCo+8nJZZeZ1J5yDEhIARSh4AopKnD1aa5rlj2N73Jc5t+nPqTyhfz78aOGaWWh0lOQT/xuqCFChWh/gMGqz+MHE5i10jMeTOUbVs3U68eXVR01GUrXkQJRcCaCRwAwRKBtRKRVaGgjBo9Vv1w4Tx0Avfv20dzZs9U2ezYvpUmch0QRAYddgRjQmRSWM7gsqYJLAcDOLKktk4e9vfo1lktJ4K1/j76uJ9KivmJCPrxPf+AiqQdAbhCdurQloO3TKdNW3eqguEShiUCEMnZUDCQgCU4sAQMAm9pgjaD9rF3jy66rrYf1v12b7ym2tLU6b+oeU84FhwcZPX8Ti1Pw08swYQ/CFzb79y+RQv+mKeUGAyCWCu4NkRBHf3deDWXGi7wiDi8edNGKlqsmD47KObSdvU4UnUDAxlQ4D4f8iVN4nUWYf2GwC37BA+WfcUDI9pyLNa0ZVtUGm3+g/f7qLphPWnIhfPneZ72DPWeNizj4w/78kDJRapbvwEh+BDmmyLd1Om/Ki8Dw7RJbeMa3+7UnvB+n7dgMb3Z5jWy9F2cVL44hvbenqdhYB1eyG1+nnr37KoUVLVD/qU6gTG8JBZ+SzEVAi6ru3Ztp/nz5iYIQAg3Wqwf/fnQL/VtDQOCnd96U903raJqIKR3FHXiQZMqHPEc77g2r7dS638ntbyQdr65T2ueAfy2e/Dg9szf56p+BSI3G0eHNi7P0us0Pk++CwEhkPoE7Hjh4/ix2lO/TCkhGQTgUluQXbIQoAjR72whWMMU68chsq+5iIdwuc3ln4ujMt61qsNjWE9cQ968+cjRyVEFtDEV5RfujCVKluSIezfNBiOCG/MzXvsSc/AgGKHNkSMnubq6xrNAGdZBttOOQACvoYhOzkXuOKOjYUvBiHxetmrBbQuBN7Q50rYsw1Z5IUgOAsjA2gul2pRI2zVFJXX3wRUWllHIdb43SbXR1GzLpq4S7SWaB98MLemm0hnugzUSVq1ihfOrQR7DY8nZtuZdbJw/luFqwxbnShVKq2jpLi6u8RQb4/Ty/b9BAM8EvAewTjIGdS0RxHk4fPQUz3vuxRF4V1tyikVpLH0G8BuDudm3b9+2+HcgOddpUaUlkRAQAskmIAppstHJiUJACAgBISAE0p4AgtIgWiksVPBwwXq34ydNVlMw4I6Z3mKokKZ3XaR82xHAAA6mSBw9eoQHp28r998vvxqhokA3qFszQcRm25UsOQkBIZDZCYjLbma/w3J9QkAICAEhkKkI1GNX3Z693ol3TVg+Y/S3I+Ptky9CwJYEcuTMSZMmT4mXJZZO6vveO6KMxqMiX4SAELCWgFhIrSUm6YWAEBACQkAIpCMBuHgXZNdKLGsVHRVNUAoMg7+lY9VU0YgujSVeTpoJMpPe9ZTyrSeAZZMKFy6ipsZg+tD169fMTvmxvhQ5QwgIgZeNgCikL9sdl+sVAkJACAgBISAEhIAQEAJCQAj8RwjY/0fqIdUQAkJACAgBISAEhIAQEAJCQAgIgZeMgCikL9kNl8sVAkJACAgBISAEhIAQEAJCQAj8VwiIQvpfuRNSDyEgBISAEBACQkAICAEhIASEwEtGQBTSl+yGy+UKASEgBISAEBACQkAIpD4BrJOaP38Bcnd3N1mYm5sbBwDzM3kMOxFECmuriwiBzE5Aln3J7HdYrk8ICAEhIASEgBAQAlYSyFe4OFWu3YgKliiT4Mz7t2/S0X3b6NQ/+xIckx1EPj6+9NeyVZQ3Xz66e/cOZc+eg37+aSr98P1EhcfR0ZG+HTOOmrdoSWFhYfTo4UPq3bMb3b59Sx3Pkzcv/TZrLvmwQuvh6UErli+jEcO+oBhef1hECGRGAmIhzYx3Va5JCAgBISAEhIAQEALJJFC3+RvUrtcnemXUJfw2OUY/IddnN8guJoKy++ehpm260Kud3iEnZ5dklpJ5T4uNjaXvJ42nUsULUb3a1alDu9b0Wf9BvFRTgLrolq1epUqVq1CNqhWpZrVKdOjQARr65XA9kGHDR9KObVupZvVK6njduvWocZNm+uOyIQQyGwGxkGa2OyrXIwSEwH+OQMnCXlQ4vyflzeVGnu66125UdCzdeRBBN26F0ZnLT+lRUOR/rt5SISGgEfDycKSc2VzI19uZsB0ZGUshYTF092E43bkfriWTz0xAoOHrHahC9frqSrwfHyHPJ6fIPi7++ynUswQFZa1KxcpUZAueFy3+dVImuHLbXcLTp09ozeqV+gyj2bIZ8vQpBQcHqX0tWr5Kq1Yup2fPnqnvixcuoBWr15O9vT05ODhQo8ZNqEmjBupYaGgorV61kqDEbli/Vu2Tf0IgsxEQhTSz3VG5HiEgBP4zBIoX8qJaFf0oWxbnBHVycrRXCiqU1FqV/OifU49p2/77CdLJDiGQngRKFvGi8sV9KK+/6TlwqFtYeDSdPP+Ejp0OpichUelZ3UxTtp2dPTm7e6X59ZSrVpsq1Wqoys12Zx25PAsksuOvdg7x6uIZdoHcIu/Qg5zNKC+79jZ7szttX7sserp+0QAAQABJREFUXpqX8UtsTDRFhYfqL71AgYLUqXMXqlK1Gg0c0E+55+JgLraUbt60UZ/u5s2b5OLiQlmyZiVnJ2dydHSiW4E39ccDebtq9er67xlxo1bFCpQ/IDdfHw9oRUXHu4QCuQPo9KXLdPDECbp9X34H48F5Sb6IQvqS3Gi5TCEgBNKWQK2KWal25Wyq0PAoNwp+5kdhkZ4UHu2m9jnYx5CbUwh5uwWRj+sjqlImC+XO6U6rtwZS0NP4P9ZpW3MpTQgQBeR0o1eqZ6OAHLr2CiZx9lCQtO9QUCJ4Zyi5c8yV6uWyqr9d/zyg/cceIblICgjYsaXMzSvxYDcpyDrJU6vVa8pWOkfyfbCL3CLuEvF2YmIf+4yyPtpHDwL+R+Wr1aXzp0/T44cPEkv+UuyPjnwWTyH18vZWgYmgbBYuXFjPwIf3R0Tw8/NcIiJ0XgaYM+rk5KT2Gh4PDw9X80m19Bnp050DNw3r+z6VMrh+U/WvWaEC9Wrbhn5etJjW7txpKonsy8QEEn/TZOKLlktLOwK5uVNTKJ875eZOTc7sruTMViFTEkdxPCoWQbfvPaNL10PpWmCYqWSyTwhkCAI1DZTR+yH+9CAkV4J6x8Q6UEiEj/oLcs5KOb1ukX92ojea5aH5K67zCHJsgnNkhxBICwKlinhTqwa6Nhtnx9qmfQ6Ks4NyBFNZQomjMLKLvct/j6lulWzkn8OVlm3UBWdJmFr2WEIAlragO5ctSWqzNMXLV2YrnTPZhd4i18cnyJLwOY7R18nl0XEK9SpBufP405V/D9qsPpkho5MnjlP/fh+Tp5cXHTh4lHbv3kVHjxxm191gcnZ+4Tnj6qob6IFLr/PzObk4rimliLSruftmNC79e3RXymhEeBCFBl0lWP/jYuO3Lme3LLwvmryyFqH3OnagK2wxPnM5bdt/RuOa2eorCmlmu6P/getxcbKnCqV8qUwxb8rq8+KFi6rFxTmx6onRP839J4a7ONH8goqkAFZY8Ve5dBYKfRZNpy48oaP/BtHTULEW/Qduq1TBQgIF87hTneeW0cDg/PTkWVazZ4ZFetG1R0Upb9aLlM2XqHm9nLRyy22z50kCIWBrAnhvt6j3XBm1z8ZW0XwWFOHO6Qrynx/ZRV+jIvk8qU2zAPp7gyilFsD7zyQJyKez4LmF3bCqTm5h15RCGpD/hQXQqgzMJM4fwIPaPLUBc5iz+jiRJ89hdnbU+hC6kzEn/2loFAWzd8nte+F0i/+u8sB2XFycmdzT5jDmj95/cJ/y5MmjFFJE00UkXU2wDeXz8ePHag5pVFQUK/h56fKliyoJjt+5c0dLnqE+q5Ypw9GBo+nWxbUUE62bM5vYBURFhlDWXBWoWd06opAmBimT7heFNJPe2PS6rOoV2G2rfFaCUgqJi3OhmNisFBvrxaNf3GmJi6+gavW0s2Ol1D6U7O2ekr3DY/Jwe6Z3ATt44jHtPvyAX2j/jR8Wrc7yKQRMEcB8UAgso5Yoo1oesXH2dCc4HxXwO0fFC3pRwTzBPEosngIaH/lMfQL+PCD4QhkNYAUzoWU/6Vp4U5xjEaKYi1Q4ryc1qZODNu2+l/QpcvQ/Q8CLlyqBOEVa53brGKUL1OPtm8Vm11KYBzWKF/KkIhwMTutPGGYeS/YUG6ez2NvZ8TA392az+kBhdeF3p4dKGh0bRxeuhtA5DhqHz7SUsuXKk4e7Bx04sE8pxQ0bNabcufPQsWNHVTUQnOjjTz6jX3+eTnDH7dDxLQ5YtI77SrHqb+uWTdSxYyca/e1I8vDwoFf/9zqN+fabtLwEm5YVGx1mVhlFgeGh7CbOUqJgQfVpi39wgfZiCzWUfVsMUMBajb+gIF27t0Ud0ysPc9dia3ZJXacopEnRkWMWE8DoZcMa2SlXNt0CzrGx3hQd40+xMT4W5REX50hxnDaWOH10Hp7D8pRHCe/y3yOqVi4LFSvoSdv336ML114EC7AoYwsSZcmShZVgB3r4wPSPMBauxqLWD3mdMFOChatDQ0LUj4qp47Lv5SGQL7e7mnMXGeNs0k3XHImIaFd6GJqTsnvepvIlfEUhNQdMjtuUQN2qusGUOPvsyVBGtaq4UZxDYbaUnqUK3IYvsiIgAysam//2p38enRIQ46DNE7asvnHPAx55+6Z8zmu5Ej7KS8owEFxYjDuFRHnTsxgPNQc/ige2Y2Ljd18d7GLIyT6SXB3DyM3hGXk6BZG7QxiV5MBy+At6GkWHTjyiY2eCLbuoFKZyd3OnKdN/5r6DBz15Eqz6EAP7f0o3rl9XOa9ZvYrq1X+FDh4+ztF3Q+hpyFPq0a2zvtRRI0fQ73P+UIqol7cXR+xdRZs2rtcfz2gb0VGWDa7GPnflfcQuzdZKvnz5afKP08iB13jFnF1EMA7nvz/mzaHpP8+gcqWL28TtuVfvd6nPe+9T+TIlLK5i8xatqM+775Ovr69SjMeM/ob+OZTQvb1I0aL00cf9CPf//v3UH8wzdy1Nm7WwKbukgMV/opNK+ZIcw+LF0dFRqsEYXrI5pcQw7cu2Xam0LzWqmUNddmycO4+C5WZrZspGSmFRxV9MzBNydAokX6+n1LpJbtp79BHtYWupLSQgIIAWLV1G2bJlVy+tW7cCaeKEcbRt62aVvSxcbQvKL1ceRfLpRuatsYwaEwoK81MKaeECuryMj8t3IZAaBDBvNH+AB88V5WkV9nlSWARceAN4Tuktql7BTxTSFNJMq9Pv3LxKhUuVJ4cYnfIQwfPYI6JezPXzdtcF23kWwQHZXF64zNrF6dI8CTI9aGtJ/YsW8KRalf0oRxbdmqbhMWyBivSj4MgsFM4KqTmJiXPg/oIbp3Ujnd0qD7k4cCAg50fkiz+vMGpSOydVKZuVdnPgrbNsNU1NgWW0WuXyKqARlFNEyY3hpV80iY6O1s8t9fTwZHfc+FM0rl+/Ro1eqUu5cvkrZRWD3iJJEwCzNq1fpdZvtKUfpkyn+nVq0NWrV6jVq6+pE0eOGk21a9el2b//RlOn/ECjvxvP08XsaMjgAWobiYZ+PpC27dhDJ0+eoKrVqtOlixfpnV7dlGUVedaqXUcNIGg1gSs1FMhGjZrQ9u1bWZEcTuUrVKIRX39Df//9J1Xg7T+XLqaff51JfXr3UMv2eHPgqgIFCtAn/fpTr959lOK8h+cWD/jsExr17ViqWas2Va5SlaZxHa9du6rSlS5dhk5yBOK3OrTVilafurqepOo1atDZs2do+9Yt9O77H9CmDevpqy+HKLdw4/rBIm/qWkzVx7AwXDvSJFYXw7TJ2TYdYSY5OWXgc7Dm04BBn9OR46dpw6ZtNGPmHP3VQCkZO34S7T90lFav20Rr+E9b2Fif6CXeQPAWTRmNjslBkRGYK5AyZdQQJyytkREleZBAt5g0Ipc2q5vTMEmyt6OjY2jkiK+odInCVLliGVrGL4+hXw7T5ycLV+tRyIaFBLSIpIimm1yJjnWi8Ch3dkizS24Wcp4QsJoAFFIlyk035W0P7r5xHCsAyxohYq9IxiNw/e5T2no0UP1NXHKMO+VExy4+oG/nH7bZxWD5q5YcQKt14wCljMIaej20EJ0LLkd3n+W2SBlNrDIRrNTeexZA54PL0NWQIhTKFtYs3k70v4b+9Fojf3a7fKFUJ5ZHSvbDPfQBL2ECRclQGTXME3NLjZVRw+M4JsqoIZHkbx9nd2kMFLzf9yNeVseR+/L+6g85YhvKP6RQ4SLq+IxffqK69eorBbHDW50JVs6RI4bRtm1blCKLtH0/4IBVnp7UqkUTlbZZi5bqO/IoW7Y8K4mnqVKlysoNe8vmTThFWcxPcLCr3bt20pttXqcfJ0+itu3aU+06dZUSizRjx4yirVs201fDvuY+cCT9r2UzWrki4bJKKMfBwZ4WzJ9HDRo0pEKFCiul9+2u3Qnef6bql9i1mKoP6qKJubpo6ZL7KQopk/v6m9FUq1Yd+uiDd5Vi0rF9Gz1Pc0qJPuFLuAFlVAveEhVVgKL5L7Ukmt14o6KKqOzL8Zp4jWvpLLIpKe/evbtqHTD8aOAPa4IVK1acYCWHmFq4ulnzFmrhavjVY+HqxYsXqrSGC1erHfLvpSTgxcE2IJExulH+5EKIYqVURAikJQEE44LE2dluQJE4yBGk8HPPAfVF/mUYAkXz+FDr2gWoVulcVKZAVu6E89y+fFkowM+8xdKSi8zFc5a7vJGXSj8fDAkMy0cXWHl8HKFbLsuSPCxNExyZlS4Gl6abYQV47qm9mqff/Y38vL6uDJZYyjCjp/vrz6W0kS2HiHgMJRICC6kpgcVy7pzZ6hCMUCVLllIDC0uXLKJAjgCszUVFP/CVho1p7frN5OjgSKVKldZnBxft8WPHUGgYx0fhZZwwF9hQypevQIv/XE49er6jL+c6W0Qh/546RXfv3qFDBw+wa3cD2rB5OxUvYdpFeO+e3fT3X0vVeVtYiV23Zo0qD31ZU/VL7FpM1Udl+vyfJXUxTG/t9kuvkMJt861OnZWlDA0QjQyuFJokpZRoaV7Gz7KsFL5QRgvy6F/KFURzHGNislJkJB5IO6rIUXxhLbWl4KG/FRjIc0V1LsFYuBovHk0MF66Gm6+phatz8SibyMtLgH9zlMSy+1hKJJaXhEmuaGvYWXs+fjDxw4tPkZeTgG6dUd2gii0IxNlh3VJe05SXgRHJuATWHrhGzarpoi27Ojtwxzv57yeNQsnCXtTl9Xzk5+NCT6N82CJalh6EWxtES8vN8s+H4Tno3JOyFByVhTCA2LFVXsIgt8jLQUCbo8pdfbZUPuFAU3nV715Wv4SDIFpakDl75gzlyJGTAnLnJl+2PGpy5PA/dOjQAapTqyrVq1uDlv31p3ZI/7lvzx61PXjIFyoPBKiCW/FHHNTqj7mz6bVXm+nTwp0W4sEKM36LV69eSS2aNaIVy/+mbt17qf36xAYbmoKMXYbbpuqX2LWYqo9BERbXxfAca7Zt98tjTan/obRVq9VQwWqat2xFnw/9imDpgn/5rp07VC2hlMBypomhUoIgODkKltMOvTSf2XwdqG1j3ehSdFQ+nm+S+j8iL+DmZPeErLxw9CVq2jgnRbnxmqW3XwwgvEiX+BZeMg+u/RsvQdFixQgvi8ED+yvXChx8mRauVqOEvDaYSMoIhDyLJXc3O16SIIrdbpP/enV2isLQLUeeNtPxU9b9WH2lq1WvQdN/mkFVKpXV78MG2jZcdwxlx45t1LVzR7ULc2xGfzdOzZ335UiZgwZ8qkaSDdNnlG07pVCbHvXOKNeQLvWEpcCOrUW2fA/YsSUt1o58vXltSzNtOY6ji3JXKl0u/b9aqDlmNq837r2yGOH50T1DV+48oaxeruTt7vyiOHVId1y3k7efn2dJnUsV8aKW9XVTbx5G5KTA0PwqG5XFi1JSbSsq1pWuhRQjf/cblN31NjXjZY7s2O3xxNknNiiTPa5UW7ZBVpkoC0cny6zq9s/fE1l9Un+QYA0rewjas37TVgoLC0s0sCVuw6ZN6+mtzm/T7r2HCFZMzbL6y0/TaAhP9cKUP2dnJ/p+4ni6cuVKvDsHN+EJ47+jDz78hDq/3ZXnoD6lTz7uy4GqVtI7HOgIczM1wbq1Z86cpj//XskxTcZSd1ZCHTmENJRMuBBb675tqn7Llv1l8lpM1UerFz4n/zAtRXUxzMvUdvJ7TKZyy4D7EIYbvv1XuQFt27KFypUvTzN/n0ft27WmY0ePJKmUJBaVNQNisKrK9SrqXFxgFY1OU2VUV82YGF7rzi6CLZQ3CXVZeC+E65H8jkzOnLk4mt18+mnaVPWC0GC8TAtXu3j4knf2vNqly2cyCYRzB9zD14myc5TKRyHJ8xqws48lv+yB3B10p+z5k3b9DQt+QCGPbqkF1jH/PX+BgvQokWjQixfNpy+GDNZfmTaKipHY8RMnUycOloAlCRDIYTY/D1BqEaUwo4lPzgLk7KobMMtodU/P+nr4+nAgIqw7mrx2a7LucVFkH3OPnwnitpz0PXkUeIGiI1+0N1gH0OlLbO6dyfKe78wMQQgdHJ3JL69pF72krj0lx9y9/cjJ2ZUcnd3IMVr3O7/l+CXq3ryE6ogi773/3uHlqWJo1cHb9FqtAuSA++Toqs5zcfPi+/zCZdFUXQoGOFKLWjrXxXvh/vQ4Ni+5c/tIDwmmHOTqcotyud2kN1rlIK/sz+j89cgUVSUyPISCbl9OUR6Z8WR7R3eOfutmdukXNw/dQMWZy8lnuJwVLvxpAkUrf56V6uuqlSsIfxC471Yshxgl0fE8I/Pn0dUBaQy3mzd5RUVLhuFKE/xmdmj3hnLHxW8qFFuIVp6WbsoP36sgRVmyZqUgXn4G7zUYu+DSiyjM2u8x0qMcuBVD+YQSirmg6I+aehca1i+xbVP1M3UtXw4dbLI+2rXUrlklybpo15rcz5deIUUjQOSqRQvnK4YYyahQsRK14MnLUEiTUkpwwr0rJ5LLPkOeh4i6XtxhefrIlSdaY1TzbjpdhwN3wsPZpSGYivo9ph0H7ierHnnz5aP5C5eqsOA/T58aL4+XaeHq8JDHhD+RlBE4zi6K+Xz9ySHqKYUEJW+QxNftIYU9vkvXboXy+yXQogpFRkbSK/VrU0UOnjDjt9kmz4mJieV52Gx5NZJXXmlEN25c16+Ph3kimF+NYA74wc5oIp3B5N2x0MfFWBll64590oMg1uUeTfbRdykkLJrbsnUdzOEcpRIy/Ksv4hW5c88Byp+/QLx9gwb2o8ULF6hAJN+OGcfBR1qqjiEGZ3r37EZ4l2c0iYmOTPP+RVhwTYqKCOCBgTD1B2a9mxViw3Ukf9cpatWKelO1omUUzrjocIJ/UjRPMYiKeEYRz54kWWesc1unRF4KfRxCd8MD6E4YrK7p1YdQl0CXHztQiKuzspbWLEp04+JNuhaoUyp0KeR/SgkcPHGSl+8rS/6FmlPYk+s80GTPVuSYeNk6u2XhfdHklbWI2r9xt87NNV6iVPiiuchakjX0BUNl1PCcxPYbpsEas8aGrOBg02uZwoqqyaNHj7TNZH8a1y+xa0msPigY59iiLoldxEuvkCL62Wuvt07Ax9VNN+clKaUkwUmZfIeDgx3VqKibtxnDQYbSW6J5eRln52CqVjYLnTwbTI+CrRvZLFykKCujS2jypAn6AQnDa3qZFq52cHJhq5Ju1NqQgWxbR+Aaj4uERjrxEgNxlD0mlILCEs5LSSpHe/sYyuUXTE5sYb0Y+IzcvHTPW2LnREeGc0fQss5TdXbnnTDpB/WDuGrVCjrFYe0huXLl4rnTN+MVEchzqTFdQeRlIxBh4wvWvZPDwuN3PpMqpHGTpmoJBszXmjN7psmk3bp0oj27d+qPaZYDwyCEsO6PGDmKI6cPVwEL9YllI10IwNrdtG5OsufPRxHZWRlN/z6EBgKWWkeHKMrucoea1MlJ85Zdo4jIWO2wfKaQwKQ5c2hY3/epVOHC5Oqe9G8aipq+cCGlxEKawurK6elE4KVXSPGjhhHV+rxAMeZUYU2hBg0a0kcfvqduSVJKSTrds3QrFoGEPFwdeY6lN7sOmH+ppHZFY2M92VWXgws53KfyJX1o237rrKRVqlZVk9mxrA/+NJny4/c0Ydx3aiHql2XhanuODufE7lYiKSdw+Hw0NanuwZEo77H1wIfCopJ2VTQsMcD3KruQ2dGt+3Z08ba92XuCEUtLFFIswB0UFEQYDUYUwGUr1qhF2BHm3cfHV+03rEdERISarmC4T7ZfAgJxlg1uWErCLlY3yn/3oeWKLtzY8PclL3fg6Gh6DjXWCjdl7TcVhHDF6vUqOAisEyLpR+D1ZkV5bcViPE2Z16eNrEJZeb5wKFuBngY/onu3bsRzWUyPWt4KzUeu9s8oi1cwvcLrqq/fcSc9qpEpywzjwaHPJ77oY2XKi5SLSjGBl14hRSdtYP9P6PsfpipTdP4CBQgKCdb/gaxZvYpDLr9CBw8fV4vhPg15qjpyKSafATMoyYEIIDExL/zr0/syYhHdlxVSKMt7jzy0alQTLl74S0wwr6B/P15jCiHCPTL3wtVR4aGEP5GUEzhwjyiLSy4qy65t2V0O061nBSgkIukADfZ2MeTvc4NcYx5zBy2WVqy9Tk+CrLP4J1VzrH+mrYGGdOHhz6hDx85qHTS46Li46DxCtDxcXV3VdAXte0b6dHRxYwXEtCKTka4jresazLpoVh87inXgKI923jYp3i7mGdnFOdPN+3Hk7Jb0wAwGViwNBoNAIP97rTUHD7lMSxYt0LuRmQtCaJOLkkysIoBn8a1ub1K7ZjqPi4tPSpO7i84bx8PLh3IE5KG8hYrTjcvn6G7gdavytnXiW7zsTDGfU+rdfelaCF24GmLrIiQ/ISAEEiHw0iuk4LJp4wbatrU8BQTkVnOnDH3KzSkliXDNdLtz88LmufxceRTTmRXSFyGv0/tCY2M9eE0xTw6sEEKFeK27Mxdf+N3bqm7w5Tf05zfOFwtXiwgBQwIYXXdytKMSBb0ob5bLFBzOQQnC/NidN74V2skhkrxdH1NWj7vkyO66cBNbseUWPbShMmpYL2377p27+nl4t2/fptx54rvPwVMkI867w/W5efmpoCzatcqnZQSuP+R3fE53nkMazkppbstOSipVbDBHYLejZ5EeFBgUQR5ZklZyn9y/TjGx5i2pWAA+/Fk4R1p3pGbNW1Knzl2oVfMm9PTpEwlCmNT9SIdj7p5e9HqX96hpDScuPZzuPfPn6OOu5EA6F27Mso/j+YTOLi5UuGQ5cnVzp2sXz1pUUw8eKHZ5Ps0kIjyMra1PLDovqUThMW50OywvBbhfp7pV/GyikCIgjb2DQ4K5g1o9zAXg8suWTQW3MeyXaufKpxDITAREIX1+N6F4Yj5pYmJOKUnsvMyyX1s8OiY2ncLhJQEyNsaX7B1DqEBu91RRSJMoWg4JgUQJrNpymx5WjKBalf3Ih5VO/GFB9sgYDhoTZ8eDKFE8V/RFkKErN0Np8957FPTkxb5EM7fyQLs3O9DaNatUoJds2bNT23Zv0sIFf6hctm/fquaWIpgbArlh6Risswt33owoTx/czIjVTvc6b7tvT8VyFSIXp4cU5xDLTTRl0zLsYs+SXWwYbT94nx7fsl3ANMPgc7/P4iXa9h6k2nXq0vp1a8wGIUx3yC9ZBVq0787TabKRN8/NjI52ovuh/hw9/EWwN7VwTFwMtzWOpmznQLkLFOEB72i6eeWiSVIOjo6UO39hypk7H0f1jR98C27c92/fUOdGPQ/AZDITMzvv81qovi4PyI+7OhV4KtCxM8FmzjB9GGvcL1q6TL1Lw9ll9datQF7GYxwbP3Ted458LUkF4MKg4G+z5vIgiw+vPenB61AuoxHDvmA+ls/HNl2z9N/r5+3CSwk5k6erE0VEx9BTBD0L4qBYUeJWn/53J/1qIApp+rHPUCXn9detIRUXm7TrYXpcVKyq003K97yO6VEHKVMImCKw9+gjOnn+KVUo5UNF83twJ8eFXB2f6ZNGRMeqiI5nLz2lc5eTb913YQsDoo86OTmrsOwH/jlGO1jRHDTgM1VW23btaRzPk4Y1FCPuK1f8zest6wLGILT8YI5SOn/BErp//546PuCzTzLkki96sLJhNQF0BvccfkgNa2Qnu5hrFOeIDn/yAp3ZxV5TyuidB+F06ITtlFHji8JAMiLperG1DCJBCI0Jpd/3avWbUv4iJcnf+wY58Pzdu+E8vSYRseO58LCaQinNV7g4K5aBFMHTCgzFJ2s2KlKqPFtFdcvRONlHkgvcy1nUIB+3V/+8hShbztx0+ewpengv+Z5LD8NzkrvHFSrPU4GSq5BGs6I1csRX+qkSPXu9wwG2hukVUnMBuIYNH0k7tm2lMaO/UUuKrFm3iRo3aUaIa5JRpXgebyoS4KkUUVPXcONBGJ298YQePTXvKWHqfNmXsQmIQpqx71+a1T6HH8Kz8xrnsZYtbmyqYtnZdSUnd4b9fHjEz12XTxj/6Dzi9ZXuP3xEtx88MHWa2X1w240je/L2hFuQiBD4bxF4GhpFuw49UH+pVTMEIapepUKi2b/Fa4x6efGcVraOotNuvL7oyhXL2YK6mvx5VP8WR9jNDKPwicKQA4kSOHzqMWXL4kzlivuQXfRFVkoLctqkXW2NM9Mpow8pipcZ2rzXukBzxnkZf8+XLz8VKFiQdu3coYLgYGmiIkWL0YH9+1RSCUJoTCz9vperVo+nI3CQILdn3G9wpsdRedh1lacnszWUXUSeVwz2Ut5mhRQB2njCMcWw94h/vgJ09fwZfeWhjJauVEN9d3cMpeyud8jVgSc9GwjcbR9G5KQQ8qLi5SrT2eP/0KP7yQtMhCjAOVxvUw6enVQwrwdduWF9fAUsnYXgXJpge9iIb/gdnEMN/CUVgMuBXXwbNW5CTRo1UKdjyY7Vq1YSlNiMqJAiGGb14tkou4/Oqu2AdWtdfXiuP1SQOIqOekaRzx5T3mzu6u/o5Ud0/mbyB2g15vKZsQiIQpqx7le61dadXygYw4yL071QrKlILlZCSxcpQrmy+SU4LYu3F+XOwSOnvP7XAw4wdfbyFV5/0fo14+LiXPmHLv4PVILCZIcQeIkJYI4d/hITWJtuXE/foCKJ1U32px2BDbvu8nJa9mr+s1JK7XPxvFIEsjMXKOoJW1Zvsk7Ba1PGxtGyjbfo9r34Vi5LrqJlq/8R1iDFAAoEHfdhXw7hjvg6QrCtid//yBYjTwrm3wt3D3e27n+mn26TmYIQIvK5p58N5vJaAv15Gmd3b3JgLwsHtjbaKwu5ZSc7OPI5fJ6jsztl8S9EpcpWoLwYPMhyh5z5GJZVsWcXVfPCQbV4TmmuPAXpwf0HFBUZRXb2dlS0TCU1D9PH+RHldA18nk389ujGFtM8TjfoAbvcPorMTkXLVqJTRw6yshNtvlgTKcKcipC3202qVMmVFV3L3XZjeCmu0KCEa6vWq99ADfY9fKgbeE8qAJczWDo6xVuOK5CX5qpavbqJmv63d7k6O1DdMjnIx92J25UbefrmJxf37AkqHRsbSWHBNyjs6S2qWCgru3bb0bmbif9eJchAdmR4Apa8ITL8RcoF2IYAAhpZKxVKlqDShQvrTuNIovb2wfwXysqjziUDCm5cnBvFxnhTNl9fqlOpIvmzFWf/8eNWFaUUZVFIrWImiYWAEBACpghg/nNQ1UiqUd6PXW/vqL84ez+e68eRcu3g3WLPf7B0RfAxRCJlZTRWZ0WCm+6GXffo3kOdOyUftEow1xl/puT8+XNUrXJ5ZWWCcnrz5g22vr2Yd5aZghDGxcVS1LO0tRLFRkeqSMdxsTyvk/8sFURHRovwdnejOnXqUK7ceTlIG3st8TrhsIAFR2aBHTRRQUvSJeC5y7yJe+vLnlSYC+qT1Y/ddF15SZYQVkZvJpqHdiAbWzYjYpwpJM6b11LOTdcvn9cOWfX5KMyDcjhFUN7s1t0HzIE1lqLFitHgIV/w4El/fXv18fYmeLZoEhGhe14wZ9TJSeftZXgcQY1wLKNJlaIcQ4GVUScXH/LNXooHGEyrHfb2PKc0S2Ee2PCgp48uUIVCHAgwNJLuPE7eeySjcZL6EpluGUJGCJgkoH42TB4xtbNG+fJUOG8edcjB8T45OCQcNbSzw8uGozE63GGl1I8DH+RS57jynLjtBw+aytbkvri4+KOlJhPJTiEgBISAELCIwK5DD//P3nUAxlFd27NVbdW7ZMlFLnLDHXeMG8W0BAg1xHRCCC2U/OSHEiDUBAgfSEICBEKHAKYZMMUGDNjGvfcmq1i9S9v0z32jlVfSrrQrrYxlz7V3d3bmtXmanXnnlnOxa18dJo6KR062jYCzlBC01G/dKrqmr9lUiWVry/yWCcUBce0Ud8iO5GggIRSQV1/ds3PZdg6dtO65CajcbicBaXtg1ba8fDfQ6mWk1Ss6IgyNVDq7HI1kzY0kqGokaZsdDQIOHRKL7B+Seh9pEtuYuO8SkMsYklPT2Y4J8SSFCzQtUIK1ENV2GxJT0rBzc3DKbc85CrVctcVA12A7kmz12F8QvLVf2kpNTcPzL7yMvz31JNMIvudpvkMCLmszYZPVam0BrVoqroqW+r1hIys5CpmJkobLgpikIX7BqPe5RNjSeA02orZyH4Zmx+qA1HtyjvJtHZAe5X/gH+v0Rgwa1AxGm2C27OMNqXNNr9FUCgsTUzscWXTjTcbxI0di+fr1P9Yp6P3qM6DPgD4Dx/QMHCiqx9uf1iORcaWD+tqQmhyOhBgSZ8VaUENmzFq+CksaScxVix17g4+zO6Yn9yg4eWN0H5jiB8Bl1EJ5mkhK5KIFrIFMsDarFkJT6wguBlmmRUCp2L3NzI8sbLpGEh5ZTU1w0OppMtTD2NQxE3m4qZ7lRdndOr+ytB2M1DijVayqpL3rCiDNys7Gy6++iZf+8wK82aFlDB0RcEkMqcPhYDquLOzauUMNWVh3Cwu7FhMbzDmHsmxOupZ7OCo2m0aHwMO9omKzUF9bhBQahFPiwsnA2z0rqVichfisvJxKDVF2dFNEOSCvCoYNHI1i41yJy3RHIT49cd46IO2JWe2hNkfn5uI4un5kZ6QjmW4sTt70S8rLsHX3bvywcSP25Rf0UM/BNZtI19tRQwarSoGCUU8PEgdqseylq85ALoCyUVBcjP0B3IQN1Mzqos+APgP6DOgzEPoZKC23o5TPGl30GZAZMNDiZUzMhSFCc8WVXKICRF0GhwKTUsbDJl7r0piaXYxR94ABSXkixGme7wa69woIaytiKRRwajZp1tomgxlOkhaZFSjt2GJpZUyp3dU9QFrnJKAKIzBKDBxMec4hZ+AggtE38Pijf8Zrr77s2d3y2REBl7ihf/H5IlxwwUW4/0/3KJbd0884Cw/86d6W+r1hI5VgUiQ8ijwhQYkR4YwzravKg7QRKCAV0rPHn3iKsapmCPO8kPdJyh1RCDz993/iuOFDaJnuPoi84sprcPUvr8WoEbkBn9Upp56Gq6+5FnFcHwswFvbkH1a09wIcSGPO9TfcjPvuuVuRXwXcQRAFO+vjLjI8x9Bl/pqrLg+i1e4X1QFp9+ewx1uYyUD2n518EvqkpbXrS0Db5NGjcelPf4oVGzbgrY8/weZdu9qVC8UOT9xnZ20N7tdPFTHR4hmIZbRte+LGazIXwkX33aE5AwIEpIdiMdq2p3/XZ0CfAX0G9BnQZ0CfgY5nINzkQoy7BLEWOyKiCDoVI27rOk1mGxyxuSS6IqcEo3hcBIlNpM81E4yalF1TKx9utqsNu1sDJbt3boPNpqXnSUhKQVVVBZyMEXVLrCytgX37D2zdEb+ZSOwj0khgqVx5+S7iRAQtpQSxTf6t8g0ujclfVejiW6PkjKbExmjjCKaZ8RMmID09Aw8x3Za8PPJ/TzyGPz/8IN1338cJM2Zi+cq1qKmuQXVNNS6bf7GnmAIkz7/wEgSIRpP8Ucov+vTjluO9ZcNEoit/caMdnYMlTLOsx0QFzl2yb99enP2T0/GTn56Dv/7f05gxbRL27NmN004/U3V1z333Y+rU6Ux59i88+X9/xf0PPqJYn3/321vVthT6/f/chi+XLMX69esw4fiJ2LljB666Yr5SnkibU6ZOU38vz9jFci0AcvbsuZCc3vfdcxdGjR6Lu0nM9vbbb2E0t99683X8/ZlncfWVlymW5BjGAvfjOvnGm2/BFVderYDz0m++hqRbu+9PD2HylKkYN34CnuIY9+7do8oNHz4C69etgzDme4s21vWYOGkStmzZjMVffI5rrr0Oiz75GHeQDM7X+Nr2MYTGroyMTNQwBdwGnndtHXleqCQSOePMs3Dr7b9DYmIi3n7rTTz6l4dx3/0PcR6mKwvqtddciU0bN3gPqcvbOiDt8tQdnoq3XHYpZvDGJuJoqERN5R401BXzRl6jtJRmq40PjjTEJORgwogR6vXS+x/gjYULQzrAugYXIvlcMRhIetABuZGVmqkBfTRmQKNJY5PrykBMrOtypUBSxcTRfaCiumOXXy0WtSs96XX0GdBnQJ8BfQb0GTh2Z6BfahQGpEcjN6Yc8e4wWI0kICQYbTJY4DJHwq3AJy2YpnC4ovsLDlXQkxlaVKyn4FZLEwGosVG5WIZbGKpDC6WI06WBObGAxiclk8E5TIGApORUdby4qACxcQlqu+2by6m55nryjQoodTB3M4NcWdRMBt9oWAw1aGjULKgynPAwzdIqaWFq3BqoadtuoN+dbm3stojgl8qvv/oK5OVPOiPgEnA1e+Z0pKWlK7Aq+aJ7o7idXTUWaMqHVObuDpWsXbOa7MVmXPur6/H3vz1FhUG6uhalfdn2ePMOyBmIzZs34Z//+BsZv+9TAFFYo8XKKaBxzNhxVBRoIPdX191ARYsNp506F+99+DFOPnWeAqzSxsiRowgSN5GpeZwis/r8s0XqVKqqKrFu3Vq6o1vx8UcfYvyE4xUgfocAVkCsANKHHrgPy5ctw79ffBklJSU4Y97JmDR5SrupkH42bdqIV17+D35zy+3Yt2ePAr2/mH+5Ao++xte2D2GAlraFyTyfWS4EiMfGxiElJRWP/fUpphxagH8/9y+yPE/Czy+Zj5mz5uCC884mSE2C3d7Vv2+7U9FJjdpPyZGz5/6bb4LEYrpddpTkL0dV6db2g6OCsKZ8B49/j8S0cYhLGYGfn3G6AnHPvPFG+/Jt9kjQfDwvqoTEVIjWxsaX7PNoR1xM7uwk854lsgS2KDv3u+gCwQeV55fbpr0MSeFC0Zh0tYdJmyIBfxVGXrcrHtJmR4DUaKzjY8qtYpoCblwvqM+APgP6DOgzoM/AMTwDAzOjMSwrFhFMzSEiMaD2cJLK0P3WSMuliwDUI0JMYyYDqoBQ4dR10yqqhOXEVOpmHGkTraRmkwGRBKThxgb1XHY0aaAuNi4eVRXlqKLLZL8Bg5Rbpbjt1tMaI8RFgcrqjWWMYabVjP1mpUWhnkz9X36zD5lpEezbiDHDfIPbQNv3LudoVr5HRTafq/fBEG13RsBVWFgQop5+nGYk52iXpDnUs6gidIDnv7TwlZaWKquzgEgRLS9u+xGKxfL1115VgFQs3UOHDlPppd584zUF1DxrYMkXKymqJk3SwOKwYcMVkJQWb7vlJuUifNNvbuWa2Khcr71dhkeNGo0bbrqFKY60fM3Szz5aREU20uOxqKgQK5Yvw/zLrsAnny0m6HxRHWv79u3Sb/DVV4sVIP3888+Um/Kll12p2Mh9jW8hQbCIpw/Z3kC+FhmvyFk/+an6zB06VDE+P/evZxSAXkNAL+BVYnLf//ATrPxhBa679mpVNhRvmk02FC3pbYR0Bm674nIFRu20iu7f/r5vMOrVo7DRleQvQ+GeJWrv6SfOwBkzT/Qq0XozOTUDY4+fijnzfopxE6ej/8DBZKRLVfTqHjAqNUxmE/dFwI4E5nyzEbiakEzmuhhqT8RHv63ERDf/yAkSuyvG5jQusbSQdiRGg5aram9+9/vsqB/9mD4D+gzoM6DPgD4DvX0GMsh8OndMOsblJCgw6qQbbq1tMCoSp/BzEBxhKa3AqIFA1WSJaA9GZSLoOttEsOoyRcFpiYOTVssmg5UWVoGtRBX8LwpjcdMV4BlNpXdDgxb/ebDgAFLSMoKaTgG8mamRGNiPQJqWS+krMyMFuTlxIQWjMqgmZQKW8YvtVZeuzIDTXqvYkoOt67BrXnFVTP0SSnE3pzMSm0pVVRUymaJIgGACDTNtxVNW9m/ZvFkB0YzMTMTRc88jq1b+gBUrlmHalAk4YfokvPPftzyHWj6/W7pUbUvqH7E6ihu2uBVff+Nv8NKL/8aZp5/cUlbS+4hEETALiP2AzMynnjwbC959G/MvvULtbynsteEByLLLe9vX+Nr24dVMq00h3hKZTDdlGYtYbqsqKzFzxhTcfuvNyrI7/YQZrep054sOSLszez1Ud+bE4zF9HE38tIwW7PmMrrqBB2HXVOzAwf3axS9xpYlxrfNWyc1/6oy5mDCZriAZfdQZRPAGn0gNaXqECX0jzcixWVq9srnP7CTbHa8Ws4l5xeifEx4Ridj4RMRLjjAvYGphMm9NNBeabk1RM1GRuAF3JEYZE2VPnv94ko7q68f0GdBnQJ8BfQb0GTgWZmB0TjymD09BQrRVgcfamFxUx42hZVRzofU1BwJGFfAUaOmxjPoqyH0CTgWUugkUZa1AfyqmcXHhwJ4dKDiwH7W1NYiMZBwqXf2cdMmVtUQwkpJEkhvmuP1hXSnsziZYzAYqyG3YmefCV8s7TgcUTD962e7PQFEzO25D7cEgG3Or0DSpVNSDeUglDU9mnz74eNEXBIqad5+/gS5a9LGKR/3m2xWYO/ekFsvqP+j6K4y7q9ZuwroNWzBt+gntmli27Dv8+ZEHcfY5P8OKVevw0MN/YbxmtUoDdBWJjl565ZA343q68oq78Ftvv4crr/4lHqfLrLjtimVSXIiDdd32Nb62fbQbcPOO7du24emnnsDtv/0dtmzfo0iZJB7300WLcfMtt2H16lX46KMP/FUPer8hPj6eegJdjqQZePKOO5CdnoZiAsvK0i1dGlpavxNhi8vBgi++wLNv/Vfd9IePHItUBi6LWPigiCXCjOLN3GwMTPs3ILuI7rxO2BsHkb2OmlBeOe7mq6ehro4BzpWYNmaMYgH2l3c0mJNxu+PhdGSivKoaH331lc+q4hpstW6Ei+quv728C/UNLp/l9J36DOgzoM+APgP6DByrMxDJ2MqJuUlMpaG5UNZH9UNDRFar6cgdNR4JyWmIrN0Js0NThAsYNTJlhzzqXQSbvkTYb+sj+5GcqBHbN65BclofnDi8mOsMO7aUHUc+CLGVNvGTVlOTVbXlqx3Z56Y1VmT7pjUq3rTvwKGQGNKk8EK13/O2e3814lQKIsakNrf41bfbMWdyoipyoK4v85/G4NvPur5gNtDKe1z8D3BxofPoc9s9XeufAc6A5CGdMjSJ1jUL4tPHBJz6pbZyr8pDerCyAV+u7Vklg4BJieeVV2ci7r2RkZFUqrQ3fkRF0Z2d69A6roX9iVgZ4xMSUEGWXXFXF5FYTYkp9bZqyn5JveIBn8RpKm+tp44cD1Z8jc/TR9u+27YtLroxMTHK3VmOSVuibPKMr235rn7v2PTU1VaPwnoRERHqQhT/856UscOGKTAqrrpdBaMyvvKDGxUgPXnqVLz39Xc4bswE5Y4rJvEEPpgEjAYrlVWRSE6qYhxJCV0w4vmwIdESn1J23qzD+SO1hFnR0PKj7vzH3Xn/2g+2tqMfuEnzvV+/pVIHo51PqF5CnwF9BvQZ0GfgGJuBhJgwTCYYtYUz3YoxHHUxQ2jF7JzwR4CEgFERN0FnMCKEQBaTnQpvF9cJBI20kjICiOKkA6+JEDIwRbh3n7JwXru5HBHhJtTVO9Gvjw1l5Y1MDyc8EkBGurhdNmvJvSt2cdti1HgwatmXLsHPwP7iWhxIiUImdQTVJVsRmzyMhvaOr6P6mkIFRqW3zfs077fgew68hsd9NZAacv35AqNS199+73YlnU8pCYq8xTum1Hu/xBZ7pKyszLPZ5U9f4/Puo6OGhQXbG/v4aquj+oEeCx6VBNpyLyzXv/8ArNu4Fb+49PKW0Qsjl1B2f79iNT5YuAgf8iX+5j0lQmIkUlu5R3129a2RTLz2hnKYImyYN+9MBUajzEZk0f22K2BUxlFeFUWmMCO1XeV8SGk3CgGl4vLL/9R+kfUuPJIuO4fnshIyI7NJcwVZvSlwt+auzqleT58BfQb0GdBnQJ+B3jQDsUybcQJddAWMOqzxqI4fExAYlXM0NhPSuCROlBaRYMTRzK5rIfOuiBAmyUuEWUtbrJpqR4BvYqEaTdKinOxojBmeqNwmE+LDMHRgLGNIYzGwfzzT0NC9OERiaWYKrqnXPa+6OqU/bC9FVZ141lWirHANGutbAzJPu263HTUVO1FdplmiV+8qQ2EPuut6+tU/j5wZ6FhVceSMs8dHIgyzf//nc6ime6i3zDvtdIwdNx6TJoxRuYLuvuc+/P4Pd+H6667xLhay7b6ZGtgVQNldqSPdtskcwTjSODhqKpHYTIfe1XYFjJaW25CcSCupeT/ddrX4VIGf4XT7tVN7JOKi9tNEuniPOOmms3xN65tQ7sA4JJApb+uuKuQX1ZEa3o0MEhUMGxQXsN7UZM5TXazaWIESJm7XRZ8BfQb0GdBnQJ8BfQa0GYjgM3/6iGSE0SPKHpaE2uihAU+NkaleDIwXlae6B0gGXJkFG5vzj6qULZqhsaUdsZYKKHUz0UNX7JlmKte9RVwhNaFbcFM4CZVCw8waRqZgkfIKfX2hzW/w7w12xvZuKMLxQxLpLg5UFm/mupScJOFxNG6IgoJ/M0cDgeohK6CA0W15rdfiwfes1+htM6ADUv7FJD/W03//J54ltfGpzCHkLafOOx3vv/euAqOyX/JKLfjgY8U4Jeb3UEs86aNFHE7tRtjV9o1RKbBbopk+GkiNCiNrnqaZ7Gp7nnql5dGIsdWTyIjWScs+xnhmew7BSu2lxxPYiTAFSg1NDvrKN2HH3mrMmHSINEEelCIVVXal2bSw4jcrikhQYMTg/p27EpnNBTAZKyCuNEtX9awbdcsJ6hv6DOgzoM+APgP6DPSSGZhEN92oMDPBaGJQYFROz2AmKRHFE9OpvgTxVu+MVKUjza3j7TzgVkCpgaC0iQrskArXIU0Gzc24u+1GmWtUEwdLQwNwuzue3lq/tsGpYkFz+8QgJ8NGaz0NF3TNbSv7S+qwZX8Vyqr1+W47N8fCdx2Q8q981933Ytu2rXjjtVfaAdI0uud+tujTlmshLy9PscpKYLL4gosGMZSiLKS8oWrOMdq7kdZHoTo3y35qAoWDiJtKxKddiIXcfHPKi5ZGMFeYMSEXBhMDycPoahMThQOeCiEYbFFJPPpmltBKKu6ykQwGT25p1cL5sHCsLvbnbIpinKmkZKEelECzL29EbWXiaIn50MQWxTxnbTSf6kTlvL3GbzSVEwyLddSAz78vRSO1r8H+HZqaqb89fR/rn2p+6ZalSy+bAf7+m1QewF427h4crpa2qvkG2YP96E2HdgaalIK3K/ay0I7jSGot2Oea99hH92di+7gIuE2RqIse0uoZ6l2u9ba2uBDLlawzJM6zKaDngtTTWlKrF27XOiRdGxlwLZWeQ4e6EvddOcp7FzOacrvNs0c1Jw2qjUP1OtmS8QrBkVhJlbRZO3RSvd1hm5VWOraRV9QYxBqD9+Q2xgoJ/RJCGl/kMZ3xkyQm0bJdU8NUOd0zUrQ7uR9hx5a8KshLF30GfM3AMQ9IL/nFpUzSPACX/eJiX/ODWDJLNTYe0tY0Nmo3hVi6+AogTe473Ge9ru4soWYoOy2GiWfNMEWRKIj3aeZ6DkoaY4cxRsSKWKsBSRHhKCYxQWRcx5TWQXXAwlX2GCQnlNIOWk5mvXi4nRqwNFvDyYhnhpMPHDfddt2IZrxpNertBryzKF+REYhbrpAReGR/fi2Wry1BekoEcvrSZVeehCIkRTAyqbYljIRSzeM3Gmtgse7nQycFq7Y2otwdxr+BVjzQd8ktVbJ3Y6vix/oDIywqDjHJWa3mRP9y5M9AXWUJasq0XGFH/mgPzwhjU/sxlv3Q/eXw9Kr30t0ZKDuwHU67lp9S2hI3TFGU+WKWlGOpqWkqcbwvT6XOFvndHevhqG/iMzwxK7dLXSXZjBgzQLNwVscdh0hz6/Rv/hq1hEUqLghxqTQ2NVCxbOLfIIAFCMsoEEsleJgtjs/oCDiorG502xBpqoXNWodaZ9t84mybHlQGUaqrPrTnvpF9ioRFxsBs5RpAwDG92OQViEh7InIOpiZzy9ohkLreZSJMdYiPjUVVrRtuepmRMDYgsTfUoKJgV0tZyScp3CO33XITVixf1rJf1hx/euBhnEKvPGFmLSNh5pWXz4cn92OfrCz867kXuQaNZe7JKOahfAd33/m/Pn8PLY3qG/oM9OIZOOYB6bW/uh6ffroQN950i/oz9h+Qox6E1UyY+87bbymqZatVu7FLgfBwLWDew4x1cPe6kP75HYwddVSWI9xQS1BH05+6t1p5g48mMLPxJkvrJ2/6kqhapMntoHXUAWdjDfN61aDeqGlErczhmUSGO7ejBvb6KtSWFwU1TjNv/qLNc7XR9HkaqS2nW3GtAwnx4tKykqA0h6A0kQuKGI5H2PRcjDF1kU+P8aQEqBee1oeWZRPKKhrx8ZIDiJ3TB7HMgyaSGGvC5NEJ+GF9CXbttaB/lraYlPNyO+3Mw8qHGcdvNFUQqO9kvy5s2F6JhUuCOyfVmY83/YEBNNSUq5eP6dF39bIZEIp2YcXzJR1p2ztb5Ptq70jc570YPBLHp48psBm464/3qoJ33fG/rSpIHrz7H3wY5UydEBcXzwTtN+HTTz5WZTpb5Ldq6Aj/4uKzr6vrizHj0vnMtKI+qi8aqkWJHph1zdGYBReBo1gZ5TkuZEZozgfe0XQJ4ZGbz3u3y6GeIw4CKPle2WjjmqkKseYiVNs1F95W7TQZCHyd7I99MZ5UxN2sj26oq4TVGaa1K/GmbC8w0fh7xQvKxTynwa59PH3ERO5DrbsI6zdX8O8g3mDBy733PYCzzz0PNoLSttIZP8mdd92DJV9+gQfuv1el2RBQO2fuyfjk44/aNqV/12fgqJiBAFRfR8V5+j2Jv//9KRQfLFZWULGEiquF00kgxRuZiGirRFPlEdmWcvIwDLWMpItNtKEQTS7NpSHclob4lJFIypiI2KRhiIzOxv4yMxpdEXRZjVIvO91idx40Y0dZDIy2XFiSRlOrSOKhSAnsJ5olc1mUtQmSg6wjiWQupmE5OczhNRk/O/lknH/qKbhg3qk475STMWviRAylFTncC5hLWwdLaSVmTKmIAEXNjVZ95QNG3Iy1bTdZ7yIjaPGl5TM5IRwpieEqdlQ7SpDPsaUlh2NQvxjsPaDFbHiOeT4lZtRq2aYeXFt2V4cMjMoDY/kPayEMy23F+4Ex+fixWLFimSK08pTzPDAmTxwLOT6dCZHlgaGLPgM/1gwcP3ESvlu2ql33ct/6eNGX+ODDT7F85Vrc+6cHVey8p6As8lev24RX3/ivSvB90smneA7pn/oMHNYZmMOk83KNzr/0inb9ivLwkb88jvk/vxAnTp+Mq66Yj8cefxJiERXp7J7drsGjcMfgzGjEkVnXZY5kntFDHA+BnqrmoCSQNDh3WV/tlzckqt0JYSXklPABKAlkW2JK6U8VGmlGtM1K+662mRCmEUtu3N51cp07/vA7DM/NabF6eo/FFz/JyaecqgwiolScPWcuXn/9VVVF0mx88P576vr2bqO3befmHocTTuCacuZp6lO2Pa9zz52PSZNmID5eu2Z627np4+3+DBzzFtIX//1cq1kcP2ECliz5kkRGC9R+0UbdcONv8Mzfn1Y+/OdfcCE1VAupPQzVzZMWQuYIG5eTgPhmi2GkLZ0AT0uy6z24LfsqsKuwCjF82NgiLGh0uvH95oMYNUD7AX9PxtrhwxIRQzeXOAJAS5i4y5pVLEiczUJAZ0RFTXvLyejcXAwfmOPdlTLMym3dQreS9OQk9ZJyG3fswLpt21rKFpfG0IXEiJSkSlpv85nImgxqtNKKWPiwcRIUl1dRU2l3IzneQAupHcVlDZg+IQUNjS6Iu252pk1ZY3fsrWrlyittGJjaxWLdrlh95ft3a8rwzQ8lshkSkQeGvCStT1vx9cDwEFoJEZY8MObOPlFV835g6BrMtjOpf+/pGRAvjk8IOPv2669cv9r251Ge+NK2exb5F51/DteR6ZgAAEAASURBVNasWY0Jx0/Ev194GePHjmwhc2vbnv5dn4GemgHhbJDXH+78I+/7rRWpM2fOxv79+9R1Kv2LC+TBg0WYfsIMZSXt6J4dymd2T517KNodlKmRAjZEBg9GpX860qphaHbG7o2owRXO8B6Gg1grkBRWiKKGzHYNSoyqxrpL19jmvtsV6uIOo3IFDr5yUnghOTu4PimsR/7BQ27kwbfkv0ZH/CRWi5XXvgX5B/JaGjjA7Qk0DvRGCQsLxwXnX4ns7PaKf+/zGZo7CnPnnIWPFr6FlSu/9T6kbx8DM3DMA9LO/sYffvA+TpgxU2lsa6prUF1TjcvmX9xSLSo+rWW7Kxt9EqyM9Yhm8mgCOLrlJmSMRUxiJipLNpPB9tCNcP9BuuQSA6cl2JS7rpAd5BXXICslmkBPC25IaIgg4LQjO50uN1RzSkJrS1gcrBFM02It40OhiZrkJlTUESCS+TY8PAzTRo9EAuNkReqdTPpLUqRGHvPAbXk4iXFVcpiGmw04jqA0LSUV36xeRwIlTeNZ00BAWRZLUEqyIWsD47cEsEpgfxQInTkOI7bmufD18kJEESjPmZZJFxQr3QrdKChpxPptVTwnYEBWNIYPjlfbBmM9Nar7YHEX8xx47oZIfL2SAfG7zejunBP9oraic3ffY+mBoS4A/a3XzoDdbsfMGVMxZuw4/PNf/251Hh5tuz/lSWeL/FaN6V/0GfgRZyAtLa3VIl2GcuDAAci9WqSje3bbhPSqwhH81pUY0qwEM1LTSaBjjoE9bgQOJV8L7EQtYVFULPOp7zLzyS+hQRo47bQ2rZEqzpO8D+G2eD6zI9R3Q5MR5Y40xIVXk+2/GKWOTJIwtlYySNuqH5UKhiSMXNuIhEfGajGkVP4GE0MqdcW+K8p4ExXqUfGpsiso6R9XQP6OVOzfVocU5jYNRtrGkPqr2xE/idyzRbz5S4TUSOJJe6P85KyLFRg1OCoQZt/PUxDnzNYWc5eZ/CFu5iuNGIB5p55LRVMBlU+7e+Pp6mPu4gzogLTNxF02/+et9jidTtxy8w2wRUfDFmVDYWFBq+Pd+ZKVGIbxOVpsQQTTtEQnDII1rP0Np7SyHgVltZgwhEQ+21tbByXHk4iDDwSzVZjc3CQwaP0QMRGYSrsOxpNazE7ER5lRZzfihHGjaW2NUkC3nO00Cl1vGxFSduJXvlwq12i81YSUhHhMHzsKX69a2wJKa+sisHtfBPqkxKkWJN7TZN4Lc1MkEo1xmDIuBqYx/XjsUB+S6mXGxEMPC6Oxlu4qhXyQVNCqW0UrdCyZg7NRVBKOlz44iPoGD0xuM8ge+nosPTDMXECEcQGgS++aAUdjHex1HbMWJiUld6ht72yR37tmBLAlpPNeqHlp9LaxH8vjrS7JY8yfvcMpiI2Na8c2Kot2uVeLdHTP7m2AVOaiuA35XoeTw4PDYlKobA1DnS0W9org4x4djdm0VsYybMipeYG1Xkr47V6snBJzKjGkjTUVcEQzhpTfhWCost6GSqagEytpathe5Nf1bdeOrAoM4nVmoJXURUBKz6pG3tfcEkMq7QYVQyrNU6nONYvEkdYFOQ+pkXmwV+VjR0E9vv3mQLuxdr7j0Bqno7KVlYyR9QqD8uYnsVq1tDVy3ANKwxlW5eEu6ajdI/HY4MHDFd9JbMVniiyrozEa3bVoiBqJsWMm6YC0o4k6Co/pgDTAP2pNdTXk1VZqy9vnUmpbxtf39IQIjMpIgaO+BpExWdQGZiryHjcfBHITlVhW+XQQYK7bVYLxg5PRYHcwP6mTn3bGuFrQNzUKyzYVYckaunWQka6eubdyU2mtbAaWkg5CERPxIeFy2KmTItmJ5DclWdDEoUMRTQbeBocLxXSdDeQWWs/nRSNv8sk0mSbFRmMcYyO+Xtk6Xq2iLBtVCX1oid1MEqNqaj5rCYJrSMMuOrE6Pm/kCUftX4uWlGjXQOojuuZ6i5SvrWtCWVkmduzaghLG8h5uOZYeGId7bvX+Dt8MxDQv1j0LG+nZW9ve2SL/8I00ND3JQlaAem+XRCoS0jIykZSU2kKm5zknYZ4tLytBEe+L+fn7NfDgOdhLPwV4dCayIBf3P2/RFuqValdH92zvOr1lW9YAgUpUOK2jsSQK5LPTbk1Sz/5A6x4qx8oEkcHHj0o9rRWprbbVd/UNhXXpiCYgTQwnuZEjBlVk5m8ntMZKGhgDXWWbaFnVah5qt135DnfIOkMbkK9UK/6q2ixVBM0Eoaz63aoStQbzV7a7+zviJ5GQICGmy+yThV07d6iuhAegsLBr683ujjUU9U1N9Z2CUenH7NBidzP79A1Ft0dEG6JYEGKrioqKDu/VMbSAC3+NsC73pAiBYVxcHKqqqlv4ctr2l8DUlhKK5r1uaFsm1N91QBrqGQ2gPXFbnciE1SKRMX1gi+untn29CbaUB83mfeXqcCVdcu0EkZFMdp0YE46pI9JU7tFKUwxW7a5Esk1jrvXVFpGfcgtOjA1HUhzZcF0NKLFbmm/bvmu03SvjKSWATQs30TU4HVl0odrf5ibZRLedxsZkXuhGWknryNRHl1vUI4IxESajgPpDrsje7TuJQh10G5bY0ka68zodZt6UOzof79qh3z6WHhjOxnoyNfv+u4R+ZvUWD+cMVJExXMSftr2zRf7hHGso+nI01IaimR+tjfiEJAzOHYFEhkZ4xE1FokUMR9xBHSUXyuCCIla9Bg4ahG2b12P3zkOx/Z56R9tnQUEBF+l9Wp2WLNTlXi3S0T27VaWj8EtavOYVYA9LbCEK6upp8jGvrrWu1m9br84ZhaK6DKRG5iOD7LV1VTbmKdfcUg+VFTdOXtghlIBdjtmngdZZGZvIivXl2Jffs6CgI34SiXf+4vNFuOCCi3D/n+5RLLunn3EWHvjTvWp8vfHN6ApsPkUpIVJT3bHnj785uP6Gm0j+dIYCUwLq33/vXbzy8n/8FQ/pfk/fEtonxJ5v//dNvPrKS+QbOQl/uONu/OTMeSgu9u+58Pqbb2P16lX4/f/cFtJxtW0sO7svlnzzPS664Fws/ebrtofV99XrNqtxvPzSiz6P98ROuQPocphnYCwJjMIYkxkWmUQw2r/D3qWcuOp6XkKANCQrToFRqSgWVDvJjXYX19MSaURyMzGS/0YNyMkeJHdf5gWj1ZR5wIIVYkZUSEArRZh5OxKXM5KpYFKwrzwD24v7o5Axo/5eJeV2VFbT5YcESEGh5I4G0I1j8sA466yf0jqhaeS9Ca3kRud5YEgXUXR9lgfGwo8+7EaPelV9BkI/AyUlTCXVrG33tO6tbe9ske+po3/2/Az0HTAYk0+YrcCo5KBOshnQP8mAIakGDOCnbA9MMWAQXxmxBkRxTS9xckNHjsH4idPomn1065gXL/6CsWh9MXrMWPXHEFZpcUn/5uuv1PeO7tk9/9f7cXtIjdeeU06LFjbz446mfe+FBKTV9lhYTY3oE7W7XQFJHSMi8Z8/hmRxTJJ7VEiMFi/TrHTdHcdfHnsCy35YgxQql/7xz+fVtuc3KvwkQiInjNLffr8SkyZPZYqXe1q6vO+euxVxohwT0sXvvl2KRZ9+3HJc3/A9AxJHLvN97tlnKgLSBx76s8qicPIp8/D2ux9g0Rdf4ZJfXKoq3//gI3j08f9T208+/Q+VF1a+vPbG27jm2utUho2HHnkUP6xajz8/+ldlVZxx4ix8uWQprr/xZjz7fGugK30nJSfjvHN+gt27d+L6G25WbYvF025vVJ5Jd99zH5751/Oq38uvuApDhw3H519+ra4Dubd55NfX34jFX32rWO+vuvqXnt3qU9p46ZU38M6CD9W1cw5TC0laoHffX4i0tHTF1Cz1BXQKyBWiQpFLL7uSbPqb8e8XX1bf5U3upXJ9bdy8A6+89haGDMltOSYbYkmVuVm1dpNqb9jwEa2Oh/KLDkhDOZsBtDWQlOwZdNc1msMQmzA4gBqtiwjDrtWLeXDF1mIVVyqawJF9SQjEfx1JLGNhIyOZy9RiQwMtkkwiwxrBayVriErFWpoUH8d8om0TXrcegYS0yrPGTf6+I030B8aR9hcJzXhS0zMxbMQYTJw2E/N+cj4m8XPk6AnIzOqn4ilD00vvaKUz5Ulni/zecZa9f5RDhh2H4ceNUSeSEEkAStCZTIoBOsi0E+oeEUuDWHaiAZlxTLHF7ym85idNn93OpbVd5SN8h1g3ZBF/0cWX4LzzL1Lbkg5DpLamBr+97Wa8zMWYLNaeff5F3PqbG1vYoDtb5B/hp96t4SXHaN5EDqsPd9ggW+54FRFkY17F82r6UokepuJJs6N2eR2RTelVVjAhBKTNILdNR+2+ZkbtQby1lDwVLnz8VVG7413dIfwjE8ePxoC+GRg7apjaFl4SEQ8/yZRJ43H2T07HyXNOJGHXgZau9u3bi9kzp6tjk5hW7n9uv4UcIYG7cLc0dAxuWMOsmDV7DmbNmaPcX8srypku6jEC+k/w6J8fxn33P4SMzEyCxl2QFGfR0TGYe9IpNCqcqQDl5ClTsWXzZvzqOvLH0NX2tFPnKibvk0+dp74PyBmIkSNHYcuWTe1mNzExSQE8uXe9+ooGWKUNqePJ9T1p8hT1t8zPz8cf7/2T2n/TDdehtKxUtTdgQA5u++3v8dJ/XsDFtGLu3bunVT+pqWkKZP/7+WcRHRMNAbbP/usZHHfcKHXeMv6rrrkWF553Nvbt26fAswDVO+/6IxZ/+TkeefjBlvbEYnv9db/E/F9chP5M73j5lVe3HJONn18yHzNnzcH8Sy6E5IQWYN1T4uNR11Nd6e2SbBYjsjXtZVRMNoMqgwdogzJbE89MGaa5dR002GDVEoh1ONGx/GGIOAlFjeZwkgY0cIuxqdCC6Dus3OagkCBFmLhoio+nZbN9fK13cTMfDA7GphxpIg8Mf+J5YPgjtPI8MOSHLi4asljS5cedgf4Dh2DgoKFkeWx9PSckpUBeWf0GqBiO3Tu2YOum9T/uYEPYexjP96uly5guyso8bvFqEb+E1qTbb/2N6kW07c+/8JKy4ssDTBbuHm279yJfHk6JSUmtFvkhHKbelJ8Z6JczGDmDh6qjYvkUsBmoMHIDEVYDDpTz/krSn9HjJmHZt4sDrX7Elfvow/chL3/y3oJ3efwDpGdkqAW89yK9s3u2vzaPhv3hJDV0k9zQbeQFcYSK3W3FnuoByInZhjjmJhXZVzugZbQht5IGsObIjNrLlDQHqWBvwvtfFqCUqekOp/jjJ/GMIZREmp42j/ZPAZhPPv0M8vL249e/uhqDBg2GcCUsWvQxdjJ1ocQVz2D2jCVffqFcaedfehm+/24pBg/OVQBM4iaXff8tHv7zowqsTpo0RU3ZMFozly9bprZvu+UmnyRT1XQ1vvnGXysAe+vtv8PixV+2m+4N69dD6osIUBa32G+XftOyhiwqKlQg9I677lFprX7321vbtSEgdcG7b0Osp5s3b1LuwZIqS8DqQJ6vgOD3mXdcRDgjJLRDvGmee/afqG4O45FjMi8P0wocSS8/yeecxlA8b1m3bi3XFRa29QlW/rAC113bGrB6l+3utg5IuzuDQdSX/GBh9MOyRsQjwta9dDG+ug0AjyKyOYG4uN2azRF0922g3dJBgCqxpETMQYikhxFA6gG5HVVVgDSUms+OOgvxMf2BEeIJ7YHmxA1q7ISpSOLNWIQkjerV6pKjAr6JL9FS5gweRk1oOtatXsabc2UPjOjwNikPUNHE+5POlCcdLfL9tanvD80MxMTGYxhdbkXSgwSjnhGIe28f5nneU9qk3H0HDhmOHVs3eg4fdZ8CPPdT8+9POrtn+6vX2/e7TUFoMn6kk5V40j3VOegfs0OBUhNJDffX9SejPv3PlZVUu0+HYngaMZLvlkwkTxLX4TimxBNZ8Fk+9h4ILM7Rd4v63iNlBoRRe9yYES3DEaOCpEbr14/XmcNJjz0D1q5dg23btqrMGVdefS2efOIxRRp12eVX4nuCUQFxq1b+oIDaL6+6nPYjEwYNHKSIploa9rHhcroUmBxaPEwdTUlJ8VHq0K6tW7Yot10hNIqIjFQHEhITcclF5zOveD9aNe9VIFlyM/uSVqRdzQoYGbd4mPz0rNMUKBeL7I7t21X10aPHYMOGQ8p4KSdtTJowppUrr6evKrJBz5wxBVOnTid4flwB7TffeM1zOKSfOiAN6XR23NhA5gcViYgKPRiVdoWZtjPxxC+Iu63BIKRD4aTa75qV1OPo601d7q9/Z/MPxd9xfb8+A12dAdH6TZw6C7G0DAoANcrvwHNxejcq1zy/81nEXHfUDLL8pGmz8P03XxwVoNT7VP1td6Rt72yR769NfX/3ZmDgEG3hEkc33TgvPJGZnoLM9CQkJ8Yx5VgEwumGJuIi4UldXQOKSytRUFSCfL7ku7jtpscYGK/fhMFDRyBv32401OsL7O79dXpX7Sajdo10d9TiNiu30Z4SYdrdWTUY2bbdin13kHkj8mr7ocYu6XuE4zdEvftpRth0MyP3INzUgNoGJz78khYpHYz21J9btes2aWCrs04khZCIjVbOUIkoqJ54/C/KVVcYjF979WVs2rhBNf8VLZjnkTzqqyWLyViejwsuvBiyT+Qff3sKv/vDnSp+0mq14LG/PEI3393qmL838TD6btkqlZXjjddfxRK2JfGr/uTFF55T45IQBAG9IumMRX3hP6+irLSUlnu3smr6q+9r/6efLKQH1Dx8sPBTkhmG0Sq8XbkdC5C8574HWpibpa5woUgMqsTFhtNgtXXrllZNnnb6mQrcVtHyK4RLH330QavjofxioHuXn59sKLvR28pMisC0YSkwWZmXM22c3wmZd8IJiKdLXWXJFmpyAl9MHDTEqfyjaV4BR2ERCbTGJmAP4xL25OWpPkcMHsy4z3jSrpMMiahUaOXtjRU8ZkCjIUoY3wOWKAaHJliN2JV3AN+tWaPqjRs2DLkD+hPoFsBk0vzh5UBePZlzScCUaPg+4Padzkw01E3DsrXr8Kd//CPgenrBY2sGxkyYgvTMLM0qGkSIjYBSeVUxvuSbxb61j8fWTOpne7hnIDo6FtNnn6K6FbIisXQOG9IPQ3KyEcNcjoHK9l152Lh1NyqrapBPg39lfRMtpJsU+26gbejlevcMnH9CXzSGpaIuenCXTyR31HikMwQloqGASr1GepSICq9zaTKYUR/Zj+Rpjdi+cQ2S0/rwlclVBdO4dLCosBgd6GPbq2JKpZeyhiQU1GcwvCcM2zauU4vpvgOHIozAMSm8sPOBNJcQQFvakIxaRzi+/uS9lnpiFU2NPMDUdVpbe/Nr8fHXB1FFMkVdem4G7vjDo1xrOhBXuqDT1C/1UaNUHtK1a5fjvfdfC+mgxCAjL7F+BiNCWilWxJ5KxyLEmaIQlpdHzMxKEUMsUFamWfA9+4P5lHONpnW4vFzL0iF1o+jK2za8TFx1hdnZX4oXOX/R5LetF8xYAimrW0gDmaUQlPFQsoeFJ4agNd9NBGIhbVvTwDhWo5GxJ24nbxQupp8OPq61bZu+vusWUl+zou/r7gwIEJWXKNS51ghKyPIvehjExMUri9K2zZrGNKhG9MJH5QzkDuqL7MxUpCUnIDE+BqXlVbRIVqCkrBKbtu1hjuTQpEhKZZ5REbGOZtMaOmF0LuLjNE8aO9cmtXbmfnY0UZmnpXuRshKaQT0gwz8MCKdBjDx3GDSgj3qt2bADdWu2E5ACGX2ydUAqE3YMicnV/ZRHh/CjaKcDA6RdnWIH3XR3Vw1EakQB0qIOIDGsCPF8FdZnYbeRF38XuC28x+I5FzOBb4K1BMkRB2BWN37g+7Wl+HrFIaW5dz19O7QzsG3bBsZnjkBV7CyEOYS4iTcwrja9xWWOY556J+wRA9Tu1Wu0WE3vMt3dbgv6Am1P8nH2pPgCyJKPtDtgVMYr5+sNRmWfL1BZX9/x86ynz1/GJaIDUm0eevw9JTZc9SFWy54Sh/jhdkGMdPMRQGpQN4jQA1JZ97vU2Hr24daFU9er9PIZyCGBkYixa5c+H4DEsrzk+zHdxvYtG5UWtJdPiT78Ls7AUILQ0+ZMwcSxwxAXq4FCf02tXLcFC7/4Hku+1TxD/JXrbH9iskZKd/zIfpg1SbuWGwlEK+gcU2v3fVHLrZRkoIolvZKKfslPGhdhQDQfMaNHDERSQiyeXbCKXWsEdp2NQT9+9MyAyxS4Vd3fWbub3WWNdBV0NbtP+isbqv1F9emotMcjLWIvYsMqkBaZh2Fx61HTlEmX3nR6c7UmqQu0X5u5knGie5BA0iLP6mPnvhp8s7IMB0uDs5IF2qderv0MvLvgVVxw/hVM2TQADdbO18AffvQm9u/f3b4hfc9RPQM6ID1Mf96YSAvEGmkJC51fvPfQya3HGFIjk00zlUuAbjae+hKxUVVZjgauhNwWJluPP3TDEAbD0pKDsFitzEeUoILBPfUC/RTyIxGTIXAX5EDb1ssduzMQFRWtrJtq/eQrZjSQqeGlKQRIZrLIpaZloLDgEO1+INX1Mr1/BjLSkjD/vHmYNW1sy8nY66tRX1UG+TSZrcylXA+zNQIRsYmIiE7EuONy1euScwrx4psL8dX3a1vqBrNhs0Vj5NAcTBs/RFUTy2ZprXa/DLQdB8FpcQ3dycjGnxRtQJ+MZJw+awLe/WxFoE3o5Y6SGTCQnrC7ckivHdx12N1+G1zh2FfZlwDURpZpzSIVTybevtHb6MpuJ4FiLeqcNjS6w+kxQO6LJota80i/JmoWhRxJXHvDjPWIMtcgI3IPahosKCAYFdm+pwZrt1Rgd56+DlETchjfGhvr8cKLTx7GHvWueuMM6ID0MP7VzMz92VNi5oPIBSvqGacZ7ZWnNJD+Chhj2thQAWtYOLZt2YBkJhXunzOEsaWNWLl8KbL75TBAuwo7mHNpwuTpgTTZqkw9fdNFLKhutV//os9Ad2YgITFZVRdA2R2R+sK+K2lhdEDanZnsfXVPmTUR11/xM1gtZhVPX5q3DeUFu9BQ7d+Vz0iAGp82AAl9BqNvVhru+M1leP/Tb/DEv94KegKGDRmIsSMHM7c0UFLDeOaGrl/MtQyDs1c2IZXERhmpCZh6/HFY8NYrQY9Jr9B7Z8Do6n6OQAGkQqQivlIGfnpIZg7HrEh/NY1RKGtMwrqdO5GV7EJK/wjm1m0gUK1Ur87GIfGjck8vccajzhGJpatKsXVX9WFP59LZOPXj+gzoM9B6BnRA2no+evSb0dRz000dPhoJSGuZzyU6yG6yCDgb6yVwugl2YzTy8/apeSjMz0MSwWlmVl/1/WBRAerraklNHZxbUH2z0tYCIU/SRZ+B0MxARJTG2udxxepyq80YINjrusv96RWPiBm4+JyTcOn5GvuhgNCDu9Yqi2hng3M77SjN26JeSX1HIH3QWJxx0jSkMt703kdfoKdJYKCgT0YKQeNI1V0pDULdAaOeMYu1tKhKfF6Avn3ScN5Zs/DGgi88h/XPo3wGjO7QuKFKCI/I4XTblf4kbKj5dox6hwn7yqIRXTKEpEeVGBzHiFJTI192mIzMpG4UqygveIp4h7ncTGDnJh+G04hGpxVbDsZhX1UmviUg1UWfAX0GjvwZCBK6HPkndCSP0GTuWhxEIOcU1uRANVchdQSkLrrtmoJ023VTLVpaXIADB8owgNZRkUTmT1rzw/dMimuFuEdGREQGDUYb2W4DrbYGqiytOiAN5E+plwlwBiR/oz+JiSbrNBUn4eFMl8HrVtJfNNoblEJFEle7yC7dVjwW17b79e9H3wyce/rMFjBasO0HlOzb1KWTLNm7AfWVJcgaMRXHjxmGO2+5FL+/PzBG8CsuPF2lapE4UBNdboN0bPE7XgGlpbS22vi4ueriM7Fs5SbszdNYRf1W0g/0+hlw8DlroWLaIOy4xu6tNdxyfyTvjEq/IsxAQa4nujqZBhIrireKq01OdCeBZjUtp9XoWBluZOiSkWO3GiqZY90Dbbs6mtDUk7zXqcyPXVRUqJhMQ9Nq724lMSYMCdFW2MItVB64UF3nxMGKehK4dTX2pnfPhz56bQZ0QNp8JTD9jcoBJAl1fYnQIkcyaW0p8wJ1VZyOjpmsutqu1DNSrxgGu7KSVjvdiBOmiyCkiRpRoX1uIoCsoxU0JjaO9NgW2GKoluQDaTuTrKekpivSF0kqHKhIehkRK2Re9ZuNmgz9LSQzUFlRhhTGfXokOSmVD/5MJCQkkTlaWPz8S3lZCQ4WF6KgME9WXUpKiov8V9CPHDUzMHn8CFzzi7PU+RzY/B3KDmgJw2WH2WQke60RVn56rou2J+5kTLwsouzN97baikLsWvkp+o2ZTZbcobju8rPx1HNvt63W6vvIoQMwbeJxqCKIKK2VPg2wBXfLbtVe2y8VdVyMc2WfwCiRs+edgMeeeaNtkS59j4uxIbtPKl2cLUzx4URZRRX252sxel1qUK8UshkoqmhEn8QIWBwVsDP9S7eErrNuZyOMVKKLldRtCOHF6W9g7IcLEK5kTF12E5axioSjgO89l9FAdRLAm+RwvP/BhxXTaRzZ3G+/9SZ8+snHAdQ8OosM6RODgRk2BUR9neH+kjps2V+FsurAvEx8taHv670zcMwD0oyMDLz25jtISkqmFaWeiXEP4C9/fhhffvGZ+qtKHp8/PfAwTjl1nspBJIlqr7x8PgoK8oP+q5stEUHXCaZCZBMBqcGKcrsbMZLQLggxW8KQmp6JsLgs/LBsKdK4vXvnNhVPmpGZjez+A7GS+8tKi5HIWLtAhNkKVL5TKRsOXUMfyJzpZQKfgbpamoEowlTaLzOH+bYOEYYp3bgvvQkPyO54glZ5ZfcdgL37dyH/YB6qq3SXcjWhR/FbeJgVN1z5M3WGB3evbQGjJuZSiQgj6ZwA0WYxh3FxHxYFt8tO0ivmiXM0oLGuWlkyzQy/iLAKkZALDioAhfxo/4ZvMPD4efjJKSdg9frt+HbFek9T7T7nzZ6s9pVV26kIDEctraRi0QyF1DNbhlhJy2tdyCYgPWX2JDzz0ntMVdM1d85pjEWdSvA8ZsQgpsCJbTdEIb7bvms/vl6+Dl99twaFByX8Q5fDPQOyiBdAanZUdR+QcvBy3StASkVyE5UbPR1LaqSXl4gWvao2g3oT66gozy2o5OvHv5dLvsdH/vI4Ljr/HKxZsxoTjp+If7/wMsaPHYnO0mwEdeK9oHBUuBkThyQhOVa7yblpwXebY5TyQYZvdNfD5KxEVlKkeq3eVYZteTrnSC/404Z0iMc8IHVS033P3Xfg888WqYm9/Iqr8Ps/3NkCSOeddjrGjhuPSRPGqJvI3ffcx+N34frrrgn6D+Fi0uieFHHXsRKU2mmPLGt0IzNA/NsoSYKbNYu1XOQLo66IuOoKSBdRFidaRsPCAl81lUryPEq4oYT5hTTWPLVDf9NnIAQzUFSYjyHMbZae3gckWNRij4g2GU7UoSiwKsCU65eI8EgMzh2BxNRUrFu5rMN6+sHePwPnnDZDpUWpKctH0U6NGddiNkIWTKKoMJksiEpMR2RskgKhbc+4ie6A9dVlqCkrVCDUxnqNRH8CTOurSlCw/QfGlI7Hz889qUNAeuJUjdG3qIJgl0nRy+ubkGQzsP9DPdp5X5Zk7GF0O/dlrXU0MpaOClOjF4iW2pIyRqS2gbGuZOxNjDLihMmjsfDz77UDAb6fNncKzj9rNtJTvC1NDhLGcKFo4NKhic8zQzjHHI3cQf3US1yEJR3OGws+R15BcYA96cVCMQP5pfU4rl8cLI2cd9ugbjfZRPdZbytpT6eAMbol7yjddeXa6oKIq65IpOHIYEqfOXM2U5fsU2BUxrVi+TIcPFiE6SfMOKaspOFWE6aPSEEsM024jeFwhGXBafG+p8jsCCh1wGw/AIu9EGMGMKMD/23Nq9IO6u/HxAx07Zd/FE2N3CA+W/RpyxnJ9p1334vk5BQUFx/EqfNOx/vvvdui0Xr91Vew4IOPFUATF9dgxM0fXE+LzdCIMgJScZWNo+Zeg5Yd95q3bzdqqgrUYmxfURVGjBqnKmRl98fG9auxdtVytTCKZzoYW3R7Dbmv1qtpHq1l/6LvjMReX0X0ffoMdHkGoqJsOOec+UhK1FzTmuROppBmgE0KcOXiX+KVpFo803mcdebFeOedF+klsT/ARvRivW0GfkaSH5Hi3RvUp5WhDVG0jIpExXHRlNqPAM//Y1FSd0XGJqtXTXkhKkiGFKbCIwwEpU6U7N2ExKxcDOqfhckTRuI7H1ZScdc1E3kKiVFtA++PZgcsDI8Qlt1U3l5LGGsm911ZkBlouRU0OnL0eMQlaOm4GurqsIbKE0+S97SMTOQOO06BVrGOVhLcighLegmxYyLD7kYPHxQwIM3KTMFVPz8Lk8cNV+0YmiqpvNnHW3kBwajmlaAOeN4IIJoMZLw2ZnDB2RenzpqEU2Yej6f//Q7eXfi1p5T+GeQMGKkckesxGKk3RiKevt9NYW44rPybBCmS2kiuf4ORig6+JJTHQKWDQYKC5F7pLy8pXXoNvKaNLjPCImKYIol1+N3ASkaJQe1MqBCX1C2ikXEbOQaWD4+KV8z/Mh6jtN3B79Ik4+TxCEMRwo2i+A9TCiUZR3xG98F5Z8P3Pi4poqpL8pCWlob8A3neh8jRcYDeZxmt9h3tX8YPSlRg1EWLaGPEYF5Dvu+vbqMF9vB+cJvIqly/G6MHxKOy1o7C8q55dhzt83o0np/vK+NoPNMAz+mEGSfyJnKAsaJaLKncPLwBa15enrISxnNx4C/e1F9XDruPh7m/wl3cb6ZW02aoRw0icJBa+2hb56C5fw5ZdhsS6XoGZOUeApxWWkPHjJ9EVzWH0sQHGjvawBirYloNuHZDlGEvH2Y9D8S7OF16tRDMQP8+6cjJTkNmcpxye5Qma+sdOFBcjq27C3GgKLQxZmFMT3ThBVfRMppFdmi6+kRY1FnIekZegYoskwSUijTU1CMhPhHnnXcFXn/9X3TJb72Q0Ep1/d1mi0FKcppyd4+IiFLx2Q4HLVh0gS8tLSLhRfAhAF0fzbFZc8aU0YgiF0AtgaSASXHTjWwGo9FJfRCbkh3UxNji0/h3DEPJ/s0q7tRNls8G3vdK929RVlIBZb4A6aABWaqfquZ1llhCLTYLyhn3GcFYUos1DOMmTqXyT3NBl3Rb27dsxIQp01W9bdxOopv6wNxhcNHDZ9nSxSgmiE0kcUoh076IiNeLKEy1Pgzol5Wu9nf2NoYpaH573cVITJDnQB2Mzi38Te3puFoTwUBTgQKsRsNWgoohCphed9k5yExP7jSetuPGj92j8ry1RtDnOgg5WG9EcpwFka5y1Fgyg6ipFTUw9l76Vc96foqIldTEcCMzQaNYSUlRqBX2fpc68p2fGqBlO+qrj7Le9Zq3Tc3paiR1nWedIfl/TVTUaN8JUZvH07a6iWseOWSmMj7aJNZRgbMsrs6F8eBBzqGqHIK3WPJwNIj3mZc0UkkUG3MotMTr0FG5mZUchUy6kbsNAjZz/IJR75N3WlJpLbXT0n8AQ7NjdUDqPTlH+bYOSL3+wIMG82H8u//Fb2+7pYUNTW4echPxSGOjdoOJjYlVgDQ1Z4znUIef7kgrYsL5gImKotbP/w1JNHqS587IG7GRiZ+7IjY+Muhswx+/CQftfEBQ6xkerWnXVftEiuLmJURIIk388UsMKVdCdPpt36eVmlpfotqgu5s1nEHqCdqCxxQRzfxffBhx/FEW5g0zistFgL7DbToxmCLhckUikpaLQOe5TRM+v4rb3cHd63weO1Z3RvD6iEnpG/Dpx/NhO374YIzsE4HYcC1FgL/KZXVmrNxdiTWbd6CmrvtKmdNmn4KsrGxe31wscQEvJDNWcTMnuGQmAO70NxKv/VyzuGWNw11OpwNuJoI08XcRz7jBCy7+Nd54/7/KAuVVI+hNiT8fNigXQ3IGIzkpqcP6dQTW+w7sx6ZtmxmDV9RhWe+DdZXFShvvve9Y3xaLiK9F6OzZsxgTGqlcbs38tFmNNMg00TKaSitKjpo2YRsXUBkpiUH9rKXr7S7Gj2qajMj4FCTRelOWtxVRvOe5xepZflD1M2XSeKQPXM2cjtp91vN36T9ouDruIvO4JUw75rmGC/nzyGSb8qzwiElYzumZYjJZ2RYBb1kpBtMiKt/ZNTKy+qHo4EHYI/pA4vZFK+Pij0POlbdifhrRJzur03voiEGZ+MO1Z/C0+c99gNau1awsz75g7t/iNrmJv616NJnH4mdnnYLoxEw8//Y3ntPx+ympdJyNPUf857fjI/WAHwDW0XD3l7sxmBQPFns5Y0kr6Rp5SMHcUb2OjinPLpf8VsIglsgmsZz6+3F01JDfY2ytOV2Ni8E9wYiJIFlylxp404827mbV1r+1YNoKVVkBwiKVlRU0XoS3ajac7vmVlZWt9h3NX3LSNYWKMyyT94TAw73sLG9ylCCFl29KXDgZeFsD+942Z7I+sTGmuKKiogVb+DqHGOIKWY/U0QvmcEugY+zJcQX36+/JkfzIbQst9/MvvIy/PfUkPvzgvZbRyM1DLXab90gaCRG52YgU7eRDOwDZgQQMzoymttEEW1x/vzWc9kEsw4WNLJL56qpE0ypZ15TAxZUT+RXVjG8qhYUPOKc9iT8IaqzI7iiLLxFh/5W8Y05qsdzNxAKB9Otme5Lzy95Qw5iqAtipkd8TG40BTLkR7q4gkdHmbtlGnc46OBrrUFdxMOB5DmTcepn2MyBxcfLqTOLiEjBt2lxMGz0YMQaxfHLhSQu6m8qDJrpaNfEaEtJ+g7hQMf2AgWQFcVzczxpCq8/g2ViyfA2WfPUJNcddW3ieMP0kZKYk87qoh0v80blelmvEzdQuYtEXLKqW8lwXH1rSc2ezqCue6wWFEVhGmELraunX2Cwm/uRs4VYcP3Qw3nn3Zc/uoD+nTZ3DeZqj4rClspNjjIssQXR4JVN9OJl2Rlu01DsjUVNP1zRjFAZmZanXtm0bsHQpY/AO7A26X70CyXzyt/uchuzkeepaKcvfSbDVwIWsxI1SUZjMxRLvtT9sK0YBE4KKC65cH9mpNmroD6UW2ppXoY5bmZ+lgaBUjg/MiEV4ZIyKOa0pLaA6z43aqjpUFu9HZEwiEs0V2LBlV6vxGB1DtfsaLaKORu0e7H0N76dzjsSTop73vYIDcDBd0RACUBdJZhrrG+CyM+M0WW7lu4idKTE276vCyGT+DnkPrqmpppJR08rIE8TRSKUhm+voWZWSFI8rzjxTAUKjexdjstfwV9wd2cT7QTGJS6Zj9oQc7NmxGa+981l3GmxV91hIpSGcEx39zVpNiNeX1Y44DMviwpZeHzUxWp5br8MdbjoaMml15zrFxWuJL4/IdpOZKVWoLDdQoSvKbm/3XSE9cpPcSsrV15Rx8R2pvgtQNLRRyHja9HyaXHVocsn6wwQnwaWbPBgCeGsri+BijL9L1kJcSbRdD4mtVpTL8guyGXbwsVPSar0hvyl5dWUOPWPrzmdBQQEy+/Rp1UQf3uO7QojZqpFe9CWVYFLEaelYIdv+lJhX1pIAY2MBpI1gAOn1N9yEeaedgdraWj7fHSrk7pWX/9O+ix7Y4+m7mvdgUey9/d838eorL2H2nJPwhzvuxk/OnKdCAf11/fqbb2P16lX4/f/c5q9It/bfd/9D+GrJlz5jmAMdY7cG0EllbVXUSaGj/XBWdjbefHsBXvrPC3jqyb+2Ol25echNxCOyLRbT8vJyz66APovKtQV4Y13X08YE1JFXoXgD6Y24ELETeObXkXSDlqS2IkBUS4LNR4fHf7FtoQC+1zBe9AD74DqNrj1ORIkLly5H1QyMGTMJv/zl7Zg+ZqACo2ZqMI1ugkEBo6LZZoy0gYsLg7hf0ZKjYkWMtPa7a2B2liHOUIATydb5y2tuR25ucAslmcj4+CTMmHGKmlN3G6N9PfOMetyjxHIqMaX0oFQuueqTdzr1yf0e0iOJsfMGo9Kwq7ndESPGYfBgLYZOdRjgWwbdiK+4/CbMnDlPgdFEWwGGZ6zAiUPew5jspRiYsgH9krYgJ2WTeo3I+AGTchZhfL8vkZ2wjXFUDvY7ApdddiOmTJkVYK96sUBmIDMtWS1gG2vKm+M+uZBNyqC7n2btTIuPwKnHZ+Ok8VmYOjIdOw5UMj+etigvpe/rjrxKTBmezleaem3dX4F6u1N1HZ2gxYVZ6TEirsD2WvEMofUyrf1CLMbGoE5KGy4i8hTINaw9J0qYl3Tj/joUVzsVOZHHS0e05yJihamh0SCvrAkHKozKRV5iSmu9wKgqGODbVT8/k1b8eIKHQgVGA6zWYTGDu5guv9+pMpJzdcjA7A7Lew6Kl9LevKJWrxdffs1zGJJKY/W6TXj1jf9i1dpNOOlk7Z7QUuAY39i0twJ1fBBb7LTQNRSGbDZcVBAL4OTtFcpNluCxuyJ5R0U5JOJi3GegQrjC54qmMokyMI5bpZULtPbhKbd48RfIzu6L0WPGqg6PnzhJZXP45uuvDs8AjpBe3Ixr9hc32tEQ3cZodTgmKhAmlEMtSZhdSkoqzj37THzy8UI88NCf0b//AJx8yjy8/e4HWPTFV7jkF5eqCvc/+Ageffz/1PaTT/9DZdSQL6+98TauufY6tfZ/6JFH8cOq9fjzo39FXFwcZpw4C18uWYrrb7wZzz7fGuhK30nJyTjvnJ9g9+6duP6Gm1XbYvG0U5EoaxQhRn3mX8+rfoVEdeiw4fj8y6+xfOVadb2oCnz79fU3YvFX36p73FVX/9KzW31KGy+98gbeWfAhvv1+Jc459zx8uHAR3n1/IWOX0xXHjdRf8s33EJArDM/zL7sCF118CR565DH845/PtTsP7zH269df1du4ZScWfvI5xHI7Zeo0vP7WO9iweTteff2/rcYTqi/HPCDNGTgIb/53AZ5+8gn8/ekn283rJx9/hLPO+inE1ULk/AsuVBd5sIRG+WX1qGLyX5eTyX/rQhtT127QzTuow0SyxQ0zQafoEQsamDdOEKOXuFtiN9qs8L3KdLQpj6RixqoWNYiTMKOOqsoR4SAoUd86qqkf600zMIsA6/TTzkOMuRFxrh0Ir99CsBcGpzlRA6N+TsZtkDJCrkG20PrtSHBtR2K0BT879zJMmjjDTy3fu6dO1QCaGBcFdLaVRi7ma6qraFGi5Uh0LwJMpZx8yp2uuY7ERMvCXQCALxHgKjJh/DRtI8D33NzjCCRvQEZGNlN4VNKd+Xsc12cZUmIOEPS0VwZ5NyuWUwGpUwZ9gqwEavsps2edjjNOv8C7mL7dzRlwclFgpGeH2cSLgZ82uut6pE+yTeUhle/CnhvNMIuDldo1opxJtCqquDBHCvBsZIotERNDHoSZV0RymUqKGBFbVHt316qaWnWMTirtRGI/a2tqaP10ITWjL9JyxsMZNRDvfroce0sJPitN2F3ShM0HXMgrb0INdT9uLsyFmE6u6WCfSzKAEyaNwolTxnDLTjAamMdPu4H72WEgEZKRv3mRyy6Y56dU+92vv/YyBvbv0/K6fP7PVSFPKo35P78QJ06fjKuumI/HHn8SkidcF20G5Lpav1tTmIfX7oJYIEMlLkctLZWaZV4Dpa3XE8H2Y3JqvwXNO6v5Bt1JI0YBsc0eADbDTnpiHZ71VCfDandYfse/ve1mvEzgIMDi2edfxK2/ubGFILNdhaN0h0HYuLshqXGBKyo83ViZ3mvW7DmYNWeOcn8tryhnCp7HsOjTT/Donx+GWAozMpnacPcupdCSlHFzTzoFp59xpgKUk6dMxZbNm/Gr625QrrannTpXsSOfzPSP4no7IGcgRo4chS1bNnm6bPlMTEzC9ytW47zzL6J1VAOsnjoez45Jk6eoe3x+fj7+eO+fFIC86YbrVDiGNDRgQA5u++3vlZHs4gvOxd69e1ralw3x6BSQ/e/nn0V0TDQE2D77r2dw3HGj1HnL+K+65lpceN7Z2LdvnwLPnxKc19XV4uOFH+KxvzzS7jy8xyggPpXA9opLL8Hbb79F5boZd9z5RxLl2XHGvJPx3oJ3Wo0nVF+OeUA6fsIEkqNkUGvwaCuN7K23/4+a4w8/eF/Rdov2QjQRkyZPxQP339Ol+d9ZqGnN66pDp7XsbCByi48UDWSDduOv4AJqX61DsfCKu4vLqS2cnEHGbtBZBpVk8t1HkC2MviKbN6xBZeF+ta2/HT0zMGvWaZhKF1RRMiTYV8LasJcMjulwmFMCPkmHla5g5ljW3Y1E+xpVb+7cszAxQFAaGWnDmNGTVD3FqOun5+rqSkXwUllZjko+hHy9JLWRWJP8ibKk8uCAAUOQmdnXX7FW+0cMZ7zcuZfywWJCWuxeWjwX0+0y+N+5uPOKFXVE5nLiJRdGjz4eZ599Sau+uvMlkbGsHuVad9rprXUtdAE0CRilhEfF0tLYrH1oc0ISR1pFhsd4m6aITIwJoyIlHEvW5mP/wRqmI6hgTr0IxNkOae/DImNVKwJ2rexHZGTuAPUZzJtYQUWxInl2RbkSEUm37jpa8xmf6qSCx06NTENDHe/dTpWWa/l3S1BWppHwBdOPp+w5Z8xUm0bXVlpINQut51goPg2ujWymEeOOy8VYkiYFIi6iKnG387w8v9eOUmkE0u6xUmZPUS32F9eSh4Lx0DWagitU5y6WUs+6QWI4Ja60K2JiOwZ6UzWRzcLZdOh35K8tZkKlct3Bc6LrMJ1zYwwkE0Oxv+JHxP73FryLUSNzccnPL8DokUOx8KMPjohxHc5BNPGe1R0pqgge0ArAfPLpZ5S18Ne/uhqDBg2GkEwtWvSxAmSSTmvGjJlY8uUXKn/5/Esvw/ffLeU9tw4/v2S+8oJc9v23dLWdi5mz5uCjjz+jopGcELRmeuS2W27CIw894Pna8lnNe/fNN/4aTz/1BG69/XcYSZDYVjasXw+pL+Bw6NBh+OSThfh26TdKGSlli0hSJyD0jrvugXiH+FI0yvEF776NvXv2YNOmjco9WGJUBayK+60AzPc//BSzOP6cAQOVq7iEKOXnHyCQ3twyJF/nIcD2k4Uf4XvOwT//8TcSL5aqtEVC+vrJZ4sxJDe3pX4oN475GFJJ4yIvfyIPwltuppYkOprabhsKCwv8Fe10vyT6HdInlmlQKhlnUYAIW3qndUJVwCCAlKyeZoIKJ401VbSU1jfWkAXXjTDGhYhWvzMRG089Fwq1bKCaLrqRrJNAYhAHLU1LF3+qFv+863bWzBF33KO1kpuArx/+ETfgwzigsWMnY+qU2arHxJrFCDOWEFjGwGFJC3oU9rC+ynU3wpmHOPtSVNim4iSC0srKMt4g13fYnlgfRZQ7ro+SlXSh/+dTj6iFvOTPjWOKojnzzsKQoe2vx2XfLsa7b7yEP9z7GMliNLegtk2KRVUYe4cMGUGq/r1tD7f6LqD1rLMuVPv60u12AC2d3ZXk6HyMza7H2v2TMHzYGBWz/vnn7/ttdsTI45TLTtsCw3Jz1ENOQg3+9dyLZHiMRRRdRhe8+w7uvvN/lZa2bZ3e/l2slR5iEe9zkX32+hoCUvnj0koqoJGfbUUWKysZT5qRFIWEGA2QilU1mS69qDCohb648I4dRIuoV32LsHnyu4lMQw102Y1lf3vzmYOZRFne0sJCamSkHF9tZd3qFejbLwexvIbt9lq899bLKCzIw/FTZ6iiWzdtQElxEU4982eM32/E6h+W49QzzvF5zlLBMxdtxyHHBvXPxPAhBM0EokY3gYvX+cjx0Aghh3sP3eiH4oxTZmDdNt9KS4mNbWp2A51I90ZxkRMm+/ffX4AN69epoeipNAL/i6zYXobYqDDERFYSlG5HXQhyk3p6d4siWyyV5gheMsZmoEhrafvL2VOl1ae46RqbiYwcAlg6qCdA1ETg6gG+VkMForCLoFSz1LZq+Aj8ImvI/bRSHasiYT1K8eAn3Yu/eZFQHxFRDAYrct8YN2ZESzVZv9up3BNXVCdBmTA3r127Btu2bVVr+iuvvhZPPvEYtwtx2eVXKiAm7rWrVv6ASBKR/vKqy0kEasIgelRm9slqadfXhjCfC1gcWjxMHU5J6Vhxv3XLFuW2K26xonwUSUhMxCUXnc/nQD/cede9CiR7Z/tQhZrf5HnVIs3bMm5xz/3pWachL28/DWlTVBEJCYni+ciatyPJZ6jimHHjEMnxDOQ576Il+QNy67z22itqfuZfegUeefjBFgDdUVvBHDvmAWmgk1VTXc3F7iHyk0DrtS23cU8FJgxORE3FHoRFMGibbo+HTRj/EUfCgAQzXb3I6ukgnXsF7V6NDlmgOQg2yMzIl5lrNFmAiQhDpBhAHfxsbBOD2kRNfoTRhcqCvRoYPWwnErqOJB7p/gcfVjHBcXHxuP3Wm3wGfIeux97TUmpqBk6b9zM14MiqZUw4LtpoEmORlr2r4mBda+M+2Nz70VizCvW2sTjllHOYQJwuh7QI+ZN+XKCL+AtzFsbn0396PnKHa9rIpUs+w8IFb7UDpDu3b8F3X33pr5uW/aofXvf9+w/mvg9b9vvamDvnTGUZTY/bExIw6ukjJqKcbr/LsXrfdEyZPJOLmp3Ytt0/2K2qqsTYUYc0uNKOWJhE7qSmVbTBD9x/r3ogSbzJnLknM/zgI3X8aHoT1lxhmG0rWhoJKt+ogJPnscUqD+bWFlJ5nq/ZKde5iSRcaTyu3QeLyusIROsxc3SmwmwllQ1YtrkIEeFhSIrVQKvZQob05vaEGVf6E/bq2OS+rYYSHhWnjpl4H5ZXWyktLsHbVJhEMj2QpAZKSErBBZdco+pI2TPOvRgvPPMENt1/Jy2kdSpH6cgxEwk8tbG2bc/EuFaRtuOQfXNnT1PtGlz7YRSmdR/SyJCMsko70pIFfLQvUF3jQGW1HYnxYZwP30sKI6jsM49ibtbjfI5DWq0o2g0h8vlhxXLFRikLQrFISJzUZfMvhsTe6ak02s+/vz0OKo2XbyvB7FGpKpZUSIjqo7T7qL86weyXeFI3yYhMZuYcpUufWC7NJEU00Z22o5AdI8nuPG7EXHVwjeF7cSz5SwWEyksUNyZaRSMMTLuHomCGqZf9EWegiOy4QkokfBMOazBKbFreWUekKAR5SGXt/sTjf1GuuqIwfO3Vl7Fp4wbV/leLv8R5F1xEsp/FtB7m44ILL4bsE/nH357C7/5wp4rjtFotytV19+7d6pi/N/FC+m7ZKoUX3nj9VSxhWxK/6k9efOE5NS5x6xbQKyJemy/851WU0TLp5u/quWf/6a+6z/2f0uK66NN5+GDhpyRlDcPOHdshbsdCsnT1Nb/CuHETlLuvz8rc+ce7/oDH//oU1m7YqoD8CdMmqu9m/s4FAIvVVFzSQy2+nx6h7kVvr2UGdpHXX8gzspIjUV22nQ/nQ1qclkI9vGEl86m7ZCVv8GGoY64yFxci8kOQ/KHy6khcfNiIG5m4lYVxMSWpLXqreOKRLjr/HOWWLYHf/ybT8vixI4+5OA9ff8MTZ5yqdlsZ+xnWsB3mZvdElznOV/GA9rmlLgGpWOTDazcR3CYzV24WZpxwCj5a+JbfNtJSM9UxP2sXxlHEtoBRKTiUwPSDd15TFlNPPsfSkoN4982XcMnl1+GxB+/w25cc8MSoCkmRWFwFGPiSqVNnMwVNf6YJqUJumuaK7KtcV/fFRZZiQPIm7KK2de5JP+kQkEofHgDq3Z+FjKziejR39olqt7APfvD+e2QiPP2oBKRVxfu8T79l20m2WhdjOwX0uElkJNuyoPaIgNFV24vJoOvExKGpXFQLa6h2tOj/2bsO+CiK7/9N7i655C69F1LpvaN0BASxK4pi4W+v2Hsrg/SYAABAAElEQVRF7IqA/aeiiBVUEASkBEFEmtQgVWpII71fkstd8n9vLne5JHfpCSnz+Cy3uzPzZva7m91581pmPvmVUqIsmhzzG9Jbq4SXRomUzDyxz7VEgDjix9HLjdQX91eQlQJOZ2JNutyBosygJxNc2qrS2AmTMHrcBNKKZ1E0XU75YkoTxvyY3Gm1f+bjzyOXyp0p6junljDS4qI9MuhNE/6q4+D6Yb4TxFgcDXE0bhN/az7Pz9mLjdsoxyn5cfHi5GUXheL+W0zmWiyI3vHMViSlFMLXS40MMq2bcU007ryhizWL8n3CmgImKRw80cnTiP0HTX6lNirijw0xYjOX8ar+tBtMAqlMpWFGpW6/GbnF+PtQGkb19ie//yR6psugI5/kpiN61ikuBkfZNZYbAnDAIQX94QiNJi1gsPu8cOqh1QzWirKpLlOJgxOlJ7KeP5AmnZ4x5sWpXDhoEY+X/y4NlMPdU7uPWglOor38r/UjcDI53ySQUk5Ro9KrzqlfnKg+5yJNpYU/3upDzz/7FHirSh9+MB+fUpwYnrOaAyBynSefeFRsvM8a0/DQigX3/fv3YdrUq8UiLgti5nQs4aG/cfVqZK9vztxhbnPfPXdWasdm3evXrRVuRGbXBK7QpydlMiD/0MzM6tkPrHlcfukkC7+B/SsWpGc+cI+4Vjf6XpiDsLKJ8YfvzxOWUTxXMI+JGViPkRf/hgzqC29vb/oO5Yr5/ogLB1NgSS86zmk2yyrrt4HlouRO8yKw71QmrarzanQWCaUn4ObdlB+ImsfOq5o56Udoxl1Kwqcjso30xSjKFWZdvHLEqnw2Z2AzHCZhQsUTLKpfSqYIvFpjIUp/0JZp3LjxpJk7K4RRvo5d/+xEKuWAHDV6TIfTkjpR/lhXDz/L7QzvFEFC3QAyWzXArehfyitLixak/TFSahcH0urbUJRY2ta0U6Zwp/akpaLnSEGqeG3xIeRqozH0grE4FhdnceqvysMvINSknaG8o3WhU6dOwNc/mMwefcXzXEgWAT9+swDX3XwX/AJDRN5dNu0U+XftMOTJEfcWHNkLOaR9tEXDR1xMAW2c0C3kBPFyslWl0eeiA88gqyic+gnG6PFX48ChWAvPYh2Z/1NKJyYXSn3DZo46Ejj37NklhE4OjuPr60cfJhWSEhMs7RJpf8iwYZbjjrRjfoMZy4Oz8LXzpHcHaTzZmvfCnhWaUTMubi4qxKXkkTUJxQKltDAl5LqQkVckUr+Y65gDGYkASOaTDfzlBUIvb98aW7t7eNVYXpfCqPBgUc2hLMtm9VFDA/D8A31JW6tEQnIBps38C5eMCUVkmJa+GcDdN3bDRRea8DpyIhu3PPY3rpjYCf4+Jq2xNVOHshxa6PFEWEhAjQKpdRveTzmXgvDwCHFaptIQMNTrPw6o+PehVAzv6UeB5TjIVCEKtN0p0FvDAhna6ryMzHc5mn8J/X3kkR+et3h30vuTfllzyjMFRwp2yNpRphJKt8QvdEr0IgRW+gsU5/k/Fkj5KIv8ojkIS3CXPvBRszbG/JfLtSS1BQTYjznRX4MQH1D8iJModulK74CaxQ5lSQqlP04Ul3fkrO3vbkOvnQU+a6Gvrnx4Ebc5yVpANvfDSh9bwqi5vC6/fK1mYdRc31Zf5jLrXxbA2XfUTHzc2PGYedn7rfnJsNdKnrcg4O4fbtmvz87BNCVGdNHQK5ZMZ/UZ0HqZTGkcFSqasFN+PJqQOFB+ucaQiY+STNNoFZ3MxDiibl7OcbiQiZlR6YYcRSf6IFRM8PkjYBSzKd6r+vInIZVWlqxFUAUJpArSvjhTcBAzDmqtl4g46UiTczZZawyV0UeLhQYnVzcL/8bwM7flHH156fHk8B5YaZLO5YmJieDQ3R2NWGtUmFfx8unZ9WKhPVIX/EuuQuTbRYDwRMHRWGBapKBjI2nTeYLu4kzPa8VjZIGO3l9C26R2qlJermVijZIDJXBX5R+jD1U0ukVH44+4/yztzTtq0gCZNVOlpTY6Mlcs/00lP+81K5bgmhtm0FiN9AEqxfdffYQLRoxBBEWm45VBc7ojU8qjKgzMh3QB7EeqIDM0a2zMxf36DBImm27OKfB2SbRo08zl/Mt/T2mZRfB0dwJHZrVFmTnFYsJvr5zbBLmfQHbBAPTo3BU7d2y0sDGWa24zM9Lx0YfzhYmPn58/XqCIeEOGXoAXnnuaVllNGjZz6hBuzB8l9iftiMQBc9gkt6Q80BtjYKB3QiqZ5TKt3H6GfwRpSRAdPzCUBE83Sr9iwJZ/k6EuF0i7hngg2Edjrgq9zuTSYeQHvw2Q1tWFrBPYtFlPf9y2NayTR5ssE/hyQoM0iOykxc7YNCGQal1VmDAiyHKlHHVY66qEO2mObVKZaVLn6a61WWw+OfW6afh99UqhjeAUCtdOvU7k8uNyTqXBiy6cSmM/5evrqKk0zFjV9TcxoxCbD6RiSDdvaMlRxz2b3CU0UdA7VyxC1pVXTfVYi55Hpnw5FEnak959ClKPOpG/qYoj/Za/utlM10jRLKrmJ+XFM96K6H2rp9+9u7bBg/Jek460pi5lWStHYPfxDLi5BJIvcy5ZRR1EiXMYWUZ5Vxu1IwWsUuoTKV3ROVHGiptzTWCuW60jeaLVImDny9Fqx9vqBsY+Qg0h/jTHpjhiSLiKBNIs6PLOCE0pr4yzdtK01T75rqlvMx/W4NDaJfKyj8MYEEa+Qr4oJGHUsbhx/FljxhsLvGYcOIql6Tz5lNC1NIYcyZyHeSmt+DeGn7ktRxdmgVT6I5kRIcGJtEVmjRGbAHYm30kW3J0KjtGvyW6xjBwryxydxXkO+pKUoRPaIp4whPlr0SOsQmPDZbEn0+FEixZ60qwP6OyLQG+TX585cImZr4r6KHKOpD674PeCxRWDKt9T0vSFx8JUPpTykuo/ebnZWPi/uWTyeDF69RlA9Y1IPHsG55LiEUo54davXkbXyaaYRvwZsxr9B12AYDtBCijgrZgKuZBAXVxQfaU2mvxaeVyB2jMk4JbbdloN6fdNCXjns4MU1VZJQnAp+nb3wksP9YWXsI4AklN1eOy13aRRKIGu0IBJNPl/8u5e9MxX/7sMcDuN4+e6wd8vgAKVaEiTn2TVE4Tvy/y5cyzn/vrrT/yw+BcRuCg3N1ecd3JyEtED+YAj7bL5Y0ckAy2k8BSXAxyVFBeQv6kGKlKNXjki0i4cfEd6hnuJjXOP8jNRlYoLTHjyAkhboIpFpLotHGaSP9jxM7no1ZXM7q2INafL1p1F7OFMvPhQP/G8WxVb7Zpw8fEyLZBYFVTa5Zx671DUe9aGsj/WbyuWWfydrFNppKWlivKOmEqjEmB1PGDTxz/2p1AMC28E07RFk3eUJv/pKHINh1FR3ee6jmztVisjAcOp4AxcdAmiDgcvynEIoHjLlYN8VWWgJ2sck21K1RJ53BYRKKIAmn8dTMHQbj7wpzVQ58L/SAOqJp9yd7rPJks84VdsqLDSYGGUg4BK6lgIVP+qdqzrb/TV5qbGNZhHbiqQl+GMoZ3dKSpjNvkbJaKwWwitJIULDY55wt7QDrg9b7npx3Hu1GbBprCoE8ooBUdJHqd8adzEyUiTOObBk3UzDkV5WUKwEQKOI628N4LYL4r56HW5Fv6NYGdpyqYHTNIfyQJJpZ3wsChxrKSVSo6QZ00OZHLFvnUsXPaL9iVfUAehOdq0PxGhvlrK3agCT/j3nUjHiF6BIi1GJvkxsTnkpCGdSOdt4sd+dmZSGtLhYMwnjZ0XJbQOriZs8ap5XYhNvL78ZC6GjRiL0RdNtjTxoGTWF44cZzl2IP9BJvYlcSxPAWIptNohhbAwJ8un/I62qHPnHuK0H+UZtUUBvmosem8kwkO0pJE04LHXd+OX3+Nw141dRfW5Cyjv6CA/zJzRg3yWDbiZzB0370zBODKBtEW+bueQnB2BiPDoahhVrZ9C0QLZd9TZmVLGp6cJrTBHBzx1kiKpEnHUXY4o2FFJTwsEzipHeuemwjMwsl4w2BJGi/Iy6T2YSy4NJOg28r1ar8E0onKFIrekVi4G0io/9+5+8Wz26Vax8MQN83RkWkZa/mLCNC7BpAW1yZCsFZiK9DX3dyP59HPaBj/SjiYnJ1Xz52efq99Xr0JQcDBZuJBvWh3fDzbH1MFOsnCw5WAaOoe4oV+kFwWYo0VD2vTO/mSlUqHtbgwsCjIJdtGdgUdmKpnrmu55noM3ch2aVhvbmDHKti2LAFuXbIpNQfdQd0QHa8kfn0y4y33irUcSn67D0fhcZObZttiwriv32x8CUiBt5D0tpIlIY+g0zXUz0zMwqIsX5bUrRFbKAagVhTAUUUG5H2dD+RcVpKEgLwnZacdgKC7E8aQ8RES5IpLkUNbosJaoMVRKCRtLyQe1RF9IJo0mHEqKdXSOAn9wcI/G8qf2zIuDeZj5N2a8VdtKf6SqiJiO/fxMExNFScWKJZeUkKCpIgFOachACEX+NJOGNIDsY5eWUygE0tTsQriSGa85R6M35XB0JnPVNDofpjXxZF7WJKLwKbQIDQ2vVdiybmfeT0tNxlckjI6ffAUGXzDKfFr8url7YsyEKZZzBjLZ3bBmOUaMnmA37Yulsp2d0PL8pG7qLHDuUFs0qE+FDyBrSYf298Xfu1KFQMpatC27U7FkxmjR1IV89CaODMLG7cl2BVJPlwwhkIaGRuCfXVsqdck51TjJ99mzcSLtyF1334t9e/dQ5GKTgLDxjxjcQJEE33h9tgjQcNnlV+LN11+txKMjHZh8QR2Rn0npt9x94Oxas9auNmxyM0waa+bb3qiMpOzXPjwgTN9nPdyv2uX1iPbErIf7o4ByUl96+wYM6eeDqkJrtUa1nOBcfrzZI/aN6sipNOzhUtfzJxLzkEAWGr0iPNA5yI2E0lSxuWd7Qq3tTe9424tw9vgryJVDXUTmljkJcM/aDbV3V1rM64pCBzfoyG9Y70ASiKQOj8DRhFzwJkkiYAsBKZDaQqWFz+Xo9NhIq0c9wjwwheanhQUppNU8Qv6TrlC7UiACl4qJbW1DKyUzmWIdRYqkTanSkiltEPljOGDbkXSRP++S8bVx6Djl0h/J9r328TGtZCuMlc1U9TTZVpF/s6o4CSXKCoGUNSP8DPfVmtJGFBYbhEBqzZ0F1OLiIjK/Nk3c2YzXmhTGXDIqB/m0NUwwiKMgRtnZWVi6eJHYzLzHXXwZLp5ylfmwyX59fEzX7+JUg0aoSm879qWjd7m5I6fRYKGUU2mYiff3HbK/wOWiMvVlvj/mdvwb3bkzvvhqkdD6c1TgxIR4zHzgXkuV12bPwsJF34EFUTeK3Ld61UoKC7/WUt7Rdti3l59b1pJmJp2Ef0RP8nk3Pb/1xSL73ClhxcE8WQPVnoj9bWe9H4u0jGJ8OGso1PR3bI805D/qTSkezqUWNlogtdeHPN90CBTR+3wP5SpljVTnYDdE+LtSBNwCuBTE0XZSCKVGJcW5oEB2pRTIrsyB4luQhQy7bTiQnydHQXUQUXMLxaDyjXr6m9IJv/nUAkf6VkRRyCIVBbCzvWDXdFciOUkEJALtAQH7X5f2cHVt7Bo4olhuaRC8yoMBFevSSbgkc0YyMVQ5u5EJnhYKyp3n4GjyreTLYw1iKX0YDJRAvYRCoxv0FSubChVFNHUKwPHUM0IYbWNwNPtwpT+SbYjVlEqCyaFKoBM2RVSTZpMSBNFq+hky84oQJop7jqWST5IGXm6mCT1HIOVopdakYIe1/JNw0FLaIOLDZr3WxBMdJo2m5oAn1m2s91krWlUzal1uva8kU9Y35y+wPlXvfTNGzsq6haT/8bfTOH02D2880V/0xX6jTE4UIMdMzk6Owp/UfFz111ll6ktNftpVifOUffvN1yJ/WQFFpuTE4NbEmtPx40ZRIK8gCjqS1yw5xKz7awv7Olo4ceRIo2ThkR5/FN4hXYU/fH3GzsJofqbJ9FlH+TrbE7FZ/aPk48xC+wcvD6F8dhXPKl/nkZPZZE5L/uG9fERQs793p+Ac5Wqt6mPanjBpj9fC5pSxp7LE5t7DHaoALzhTfi0HMrdVlrA2q3aNloGE1AJHD6QZtfh1ezyGjusDXwcXCggnhdH6PDPsZmErdRfzYH9qnrPYipLK2RECAgKRkkL5fsvjLdSnX1lXItAaEJACaWu4C1ZjoNTS5PVNk8Zi+viTFomDbSgVFFK9KFtsVlXt7pYYykQgGQeKrKtR+ditJwtAATOkP1LV56Bbtz6mUzZMxnWkAXIj81KOhMcBCf4560pCaRkGdKnQ4vMzKwKZWjFWFJ4gbT1H6CUTLhsT9zJHk0lXJAVTagvk42vKVZZbVNmfztbYN20/hwVLjuOj2UOFBonruGlIECLiNAnmiX6xvhTu5bleRWGV/4xkIs/kSZEnbRFPZFjwrInOUQRiSRUIFBSWUGRYuheFBUg99S/5k4ZD42m6txW1qu/pC/OQkxpPfqPZIkCSjib17GfZnqiwyIhteyjQAdHwqWssl8Y+0Us/HUsTYyOem7NP+D/z81xIf9cvPtQHwQHVF0wsjeVOq0Ygt8QJmY7BFP38EDSFejjSN4BjE3IqOEfeaKGR5R1+57MPMv+yZYCeBNJ071DklWWI6Out+iJb6eA4YvQnn34h8qBbD5H9/Rd89Y2Iiq7RarBi+a8iWJ3Zd/rSy67AG2+9I9J7eHp64aknHmm1aetGXdCPInUHifgGVQXvyLAgHDx2Gtt2HURySuUFVWs85H77RUAKpK303vLLvpgm/5TGXXwI+KOgoK8Bh9YXeULLx03fAs7HQXlCKck6TYiqap5a6eW1qmFJf6TKtyMu7gTl/etMKV6qBxbgZ6yATXIpyui/Bw+Qhl6DEQMGkdaeNKDlxGlgWPvEpDBmUf6xBOhzk+Ds7YN8mrjzJKYqOVJQI6b4hNNVi1rlcUZ6ihiXO/mQ1kTr/0rCewsOCWGUfe3M5O3hBJXSEcmkUeIJPlNSig5+PvbNRhWOJg1cdrZ9s14zf/lbNwT4Scwn30dXtYIiQlPONjLfzUtPgqunH7lLuEMpooYr6RVL71ZKjaSnwEWF+VngIEZM/Cyzhqk9vnfZBHf3b5eJ67T1H2tG1yycgCyK3srCaxCZfNqKEG2rrTzX+hHguQXnHSeDltqpikVM7Q1kDTMCHP18XcwmhEdEirRd5vPm35deno3NmzbizTdeFf7/q9fEYMLESVi39ndotFq8+958TKdAYPv376NUX8Pw9aLvhVDLubdbC2koxdRrz9yF3t1NARPtjWvksH6499ar8MGCn7Fy/VZ71eT5doqAFEjbwI3lSQ+lbCQfu/ZlEtYGoJdDtIFAUXEpvlpzEP2jfDCytxqORYdRqteI3LbsZxTiWopD2SdRlJIAH9rPoCi7KVmF6N+F0qC3My2SDXgsp5atjcPCX07gf69dKPI2WgpoR0nC6MjB/lgRE4+H/s8UZTfm72Sxb11P7jc/ApwEhoXKEronIhcsmfDmpp6txVDRQeTgNS+8NP8oW2cPbInPfqOSJAISgYYhoNfrMW7MCAwYOAhfLPi6EhM24R0/YSImjh8rznOQulUrf8OUSy8TAum4ceMRH39WCKNcYdc/OykoYApGjR7TqrSkz8y8WQijhfnZyEs7S0oVR5EBQlxU+X9qraeImO0VFIWH7rwOp+KScIg0ppI6DgJSIO0491peqUSgSRDgSKJ/7k/Cln+T8Rdt0cHuIi+jliLtjh8YQqldQPl1jdjx7xky7yrDwTOZlJA9oJpfaZMMphUz2UimuskU4OW6B/+sNMrFH4xG5wh3PHJ7Dzzy6i7E/J0ktHQTRgRhzLDazUUrMZMHTYYA+0jzxpprk6sEmyiSRUp5D6wxMpK9IvtA68ktwpw+qskGIBlJBKwQcKQAclqfEKszzb/rRFYBnLecA3w51iPIl4LiXnA7pZMr3P3Doab87IJPKVt11U99qhABlMitwScUGg8PwceR+ZfH1qgrCnwNPAYeT0uSkbICFGSbLGga26+vrx8tXqoovVGChVUi7Q8ZNkwcBwYGVirjk4mUCikwKNhSvzXsXDCoF6XwK8HpvevB+NREJUX58I/si0snDpcCaU1AtcMyKZC2w5sqL0ki0JwIuDgrsOCJsZW6ULKvM03eOXIjW+R6U4Cj4b2DkEaa0eG9goTvUaUGHeDgo1dMkwZ7lxoSqMHPH4+lCKZFYPNIV/LNlXT+EWCBkzdJEoHziQCbiZeQr3JLUinl/S6jRRdzDvO69m1qQ+0oyCKPuZSEDsu5egbZKXOgbwip3lkwMahVFXzKc5rWfUych73lMTQSBkwsSN52+x12h7ts2S/Vgs9Vrezuboo6X1xc4T7DQY083D1EVQ8Pz2pBjriuR3m7qvzO57GRLE9qE0Z5fAXZaWKYPbtEiN+2+J/WzY0WMh1E6io2q2Y3u/y8lv1brgtuHAzLk/K05+bmUdR/2/mhvb29Rfo462ewLrwbUkfOgOqImouLC1xdXZGRkVHHFrKaRKDjIGDyX65+vX7SnK86KFXO+PlIk8cqkMhDiUCHR4CFqebIv10TsJzz2xS5n3KJs59QHamU6nI7I6V+4THry/ORO1CUXT5fHyqlrAJlNJkvooBhHOGZ2/NY6pvX3DymlsbQfK1szs4aTnukIoG1NsrNNUU4Zj9Ts0CgVqtFei9um5NDGDlX/n6YyiunbKutn5YoLykurFM3ZeX569MzG3YNbOY8+ZIpuHjSFHTp2hVZmZn45OMPsOWvzbX2/9PS5RRk0Bk33TBVCGFz53+Inr164967bseZM3U3H36Z/H7dSbt/D7WbQz6+vHAwnXi2NgoLC8fmv3eIsW39e4vN4e07cATPPfMkvv/uG5vlTXlSCqS1oKlUKvH6m++IB1yn0wmn8ztvn4Hk5KRaWspiiYBEQCIgEZAISAQkAhKBjoYAR5HlQESNofT0NJEGJiS0E06dPCFYcdTdc+fOif3k5GSEhIZW6oLLO/L89JVX36D5+qXkdztaaKBZkdSjZy+hsX74kcdw7dTrcfToEXz04Xzs3bO7EnZdu3aHO2k3Z/zfHdi+fSuuuuoaMhVXktDvjP4DBuJ/n39JudLdEBu7H6+8/AKOHTuKBx58GHfdcx/OkUzA9R579CFw6jWHKqbqrGn89vsl+H31KmzdusUmr02bt2JDzHoMHDQYTz7+CL5c+A2OHDmMQYOHYNvWv/HC889UStk2a/Zr6Ny5qwh2xWl/3pvzNm6/4y6y8DEIIZr9ie9/YCaum3ajGN+cd98Wfsb/d9udePjRx5FDudvNZO/6zOWsSX3tjbcxfMQoofm97547cfjQQXNxk/zWz7i/SbpsW0zYeZwfjguGDMCFQwdi166deO6Fl9vWRcjRSgQkAhIBiYBEQCIgEZAItBkEWKjd+EcMbrhhuhizRqPBZZdfiTW/rxbHf/65EazlYmGCiVPHsFb27y1/ieOO+N+YMeOwm+bphhIDnnjqGdz/4ENwc3PHyFGjcc99D+Deu28nS8d0vDTL9mLBJopozALm0888D943U1paKmY+cC9m3DodkVFRuP3OuykbQQSefPpZxKxbgw/en4eo6M7CkpKFw+Dgyv7fb70zV2izv/ryc9jixf1w+1FjxuLEieNkil0ojllLPuedt3DNtddh5MjR5uGIX+4nMjIKXy8kQdndTQijXy74HH379sNF4yfgwuEjxLXceP01lBLuLGY+/KjIRf7Sy6/gz01/4F3iayZ7YzKX33zLDIy7aAJm3HIjXn7xeej1FWbk5jqN/ZUa0loQvGTKZVj523LKtWYyN1jy4w9YsWot+cSRKUk9fSNq6UoWSwQkAhIBiYBEQCIgEZAIdBAEWKv219adlJvTCV5eXti5ez82k6D51BOPCQRemz0LCxd9JwRRFjpWr1qJmPVrRVlBfj6efvJRfP/DT0LI8fH1xROPPWyZr3YQCCtdpq5Qh65du0HlpEIfEsxGjx4LFtKUSgXY7PbAgVgSxjbiuutvgDv54ubmVjYNjo3dh7DwcPTt1x8vPPc0pdi5WPBns9t33p0LV1oUYBe+wKAgsDaa/UMXLVpYo48oazjZlHrOu2+Je2OLl/kiviVe1uax/9J4f/5pMV4kIbJvv34iurK5Lv/GxZ2h3LTLcNfd9wpt6rKlP+OFl14BC6udu3SFlnxYV65eL5qw/3HnLl2E1verL79AXrlJOBfWNCYuZ9zYHHrl6nXYs3sXHrjvbj7dpCQF0lrg5GhlrEI3U0JCglDLe5H6PSM9HRqvQHNRk/wqndT0sKjgGzoUxbrG5Rv0CRogxuRMkfPM41RRXj3mH+6mhJtT49LI+FHuPoXCAU5qrYW/iNJH/A2GASS0Ny5ButEQKsbKYzaPv0lA5tyBTRQFr0nG0wqYKJ1d4OxqCpTA+xzhsdhjAAUhSG2R0enVUaJPldWzZO6YfWR4PExKc8hTc2Ez/potblzcfej5K6jUk7PGU4wpMac76LvXIlRUohF9KlTOlr+HEvLV0utMfkYtMog20IkLRfjkqJxVyZHeS85aLwR1GVy1qMmP/aP7CZ7W715zJ/y+5LFE06dD40IRwJqZHMv/aKq+Q11d6O+KxgGoyGOvTzOPgtJlK7pQTm0VnFzcLM+vdaeFuRnkJ2g7sIZ1vY6y7+CogKuHfR/E5sBBpdaIb26+zzAYXeo+tzGqtKKdQqUW95afe55n8LNVpqifD6mjo+ld7+rhD7W7p+CTZQjBifz+9brkNH0ktaW/sSaeo9U2CA4MVR+/VfYNHTbY/rWdPRuH8eNGCc1WXn5eJZNNHstvK5YLM9Cg4GCKuJsoUqfUNsb2XL75z01COLv6mql4+MH7sGvvv+JyY/fvF1pGFiYjIiKFcFpVGDXj8sZrs+Hn7y/8SM3npt90i4isztaSX3/zvTh9IDZW4M3ay+P/HTNXrfbL5tastb73vgfx85LFsMWrWqPyEyzwssaTBcZzZKJtjypFfefIkkRsksx9XX3lpUhIiMcFFw7HiePHRVn//gNw8KAJGz5R25hyc3IoPdFwjCCTXc59y6mFWFBuSpICaS1ocrQyszM5Vy0uLhItOMoZC6Ra76BaONSvePa3v9avQY21d1hKzeP8dNWf4K2pycx/6dZ94K2pycy/KfiWlRqlQFoFSJWTi+VZXm1lplKlWjMeVvhy2LrX//tuYTP2XTvrqmM6djYex87jmMzj0eWkSYG0yu1Tu/mQ0KOtcpY+uE8uqHau+U7ssrA23yvziQXLd4G3lqaq4+D+WxaTbZZLtjWWYl2OFEgtCIEWdBWWd7LV6Wbd3bJpE3hrGG0QzfjeHjl0VGwN41PeSqFGbn4RvvnskwayMQVpsfWsNZBhnZrpC/PrJZDWiSlVOnfOvjBiIJ/BeDLJbM2kooXuupCDQiGq+XqbFsjr0sa6zvvz3iNz2WA8+9yLeOHFWcgnLfJZ0iLGxKwTWuat23eDBft5771r3azS/qaNpmd50uQplvNsOs3+p+znqSahlv1H8/Jy8fZbr+PG6TejH2lUmdjMuiplZWVh/rw5uPLqa/DKq69jyeIfqvGq2sZ8zCbBLIzu27cXrP2sD60nU+KY9VOwas16EazpJJkCX3rJRCFIzn7tTYtfMvO0dX3WfV162RVCaM2la+ax/P77KuviJtl3IBOB5l+ibZKhnh8mv65YjW+/+dryILCK/9/D/2Fgv54i4m5Lr76dHxTaWa9SQ1rthlprSKsVyhOtFgGpIa1+a+xpSKvXlGdaEwJSQ1r5bpwPDWnlEcijhiBQXw1pQ/poa21ifpov8pAe2/ZrralfAqL7izyk6/78B3M++aHBl8rmpZw2J5Oi7FprD9kPt6CgssVTXTth7Sq76lkrqe67fyayKTgQ+2tOvHgyhg8bCBZAayNbvKq2iUtIERFuf132CzioakOJg7O6UbAm63FxOho2+bam2sbE2JGNcrV21jwasy81pLWgx9HK2E7cTLzPD6P5xhZkmaKdmcvlr0SgLSJgoJDsvEmSCLR1BOpjLtfWr1WOv/0iICx55Pyi/d7gDnRl23cfxIWDeyNywATkpSeQTONIqXwqu4yptZ7C/NUrKEogs+aP7Y1CiDWVttI0NlQY5cGYY8lYD8xI1zFk6DBkkxDKwYPMsoF1HVv7tnhVrbf4x++FiW1jhFHmyRr0quOqKoxyvdrG1BjsmH9tJDWktSB05VVX46GHHxNqbnYIZnW7t7cvRdu6p5aWslgiIBGQCEgEJAISAYmAREAi0HER0Li64LVn7kLv7iZhszYk5n/xE1bHVJj411ZflrcPBKRAWst9ZFX32xRZa+LFkyiKVr6wPb9txk3CebyWprJYIiARkAhIBCQCEgGJgERAIiARkAhIBGpAQAqkNYBjXaQl+2utRlujY7l1fbkvEZAISAQkAhIBiYBEQCIgEZAISAQkAjUjIAXSmvGRpRIBiYBEQCIgEZAISAQkAhIBiYBEQCLQTAjIoEbNBKxkKxGQCEgEJAISAYmAREAiIBGQCFQg4OPuDG83J2jVKhQbjMjTGZCaXYjiktKKSnKvwyEgBdIOd8vlBUsEJAISAYmAREAiIBGQCEgEWg6BbqHu6BysFYKorV7j03U4Gp+LzLxiW8XyXDtHQJrstvMbLC9PIiARkAhIBCQCEgGJgERAInA+ENColRjWzRd+Hs6ie4WTM5xdPeCoUIhjTjlXlJ9tGdq+U5n4LyHPcix3OgYCUkPaMe6zvEqJgERAIiARkAhIBCQCEgGJQIshoHZSYFRvf3i4qqBwVsPDLwyu7j7V+jcaS5CXloj8zGQMiPKGA/07lpBbrZ480X4RcGy/lyavTCIgEZAISAQkAhIBiYBEQCIgETgfCAzu4iOEUWeNOwIi+9oURnlcCoUKnoER8AqOFsPsH+WFQC/1+Riy7PM8ISAF0vMEvOxWIiARkAhIBCQCEgGJgERAItAeEejkp0GIjwsclSp4B3eBo6PJRLema9V4+sPNr5Oo0iPMo6aqsqydISAF0nZ2Q+XlSAQkAhIBiYBEQCIgEZAISATOJwLRQVrRvbtfKBQqpzoPxd0vhOo7w99DDX/Ptqcl1bq5wc3NXVyvRktBnOi4rZCTkxO8vb1p8aDlxcOW77Gt3BU5TomAREAiIBGQCEgEJAISAYmARKDeCASUC5OuHr71asv+oy7lfqZmHnVloFKpcPkVV+LDjz/D2phN+HHJUowaPaZOzX9auhzLV66BRqMR9efO/1DwiIiIrFN7c6WXX56NOXPni8M5783H518sNBe1it/X3ngbF0+abHMs4ydcjJWr18PHp373zCazep6UAmk9AZPVJQISAYmAREAiIBGQCEgEJAISgZoRUDm7krat/vFTnV1NWkV3Td01qzySV159g7Y3Mevl5zF54jjccdst0Ol0UJLZ8ONPPI1tO/bgq6+/w8BBg6sNvGvX7ujbpy9m/N8dGDBwEK666hr06NETzs7O6D9gIHbs2odDR07gh8W/oFu37qL9Aw8+jP3/HsXa9RuxafNW0a5AV4C8vMpRglnruHpNDLi+PV7c/vkXXsbSX1ciKipa8Pvkf19g5+79mPf+R2BtqzXNmv0avvvhJ/y6YrW4rmunXi/6YKE6MDBIaDkfnPkwNv+9A0t+XoYhQ4dhxm13YPpNt+Dtd+fhsy++wpixF4l+Zj78KL5c+K3ASq8vRlFREVgQ53aHjp7EmnV/wN3dA8zvz7+2YW/sYdx1973Ww2n0vhRIGw2hZCARkAhIBCQCEgGJgERAIiARkAhYI2AoaVxO0QBPU6oYa5417Y8ZMw67d+2EocSAJ556Bvc/+JAwnx05ajTuue8B3Hv37cjISMdLs161yWbTpo2465778PQzz4P3zZSWloqZD9yLGbdOR2RUFG6/826Eh0fgyaefRcy6Nfjg/XmIiu4MV1dXBAQEIjg4xNxU/L71zlwSbNX46svPYYsXV+L2o8aMxYkTx0kgLBTHubm5mPPOW7jm2uswcuToSjy5n8jIKHy98Eu4ubvh9jvuwpcLPkffvv1w0fgJuHD4CHEtN15/Dc6ePQsWOtevXUNCZwHWrlmNee+9Cy0Judxvnz79cPToYcsxm+y++fYcBJBge8f/3YJly35BdOfOdL3P4btvF+GmG6YiLu5MpfE09kAKpI1FULaXCEgEJAISAYmAREAiIBGQCEgEKiGgpJyjDaIyU6uU7PoJtLpCHbp27QaVkwp9SDBjjSQLo2PHjcOZM6dx4EAs/iRBs3//AULjV3VssbH7kJ6ehr79+mP1qt8sxR4ennjn3bn4+NPPhUlvYFAQQjt1goODAxYtWojDhw5a6lbdGTR4CCZNvgQrVixDYWEhbPEyt/mWeD395GNISkoSp/6l8f7802Lk5GTTmPqZq1l+WShcsXwZ4s6cweHDh7Bs6c/Izs4WQjGb37LAySa4F100AdFRnZGcnIQSEtaTkhJJAD1i4fPk44/g3bfftBzzDgu269b8jh07tuGLzz7Ff8eOCiH0RTJJ/ub7xSgtLa1Uv7EHUiBtLIKyvURAIiARkAhIBCQCEgGJgERAIlAJgZIiHQkuhkrn6nJQXGQyec0t0NeluqXO5j83kQYzGldfMxUPP3gfDAZT37H795MZayBcXFyEKSoLp7m5OZZ21jtvvDabTH5fQEFBgeU0m7mWlZXhgiEDsG/vHtABDsTGwmg0Cu0layPt0amTJ/D5/z7Bvfc9KExpbfGy15YFXhYMWYg9l5xsr5oYm6WQxsa0d89uIXxefeWlGDKoL5584hFxnrWv7CdbW+CiJBJeBwwaJLS+PIZOncJwy/RpuOWmacjJzsHNt8wQ/JrqPymQNhWSko9EQCIgEZAISAQkAhIBiYBEQCKAlOwigYIuJ71eaJShDIXlbVKyTDzqyuD9ee8Jzeazz72I2IPHoNfrcZa0iDEx67Drn3+wdftuXH/DjZg/d45dlps2bsBPi3+oVL7xjxgEkRku+3l2694DpBolP9FcvP3W68I8dup100T9kpKSSu34ICsrC/PnzSEBN5/8W1+HLV7VGpWfYJPg31avw759e4X20149W+fXkylxzPp1WLVmPQ4fOyX8U7kea1HvuPMe8g/91VYzy7lXSCiPiowWOP740zIhkHKgqDffmgNntTOZH39hqdsUOw5eXl7livGmYCd5SAQkAhIBiYBEQCIgEZAISAQkAh0ZAc5DOryHr8hDGhDZt86pX3LS4pGXloDUnCJsik1pEIQcbdfd3R2ZmZmVtIesGbTWfNaHOWtX2Uy1uLjCjPi++2eSiWyW8NecePFkDB82UAigtfG1xatqm7iEFDz3zJP4lfw3OTBTQ0mpVJIfrVulcanVaqHdtSVAW/fDGloOyJSTk0va5hIRHMqd/FUZ16YmqSFtakQlP4mAREAiIBGQCEgEJAISAYlAB0YgPq0AiRmFKCVBJjPpOAlzxlrRKMhOFcIoVzxy1rZJba1MqAILWhkZGZWEUW7XUGGU27L/p7UwyueMdE0cvTabtKAcPIi1oXUhW7yqtlv84/c4cfx4o4RR5slmy1XHxVF0axNGuS2bKTOOLIwy8W9zCKPMW2pIGQVJEgGJgERAIiARkAhIBCQCEgGJQJMhoHZSYFzfQLi7KqGgKLOe/uFwcfOuxt9oLEFeeiLyM0x+kvtOZeK/hMqpU6o1kifaFQJSIG1Xt1NejERAIiARkAhIBCQCEgGJgESgdSCgUSsxtJsP/D3UYkAKJzWcXd3hqFCIY4O+CEV5FZpFKYy2jvvW0qOQAmlLIy77kwhIBCQCEgGJgERAIiARkAh0IAS6h7ojOlgLrVpl86rj03U4Gp+LzLwKH02bFeXJdomAFEjb5W2VFyURkAhIBCQCEgGJgERAIiARkAhIBFo/AjKoUeu/R3KEEgGJgERAIiARkAhIBCQCEgGJgESgXSIgBdJ2eVvlRUkEJAISAYmAREAiIBGQCEgEJAISgdaPgLL1D1GOUCIgEZAISAQkAhIBiYBEQCIgEWirCHTpPQC+gcFQKlQwUFRda/INCEFS3EmcPHwA2Zlp1kVyv4MgIH1IO8iNlpcpEZAISAQkAhIBiYBEQCIgEWhJBJzULrj61vsREhFdp27/WLEYsTv/qlNdWan9ICA1pO3nXsorkQhIBCQCEgGJgERAIiARkAi0GgSmXH+bEEYV+mxodGdQ5uAAh1JjpfGVOHvDsbQEBdouGH/lDUg7l0Aa01OV6siD9o2AFEjb9/2VVycRkAhIBCQCEgGJgERAIiAROC8IRHXvDZCw6Z+yGgpjYY1jUBgKkOvZH32HjJICaY1Itb9CGdSo/d1TeUUSAYmAREAiIBGQCEgEJAISgVaBgLJUV6swygN1Kj4nxhsUHtkqxt0Sg/D29oazs3OTd+Xu7gFXV1e7fDVaygnr5ma3vKULpEDa0ojL/lodAl5eXvDx9bU7LhcXF/j4+Ngt57ZqtdpuuSyQCEgEJAISAYmAREAi0FERUBh0dbv0MpMpb0FuTt3qV6k186FHsGbdH/hp6XJ89fV3mHbjdCiVDTcG7devP9bGbMKvK1bj56Ur8PIrr8HT07NKrxWHr73xNi6eNLniRB329h04gqnXTatDzfpVWfLzMrzw0it2G815bz4+/2Kh3fKWLpACaUsjLvtrNQgEBwfjr607sXXHHsRs2IxVv6/HuIsmWMbHL7G3352LHbv2YdWaGKymLSgo2FIe2qmTeFGtWr0e/+yJxauvvwWFQmEplzsSAYmAREAiIBGQCEgEJAItg0AgzdH8/QNw/bVXYfasF/EiCWQsJDJNmjwFy5avQszGv3DLrf8nzg0cNBh/btku5nksyD72+FPivPk/V40GPXr0xJtvvIr7770Lt99xl2jbf8BA0ebQkRP4YfEv6NatO2bcdgem33QLzRvn4bMvvsKYsRdh0+atmPnwo/hy4bckGKvw+BNPYxvNOVlY5r7t0azZr+G7H34SgjDXv3bq9WIOunzlGgQGBolmY8eNx49Llop57J133SPO9ejZC39s2iLmpGFh4Rb2K1evw5H/TmPt+o244cabLOfNOw/OfBh//rUNe2MP46677zWfbtFfKZC2KNyys9aEgMFgFC+sXt2jMWhAb/y67Bc898JLliFOufQy8cK4YMgAXDh0IHbt2knlL1vKX3p5NjZv2ogLhw0U5aNGjcaEiZMs5XJHInA+EFCpVA3q1tHRUSy48K8kiYBEQCIgEZAItGUEzpw5jd27/sGgwUOEMPjue/MQs34d5s55RwipwSEhmP3qGzCUGPDIQw+ATVh9/fxsXjILoNNvvkWUxcWdQVpaKmY+cC9m3DodkVFRuP3Ou7F+7RrodAVYu2Y15r33LrTELyq6M/r06YejRw9jJM0R77nvAdx79+3IyEjHS7NetdkXnwwICERkZBS+Xvgl3NzdhCD85YLP0bdvP1w0foJQfsyd9wGWLP5BzGOfe/4lobl95dXXwd9wvp6MzAwL//fnv4err5iCEyeO45nnXqykNY6KisaTTz+H775dhJtumAq+vvNBcuZRBXU/P3+wCWdVqs1ss2p9edz6EUhNTcGGmPUoKysTG+937doN/AwwXTLlMqz8bTkKC01O+Et+/IFW2C4Rf+w86R8/YSKWLPlR1C0oKMCqlb+BhVhJEoHzhcDQYRdg+8691bp/+tnnEZeQUmn75vvFlnqXXnYF9h04jB9/WipWSOtrcmRhJHckAhIBiYBEQCLQShBgP8pMEswGDBwIDw9PxMSsFQIjz/vGjBmHsPBwbNiwDju2b0NBfr7dUbNm88bpN+OzTz8Wcz3m9Q5Z0H386efQkBY1MCgIyclJKCHhNikpkQTQIxZeTz7+CN59+02MHTcOLCQfOBCLP0mZ0b//APD47BELhiuWL0PcmTM4fPgQli39GdnZ2UJYZQGZ3cXYhPjtd+YiKysLvfv0FdrcdevWYNvWvy3Xwy5l10+bLsyYBwwYJGQca5/VlJRzQgh9kZQsPC8oLS21N6RmPd9ww+pmHVbLMmczy0cff5JU7beCJBOcOnUSU6+5QgyCzTZff/MdTL5kCq186JCZkYE7b58hHryWHSUwuHdv2nohjB58jYvJUTmV/tDOJCRiR2wsTsbHt/SQ2lV/o8eMRVJioli54gtj0w8WUs2UkJAgHM+9yAHdSeUkVtySEhPMxUik/SHDhlmO5Y5EoKUQcHJywjrycwmPiBTvKFv9Lln8PZ5/9mlLEX+QmXhV+F3yJZk+7Vrs378PQ4YOw9eLvsfggX0sizGWRnJHIiARkAhIBCQCrRgBR5rTd+7SBePIpJW1oy+/+DyOHDkMvV6PCPpGskbUgVLPxMbux759ezFy5GiMGj0GPLezR7fcNA3/7NxhKWbTXP6GsgXd1998bzlfVFQoBFRblkax+/fjmmuvAyu4eBwsnObWwVfW/K0WnZR/t4/S9bBMMm/uu/h20UKhiWWB+tjRo2CzXRZ0XcoDGg0YOEgoUyZPHCeE1jlz37eMl3e8KUbKLdOn0fwhAi+9/CpuvmVGpblvpcrNeCAFUgL3FVLZ96QbOPOBe8SqgrUfoLXZJmvK2K6bzTa5LpNXcBfx25z/TRg6AJdcOASBNv5YukRGY8Qg4KYrr8ah03H4hWzj/zub2JzDafO8y8hpPju5cn6rLl27grVITz/5uGV1yMPdHcXFxZbrLS4uEvse9IduNou0Li8qKgKXSZIItDQC/KEdN2YErQIPwhcLvrbZvdFYSqu3JdXK+KMdH39WCKNcuOufnWDrAf5Ar1+3tlp9eUIiIBGQCEgEJAL1QcCotB/ttRIfB1McDk0j5lIctXY9xQVJT0/Dh+/PI7PXBaKLD8hslf1JeY6/+MfvcfjQQXz60Yd44qlnwCavarULCavVv5GVxld+sPGPGOHXyT6iahIwjx07KkpYi3n3Pfdj0KAhwtzWum1MzDpcdvmV2Lp9N/Ly84RZr3V5ffbZKu+dt14Xprw8dtZqXnv15fhm0VfiGtkflAVzpgMkeJ89G4cfyN+UtaFViWOjLPr2R7GYXVpWiq++/KJqlRY5diDzVNMyeYt01/o64cA2W7b9g2uvutwyIbMe5aefLRArKx/MnytOs3PzilVr0b1LhHgAnFy01tWbdF9NWo8Hp9+AC/v1FXz1hZkoyDmLwoJzMBpMZqQqlTtc3IPh5hVND5+TqPfT2vVYsq5Cs9ekg2oHzHi1qaSowHIlbKu/dPlK/Pj9d/j4o4qVI46q9u03XwszCa7MK07/Hv4PA/v1hJOTs3Bo7xodZhFa2ZzjqquvwbTrrrHwbis7KrWGniP7kYbbynW01nF6uyvRLUKN8GAneGgVcFY5Ir/QiIQUPeKS9Th2xrTYUd/x63W5KMrPsjQzC6Ss3bQmXmyZNOkS7N27Bxnp6Vi5cgUO/ntAVOFgCCNGjsJtM262NOFgCuvXr8U3X39lOSd3JAISAYmAREAiUF8EHnvjE5GHNCjxp1pTv+R6DhZ5SA/t2YF1S7+pb1e11merR95YgcA08eJJCAnpREKlGk+SYPrk449a5ny1MWNNJwuC1ooJbsMmskaj0eYCMJeziS8LlE1F7GaYl5cHg8EgWHL/vG8+5pOsEeY5bE5Ots1uOeCSO/mqZmZm2ixviZMdXkM6ZOgFZKKZgclTLhWOvvyQ8GrKlr82C/xrMtvkiZ3SyaVZ7hMLo8/eMQM9IknwNRYjLXEncjOPV+uruCgb+XlnkZG0G94B/eAV2B/TLpksNHVfrVhVrb48wVbZFQJpp7AwfP/jz8KZ+3+ffFQJHvYH4Ei6ZuJ9fvGwrT6vsLG2KSS0E06dPCGqcPm5c9VXn8ztW/Ovg6NCvLBa8xjb6thGDdBiQPfqq8Nurgr6+3YRW6/OLti2rwApmXVbnTVjwfetLsSBHdj3hD/CbA3Ciy23zbgJf2/5S/jVmD/OZl78nLOFQFsktcYTjvRxldS2EOCFlVKjaULVtkbePKPlv20XN/smhM3Tq+TaWARKDSUoKrA96W8s77ba/uSRA4ju0Rdp/pPhWhiPMhKOHEqNlS6nxNkbjqUlKNCarA7/3f13pfKmOqgqqPGcv0fPnjT/AZ595qk6C6M8HnN8kapjq/o9rVrelMIo8+Y5qTXZ6p/nvfaEUW5roOf2fAqjPIYOL5CGhISKlYwzp09j0x9/oG+/fiI88/VTr8J+si2vyWyTBVKFyplxbHKaSfbcPaMiUVyYheTTMSjR59UoMJTBiIyUvdAXZyMwYhwuGTkcGbn5WPX39iYfW1tnWFbusB3duQsJoz9h/tw5wnyj6nWtW/s7Hnr4MXz+v0/ERH7aDTdiHUVR4xUx3thk44YbpuON12eLFS82xXjz9VersmkTx2U0EZSTwaa/VZeM9ETXMDX4mcvS+SKvyBNFBlcYSxVwUhZB65wLT9d0hPqW4prx7li+KQuJpDWtK5Ua6ybA/rEhBryZif1cpt1gEkj5I+XsrDYXiV9eYc3JaVgeuEqMzsMBC6PN9V4+D5dzXrt0dXFE786u6BauBmv57VGhvhRnhaa/EKcTK9wc7NW3eZ5nhJIsCDAa8jm2wCF32jACa39ehKtuvR8hEdHIdbaf0918iRuW/4ikuMpuVeaypv7l4D+8STr/CNj/wpz/sbXICHjV4N8DBywCyc6d28HRqy655FIhkPKkjAOGmIltzJnMKw156Qnmoib7vXjECAzqFgV9UR4Sjq+GgYTRulJO+lEhLAWEjcLUi0YiZvMGpFdZPakrr6aqp1Q6ICTABX7ezvB0U0GrUULtZArwXEQTGV2hAdl5BmRkFdNkvAhFxZVXzppqHFX5DB4yRKS54FyjvJnpww/mYc47b2H1qpUYTVHYOMdofl6+sPlnrZKZXps9CwsXfSd8AjgsN9ePITPHtkglxTrwJqnpEBh3gR/CffVkmmNEUlYkCvRuxJw9JEymOjxtz4MayQhFkEccPF0ycdEA4OulyfQ30bx/AynnUhAeHkEjAAVoSyZNf6jYN//H2n62EGiLpMtJa4vDblVjZvOukYO9cUE/njyW0qZDsc4RZY78DPO0wayZpwWRskI4lhUhgrIlRPgpkBjugC27MhCfLN8nBFSDqZQ0SM0xv2jwgGRDiUADESimBdAln7/XwNayWUdBoMMLpOzoe8WVV1W732xPzlST2Wa1Rk104qrxFwlOGcm76iWMmrvPy/wPrtpAuHl3AfNa8MtSc1GL/vbp5o7oMMrDFKaBoh6r32cSdTidUIB9h7NJe918Ls6cxoU3e8SmHY8/+hC0bm4kRGvJHDe5UlV+dsaPGyWSFLODek0hwys1lAftHoHQQBeKiO0lrjMhMxqFJZoarzk5JxwKRyPc1DkYM9QXazan1Fi/voVTr5uG31evFFH5OM/atVOvw48/fCfY/PnnRnDUPV6IY6sQTh3j6+snzHnr24+s3/YRCKbFw4kj/eHvZbL+KXP0IkGUBVP7JtxlKCYTPDIbK01HCGXNuuHSUGzfn4m/d6e3fUDkFbQKBAJ8nBFC79Vefbqje8+uCAgOgnP5wnYxLWynkrvMsSMncDD2MJJSCpGc1jC//FZxsXIQEoEOiECHD2rk6emJP7fswMMP3ofNmzcJn8F16zdh5oP3kknmBlx51dXCbPPSSyYKs01OOuvt7WuJstvUz8zAXr0w64H7STuahbNHlzWYvZPaG2Hdr6Yw1yWY+sgjDeZT34ZKhQMG0kR8cG9PSk1Tsd5RWuZKmlsKAFVG5otlTrSZyhwcjHAAmSg6FlF+zwI4OlTkgTKUlmHPwSzspS1f17wao/pep6wvEagJgSljA9GrszvSCwKQlhdcU1VLmZOiGNF+h8XxZ4spHHx+3cxxuQHnFPtrcIHXvQAAQABJREFU606K/uwkcoxxlNzNJGg+9cRjgt+PFF1vGAmarA3l3GW/rViG58hfxhz0gBfl3nxrjkj2zeXcbs3v0gddgNeB/uscrsGVE4LpPexAQqgrbaw5r0/gvjISTJNoMy2oHDiWg3VbGra4wmkTWFPLwUHqSxxsxJVSHnB8CEltEwG+9/w8domgRe1OGri7uQg/RG+/QMsFOdL8gam0zKyxJ3+6jFScOvovsnPyKe+yDsfP5ONEXD4Mzbi4bRmQ3JEISAQajECHF0gZOY6yxYll2aGX8/CwyaY5qi5H42JzTq5jbbbJ+Sqbg2696kpMvfhiZKXEIiN5d6O66NTtKji7+OCZ997D4ZPNb4/fs4s7hg/0gReZ5TKVlmlRavAmfzlaYS+rm6+tg4OBBFMOGpRJvyYfNjbr3bk/A/8cqOy43ShwZGOJQDMiMPPWzsIs/VR6dxQbTGb+deku1OsU3JxzsHbLOfx7LLcuTepcx83NHX6kHWWrD1vBGPhdF0RRx/nd1hAhoM4DkRVbJQLhIa6YOjmkXBj1IWE0vOHjLMuBo5G/OWXC0mXDttR68+LFXybOIWhNvPBiNjc3n3/qyUeFtQs/w60lb7h5bPK3fgiw1nNwb2/07+kBV7VJ0HSmBYbovqNR6hwMvdEJ7k45cFHo6FktF0jhKHzzc0vcoXI0QGnMxKnYjdCR5RITzyEOHM3Grn+zmt0dourVcgRUTr/BMUdsUW2LJ7xAyNZXtgLV2OLXFs75uDvD280JWrWKvo9kmq4zIDW7EMUl7B4gqaMiUKHC6qgI0HXHrF+HTRv7ITg4ROTfs/7Dr81ss6lhC6cJIVORrvF+UMWUJoYF0s7h4c0qkPJK5sQRfujX3VOMvbTMjTQvQRQkx3QsTtbxP9acGo1+YnN0zKfw3Ik0sWczRj+wKdn6v1Na/INSx6HLahIBCwLsI22gVfv6CKPcuLjERQikvuRv3dSUl5dLoeHtC7n8ros/e7apu5X82gACKkpDNHl0QLkw6kfCaKfGjdrBA6XKLnA0/IcBPT2RmaPH3kPZdeI5YeLFeOOtd+HvH4BFX39ps82MW6Zj699/WcrMCyi15Q23NJA7rRKBYf29MbSvtyXGRIFRi+xib4RGT0ZcSShcywoQ7HqWxE8jio2V35EO5OvspsxFcmEn5JdEQh8cisT9q+DhlAmtU57gy8/iLlrY3rq3+TXnnFJw8c+/CveHIsphn5SUiPfmvENzzQ0C+9oWT9iPf8FX34iMCRqtBiuW/4pZLz3fphcLu4W6o3OwVgiith7A+HQdjsbnIjOvgYHRbDGV59oMAlIgLb9VPBljn0B7lE85fnhrbvL28BBdGEpMeUYb05+h2GT+qnGpnnKiMXyt23q6KXHpuCAE+5u0QCUl4fTCDLCu0uB9NvHV67uRtjSDBNOz6BKuRaCfGis2JCM5tfH4NHhgsqFEoA4IKMtX7+tQ1VLF0cG0Qmy2MrAUyB2JQDMiMHGEP9w1KhJE3RovjFrGSRYyikjSlJ7GRRf6IY5iA2Rk1x5BekPMevD2wkuv0Hu/whTTwpZ2OEUBp92qSpdMuQwrf1tusQDgGAGcN5zNfzkyuqT6IxDYKUKYygaFRSIsqhsSTh9HanI8zhw7jDPHTS4G9edauUWgnzPGXeCPUFp0Zsor8UBaUaD4DQgJg6tHKJSOeoS4nqFFE/v3kctCXONwJp9Sh2gD4BQwHCfjTkKjyoWfOgUeqixhxRVNpsB/bEujIIrNN48wkOZv9qwXLdHNb7/jLjz3wksWgbS2xZOXXp6NzZs24s03XhVR/FevicGEiZMo0v/vlcFrA0catRLDuvnCz8O0iGB0pDyZKg9615hEEIVRB5U+C518XcW271Qm/kto/vl2G4CuQw1RCqSt7HZ3Cij3jyCtY2NJoTK93D2bKZ8gC6PXTAqBj6czmee6wkCrkqWlNQdvacg1GY0+xJdMcVRkzuiag+vIrOzntYlSKG0ImLJNiyFgKDNFkq5Ph6XlbVLS5QpxfXCzrqtSa8hETn7arDGpaT+IhIF+PSlELpFRQRN5h8opgGpqW3tZEPmT6im/YDqGDw3F+q32NVP6wnxKj2QywayN71333IfLr7gKp0+fwk+Lf7Dkz6stb3htfGV5BQIe3n4YOekKdOszqOIk7YVGdhHbwOEXISXxLP5a+yviTx6rVMfeAZuuhoRFwd3LBxx5NS87E5188jFumOn5KzJS1PHCMOTqK6yr/INMEcD91Kk1CqPWffqS8JlYEI5AEmaTSCAtIFNe3txUOQh0jUeADzD98k7YQkG3dlDwreYg9uPnhRUz8f5Ls14ltwl/4atf0+IJ5zkfP2EiJo4fK5pz3spVK38DC7FtTSBVOykwqrc/PFxV9H5xQZEmHHon0/02Y8O/DpSDVF14lrYkDIjyptgiDjiWYN+ix7qt3G8fCMivdiu7j4mpqYgMDSEHTEOjR2Ys17Jm5zb9H7Wri6JCGC31oNXqaEugokYP3AaDsjKV0JYqSSh1dkoXvk6/rE0goVRG0rMBlzx1nhHIzisRKY5cVAW1Rti1HqqG8pIypWZKgdQal/rsO7u6Q+lUd7/d+vBuj3UH9XMjvCjYnKMfaRK9m+ESo8h0V0c+ga7Yf0JB/mK2hU5DcSHFG7BdZj2oH77/FkWFRbRAqcSkyVMw/aZbcOnkicIcvba84dZ8Wv0+LUorFKZ4DC09Vs4XefmNd0JNgaEcygzQ5B2DU1EyFMYi8gp2hF7tD522CwJDw3H9nY/gjxWL8e/u7XaHyULl4NET0LU35bWyokifNKG5TEmMR+yxPBIiO5HbsQM9h6ZKSieVEF4ptBX5jbLJd90W6rWqPNKoGuBC0fEdHSu07AVGb5zM8yahNAH+6iSMHhoAL092BWq8i5T5sjiVoK380KPHjBX++RkZJl/SmhZPnCg4nZLyKSclJpjZIpH2hwwbZjluKzuDu/gIYbSENKIF7r3o9lbcD+trKHNUoVATTUKrBpr84+gf5YWcAj3OZck5njVO7XlfCqTt+e4247VNGRNUrhl1I2G0Mwmjtl8yTT0EQ0kUfZJKycckE5NHBWLRsjjSzjZfapimHr/k1zEQOHIyDxeSP5SXJg2F2XWzGtCQn5OLSicCcJw6W9AxgGqGq8zPTG4Gru2XZbhvFxTlF5LPJ8cvaB5tEVtZclqYIG064k81Ljjd/z75yHIzFn61AFu2/YMRI0dh7ZrVlB+85rzhloZtYEdBWn6vENJYtzBpKfjZFdNuFsKoS/4peGTthMJQ+X3kqsuEp+4ocr2GIs+zLy6+7v9QptQiMf5MtdH2HjAYQ0eNtZx3LKPI+vTJjvY7Bz8NuRU5aKEIvoSERC0Kj/9Hqakq+uKxOBAOaseSSoKlhVkNO65OJcingHJqd1KHVqFs+BDfEIRqTmPoYB94B4Zg3faKfqtUr9dhSVEBclLOVGrTpWtXPP3s83j6ycctpuM1LZ6oVKaFiOLiioVJjm3i4W5y6arEvBUfdPLTIMTHBaUkbOrcutkVRq0vQa8OJIuKYrjozqJHmIcUSK3Baef7UiBtIze4sNiATfuTcDY1n/5IvTCmXxAKi42I2ROPeDoX4O2KYd390cm/PiH6G3bxo4b4khaXUgJQ+pYSfcsJo+bRsgDs4HgIvpTmcfJof/zexDkbzf3IX4lAQxE4cDRHpD7yUGehyFWDTJ1fjayUNOEK8IgXdfb8m0maIrnIUiNgsrBJEOA80ZwjusyRF00qB4lpkg7KmZQ5eNJCYhbCQjRNGi2dYz9kUmoXN8oVzXQ+8oaXX2KT/xjJTzY97lCT862N4aCpM8Dp25TZ/8EjZZ2obk9vrUnZTLnSyfTWoy/6Dx6I2L9XV2I/aORFGDh0GFj7rSBBVMmWX7SAHOmXCX+nXJSWOJC/ZzfkGDxJ4+2AqC5dcXjfTuTnmgJguToryVisBDrQr7F+VmMFxU60WE1ts21HeNbRSHNUXgjXHkew1oghETlNnv+ZwQggN6yFi77Hpx9/hNWrfrPgU9PiiZOT6W/RyckJZqFUrVbTgkvdAoNZOjnPO9FBpvlokWsYCaV1f78Uu3aCc1EK/En+9vdUUwTe9q0l9fb2Bptlm+91c962luyrvtdRfyen+vYg6zcaARZG3168H7oiAy4ZGobuYSb/ivxCsrl3UuKqkZGIDHTHR8sPNnuurRAKOnBBP5NZVwlpK9mU9nwQ983mO726eKBblGkycj7GIfuUCNhCgHOIbtphMs0KcE+Ar/acrWriHJv1dvI+AWfKQxqfrMO2fc2jpbI7AFnQYRHw8XIqv/a6afEbDJSD6R0dGtg4/9SwsHCw6SNHdmcaNXoMOpMQs3PHdnHM/nVXXnk1ePLONO2GG8nnbo1FKyVOyv/sIuDp44deA01moZ4ZJkztVi4v8Mj6B8oS0jn6B6FH/6GW6sHkKzpmylRxrCT/QKWRglCRMBriTX6cHibXhNN53ZCvd4eCTLUdyRhYSZrBqO69LTxK9CYNoauy/tpLlzq0ySe/Uh4DR0TvTXOJkYN9LX03xU6nsDD8vGwFvvt2ET7+6P1KLGtaPElPTxNBu0JCyYS5nDjq7rlz9r8j5nqt6TeAhEkmvbN/vYYlzMKdTYu4Zh51ZTDzoUewZt0f+Gnpcnz19XeYduN0Mn9uuO6tX7/+WBuzCb+uWI2fl67Ay6+8Bk9P0xzc1phee+NtXDxpsq0iu+f2HTiCqddNs1ten4Lrrr8BTz3znM0m/F5cuXo9rrz6Wpvl5/ukFEjP9x2oQ/9/7EtEVJA7po6JQniAFgFeJv8oP/pjv3hwKEJ8NRjU1Zd8KxVISKv/i7sOQ7BUGdaP1JJEBiOldaFAQ+eLykpd6IVtelmPGlTdJOd8jUv2KxEwIxBLee/+3mMSSv20yWSidhh+bslwU2eDzXM9XdLBeUcjfP6DWlmEhHOF+G1jsrm5/JUINDsCPp7lC4oOze1zSxNC8h1TKWqfcky59HLs3L1f+IZeP2262J80+RKBBU+o3pv3AQ4dPYntO/fio08+IzPIxywR8levWon9+/fhnz2x2LZjDy64cARFKZ3d7Di2lw7Cu/QQl8I+fEqDSWisy7VpyceUKbJbL0v1YeNM90xBPqgscDJ5agoR5m0y2Y7L7ywCDZkbOIo6ZdC6e8IcyMhcZv1brDcK6zC2EDO767BFSUFh/TSoZp46gxbxBdHikN0smmqBO7pzFyHAfPLRB7A2Mzf3W9PiCUeQ3vhHDG64YbqortFocNnlV2LN75U10GZerfnXqCRrOof6C4RGlWl+6a4xL5rV7SrZN5dTRl1/7VUiyvGLFK2bhUQm9jlftnwVYjb+hVtu/T9xbuCgwfhzy3bs2LVPCLKPPf6UOG/+z5Ww79Gjp4h2fP+9d4GjJXPb/gMGijaHjpzAD4t/Qbdu3THjtjvEe+vtd+fhsy++wpixF2HT5q2Y+fCj+HLht8Iv+PEnnhbvJhaWuW97NGv2a/juh5+EIMzvsmunXg+OtLx85RoEBgaJZmPHjcePS5aCczPfedc9Ij/zS7Nm46677xP9cuoh7v/5F17G0l9XitSWelrkKSSzeA6c9errb4GFYX7fchCt4SNGYskvv+LgkeOCr72xNdf5+j8lzTUSydcuAicSc6EvMeLNH/ZBR9rSCQNDhcmudQM222UNaigJp81FbKbLJl4iV6iB/Y3OLxmNgVAo0+FFZh19u3ngwLGc8zsg2btEoAoC20nbmZqhp5V3H/iTYYGvxvYK9z8HMrH5H5PwWoWFPJQINBsCvIjJRLqpZuujgjH3ZRJMKs5V3/t99UrwZov+++8Yhg7qJyKVsnCakBBfSfvZ0nnDbY2xLZ8LDI0Qw3cqsv2esndtzkVJooi1pEzunt7lwik9WcaKex7tZ3rHpRSFIEdvsrQSDcr/cywrRSktXPgGUk745ATrIsv++r+TRfo3PtEtilKHkDC6/3AW/H3JpDVXjwsGmDRrlgZ12OGovkm6MJHjlFMgnYkn88kS++ll6sASg4cMQRAJR2+/O1ds5jYffjAPc955i8x3V5K2f5xYPMnPy0defh5um3GTuRpemz2LTH2/E4Kom7ubqB+zfq2lvK3sOBhNWu6GjjeAsjg0lM6cOY3du/7BoMFDhDD47nvzhOk0n//f51/iDxL6Z7/6BmWIMOCRpx7AO3PmwdfP9vPDAuiFw0eIocTFnRGRkmc+cC/Nh8vw4cf/w+133o35c+fgyaeeEf7sixZ+CV6UiIrujD59+uHo0cMYOWo07rnvAUy9+nLcMuM2EXX5qstNCzdVr5FNvSMjo/DO22+QQP2WEIS/XPA55sx9HxeNn4AlFF18Li3OzX7lJeTTs/P5FwuxcuUKbNv6N7qTAP34Yw8jPT1d9D9Kr0csLdQVUWRrHo87+SLfOP1m3EpjeILqpVIwVScKIMbCO7e5fMokWswbXnVIzX7cEl+hZr+I9t5Brq4Y0y/qis4h7sinVcBZi3ahZ7gXWEPKxEmEP/3tEO65rCf90dUtCl1DMOtDQh8T5xltqSBGtY3TaKBk7qrT6Nu9cQIpm3RwcnV+udSXfHx9UZCfT3/s7dvPob64yPomBE6ezQdvEbSgExmqgYebCm5aJdIy9UiiPHhnEnRgE19JEgGJQO0I8DuaU2rURC2VN7ymMbTFMm+/ADFsB/L3rA85lGcF8AsKEc2COkWKX4X4npq+qeE+WXBSGkVu0RSdqV7VPhypfilNYdh02B45KR3RNYJSuFDeXEdH8kFNzIfaWUF5yt0ojYttf1F7vKzPc95TDUXn9XDOAsfJ2LCt4byYL+fA5c0e1bZ4cvZsHMaPGyW0YSys8hyjLVKZwjRPbejYU7IbJ9Cy8JWZmYEBAwfCw8MTMTFrcfLECTHXG0MLAmHh4eDI3Tu2b6sRY9ZsZmVl4rNPPxYpeFjoe4cWG1iD6uLigsCgIOHDXkLCbVJSIgmgR4RAytf95OOPCP9f1nqyMHzgQCz+pByzbF7L47NHLPiuWL6MNJ734siRw1i29GeRn5mFVRaQee7JJsSlNHfNyspCF3JfSEtLQ3hEIfbu2W1h++2ihfj+u28sx7zTt18/JMTH4+efFlvOjxo1Rmh51234kzCpXN9SqRl3arefacbOJeu6IeCtpSTC5Um9tS5KEkRdUEDaUKaUrEJ8+Ou/mDG5G7qE2n+w69aT/VoaVwW6RZr8gFggbS1kNPrRi8UJQX5qBJcn1a7v2DRaLTZs2kIrmhX+L8yjd5++iEtIqbZxfSb26WDfglVkk88mYmz+wGYQkiQCthBgwXPTjjQsj0nCt7+exdrN58DBj6Qwagstea4lECjSm7RADmiYuWN9xlhG2i9JrRsBXZ7JTNehrL4LZKZ7m0t5RZk0lkm2SRh1oYi3wV4mC6bUopqtqyjEluDhTJN8WxQRqkVcUgEFM0wEm+/6eatRSPOhDdsoai/tN4bMgvKAnp5iTtEYXnVty4sn587Zd9XgsrYqjDIGHKGZUwfVlxQleaJJLqV+qS9xvtvOXboIQY61o2tWrxYCnZ40hRERkcK0lf3QY2P3Y9++vRg5crTwR/ei4EL26JabpuGCIQPwxuuzhVUGp5vixTE+t2/vHuEfzW1ZC8km1o7m3EVWDGP376cFhkAhwPI4WDjNza3dsq+SokQs8gBHSUDV6XSYN/ddDB7YB9dfdzVOHD+OwkJT/3x9vNmjpKQk0uAHCS2sG0Wz5vnuKgq6dcmk8UIInvF/d8A817XHo6nPS4G0qRFtBn4Du9Bq3Z4EYUJyPCGH0kIYEBGoFf6i836JxWUXRJBvhrMQTvN09f2Q1G3AbKrLZCz1oj/C1qVYN5aaXiJdwk1jrNsVmWq9+tqb+Gd3rPijtNWOXxadI0MrbeaPw0svz8ZmWuW6cBiZcgwdiFFkjjFh4iRbbOQ5iYBEQCLQ6hDIyCrXPpTpmnlsBgpBZ2i0GWQzD1Kyr4IAr4Pn0pyCN/PcIp+EP/M5g9G2RZFfUKdKnII8TYJupp6siUpqDkJYRk8Kk60JPZ/vFuVOLjpeCA10RWaOHkdP5qA3HU8eHUxB4Qq4SoOp0OiKtOJA0X5Qb1O8jAYzkw2RUh4d16m4ftpmTu1nbpPSgDykHEl2/YbNuOue+/Dh+/Pw9cIFYMH/g/nvCX9SDjS1+MfvcfjQQXz60YfCuu2551+iYGguZL5btzk0+/gGBYcIH81u3XuQj7zpuWUt5h133oMlP/9a7QmIiVmHXf/8g63bd+N6CrjGJr4NJY7K+85brwtT3iP/naZgRevAAvX6dWtIE+wh/OxZaWKPFn65QPjbbyQf072xh4Sf7Pz3P8bX33wvAsd98dmnLb4Q0rokC3vIdfDzF/YKRA59EFj4jAh0wz2XmwIHFBSXoJOfFjsOn7Mg1LezL0b1Nr1QLSebYCeqk8k3tdTYuEBGKlq58qAQ/S7k/8NUXKJHDr0oivV1ewnYuhQRXElxjlIK2F5RtdXGfO7FF54Fb+zQbo84wEBV4jxh7AQ+cfxYUcQvh1Urf8OUSy+jqI6/V60ujyUCEgGJQKtDIC3TbA7XuIl8rRdWZhJIEs41t+Bb60hkhXogkJZbhK/XHkW3Tp5wVikoyn8nfLbyEKKDTdZYI2huYnYdsmabm51efkg+pAojAtzzaKKvR0K2L/TkU6gifzUHB5M+hE1XraOgsoaUhdLScqswa74cxGgjaULZXDcnT48+JIiyH/SBI5mUo9OJfEvrPwew5s/7qYVB8HM+hx7RbiIoXXZu9e9/1Tby2DYCJ5MpJSG5lqkpp2iJk0+dU7846+JFLtLUnCLwVh96/tmnwJst+vCD+fiU8hjz82Z2sWL/XJ67qV3Uwv+Tg6JZ0/ZtWxEeWt0qcOMfGzCwX0/xnFqna3n37TeFEMwuYDx3DA/9zcKOheI7brtFaFB5zmgmW/zvu+dOczEuv7RC0TGwf0XgMM7DzJuXlxfyiDf/LTH179MDLq6uQqCsytv6+JqrLoOW5uOsgWVFyy8/LxG8OCURj7+lSQqkjUTcMzCqkRwqN1eptRT63BkK3koqnLkvG94ZvFlTz4gA8GaPmAfzcnX3RWPHGR3tQ6tHjnAojqCHt/5mMZ0C/BARFIhAH9urjunZuTiTfA6nkyqEa3vXVf28J40tDRGkIPUMrP2RZtOxqomrq/M0nXFxcRVO5Dp6eezZs0u8uPgP1dfXTzjJJyUmWJom0v6QYcMsx3JHIiARkAi0ZgTYjLyEtFyUtp5ykRbSUBs/obd1vQ5lWeJ0XCL3IaktIcBR/Ef1CYKPu2k+4kIC4IU9A+hYLfKV1nYtgR4m38ct/5xEttKUViU4NIzMFl1FMJY9O7di9EUXWwTUmvg5khZq/PAgCvJYSoKoSaD19nDC2AsCRco7zp/aWDKUqsCaXG+ndPTr4YnNO9May7LDto+nrA+J/hqEUCIEDUViznfvRRF3a3Zr4oBaLiTAMh05W7s5a33BZaHNLLhxWxYMe/TsKRSczz7zlPDTrCvP/2fvO+Dkuqrzz/Q+s713SasuS7IqrkKWcTfFxMYEHCD8SAMChhCC/5jQMaEkIYQEAqaYDraxjSuuuEm2miXL6tLuanuf3v/fuW9md3Z3+s6uttzz09O8ee/e++478/bd+91zznfYPTaZxMFusnN8LBGMpiqTy3GOH00UXsyJe/IlHk+2zyA5LgxMBwcVt/v4sdn8zDx7n83ezMNreZ0DBe11OOgXCaA5CXQkRhSQ7wW4PrcT8Llpuv3UI3F6MKChoI9jRbJf5XbYrLR+eStVI/iaJYo/FJXahz9+JS6A3X+jETMGNyu2pdRSU0l7jxwF4UtufxS8zq9Re7K7z5gPvuhQmv8GB/rpO//5bZF4vby8QgSTb96yje74l08hEF2xFCeujPFLyDEWO5OmYXlKakBqQGpgjmjgNcQxb1xdRKpIH0Bpwwz0you2lYnlkZOKpXQGLiKbnAENWIxaWLhM9NxrXXDZDdB7drXSuiVldPDkAB06M0gfBJGiFWXSSbFFmS+MIlVcdWM9LFEmUsM6GvD76Vz7GSrB4m4uwp6RcTCaWK8QYDTe3qC/XADSZVjlloA0rpX8Pl85PkA2UxXZzSNkGwbTq6WZArCWThYVctUave3YzolT+04NUnce7rqT2830nVlpeZNy/jWQ/k1y/vs353vgdxd2BSeC5NER5OOKxrbpKCAKSx63FQp4abr9DCF3USRqhttN3MUrc88YhF6yaRPptBq44PixmtqPVHRD7IwzpXIEsanhMCy5Vgu9efNGen7ffrDnKS+mKYWTHFCp4Oaj9k/7PhOb5qDvRB//Z58F8xjyTX3us59BILoysdLr9RQHpZyGYGRkOLEJuS81IDUgNTCnNcDpshRA2o93KE8UlfCMQnVaFVG8XvYeHiKPd/bdwAp1H4uxHQabu5DrnOU79x0SnxfHQoJ4FO/qd6clUzTqQgAimNOAeNBRs5HY06i7C3nVl7QivUQPrVy9nk6fOob0bZwPF866THzFiDN5aKq4/mz8x3GugYieihHuWlFqROqu3NxGZ6OP8+UaPhBPPXuoh7YsR+ozeHpbRl8nI5h3Q7qiMWupJuwlXWDcCMFg9FjHuOVuvtyr7Of0NCAB6fT0t8hqp3e1SFRGKYKqL0UeLi0Soas1wxhwOpMC0XgdtXoIJAZDAKVVFA6V0UUb1gsf9vbu7Fx4Z4NoqQd94dhRg8GAwbRPxAfU1tXTqZMnxG1wAHl3lv2N37f8lBqQGpAaOJ8a4DjSva8P00Ywi6oiHQClywvWHVUUi5CRIUFm9NKB8QlnwS4gG5pRDbzRNkyvHOvD2E20pNou3GJ/+PAbVOoASBvy0M71tVOub7ZYqaKiihxYXK4wB8A8ryUX8nxWVCrsumrMCbxgIuXj3cg1GsBi90B/L5WLHKYICwI7KceKGgwz4z4+pcMpDrhCdmElrauSgDSFirI+zFkhnjrQQyvq7Ig/tsKqDo+28NS5XXu/h95oHxWpDLNuXBZcMBqQgHTB/JQzfyMqyj64f8u6dTEwOoJYy46sO6cBORHBghoOVdCWtWupD77xPrj2ZBK1Knda8Uxtco6q06dPEecD43QunAuK6b3j/v/MsnbLLbcKGnCm+b7u+hvpK1/6QqZm5XmpAakBqYE5pYEnX+yjukojrEHcrTMApU3T7190hFRhJRbsSeR0dHukdXT6Sp3dFlY0FFEzgCiLQafEbP71NSvJC6Z/dudNFCYsLEbIyuW7rkVqixqE0KjJrPcJY6craMVYegKutgaM5z4qq6ghq71IVA8ipq+MwSij3phllF16bWhLiwVgHnvTpa9I7EMh9z0hqwCkVWXjXB6FbH8xtvVGxyjxJkVqIJkGlDdMsjPy2AQNcOLb0tKpfu8TCi3wL5zvMxtZ2dJCJQ47Vjrhpqttz6bKhDIaTS+spZzsWk+rlyyZcC7Vl0iUXX5yl2986z/o5Vf2Y0W3kv7n+z8S+3HGvyVLl4r8pHv2HqRX9x+mjRduots/9pGxi3zx858TTLsvvPSqYOllNrbHH3tk7LzckRqQGpAamA8aYDKLR//cQ15/GBbNQWyn0e2poRVZ30t0gNThk6L4ywcH6dBxOQnNWndzrCAD0TgY5a5xesVEMKrSgtyoZCmYb80gF1TAWxSFwiotAKgfGFNFvoiVmlqWUUV1DTXDXVelZvSpSEPzUuGmy+WicNeNklrUYYTKJEYMbNVqPdqDWW0WxRsyi6uVw2VXitSA1MDMa2DiEtfMX29OX6G5uYXuf/Bh+revf41+cvcPRV8ZnHzpK3fRVVdfI5LQDg4M0F+//zbq6uqc0/cyI53L0gq5rLFRXJ6BZb6i0XZTJLCUWpuaaN8bbwhq7XRt5ZvYPRFgTm7/h//3ffrpT+5G8uAarO674VYUp7JXSrLldOeOS7AaXE1OlzNrVrPJ15HfpQakBqQGzrcGuvv89PvHOuntV9aQyQDWxqgXllK4ZKoQ+JW1IN9oBOEZEeVduRtg9NndE9+bWTclC855Dajt9aRxNFEYMYEszKAaVusoTOCNAJjUaxSvKl9Ycb9lN91sJQrMGo2lhuG40jCZKaLSo2UvqaPZe2tle73J5XzIScpit+a32D25PfldakBqIL0GpIU0ph873EO+9/0fknN0YiA155Vky9i2zRto+5aNtGfPy/Qvd9yZXqsL9GycGTfd7ZUjHxKvlKpUQaxq5k/4pFL5UN+DTUWN1XDnySAqtcLam6FYzqc5jxQDz8lgNLGh7u4uCUYTFSL3pQakBualBjp7vPTzB9qpoxvMuFG8g2HlVEWOARlwWoF0LrcelOsgdei1MTD69O4+ekaC0Xn5HGTTaU3pClIXNStWTQBHAUTxGfO6FU1oY4vYQRAE5SvCcir8efEYkpZCZIO1dObdaCNR5V6MsfQy+fZf1pMakBrITgPZL1dl1968LMUxCt/93vfp/37wv3Q1LKGJcvU119EDf7iP4vmGfvWLn8OK+giAEgLvkyRuTqw7X/btjiIqLi2jJc1LaOWyViovKSU7kuWyOJEst6u3h0pKD5PXM0KRUJSCoXF3m8n3WBRLh6JSTwT2k8tl8120gZQwJSBIOp2BcZcBrBSpAakBqQGpgelpYHA4QL94sJ22XFBCm9cWk9noAhxQcklG2W1SxdYudufl6UMAAJTTeoyD1WNnXPTygQFii6uU+akBDVjrdVoVaQEw1cjtyTGcivssARDCAlq0kiJaqwCfIZSJqJlJf6qoVREQFKWeL0ytkfoIA1N26GUJgwlaBWusOpp9CrrULac+E45qoIPxZzt1SXlGakBqYLoakIAUGrzzc1+gY8eO0q9/+fMpgLQK7ppPPP7YmJ47OjoEy2pxSUlaq9lYhTm6Y3cUU019A9XWNVJDbR2tRrxkdfnUfGCVyL+5FK7M9cWVoGw/RyfbzNQ/oCYfEgL7wJSXmGCYb9UOch+WbKypomCa/1QqZUJjNSuuM6mKcrwpO/QMO2fejSdVH+RxqQGpAamBhaSB3WDF5VQtF6wsoiX1ZmqsAQiA1ZR4mySjriCdancTp5Dp6ZdAdJJ65sVXq0lL1SYvVUdOkQNkRDrVVFfVqMZAEcdKUKSyFxTgoVoLF1qM9/C1MyI/eRSeUXrtRMe7iTbT6amCQSkLA9MQrqhBHzRR9/QaTVNbA0AtRWpAamB2NLDoAel73vtXCLZvofe9991JNe6AxS+eZ5IL+MEQx+KAiy+7cZbWrRDfC/Wf3mQnrR4vWt5C0wum53Z4sxZVjfXTjvtpaGgExXqF6PLaJU20uqmOTKBi1+FdDwMohSJRsf7Nr36870kLt1ktlVJ1mY9Ki8rpRLuV2nv6RP0A9OEBOA2DKY+lrKwCK6o6WJDN+Jze4xUlJNBGW+Vo02wvE+0n+0+j9WM1t4zOIn1BaV1mV55INExD544na2rRHjNYHGQtzuwavWgVNEdv3OsaJM9w/rHac/S2ptUte3kD6QzpF7GmdYFFVvkMvHV5o4Ppbpzfu9iMJXgHpyuX+txwz2kK55DnOnVLC+OMGrk5i6uyI/Wbzh1X2DTUUKalmiIt1ToiZFQj3AbjblhTTmEt3GMBQqNqg4gT1eod2NcDDkbhNqtYLFXIdc55wDWYJzDxbm11BdntRsSPAj7CcqoGYZYan1kLu/2ibYPJJlh2Vcyyy+3gM1FUyFnKcwSOM9Ug3nmy8PxDHdGmnTtMrjP5u8FWCQtpCM/0RJA9uVzi96DfQ6N9bYmH5L7UgNRAFhqYHmLI4gJzvcjf/t2H6bHHHqaP/uPtoqvNLUuEO65zdJTu/f1vaWRkhPT68fgHo1EJzh8ZGRblR/rOFvQWg343wJ0DW0Bs02k83obXNUCj/W3UumINGO6WiSYD7mF6C2Ji19TXkAFgdDQYJmdAAaKTr8nr3QGQEtTrI2TR9VNrdRMZ4MZy5EybWK+0GHUg/fGR2+miwcEBKnPYMIBwTNH0XF2iWImPoI2+wX7yob+pRG/ARAbX27u/m0b6pg5MU+ol8y2aUmhxHQh6XTQSKuyzvLg0eH7uNhIufLqj83Mnhbuqe7gH75/sJ5CFu7JsaToaiISkh0ui/qL42y70/CKxfYdZR6sabFQXY5H1uVXkVReR2rKcfLpy0gQnMiNr9BaMs1qAQI4XTQCH2I2CyCiosWJBwUkBADJV2EfaiJsi4QhcfQFYkTIuAvfXbISH5yjcfBnYURRgGKFRUVgqo5PmE1xOBbDLLsQIJEKvJlrmuTxvPk/quUOm/oSM/eQPR3P6Hbi/UqQGpAZy18CiB6Tf+95/kc2qxEuy+vhlEgqFsSmDI7Pp1tXXj2mW99liOoT8mCwhfxYAaKx25h3lJYoXGr/UsAI4HREvcrSj1Rlo6/ZLiGNFeQJbBBr3y9etonWNNRgkiPqQtNiHl246CYYMNOQzUVDvITPYc5uqKikc8NGJc13CqmoymkmHFUleORX9xkCBUSVdk5nPiTYUXaSaeKs1GGwiozTqCtGJUzLxemalJi/BwD9S4Gc5+ZXkUamBmdWAtLLNrH5l67OjAU7FU+j5RbznKxsctK6pSHwNYez3mzGvMVZRuWUp6XUlpAvw/GZ8/NaARVctwCjiNxG7OUXQV9hIYUU1UUBjoyA8pBi4hsIazAsCZFC7yRMan2dNqZ9wQLkqFsdjgFLMI7j98e6MlY7HlYbAwKtF2E4i+y7rj7dIzHtrrFKWO3qNX9R1uoMz9jtk2RVZTGpgUWhg0QPSeHqX+K+9afNmeuaZp0BkdL849Ogjf6SPfPTj9L/f+y5iJn108y3vokcfeXjeEBqFsHJZ2byMekPH4YqjojKDmurKSmndsqXi/gYCkYxgNK4bXwADlRbxGqpu0lMFLYHr7+DIKDk9HvID2Wp1etKbLcKFJl5n8mcIK6Y8zmkRZxLBYOFH3rtEYVZdgz7JgJdYKGFfo1Fchw++kT+jb0JzcldqQGpAakBqQGpgQWrAbNDQhctKqaZE8fTym6rJa27EmD01XjSuABXyiap1SvhQhMEox/JkEHbxDWmLkH/UgnAgLzYP+ZDXMyIiTjNUzvN0OIoQH1hKCyVG9JtlcLhwbRaqb7IdqYGFqIFFD0gz/agPPfgAXXrZDtr96gFywSWV802+77Z3Z6o2J85HDTbyajHwIB7DDqtoOQYjllUgMGIZDUazBqNc3usvQX465JTTuPHi78KKZDWILqrp9RMnyQQgyaCUo0p4BVWDQWyy+IMRuvfRNlraaKNNa0vJBavmky91jxWLxKy0b7+qYexYuh2NZhBxK0Mi5nXf6/m75aS7hjwnNSA1IDUgNSA1MN814LDo6aJV5WQDeVEEcaAe6zJ4PJVkvC2NTgGvcL5Nu9icrCF32EFF+hEyYSF72F8KOBoSoDROTpSsTq7H4lbSKOYcYcSUJosnzbVNLm/WKszSvQMTXYHzaUvWkRqQGsisgamoIXOdBV3ifbf95YT7YxbZ2z/2EbIiDYrVYiXOOTkfRGUsprBFIakpRh4tTwyM2sBYW1dZIdxfnKHcXYLdvkpyWM5QQN1O+mgJVSBdzImzbRRAvk4DQClwr5Aw0gMwKFVFlRg3tob+6fkukCKNkw7ZbTp6665xd+iDbwyRb5LFNLWu4Yqs7RCnOfG6xzfR0pq6njwjNSA1IDUgNSA1sHg0UGIzIEynAu6zsCHqiwUYjcCKmUnUGr0gFGJvWU7tkqt4w3DdxYK4WefHJ8iJQCiICNQZA6WgZEL7fiyL5z63mXxvZo0CSHv6p7JKTy4rv0sNSA1MXwOS+SFLHbqczvkDRhHvoS1bJe6sCGC0JMEFtrJMYav1whrJ8aO5ij/gIF8AYBcDS0RzWlR3xHKW8hcdyEQYlAJ/IrYUKWCYDx7y7Ms9tLzFTlVlyZmD2Xp6+NgwrV+VecWW29PqzsDw66O2Lg+9ekiJ5+XjUqQGpAakBqQGpAakBhQNOMx6unh1uQCjAUMFuexrAC4zg1GurdYmuOrmoVBnwI7wJo2wkGo1IBmKxZ8yKI3nFM2j2ZRV2FoqcuWmLJHdCQ2ImGw6hdTpdMf008potVicBzBPJiaTiUpLS5OdEsdKMWczGpPPm1JWkiekBuahBiQgncM/mhrgzgQwaTfpqdia3ca5xPRlYNIFAYEFyLAUgDRRimPgMZAPGo015PTUUjiip4hqmHS60zQ5TyiDUk5FxiQHIcR17D00SA6bHjGnqUkN9h0egCuxA4QKE/ub2Pf4vlbXQVpNP/oQpSeeL0zKCzlgxLUrP+e7BnS61PFg6SY3/L6pRt5l/pQiNXC+NcDPoWZSqo94nzI9q5km+fF2Fvonp2LZuqJUzCMChjJy25ZnfctquPWqOAULanBqlXxlFIvYLEX6AQFI46C0EFbMxD7F3YDDYLiYrjgMCkEig1E/eDamIxarlZ546jnatHnLhGZ4zvG1r3+TXtqzjx58+HF6CBu/f+PCBJqPPP4UPfjQYyJk7Atf+mrKv4d4HfkpNTCfNZD/W2Y+3/Vc73tolCxIseIwa8kIQCrGZKyuafU2MpjLyWyrJYujQWwmWzXydZWQhmNFIWprDXJWl5IRSUUrDfwinfgyNWM1joXzjeYrUdC3j7obhIWVSYXM5nNTmtKjv7weGEFuupMdfhAD+OlPL3TR0dOjSKDuoqOnxinlXZ4QnW5z0ZrlxVPamXxAq+0EGO0Uhx95tocGhgOTi+T8XQ4YOatMVpijGtiydRu9+PLeKb3LNLm59robaN/B1+kXv/4d7T3wOl35lqumtCEPLF4NVJQV046LNtL7brmW7rz9ffTtL3yE/vWTH6APf+Ameuf1O2j9GoWXoJAauvNfv0Cf/dznpzSZ7lnNNMmf0tgCP7C5tVQsZoeQT9RtW5nT3argrssiiIxyqjmx8JBf8coqNSiLxwxIhfuu4OGdOD+ZWDO/b8zuG1FND5SWGXrExQ8dG5+n5NObL3zxK7T7lQPU3Nwypfo1115HGy/cRNs2b6DtSMG3Z8/L9C933DlW7rN3fp6eeepJ2r51ozh/ySWX0hW73jJ2Xu5IDSw0DcgY0jn0i1YWG8mq7qWofwRkPUg8HQUgBQA1mEpJb2SK9uQuH/FbiEQC1E9WpHYJU6kujITOQJ1hD8CpkrSaLYpx91osnE5LgiELud3NZHWcRZsuWEp7KRhsHmuT3VPY2BlAaOdVly+laEghHTp6agTxphFqrIU7b0z2HOin9asBqjXpO6VYRhUw+tife0GmNL3Bgi/PA8bbb/oLsmIVc7IkDhher5c+9/kvigHjw3//IVE0PmB85ctfIIvFIlY4ecBgZmYpUgOzqQHOlfwoVtMbm5ppcGBgyqXTPau8IPP1b3ybbr35HbR//z7avGUr3f3je2jTxrXEz72U86eB0rIKstrtZLcXk96guFmGwWvgdjvJiVzY/X09SFE2c7lor7h0M+26dBNtXJfZstbbN0hPv7CPfvfQM1iAzP/dfMWuK+nLX/06VVRU0o/v/r8Jys/0rGZ6Z09obIF/aamyUmOFBeAMHBK21tzuFkMxp3lhmY51lOuPBu1g2DWRUeulYn0/DQXKBCBlHyoVUtuxVUT5n0tPT8YIjrAQnq/Y9cOCFXjUFaQ3TjnzbUbU+393fJp4YyvoZLn6muuQzeG+sXfsr37xc7r/wUeEhwp7Buy8Yhft2nm5qOZ2u+nBB/5A/HzL+cVkTcrvC0UDEpDOkV/yguZiWlFvB3OtHy8kG9mKl5DOoOQJy7aLPuT/IrDM2fQqKjWp4LWrWEP1miiVFxlpxB2gEcTC2iygX5+GhTTeHy8GGq+nmdy+PbhWH+nVXvRdWQ3lMjqA0hBAscFowH1ZBdkAW3wZrBpjJEsDQ37qHfDR5duq4s1O+VSpfaTTHxeMunzy0T/3UKHSvMgBY4q65YF5qIFAIEA7LruINmy8kL7/g7sn3AG78Kab3OzYsZPa29sEGOWKe3a/TL29PXTJpZfRY48+MqEt+WXmNWA0mamhqYUaka5Lh4WGTNLTdY46zp6inm5lsS5T+WzOb1y7nG675WpatawpVjxCqkg3AAQWFqMcU8cDCBPJIbZNXUxRNQjuykvoL27cKbZf3Pc4/fDnD8Xq5vbxxOOPEW93fPZfQVw3kUgn07OabpIf4dzei0Q4rdraJsVV1mtZgvyg5pzuXC1Y8kMMGXOql6rwgK+Caq1nqcLUKQApl+OQHnbbVTbFNThV/VyPR6IIW8A8Ix+pMCkeX/uOzGwquSq45/JzHpeOjg4yYNGpuKQEoUt6PPs66jzXET9N57C/eevWse9yR2pgoWlAAtJp/qL2isZptaCDVXDzEjNV2JW4L1tJC1XUr6GR/iMUCuZmnfADjAKGUpEBAfTMeGuwYlXdQTrjKBlNFrEZkIdUpeHzGAiwOjkdUSHGJwSm3RHncqzCDsGdOEAmy3HS640AvAYRf8Jg2I/LRDFxATyl1qWYvGAuo4ox9lmsBrrhyiZSJ4kVUmHA0sHNx2Q9BjflKLm8Nnpy9yidGSwie0VuYD3xPqOYmDj72xMPJd2XA0ZStciD80wDZWXlaSc3VVVVEyY+fHvnzp0jfv7no+iMFrxP5ufQtrR1BbUsaRXvTta9AcOCCZsRG8fls3B2rACMol6kR/QgI0VtwxKx9fV20RuvHyaPR2EHVUrn/v+tN+6gd79jp1Ix4iR15CSpw234nsISG8E5fscDlEbUSyiqqadb33EVbVi3ir71/d/Rue6pFvtkvQp4XRSNpGdLz/SspntnD/QjZdk8EjUASXHVkrx6vKpGTyXlOgrqikgLEqNs/xq0euTyxN+ORov4UaxaM7NuKjKeCR1jBl2M4eqwFvMAB8KLMN7juyqKGQkG/MFAFZVGBsG266FKcw/1+ZQMADCVogwz7yoAVbTJcasAkwaTDeSFOqUd9CPZHGFCH2JfVDzBYLir0Yl7MdvHF8mTlU88VmrspXKziYZcCDUaAAdHXUXi6az2g34Pjfbx30t6ccDzwe/HH3BM/H6Fzddhx5wtxgOQeN7n8xGfkyI1sFA1kO17aqHe/7TvK+jN36XDAivh9lYHSIswmkeQK7S0lcz2BrxLo/jHIzy2LCWAIScIyMdushZeVOaXMm94uWs0AKogKAgH3YB4mMWEAXR5BVG8uCdeYGhogByOIlg6uRFFAnhphsMhMpnH3WzFGdFHFQX8Ojp9FivkZUPUUo3U14jx1Gp4JR2DUriUAhFOiK3FEKFGTCwPFizKpwkAWZH4cV7Y9GEgGYDLsY/CIUyKIyF64+QQPb17mNze9BOWWGNpP6JJ7jtZhcU0YJhsJQD5jcnUII/NYQ14RvqwuNKRtod2THxYUk1u+O+dJzuJwmX5+Z+PYjDD0wQT6/kk7HK9avVaKomxbdqNKiqCUcsCb5d0wpm7hj1RGnBHqbq+hapqm+jIkdepuys/a+mH3rWL3nLpenFJdfgowOgh5fJiOBgfE5L3CaEm0b0UDZ+DRW4trV7eQnfd8Tf01e/dh9Rg3cmrJBwN+b0gqkv/fs/0rKZ7Z883QBrFmDvSdzZBQ9ntshdSXWsl+WDIdjqaKeTBWJylhINIz8K/AYbjKIBiNMLgcHxsTtVMFAvcvNAbQd0gLhwO2cV3/IemlPpdrmpqcRynKlMbOQNW8oY5TAbPt3DXQjnxqCvcu1F8YWBHWNjmdqMqbj/9szGhbxjjeZjnOr4s79+o8VGJ8RDKR+iJZ3qh+/zYdbm/2cjIyAgW78c9IIxG5Z01Ald8vV5xOebz8fc2M+3yOSlSAwtVAxKQTvOX9ToVNrZcm+FBY9PySjKrGUbCzbZ4GYCYXrxAxYsXL+lsX2x8bZ+gU48CjOKFHgNc/MkbDxIMeFUqA+JL8WIPwy2YBxsGpQnSduYUHTvyGl18+S5YUxUXn96eLmrH8VJYWZqwcp8oPGgwJo0AMAYDXjrXaaSGiloqRyysUT0AENwFYNuFfSNW9DG5Bf27MtDhJYz4WCGgV1ep0B9sKrUb2yhcc5UV/nAEsSc+PR06qqPfPng88dKzsr+YBgx+jvN9lmflx5AXyVsDo6NKPF+qyQ1PcgyGiWkFlMnPzLqs5X1DGSq6BrsylJhbp02IP1+79RIyY3Eu7B2iaruKLPx6DOC9ji2T8LSeuep6sTY67I1SS2MteYY6id/nucjf3PZWumL7Sixc4n0c2oP3ejsbPvOQdtTpoohuM3JWV9PHb9tFH7/zP6kbMabTlUzParp39nSvPdv1eexmkJ6rNFQ6sIYbooABi8HIB44g46yb4IVwvm7cKqqAxCyqow4qoiDPN+DqyyAz9p3bYxlFCph+bxmVGvuo1nKGToyuQhGgUCyac75y9tjiWFKltDJvUcCx0lasGdFWuv+4vsC2qCDmP1nef7UZc4xQgF4DN8XrR2femt6FRSMmm4sL7zP4HBoawqI+TAfI7V5bV0+nTp4QRfh8d3fmhZ14e/JTamC+aSBunppv/Z73/d0C9juHWQeXVAcVl6+BRTD/IHxWRjDmlGPWildxUv2o1Xw9JfWKBrMdLc94YtLX243Vt0Gy2iZaRUJ4KWYTxxRvJxAwIK60idzYgiEHBgS43Wq8cBnsIY3+LCa+h5BTay8A725lM74qjnGMKDPoMhjlgccLP9+BYS319tfSyOj5WTdJN2D09/eNDRjxe5cDRlwT8nMuaSDTs9rV1YWJT92ELvOzzM+/lJnVgAapHzZuuohscMVj19zmUoDRPIYCDUbyanjzVdqU9/+a9ZupprYx686/+eKN9I5rLxfl1aEX4a7JoHI6EiJ1EO1Eu6kcDL0f/uubptPYWN1Mz2q6d/ZYIwt8p6lS8WTyG2umdacM7AotHa5G8oTMIA1yU735tGg+Tpok0sCknr7k3hUA3WyFAbJV66TBET89DsLE2RAmJ7rxxreN5Ri9+ZZ3gbDoYQD6iJhbPPmnx+mWW24VXWHSxOuuv5Ee/mN+cdmzcT/yGlID09VA9n+x072SrD+mgfUtxVRdYkKchpEcZStACpHJFWqsasqdEJxxWYwZcgiqAEq1el5TR0wSACknqB6F60j72VO0es1G9pcV5+L/1dQ1kB0ufblKOGwkvw95z9xNAKjVNOhxkMtvpyACoMTiqbKGKfZDOOYPRgFiwzTkDFHPgB9xqUEKBM7v4ykHjFx/dVl+LmqAV9rTTW6efvpJamhopPUb8PcP4dQxHHf65+eenYu3s6D6tBbA0VFcLMBoA8AoA8tEMRr0VF9bSatam8B020qbN6yktSuX0NLmOiouUhYXE8uXAIuUx0Dpuo2bEWaRmczGbDLS373v7aIZdeggwGjhLMzq4G6066UtG1bR2665NLGree1nelbTvbPzuuA8q8RM/TasbETUBgohfnR6MnEuML22xmu3O1sAujTguuinWvNZcWIsN2m2ZtDx5tLsZdf/anMblYGrIoJrP/R0NxbS8/MLSNaRb3zrP+jlV/YLxuj/+f6PxD6nJmJ56MEHBJHc7lcP0AsvvUrbtl9EX/ny58ea+eLnPyfI6Pgcs/S++MLz9PhjkmRuTEFyZ8Fp4PyYnhacGrO/oXKHgZbXKVZIjhlVx3J9Zd9C6pLwAs5K2Bqr0WKiEkaMRMBJx954jdZt2Iq+TJoNZdVaFoUiFhrxYoAEEi1V5eZGlkXr0yrCA8bFyO9VXl5BPGAEgwG6aNsmkUqBB4xLL9shklK7nC5yupz0vtvePXY9HjB+9OOfiZVLm90mBhg5YIypR+7MogaYnfHZ518GGYaeigFweBL0DIDmP33i46IX6Z5Vt8tFn/rkx+ien/+a+vp64Z5fRp/4+EfH0hHM4m3MuUtZQXBS5LDR8IiTXJ7c3SfT3VBldS3xgh9Pm7y4UpIAAEAASURBVGuKmI5OETUWFZcvbaDmhmoqL00PKrzw6T3b3kXHTrXT0LDCZ1AGUBoIqfDO1VDryrV04NWX03WDbgYzrsNmFdZMVURxD0xbIaeTsJSG9lNEu53+6uZr6MHHXsCEP70L6TXXXk+cg9QW89Zh5tzPInUGW48yPauZ3tk5dX0eFq4pURYgAobcyXhm63Z9WKw+7VxKS+zH4L4Lzyl1iNoAUlVYHBdW0kJ1JIvY13rrKSpBKhqW+x7vglv5OMlQIbpx+8c+krIZTtfE5602G1ktVrjjTlwIams7Szt3XEJVVdVi7sHPvhSpgYWsAQlIZ/nXZesoi6WoUbjrFvLynGYlW9EgJYwa4MvvQwA94jj3v/qSqOpxu2j/3t209oILyWKdugKfbfuTyzHBO5PIzzWRA8Zc+0Vkf/LRAMcebd20PmXVTJObP9x/H/3xoQepuqYGjLsgpUEu48UoK5Y10lZYIdevaUUsZg2x9TBROjp76eDrJ2j3viP0/J7XEk/lvL9k2UpRpwwWzfhi4rKWelx7Ga6r+O3yG5PjSJG6mUL4Sfg7p2vmbCggUyeTUU/cZ96Onmyjfa8dRxxagMrgBDMK/Fxb3wQOgJPITatMupN1Mm65VIXfSHZ62sfY4qqK9uCeKunGqy4GH8DTadv840MP4Fl8IGWZdM9qpkl+ykYXyIkyO/gZIEF9+oWM8327rqCNTjmXUbPtBBXpQWBoD1Cnqw55y5Xnfqb7p1MHqN5ymmy6EWEZ/cOfOulkW34kRtPtqwup+HhLJZOBaqpy8rjUwHzXgASks/gLNiNRdYkN1kmdiSzMpltgQaaXnIT7YbMX0ZYtm8ivsgiCgZeef5rWb9wyRmqUU4NpCnPKAk7/Mh9FDhjz8VeTfU6mgXSTG57Mt7e1Jau24I9tumAF3fzWnbR+9bIJ9xoGyQmnwIh/1tVUEG/XXPEm6gVJz70PP5sRYE1oMPalrKKSikpKBRBli6YRwHLbhWuosa5SlPCBDN0J4mOnP/0iHqdztiPntA24efmSBtSvphdfOURtHd1UalVRvytK9Q0tKQHpZdvXA9QiRVcUJHRIy5FMgsGwyBVtMWlhLc4PMKjCp8BjV0lvvuTCvPQ1uV+ZntVM7+zJ7S2U7zy/YAlrJ3JBzMX7c4Lk6NjwSmqynyCrzklL7WCH9tRSb6AOCy85TmaS3WCKP51iuApXmzuQJz1Ao+4gPfBkN3X2FNb7IVl35DGpAamB9BqQgDS9fgp6lgEpi9k2PbKBVJ0K5Aj4mOSI3XcjYN3VRIOwYCqrq4nt793zImJAeeUwCva3QdqwaVvi6az3Axw4KkVqYJY0UFlVQ1U1dWRzFIsYaNfoCI1i6+nqoK5z7bPUC3mZua4BBmMcP3nVjq2iqww8h7vP0GjPGcE6zd/jokZeQz1SylhLqqioqokqykvpQ+99K115+Rb67x/fB+vksXjRjJ/VNcqCpIPBpMUsgFqRw4q0J0SDeN1mAqLxC/hhNe0D6BzBfLrEogJTr452XLSBXtxziALH2gFIQXYEt+CDB15Jytp+0dZ1oilVuCPe5ITPr33vEN33WBtch5FyYjRAq1uL6K5PX0hWEPIlSnuni277xPP0t3+5nN55TVPiKbGvxKWGaFlzPZUWO2hgaH4yOE+5sTl4IIxwnDhR0PS6N/Njti9souPDq6jOepaK9X1UZwG5kNFJXV7l72N6/Z9Ym4mUqgBE7bCKshw/66LHnushj29xeoNM1I78JjVw/jUgAeks/QYldgOVY2MQaLJUzchV9fEgpBxa12hjgBRwlAHptosun1B74+btE77n+0UP821QgtJ81SfrZamBktJyWo64uWKQ8iSKFSymvHHM3vKVLjpyeD/A6bnEInJ/kWmgpaGG7vj4bVRfw1bJKHWf2E8D7UewQJc8xjESDpLPOSC2/rOHyYG8veUtaxHrWUN3/b+/o29//9f00OMvZKXFclhIWcocenrzpRdSkd1KbBXtc0aFe25WjSQUCmBO3T0apWIA3GJYXLdvXgMX3wh1jnSAUkgj0nb19/Yk1FB2m+pjYxEspMlk45oS+tt3t5LdpiefP0S33f48/eGJdrr1hpax4k5YmT751b2Ig5sIUscKxHZUkT6KqquRn7SJnn3pwOTT8nuBNMCERvNJwmDiP4sYUjdyb1abz5FNOwIPstfJaTtNzmhd3rcicrmjtl0/TCUgLXLohkVbfqzc//nVftp7WPme9wVkRakBqYGCakAC0oKqM3VjtWDVZTFaMFHOgY48dYtTz+SD9xggqziHKfKSqhFLGsHgMBNSQOK6meiebHMBaKC6tp42bH6TcidY3FfzAn+i1wAWbDjtndlqpQu3XkxHXz9IJ48dWQB3Lm8hVw2sRMzlnbe/n0pLwP491E1dR18hnyu5y2qqtkd6zxJvVUsvpPKm1fSPH/wLMiKR/e8eejpVlbHjRrMF71uiHdvXCjDqBRjtAaDM5x0+1ih2hpCHNAJ3x1KA0ou3raMTXW462jYEgqAiSgZIG2oUQKqKJp+c77p43JvHoNPAghul6vJx5t4Ivn/6a68CoDbTky90J3Zlyr4q6hYxsGUZiJqmVJQHctJAIQCpyEXKV2XW2xy4KXLq6KTCg75ycroNVGRzUpllWMR3luh9VFNsxiKNgQwaH7mDVuxP9eRKbIrjQy1I4WLUjOJl7ye3ddxzYffBIdp9EDm3pVU0UWVyX2pgTmhAAtJZ+hlqSxVAajCXztgVg3lSpjPTbzjkxQQegDSWPqbQnQyLqUihW5XtSQ0oGuA8jnEwqmYQmghE40rCMY5M4vWgCLblq9aRB8yFXZ3ShTeuosXwaQFz7u1/+y4BRhlQth18ZsJt68AapAXjuAafGqBGNSbkDBQZfIXxjg0jTVUQDEN8jKX7xKsUCnipunUT/c1tb0U8Wr+I41TOpv5/7fIGaqitEG66bBmNt5e6RnZnRgBK+R7siCu9aNMKANIXk6Z/YQZhjWBWD2Rs+O7fnaBXDvTT9o3ldMmWcQbXb/zgMLU02OiGK+ozAlJw/4rrMGuxlJnTQDyFynSuEMVcgEWFcbsg8ZxZdiYSVVOPq4I6EEva03uK6svCpFMHRYxpmVFZ8OAyATD1BiM69A0vctHPiCjHYFSrCor3fL+3CK7vFuod8tPxU07af2REuudm+TvIYlID50MDyl/z+bjyIrqmDow+DgtW9TCx0RlmhmyA50bstpWPqDXKugTnJJ0JCaFznPJFDadgKVIDM6GBVes2imZVqcBo4kVRRoBWHFu5Zn3iGbm/CDTw9+9/O8h/qsgz3DsGRtkIZALVbRHe01bkcTRiXwewxmCUha2ZWoA8A97lZjAJ8fvcYtSKY3y+vw2ELCf28i7d/je3gPxH4QsQB5L8p9VoBJsunxpAzGihPUiYzCiA1215STEtbaolM9JKTBYtU/UKSW9x4iIdXR4BnLt6vcgtrbzHf/vHM9TW6aZ/fP8qpZlM/6uAkCFsnZYycxpQxcDkdK4QiSoreuo8F7mnc212n+c8pW2DNnq1rYbeGGilLhf+XgNmLNrw32SEjFoP2fQjcMcdEhvv8zFOIcNlPAEjnRs204HOOvrx787SC/sGJRid3o8ia0sNzLgGpIU0pmLO3afGJGGgvz+p0k0mE5mRZHxgIHmsTdJK8bYZjEJ0ep4UzMwagB5gL0ha8iJuyJRjPlF222UpaA4w0aLynz+29K9RyTxaCWpZELvLlq2mpUtXUHlZFTlAIGQ0Kp4A/oAPzJ591NffQ0ePvkZnzpyYsfstK6tAjBysNlj4EIA0myuxtRQgw4i/aWYhbW87lU0tWWaea+CSbRfQrks3wxMxQu2Hnxd3oxcgUzvmmagzWRBaUUx6o4W0BjzPeFBUMKuHg34KeF3k9zhFHCnX482PnCwexFf2nTlEZkc5Ocrr6X23XEvf+p9fpdTW0uY6Mhr0xK66rgxMuikbyXBiGERHnE5m1fJmeuaZP08pHeI8MkLQiQxyxz8o5Ef/fNer9KPfnhAg9Me/P0mXba2i7/9ScYlkcBp9JQrCIy1dfXnd1BYjSG2B4e/U2c6p5+SRgmmgEIRG0QieDTFVYWAaX7goWBfTNjTZIusOmqnHXQ6Gi9SpUeINskVXEwnBSuqmnhETjfqURZD4efkpNSA1MHc1sOgBaQ3y7v3yN/dSGUhQfF4vdXaeo2/821301JNPiF9Nq9XSl75yF1119TXk8XgwyR6gv37/bdTVlf2gyivqLBrdeOyNOFDA/3QxQOqBO5kp5/EDM3OedM3QaqiLk+hB9ISYDinzXgNFRSV04cY30cYLt2NSrQDQyTfFwNRhL6bm5lbasvkScjpH6MCB3fTiS0+Tz4eZcgGlDInDWUTMaA7tct50jimtrKmVgDQHvc3nom+75jLR/Z6T+wEunbB2asmgUxYJDZYispXWkNFalPQWtTrEsYFl14aoi1DQR67BLnINdIn6WjDwurwh6jr2CtkBSK/ZuZ1+h3ybbed6kra1rKUOrr9KapekBQpwkIGuWQeSI7jIVlcWUSFohBprLHSmAyZdyHvfvoTcHsVayt/VUCO7OLO7s5TzpwF1JLMLdqbe8YJNBA8oL9KrsF8IkJvpmuNxFngp5ynxRXU9seHAkWcrsprUgNTA+dDAogekvEr8+c/9P/rTE48L/b//Ax+kf7njs2OA9Jprr8PEexNt27yBvACsn/v8F3H+Tvrw338o69/LBNculrglMuuKORRkC6kH5Rn8lcazrOdQH5FSWFuMr5jnUDFDUYaibs5lANFScuIMcVL+Ny80sH3b5XTFFTeM9VUb6CNdoJ00oSFSh51whVUmQxG1iSIaC4V0ZRQ01INUpZguvngXbQY4feJPD9DevS+OtTHdHbstNvEAwMxJ+LHE3NmOXLxSFr4GGASuXdGCeE+fsGZaAEb1MTBaXL2ELMUK8202mtDqjFRU2Uxme5lIE8Pg1oZUKC6Pi4a6ThK3d/Wbt9H//PT+Kc1VV5Yh9YmdOGXLqAehDMkWEPEs+30+eNXocT45wPN7+Tyn7krWgHLZATfax/y+qW4i6/SUTiU5wDGz9z7aRtfvrCM9xpT+QR89/uduuumaBlF6cnqX/a8PiRjTXZfUJGlNHpotDajD0wekoq/8LteYsNAXofAMETEm6oSBL8tkC2limUz76ojShp4GUbQlU3F5XmpAamAOaWDRA9JeUOE/8fhjYz8J73/2c1+g8vIK6uvrpauvuY4e+MN9AoxyoV/94ud0/4OPAFyqEeegvPzGKqfY4QkBC7t9zZToo3BTUYcpBJZcNwKSLHAly0VUsJDOhIF0FACZ29WpnACkDJmlzEcNmMEK+va3vUdYPLn/et9pMngOkzaUfJFBg0mRJjwCsNpJJvdBCmnhgWBBrBnA6bXXvJOaGpfS7+/9aUFUUYxUL9MRdtuVsvA1cPn2DeImh7tPCcuoAKN4J1eAIVdvUoh2mEXWHwyL86k04kWwPsebsnC9iua1iCE9ApbeIcSV6miw45gApJzjMxkgXd3ahPdhCIyhWpAjYUFk0uPXda6Djh4+SGrEeEYxxjiKS2j1mg3gH1BCP4YG+unwgb3CqyUUCiGVUT21rlyTtLsDiCUtt6mopbYs6flMB+9FDtKvf/8wVSAP6QDIYa6+vJZuvrYpUzV5/jxqQB0pjAdKJBIEGDWy89SsWEnjsa9xoqJcVYgZmahiUA3AydiXa3VZXmpAauA8a2DRA9LJ+r/0ssup89w5xIoqsaRV1TUTAGtHRwcZDAYqLikR8aYarTJJmNxO4ncN3LlUWAZXx7bEc1P3+e0PMClAbAzJTi2U9IgpGkCUhYmGglEAUqUItwBnXHF9PsLAUxxL0jQPPByHl72gAvrKbfK9sajYb0v0n8+paBR94U8T9Yhy2bfN1dBXbh9tZqPnXNpOTHifqd504ocztT1XzrOO1erkrwN20b35nX+FOM1KWEHdZHbuIZ0/nsMzu4UPbWiArCPPUcDYRG7bVkywN8IyWUy/+s0PKRCY3or+8PAQlVdUYdKEZyaH55eL8uPq9YIMI4u/47nyWyX2g2O9IhzvJWVMA2p+3+LdMVkuWNMqjnsHz8HNVnlflTWuAqi0i6KvHuulzgGPOMfcog0VVlrZUDLWzLGOIXGe40Z9AKUNlTZaWqNY58saVlEvYkgDnlEK+0coEgpSDSyh9bU1gnV3rBHs1NdVgxEUMf9hLNEBkDrME/vK75stF11GFhARheE2uf/Vl6ij7Qy1LFtOwWCQDu57hVpXrBY5dYPBAL38/DPkwN9oVXVt4mUQPxdFblMQ6YHBiy2kk59xjTamJ/itJ9MXswzf8+1LyQNX5H6A0fISI5mMit4mXCj25d/v3JLs8NgxdvuMjxWT+8KFOM8rpxuREtMAnmGeO+QiPjxPJn2EtJgLRGDdzFXEeCv+dniBGuRCWFhUI1c5kxuFJz6mk5rm8Z4PMSs13Hy5Df7Oz1aWkwoGpFyNWYK5lmgHL+ixZ1P0a9JlY1/5GsI6ijImVZeoz/V4S/asJW+lMEcVvWWOyy7M1WQrUgMLRwPJZ6AL5/5yupNlra30qU9/hj71ydvHrJ8OO1yr/P6xdvx+ZeXNgTQTTIBUXLts7FyqHVOJlkx2PRmsDjLa06d90ejgoiWAqxYDQW4/jwUrhD68ipn03BVRkRHtMBDW6I2kNysWAH458zHxsk4IuhPWWwwEasp+AFRjwsKWYq3eNHZfOgPy63H/wdw7jMGRXX0MajfiWpnQKLeE3VGVAXG3BsR0FWel51T6n3ycJ/ED7W+Iw88+/zI1NjZNKPJPn/yYsIQXIn54QsNz+IsBk3Jr2cQJLXeXdfD2a95GlfAY0AW6AUafB+jD3wCSmOcjpghi7txPkct+MTUvWUHvfu9H6L6Hp7o15tJ2VGcVzx8z5yKVbtbCKXc5/YsHc4ds/o6zbngWC3pHB8iNPJpSxjVgw3OsAyHRZFm6pBnvE7xXQ25S4f1UVAWXW9s44Kwus9OG1irBnOvCzP6p/eeooQpxpWDdHRj100nk9Ny1qV4QGflgRf3T3g6qr3SMWUtL61qp59QB5D8EEBzpInt1K12waTN595+Y0JWy6joyIbYzotLCmwWuuXhujfgel5Lyqvgu+qKlsopq6oe3DvfZPTQkFuhq6pvEpx7HakHKNdDfR9V1jWP1eGcEgBTDAK7lJ2N52ZRn3GJS3q9MWqNJ82624R1ss0/V54SLZfFFrTEAJBnIBOKnZH9vw3B1ZndqKYoGNPhtk+kpnX68SOFWYtdSFM+s35h+rpGsHS3mCvyc8fitjqAduNFynnLGglH8lzKWVCwcK+M+zzV4ziHmGQCyDC4zCYNRNVzJkLwFq4TKQokBYR4GjDNj/cG8IpVwhgAsW2POM4T5Bv6o8Dxr4FbP/chVh6muke3xoM9NIz1nsi0uy0kNSA3ENJAb4lnAaqusrKIf/fge+u//+g499OAfxu50ZGQE8TPjVtA4i+jIiOKq2H/28FjZVDsmj4WazGUUgbVQrVKAYaqyzOQYCeuxgb4cq+y5ignscqNkpj5vmBymEOkAvjhHnt+l9DcUrADYBn06XMGiMfZbvkYYq9NsHo0AzmYrEQxQkbCagn6PSKHA9QJe3Ge4jAKIPxmIWb4MqtMUCuc+0QiFfKLvPOnORs/Z9ntyudvecys9/+dnxw6zVYKlEPHDY43O8R2fe5h4myw33QTLqMNOUTc8A4Yex/ORA+Kb3Fj8O55Ho/8RchbtpOqyMtq0Yjk98ujv42dz/oy4e6nMAWsAjCvwWs9aGJAyqdHR/S9Tf/uZrOvJgnNbA6kmgxrE2Xv72ymK94oOrrZmB7+rePKqSE0JL7LA4oxnCOGgZNGrqHtglCzVDgrhXRwBe2cUG7/z9FjI4Em01+snA0AAC1scbSVVNNLbRoHhTgqVNpAeLu2T312rGm7EWIC8zxgPImED9Q6rqG4cF4u2Ev/r7+kkK+Kc2YLIlqAw9wX9VvHDCzEgjrSve1Scj9cbRnSEC/lI2VqjQWw3E+pO7ocPeUgVAAjL5CwAwajaSxGtTyygTO5LvN/yc1wD/DvnqqeTASsVLyulIEzvHntmIDh+NWUv6G/AvMMuniV+3lh4GqLRmvDs4W8jxsivlB7/X4BVjJtch8eRkM1KUTGOghwJz2AmUWN+wCRKsJGiPJ5HfHpH+ylqxFyFn3f87Sb+rSa2Jyyw+LtkinVD5ARKKgYEnveE/N6cdZjYttyXGpAamD0NYFiVUt/QQL/5/f30s5/+mP7rO/8+QSFdYNOtq68fO8b7bDEdwkp1tuJGSgCWYFBhJ8y2Xj7ljHDVMSABOY8BfcyakYUoSbDZSa0wjwNHcvTxsj/ECFdd3RwnM+LJJrvCxbd4bHCy+OG3XHW1sAqLm1vg/23adBGtXLEOc3QPWYefFhOSQt2yJuwSLrzc3ubNF1Nra/IYuGyuNwjrUF8vrISYfyEFXXaCcjyfdzlH6ZwEo9npbAGUCnuVRRcr2HTTCVtAR90BKrYqaSNK7QYqtRnpmQOd1N7roqMdw1SORZAi6/hiJbdnK6uDZwuO8QQboNMK0DdZXj9+RhzygbSIASOz4Q6kyGjRdvoUuVwuam5ZKupY4ZljxCT9tX17aABW027Em55rPyssWPHr+AAgekYVEOAFM3zusCTekvycbxo4N6DEj+oCg7Bwjnt2Tec+IiFeJOfFEABTBn4zIJpYX8NgmshV4n0yURtmMIW551z7IMtLDUgNTF8Duf/1T/+ac6qFJUuX0T2/+DV9+5v/Rr/8xT1T+vboI3+kj3z04/S/3/su0lX46OZb3kWPPvLwmEsvT0AyCb/CdUgXwORGnNuOXVlSCbvKqBDLxzF9qjTsianq83E7QOmQSk8++Gv1ByJi5V4bc2ET7Qv3Gl7hVyYtvOrP14tiMEDERbqmJ5xT4YaES3AsHQKfZJef/oAKkFgN1zUv2dSdaDN7N+DEC0RRj12MdSarmOglnpvOPhOFuAY7x5r44If+lq6/4a10GpO/X//y5zQ4OCjOZYofHmtgAe6wS/fFF10h7szs3o8Yotwt3JnUog0Nksm1n7zW9bjWTjp27FCmKinPv3FoP5Vevku4i3OhtPlIAUbZVZfl+JH8r6m0IP+fLxpgyyg7BXIYgDlN6ARbdF492kvVpWYqsSmu6Wr8PZQXAZwCz7YBkA6M+mhja3KiIAssr+LNGnCTTpfu3RclBoxmi4X6QD7EMZtFCQRHfd3ddPrkUdq4+U0gNIr1A4y7F27ZTmdOnaC2MyfJhJypzMSriY0VTJJ0bogto/BWgYcKx5gKKun58iPJfk5LAxzb3IE46Do8u3p/D/lMDdNqL145EoJFX4T6gGsALgSRNHOYeJ1sP1WwiMKcKqyi+OvMtpoopwWZI4tR1YvFbxm6IJQh/5MamKcaWPSAdNPmzVQN4qKvff2bYov/jv/5H9+if7vrq3DffYAuvWwH7X71AKwpLnK6nPS+294dLyaSpY99SbMzMOLDCruOfJ5eMphSs4LyijnezkpLsY80zSY9xdDSHnWTm0rJCZbbYVhoRaJrLh1vH22zTZQlzPTuOK4MBjlcVBRFKwB4cXeaHsReqeEfpteGyUqn0C4PNPkJ60JsGADZlblQouhYae3n9/wU+WfhwofYsrdcdQ3d+u730LVX7ULezFHk0UwfP1yo/szFdrZsuQSpWhykRdyowYffcYbE6DmEWKdGqq1tpBXL19IbR1/L60rO0RHat/sFunDrxbCScqwTpuH84CU+fDjGMXViqR8fhw/upa7O9ryuJyvNPw2wxZLfg0bkG00l/LjsP9EPt0GijcvG39M9Qx462+OiHetrhTWyH4D05SM9iP1EjKdDsaLG2zTYisg3OggLqZsC8LxIJwwYfV4s3oHIqHsE7rhgjilFVEdPZycdPfKaAKM2x8R8inqjkVpXjXsUPPfkY7Rk2Qpy4xXZNRwlkKwDiMI92TPzHjnp7k2eOz8aONnpVACpt7tggJRjScP4+9HowRGBmYL4VyBQqomF84RzXLjWYG7B8xYdgpQsPNeQIjUgNTCvNbDoASmnceEtlTCt/u0f+whZbTaygvWwu7trQlHPSN+E76m+nG73k72lmFzDHVhpTE0QwRMmZeMYz+xcbpNdU4tojGKVn9x4YQ95A9Q36qZyMCQyI6cC9DCo4BxLGJYD3uf4DYal2UoUs35OHSbiRhDI3+sLk8XjoypcwxTugPXUmUNrU6/KIJfb5jiQbPU8tZX0R7733e+MFfjRD39Az72wmy66+BJ65OGHKFP88FjFBbhzwQUKY6bBezTl3QWw2DGKZ4tdGWFAmiIeLE4wOYzDAkKvWL7HKYVwwOA9QV7bZtqwYVvegJTb7enupH17XqTL33wNVYJx1GazY6FBDxdHE7wbvJjsh8SC0kBfN/35mSfo7KnjybpT8GO1tQ3U3NRKNTUNVFRUDPBhxmJHMQ0O9QuX4U6A4s6udmEhVixaBe+CbJA1ANdDFj2sismEX4d7j/eBQTdE21dVkoZdWmLShwVFO57j+HNeZjeK575vxDsFkOqNVgWQ8ns1C2GiPF4cNOG5YEvpsZNnyNlzgi5600VkQSzeZOH3N3sw8GLLqRPH8AFyOVsdtQ8q7/MQwKgH+VClLE4NdA/5qGfYR5VYdzF62wFKx0OOpqMRTgOD4FR4GJgLBkrZOqpCu/zkhlTwJlAe4YzdZDDKeUu1Kg/ZaHbe4xk7JQtIDUgNTEsDix6QZqs9l9OJyWOKQJ8sGjkHN5oLAEh9rl6yOJrgYqW4YGVRNe8iRkBMsy5KZzCBcYcj5EcS9mW8fJ4gTOvOYJStoxEMM/kI5z3tAIlCCINJJBQgMywDWjVYNeaZ8OLD4MAAgIxCPFWI+OF5pgLR3TKkd6msqMFKhRduX8ktiP/74BExebebQcCF5+eiNVX0toubRX03QOjXfrmP+jEp4hi7EcTiXbWlnq7f3pRUHTp/hwCkS5euBKuvThDIJC2Y5mBT01IBaNes3ihKaeEqqeENuRxZdHD91oAtssiiRkokE916ywfp1Kmj9Mqrz9PRozPjtrt508Xo01aqrKwVfZj8X0lxGfHWAJZUFl4s2rdvN7340lOIUVfSTk2uI7/nrwEOTWBh5s3JgkeYXoLFEx6xAKNVWDQcB6Nclpl2z/Y4RY5SThkTxPt0wOlD6pepgJHTJ4mwC240SwmAlyCCNk3IiXu6rQusuW7quO8JsiME1WJA0AMe422X7MDCqJ3OnDxOHYgbHXEHSWsqobpll9CwV+mvH2ElvPgiZXFr4Ni5UQBSIxndZymoL6ewZuozn4+GxHwBFeOgVAVXgjDYouNeJ7m2qYErMAt8qrICo7xkPmYZFWD0CC4NoCxFakBqYN5rQALSWfoJncjl1tbnpoZyC0BpN0Bp46xc2YDEjFYAC/hwUQgT9C5YMY1w4eWYKBZhHeXPPMgE/BiMenwR6kabDEaZWKYP44qmqVq0Pdf/a2hopKbmZnru2WeAyaN0yaWX0dJlrfTySy+KrmeKH57r95dv/+rgPsuiC/WmbOKCJaX03itbRcoLN+KWntrXgUUIFdlAT2o1aenTt2ygimITBbFY8Ub7CH3xZ6/QxWuqqTgWk5fYsCaCBYxgH57PcqpD6oozZ04knk67bwfJy843X0dr1lw4Vo7ddQO86h7AljBXGctTCtDBMaYtLcvFduLkEXruuceoo+PsWBvT2VmxYi1desmVY0DUoPVQua2bbMZhshpHoKcA0nlgASesg5uljZx+Bw25K2jYU0YXXrhdbC8BlD7+xAPT6YasO0kDUVh3WJJ5noQQdtALt1yWB148wx9CrACiOzfWiZyjvNDy3GtdcNNVAGlrrYNqSlNYW/Mgf2FyNXY9X71uA5jdJ3odILyUevAa7wFzbtjSQpaGGiqDRVVYStHTIOoGAEZ5UU2K1EAnyI3O9LqpqcJCRs8p5H5eVTClxBexGZTyNEKDl2w4x9hP7owG8xIVYkCZTBH5ADL2T6R2wd8pi141iJCgEwCjExfYMzYiC0gNSA3MWQ1IQDqLP82pbpcApO7RdsQxwSVMW5hVy0y3oOZcYu4hQaHOZZ1INzAKFklm4TODfsgIQoxs4zd4zd8DkDEKBIqxiEqQ/4DB3BuHDsB97A264Kab+BLzQoyIxfrGt/5DJKAfGR4GuYgZOWg/Tm1tCjDJFD88L24yj06yhZRFG1TInZI1sXVlBUAVrI1wA2craF2ZBcyeQbJYi4SVqaYcrxZ2qcKzVVduphqcNxtTTzo0uBYDUrbMZgtIlyPm9Oqr30E2K9LSoJMir6hiEE3WZRFXymA17ggg8pbiOV66ZKXYHnn0Xtqz57mkdbM9eMXO62n79h2iuNUwTA2lx6nSfi5pda06CHDjoVJrDzWVHgPbqh2ENM3UOdxM27btoIbGpfTHh35DXd0dSevLg7lpQI0JdDjoEzkWJ9fU4Vm+8aLmyYfHvvNjs6qxWGxeuPSa9OmHTraQ5is+L9J0AVwyWRHnIWVrP4dTxLJRoVkNmc1W4UnAADSEONR4qqp8rynrLTwNHDg1hAUTE7xcBiisLZzrLmuK3XcjASc8WpAORgNPFCzAaAAug1l6BahBvKjmhXJIkK2jaUSNNrW4njoGRs2qdjJR8ndqmmbO2ynO1c5pBXt6usfIMM9bZ+SFpQbmsAbyHzXn8E3N1a71ILajHVbSelhJGZTaS5bNaldVPg8VRQFCwfYygiuPwLVrGLEYnKBdi2TSBizDG2DlYm+1uMcak3vwxtZQfxiskPiMjzkWLfLxYaAYaj8hwOis3kwBLnbs2FHacuEFVF5egThDIyxk7RMGjEzxwwXowpxsoqSkTPRLHUkdh6bDb281Kq8PT8RGvdEWWlq1kryWcVd0n7OHOtuO0vDIEP3TzesBXrWwCiZf0VZHFOuUAzGW2cj69Vvo+utuEUU51Us4jzeZYNpFrknOo87g9Kq3vE3Em7K1NB+54YZ30QXrNouqLeWHqRFgNBexGkZpedUBqnacpWM9F1BNdT1Itj5Ev/rV/+HZPJNLU7JsMg3EQGIIMZsG80SioGTFUx3LBEY59l24B4PNPF/hRT524w3INBb5qnDR12PG3VeODdKbVpaRyX2GInDbDcB9t2CCBccQwnPUEQOpdDbB2s+stxqEHqSzXHL+Xk0sBR5bRpMx6/ICEC+kaxiIxph0deQik+osauQfOlWwe8+yoWuvu4G+/NW7RJpA5g/4p0/8Iz326CNZ1pbFpAYWlwbyHzEXl54KdrevnRkWFkV22/Vim23RwpZUoo2SwQl3F0+nIA0KRLXkAdgcQooYdr/t9II63qNsvM/H+ByXYTAaxqo8r+KH3CNkQAxIZB67ifHEr7e3R1hF4/lHJ/8mHDs8mcxqcpmF9J3jOFmYbCKZsJtWHIz6dTX0fHspLJu1U9xxfapiGjGsooCmlDxwE7cYUqNGVUQhgGECokzCOUvjYDQCi2g+YDTxGhF0izeWyy+7irZuvUz5ksP/V199kwCjGlWQ1ta9lDMYTbyU3TRMm5qeoQp7B5lBwHPzzR+gCo7plTItDag4Pygk4Eu90DKtC8QqB/3K4opqFngCCtHf+dgGW52YHZ8/paTWAC+Av3ZWyb1rGX2D9IGB1IXzPBMJ+ykUcImwHXZVYRZeBqWK1RTMFDxp4A3CYFQbYkDJJIoauOomWkfhvMsglAFrzCLKwDSMRcxgYITsqkPzCoxarFb6+je+Tbf95bvo8ku20wc/cBt969vfAXlZ5jGOdSVFamCxaUC+zWf5F+dY0r1wpWFxDh6noH90lntA5HZ2UMDVSWpfPw2DmIPjljxuN/mxIh9E7row0rawCxhvbCXkY5yD1YM0As6RESRqB7kHrAzxQWbWb0BecEY1YAaxihBMDpJJ3EIU1JbQnnazIDXasEyxqiaWZ1feDUvLaNOmS+hYV4iGkZeC4++SC089FPKh5OeVoxXlVXTjjbeKLwxGeSuEsLU0Dkqv3HWjiC3Ntt2tWy+lTRe+CcUjtK7+ZSqzFmahaXXNK4g9PSdA6Q3XK9bgbPskyyXRANwLWXxYSJtJ8bkUAKA2JI8vnclrL4S2P/Xpz9DZjp4J20/u+eXYrbHVad/B1+kXv/4d7T3wOl35lqvGzsmdqRp4/ewI4viVeYZl9HW48PZNLTTNI8wSHYT3lAehQCNIjxcWVlKE9QiACTsorJx6sE4b/EOkBZEix/BHsBDObr4MPtklVwu3XzXAaDw/ej84KY4gFGgEc5NwjPxomt2c1eo7duyk9vY22r9/n7junt0vi8Vv5qqQIjUgNTBVA6lNFlPLyiMF0sCJc05ygPxlabWNhvsOU3HFGtLqFWbXAl0iZTMe1znSxcg9hqgK8RtwseQ8oshFKlNOpFTbojoRwAIEiwIRp946s4yyZXn3WQN5sWCxDaykiSkyJtfQwhVcbWshr79LpIDxYdIyVZQV9CBYmtPJLoBFo8GIXKN4bAsERuPXEy68aFON7rH77nf/+6vxUyk/ywGQr9z1VnF+ZfU+KjIXlh2XQemeM1ZYg+qI41Of+JMkOkr5Y2Q4odYh3g1uu+GAj7zOQTLZSjLUyO+0Z7SPTNZiuDHGFnbya2ZR1/rVL++hz3z6U2M64PcNS9zqdOvN7xAT/c1bttLdP76HNm1cS1547Swk0cCiX1q/oiC31IVWSkCi1lymQc7OIfIZbOQ1N05pW4dFFA08ZNSIC1VHFE+ZKYWSHOC/K1FPh5cn2vYDbAbBaq7l3w0uNdqIV2wcvx9R6WEdNU2gQRKWUIDYMOYiXjjmBAFUz/U7yQrSOp3BhPmRSXwmuXTKQzq9mXRhE1U0r0tZZiZOsAfGcNcpqqqqos5zHRMuce7cOaqCZV+K1IDUwFQNSAvpVJ3MypFXjw+KeFKONRrqeQ1uZKkJZArVIc9oGzmHTonmXOoK8qhmBwQXqv+ynbmhAZ4cPn/Mg8UME8BoJYhXJkLXYVeABkYVF1zucc+Ql5xh5N5ETsV0wDXT3a1aeYGwXPLUdLpuuqmuxSCXiY9KSyto+7bLUxUbO37ppVeK/eqiM1TlaB87XqgdFaiBOa6UhcmSyssrC9X0omxHZbCL+3YPdc/I/buHegB4/bAXIfWLBKR561i4aYIZPhjb4uzBi83qpFJrsIhSmO31bjCe94DgELHNJm8H2UYPwTrpE9/5GG8pVyEz/pLxMUAVawdkh0zEBYun3nmcTAOvkG74MAVGu2jQFYaXlWvC5sR3j4fJvOD+izkRv4TFfQPUKp2Kt5+xI+MFRJVYOwXSYVa/hegzkcNRJDzLxjsELg54oTnsyjso8bjclxqQGgCRplTC+dPAC0f6aRsu3wiSo+Hew2Qtap6RzkThDjM6eFTkQCUqJ5W+EiRFIPWAa64UqYFcNRCCa1bPKEiuAh7qfOnsWHUrWHR3bqzFKncUZBpI44KYY2Yv5VVvdt01Wdx45vJ3Ud+0+WJxLWbTnUlh110NVunf9KY308u7n4P3QPK/E7Zarlq5XnSlpezIjHXJYRoE0dEZ6hppgmvwRfTwI7+fsWsthIa1sKioMQGdLCrEG6qNRZgoq8nvHiX3cB9ZiysmF8v7exCW19G+djEhj4BBna+n1RtIb5qYq5QtX3xOBXK52QiBVMUY6ib3Q29S+sj01NyfGRcBCtTIYTlVJ3xtjr2NxphUt27dRv/2zX9HPtZ+euCB++nQawdF9xaT1SkMb5He08p9F+q36T1N1Abm3QtaisAD0E2a3qMUMtWTz1wLDKijoK8OoTp2wS3B5FzZSgQuK2GUDwf9xIs9gWI76VxnyORph4uuTyRnGVGVkysK0roYu26qtjnHbxRW1f62I2inBCFD4KtQefF85GYB5/Jct9A6TNXv8eO8ZArSyJFhMsCbJ1GYPHEEYU9SpAakBqZqQALSqTqZ1SMvAZR6QBq0st5OruHTcOE9hIFibcH64PP00UDXXgFGGUgM+WxUrytFIFX2g03BOiMbWhAa0MEiesNFSyhgaEp6P6V2A71lUz35gxFMUiJkApkREyGRdypISNpAkoO1yI3a2LAEYCI7V1224sZzNE5ujlNqBGDFssEdLJmwhZQ3Tq2xYsUaev11xUI5ueyK5evEodqi06TX+iefnvCd9cAELEIPE84oX/oHfLieFvGiyV/J9SUnBSBdvXqjBKRJ9Jd4yGQrFS5+icd4X7ghAgz5QyoyG1Q00nOGjEgZxG6KhZDR3ja4soOABZNzo84qrqcHm6+leGJeZgaG3BcNyOVixL+FuHzKNtQxD4bJ/TCbDKIfXFGTg3tmygtlOBHBPQONAqDbp+iEq472tWHxyk+v7NlNw0jDxbwFq1atpnvvf4jed9u76c/PPbvorE7JcuZmUHPG0x19Luoe9ND6lmJaUm0lg6eNdLCYBoy1yA26MoEbQgFWGRuMF+B3Llj8DQChtsEhuMQ3CrZdvNloRFWhpHdhF96MgjL8D9ZVIONYf7KpN7lh0UjSvMOTS87E966uLqqtq5vQdF19PXV1dU44Jr9IDUgNKBpIPvuR2plVDRw8PURDcHPcuKSYAt4hGuzZT37PAOmNiJ/Q5+fe4ff0EoNRrd6Cd3qAuod9tPf4AK1YPZ6WY1ZvUl5sQWlAHWPFTXdTBh2sLrzFRBUdd+ONH8v2s7lZSZHEsaPphIHoH+/7Ff5uDHTltW+bUPTMyeN0729+InI8GrBS/bF//sKE84lf2AqrwprNcoDOVIB0+fI1ogqz4aaTUWeAPvDPL9CXbt9ArS3jIJjnZj/8zXH6xR9OU7FDT1vXl9MnPrg6aVMWA+LOTcyQWUqty1bRseOvJy0nD4Isrj/578HWG968SHelQowbP589p16j8saV0walQ50nyTPSJ1JkuTxBMseu5RnupaHOiel/vM7Noh+hQBTspPlMtHP7lcNB5Y9mcj+CZpPoB2eChPkpt0bzKB1lSxkWbryIsZ3cl8Tm/vTE48RbXHz4vW6+RQGk0uoU18r0Pjn91iuYD5zsctKaJgfVlJjJ6EUquqFXyWYaFblLo7CsRzQgrYPlNJWo2N8g5CF9uBdFUH60AylmTmOBo5UCKhM5VUUgO1qcsdRPP/2ksPKv37CR9u/bS1tg9S8rKxcLK6n0KY9LDSxmDUhAOkd+faZn70as3bU7lbhOBpTukTMCUBqMJQCnRdi3wsKS/CcTpET+EUy2hwFm+0UePJO1hnTGYuoa1dAzB3vmyJ3KbiwEDWhCw3B8RHJ0EPFnI5oI8tXBVSurBfIkDTY3tYqj6dx1hwf76Z67v0fDg4O0efslE1rp6+min/3ov+imWz9Ay1euSWk9jVeKA9/Ghpb4oQmfDkcx4jmr4JLsB5ERA8Xk8sCf2umXD5yhc91T3c3u/u0J2nNggL7/5TdRc8NEt85krRWb+2jEW0oNjUslIE2moByOcRoiFSbaemT67D1ziIqrWsjsyD1HI7sFjvSchgcK0nnh+m54nsQJeHLojiyaRgM93T3U2NgkSkirUxpF5XGKF8KfO9RH7NXSUmWlZevgZh50kgHgVBdU2KIjagPxFoWHhxopXiIakIMxGy4WujUgK2Lh82GNVWTN7RjwksuhpciyFsGii+zTefRs/ldxIy72U5/8GN3z819TX18vlZaV0Sc+/tEFR741/38peQdzRQPJ0c1c6d0i60cwBIa5aBGpTBUUCB3FSx8hdwG32Nyj7UIbarUebl46MZnCMIAV+TBFgj7FvSVBXxzHF4xiZdK0lAbdxxLOyF2pgelpIBCKwkUVzIlgzQ0YGrJqTBtQSGQCeMbzkTiZD7vSppKikjL6+4/fQU88fD/iPide59knH6ELNm6lpctWCgupMUMuuLjdymZzkBVunS7XxNjXsjIl9tBmHErVHXH8+p31xNtNf/f0hHIh6OGn956kb96xmcpKDSBvCZMuZUocpardPEgE7Mupb6RMXwNuHyyDRq3IhDh47rhg3rWX18Namtmiw665zoFOETPKqywRvG9dAKP83pUyPQ3c9M6b6Y8PPQCSGw+VlZfTO256J/3i5z8TjUqr0/R0m6r2wKgfRHR+qtlSQmuqG6ki3AbwGSUNM6TDjZq3uGgmxYDC2ApOCqJ+TT31IO71+cO9tL06gytLvLEF/vmH++/Ds/wgVdfUgHH3nEilt8BvWd6e1EDeGpCANG/VzWBFtQ4hniryewOk02LFEsQwHLenQQAaW0IjsbQciT1gyxPHiLIrDpMChDGYlNgmBtQnlpf7UgP5asAfRE45LIroAp3gQzFRUJvesqQLdGHVXcl950+a8iVzTywWm7BAZS6ZvETnOWVB57///cvkxUS3uKSU3vOBf6B0wJTBLy8KWSzWKYDUalFc6fXa9GlqkveGqKvXI2LH/+PuIxQEwO/u89JNVzfQh25dnqoKGWJxqlar4kWRsqA8kbUG2KIZwkKA2aCBK+mA2AwWB2JLHWSwFGFCjvQXWq2weoYQdxyCRdTvHoZ77sDYIiAvsjAPAOdilDJ9Dbzjpr+gu77+TcTadQmr0h/u/z3d/aP/Ew1Lq9P09ZupBa8K77sQ0iNx/pUsJaQ1kFsFMiReMZMyQQPMEN3e1jbhmPwiNSA1MFUDEpBO1cmcOsJWU2E5nVO9WlidYbKZysoq6unpnmJZW1h3Wpi7YfZcbwCZ5PQa0ntPgrXZm9RSCtJ/0vlBmBFQ3MV58p+PBcloNImOpzGOZrwxl3OU/vJ9f0f1TYoL7i9//D/01BMP0dXX35Sxbvz6iQXjx3Sa/ADp4EiAqspM9L9f3k5aLDoNj/jpLz78LF26pZJWLi1KvNTYvlatTBANYJHNV9htjCf1TBgjRdEAL5LwIp6Rn2f8Fn43Qh+wgY80rYp4IcEPpnJ+P0spnAbehRyjNpsdLvHlggBmcn5RaXUqnK5lS1IDUgNSA3NFAxKQzpVfQvbjvGjg2utuoC9/9S4aGhqioqJi+qdP/CM99ugj56Uv8+miPgBSFgalbCnVBrsRQ4SUGiDBYBdGdcRDmtC4OyvH7OXrrlsIvTjw2wbhThaXxpZldOr4G/GvaT+TpRDRwGrGEuYcMXlIJVIvuNxBAUa5epHDQI21FmrrdKcEpHED3ORUAlx/zdp19NDD40QwfIxl1YolAoAyu+MPfvgT5MAD66vVQvffdy997rOfkS5kipqEy60HCyZeeKGwNwp7pfDGrMixrCkIj4hCX+D/AXhll+swu6VImRENOLGAxFsqkVanVJqRx6UGpAakBuanBvKbTc3Pe5W9lhqYoAGL1Upf/8a36VasyO/fv482b9lKd//4Htq0ca0kHpigqeRfGJSytZRBqVYTIW0IMY68JQhP3r0IMOJcpOdTlrauon2vvEQtS1cI98sjhw/SkqWp3WMT+5osD2kYblgsGnV+hB2VZUaAUD29+CrirS6soP5BHx05MUIrloyz8Cb2QezHTMR+f3Lr5ujoCG28YCJLbzCoWFU/e+fn6ZmnnqSvfPkLcEG2CPB6xa630KOP/HHKZRbzASYk4hjp87l4spj1L+9dakBqQGpAamBxakAC0sX5u8u7hgZ27NhJ7e1tAoyyQvbsfpl6e3vokksvk1bSLJ8Qjll2es8v2Ix3daC/l372w++Sy+kUVtojhw/QbX/9D8RkRzt2XUs/+cF/0r/f9TmcI1q6fCVddPmueNUZ+/ztH8/Q7x5po84eL3366/toWZONvvqpC0kFs9udH72A7vjGPiorAqkRQNBn/mEtrKSZ2XbTdTYOQBPL6HQ62nnFLtq183Jx2O1204MP/IGuufY6CUgTFSX3pQakBv5/e3cWY2dVBwD8tJ2lM+20TCntdIESiZoQQIuyRBIIiYkUweqLIpoQUZTE8KAPIogbghhFgtE3H1yDEldkE1HSIE+agktijIQ2dKcLbafToWVmiud8lzvMdKbnDjM9d9rO70sunfn+3/2f8/3mcnP/uWchQIAAgWkRUJBOkL0jrsrZ2dkZ9uwZPWl/6TmrJ5hhYpfNnd9drfLYEld6HHp9SfWJPXPsVWm1yPRIK0fW+9l52pLqXOurg3HDjtqwy7HPnNiZ1jRcs70lzO/uGc7ftXjFcP9b2yY/1y31YFYc/jk01BlSn+v9n1jP8lelzcZ3bvxX6OnpiSvfbRl18da4El7PsuWjzs2EX+a0tsetheZVt5p+njV7TvSPj6HmvEXMTm3FNlvia6aja9Eo8jRENcXSMTsOpzzWccbS5eFzt901bri9oyXcdMutsVjtjQsZdcahso3va3ZaMTXW2u2dC8b0qW1u3IIpGc1uiX2q9W28hj987TkhPcY73nHu4vDQD98bvx09HJbEb0wbHbPj8ODUZlplu240+OqhuIVkf/XUjnhf9973vdAfC8716/9eFZ1DcYxp2vuuJT5n5Gt9a3zdX3TJJY2aFCdAgAABAgQIFBdo/KmseBdO7AbSB9e77/l2uGrN1dUy9C/HgvRTN95QLbZwYvdc7xoJLFx42pjFXQ4fPhzn2dVWUG30/FMpPntOS2jtqK3eWm0rlIqtWbUisRn3WSvu5oRUDNf7UW+3tb1WIKffZ01xN4Gu+Def6FFvq6V93pg+zWmrFclVv6PTZI9Uyy49Y2Jvw7Pi4ltVQTrib5WGmKaC9OU9u8MPvn9//HdPXAxmSbjjK1+PQ9AvDXfcfmtY8PrrOb2260da1CjNJ3UQIECAAAECBKZbYGKfhKa7l9PYfhrWduG73h0uvWh1Na/wa3feFW6/46vhls9+purVSy88d1x7d6hvTRg4rTNuL9BfPaaSPH1QTY/eXZtDvZ/9+y6O53riYzA+pvYN6UD8ID5wuCX07d0xnP/A6nPiubfFhUD645YZtU2zJ3sPg4O1/vfv2zmcf7K5xnve/v37wtELxMydOzfs359W2JxZx8ChgyE90jHwSl84EhcAqj3eKGJKigwN1NpLW2r07nxxVFNpRdvUl3QMTbEgHZW40S9x+mXa9uXg3u1j+vRK76phn6ERiyU1SjmV+NBA3Gw+tpW2HjnaaNu2beH+++4dTv/00+vCA7/8dbVwUW9vbXGYtra2UC9Ka6/z2sb3w0/yAwECBAgQIEBgGgSa+fFuGm5v6k2uufqa8PAffj+8yM2Dv3ggvO+qNSFtFeI4uQXSPncrVq4cdRNpNdLt27eNOucXAiebwEs7doQ0d7Q9fru8e/eukOaWrlh55vBtpNf5jniNgwABAgQIECAw3QK+IW3wF0jzCf/85J+Gr9qyZUv1Ia970aKwZ/fu4zq3MTVSn0P6lguuH25zqj+MN4f0vPapZn3j+ePNIT3y2mXx25jL3rhokj/FEZzF5pCuW/dUNefunasvDP947tlw8SWXVvPtnvnr05Ps7cn7tDQnccGSVdUNdCw4PbTEvS5f6bm2qTeU3ozmdS8b8/9Ue/xmL/UnHU19w2qrmgyLVr49HGoZPYx74dKzqz5tP3h+2L7x/NqFTfhv3H8+tM9bOGzUv39XOLB7S7jiiivDxo0bwqZNL4Y5cRzwTZ++OTz37PqQFjBKx1N/eTJcd9314Zt331mtsnvNtWvDPXd/owk9bn4T3cvfGto6xi4OVZ9Tf+H7b25apxaOmL9fbzS9X6a+XHB2CBfUTzbh36Pn4c/raKv6UTXd/vEm9CCuSh1b6Tp9xfDrd2Sje7b8t/r2f+S5mfzznJa2sHjV6FWzS3vU15joPXNtOPamO+P3ojWebu8crP62CxafOfzaerNL3tXf489YdV6YH/ejTf+v7H/t7PDESzeO33DmbPr8cPTrPnP5cQm9GkcY7d32/HHJJQmBmSQwq7u7Ow5KcxxL4Kl1z4QajFttAAAHz0lEQVT7vvuduEDIQ9Uladjb8xs2hysvf0/YsOGFpr/ZHaufzk9coL6oUXrGB9Z+MNzzrXvDrl07w+mLF8d9SD8fHn/skYknO0WuHFmQniK3NCNuo16Q3vjJm8IXb/9yHG6+L34z2ha2btkcpxXcXL1HJYizzloVfvSTn4e08FHXgq7w6CMPhy/d9oVTch/SYxWkM+IFcRLfpIJ09B9vOgrS0T3w22QEFKSTUfMcAnGKlII0/zL43UOPhp/99Mfht7/5VXXhgrgQyL//87+439+5Y1bczWcSPVEF0sJVy5Yvj6uQbj0lP6CfqO76dXwF0hDdZXFEx8H+g9XojfGy9/QsCwf6DoSDfX3jhZ0jQIAAAQIECDRdoD46oukNnywNpvmEab5V/Ug/p4VB9u7dWz/l35NcYHBwMGzetOkkvwvdn+kCaZ5oGrKbO3bs2J4LixEgQIAAAQIEmi5gZZ4G5E/88bGwdu2HQlqVMh0fue6jcTP5x8ORI292ZkSDhoQJECBAgAABAgQIECAwwwR8Q9rgD57mWl0eFwz52/p/hr4DfdVwt0/c8LEGzxImQIAAAQIECBAgQIAAgUYC5pA2Eno9Pr+rK8yfNz9ulWDI2wTJXEaAAAECBAgQIECAAIGsgII0yyNIgAABAgQIECBAgAABAqUEzCEtJSsvAQIECBAgQIAAAQIECGQFFKRZHkECBAgQIECAAAECBAgQKCWgIC0lKy8BAgQIECBAgAABAgQIZAUUpFkeQQIECBAgQIAAAQIECBAoJaAgLSUrLwECBAgQIECAAAECBAhkBRSkWR5BAgQIECBAgAABAgQIECgloCAtJSsvAQIECBAgQIAAAQIECGQFFKRZHkECBAgQIECAAAECBAgQKCWgIC0lKy8BAgQIECBAgAABAgQIZAUUpFkeQQIECBAgQIAAAQIECBAoJaAgLSUrLwECBAgQIECAAAECBAhkBRSkWR5BAgQIECBAgAABAgQIECgloCAtJSsvAQIECBAgQIAAAQIECGQFFKRZHkECBAgQIECAAAECBAgQKCWgIC0lKy8BAgQIECBAgAABAgQIZAUUpFkeQQIECBAgQIAAAQIECBAoJaAgLSUrLwECBAgQIECAAAECBAhkBRSkWR5BAgQIECBAgAABAgQIECgloCAtJSsvAQIECBAgQIAAAQIECGQFFKRZHkECBAgQIECAAAECBAgQKCWgIC0lKy8BAgQIECBAgAABAgQIZAUUpFkeQQIECBAgQIAAAQIECBAoJaAgLSUrLwECBAgQIECAAAECBAhkBRSkWR5BAgQIECBAgAABAgQIECgloCAtJSsvAQIECBAgQIAAAQIECGQFFKRZHkECBAgQIECAAAECBAgQKCWgIC0lKy8BAgQIECBAgAABAgQIZAUUpFkeQQIECBAgQIAAAQIECBAoJaAgLSUrLwECBAgQIECAAAECBAhkBRSkWR5BAgQIECBAgAABAgQIECgloCAtJSsvAQIECBAgQIAAAQIECGQFFKRZHkECBAgQIECAAAECBAgQKCWgIC0lKy8BAgQIECBAgAABAgQIZAUUpFkeQQIECBAgQIAAAQIECBAoJaAgLSUrLwECBAgQIECAAAECBAhkBRSkWR5BAgQIECBAgAABAgQIECgloCAtJSsvAQIECBAgQIAAAQIECGQFFKRZHkECBAgQIECAAAECBAgQKCWgIC0lKy8BAgQIECBAgAABAgQIZAUUpFkeQQIECBAgQIAAAQIECBAoJaAgLSUrLwECBAgQIECAAAECBAhkBRSkWR5BAgQIECBAgAABAgQIECgloCAtJSsvAQIECBAgQIAAAQIECGQFFKRZHkECBAgQIECAAAECBAgQKCWgIC0lKy8BAgQIECBAgAABAgQIZAUUpFkeQQIECBAgQIAAAQIECBAoJaAgLSUrLwECBAgQIECAAAECBAhkBRSkWR5BAgQIECBAgAABAgQIECgloCAtJSsvAQIECBAgQIAAAQIECGQFFKRZHkECBAgQIECAAAECBAgQKCWgIC0lKy8BAgQIECBAgAABAgQIZAUUpFkeQQIECBAgQIAAAQIECBAoJaAgLSUrLwECBAgQIECAAAECBAhkBRSkWR5BAgQIECBAgAABAgQIECgloCAtJSsvAQIECBAgQIAAAQIECGQFFKRZHkECBAgQIECAAAECBAgQKCWgIC0lKy8BAgQIECBAgAABAgQIZAUUpFkeQQIECBAgQIAAAQIECBAoJaAgLSUrLwECBAgQIECAAAECBAhkBRSkWR5BAgQIECBAgAABAgQIECgloCAtJSsvAQIECBAgQIAAAQIECGQFFKRZHkECBAgQIECAAAECBAgQKCWgIC0lKy8BAgQIECBAgAABAgQIZAUUpFkeQQIECBAgQIAAAQIECBAoJaAgLSUrLwECBAgQIECAAAECBAhkBRSkWR5BAgQIECBAgAABAgQIECgloCAtJSsvAQIECBAgQIAAAQIECGQFFKRZHkECBAgQIECAAAECBAgQKCWgIC0lKy8BAgQIECBAgAABAgQIZAUUpFkeQQIECBAgQIAAAQIECBAoJaAgLSUrLwECBAgQIECAAAECBAhkBRSkWR5BAgQIECBAgAABAgQIECgloCAtJSsvAQIECBAgQIAAAQIECGQF/g9JKJGRV7Gw7AAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6QAAAGQCAYAAAC5y61PAAAAAXNSR0IArs4c6QAAAERlWElmTU0AKgAAAAgAAYdpAAQAAAABAAAAGgAAAAAAA6ABAAMAAAABAAEAAKACAAQAAAABAAADpKADAAQAAAABAAABkAAAAABUH4gHAABAAElEQVR4AeydBZwV1RfHz3Z3F0t3dwqCSNmoKKiUYv1NRAULFQMBAwWLEJQG6Q7p7u7cZekNNtn6n999zOO9x9vd9zZZOIfP8ubN3Llz5zszb+65J66Nj49PNokIASEgBISAEBACQkAICAEhIASEgBAoZgK2xXw8OZwQEAJCQAgIASEgBISAEBACQkAICAFFQBRSuRGEgBAQAkJACAgBISAEhIAQEAJCoEQIiEJaItjloEJACAgBISAEhIAQEAJCQAgIASEgCqncA0JACAgBISAEhIAQEAJCQAgIASFQIgREIS0R7HJQISAEhIAQEAJCQAgIASEgBISAEBCFVO4BISAEhIAQEAJCQAgIASEgBISAECgRAqKQlgh2OagQEAJCQAgIASEgBISAEBACQkAIiEIq94AQEAJCQAgIASEgBISAEBACQkAIlAgBUUhLBLscVAgIASEgBISAEBACQkAICAEhIAREIZV7QAgIASEgBISAEBACQkAICAEhIARKhIAopCWCXQ4qBISAEBACQkAICAEhIASEgBAQAqKQyj0gBISAEBACQkAICAEhIASEgBAQAiVCQBTSEsEuBxUCQkAICAEhIASEgBAQAkJACAgBUUjlHhACQkAICAEhIASEgBAQAkJACAiBEiEgCmmJYJeDCgEhIASEgBAQAkJACAgBISAEhIAopHIPCAEhIASEgBAQAkJACAgBISAEhECJEBCFtESwy0GFgBAQAkJACAgBISAEhIAQEAJCQBRSuQeEgBAQAkJACAgBISAEhIAQEAJCoEQIiEJaItjloEJACAgBISAEhIAQEAJCQAgIASEgCqncA0JACAgBISAEhIAQEAJCQAgIASFQIgREIS0R7HJQISAEhIAQEAJCQAgIASEgBISAEBCFVO4BISAEhIAQEAJCQAgIASEgBISAECgRAqKQlgh2OagQEAJCQAgIASEgBISAEBACQkAIiEIq94AQEAJCQAgIASEgBISAEBACQkAIlAgBUUhLBLscVAgIASEgBISAEBACQkAICAEhIAREIZV7QAgIASEgBISAEBACQkAICAEhIARKhIAopCWCXQ4qBISAEBACQkAICAEhIASEgBAQAqKQyj0gBISAEBACQkAICAEhIASEgBAQAiVCQBTSEsEuBxUCQkAICAEhIASEgBAQAkJACAgBUUjlHhACQkAICAEhIASEgBAQAkJACAiBEiEgCmmJYJeDCgEhIASEgBAQAkJACAgBISAEhIAopHIPCAEhIASEgBAQAkJACAgBISAEhECJEBCFtESwy0GFgBAQAkJACAgBISAEhIAQEAJCQBRSuQeEgBAQAkJACAgBISAEhIAQEAJCoEQIiEJaItjloEJACAgBISAEhIAQEAJCQAgIASEgCqncA0JACAgBISAEhIAQEAJCQAgIASFQIgTsS+SohXjQB9o/SB4enjnWuGnjBrpwISbH7aVhQ/sHO5C7uwcd2L+Pjh49UhqaXKhtfO75nvTuex9Qpwfb0sWLFwqlbnt7B+rVuw+dO3eWli5ZXCh1SiXWE+jZuy+99XZ/at/uPrp65Yr1FcgeBSbwymv/o34vv0atWjSmpMTEAtdXmBWUKRNJ97VuQxERZcjRyYlOnz5F8+fOpmvXrt12GAcHB2rbrj3VrlOHUlNTafeunbRu7Rqz5Vrd15qqVatBwSEhdPXqFdqxfZvZsqY716hZiypXrkLLli2xmpWl7cMx8U574smnqGLFSpSRkUFHDh+iObNnqfMybZOl3x997HE6duwYHTyw3+wunbs8TE7M2Jwc5uMfOnjA3CZZJwSEgBAQAkKgwARKvUI6cNAnVLFS5RxB9O39fIkrpD2ee4E+HPQxdWSFKjoqKse2mtsQEhJKf4z5i2xtbWnNmv/ohR7PmCt2V69zcXEhPz8/xcDaE82JvZOTI33y2Re0+r+VopBaC7UQy+uvrU3RO2ts2LSd/uPr/fGgDwrxDEp/Va4urur5srGxsfpkcnq+rK7IzA4dO3Wh3/8cp7ZcuXyZbO3syNfXl95/fyC99mo/WrN6lX4vKHB/jv2LmjVvQWfOnCac03sDPqSpUybRoA8HUGZmpr7sgsXLqWrVapSenk4xMecpPDxC/basWrmc+r3YW63XFzZYgDI6feYcHhx0p/vva04nrVDerWlf06bN6fcx48jBwZE2blhPnl6e1LNnbx6Ue5+e796Njhw5bNAqyxbr1KlLP44cTcO/+zZHhXTI10PVfWCuxl9+/lEUUnNgZJ0QEAJCQAgUCoFSr5CCAkZvu3frahZIQkKC2fXFudLR0ZE8Pb3ypVA9+vgThI4irHiwBgcEBNLly5eKs/ml+lg5sU9OTqZWzRtTSkpKqT4/abzlBDw8PcjV1dXyHaRkngRyer7y3NGCAjHno6n/O2/Sf6tWsBXzqvodrFa9BiuFs+mX0b9Rvdo12HqYrmp67/0PqGq16vToQx1p9+5dal2nzg/R6N/+pF07dyjFVDvkNFZSd/K6fXv3KEUVyuKA9z8kWOt7932J/vhttFZU/xkeEUETJk5W1lQopNaKpe2D5waU0YsXL9JjD3ci/E5BYCletHQFDf/+J3q4SweLD4+B0Acf7Ehly5az6P0D1u++/cZt9cvv5G1IZIUQEAJCQAgUIoGiN0sUYmNzqiqDR7rRYTH3h1FwjJr/M3k6NWnS7LYqyleoqLa1e6C9fpuzszN99MlgWr5qLR08cpIWLVlBzzzbQ79dWxj31z/UhzswqPfvSdNo38GjtGb9Znr+hV5aEXr0sSfoBR7dhvzw4y/qWGgL2mSJPNH1KYLb8S8jfyA7thA8xgpqTlK/QUMaM24ibdy8g9Zv2saW1fHU5v52+uLoPMJqMHfBEtq5+wDNW7iU3u3/Pvn5+6syTz/TXbUPnSJDwYg92lyxUiX96oceflStCw0LU5bGtRu20Jbtu+mrb74j7A9LxrffjVDt2L3vMP3w0y/kZtCRQxnUiWOaynfDv6f3Pxxkutroe5UqVWns+L9p9bpNivumrTtp4qSp1LxFS3253NhnZ2erdhvyRGdv6LDv9fsbLgz4YCCN+vUP1SnW1oPLpCkzCOeHc0fnNzg4RNuc62dkZFm2WIwicNu19xDN52uBY8ASbCh5XVNwHvHDSMV5z/7Dqj3Yx1S0exUWyZf6vUK//TFWnb9WzpJ7Hlb6Z7s/R3PmL1bnjLb/OXYCGT47Wn3Wfnr7eNOXX32rnp+dew7SyF9+NXLFHzbiRxo2/Aez1X4w8CP6edTvZrdpKyf8M4Xc3dwJrpq47/CHOg3Fkuv51jv91XOzbede2nvgCK1YtU5dNyg1hqLxbtGyFU2d/q+6R2f+O49atrpPFYN75PRZc+jA4RPqd6ZtuwcMd1fKQ1GwdvfwoG+GDic8L/sPHaMp02ZR3fr1jY6NL5acZ27Pl1ahJUy1sqafe/bsppkzpqnfdWzDMwt304UL5qsBvjD+7YHgd+Xpbt1pObvRasoo1i9etID279tLfV7sh696GTf2T+XOq1lNr19PoNGjflbbq7PCayre3t408e8ptG7dGpr4l85ia1omt+/WtA/PJ+6l06dO6pVR1H327Bk6euSIclvO7Vim2779egi1bdOSWrI7tiVy40a6coeGS7ThnyikltCTMkJACAgBIZBfAneFQprXye/ft48aNW5CPTgW0VSeerobNWflcO+ePWoTOuZQ2Pr0fZFOnjjOiuCPylUMikq/V14z2h2dzdf/9xZNnjaD0JFYvmypisGB6xPiniCIZdJe5uj4xMXFqj8oynlJ9Ro1CYoXOmV7eTT/2NGjBAXVnDz5VDdCh7dcuXK0cOF8dvVaR7Vq1WEFa4QqjvZBAX3t9Tfo7JkzNH36FIqPi6M33nqH2rfXjbhjX3TYbW2NXff8AwLUesNONywGKDtv/hLq3OUh2rljO507e5YQ7/nn2PG0dMVqat36ftq+baviiHb3ZguEJjgG9scxTaVBg0ZUs1Zt09VG38vyfvXqN2Arx176e+JftGTxIqpQngcXeGAA6yF5sYfyWqnyLXdvxKdi4AGDFIaC836p36t0jQc90CmGgPfkaTOpTGQkjR/3J61ft1bFr81ftNRI8TasR1sODAyi2fMWUdNmzZX1Z9LfE7jzd5Vefe0NqlO3nlZMHSO3a+rj40MLebCkQ8dOtGzpEm7HGMK1msGKjqmCg3sVStDiZavo408/VwMiuO8hlt7zGLzAIEMst3Xc2D/UQAk68G+/856+zfldmDV7PrXj+L89bN1CvByUHQwwaBJz/rwavKjGVjBDwWBKv5dfzdMtPz4unrL42t1Iu6F/Bq9fv66vytLr2aFDJ8IA2JJFC2nihPF08uRx9Rvw08/GVjXtt2ECKzKQlSuWq9CC3/8YpwY2fh71K2VlZtGK5UspMDCQ1/2pBnK0BhUFa1zneTyY0I0Hgfaysjdl0j+UyG6nzZrdPjhmyXnm9XxZylQ7Z0s/8YxkclylFk8ewS63sHzv5xh7U9nHCmklDunAYF5uoj130dHGIRWIqcTA1+Url+n9997JrYoct1nTPrwjtm3bQg888KAa7NTcqENDQ9VvIu67ohYMXObFq6jbIPULASEgBITAvUXgrnDZrVK1Gq3buNXslfvw/f60Yf06NVoOFy5YCBJvdkRh8Xns8a60atVKvRvsS9y5hRLYsf39yhUYlY4eNZJgYXnjzbdpwvixlJaWpj8WOhA9X+iuRuKxMiQklDZs3k6PP/EkrV2zml1tFxE6E4g/+vSTQUpp0++cxwKUOLhsYaQfMmvmdBWLWpXPF27KmmAE/9PBX6iODGJMtfahM9WNFSwIlB105ns+313FTWr7IrbI2dlF+2r155TJ/9BPP45QiTewM6w+SCwyfNi3NPqXkcolDp0qKBwtW7WmX37+yepjmNsBbBvVr2UUG/bzT9+z5WcXPcHs4aZnLfsZ06bS/954m5X+J1WslXbcLg/pkn1MnTpZrYL7NZQ61P/aKy/plVQoxnO5w9+zZx91z2j7m34+9PAjyhL6dNfHaMuWTfrNUI4z0jPUd0uu6Ws8GAKLbOcO7ejQoYNqv99G/6IsmJ9yfCwYISGKJvVZUR/F1wSKFNy+NUu4pff8C716KyW0d8/ntCpVHRhYKKjAQvXn77/qrydcDXHPYtAAcXRTp05SgyfPdO9Bn33ykf5wTz39DHee7QlKfW7y5v9eYW+BI4q3qUuiNdfzqScfuy2ZzUcff6YGq2CtNky2g9+G57o/rb82OBdYJCvz70unB9vpE5Rh8AoeFg3Ysq3dD0XB+sWXXqYKnCTnpb491QCGxgvKLyyihmLJeeb2fFnD1PC4eS3DSwO/Y4t40A0KMQSDMBDtd119ufkfkjThd96Hrw3iUHOSRx59TG2aO/tffRHs9/Oo35S3x2OPdMkxtlS/Qw4L1rYPvyl/jvmLPvt8CCFGd9q0KdSdPRMwMDmSf+OKUjC4dezkOcrKylK/EQvmz1PeOYb3dVEeX+oWAkJACAiBe5PAXWEhTUlJVq5ccOcy/bt+M4Z0GisTsBBAudAEFqrQ0DCaPk2naGA9rAdIHmSo8GH9UrbAoZMFV0tD2cjutHAL0wRJMk6dPEFh4eHaqnx9KvdcthJBGdXiiGb/O1N1FEytpA+y1cbLy5t+/H64XhnFQaGYai5m6Lijs4skPoYCtzitE2y43tJlKDeGSg+yVUIm/jVer1zAqoj1DRo24kQdxu7Alh7HtByszprLHa4JOvuwSsXHx1HZcuVNi1v0HRk8waJr16eNXHO7Pvm0ynCMLMcQZD2GdfJ3jjXTLKZYD+serDa1audu3dUs5mXLG1uHYQE/xa56EEuuKTrRa/le1ZRR7IdOOgZNypWvQDXYwm4oM7hDO2L4UP3gixZ/Z8k9j0EFtNvXz8/IlRZ1IO6soDJrxnT99URdE8brXCNxXSHno6MJSWww0GOYCRQWbWRSxbXLr1hzPaHgQGCRq1uvvnJXxu8KxPS+w2+D4bWBtwBkw/q1emUU37X1zVroLJVFxRrsEDsJa3peYs15mqvLGqbm9je3Dsx/YddsWHXhiqoJnkWIpqBq6w3XaWUMt2nLGJRECAJ+ywyzmA9mhbBR46bU64Ue6ndFK2/us0PHzsqiiRAO7U/z8tCObWn7oFif5/hZxLhe4QzAgz76lD0xyiqrtvabhzbA00I7lvZpGC5irp25rVu2dDH9/NMPNOSLz9QnPF76srvzuAmTjJ653OqQbUJACAgBISAE8kPgrrCQwgX15Zf65Hr+mzdtVFN8QLmYNkWngEKxu3zpEq1aqetQQ1kKCwtn65U/IY7NUBwcdKhCWIE17LQYltGWE7hD4eSk66Rq66z9hDUxgF35lixeqKy62D8xKZG2bt1MSHT07TdDlHKK9eXK6xSwnNLyowMfwlbaZcuKfnoTTXm2szMe68B6uIK5cPbL9PR4NLtAAoX9nf4DlFsrrNIQuPHZsFXjxPHj+a57+tQpKiYTgxWbWKGAazLcvT/79JZVrtxNhRdxgqbi5eXJrMNMVxt9X85umgOuDKTvhv3Abswv0ia+N2HNNFTsLLmmQUHBKp7OqHL+cvLECbUqsmxZwoCDJoadWW2dNff81MmT6O1331PxslCEodz8O2tGrpYn7TjWfmJg58aNG8rjQNt38qS/6f62DxCyr86d869yeca1+OarL7Qi+fq05nrCjf6zz79ka+atwRXN/d7ePvefU5wProGdrbH7qPbMYFAJgkGOwmaN5yWSE9tgYM4SKch5on5rmFrSHljzf/tznJpy5aUXe6lMutp+CQk612v8vpiKNniREG8+uR1iehE7vnnzRvry80/1u8Pl/Rm2SnZ/5kmjY+kL8ACNoUARNPUUGPLlYDVYaW37EHOMdmtWaoQQfMVhIAgbqVa9ut5DIKJMGWVFNWxHUlKSCmEwXGfpMryJDOX7Ed+RZv1vxy7EsEqLCAEhIASEgBAoCgK596CK4oglVCc6edPZ9QnuaVAyMOchXHj/mfiX3sLn5uam3LtgcVm4YK7Zlh6+6RppduPNldns7sQV5VYkz21deQ46CJLGmBNYjhC3CHFzdVOfmuVNfTH4D5YFzepisLpIFtW5m6k5K5uZFKJ8y4lZnmSrL1yGYTk+cfwYxcbGqgRUBTkMOl2ff/k1YeACCimsSlAk5vw7S18tsrVCYEnIzMzQr9cW4mLjtEWzn3AdvK9VU3YPfkspV5p1A1bkPr2e4xjHuDyvKWKCcU3T0nRui4YHSk3VZQ524euel1hzz//w/TBlQX7t9Tc5Rvp+9fwgfvSLwZ8YZTHN65iWboflHW6TmmDgCBbo7j2eUwpp9x7Pq2k7VixfphXJ16el1xPurnA9h7sz4gkxz2VU1Dl2BW6b43Nq2qDsHJ4DQ0s79ils1m5u7so7wZxbq2kbC+M8LWVqemxz3zFogoRiLVveR++89T8Vj2tYDvOIQvBMmIor/6ZDkPDOVDDohN9XxJn27f2Ces61MhgcgFKI621O/luzQQ0ulI/UDYYN6P82mT5v2ry61rQPoR1ISvbJRx/qXcORy6DHs0/R5KkzOcb9OWUdxm89PDbub62zqmttzOn3V9tu7ec09h5C7oQaNWuKQmotPCkvBISAEBACFhO4ZxRSEEEMzjvvDlCJgc6cPq3mk0N8jiZQBODyCVfXuXNma6sL7dPWwrkWkZURLptwHV7z3yqj40MJ+ZDnXoV1V1NINXfFcJ48HoqZqUBRS0iIV/PtmW4z/I64IQhiSqGEFaVkZemSA+UnfhXWnk6cSAmJYjDHoCViKXtYqxbMn6tc+NAp7MqcMeUO7gtNTp/SuYcioyc6i/kRKAZwO8QfpvJB5tuXX31dJR6CJTCva4p7FXVo1mHDNmgWWrjc5SXW3vOI58QfFEW4SCMzLizVGOzR7p+8jmnJdsTQYiBFc2HGPlBQYcH+H8dy1+XENhhQ+pmzT5uz/OZ0DEMFVytj6fWE1QxtevXlF5UyoO1fVJ+FyRrPP5SYwKCgPJubn/M0fb4sZZpXY+AOjblIYcl84/VXeKBw3m27wJoOqVylym3bsA6KoeaerhVo3aatykKO5E69evbQK3/adgw2DPzg9mRdaEeXhx4hWA8vXbyoFVcDI/ovJgvWtK9RoyZq73PnzhnVgmdr06YNKhkZlFa4ecMFOL+/P0aV5/JFu65abHsuRWWTEBACQkAICIF8E7hlfsh3FaVnR8ShQYmDMtf1qaf1GWANz2DL5s0qRhDuUKaCWCAtXsx0W27foRBCtOlVciuLbZ3YJRGj/YjnGTvmD6O/MX/+TmtW/6csa5pFYBd3niDduj2rPg3/0xQWlIHblem0Iuigw/UTgrnvIOVvugCrL/xfBCu6hS3oICJRhumxoIh4eHrmejhP3o7Mt8hYbCiwaBhOLYNt1rLHPnBrxFyDSKyDWMxpnFDHULZxZxAWLcRXmRONubltWIeYVwwsaAKL20hWrNDphKskxJJrun37VpVNF1ZOQ3n4kUdV3HFOLtyGZbFsyT0Pd0jD80Jb4UmAzNJIrISkMZogOdMLvfqw5bCdtsrqz8cef1Lts5WfR0NBciOw//X3sawU2yjXVsPtuS3jXoA7vqlYej2RLRViet+Zq9P0GNZ8LyrWh9i7A5mvTeO4TX+XrDnPnJ4vS5nmxgVWSkyr1ISnV+rbu6dZZRT7Q+GEgoZz0xJ1YT1+6+rWrU+LFi3AV70gZnTcXzw91oZ19MJzz9ymjKIgBkIwMGT6h2zikPlz5yjvDPUlj/+sad+ZM6dVbY8/0fW2WtuwEg0pCiUUiZfMDdZ07NxFHXPPnl3qU/4TAkJACAgBIVAUBO4KCylepq+89j+zfBYvXGAUA4QERr+M/kPFOMHNylS++nIwLVu5hidfn8Nuc8NVkiRMywA3Kswniuy753kKCmvkwIF9qhMN6+wozjLrxKP+0dHn6Pix262ZqBcKM0bVtWQnpseaP28OPdD+QZ7uozPNmT1LZZSFqymypWZmZSqLHuLZMCF6h06dqXXLpvTNkC/UFCHTZsyhYd99o+a1q1y5ipqjbwp3vKbyZPFbN29S7fx8yDcqsyKsQV0eelRNK2LahsL4voXjtmAJxtQ5SAyFZEB9+vZTirtpUinD46ETDEswpjFBPC+Sf1SpUo169emrlL3oqCh9cWvZY0d0OlF/L47vjGJLBbI0GwraivsIU9xACUYcJayVsFzAehLDCUkG5DJFBK4TEp4g+RDc7pD5+Zlnu6sOoZZ0ClmC87qmI4YNVVP5jPvrbxr67dfKCo57B23AdEWasmDYdnPLltzzaWwx/2/tRjXFDRTRCzExVJWznSJZFnho7omo//nne1HP3n3J3PNl7vhY9/obb/L5LiDEwMEdHfPlIq4WsX2GguuB+SChfMBadunSLSuVYTlzy7hPEH+KREi4bzAQg6Rhll5PTMeB8/r622E0+Z+JfAgbNSDwtJmBIHPHt3QdBmSKgvV4nqoH87WO5yQ1EyeM40EXD55e5/HbBg6sOc+cni9LmebGBLG6DRs1Vi75mF4JgxyGEnXurD7+fxJfD8x1PPz7H2kCzxWKwTrEO9uzN4Vh3GyZMpFq/l/cr7iPnzJz7Rayh4Q5F1/DY1u7bGn7kPAKiflg/X/rnePKq8eB42cf4euEd9DfE/8yyuScVzuQkRiJyPxvzjUdWTZSeTZgUAcWeE0eZyUdLvBT+D2AgSxMj4T5hZGZGe+h/1YZJ8PT9pNPISAEhIAQEAKFQeCuUEhhoRnIbqzm5Pixo0YKKdwvYeFwcHBUrpmm+8BV8pEuHejzIV/TUJ5zURs1RkcZcwbGJ5hPjmFaj+F3ZE9FUpyerNBOm6lzBUZqf3MKKaxQzZq3UFZR07gyrU4kxYFb8RMcZwqFFPLeu2+xkhvNVruXea7RN9U6uJmiIwSBdaR7tyfVef0xZrxah//Q2UAMFQRK4LCh31D/AR/QmHETlXKKuL2vv/pCZXpUhQrxv6+GfK7m/Hz/w0GqVihQ33z9Bb388mt5HuXNN14jzOmIpBsQuCT+NnqUSvhkuLM17A33gys3sltO5/lazV2HQR9+wNmUT9Grr/9PKWXavmCIuNbcBApuC1a6fhw5Sl8MHeCPB33A99iteMi8rinmpsU0PuiEz567UNUFy/PIH79XU/HoK89jwZJ7PouT8axcsczo/kK1SMQ0aOD7RkeAWyOs30g8ZKnUrFmbevd5SV8cU4q89+7tA0YogIzXUEjRObdGvmOlHZZpxAjD0wH3BhRSiCXXc/68uQSXSmX9vWmtgsIM900o0IUlyfxbUxSs0f6KFSur6XOQgAf3Nc4fVkAoI5pYc565PV+WMNWOae4Tgz0QxHHjz1RWrVyuV0gxKIQs6B8M/EhfFvdg717PqwErbV9HJ0d1D2AQE9OqmJPdPBhU2Aqppe1DqETfPi/Q5198rfIdYBBTFyuepqaS+mHEMHNNznFdf74vkfFYk27P9OBM8j3U18jwW+7b+N3C/aD9nqIAvCDwfkGyJ3O/gVqd8ikEhIAQEAJCoKAEbNgNVRfMV9Ca7sL90SHCyDziCmERsiZWLScccAWGNc1S61VO9eS0Hgo0XGxhKY1hS665NsPdNSQkhM6zFRZtMRW4zcKt9BTHSkLRK0pBPKiWURbZYdEJslTgelipchVVHAMPecW9FhV7xID6sRUiKjrKLM+czgcdaEwPlJh4XV0rw+lzDPfJ65qiw4prDkurJRwM6zZdzuuex/VCxmbcQ7BEm94fsDpu3bFHdZ6HfvOVafW5fgdH8DjDg0K5PR+YszMsLIzatmmZa305bYRbt7+fPw/gROkTmhmWzet6YroNJEbD86XFBxruX1jLRcUa51+hfAX1fGOu1JzE2vPM7fnKi2lObbB2PZhVqFBRDdhp7q/W1lGU5a1pH+a1xVRCiBXFVGI5Ja0rzPbidyyYB0WhgMI12NxUNYV5PKlLCAgBISAEhAAIiEIq94EQEAKFRgAuw5hGo2Wzhla7tlvSiCpVqiqX+sHscTB+3BhLdrlryxQ167sWnJyYEBACQkAICAEhcEcRsL2jWiONEQJCoFQTgLvu8mVLikQZBRjEtMFSNGvmjFLNqTAaX9SsC6ONUocQEAJCQAgIASEgBPIiIBbSvAjJdiEgBCwmALfhdI6DQ4xzUQgSEmFeR2T3vdelqFnf63zl/IWAEBACQkAICIHiISAKafFwlqMIASEgBISAEBACQkAICAEhIASEgAkBcdk1ASJfhYAQEAJCQAgIASEgBISAEBACQqB4CIhCWjyc5ShCQAgIASEgBISAEBACQkAICAEhYEJAFFITIPJVCAgBISAEhIAQEAJCQAgIASEgBIqHgCikxcNZjiIEhIAQEAJCQAgIASEgBISAEBACJgREITUBIl+FgBAQAkJACAgBISAEhIAQEAJCoHgIiEJaPJzlKEJACAgBISAEhIAQEAJCQAgIASFgQkAUUhMg8lUICAEhIASEgBAQAkJACAgBISAEioeAKKTFw1mOIgSEgBAQAkJACAgBISAEhIAQEAImBEQhNQEiX4WAEBACQkAICAEhIASEgBAQAkKgeAiIQlo8nOUoQkAICAEhIASEgBAQAkJACAgBIWBCQBRSEyDyVQgIASEgBISAEBACQkAICAEhIASKh4AopMXDWY4iBISAEBACQkAICAEhIASEgBAQAiYERCE1ASJfhYAQEAJCQAgIASEgBISAEBACQqB4CIhCWjyc5ShCQAgIASEgBISAEBACQkAICAEhYEJAFFITIPJVCAgBISAEhIAQEAJCQAgIASEgBIqHgCikxcNZjiIEhIAQEAJCQAgIASEgBISAEBACJgREITUBIl+FgBAQAkJACAgBISAEhIAQEAJCoHgIiEJaPJzlKEJACAgBISAEhIAQEAJCQAgIASFgQkAUUhMg8lUICAEhIASEgBAQAkJACAgBISAEioeAKKTFw1mOIgSEgBAQAkJACAgBISAEhIAQEAImBEQhNQEiX4WAEBACQkAICAEhIASEgBAQAkKgeAiIQlo8nOUoQkAICAEhIASEgBAQAkJACAgBIWBCQBRSEyDyVQgIASEgBISAEBACQkAICAEhIASKh4AopMXDWY4iBISAEBACQkAICAEhIASEgBAQAiYERCE1ASJfhYAQEAJCQAgIASEgBISAEBACQqB4CIhCWjyc5ShCQAgIASEgBISAEBACQkAICAEhYEJAFFITIPJVCAgBISAEhIAQEAJCQAgIASEgBIqHgCikxcO5WI/Ss3dfat36/mI9Zm4H6/fKa9S0WfPcihRom42NDYWFh1NEmTLk4OBQoLpkZyEgBEqWgL29A3l7exfoWW7b7gF6/oVeJXsicnQhIASKlMALvfpQm/vbFekxpHIhIASKh4AopMXDucBHORN1kfL6W7N+szrOq6/9jx5o/2CBj1lYFbz11rvU6r7WhVWdvp7IyLL018RJdPDISdq4eQet37iNjp44SxP+mUIdOnbSl7NkITQ0lL79bgRVqlzZkuJSRggUCYE+fV/SP+enz12g3fsO05z5i+nJp7oVyfGKq9KgoGD9eeF37NTZGDpw6DgtWbbqNsWxdZs2tGf/Eery0CP5bl7HTp3pxX6v5Ht/2VEIFAcBw+f95JnztH3nPvVMDBvxI9Vv0LA4mnDbMUyf1UNHT9HqtRtp4KBPyNPT67byea14b8CH1PXJp/Mqlq/tL7/8Gj3YoWO+9pWdhIAQuLMI2N9ZzZHW5ERgwHvvGG16//2BdOXqFRo39k/9+sTr1/XLd/tC06bNleKZnJxMn30yiPbu2U1eXt5Uu04deuXV/9Hgz7+ipUsWW4zB28eXnu3+HC1euICOHT1q8X5SUAgUBYGBH7xH8fHx5B8QoDpzI34YSW7u7jRh/NiiOFyx1Tl92hRasXwZ2dnZkY+PDz39THca8vVQSkxMpNn/zlTtOHH8OH337dd08MD+YmuXHEgIlCQBPO8JCQnk5+9PlSpVpie6PkVPd3uW/vdaP5o/b26JNG3mjGnqWfXw9KTGjZsQPJ1q16lLz/foRhkZGRa36eFHH6MtmzfSrJnTLd5HCgoBIXDvERCFtJRc8+lTJxu19BV+OZyPjibT9UaF7uIvAz/+lNLSUumJR7vQqVMn9We6ZcsmmjtnNg3i7SJCoLQSWLVyBV24EKOaP3XyP7R46UqCp0FpV0iPHD7EA0WL9Jdl4YJ5ygrciDu8mkJ6+vQpGvXLT/oysiAE7nYChs87znXEsG9pyrRZNGzET3T82DE6dOhgsSM4dPAALV60QB0X/YxrV6/Sy6++Tg0aNCK8Z0WEgBAQAoVJQFx2C5PmnVQXx1U+/sSTyt0PLq1wjWvWvIVRCydOmkrPPNvDaB0sMtNnzaEWLVvp1yNOY8y4iVSlSlX6c+wE1YHcvG0XvfVOf30ZbaFy5SqEevcfOkY7du0nWHYcHB21zfrPSHa3/WPMeNq6Yw+75x2mfyZPp2rVa+i3Y+G3P8ZS3xf7UUhIKA366FNVBu1t3aYt1a1bj0aP+tlIGdV2vnTpIr395uvaV3rjzbfV+e/cc1Ada8ny/9SL1dZWd/ujLcOG/6DKf/TpYHX+YIBOMuSxx7vS7HmL1HnDNXj8hH8kbkWRkf+Kg0BaWhot4o4hrCeBgUHqkHCdGzrse1q/aRvtO3iUps34lxo0bGTUnN//HEev/+8to3XYx/S5/W749/T2u+/pyzny8/rBwI9oxap1BHc9PC+wZBpKTs+mYRlLlmEZzczMoKtXruiLl69QUT2DNWvV1q/L7Xiurq70xZdf06YtO+nA4RM0beZsql69pn5fbUGeY42EfN7pBGJjY6nXCz3o+vUE+uqb74yaW7t2HZo8daZ6l+GexzsW3gamgvfp35OmKdd4uALDDRjvZngC5Ue0AaPqNXTvaeSFwHty01Z+7tj9ft3GrYTfEryvNfnp59Hqe9u27fXv1Tfe0nl7af0KxIz36v0i9wf+oh9HjtJ2JUvPU7+DLAgBIVCqCYhCWqovX86Nh7vPAHbr3bZlM436+Sdy9/BQHVjDPRo2bEzhERGGq8jJyYmaNGlGfn5++vVlykRS27bt6N+5C9ULcvSokQRLx7v936caNWvpy1WsVInmL1pGiEH58fvh9P0I3YsUiYaQeEgTlFvMCnJAQKAqN/SbrwhuQf/OWaD21crVrVefnuGX54pVa1VMbHZ2Nnl6efEIrS62Zga7/1kiZcuVp21bt6hR58GffqyYIB7m9f+9qXZPTEqknTu2q+V9e/fQujWr1R86yYh9wUsVo8UfD/qA/vzjV7Jld8NuzzxryaGljBAoFAJOjk6E+z85JVkl+5kzbyEPzNxPv/86igZ+MICfy0SaMXMONW/RUn+8zMxMNSilrcDzht+F3n1eInt7nXMMlM8nuj5NcbFxqhgGaaZO/1e5DC5dukgN7OBZ/3bocKPBq5yeTe1YlnzCxf79DwbRFX7O4B6oibubm/oN8uJnXZOcjof2TmZL0pNPP0OzZk2nzz/7mHZs30bBwSHarupTnmMjHPKlFBCAhwQ8COrUravey2gy4kpn87OfnpFOn3z0If088gdq0rSZeu+6uLjoz6p6jZo0f+FS8uLkYN9+M4SGDfuG8Ky0atVaJf/TF7RiAb8VkCQOk4GEhYVT7LVrNPbP32nQwPdp0j8TuZ/QXg3YqgL8H967CKvBuWjvVfyeQNCvwMD3wiXL6c233yU3fu61GFVLz1NVJP8JASFwVxAQl9274jLefhJwqenXtxelpqaqjTt2bGMrymyCMggXIGslla00nTu0ozNnTqtdx/zxG23bsVcpigf271PrBn30mYoteezhTpSSkqLW4SXVsWNn1ZlWK/i/Twd/STHno+mJxx7Sr1+0cD7t3H2AXujVm4YN/UYrqjrf3Z95kvZwjKgmo379QynGV9mFyBLp/45O8dTKYqQ3KDiY2nfoxC/0H5V1ZsqUSXzsPjSP3X3XrPlPK0off/o5wYVw0IcD9OvGjxujYvv0K2RBCBQhgapVq1G3Z7urOCzEiffu8yKVK1+BHmh7H504rnuWF8yfqwZ0Pv5kMHXu+IBqzYb166hzl4eV9QQWFyT6OnniOEWWLae8JdatXUOwQmLAaOOGdWofKHawtHZsf7/eTRAutt5sgXn19TdoKj8nmmA/02dT25bT56CPP6MPeTAInWPEkUIwwBXN4Qd5ibnjQdGsxwNXL7/Uh5YsXqivwp+tyU04zlwTJEiS51ijIZ+lhcCe3bv5eXdQsZtQ7uApdPTIEer1fHf9u3Pt2tW0dt1m6tO3n97V/bPBX7AimERd+R2bnp6uTnfalMm3vYst5YAB7f7vf6je6+vXrVG7ISbUNC70fHQU/Tzqd5X1Pjoqiv75ewK99PKrdPDgfvWuNT2eo6MD/T1hvFJmMeCmiaXnqZWXTyEgBEo/AVFIS/81NHsGZ06d0iujKHD8ZscVVtF8KaSsYGrKKOrLysqikydPUKNGOrdWWEBhnVnL1kVNGUU5U4FlpgWXW7RwIT3y6ONGm6P4ZYaEDoaCUVVDZRTb3Dm5C0ZdrZE6nIyhGR8XLsW+vr7KsotzyEv279tLmEICLo1QVhGvihfnlcuX89pVtguBfBP49rvhPLiTyR4DQepePXniBL3/3ruqPrjKwWKvKaPaQebNnUOff/mV8oaA4gqFFM9lw0aNafmypdSxUxe2RE6nxk2aKEUVCim8DS5fukRHjx5R1bRu3Yaizp2jyuyejz9N4uPilEUDSqHWwTX3bGrlc/rEYBDi5SCwuMBDo2fPPtSp80PUpVN7SmIX3pzE3PFatrpPtWetwSCSuf3lOTZHRdbd6QQSEuJVE7VpkGA5HDFsqF4ZxUY8rzt37qAmzZophRQDPQ34Pb94EVtSbyqj+TlPDE4hbMWH35cYFINr7QcD3lW5K7T64J6LZ7Be/Qbk7x9AETc9ruAlBYU0L4mPi1dKq2E5/MZYcp6G+8iyEBACpZ+AKKSl/xpadAZpqWmqnOaqZ9FOeRSC9RUvDwhc5OAytGnj+lz3Cg4JUS+2WrVr3+YuDIvnxYsXc90fG09w5xxzjyHraG4dWJTFSxSd+6f45QpXvgMH9isrkQvHnZVlS1FeMm7sH8oa+iYnlHnn3QGcCTGerUST6Ve26lxjdyURIVAUBNLTM5SFY/36IwSL/Px5c/SdS7jKXb5y+4AIYqch4bz9MLvFwSKITiEGjbZu2cJW0eb0EbvWXb58iZN+faZc0GEN3bhxg/4U4Ebn7uFOvdgKayq7d+/iZ9yV26HrJJtut+Q7FGm4IRrKClaWEaf64IMd9YmNDLfntgx3/D3crrwGqOQ5zo2ibLtTCVSvXkMpn3h3QfmDsmnu2b948QLHTetiO+H9g/fy9u1bC3RaWezyn5Z2gw4fPKiyz8NT4vz58/o6H+HsuUi6hNAWeGQdPnSQt0cR3IUNQ3T0O1i4YOl5WlidFBMCQqCUEBCFtJRcqKJqZkEVVM3NBslJIKHcGc5NkKkP+/wz8S8a8+fvuRXNcduxm9aclhx/ktfULk151BjK6PsD3iG4LGmC5E1mFVK2KBlKHFuG4K6LeNj6PAp8f9sH6IWevblzEMIp+V82LCrLQqDQCCA+DHFX5uTq1StUo8at2G2tDKwoEEwHpcmG9WuVlQPzEh85fFh5OcB9F3PuIvZMWSKGD9WKE+rOQOzpI53164p6AcpzZkaGag8sqNYILMEVK1bKcxd5jvNEJAXuMAJ4N+N9A48mDH4iuRmkJit8003a6u3to2KxsRpxnRBTbyO10or//p01I8d3NFzuvxjyLa1ft5Ze6ddHP1gGbwzEqGv9Au1wNmT8XtXWm/vEbxAkr/M0t6+sEwJCoPQSkKRGpffaFbjlSC5gmBEPFRomRrDmAMgGCDdWLeGQti9GdG345aUJLBmn2NUXMV14qZmKljjBdL3h93lsLUJnHVYeDw9Pw01qGaPDWibBWrXqqHX/rVxpVA6WU0NJTkpSX+EObCgaD5zbsqVLOIHMe8qK0+b+tobFZFkIFBuBg2xlDAgMVFmvDQ8K1zm43xq6k69nt91anJUTGbcRpw2BlR9xYC/1e0UlEdu44ZZXw769e6kmJyorx5ZHU7Hk2TTdx5LvcAu048730SOHLSluVAa/JaFhYUbJ0FDA9PmW59gIm3y5wwng3fj1t98Rknl9N/Qr1dokfkchbAbPuaEgvhOJjxCnCUHIzPFjR6kZu/YjA7UmYeHhZjPea9ut+URdyOyLAS9Dt2BzA9x4t6KNloql52lpfVJOCAiB0kHgdo2gdLRbWlkIBJYuXUwPcmKfRx97Qk2jguQDM2YZu9NZc5i///5LxZIgYx5iNjHNAjL9IXueoQvPF59/piwzv/0xTn3i5YaR4G84kycSnuQlcNOFBSkiPIKWrVytsn8i2y+yAyN9/OKlqwguthB03iEDP/pEHQsv86+/HUY9nntBrdf+i+b4VVhbXujZS00/g/aHhoaqtPnvcTIHfEfsaVNOlNLugfa0a+dObVf5FALFSgCeBfBIGPzFVyomGtZ+zA+IOMwffxhu1BYomxigaXVfa1ZIF+i3LVwwn2Oj29O5c2fp3Nmz+vV//P4rxcZeo7/+nqziTBHjCSsq6p/Hz3JBpQrHoiGWFcmWMJXMJ599QWPHT1TxsNOnT7W6eiRNgTUG003g+ceUUJgG44muTxnVhekv5Dk2QiJf7iACyFPw0MOP0nPP91RTLm3YtJ0zufegD3kAFAOhmiB7fQX2CMA7FlNAla9QkX4Z9Rs/44702+hRWjH26BnGCQwrE6Zn+/Krb+nX38fQ8pVr1W+B4btYv4OVCzHnYyguLla9R9s/2EFN0fLiSy/zccaqmgyPAQ8I/P7g2URSRUznkpdYep551SPbhYAQKD0ExGW39FyrQm/p3Nn/0lNPdaORv/yq6kbM2dBvhtw2PYylB/6V5wUtX74i9X/vA/WHkc7v2R0QcV6G8t+qFdS39/P08SeDaTZPJaMJkrQM54QNlghe0sgmik75kK+Hqhct9svgdPibN22iCX/pXoxrVq+iEdwGJE5BJxWJjJCNE9YiuBdpglHe9/q/rZ+zFOt79+zB2UfXczxdX16vmzsNMXlIEPMDv/BFhEBJEEDMVvduXdV0RMt5SiQI3PkwvQOyWhsK4kWRsAhTwCAJmSZ4fvCsaNl1tfXwdHjy8UfUc/XL6N/1mXDj4+Osju/U6jT8xLQz+INAqb4Qc54m//M3/fbrL2pAyLCsJcs4twH83GKQCXHlUE6RcXjF8mVUqXJlfRXyHOtRyMIdSACDsXg3wZ0eLqvr1q2mSX9PvC2hH9xoMTXKh4M+Vu9YnAoGlXo8+xTF8LOkCeK0+72YTt154LUhx4njOXni0S5qPu34+PzHgGv147fj9Vf70YcDP1ZzlGP9saNHOd79T327tLJ4V7q5uauBJwyOYYon08z3Wlnt09Lz1MrLpxAQAqWfgA27XdzKtV36z0fOwEoCcKktV768ysiLbH2FIZjDFHMeIrNvBseG5SZwuQ0OCaaLFy4qV8Lcyua0DecQEVGG7B3sVRIXc1l+4cJXtVo1zhAYlWcyIrgxp/B8j4g7g2C0F6PRzs7ORpmGc2qPrBcCxUUAVnx0UI8fP64UzMI8LjqPEZzkCC53SJpiGhdWmMcqaF2YPxmWI1h7oVSbE3mOzVGRdaWRAFxjy5evwHOCJlmUzRbnCE+KHbv2c8xnX87Ae8tboqDnj+cugwd04U6cm+B3yt3djRXnGIt/S/Jznrm1QbYJASFw5xIQhfTOvTbSMiEgBISAEBACQkAIWEUA2bIRm71r104e7I1RcdbwSEIG3DatmhG8l0SEgBAQAncSAXHZvZOuhrRFCAgBISAEhIAQEAIFIBAYFETf//izUQ2YQ/u1V14SZdSIinwRAkLgTiEgFtI75UpIO4SAEBACQkAICAEhUAgE/Pz9qQInPUKoCcJxzp49k2cITSEcVqoQAkJACOSLgCik+cImOwkBISAEhIAQEAJCQAgIASEgBIRAQQnYFrQC2V8ICAEhIASEgBAQAkJACAgBISAEhEB+CIhCmh9qso8QEAJCQAgIASEgBISAEBACQkAIFJiAKKQFRigVCAEhIASEgBAQAkJACAgBISAEhEB+CIhCmh9qso8QEAJCQAgIASEgBISAEBACQkAIFJiATPtSYIRSgRAQAkJACAgBISAELCPQunk9atW4NtWvXYU83F3N7pR2I5227zlMW3YcoMWrNpstIyuFgBAQAncLAcmye7dcSTkPISAEhIAQEAJC4I4l0KltU3rqkfspIjRI38aMGymUlpRAmRlpap2dvSM5uniQg7Obvkxc/HWaNnclzVywWr+usBcC/X2oXs1KVLtGJYoMD6KwkAByd3WhxOQUuhYbT1Exl+nYyXO0e/9x2n/4ZGEfXuoTAkLgHicgCqnJDRAQEMhzdaVTbGys0RYXFxdydXWlq1evGq2XL0JACAgBIVC6CYSHuFCVch4U5O9Eft5O5Oxoyx3xDLoce4NOnUuiQ8cTKDk1s3SfpLS+xAiUKxNC/Z5/lBrWqarakHL9KsVfPEsJl85SWnK82XbZO7mSV0AEeQWXJTdvnQJ77FQU/T5hDu05eNzsPvlZWad6RXq0U0tq1aSuxbsfPx1FS1ZtoblL1lm8jxQUAkJACORGQBRSpmNnZ0fv9B9A3Xu8QJSdTSdPnqAnn3hEcbO3t6evvvmOOnbqTMnJyXSNFdIX+/SkmJjzuXGVbUJACAgBIXCHEwgLcqE2TfwpNNAlz5Zu3x9La7Zeoays7DzLSgEhoBFoUr86DXzzeXJja2N6ajJdOLGb4mKsUyg9/SMoqGJdcnb3UdUOGz2Zlq3eqh0iX5++3p7Ut8dD9GDrxvr9Lydm07VEosS0bEpJ5+4Qb+EuETnaEXk425A3exf7suHWxcFG7XPqzHn6lRXkXfuP6uuQBSGQE4Hm9epSZGgYOTrY0430DKNiZcNC6eCJk7R1716KuXzZaJt8uTcIiELK13nI10OpevUaNGL4UNq4Yb1SUDMydA/LI48+Rm+89S490qUDpaSk0OAvhpCfXwC98frL98Ydco+epbenA/l6OZKnuz25udiTh4cDJVxPp+tJ6RR/nS0n19IopQQtJra2tmRjY0OZmdZbbcTaf4/e1IV82k5OzhQYHMrPhhc5ODqo2lNSkikhIZ4uXzifr3uzkJuYa3WN6/hQ60YBqsyNTEdKSPXhjrgn3ciAcppNtjaZ5OKYRJ7O8eThFKfKXYm7QQtWxrDlVOdemesBZOM9T6BZo1r0xYC+ikPchdN0/vBmds29kW8uoVWbkF94FbX/j79Po4UrN+WrrppVy9PHb/ckP18vtf+Zq9l0Ljab733Lqgv0tKGyfkTuTjrFdOzkBTR1zgrLdpZS9xwBV/Yw/PS1V6l6hQoWnftvU6fRorVrLSorhe4eAve8QhoaGkrrNm6lro89TLt377rtyv76+xg6dOggjfzxe7WtWrXqNHfBEqpaqSyPlGfdVl5WlF4CcNkrV8aNyke4kptz3vm+rsWn0clzyXTiTBKdjUku1hP//Muv1PE+++Qjo+Ou3bCFIiPLGq17f8A7NG3KZBJrvxEW+ZJPAp5ePlShcjUKCYvIsQYMlESdOUknjh2mVFZS7zRp1dCPmtblHjXLlaQgunw9NNcmujgkU4BnNLk5JFJKWiZNXXCOrrA7r4gQyIlA+TKhNPLrd8iJB2sunzlIF45tz6moVesDytai4Ir11D4ffvUr7dhzxKr927aszxZb9gZjgUX01OVsHoixqgp94XL+NoQ/yPxl62nkmJn6bbIgBDQCn7Ay2qhmTUpLjaOkuNM8mG5L2VnGg+mOLj68LoM8fCuq3T4YPoIOnTypVSGf9wCBvHvddzmERo2bqrjQjp270IeDPqGkpCT6a/wYWrd2jTrz4JBQWrF8mZ5CVFQUOTk5kY+vL129ckW/XhaMCTg6ciwWx+MqC4qnN7m5uZGdvc6KopXMZoU+JTmJ4uPj6Orli3SF/5KT2F+oGMXezobq1fCm+tW92Rp6q33Z2Q7squRKWdnObCxhfyUbdD4d+S+DbG1T+Qc1iS2oTuqvYU0funA1lXbuj6MDxxKKtPUPtH+Qvv52GAUGBtGEv8aaPVbP57vThvW3Rhc1K2rnLg9R/QYNqWmjenpr/6CPPxNrv1mKstIcASiiVarX1m+yYXc+/BlKNvdPEQYRWb4ShUaUpQN7d9D5c2cMi5TocpXyHnplNDo+khJSfPNsT0q6K529WonCvE+zxTSWurQJpgmzz+a5nxS4dwm8/78eShmNPX+80JRR0Lx8eh/Z8vMVWK42fcRWzp5vDKHriZYN+sAyqimj565l07FLJg+vlZfr1BWdMlsrzIYefrAlJaek0ZhJ862sxXxxeCkF+TlTgJ8TubvZk7uLHeF97cXr4xPSKTUti5JSMiiWly9dTVN/qTxYJHLnEYAympmZQeePL2IPgZRcG5h+I5F8g+tSh1YtRSHNldTdt/GeV0jDwsKVa9npU6fov5UrqXadOjR2/N/09JOP0e5dO/nHz5PS0m4NH6alpaq7wMvTSymkQRV0I5V3362RvzPy9vamkOAQCgwKvK0CW3RUb66FbTmT34Ue/ImSlW6uv3Ytli5dukgXL168uaboPqqUcaAmtZzJnWNjIFlZrpSZ5cefXjxSZz4Vv2FrbG0TWDmN587BFarom04V+SRirmbQ5v1pFHOlcF+MV6MOU0ZaihocwQDJx59+zhZPjaZhq1hl5qRc6ekcAGQinTo/RPPnzVHKKDbBagprP9x/xdp/C5a9kwu7xemSr37LXQAAQABJREFUj9xaK0sVK1SksPAwBYK9WVWAmakyqlHKxgzX/Fjhs2X7MnTi+AmKio7SNpfoZ5eO7tzBtaWLbBXNcg7i59/y5iTYBJGv5xEq75tKnbuE0o7Dt94Nltdyq+TFE7d75dzaKkuFScDVK4A8/MMLs8oc63qqQ0OqWqUSZ8+NVzGjSFBUmHI16ih5+IWRLyc9eueNl+n36avzrN7L3YW+fO9pcuC2RMVl0+n4bF4m9fuPdwAGkaDo2nIoCMJBjATfOXY6OzuL35HZSrnI5AHlLPaEYC92OnTZhmqH29BzTz9MqbZetHzjAaPdLf1SIcyBIoLs+I/DZFzxI2JeQs2vpovXMunMhQw6FZNOV+PQyyh+uZGSSLHnjxX/ge/wI2ZlJOepjOIUUpN0fb+q5coV2hk5ODhwaImHSlaajaDoAoqzszPhLy5OF8pRwOpKdPe8zqWw2eV2sve8Qoqbcx8HUU+dMklx2rJlE9WtV586deqiFNL4+HhydIRlTCfOzrrkF7DqQaRDoePi5e1DlarWZIso1MtMSrwWQy48mulmb0tO/F5x4mX8M5U0fqlhUDOZtdPkjCxlgwwP9CIPhww6evggXb5Y+Mmj8MLtfH8wVWNLCfHAckKiJ79gg/hPlzCCKJ6biT9LBI9QML/ML7OCeJ48bNKofS2iDTuu0MZd1yypoNDLvPTyq/TwI4/RqVMnafrUyXTtmq4dYu23DDUUf3mujVlVqFSVvLiDiOfaFv08S/t6/Oxn8V+QryudORxDVy5dMK64mL/Vr+FDdmkB7KoIi2cwHz3G6hacTLSjMr4xVNE/ixadOG71/rJDyRBIjr9M+CtqQfKiLq2eo/S0ZDqzby0PJPJLpgjk3P71VLn5o9SqXiRNmXqFjp06l+tRer3eg2M+ic5f5azR52047tuJHNhryc5wYDM7UyUxUl12vK55AQPJhnm88N2W3+sOBLdLO0rnmNhLHL5ygPetHGhDj9xXhRbNn0fX4izzFvJwc6A61byUl5ITZ7dWwuP+19PYY8kGijz/2bDHEh+RbDAIix8fLpedzt4ZGHiF91IS2WQlESbKqc6PNf6iLqTQ/mPxtO+IZe3gXYtEfHx8lKKfk0ddXjkd/Pz9KSkxkVJTGUoplox0y56DrJuuvNe4722tlCkTST+OHMX3tL3yZETel1T+++fvCTT6tz95SqMqyiPP2npNy/d98WXq98qrVKem5QPXHVmn6Md9MxhtMIvHN19/Sdu3bTWtmg0bleiNN9+hIV8MpsuXL922vbBX5HUuD3boVKjscmv/Pa+Qnj17hpC4yFScXXTD5simGx4Rod+MZVhMtWlh4DZzrwtiFsuWK6sw4HXi7WBL7vzngDdXHoIXiCZZPDiQmJHNI65Z5OYTRKHlq1PM+Rg6fuIYj8Ra2gPWajP/6etlSw80diV/L36xsStuekYEK6KBeNUVUJCWvya/4M/xj2EMPfhAEJWrkk7Lt1j2I5zXwa9FHyPMV5eXTJ70N/8Ap5IDZ7Hr0LEzZ45+nrp0bE/Xryfkae3Pq27Zfm8SQNKiKjXqqJO3ShnFHvzY4jcBSmnNOg1o9fKFqp6S+q9aRfhkEF1LCsx3E5JueFDSDXdyc0yk6hU96SBPCSMiBDQCXR5oxq6ldhR/6QwlXo3WVhf6J6aLuXL2EPmXqUaPdGhBI36bmuMx6vDcog+0bkTp/M6LTnQiD3Z71QSvaRf+6soJipz405lfjdx8tpJqJXSfyJ93g//SMtiKxXpgEmfiZZWQB+yd1F9ceiZdSEqjYC8P6vFEe/p53CzjCky+OXEfoWUjf6WIapuyoYDasIeSrTev0g3+lwljrwQfT/L0cCMXZ7jvulBsfCK7B6dwosEkungplq7yPKnKK4MHkm2y2FjAf+HBLuoPseIbd12lA0eL9zlFfpKpM2aTv3+AUorOn4/mxJnf0X+rVqjTzSunA/qaY8ZN5Pe2F7m5u9HcObNp8KcfcX+FL4KIWQLozz/x2EP02ONd6aefR1Prlk3p9OlT1OWhR1T5L4Z8TS1atFJheb/8/JMKf4I3wMAP3lPLKDTowwH035oNtG/fXmrUuAl79xynl/r25IGabFVn8xYtKfH6rdAyXCcokO3atafVq1exIvkZ1albnwZ//iX9++9MqsvLM2dMo9/+GEv9XuxNS5csIk++pmXLlqW33ulPfV/sp7zWNqxfR++9+xYN+WooNWvegho0bESjuI1nzpxW5WrUqKmMZ89262p07rq27qMmTZvS4cOHaPWqlfTyq6/T8qVL6JOPByr9xbR9GNwAH9NzMdcew4OhPMrk1BbDsvlZvucVUsTaYVqX1q3vpzVr/lMXr02btvTG/15RPHHzvMlZdv/4bbQaoer2zLN8Qy3WuzhePpM/15T8XKw7bR/8oNap35gCfVwpOe4SefILxpfzw9vxCyuddSeMXVoruCH9+S+WldJr/PbzcrWjihFBtHfnVqVUWVufYfkAHyeeay2YXLJT6HqsO2Wkl+MRXpQozFEoJx4N5ayjDicp1COTWlVJon+XWW+FMWw3lhFva4n8NvoXfbHx4zgWmhN2tWjZipYsXsgjg7lb+/U7yoIQMCBQvlIV9c1qZVSrg29ddG5d3dxVMqQTRw9pW4r9MzRAN9AIpbIgksz7QyENC3IWhbQgIO/Cfdu3aaTOKjb6RJ5nh5/1a9dT+T3nyO8MDN1YJxiohELaqmmdXBXSrg8/QEkchnIxyZH9l3QuiwhV8Wadz1KXdSipHMbJmae1NtooxZSbT/HJqNOOLqe4kqtzNnXq0JYmz16hFEWttOFnrSqe1LpxALk4cYUs2bac0MY2gJfc1fegAF+qVD6CykeG3O4+jFKslBpKfEISnTwTTUdPnOPYUs4cbBvJlXKOj6zL5M2Peuf7gjnDqyet236FLlwuHktjRkYmfTH4E1q5Yrlqap++L9Ggjz/VK6R55XT49LMvaM1/q5QlDTk4Fi5eTg+076AUGsNzl2XLCezhxKXot7762hv026+jKCTk1v2FZc2btzyHpyCZ6Z+//0qffT5EKYgRbH2FlRNKY736Deihh3VK7muvv0nu7u7UpVN7mrdwCXXgKSKhsKKOWrXqsJJ4kOpzeYRFafcCMtHv3buHvRQcacmihdSwUWOlEM9mBRZKLBTSod8Moa1bttBfEyfRlStX6OHOHahps+a3nSyOc/DgAYIx4t3+79PZ06fVPfJCzz70/YjvyFz74Olp7lzWr1t7W3sMD/gJh4rl1hbDsvlZvucVUviAD+j/Fv3w0y/KtTGSRy1+HvkDrVqpG8VauGA+3cfK6tYde9RNdj3xOvXu2UPP2jRTmH7DXb7g4upG9Ru1IC+4o/ALLpBfLK7sxsNvAfVQB3LSp/CgIAoOCCAfz9w7fwmcSOrS1WsUzXGjUTdjR715njM3O47zSs0iTy9vatKiDe3YuoGuXcmf8ujKb9IubQLJm6dxycr05BjLitxOvAx1L+fCvFyZGd6sQFbmDsZxKh/uSg/fH0jzeKqI4hZMXYR5cxE7AcnL2l/c7ZPj3fkEHJ2cKKxMOV1DLRsTMXtSNrwvHrfQ8EgqSYUUjUvLdOY4uIK9+tLSdYqtn7e+d272vGXlvUUgONCXyoaHUBbH8V+/GpXjyccl3qAJS4/Q0ag4VuAcqF39MOrYKEKVn7XuFC3ecsZo35plfentJ2/3xkpLiqPUxFi2oPlQnRoVac+B40b74Uu9Bg2oWp2mlMZ+twkp2eTjakN+rPcZeuoa7pTJilRG+g1y4qk68hJuOuEvwMOGlVKiq5y1NyHNljIc3ahbt6c4H8c/7FF2SwF05vid9i2DqCpntIdkc7xptm0IL7FllMXN1Zka1q1GZSOC1Xf1Hw8g22Qn8SKGuOGeq+tnqCSDNs78BndjK6Ib1atVmWpWq0B7mcH+wycp24aHtu34D4pp5gUqG0b8V4ZWbrpEOw/oQq5U/UX0H3JhGCbExPKng7+kAE72CFfM3HI6IJ633QPtqX27Nqp1SLa5gN2gocTCSCKSPwKzZs5QSUwfevhRpUSiltvipW9WDYvltKlTlEIawslNMcMGLLAzpk9VSSW1WFRcJw8PT2raVKcsYgpJKJKQAf3fVi7Cb7/7norVxsCCFu6H7XXq1KU33+7PCT11oQQ4zlm2iEIO7N/PuVQu0LatW6hn7760dMVqVjonqm2m/23k6SrXrl2tFNKVrLvATblX7xfVvWaufZiyzdy5mGsP7j1NLGmLVjY/nwV7K+fniHfgPsuXLeVRqzoUyhP24kfE0Fcfnfr+7/AICHfq3d3c6cKF4lcs7jRk9hx3oimjzuzvE8Q+PvY33XPLh4dTlXLlOPusp77ZGHVK579MXtBiUVDcjt19oMN68kOKv4plIigxOYWO8ggP0n07cKKFcI5bu8jzfSZydGnDJi1py4b/KD4uVl+3pQsPccyov48jH9+DbtyoYulu+S6XleXOSi+U0kPMw4PaNMmg1VuKNn4J8RNlmT0yROPHstV9rTkeoTJt2bxJnUde1v58n6zseNcS8PXXubbmlLzI4hPHuA//ebCrUkmLk92tDnJ+25KRrXt1RoToOtL5rUf2u7sIVCwbrk4oiT2GcpIb6Vn09aSdVL+SPz3brhIFemOAxLh0y1oh9NwDlfUrc+o0owCO5cwKacVyYUYKqT0ncqldrzG1ua85v/eylQIa6ccutjn0+q5xp/jwob10g935bPjd26R5a3J2Nb6/U7hzumXjWqpYuSqFR94cqLrZSi8u6sXKLlx68axXrlKNWt7fgfbu2qZyQQSzd8LDbUPYYol4UB7GtmMF3EY39RKqKB8ZRk0aVCdHDjdBBTZZ1/gD73ooouaEO8p8HO5K8H+urID6cciMOzWoU4WCeGBgw9a93Je7oVNM7X3ZWnqe67xE7ZoFUoCvMy1dd8FcpUW27r7Wbeh8dDQrRKwgs+SW08HRwZEteQ5cPkrfnmhebtSkif67LOSPgBajin5pQkICu5/WYktpKPn6+d82c4ZWFkc6fOgQPf7EkxQaFkbebIjRZOeO7ez940avvNRHxQpX4uyWYeG6wSWtzKYNG+iddwfQBwM/oh+/H06NmzRVlto32Pvyn4l/0ehRI+nQ0VOquKZ/uLHVFcnGFiyYR1M5F0jvPi9Sz159adh336qYYq1u7VNTkPHdcNlc++rWa2D2XMy1R6sfn5a2xXAfa5Zz+Gmypoq7oywUT4wY5CSJ16+zhfR6TpvvqfV1GzRVllEooyHsUmvLr4RgPz+qU7UqK32I/dBl0EWiohSOCcXIbG6CWFO4ArmyRdSdE0LUr85TS5QrS3sOH6FT/AMOhdeG+5DXOdKzboNmtHHdCkq/gZFSy6RlQ3+KDHXjh9SJ96tk2U6FUApZe9MzKvIL9gg1quVD52JS6MTZxALV3LnLwzxi96UakUNFGGX9lOME4EaObGkjfhjJU+y4s9LOI+9urvTBgHf193Ve1v4CNUx2visJINYFUmCFFHXwX+6/BDhS0Utahs66WZAj2cHky3KumOcfLkib7/V9XTz8yM3XwPJWBECq1qpH9o7OKt7fztG8hXHT/mhyZJe5Hh1q3dSmMDh7S7C/E1vwnVyMlcFbJYyXMtgCiX2q1ahN/vt0yo6HuwdVr1GDXFihDOfM2OF+DpSeaUMJqeafwNirl9kis4cqValOQSFhKimM7mlV6p46ILK379uzk9vuzB1ve/5j06gZcYMnhLcNeboG04bgMtS6UxlKjj1K9SokqoHrbBsPtoqW5XO/tX+VciFUt1qkrrZsxIFeZEMoNFuIJd1U9AdiuE5PrjuIyoSHkh97aa3bcZTir7PpVglfe1ZwbTNPUdMmgRQaGUmLNyYSG4QLVdJTeSq7i6eN6qxUubJSRj4Y0F8f7pXbDA7IbAoxnOEBigriSUur2DtYdj/b2uqeBl+voj/XhazsIWnPkuWrKDk5+TaF1JD18uVL6Nkez9H6jduUFVMbJPqdXX8Hsiv2zj0HOZbagX4YMYwTSp4y3JWQLHX4sG/p9f+9RT2ee0HpEm+9+Rrh+EhCidhMTfaxKy/chWf+O49jjodSL1ZC7XmQBkomXIiR4MoaMde+2bNnmT0Xc+0xPNaPP40qUFsM6zK3bMMZwMz/QpkrLevueQKVq9WiivzSsuf3VLiLPdmxMlmjYkWqW1VndeREuZTA/yWxIpofQWZeTzabciiqkmOnz9BWdl2AnOc5x1JYyb1wPop2svuuJYK5zF56upwqeoMtllmZOoXZkn0Lq4y9fTSPhkXTldgbNH7W6cKq1mw9+JGESxCU06ioc/qXn2FhsfYb0pDl3AjUqtuIIsqWty6zbg4VIukI/hbNmZZDiaJfPeBFndXpyMU6bDXixuRT/NwuUqDHedrLGTyL29KSzybf87vZcEdX6+wWFYxXXniEHu/Uis4f3UZXzhw2e5jRc/cri6WLkz1djU+lED9XeqhZJPncDOb8d/1J2nX8CpUP5kQ+nIG2UZVAKhOYc9iLV2AERdZpQxu376fPR0xQlp76jVuwd44DubJe07drcwoJ8KQYnuolVdPxTFq2ffM68vLmuM2qNUy26L5yIA7t2raJldVwZe308w+iCBMLqeGO4T6cxZff4WNnrqf4xKtUMzKWO9I8qJ/MLra2ZQyLUpUKEdSkfnW1zib7IiujV422W/+FO++2YWwZdaOk5FRa8t8W9XmrnmSyyTjFA2RpdOZ8Ms1efoETBeWvv3KrzltLUByyMm9ZdYOCgmnWnPk0ZdI/NOqXn/QFZ89dSH+zdezfWTPUOgz+7Tt4lOrXYSsxJ4ravG0XVa5QRq+UPtv9OU7W8wR1e+oJfR2lZWHe6FHMmI0+h6bnOfWLX3AD8uF5SFdu3kw/Tfy7yE8RfSUYpPCXl6B/5cqDPIZurNo+cMfFtYdim5PA4unDAyVxnGVXS07lxSFpiCk1tGpif/TTNOUTmZqRA0TbJ6f6c1tv2r6cziWn9qBu7FMYbcmpnZYMPeW0r6y/xwj4+PorZRSnHcBWSyijzerW5ThJDs5gSWC/3Hh2RyqIQOFM4Sxy7qzx+nAK+EplIzkjmQet376DgtjSejY5g4JDwymiTHk6d/ZknodqXo9ddVgyMgNKRBlVx84I49HkWLYeE9Wv4V2k8Sv4UYPbeW4i1v7c6Mg2QwLoRNxNcuFqKntzOJOrI3eOkfwkn+LqpPOWib6Yc+cjn1XLbkVEAPkeMm9OKVFEh6DI8EDVsXR05iDNHOZGupqQQh6c1rZBzSByZv/Z1buj6YeZe+jT5xuyW60NVQjx4Iy3duxaa0vnLiXS15N30JuP16bqkeYHU+3YOorf/cqcBMiD35X1GzblLLm25OGURaF8i/shcxErlDf4/WlO7ULCvNjYa+TJCumu7Zv5PZlBvqxwli1fUW/BPXJgH8epenAMeARdunBe1We+Nh1ZWB2hkFYI5lKZV+kG/4y4uJenDFtPSmbFVJPgID9WRqup+pRVNPua2TZq5S375INlnWELawTHpLpTi0Y1aSkrpbfEiRXWcmSTeYLKBDvRQ639OPEgzqnwJaJMGZo0ZYaadsQw4SCOlFtOB8SQYi5xuH6ePHFcNQzZXC9cKF4348IisnXvPmpcm11jy3ek5ISzrNhgyiBj07SjCye2ysogD1++71iWrbfM6FDQNmouspbUg+fMnDKKfXNab1gvEhuZTv9jGFNqWNbQI1Obus9wu7XLpu3L6Vxyag+Oh30Koy05tT3/Q8Q51Sjr71oCFW+OnmJaF7jXNq9XTymjfI/S5bSsAiujhuAw/csFjh2FfhvEI0qtGjbkl7cD+d3Myoe2YLQmN0HMaI1Kuk5nZgYSJ5ScZGaEqoPDdVdECJQWAumc3KTQJPfHtdAOk1tFB4/pOsO+bpdyK5brNheHJHJnhTaTO/iHTtzqXOe6k2y8JwicOstuoyw3UnK/L5rVDKa6Ff2pahlverFLdboUl0JRl3XJQ+pU8FMJjtrWC6OeHapQ69qhtH6frl5zEDFvMuTYqfPUgBMN2rFl1MvFRimjhuXxnjYnqkPOG+3YehNZrgJbPitQ9LnTdPxmNuyos6fZ6pNIlXmecUsFw9I2lEFBPrEqZtXJyV9ZLd1ZqXVhS5ImjetBGeWyWexqzMpoYYpNVjTXeYOQaAoJn4yFlVK7Cqz8OlKFMu7UvoUuVt64TMG+VeBYwhmz5tLoX0aSqTKKmpHT4dFHH1feTPhuOIMDlNFVK5fTM890xyYOw3HjrK6P0mLOyFoa5fsJE+jgiRMck+xLvmz99AmqTb4h9Yz+3L3L6pXR0VOmqDwipfFcpc35J2Cf/11lz3uJQEBgCAUEBhMP4JIPZ8prXKsWlQsLZdcjnTKK0dfCFiijl9MyKYCV0EBfH7qPlVK4cSTCL5jdJspWqEynjh/J8bA1KuuU0YxMjFoXPG4sxwNZsCEz05fjclzJ0z2ZqpT3oCMnc++wWFClFBECRU4g7prOfS6bn/uC6pOoo6Rl96E4alLHh9xcEsnH5QrFpnAWTislgF11Idv2we2q8H/3rGyOFC9lBALYYglXXU2y+N2JPAzpOQQzers5KoVVK5/Tp5NXMMedxpK7E8dwGhj/MSd1nsKDu+UqVuFkRrqHFJaQY0f2s0dUNTp94hgFBoXQyeM6F+TkpES6wqocku4Eh4WbrRqWDgcbhKqwFYzjOu3syhB3GyiNPVkxrzHcI6uVDycfnrOUOIsuZRdFwr8sjn2/yK67EVS3ZiU6fe4CxScYxt+xUmpflt13j3L8qjfFXEml/eyCX1jSsFEjlSxn6LDvCX+aYBaH4ZyYJq+cDkO+GEzjJ/yjFFFYvlF++bIlWjWl6hNzxn444haDUtV4aWyxEbDgl6rY2iIHuoMJII4M4s1+OJUiylClyDKs5HGad54vtCiUUQ0F+ntXbiqlwf5+VL9aNUred0C59UaWq5irQopJ6yFZmdZ3OrXjF+ZnVqYf2dpDIXUXhbQwwUpdRUbg8qULPAVEOicycGCPBD5MfvWvm744V/M5bVNhnSAUyDVbr1Dn1sEU7HWOMjh5zPU0866Q5o4Z4nVGzT8adz2dNu8uXIuOuePJuruPQMPKATRz7Qm6r04ozwFqT5sOXmTvHzuKCISbL9HG/ReoAceNOrEnUnxSOm3k7fdx1t3cJDnLhd8tacRhqRTGCYUMJT0942bmWsO1t5adeXoXeBulpiQbWS8zb6b+heuuUXwdVw+XS/zlJPa2l9nimsB9BJ5m7WbMKJ8OZbEbbzrrqIhTwxQtEJsiUUZvtiw7keuPY6XUm2NVy9DWXQdvbtA+3NlSGsnuu2foQZ6O5kxUMl1PYpffQpBpUyYT/nISMM1tBgck2Wx3fysKDg4hTDeoxRPmVJ+sFwKlnYAopKX9ChZD+9EZRdwmJITn+4J1FBLLJszUYrAQID8SFN8gZ1uqVqE8XeS5Na+eZisFZ5MNDAqlSxd1FgvVqJv/hQW5kDun7s3KduHEProXveH2kliGldTe/hy7Od9yWSqJdsgxhYA1BE6fPMqWkhrscsedR+OwH4urybrZRz57ShcPZfGORVDwwLEEnh/ZmbN5e1O4zym6eD2MriXl7rLnaJdGQZ7RbH3ixBJs0Vq89gLHeMExUUQIWEegYZUAOhYdTx+N2UxIbAS97+VHqiulFDVBAZ2w7Aj5eDjR9eR0alQ1kNrWN2+JRPlsB3dKzWKzKEuQpw3dNHKq75b8B2UUFtDTJ49TtVqc7IsttTHnz5E/J8eDmE7vEsfxpn7+ARQUqgtDMT2GnU06OdpeVKuzOI7TUKAww5kqPDSEXYu5zZxRl9Qco4alLF9O5SxNjqzp2nIIUY6CJEl23lSpQrgZhZQPj6lnWHm2y4ql1o0DaMF/ObtH53iMAmzIK6eDTDVYALiya6kiIAppqbpcJdPYYM6sB3Flf11k07XlN14ya4n5zaSbn7OAFRYJk7z45VOLU6jvOxejLLNBPH+UOYU0PNhFHSYri12C7hDBtDNwHXawTyUozNEXdbE/d0jzpBlCwCyBExxLhrgyJ85GqIwiVuph2WwVgb/vlYsXKCb6nNljFPfKlRs5hpRdPOrX8KEgj2iOubtKccn+lJTmSTcydZ17O9tMtjhxAhrnePJ11cWcJnJStUVrLlAUT+FUFGJvzwoKJ3WDy6SpuLAlCxker/KAnDnx8+f285QA1iTpMFePrCt6As+2rUiPtyynFE4/L55GxcCo+d7TdSiFJ/OMZ2XUh/1vYSnNVdx0SQUDPGwoxjHXkjlurFytJu3ZsYU2rF7OU6Olq2ndKlWtm2P53Da42kMZ5fvXhhMK8jPEQ9dGxaGUBvh587zkrEhmJxttM/wyZe4pSkg0jmFv3TSYqlbwovMXkmn7ft1zkMYeVF48t2m7FqzkmlVMuQ4+jr2dK08HE0xno25PDISsvJQVxwPeHhwXnsDTs+nieQ3bI8uFR8DP04l8PRzZQ8CB563N5OcgQ7mlp8kgX+FBLoU1iUJaCi9acTfZz183UlrG31efUTevbLoJnKJ6y8bVtzX1/vZd2IU2k9asuj0WwoXnXWvZpv1t+2grkMUXc5z5eXtRrXJlaO3R0zxSG6RtNvr099V1KrOz7ixrZBa3x84ulSfmdhSF1OiKyZc7lQAUpP17tlODJi3Z/Y77mGiohUoprKqIHU3jOfQO7N15R53iyk2X+RlMpVaN/Mmbx62CPaNybd++owm0dttlSk7Jp5k419rh8OFOCxcvpwH936ZtW7foS0NJ/eqb76hjp85qSoFrrJC+2KenytKJQsi+OWbcRDVHoZu7G82dM5sGf/pRgaYI0B9cFoqMANx08WdOYDnFX15i6xHObrAuxP16vn8MtNq8djTZjsGmxi1a0w1+TuGK6+CUs2Zbt2ETk71vfbW3SeEp2+LUiiwoeXT21sabS1C+A/08lGU4i9KN5mA1Ldz5/nAKC3bVr9YU95UbY6hp/QDOwq8Ly1m46hwdPhFPNSqbTxpow1bYbBtXrsvPrEJKnNyIbIP5dy2G6rHnhCikeuSFulAl3JMqhrorRdRcxeeuJNPhcwl07Xqauc2y7i4nkPcv3l0OQE4vbwI+froYzFrly6rC19k6CjfavMSBkx7c166jUTHMw8R+q9Suw8NG689Hn+X5RTkrXh6COU59eTqYmuXL0TpWSF25E2dOfHj+UQiskneSaMmVvHh0UEQIlBYCF2Oi/8/ed8C3USX/j7pkudc4tlOc3ntIIT0hJAFCOzoXOj+Odhztz1GPehDacfQORy+BhIQ0IAUISUjvPXHi3rtl1f933lqybMsqtmQ7yY4/a6123743O5J29/tm5jvwoKynISPGCFDK+aQKvgY0B0zxMxdhunVgdPPG30CL3/GIvPaBXIyXAb0iwbZpFJEL4WHSbZFDcwtKaoU3dA/CfPOKQveQ9MSTz9CFF19C4R6uZ7PnnEPDR4ykMaOGUQ3IQR57/En650OP0u233iy+Po88+jitWfULPfP0E4KNk0Ht9BkzBYvnyfL9kvVsmQWUEZJ3NM6ooNIgfD21AKatEZ1ayqt2KBPQjed7nMGgJwO8vtWoBWPHDBfgL1M6eRyWo7F4aSCIHmAiKLXb9uhILVV6zf2UPLFRIAdqThwCkOZTd6TUpCYbQhYF0dz4p/J2I3Klz+gTTwlRddEnakSK6aPw2fK1Fs+TlhowU5dQWnyYWLYeKaYDmR3vfnEqf0Yd4dxkQNoRPoUOrkMYcjWVeALtmSIRK1Qxy62fIgCoh7bu27k209FDB2jA4GEeWjbcxGHC0cCa8fCSJsdEU3aJNBvbsBXCi5E/ytLxAKl0kzbU6ddYb/m9bIGOaoGsExnC09l34FCKBCmJYM1lYMoKOyeo8MadTZdrFu7ZuYWqqzp2CBznlfLSXvLwQw8QL+v/3NpEhVmzz6EfFn0vwCjvZKKUhYuX4WFOiWgLFU2bPoNmTJssjuNac4t/WEQMYrmshCynrgWURnj01DrhHY1EhornO2Hbnb+SbKRHvW0hiuaJBI1hEuhVK62C4MhOOnhJPQPS7XuL6VBGOUWHa6hPz2jSc9k3PIuMGhxHv/yRS0OAwhPjDZRXYKKzJnjOaRX6OKT+nWN7tgouXgyk7bk0EAz9oQrL9zz2qbuVowAmDEykqDANKg2A2yO6K+nCeMKiodjtZqouO0HVFdk0LD0W9xUF7c9sv2tyQ+3kd21hAcxjyyJbwLcFUpMSkPuoRt4mWPL8xKNchHzPjq20f89OeD8zPeZF8chc58wQZqTYuKYXKU+aVdcRKbFOzUkUbmCSiMfl5pq1w3YJKEdy7LEssgVOMgsUFuTRb6uW065tm6isBDlcdQBUhObibuIEowV5ObRt03ratP7XDg9GO/pH0Al58lmZmS41M7Gu0+koBvWZ40Euw+U3srPq92dhvVOyNHnoOkheOeUsoDBK6SqoItMhRKsCQRELyrwQwmObE2f9cI1KepCww0MK1qEmzZklv0tnI8XA+3ksu4q+W3aczEzRC0lKMFBslJaqkHv406/ZKB+jJe+TvNJxWtQy9yYOJQiOIAN6RpAOkViytN4CI3vFCTCq0UWJGqSewCiPolQipzSmB2qR9hKDDk2PoU4xrfPYt157uYe2tIDsIW1La5/EY3WuC9ut8ZNVV6vVUvf03sSvteZaOrBvN5XiAbbvgCENrGAD9fnRwwdoyPDRDbZ7e8PMvuFqFP4GiQfKgXtsWlYJYgYBSp2uG4/N2mGjpI+p1k9U3w4anu5DMvtjdFL3090MXs+fo+P2HWYQVA+Emh5goLjUvk03y1tcFijK3Odab24lKjKSamvr4zFra02iaVRkFGnAgM7ivp9JjXifLB3PAhzqrgHxjlp4txUojQI/kJc5UyvudTZEEFkRompFZBJeJEHIowIhjyzRYV46kFq3yX+NUgqxtDOZkRfR1tVFVSq0IBoi4vKrDErZw+ouQwZI4JC3DeoTQ5+B5Cgrt4a6phhp0U+ZNHdGGsVG62j00HhasTab1m0uoAmjPXNKiJkz9OMc232chusgHlQiIsxeSd0wzv6jcthoQ/sE9i4tAWkQcShJpNRQZDzXufUNOQzhncAzUktVZcepX5coyi2RrneBjSy3Phkt4PvbcTKelaxz0C0QU/eA42/NUa5tlt6rj0sPJkbavPF36tN/MG7A9TfQ4xmHKQJ9R8d4v4m5OsKKU4eYqOYfujjHRAjXqXDexN07abd1PMlDatnVLEuHtIDdaqGygowOqZus1OlngTIQxPHEnlP0esklVlZWiu1STpaY+KsDrXrkAfI+WTqGBTjdRYMJVC3QlxpM9U0E+5Uq5FE6cyJxv7JZmRkWeZJor0ZYtviU8Y/zms0ApladdL+M0HkHtE3GCuEGbR0gFR5SL+OYURdVEjOAuQRIHcJL2jzwYNvo9Sp4SO1UWGwCYRdSd+A5ZTEgP7Efwnm37EbERrMiPQTUj91sQ+zg5woA0tQwGZB6M5Mf+3okSxwfxqguSC+QrlV+HEbGqDSqqcqjRHwUidF6MPA2/93wpz+euIuIiKCSkpJmI/X86cfZhq+xvJSWnprX2XDYikOmKyraNmRaBqTOb5j86tUCkRHShYVnalsiHGLmwEwvM+yqEPrLYrGYRe2zEaPHB9QlO2lZDY0GYTo6zyEdZRVWEeqjVNRi3rX58KGABg5CY4VS8nSUw4PbGuH8MQb2zIDaWHhfUlInykOZDc7PbSy+ykc0bn+6vXc48MBXW3O6nbZ8vh3UAjk52YJJ16kes+qyR5QfrjiH1GKxUEpqGh05fEg04f25ubnO5vJrO1mAvZ86DcBko7It+vAY0oZFkFYfDmIXA+6Hnh/UbZgYs5iryVJTRbXVFWSqxOettJMBOXmWyHiy4jofaWjZ/TjYJlErQRoksDYmSxT+P1YyIGWxkxpBu9yBdD4VFWbiKKfUTmDJx+asnGoqLTdTZ9QP1tTZ89CxCuqdjvBgHJKRXUnxMZ7tKAYI4J9DiYdx3DbTQGwkS+sskAQwyaI3JgbYkZL0yDOtLs8k7sNfQNqlS1d6+ZXXxDMmP3MyCZwJyyf/+4hef/MdGjygT1Am666/4Wa66f9uoSED/Y8AOnvWHLrp5lsoOjpaXLuZhG7Tnxub2KVnr150+x130ZOPP0YFBflN9gdjg68xHgVRXiQcPjffeF0whvO7DzlI3m9Tnd4NVXWhYf6w67Kligrzqaa6ShiNa+plHDtMUdGxLjDKO44dOYg8qHhBkCIaBvBPAqUOeAg854QUgh2TRaFo3cxaACr51VRZp09BcX0Inl8HNmr06L+eoEcee7zRVqI555xHW3fsoc+/+pa2bN9DZ80829WGy0c8O/9FQZyyGEyczMaZjPw0WWQLyBbouBZgcqK5cy8QM/Ks5aWXXQ7CoqVisonB6C8/r6TLLrtCnIDRaKRzzp1LS39c0nFP6BTXjO93aoeJIkHi4gSjDEJjUnpRSt/RFN+lH8IXU0kfHt0sGGUTqZAbrA+Looi4zhSf1kccG5vah8Ki4smhiRC1SyPhNVQyesKY7Slc7oXFoQy8zJrTaQyruU6BJ75XgbTo/a8O0qffH6GVv2fTxDOS4OXS4ncAln7UHN17qJS+XZpBX/94THiSx48MFPS4hmu0whPYCjGhLeeRNjJNC96qtGF+heo27lqjk0r6RBrro0Mat2n8/vjxDLrw/HPog/feoX79+tNdd9xKl196kavZ408+TZu27KTbbr9TbHv63/PpmWefd63ze5ZVa36nV159g/7YuIU++ewr5CejtBI8om+98z7t3HOArrp6nmjH/3gCkJ+ruN/nX/yPAJyTJk8Vfdx+51303gf/Iyam42PfevN1mjr5TLp23lVkxqTinXfdTTt276cNm7bRiy//VxDVPfnUs3T+BRfRd4uW0OVXXEXjxp9JX37zHe3ae5A+//Jb17jOFUnXN0UfH33yOV173Q3iGY+Z21k86dd4DGZuf/vdD4QO111/I3Kzq+AdlcLVzz1vLq35bb0Y//Ennhbn9+rrb4nnS97ef8BApyqtfq2/ArS6K7mDU9UCFuSAcm0yf8Eo26GqsoK2odA2ezHZM8ohvIOGjnSZiOsSnsg4SqPHTnBtC3TFjJswh0N5kvy6Eg0KZaWn3e22TaGQ9MkvQkhWC2T6jLOIL5qJiUn00YfvNeiB6xjOf+FlugIX4G3bttKo0WfQhx99SiOHDxIzhb7KRzToTH4jW0C2QJtZ4IWXXqEzJ0ykhIREPLh8IKJHxo8ZibxBKy1Z/ANNnDSFNm7eTpUVlVSBa+u186506cYz6R989IkAohEoa8HtV65Y5tovr7SdBYwaG1mLj5AKjKEsxugEMsYkk9YgRRi1RhO+B4dFxpEuIh61cPGwbjMhDNgi6gLbUTZDxcC0nUSldE78Bh6NBEcvIn3Y0ck+UilyKAblQa6+oAdVm6wIX7ZTBPNBuN3ru6eFEy812M+gX4m83GAKA2sF8kgT4nQy224rDWu3tnTyXZpkSUKecLBkO56LeGL+lr/dTm++8Rom5JNFpBn3z+vOeZ30Hj1p79499M5bb9Cj/3qSxo4bT2nwvrKX855/3EnDho/A9fY8odbfbr1DlOuaM2sGLVqyjGaiXjRfp7mPQYOG0L59e2g42nO02s8/rRTHlJeX0Y4d20mDVIxlmDwcOWq0eK77bsE3tAALj/fsM0/Sxg0b6MOPP6XCwkI6d/ZMGjN2nDje/R+Ps2fPbvrs0//RP+6+j44fOyYY1v867zp68YXnyJN+jceYOGmy6JsnOrOzs8WzYxSY9Pk586X/vAbm9oX04fvv0qgzxggwPmXqdLrskgspDtwyZuCDYIkMSP205Okc5lhaXCysZAogXLdLtx6U2qU7ykTgRqlSkxbhE+7ChbinnnWO+6aA1hkc23D/5bAmT3IiR5qxVSrrmP88NWrjbUplOS5+ViouM1NLQ3Z/WrmCeHnokX/hwtqQmXDKlGl04sRxAUb51P7cuIHy8/NowsRJtGL5MjFL11z5CE+hvW1sHnk42QKnrQXuvuuOZs+dQSnv57yecJTgys3NadCWvQLTpkygTp2SBVitquxYk3ANlD2F3wzqHk2dwgBE7RaUtYgAEE3CK4BjkMXiAHBTqsioNyL01451pG8AzmmQnBIFb1JZVcsmO1ujpkohjekAUVGg4kydteO8nOuiD8w1hxm8P6Jy/mhoRIq8ihTEiHL6RmtsrAIBV4ukzumfF4wCu3UKfPvN11RUVCQm75w1n905Tdz1/P23X+nLLz4XgJQjydjjytfar7/6QgA1joRg4bJbERGRNGaMBBb79x8ggCTvu/fuv4sQ4b//4x7h/eQIFvf8/iFDhtIdf7+bCgsKuLmIWDuecUys7961S6Rd8XPcvGuvp+U/rQbo/Fjsa/xv3e+/0dq1qwUg/fnnn0SY8jXX3iAmOD3p54ygcY7B/e3auVPoy+tzz7+AX6hvv36COO/9d98WAJodHQxeOSf3hyXLafOmP+nWW24SbYPxL7jTSsHQqB376N49XbjP/3rNdS4t5DBHKfyWDVITiIsU7TmXkcu5NAajLuO2YsVZC7W8tMRjLwz4MpB3okB2ikol/dg9NmzDjUqVBOz3HQnNA2OnTp0alH/gU8vKykIJiM7iLL2Vj2hDM8hDyRaQLdACC1QihKoxGHXvhvfJYNTdIm23Pq5fPPVPYzIcosjENEroPigkYJT7twG4sTBRkhI5xJyLqtZJnkkjAFpcpA73Xs+RQ+LAEPxD/FRdr55TaLwNyR5SFvYAdxyRzsMo1wtv9UdiNVchSs75/fC/O4tZChktD/IEix3lCFkYT5aXl1NKSpoAgrF1lSTcNXS25W379u4VQLRzSgpIOGNczbZs3kR//rmBzhw3iiZOGEPfffuNa59z5Y/ffxer9z/woOiD0yo4LPf2O/9Bn3z8IZ13zkxnU2KWdBaOeONn6MWLF9GsmdNo4fcLaN4114vtrsZuK06AzJvc1z3p13gMt24arDJ/ActYhA2zLuy5LQfJ3pRJ4+i+e+4Snl12eARLQjW9FCz92qyfSDC9vokY74ryhjTfvsIc47sOaDMd22sguw75KvBy1gDeqZwJH+2lTN24JswIc5iOVaGj5j6D7Eot9Ys2IlRCgbCCYOWXtOzEQT+EB4cMWDCRSux66JwUUEelOYfJanaGRXk+lEMsnBcaZwsmP+GyESzeykcUISREFtkCsgVkC8gW8N8CXL5lwsAEwQSqwD0yvktfkR9aUSQ9yPnfk/8tHVz0F+J+K1ajVBUTJbG3VAcsFQ9QWgxiICuHEbWBKFzhwg2jdvwZ2gmdHbg7dhyRzkPrZF1qpWLs2GACQneg4OzSV/RdHMrb8URT43u78/iO/JoHdlwmJTJV5ZMhQpoY909fO5mqJUdCXgjLviwB2Dtr5ixatvIXqq6uBvdJ889BK1cuo8uvvIp+W/cnsRfT6Vl9C6G/Dzz0iMipZE6Tl16YT0ePHm1wmhs2/EHPz/833XrbnXTlVX9FSG8F3XnH35BesYhuBNER54k6ZSdCeTlc+JsFi+iF55+lawBC1SiVxN8dDiEOdNLRk35vvP5qgzGcYzd+PXjgAL3+2it03/0P0N333E+//7aWDh08SFdceTWVg4F369Yt9OOPixsf1uL3MiCF6ZipkBm43oNbehbiv92Fk5G9hTmWZB10b35KrrMPUmkD459dSVVgE+IaoO0pFvwwuWqKFrPAGXu3UklWhkd1/sgiGtqlG8J+ipCTpQHDr/+lZTx22IqNas1xspsL6ciJKtq/Mzfgnuywvy/hUBBdI9ZhqQSEFLbsrXyEr77l/bIFZAvIFpAt0NACEwYBjEbpSaUzCOIhJi8KtdgxGcsC7NlA2FvKIcLmmkrQA1kpFgRAheXBy+9qMFijN0qF8/7UGgDcvs8VDU9JsltUROsfkdnTxQSCHL7J4ZdOYZD61DPPIS9xtgBDxQglveG6eeT0SjEZzbvvfyxqChvDjfCQfUePPfKgR2Z9Z58d7fVwTqUApFxTVBsWh2fthqlbzelbVXaCOPc0v8wklubaNbf9++++JV6cwsCva+oi8faHRQvxTL9QrHMq07DB/USuPqdGOKVrar3DwH397BlTKCwsjKqqJMJObs9hrJdefAFxOC6DRga2LM7xxBv8++9/XqLX/vsfEHnGUikY0nmCgtOv5j/7DDy1ZQ0mK3gcTtFg8MkgNAYeWX5+81RVwV2/5tY96ec+RuOJkltuvsGpNnJZn6IXn3+OIuHY4HBnlpdfel7kdAcKjl2dNrPS+l9bMx2fTJsffewJOnBgP331xWdNACmHOfKXximZmZl46NeJLxXPpkSALe90EJ3CQXbcAcuBBCNBO9+eUl4L6nuAYh1uunrQ30fESyEYnnTacUxDk0aEk9ZRjlIJ3Tw1Cfk2JSjxtVq+SEXSjgxbi74zFUWZZEOZHG+Sk5OD8g8Nv498U3Pe4PiV3zuF153lI5zb5FdMUIGIKyKuoR1lu8gWCIUFSnOPhKJbuU8PFtAZo+ClifOwp2WbRnY3UEqsBuGyDEb7w4uhIw1CZxVKNcAi8iGxhEIUCs61RB4p8JtYcF9mz6hKrQV5EsrJYDHXVGAC1kpJeo4kUtfpBCArYdmgq+VQ6KGTGefMj5R1ugEwa7QG6FP/oM8D8zaR9ypyYdEIOnG0LuNrnAU3CYEo8fyCzwXd68N9T0wr7CaQGjnIhntBNJeeCUCs5hqqLJbyvJnp9MKLLxGkN4278BV99whKb6xZ9QtxeRAGOwxqp8+YKQhrGvfVUd+fKKiirEQjpeBnV1G4n6IS+ovvojd9aypziQEsy97j0mS6t/at3ReI55mBmzsYdR+7ue3ubZiro7EX1j2n1L0te1GdUlzH4+J835JXT/q5j+GtT2Zzd4JRbuepL2/H+7vvtAekV//1GuqWnk7X/vVKjzbzFeZYU+GtGLPHLlu0MQIXpAE9ulP3lM6UGBNLcdFRFIYaZjbEw1eizlJeUTGdQO25jOwc2nPkaIvG8HaQGix+CrDZmcB4V2Z2UGSj2mrejg3mPiZWKjPbSI87iwY3DVNVKXn7DDZsIerROZk6xQEQ2veR1dLFpzoxmAmKBltlLF7DDHowGWooISaa8otLyARQWF1tQjhUORWVlFFVjTQb5q1TjW4vwm2rafv+SsrIkPJIvbX3tI/rt/qS1at/EbTjQ4cNp20IpRgNRrT4+AT67de14lAuH3EHchbeBvU4X4Tdy0f46vt02s+29vadOp1sIZ+rbIFTxQKc8hCs3/XALuGUaEQYJrBWLEqyOBw2UTOUSfa4jrFzCYntuH9wIzgcoDJijCn9Q2qKDZOWkmdPiXuWBeerhl4O3LsdKsl7w01DIXboooRWDgc8pQoN1oCWMZYNkT1OnZzj2mwguYEibCPpFXv4PMRfazyszhE8v4rPBICAa7v6EoW9gpT2aqpA1FGNGzDwdRzv54kApzz80APEy/o/tzo3uV69Rd9x1B6T0cyYNlm0ZwCw+IdFxCCW7+Mnk2w6WEQRhk6Yji+j4txtFB7TjXSG+CanYLfj2ar8BBYp3H3rkWLKDWG4bhMF5A3tboHTHpAy/fOKFUvpTjBdsXRP74FZPiVyScvpuwXfCDe5FtTMTtEDBLI4ZzVqq0I7gzNp1CiaPHoUjRjgI1e1Z7pTRSqB7uu376Cf1q2jgxkZru2tWeGbnYZvbA4NFcFDGYZZV5UbDXtr+g7k2CLQvPMNWM3surj58Uywr89gxWozXXEuewYzkFyvwk2y6cUwHGEYPbukoRh2MkUC/DcWvpklxEikFe77CktK6RiIgw4dP47JgaY3U7XmBDmshVRYYaHlq49h7NY9Ecyecy5Y354QrG6sB9/UHsENj+m6OXzi/nvvok9RN4sLKnPuCVOUc3FoFl/lI0Qj+R++Izaf3ynZTLIFZAucXBZgYNQYHLXkDDrHGahnAsAoyh1Eg0meOW5tdfn9IrVCAFIGXK271jenmwT8HMgPrWshwB3GY0BqrY+iYY+pubocqBAg2WaGPioszfXauu12G/pW8Tnz+HhGYoCJhcGZu048Cm9j2zAzML9yO16wR0BSXgu+8CDSRIHzs/I2Bpd8sdtrqQSTzrVV9Z4qb8cEus9b9J0Wnlk1JhWyszJd3WZhfdQZZ7jenywrJjgQ1u7Ko9F94hDejmfngr3w5utJo4+uiyKAJ9piotqa+sl6BqMHMkNj95PFbqejnqc9IH3zzddQ4yrC9dlzzUwrrvRWBjyQ9gpznDl+PF0wYzp1Tkx06cahDLVI9K41lZClthLXV1z84SlUq5DDokHh3rAEMoQno6BzJM2acKZY1m3ZSl8tX47cxROuflq6ogGdvYUn/3ChzDfZKNkHJXtLx2nuuAJc2GoA6OzwkqpxASM/c1mz8mpozZ+FNGlUPOiqj6B7BqVSro8B4deDevemXl271A+L0ixK1C9VKBC2w7kxeC/usGLWF3VVHTrYXgc9wikenlNeBvfpTfuQyL7zwEFXP2p1Nj4bKXRnxW95rQaj3PGPS34Qi2uQRiuLFn6P/YspuXNn3MyyMKbzqYVEnoS38hGNupLfyhaQLSBb4JSxQFhUQovSJRobYEJvLYXrFBSRkIoQRJ7orBfO4VSqtFg0xF7KUIiGQ3YdAMToXIS6wpvG+aNqrR4hyQ3DUSV9EKrqsALg6DBpyoGxIRB4YJUqRFEp4JFFaKykF4nyN4YIeEvdRBcG9lDoq8A5EM4FOBrvOVyXK5GG6JGUx1FqSQVCqPDYZDdtPK8qbGXQD6ApJpKSetTfQz23briVc3hLsuufAxrurX/nLfqOy2qwcEqNUziqKQrkmyejVMGRsGp7HvVNjUTEWjiFw0luw/NsYzlRWE37TpQjAq3+vBu3kd+fuhYI0a//5DHYxx++30DZkfBIrlmzypX03NZhjt2RAzhv7lwaPqC/0MtsKhUzSuUlBwCC6kNB3JV2/nTLi/aLzRwOERGTTtGJg2jc8GFi+XblSvrou+/dD2vRugkJ2+rwSOKgFwaICW2UT1pqsYv8VVa6phplU8IDu7Fu3F5MBr2KRg+KASjlm0UP6pE6nIb1R+5PXVFtpaoMQLREgFEex6Mo6pLZ61Jd7PZo3FBjSKsx0mAA2zTUAty2bx/ll2x2gdElq3MoI8t3mJDH8VqwkZPzT8Bj25xw3oC/uQPN9SFvly0gW0C2wMlkgeqyAuKlNTKwazQSqKJAqhcBgha1K1fQ2WdtNd8PYrFYQMqCycwQiAKePrtNR7WYj3aAQZ5TDHiRQpLrvUyuoRHJxPuV1ioyYzI1FGIGkOQ6qKRE7irF1ukFQFVdgZDXkgZD1uowqQx9FFwqBmiUPb0MStEaPXh+xmnQQYvewDuqMsNba23ymXnqTmk9LDbv2XoQE7nCfeupWau2eSMZ1Gqlz4mj85ygVCIoLG3VmO198L7McuJFFtkCnixw2gNST0Zx39aWYY6TR4+m2668AuBGg1zHKipBvH1Z0T53dfxar60pRPhDIZUU7KHYpCEUFd+XLpoxg/p2707PvvMulQaYE+E+KCdlV2MG0GiMEACRYWFciEFpGcBoUa24YyH8tFp4+ojqw6jd9fO2vmZDgQgROmNwLLylEZTaKQY3KCVmZ8vxcJEvPKLejve0T6ksBYAthbc0Et7IRIqJMtJZZ8bSzoNG2g3cuxye0T2H5NATT7aTt8kWkC0gW+BksUA4IoIGdJU8VFFJbhE1bXwCGnghFSAZrLUiVBi3RV9+WA1Il2y1VcJLqkTKjT0E9T6tiBgSgrxLuDoDEmemi1L4fAM6NESNpUnnwhKUzQkRGBV1qKIAAEAASURBVGXFvUXfcQ4pE8mkpKbRkcOHxHkyCWEueEJkkS1wqlogwEvHqWqG+vO6dt5V5O41ZW8ThzmOGzOSLjz/HJo5fbIIhaw/IjhrsyZOoH9cM0+A0YriQyhn8m0TMMq1rjWoi6XTqMgAEBimU4tFj3WtRkkaePqctZFYK5ulkgoyf6fMgz8ixLeMBvTsSc/eczd1RThna8SKuN3qaumiXQrW3VyE74ZmDpGoCF7YwjowajLVkNkthKUl57BhWznCcydSt9QUhDBlIsR5BRhwd7UIjLqPr1SWk97wBxnCfgJALUIIb398JoNpx77Q5hi76yCvyxaQLSBbQLZAaCzQI1lK7QmLjhflVUIzin+9MihlqfHDoahAPKwK4bwsald5FvE2aP+sjjA8A/DjJPgKRB6p/107aRW4VndHEIVd8uAdzwltVBNH382dewGx55PFnWSQwegvP6+kyy67Quxjlt1zzp1LS39cIt7L/2QLnIoWkD2kfn6qoQxznDF+HN1y2WVCk6KcTVSSt92lFRfeZrCpRhVsFSNSP8SKK7wFBbHN8CzawRZgqsoBKF1MSV0mUTLyXu674Xp66D+vUAnqGrVULGYzVSGXM8wYTlVg3s2sdlCsVknGIBWSrsW0aTHIk6rr7lY1CBU2g0SitfLATTeCcbc/FZcWUFzcFgB83EDxK7DZooWH047XQEWlLoKXNQ+fD0KJIdXWasovGEtnDOpO8y6wBiVUOlCd5PayBWQLyBaQLRAcC6hw/+3VWQKk4THJwem0Fb3oEX5qtiNkGLdEiQ3Be2dckobBogq5pEqw4NoDdWN6717stdhQcgZpLwqUWCNK8OMIhOoy1xAWCYx2DEBKDum56Fhm6wHpCy+9QmdOmEgJCYn01jsfwOtppvFwbrCjw1f03ZOPP0YffPSJAKIRYP3n9itXLPPLrh21Ud++gykxMRnPs6iU68ZGzPomJnaizMxjtH//LpBJtU31io5qp9NVLxmQtvMnPxw5jLdfeaXQwh2Maus8oQxEncL1zbS6SDCUGQCAQBygkD4+O8iGmMnOCo+o1Yyi2DhGjZAP9qLWAizWwstos5oo+8gKSuk5S+Q53n/99fT/XnzR2XWLXpn4qbKiDF5BsNKiyDN7So1qB0VrFKSvy8sMtGML7lAiXxRgmoVDhBmMOkmmAu3Pvf0dV19FbG8l8lxIuZGKyyopPExNxjDMIKtKxWJHjo3dHoUcmAgQQIRDgcY5N3YQNpjQB0KglMg55Rtw3cwu5gCostpKNaYc8D5thM7jRah0EZh4F69e7a6KvC5bQLaAbAHZAieJBbqhliJPCOvDo1FXE/eFdhadINrD/cbkX2ySAmG6KoBSKyZ1VSgFE4qwXbMLkHIeq3+A1FKHQUU+aTvbVBoexEyOaqpBVNaRE1IUWGvU4ui65sQZfRceEUHhmNjPzc1p0PT48QyaNmUCdQIvRUVlhWDRb9DgJHqj0+npsktvoC5d0r1q3a/vEJoxfS79uPQb2rx5nde28s5TzwIyIG3Hz5TzBG694nKhQWkBZoXgGVXBIxqmY+ZcCYgyY58hLJG0YbEoKO2bYc2BGVAzWHhNVVIeqY6BLRam3q7BknP0J0rtdS7179mDrr/oInrv229bZQEGjFW4WOoQdsIlcdhbWoUwIp3KTuEYNwznofXh2bUChLInlBc+3ikcnluDMN06Tnjn5ha9zhg3jqaPHYtj7QitXQ9QKXkzGUAyA1yYXk0GHXuiawEy80HEm+/KzQGnryBg4JAk0EM0Gd8MnWtMvNTP8Ko1maR3bEK9z5F00yV/oR0HDtDx7Owmx8obZAvIFpAtIFugY1uga6IEQg1RcR1CUa3SShy2a0G5FfaSNi1U1lRNFUqJCEBKYMt33d2atmvpFjNP5FI2AB3urbyQb+DOk7gsSgJDUwcQhV3yzO09XCH4JtpCJV/Rd42BalvoFOwxzp97pQCjCksp6cxc8YHDu+ufl3g8mzqaFCDuNBvSafasiyk/P4dOnDjKu2Q5TSwgA9J2/KAZECbExgI85lFh1gbkhjIYlT4SpVJDxqguyHGU8j05tKUawEkNkMfe08bC+9kTqteqUXQ4QSw2hI5WV2RTTWUOtqtE/ml1rYXyjv9Kab3PpbnTpqJe6XbafUhKmm/cZyDva0FJbkYYL8+EMUNcLcBlLRgX+PLO9UqB9RAqxGHHUq+sL9+MLIjXYa+ou1jMFjDL1SCEtuEFy71NIOuR4eF03UUXikP0hj8BOBsyEYK0kKoYmCJCR41SMnbobgXIjI3SwiMNSv262WgGo6wqt2WAz7m8tfDkNldbVK09TBqw8FrMPekGfNaP/Pe/gagtt5UtIFtAtoBsgXa2AN+XE6KkSBlDRMcApGwSA8J2LVYDlSJdJskPGzErsAIT3ggBAhzAvUyAAj8O9LMJVxattcSSXlMIUMpsxt4BKXtH+X6qgMdWUXeP9XOoEDWzAhBhMhqy60DL05lCpNxJ3W3v3gMQdWahqFJwbDhQss+LKO1VZDIOouHDxsiA1IudTsVdMiBtp0+1C4iFzpk8SYxekLVeeEUZ4LAYIpIpIqq7qNHF73ccKaKMvEoBKtkbFxOupdF9E+HNk9DdvhOldCirTIBZ3j+0Zzx1ijEgtDcM5V96kt6YQJUlx4jM5RRh0MAjCAZeeGNjwMB7xZw59OB//sPDtFq4hqsJLLi8MF25GoW51WAMZsqjaoEtGwJP9wGtSOK3IK/CihwL9roGUy6fPZuMBgP0yYQ+x5rtuqLSQtf/v98pG3VL42P0VFRaS/Mu7EE3XNZLHFNSVksPv7CVdh0sowijmuJj9TT//hEUHyeREnjqWKvbjnNKoaH9+tKZI0bQb5s3e2omb5MtIFtAtoBsgQ5ogcRo6fquD49BmkZdva8OoKdRbaJyAFL2kJr8rDDD9VFtdkQBhQCQsklM9jjSUyGQJk/6dvJqJWe4rlKBE+gAorDnCi0OHqukvMKOoVMHMEvQVFA5anyCUR5MbZFKM6Wkdg3a2O3dET8Ph8MxUlrKFRmaf76NRJ1ZTk+rRppaKEWJiano6GgqL69oNh0uFs6yqqoqV9mhUOrj7LvOX+V8K7+2lQXmTp0qhiot2E1qG8IY6sBoRGwvioju6QKj3CguSk8zR6fRjBGpdPaoNMxC2gRA5X3ZRdV0NKecpg5LEcvwXvG09WABMTB1Cof6MvjUG6V5VCPCUysKtwAoVdOgPr1pSN++zqZBe2VvaTXqhZaXlVBZqe+lqqoSDLomrz/WligXGxVFc+qAv1a/02sXzIZ/0+V9aO2XZ9P3b0+ht58eQ29+tp/yi6QZvflv70a+qYaWfTiNFr0zjXp0iaD57+z23idmfnW6XaLN+dOneW0r75QtIFtAtoBsgY5lgfhIyTuqC4voUIopMdHLoJSl2M90R+aeYFEitScUYkNZGZM1VnSttGU1OwQ/niAQSaTAIM6o2XZttwO5o3Xe0c27T+5an21ns8BGUtr8A1lcZ5elskJiOw5sFKLb7/g7LV3+M32zYBF9/uW3dMWVVwfaRYvbO8f+6tvv6etvF9LlV1wl+po2/Sz6YckKEGnGe+37y68X0EOP/Mtrm2Ds7NKlK23dsZfOGDOm2e54/8V/ubTZ/aHYIQPSUFjVR5/RSGKfMW6saFVbvk+w6CKWhqITB5LB2HRWMSXOCPY66aNSIh+Tw1w455GloKwG3tAwV6hvYrRBhO0WlUs3KtGo7l9kbG8yRqaJd0aEBlcVSWDqLLD8nqriPDe15gRmt71f4MIBNqePT0Y7KX+XSSyY9CgS3lCWP7YW0LnTUkkP2yH6mK46P53WbsxDKErznl8+Tq09gvY11LtrV5SD6cObZJEtIFtAtoBsgZPAAtGISGJRG/zJ1GzbE4pglngA03KQG1U0veU3UUYB3goWBY4JldRYktA73zNB+GeHt9SDmOvwMNgtQqiJh4Gb2aSwS/wO2/aV0okQl3tpRgV5c5As0Cm5Mxh7k+jiC8+j5cuW0jPPPk/du6fTzLNn04LvF9PKX9bS1X+9Roz29L/n04svS6lUr77+Fj31zHNi+xdfLaCbb7mVuPbrs/NfpE1bdtLzL/5HeBUnTZ5Kq9b8TrffeRe998H/GmjNY8cnJNAlF51PR48eBji+S+xnjydXiTAhte2xx5+kt9/9QIx73fU3Ur/+A+jnVb/Sxs3bkWfb1dXfbbffSavXrqMt2/fQjTf9n2s7r3Afn3z2FX23cAmtW7+ZLrr4ElqydCV9/8NSQYLFHlA+fs1v64lB7qjRZ4jjr7n2BgFEP/z4U1d/Q4cNp/V/bqXdew/RZ198Q336NHRQsSeVbcN6cH/9Bwx0HRvsFRmQBtuifvQ3dtgw0cpUuofUYHRjiUkYgHzFGLHe3L+DCMv9Y08eJSEcNwkglEUtAGrDm4sBeY+cb+pJjFHdyBiRKnbZqo/iXmahCQglDUNI66ko4+psrdEc8fv0MnOq6JUP99Kzb+6ih++AZ7kO/IfpVQh3qrd1pwQ9woztlF/s+0lAo4WtIeOHS5+938rIDWULyBaQLSBboN0sEIWJShatTrrntpsiHgZWAc5FaSUPY36FxMvgoZlrkxRyrBAhu66NQV6xK1QoSSNFYynsJ9B7w/sjaCzEpDqHDSs7gHdUYc8DcC6jKhR1Xb3BM4AOsonk7kJsAa1OS1OnTaep06eL8NcSROnNf+EllM1ZTi8+/xw9+fSz1DklBaDxCJ0182yKiIikGWedjRI75wlAOXbceNq3dy/97dY7RKjtnFkzaMLESTRz1mzxPr1HTxo0aAjt27enyZmwF5QB3iWXXkGffyYBVg7X5WMYKCYldaIxY8cJjpRsEF3+64mnxPa/33ErFRVLpFrp6T3o3vv/SZ/87yO68rKLKSPjWINxuA8G2R9+8B5xSSAGtu+9+zYNHjxEnDfrf+PNt9Dll1xIx48fF+CZ2ZofefRftHrVzzT/uX+7+isoyKfbb/0/mvfXK6h7ejpdd8NNrn28ctXV82jK1Ok07+rL6dGHHwxK+cUGA7i9kQGpmzHaanVoX3jJkMdhrTomhuQwXY3Od/3LKiSKOEACxKyw1jp6us7x4ZRTXE0MVvNLa+hwdjmVVpqFB6+58zFGdwfpURw8e7VIK90rmp2KnrtkzFR1w0VHgRwVlTq3OXM02V5RbUFJmFpBWJSRWR8LNXtyKr343h5atjYLntFcevXj/eJYJm3yJcy6yzIMZWdkkS0gW0C2gGyBk8MCIp2GCfnAidARJUJjBpEQyAExB50HUOpLFHURQL7atWa/xR6LyVsO3UWZNHuGqysO1a2r6AYw6mfiq+voEKyg5qjCLoUWL/81H3VCpXDREIwkd9mGFmCA+errbwtv4W1/u4l69epNUVHRtHLlMlq2dIl4jp40aQqtWfWLAKPzrrmW1v/xO1WD2ZIBWC0qPGxYv46mTZ8hwNiPy34CZ4ua+sOb6ZR77/47zX/2Gedb12sFQo3vuvM2ev21V+ie+x6gQQCJjWXXzp3Ex7Mu/fr1p+XLl9K6339zlfbJy8sVIPThRx+njz/9wmMqG4PUhd8voIxjx2jPnt204NuvRY4qg1UOEWYQzGHCUwEme6T3pJ69euEapqb333uHdu+qT19juzwHL/Brb7xNRqOROiUnN1B3x47tpAEXzA9Llotw6MoKZtAOjciANDR29dprr67dyGEuAPsqiIrCO3kM0/XUwdAe8TR+QCfBWnswU8pzYIKjMf2TqKzKTEdyKnATkC6ohjq2Xk/98LaI2B6IEkZx4hokkFtLaWDPns01PWm39+jSReiuUgU269mvRzQ9dudQeuupsfTxgkO0c3+J6OeWq/rQZed0p2Wrs2kpFqNBYi6OA7mRL1EqSwCMLdQpLs5X01bv51m4ZISO8KsssgVkC8gWkC3QOguo1JKXtHW9hO7o+DBmqkXoLiJ4C+vnUD0PyGQJbSBmR2dwWWjBooua3fajwivK3lEWlQJAFWC1faWKFLYjQoV1W4vp8PHQPWi373mefqMXFRZS/z7pdNa0SfTzTytp7949ogpEt27dqWvXbvitKGj79m104MB+Uf/1hptuoV/XrqG1a1fTtdfdQOsBRjm8dsvmTfTnnxvozHGjaOKEMfTdt9/4NKbNCo4XgMXCAomcKTEx0esx+/ftE2G7TGhkCJOiMGLxnHj1FZfS1VdeCg6WMgGSm+uEnVQuqVtnvS2Yobpg7hwaNWIw3XvP3+nAfsmBMnToMIoBYZFTOMeW+xgzahht3QLSTff+0Ki8rIymTBpH991zF40cNVp4ip3HBvu1ba5Mwdb6JO8vPlINQFqEWQ8LhUd1DfhswsGUW11bH5IbH6mnkb0TaEy/RIqPNAjvaSy2eROlUkfh8JRaLVVCl5Qk7z8ab3111H3pqSlCNZVaCoMIVE8j8kdjwbCYm4+7PIRzSy8/rzu9/Mgoeua+4QjxsdHIwXG4uPnXs0rVMj3ce7//gQcpIzOvwcIzaE6Zc855yBHYQ59/9a2I+edwFFlkC8gWkC0gW6AVFvD3It+KIVpzqEaF0F2dVMuzEF5SBE01K213KgoqLk/A8wiCc+0lVGs6JvJFLWYTvKP1zy/NKhrSHQCj1kMil3bH/nL6fXNgk9YhVe0U7dyu8i/k3VE3YRIOL2ewhGu9vvLyCyJU9+sFC+mLzz+lPbslssm1q1dRTEwMrV2zmtZgPToa63hleeuN15CypRfPUjt27aMzJ0z0qVJcfDz9sWEL3X3P/fTVl5+LPr0d9PFH79Mw5HFyviiPzcIOhWUrV9Ez/36edHqd8Gp666PxvhXwuHJ48uKlK2jP/iP04EOPoq5rHn391Rf0+JPP0PMvvOw65JefV1Jy5xSRF9unbz8kmDd8oOVnyhUrV9Ndd99LW7duoR9/XOw6NtgrCnwQbvA62N3L/XmywMIX7yebKV+AQWOkd0DKkxUZiMPpgsLcDIhMYNj9fWcudesUQT06Sz9YbsPfoVrEw2zal09R8JoO7FY/A+JJB+e28uIDFBaZSnnlWrrpiZecm5u8Lnr9NbHtjw5Chz4kWkthqBl659PP0NFMKRy2sdL/uPYamjxqFC4oG0EsdLTx7ibv9x4upRqAzGEDJJD526Y8uu+ZLfTN65Ooc1IYbqqotAZDs6237S6me57ZRM//cyQN7e+frWtrzsCsVTc672+3Nhnb3w0MSOMwe/bgA/e7DuHZLStK5hgRovHn5h10xaUX0bZtW0Ui+4cffUojhw/CeUmg2nWQvNImFkjv3pt69uwnioInJ0uEYt4Gzs45QcczDtPBQ3vo2LFD3prK+2QLyBZoAwtcOrErqbQ6Su453Odoo4b1o/69u1FFUTZVl0oeEp8HtbKBzhhF0Z260fGsfPrpj/1kU0vPBZ3wEg0MMHn8cIQbqii/wiG8lOaaCrLjflGjMLZy5OYPT4pUkBERzr/8toWycjMpIaZYgL9aix6hhL1o6pkj4YmpQLis53t38z23dA84iVV9yAyv0efwcilsR4WHdt/RCvrh55yWdiof56cFHn7oRVGHNLpooc/SLzXGIaIO6fbtG2nRD/WT7X4O5bWZGiGrvLD3MxDhUFZ+zgpVORYGvfwMx4tT1IjKiER+aHFxsXNTwK98rhEgUS0pkaL8uAN+TqyqbBgNYACHDJej4VBlT8Lnzw++jY/z1LY129StOVg+NnALRBhgclslvtw2CouQPHi+emFAuvNosahDyiVfUhOMlJ4s3XT42F935ohSMEy4w0C1T5rvfFTnmNowKYQ0Ut8B8jmcSgXpNdwgzcgplJ5/ZI2HMZls9M/ntwK8WVFnVEM1tTaQGg0SYJTbngDZ0Q3/7w/iFJxw7H/m3uF+g1E+3l89uK03sSF/2IK6rY1lypRpKCR9XIBR3vfnxg1iVoyT8VcsX9a4ufw+RBbgm8CwYWNp1MjxmDxoGHmgspaQEr9/hd2MB8doUiFc3qHUkl0Vjvcx1BmglZcxYyZTYWEebdr8O2Yl1ze4UYVIbblb2QKyBZqzAM/6ngSiwrWFhUFpbrlUWqU91a6xOGhftppOFMdQj4QcMldnoxa6DWC0f7uoxaVdlLbDYuydB8tp2ZrcdtHjdBv0wIFd1Lv3QCqPmko6C+fscnAmvgduwvdDhd1KZkO62Lp12wa3vcFZbQz6/O2V63GGUjwBZK5H2howyvry+bqDUd7mCVT6cliE+vxZLxYZkEp2aLP/aQCTLOwZtVl9z9KwN27SkM5kBdisBVe6XqsmLkfiLmf0A806bph6rUTp7r7P17rBmEjW2ioyaO0UFaalsmop7MfXcSfD/mH9EX4AcTj8i0xnz+jSD6ZTSZmJagBOkxPDhFfaea5dko30wXPjKDoKRY7rmBed+/x5tduDw2R8xhljBAU550n88MNC2rVzhxi+U6dOlJ3VcMY5KysLSeqd/VFPbhMEC4wYPo4mT5kF1mrpd660VZDWdJw05ixSWQq95k05CCzOmniyaJPJrO9K8fFJdPbMC2n8uGm09teVtGXLuiBoKHchW0C2QKAWsOHh8GQRCZQ6AEqjqADhu1lwjqS4BfE46ngmQn0+XBs1A1kqXG/0wOE8WrJoE50ztROlpSBk17aPHIqIUKvg1n8twA68ovYCsW39tiL6dVPrU2jcBpBXvVjg+4Wf02WXXi8ihUxaty9jM8cs+fFrTK77jmpr5nB580lqARmQtvKDi+86IKAeevfUERen1hoiqRbhof4Kol9Iq+X/TYWdri0VBSjawyKSqbw8m3r360dHC+tDBtz7VGslMKXW+Qfu3I8Nxbpaq0HohZJiOvekClWUxyGO5hVT365ppNErSaXSe2zjaWNiYvNtu3VtOajUocQOKQwU6HeGdSzNOUxW5N5s+nOjYFLjGTVmfOM6VNfOu5J++3WtYJFrPNPGIRhRkfXedE/nK29rvQWYkGDW2ReJWWDuTW3OJV3NQdLWZvjduQIzxmpLnlgMVduoVt8dwLQnQm6SaM7si6lnjz60bPkC/FbL/O5TbihbQLZA6yxgQUSKBnXAbTYL7iMdm9zIeaYqG3IkEYXFXieuUWoulDy8Ebi18eR1KIWJizKLpfBgHufIoX20b9d2MeTnP5yg+LjOCNmFj4xrf9rBpaHChKnC8z289Xoyyy+8ovYcjNMXIctKWrwqh/YeBlKXpc0sUFtbQx99/GqbjScPdHJaoBVQ5uQ84WBrXZJ1MKAu9d1TyWHDgycSvGus0mxdQB0EubECZAgqjZHsuNlqTXlUkuU5Xt1mkcJebQBFHUFsoGe34eZSnpcBnSXa9sZ61VaXE+stdFb7F7bbuI9gvreiMDLrE+h3hnXgz4eFGeN4cYrJVEOXXiYB0rKyUtLpGoJpzk0oA0uaLKGzQJ8+g2jOnL+QMSwcuUk1xGBSZ5LCwlozqs50FP0cBTDtQdXhw1GwehClpaXTwoWf0aHDe1vTtXysbAHZAn5aoLTKQgmROrLgoVrVgsgYP4cJejOl3UQKSwGFaWwotaICT4SDDGo7GcHGG6ZtGGUVjMHxWENFiBgurnYQ55BG6Bx0HLnwTjDqHGPz7moqqUyiCH0NaRXVpLIdgrc0nOyKBKBU394zZz9eXx0ofedARAo8ogpBoKRECk445Zbo2xyMOmtPcikPztOTRbaAbAHPFpABaZ1dmGVLicR/DoP0JJz0GwZK5qKihmEeNmtgIa4Ouw0AELmN8ExirtLTUG27DSpoAEgxbUpRKGPS3Pk4HNKFNNSzq/6ePOvBOvGsdbM6w9bcBi1DPivsn951Ogf4nfHWd15unqAx5zY5OTmUkpraoHlqWhq2YyZalpBYYPiwMQCjl4i+NbUnKKx8PUgbgjv5weBWY86h6ohRuAal0eWX30jfff8J7dq1JSTnJHcqW0C2QL0FuK63AKQ1KNMWdnJFm7CXNDHcRiYAoYJKBVUgKqsIHlO9Vkl6BPtEYeG0oNZIDR6BysCZVwog6hQV1VKEykSlxXnOTQ1eTZYwEKhEU4QWZHx6NVJjKknlALeG/QRy6mNwx4adFbwEEJGF667CUY6lVLw6B6zF5HV1DRZixt+2JfdjhtKn//2cyONjBtX7UH5D5nNwfjLyq2yBhhY47QFp586d6Yuvv0O+VgKZwESanZ1FLzz/HK365SdhKSYoeeqZ5+jsWbMFw1YxAOkN181r1UO+St3ysM+GH19w3ik1klctDIBUlo5tgYv/cin9uOQH8V2MT0igiy7+C33+2SdC6dWrfxG5pUNBIb4N9NyjkWvK32sO55Ul+BYYNGiEC4zqq3bDM7o1+IPU9ai0V1N42RqqNo6gWmM/uuD8q8SD5M6dMihtrdE1Gi0lJibjt5IIVsNoRBkYKDIiioqKC8DGWC1CpPPzczAZmd/aoeTjT0ILlFRIk861AKRtmfUYTFNF6gBMMe+cW1VEZoeaKs1aKjU74DVFTXKdAh5TEgsyYXwKe0LB+4fSc0SVtQgHxrpTmGyvFlE76nA7aGt8I92qahvAoo0MePYw6FDXW2Wty/OUosfg04XXNAwAldOVWDkGqDwgP7ryqwXgk4Eok85IUURYEWIyA4SCC8KMV1KgvR/n5jw2GK/MZjof5TVk1vum1oxDxEFsBLg49BpUh7BRRbWV8ktrQM4pe5CbWuv02XLaA1IrfgyPP/awKwzyuutvpH8+9IgLkM6ecw4NHzFSFI1lJqrHHn8S+x+l22+9ucXfEpWaL64dR5Tw1iqUIEtq7VRpxzmlU1aTiy6+hJ6b/6LwhnK9q0ULF9CHH7wnzpfZ0+6/9y769LOvqKAgn3j/Pf+4Uy75EoJvQ5cuPej8uVeKnjlEV1+1KwSjNO0yrGozHsnMxNT458+9CuHYpXT8+JGmDeUtXi3AOb8DB46g9PTe1L1bb69tnTurqysRKo18uL07aD9YI9tamovSaWs9Trfx8vCgzGKqKBbRNij8dZKaABE6ZZnIbzdRpa43KXQRyIlViRzTcmcmDk4NuBDAkD2nClHqTKXCK5yfXPaM80OZpMhdmCTJbDajpIoZqSVAq0L8txGntFYzMMWiAS+EFuHEOg1esSgItrfX+GVx1tFstoH8EeUrALbtIc6VdbeBp3WZ9b6pVfqkRlLPzuECiDbdi0oGhdW070Q5FVcEN8rI01jyto5ngdMekHKx2J9WrnB9Mrz+yGNPUEJConionzX7HPph0feuh/ovP/+MFi5ehhATLvbc0tkc/y/WLsVCvMJlaGTp+Ba4HDVGI1AwOgHeUQ7FbUzXvWjh9/CgLkah485g3M1CSLP8uQb7UzWgnND5cy8X3eqq9/sFRivhUuAHpMgg5KDpq3aSDV4Ds6EXzZ17Bb377ov4HlQH+zRPyf66IAd37NjJLvIp50lG6EvANF5FenU16ZBvbrFpwGZuJZMVuf5mI1Wb4RtDjvDgQSPFUlFRRltQjmfdup+DUpJn7e8bXKH3Tp3uw+QS329CEaXjHON0etWGRZA+vGU5ilUUTrFGNQCXHXW7pVJpnmzH5H88uatQ8iRv20QcKcVYqK8IT7/O2LTkG5Mosk7W2gqkt+BBH+smB9yFIMbj5xj+fqnQhsEpg1B2KPLiEjcPKCNDnrfm+4rNZhWvztqJfL6qunNWoUa4SoNapDGdKDIRblg34W0q6KqwgeBReD7rd/KwJjikeYHbE8BYAb4NqIzKArzw2FxkQABkXE+RlUNc7g5+BejCSJk9qACyOKaB9RU4X4yp1uIanNgVbUInzFlRVZpHMut9vY05LPuMPvGUEKUTG+1KHdlRmoiZ5VmUmHRQWcsoLT5MLFuPFNOBTJl4ShjnNPp32gPSxp/1xEmTxYN8UZGUS8olM9wBa2ZmJkK6dBQTGyvyTbkodSDCBbb5oi8W3AzaWyRdmIVWJ4p/N3c+fNNj4TzbjiB88+MblNYQgZuw58+APdHSzZrbtr/eks6qZvX1ZlczwsU4/5iloqJcLM215weEE8ePN7db3u7DAvw5aQ3hzbY6e+b5FB0Tj7zOXDJWI2TWy3eLZ3qf/2oblYMYRYvZ/1iEKs0d150GpUsPxs99sY0OZpU2GevBq0ZSt6TmdQiv2kQV2iiKwcPdzLMvpqUrFjbpI1QbYnHuKZ3TKD4hiaIR4hoeHoGHWikerrYW3peqSoS5lmDCJIuyczKporLhA2mo9PLWL3tEJ545nQb0G+xqlhiRTYkRWRQbnk9qgE9fUlkbSSVVCZRXkYoH/BiaPHkWwuIn0YaNv9LGTet8He5xf21VPeHYvKuvoN9/W+tq55xMCkWUjmuQ02hFqw8nQ0TLAGmxWUVJKLlmRQi3JiG1Waup8DtQIO9RLG10f1dgHB5PCQZgDcLNG4tTH/bw8roJxEFKgFKnWK12TKpIYcnObYG8uvflPE4JICnuz5gEaGxznhjgYwBZkW/v/b7MGBO4txkBMhUivXq5DAPcqpCbilxVFcKDW/gdaEaJJputIL9iQBoVFQ3M73Q9S81OR9Z7Lkc4YWAiygpqyK7Uk0WXRlZN00kdpd0C732WuK8Ow/2RIxH2Z7b/vaPJByxvCJkF6q9KIRvi5Om4V+/edP8DDyLs8W6X95NLZvBFxCn8wMUShQccJkAyRDT9YTnbenrV6EBohHkh503EU5u23Cb0wA0NVctwMwtr9nx4lpVFqZRAUVvq6Gks1odvenrMCBsi6j8f97YqrR5tmDCB23q/8bkfF6p1BsWsT6DfGdbHaq7BTHDHsH2o7NNR+uXvSnOfUZeULjRkyCihqrF6m/huedNbA1bLy6f1pcHp0nXi153ZtHFfAY1G7WA1JlQe/usoaYYfs/wccFGOOsCPfvgn8mu4Bq73y3M4QoXLY8+hoUNH02FMQJzICt0kRHxcAvXt1Ze6d02nuNjArnk5YJc8fPQQ7Tu4hyoRVt7WMqj/YJoyYRrsyY84DuoWv586Rx+DJ9T9YdH39SEyrAoe7irqmnCMigFMM0t6UKGqE02bOod69h5Eq3/9mUpKSwI6PXdAyoXQOQevsYQmSqfxKKf+e2Yqt9S2LJLgSK6CeqOGeGUpJqHiOnkEfmxBKWoKKIrDRdsoZFQiGmTCPPZaNv3+CAJAu5UqSnLx7XdQDRhtnSSFofrUHXb80hwoZAVm+cY2521ifCYcrCNLDJUern7rxuLw4sb6uNoEacVZkUBmvZcMOrJXnACjNnhEaw29wajs+b5mV2pQ5qwbyvMYUDLtKA1Nj6GyKjOYkd2v00H6kORuOqQFPH8zOqSqoVUqKakTffDRp/TGa6/SksWLXINxyQz3+p96pqaD8MWGpTT3iHj195+poisuiJWk1cUi3KTZqT9/u2t1O0TFkMVcRXY8DJUWF+J8Mj32aa0r++J89dioDTfaLAjTwQ2vvPBEszqbUfaF9RVhSqCBb29hNmDWJ9DvTHvrfbqNbwMoKMvP8Hjag6efjdI9ZjJUoq6eqQDTON4lHBFKA7sgVwsEHHokZk0ZlCBK/zjwgMghcvU1hBUIE7XTyo0naGRPsE+CZ6w59mjXiCgbpSnfSqawATS4b1/atfVX165graSkdKXRo8bTgP7DXF0KbwqcEqi6hIeLOi9F3Qued7ERDgn8U3D8HZZERJMkxo6mMSNG0SZ4Ev9Yvxoe1KZeYdcAQVyZPv1cGjN6IkptWSg+PJN6JuyCpxoPONARl7wWS6Q2i/onZVFBWAodzB9Iqbh/XDTnAlq0+Es6CODdErnx5lvo3PPOp6NHj9BXX3xGxcXFohtfUTotGet0PKa6rJB4aans1sZReqdwKji6i2KSu3vsxmJKwH3dAmCKEP02ur/zOBLYNlGNh/PjfeVgu2WgVGMPo2qUgMHFy6P+wdpotaDYihn354LjVJy5v0G35claUVNbgbI0Sg4hbgtRAKzjnLl0T2N9QjW8zHpPlIZJnJQ4A0r6MNjs0SwYdf8MrJokhPCaSVObRf26RMmA1N04p/i6DEjxAad16UKffv41ffK/j+jN119t8JFznh6XznAKr7PHtKQksJlw5/H8arW0LfW4+9ie1q0Wada4gqnzZJEtcJpbQA3PemxKryZWSEtJo17whAnGW+thQlxvkzaNNzBO04OkA1FLQrJKzKSPTCFVVA+QgwDOIpSM82eU1hIBQKPCDXT2GekAqxqB7Rr31/h9uOUwcnH6U+8+Q2j42Jl0ItvzhFLj43y9VyK0b/wZY2mwW4ireI5lEIolEGFgiudBAVDHjptOI0dPos07ttDm7Qh3DqGcNWUG9erWU4zQu9N2So05inX+RHx/bv6q1VlXTAnRf9D+vKGUX55CV175N1q59ic6cPigX13kH90h2n326f/A8m5CCS41QrBn0xVXXk1zzp4hQvN9Ren4NZDcqNUWOJhdIQBpFTyN4bFJIqKo1Z22QQcMWCuLc8VIlYqYNhhRHoItILPeE/VIltJOrLoUhOtK+aP+fDvMaK+yFFIisrESo/Vg4A3tBIo/OrWmDTu1wsG6XFpa6oq+9NQfp5ZwpEx1dcsiOTz16e82f3X0t7+WtDvtAWmPnr0ARr+il198nr74/NMmNly+7Ee6485/0Ntvvi7yAS697HJavmyp1y9Vk07cNlSDBc6O2R+rlWnKO4Yw2QFLQdnJ/aPvGNaUtTjZLcDh0U6g4H4uE4cPE6HTBpAKWc2+bxjsPAw3aFCgAKFrQHPF1kTamB9HQ3snklnFoft1wmBV05V2Hd1JnTGbHGWAdwFeDSZC4hA7X6Is20lm42BKjYuizb//6Ku5z/3MIDx71oUgzkoW52sHALXznQKg0qdL2EvvHI3BEf8MUEcOHEzRsM3ixV8BdNXnUXo5PKBdc8+7nLp3TsHsXykNTN1EMWEF8I4E1EUAjWuoT/xaUtv70/Hi3jRlzHjKy9gbkKfUfSL0g/ffpV/XbaTxZ06gZUuXIBrHe5ROAIrKTVthAa5HyqC0V+cIRFAcp/i0vq3ore0OZV052qJWYYSPsPm89LbT6PQYSWa9J0oCmGSxauID/NCVZNMg17k2R/QRCCC9/Y6/0+w551JVVZVIgWBSUp7wawtxjl1RWYG7voIWfPu1KMs3bfpZ9NDDj9H5580WZKnN6fLl1wtoK0r2/fP/3dtck1Ztf/LpZ2ntmlUea+H6q2OrFPBxcIBz3T56Owl3jxw1ipJBXPQsSmlkZOa5lnvu+3/ibJYs/oG2bdtKGzdvp3XrN9OYsePpmacfb/GZOn9YtdVFLe4j2AeaaqTQsMKykD2xBVtluT/ZAm1qASbt6dWrvxhTY2JPm28JB7Mg54nalQYqVfelX4+oqFdqDECnGxit64brsGVURFOX3uPR3ghmSTBU+lkXWFunz8CBw13kQr6189xiyOBRNO+vtwowioh4PBTUgVHPzQPaKvoDsLVh4fWePfrRtdfeAXbZngH146vx1KmzaTDOQ6Gw0qDUjQKM+jomGPt7JO6h1NjDoqu/XHytqG3akn6ZlIzrXUdESFUvQxGl0xK95GOIdh0rJZMFwZ8VJS6vY0e2S015EVWV5AkVKxQJHVnVU1I3Zr0fMqgvXX3VZTR0UD9a+uPiU/I8vZ2UnevINpM36v046foXaQysTCKnOCQmJtHFF54nnEfPPPs8de+eLiJPFny/mFb+spau/us1Yuin/z2fXnz5v2L91dffoqeeeU6sf/HVArr5lltFdCRjg01bdooa79HR0TRp8lRateZ3uv3Ou+i9DxoCXR6b68NfchGnXhym2++4S/THHk8zcqeZ5IpLR7797gdiXC4z2a//APp5FYjxgDG6dOkq2vO/226/k1avXUdbtu+hG2/6P9d2XuE+PkF5v+8WLhG4hMsBLlm6kr7/YSnYnZPBl6AUx6/5bT0xyB01+gyad+31IvLm2fkv0VvvvN/kPNx17Natuzhu977DtHT5z6jPHUXjxp9JX37zHe3ae5A+//LbBvoE681pD0iZVr9ralKT5fnn/i1szA8Hd991B40bM5IuPP8cmjldYuFt6QeQWSB5RmtrOgYgtZo5zxJEI7hg5BR3rFDiltpYPk62QLAtwGCUQanaUkAqmxRR4G0MZhZUq0AWBlbBYmVvWrunjLonRVKvFM+M0PuOl2B/BGn0IH4I60sOsF5rcDz340tYHxX0YtKsHul9fDVvdv/wYWPoPHgWWTg8l8EoA8dgC4f8OvuOioyhKy6/EQ8MTUOkWzJu7979aTzCglkGpfxJ0WHer7NcWzGvEAXZEbniSXh7bn4NyFc87W26rVfiTuoUlSHyg2fPurhpAw9b+CGE2d2Z8ZxlwsRJ1LNXb9qw/g/xnqN05s69gPR6ydvQ2igd0an8r0UWMIORdsdRJ3/EUWL2844qzFdQkndMqKcKiyeLwv+QyY56TiejXk7Weydr9sl4Dq3RWeFonaMjKTrw761Wp6Wp06bT1OnTRfgrk83Nf+ElWrliOb34/HPEnsLOKSkiX/+smWeLUnozzjqbzjn3PAEox44bj3rTe+lvt94hQm3nzJohrsszZ80W79N79KRBg4bQvn17mpgmLi6e1v+5lS659Ap4RyXAyuG6fAwDRearGTN2nCiZlJ2dTf964imx/e933EpFxdL9Kj29B917/z9FGuGVl11MGRnHGozDfTDI5hr0EZERxMD2vXffxkTsEHHerD9zElx+yYWoU35cgOcViOysrq4SUTcvvTC/yXm468ggPgnA9vprrqYFC74RqSQPP/IvMtea6dzZM2nRwu8a6BOsN5irlsUfC1RWVBAvrZWsIhR5VmrJYkIsOcLydIa41nbZquNrqvLBVJsIr4wcytMqQ8oHn9IWSEvtJs5Pbc7xeZ6MKwx1QLLInkK/7i2iPl2iqWui598YhwLmI1x+Rs940TcTQNTqupO+ep8gQjI1A5bcFeESNDZNAryNPWj/gV3uu/xaHwTv6pw5l0jjA4wyIA21MCjlaisM9C+95Hp6/4NXKD8/u8XDci3Fs866QBzfA+RFceGSZ6i5Dn9clUnPvbULQE+N0C47iKFi6JE7BlNMXa28B5/fQr+sy6U4PBBxDdlzpqbS367u21x3ru39krdShSma0tK606RJM2nNmuWufZ5WGGi+8NIrZDSGUxlyjMKMYWB6/wceJDJEc47SmThpiphBr6yoRBmdCrp23pWeupK3tYEFjuZWolSQlnoidLco6yAlpSOv3Acjdhuo1WSI4qxDZAcBG6nB2G3kawuzjMkiW6BtLeBo5URIXmnggJZrtb/6+tuUmXmCbvvbTYhu6i3K8KxcuYwOHzqECUYHrs1TaM2qX0Qo7bxrrqX1f/yO+tR96aqr5wmemA3r19Fzz78owOqYMeOE0frDm7lxwwaxfu/df3eRm7pblMvy3XXnbQLA3nPfA8glXuW+W6zv2rmT+HgWBsqffvIxrfv9N+Iwb5Y8MNMzCH340cdxT8yjB+6/R2x3/8f7F36/QHhP9+7dI8KDHwJoZLDKE5oMMH9YskIcwp5ZjrSxWKyUnZ0FIL2XOF2RxXkec845T7znfwxsmVNnPWzAC8ufGzcIL+vyn1YjBPpjsS3Y/2RAGmyL+tOfmr0k+VRdkd2ugJQ9ozWVORIgVUX7o7ncRrbAaWmB5OQ0cd5qEC34Ei3YdFls6hjKrzBQDVistx0qFIvz2D6p0dQXIJVlb0YxyB8iRZ1S534bfo98vApkRzr0V4swQW/CnluWxMRkb8087uvUKYXOP/8qsY+BaFuAUacinJuKyFrMwGrpgvOvpA8+fEWENjn3B/I6adJZFBMdB69oAXWJO+Tz0KR4PX30wpnUNSUcoVRW+sdTm+ibHzPoxst7i2MnjE6iB28dTGGgQs7MqaJLb19LsyalUvcunicW3Afsmbibtp8YRxMnzKQ9e7Yhb6h5cHzgwH4aPWIIwqQThReUH6Kk8iFSj84onXCE8IYDtObm+p4UcddFXg++BTYfKkYJIA0IV4gKj++n+C59RYRC8EdqWY9FmQeIWea5bAZhwlkW2QLtZQEmAVQ4wIcQYNiu0i6Bs3L+DgcoXJJxxLCBrqP42mk2m4lDUa0AZRyNsn37NuJrL19Pb7jpFnr1lZewnkvXXneDAGEM4rZs3oQJQiP9343XidKBvQDiUlKlZwFX541WbFabAJP9CqQUn8RE77+//fv2ibBdDos1hEnpPLFxcXT1FZdS127d6JFHnxAg+aeVErhsNJwA165tdaE8rDcT410wd44A5eyRZTGZajDxaRQeWdcxHlayAV6HjRhBYdCnJ875CJjfF6P6yBdgf2f7zLvmepqPKFIngPbQRYs2nfYhuy2yWmsPgifDAXZNSy3yUarzW9tbi4+vKjshHYsHX4dC2+J+5ANlC5zqFoiJiRWnqLL6JuDRIP+ThUkZ2Cs6d1y3JosTjHK7sQM6ucApv3cKH8/Cobu+RGmTbt6xqBcaqMw97wpxiCAv8sMzakVZnNISb6GwDnj6StCnf3GuzpxSBtOzZl0UqPqivTEs3BWqm56w168+RgyKF2CUG7OXdPTQeNqwvX7C4eyJKQKM8v7UZCN1TwvHfgn48zZvEmvMp5SYI6LJuHHTvDUV+3jGnmfC2SvqDkbdD+QIHRmMulukfdfX7S0QgI+BX9GJffjcvE8atZW2DEY5d7QWXv8/EJ3BzxqyyBZoDwvk1bHj+jOR21A/u2DZ5W15QahDytfOV15+QYTqfr1goSAw3bN7lxhyLTyYMTExIPtZTWuwHh2N9Tqv5ltvvCYmCTmPc8eufXTmhIkN1fTwLi4+nv7YsIXuvud++urLz0WfHpq5Nn380fs0bNhwkS/KY7Mwr82ylavomX8/Tzq9jt5/7x1Xe39WVixfKsKTFy9dQXv2H6EHH3pUHMYkS9ffcDPyQ72H3P7r0YcovXsP2r5rP33+1QLS6XT08n9eow8//lSkl7zz1htBB6OsoOwh9efTDUEbuzJS9FpRfAg1SaMw+xJ4nHxr1KqpzKbaGjx8YdZKocVDrMnSmu7kY2ULnNIWiIiQvJkKlGjxJUxkxGJTSb9xX+2b2+88XlUHcJtrx9udgJRzMgORKZNnC68q54oKJl0fB3/x8du0GyVbwsMjBQPw8FHj6CzU33TKrm2b6LuvP8HMqpFqkK9y0eXXUL+BQ527m33l8F21GaFCg0YinGgn7d+/s9m2nnacMUZ6UEiIyAJLcbGnJj63rd9aSAN7S59z48bFeLA6eKycBjSzv3F7fp8KQJpVki7Oae3aFSgVVg92PbWXt51cFmDAt3pnPk0ekkRRVE55YMk2D+jWbidhR85oQcYeqq0qE2D01935VFaNH5UssgXayQKHcyoFS64aNUU54sff0i9atOdapJzKwksg8uAD9xEvjeW/r7xMb6Cso1qtFuRCzv333nMX8cLCHlPmlHEKE5peevEFwqvIk4bOcixdUxc5mzR4bW7sJfAuOo+55eYbGhzDxFcrli9D5Q2rWJw7B/XvDTKhCFc9aud2fnXv49w5M127hg8d4Fq//dabxbkyOZ6zTOX8Z5+h//7nJZG/asHEslMnPshdx99+XUujRgymWNQQLysDzwxK0YwfO1IAd2Z9D1U+tO+pd9fpySvBtIBdEUZMkOBALcKyogPB7NpnX+yZrSg5LNrVmJFXEmAohc8B5AayBU5FC+AGCc5cn2fmJKextzJ3xnl8Hb71Oq7Qyy5NKul0EvmN1wOwMyYmns48c7po5g8Y5Yb9Bgyhh556me5/7Dm68bZ76dfVKyi/LoS0ttZE33z+IV1789/p7gefoqtvuI2++uQ95K3491DsDBWePm2O0CmQf8OGjhHNGQS2RD5fdJSOHq+gv16Y3uRwq81O/5y/jaaM7USD+vgP+MO0lYLgiDscPHhkk37lDSe/BTi/e/X2PPHQbKutoYJju12stm15dtXwiDIgZjBaVm2hVdCpqDzw3Lu21Fke69S3wAmQeDJvitJhIa3psAjd9XXWakseaQBIWfYeL/PVPKD9DPo4FDdQ4RIyTjAa6LH+tGedWDd3YRBYXNyyyVVnP9ynE4w6t/FYDEZ9CQPwIrC9sx4s/J71CRUY5TFkQMpWaCepqeWapCRCd8uL97WJFhZzBZUWSiFtJszwmq3+hdW1iXLyIH5bgMNCnKybfh8kN2ydBUBG1pbiBL9+/0KVcDNCmNzHHxk/fqpoxqG6/rLpDhlxBsJ3JMAbF58IAoXOdOjAHtHPgT27KAYMg6lduon3Xbv3pIioKDq0X9ovNnr5x4CU9YiNTaRhQ8/w0rLhrm7desIjG07hujKfrLoNj5Terfojl9798iC9/Ogoiq2rm+ds5wAL75P/3YGbsp0eu3OIc7Pfr0mR0oNV/36D/T5GbnhyWYBBKQPAY/lV5MANvSTnCEJ49yNXLfAH30DP3G7DAyfGK0aYLtca5Yf/VdtzZc9ooIaU24fMApsOFlE5ypqprOWkr9oFpnrPIEuJCVWt6Rjpao4KXbYeKabcIITrhuzE5I6DbgEZkAbdpP53yMyNlQiV5QdOUxXyUQrx4AaPaajEXFuCMXbjpmkV3tma2oYzMqEaV+43eBZITUsTuQWLwZ7GdaueeOrfosRE8EaQe2rWAvCQ+iPAMEKUraS7V9glDwcuE/5JnX7+5LIZDGEAfZJX0V/vaGMlqsAmmJN9gtK6dBe7ystKKbou19bZNjomri6f1LnF+6vTSzpq9ATvDd329uktkVckRARO9rNibTb9+42d9Orjo6lfj4bhujZ4Rh95eRvlFpjov4+NJr3OP6DvphpxLqlGZaL4+E7CI+2+T14/tSywYV8hFdRoMKmiEDmcuQe3UFn+cQEUg32mDuSrVhRmUs6hLS6PbJXNQL8hTJdDiWWRLdBRLMATNmt3SVEESrsJgPMAGSq3kc50RABQBqH66v3YtpmYLZ6FweiBzNZXtegoNpD18M8CMiD1z04ha2XD02tFDUApHjq5NmlR3naymCWCkmAOyjmjpfm7RKkZDhWuAqukLCefBR4BDThTlY89YziNHT2cJiDJfvqM+hyCk++MTj2NbRz2AFFZS1t1cipbuTieQ0aDLQMHjhBd+usZbTy+3Wajzz56mwYMHk5p3dLF7pqaKsGW696WS7rU1FS7b/K6zjVKWaekxM6ihI3XxnU7O3fuKtYiA8wdXbAsg/778V5688mxTcAo1ye968lNCO+y0SvwnBrAtNtSiTFKuaOpqV1a2oV83EligXKzmjSxPchWRxIoQOOBTfBiHgaBYevDD801FVSWd4yy928SYNcBD6nNgZrHMd2p0m44Sawkq3m6WYCfNzmKYPuREuGEYWCqNmOyDgCUF2aTZzlRWE0rt+bKYPR0+4LUnW/L77KnqcFCcdo2m4PKAUqNYga+CsWst5IxIpWM0fyg1bo5Awa3VeUZKOAthUmYkDNaY5bBaCg+x1D3qdFoaNr0GTRj2mQxFOc1LP5hEc2ecw4tX/ZjqIeX+/fTAjzhw8y4KmsxWTT1BAl+Hu5qprJKTLZWXB+CLf3qQkidHsnA+nfQt198hHQDK/3lyutchxoMRrLU5Zs4N3L+aBi2ByIMSBU45R49+oI+X8p193Z8585pYnekPrAJgF8QqpuTX0N/uW11g+6/eGUiJSeG0brNEgP6uIuXuvZziZhv35jseu/PSoSuFEW+UhHenEI7d27x5xC5zUlsAQVqklqVekw0W1GySSnKOVWV5AlPpkqjI314DGnDIkirDyeNzjuI5LBfMyZ6zDXlVFNRSjZzjcsyFlwXauF9Mhg0oIFoW1JElxL/n73rgG+rut6ftuQheW8ncfbeEzIIIYSEsMpepUAptPxZZZZSVhhlUygtLVAos0BLGQlZrECZCVkEEshO7HhPyUOWLP3PubJk2Za8V5xz8nvRG/fd8T08fuWFAABAAElEQVRZ9333LNkRBNqBwI7sCvAmIgiEQkAIaShU2nHOFGlrR2lfUa1WB0395r+ZXzkdTg8sRi3MlHewijSaVVX5REzTYY5Igs7Q8sTlr8f/WVtTiurKPApy4Fud91I4lup6n1Fu2y+8z/3hxN4tjYXLsGh1Dff66+iNT1+/NTBaosP2W6c3qrH5x9gb/Qxu09+PlnAOLh+8X1vtILO/RIqaZsChnOzApRzanzaj7f52gRtlp9sQcHGwMnI35RQxeiKVbn18u9vi+9jnRllOtJKDtL2Vc87PAZk+rSZrJNsjnJLkzVf/gYqyMgpedF0jjagtJgZlJY3TwZRRUAQrnW+PkMKHQv4SIR08Ah99tKLFW6OjKUK5ln8zq6DXtc2k2l/hn+9q+e9mw7tL/UU79Rlh8lm8JCamdKoeufnwQoAtG3iroahkRkVM6YtNkXArS/PUpkZD5r06+nvUEaGk3YBwaiUP+YSyaW6wsJuPi+I+sFmu3xKjfW8GwbXJviAgCAgCfQcBIaSdfBYxKb4Xu/ZUw6uketr4s6nUEjMlxQOtrGqgpwmqypGjNoPJSulhYmAwW4mURBChpXQt9fnFvJR0mAMauF12mu8cyvTXU+fzP9MQgWSFaI3LS76qOmqzcYucbkb1h+a9lsbi72sb46U0bqQbjvRqEtfAmpiBGE/oqKLGCKtvbIy1rmcD0oQass5DLx4eU4s4h7qPzxVn76AQ4FZ12elsiJ7IEdNslFBZpO8gwCSyhkikxahTPjIeSi7t0bb9tVFLqWXYr4alO6wZUkhTx5GA22uuy1H2XnzmCUVCOZKu3tB4+hg2aizefO15HNy/F5kDs7Bvz044HOUYOmK0Gktb//P3KyUlA0ajiRKaN3zfm9bBycRZDLrwZZre09PHJr1Pq2Uxt09T3NP9lPa6BwF2y+EAhrzpiJzqyXrCQJO7jhZStDQr19H3m7dQwv7oTDzZioo1ot1hvh+qXTknCAgCgkBPI9D4jaKnW+8H7XGY9fYKr3py4BEv+WGFElaIcFRmPeUfNPJGk5erulxtocqHOscTGZsOkkUPtUUHYcSroX6o/rhVyPgwxQIrtU1XbMOV7+7zCj+PBrVVRMDDPAMm6WpshLOWxtnbws+b+xOuvy31j++rqPCZuhiNRvhJKUfaLadgMiJ9CwEO5MAvnEa9iwI27IAzYhjqtFGtdlLnqYCpaheZrLrU3293BChJr/dl9BO/VjtVX6CWFkJ+3O5LJr7txisCtyUkpeD6W+9R0XdPP+cX+MdfH0UUEUUOenTGuRc30qIGbmplx2+2Gx+fhNzcg2FLs8UAi07bd90Q/Jovvb5vWJeEBVMudDsCTE7reA5oPetCt/dFGhAEehqBOTMnICszleYEQ7PUI1kDUrHtx734Yv025Ob7LPt6un/SXu8iIIS0k/iX5e1pdw1uMtup480delXUXyHFK4C/hEGvVSurtLgKHb3haPktJ8jExzfRMfn0pXLxm/P46wr3ydoc7o+7tgYtjYXLsPg/w9XXU+frSOPrprfWiqKD1O/skM3WVlFCXz/O3vaZ84WssJMnfVpsZ4s4t9REUVGh+hFPz8jEnt27VFGOupuX54tM19K9cq3nEaiit04N5fhl7R2Hu3cZU+E2psCfXzS4RxyRV19L+ddqD6nTbJbXXYHHrNZ6E9qg34/gvoTbN9Hix/2PPxvusjo/ftI0jJ0whSLrllDE3XiliW3xhnAXuW/022SzxbZISKOiolUNZVWJ4Wrq9fPuOh9pZh9SEUFAEBAEwiEQiqj5y3Kqt0qHI2QeTXZbSE5OQX5+nnoH9N/TVz4jIyy455bLMHZkyxaFs2dMwBU/PxVPPPsm3lvzeV/pvvSjhxBopwdRD/VKmmmGAPulcZoWBwVK4MTXpZW1KHU0bBV0rpJSyFSTZqatZLRZI3KiTyPAyYw/+nAtzjnnPNXPyMhILD3pFKx8v2U/uz49qH7cOV7s4b9XzvfLYqjNpdD2m2Cu/h5GJ4W6r94Bk3MPaVC/V+f9ZJS1opwOqrvEbPaZD7dXQ9rW/vDLUWxcQsfJKDXkt+lgH9GWxOHwpQaIiShsqVivXtPrfM8yPz+nV/shjQsCgkDfRWD6jJn48uvmQc9aS/V24tKTsWnrD3jtjf9g45YfcPyiE/rcIG+56gJFRqsdFOBt71YU7tuGgj1bGm0VBftVTl3u/NW/PBNjRmT1uXFIh7oXAdGQdi++Ursg0KUI3HP3nXj+ny8rIhptjcaK5e9h7ZpVXdqGVNa1CPBCUq2LAu9QwDIjWTro3Hby5m6SY40YWC0HQKEo2N29oGT2R/Zsp4a0a1FpW23KEqRtRaWUICAICAKHHQLsgrN67ccYOCgLJRQErqn4U73df98y8CL0ipVrVao3jqwfGRWFhx55HOedfTo2b96EadNn4IV/voKpk8dRuq2GiMxN6+zp45lTxpBFoAt7N64hf+maFpt31TiQlDUeJy48Ct+TCa/IkYOAENIj51nLSPsBAgcO7MeC+XOQkpIKO2mH2IRHpO8jwCSzsoa2PtBVDhSkhNWQfZyU6vQyRfWBr4x0QRAQBLoJgdraWsyfdzQmTZ6CZ559oVErraV6mz9/AQ4ePKDIKN+4/puvUVCQjzlz52HN6r61UM0pi1ojozyGyjKftcvoYYP48IiQuLg4cBo/f2yQrho0B/1z00JAVVXoXOC8oMEBDh32JgvkXdWBdtYjs30bAbNYLIigaJnFIVaw2liFFBMEugyBvLzcLqtLKjqyEAhEre3jZJSfSp277wYrOrK+NYf/aHUUAMsfLb67RsP1a8hknVN8+aPgd1db/np97ZHlBY3PaGkeOM2XZo4i+lKEX63fFt5/czd9qhAX1B7nWW3aJz6n+kx2IvzZM+Jri7Fo2p+ubp8DLrqdXaOdbC3VW0pKSqM0cDyWnJwcpKSmdfWwOl2fq42Y+IN9FpW0P2Aod/Kqq6+l3OwnqQV7h92B1avfx3/efIOIWcfmkgkTJuKBhx9DNZE6rmPbtu/wp8ceRhmlPgsl99z3AD5d93G7FgQ2bd2OW2+5Ea+8/GKoKjt87vU338KmTRtV3aEqeZi06zZbDM4754xQl3v8nBDSViDX0wr9vfc/iBMWL1GrDGxS8ctLLqJAG77gI63cLpcFAUFAEBAEBAFBoJcRMJgiYbF1b/Aro8VKuboNvq0+AnR3D9vfnoHSCkXGpjZrTksp0nxlvBQMsdnlbjnB6eG0lCHAHB3frE98jvuj0dACgdcX8KtbOhFcKbXl5edi8DTrT3Cxrth3kybQ7sxWOcMvvuTSsFW+9da/UVzUcjTZ1lK9MZng1G/Bwlo2W32KuODzR8o+k/GkpGQsXrQAg8gMevnKNZg0aQpuuel6LDphCS6/4jeIJnxefOEfeOnFFzB5ylQ8+viT4IwFpSUl5AK1Go8+8mAArggykx41ajTOPP0U7N2zBxs2fUem1UX47LNP8fTfn0M0BdbbsmUz7rrjNsw86micd/6FYL/e0884C6++8jLuvGsZ+FlPnDgZl192Ca659rfq2o4d2/HnJx/Hxm83BNoK3rnz7nswdOhwZabNAaseefgBXHLpZZSH2I0rqB5WShxDGnIeT3pGhhrPs8/8DaNGj8Gfn3pajTEyIlIRUq73vRWrMXTYcOzftxcvPP8c/vXaK8HN4f+uugZnnHk2rPSd+utTT+CZvz/d6HpPHAghbQXlJScuVV/YmdMmKZt8/pLcetsduOrKy1u5Uy4LAoKAICAICAKCQF9AoKayDLx1p1RXjPVF0HfV0GdjotBd7aqI/RRNvoYCxpQe2tmsGdbW1VHGITcFS3P3UPYzt0tD49fAXpTdrE/2dLPCSOOpgbeVTAPNBtPRE5T2jZLtKM1lKIw6Wm1L97GWmDWc4cTQhgWL1lK9cco3k6lxHnZfKriOaRfD9fVwPb+PyNeG9d9gytRpaoHgoUceI7L1Z/B5JpMfUpDIu5fdR38bblx705V4kDShCYmhn9nESZMxiwgny/79+1BYWEA84Apwfu4niQBe8stf4fFHH8aNN92CVStX4J9E+oYMHYbBQ4Zi3LgJ2LHjB8yeMxeX//pKnHHaSbjwootx+53LcOpJi0PCyyQ0K2swHnzgPtxz3x8VGX3u2b/j4Uf/hGMXHIfX//UqHn3sCdx91+2U79uOvz/zPP795uu4a9m9ZA2hxbVXX4k/PvhIoO4/Pf4Isg8exP+RBvmWW/+gyvovDh48BDfefCuWUV2f/+8zZA4Y4L/Uo59CSFuBe/GSpXjv3bcDDuKvv/Yq3lm+Sj1wTrEiIggIAoKAICAICAKCgCAgCPgR4Kj4HIioM9Jaqrfc3FylHQtug6PyigVfAyLsR1lSUkw+upOVeeratauwe9cuRSTnzZuPAQMHkibzJXz15RctxuS4/oabUVpagr/99Sksf+9djCSt6YMPPQrWoLJLX0pqqsLdReT20KEcIqDbFSHlntx4/bUqXzwrtJgMb926BZ98/BHOPOsccP/CCRPfd95+C5f96gps3/4D3vrPm7jt9rtUih8myJwK6I677oGHctyXlpZi7LjxSpvLpr9ffP6/wHh4keKss8/DzFmzYK+wIzY2lhYy6mNJUOOcLojb+sMddysf5N/dfEO4LnXreSGkrcDL6v8P1q4JlMrOzlYPMpackNncIjI2JXCtrTvs62GNHwpXbe87Eut0RuV7otPXtTgW7jPLwOgesvlpBcxos++rG2FNoH6H9g3QmyLU2OrckyiPREErNXb/ZXfdWOoPWsQ5XC+qK4rpR6f7UoGEa/dIPM/mZBZrfKOha/nB0ea0Tml0vi8daA0RqjsRMcnQOcNrZ9i0j8ejIX8yb0+5cLUTKGVaSFodU2RMi38v/Jx4LBXOVBwoHdvOVnqmuMNpU33UGy3NxlJZKjmEe+YpUNol+t4bLb68td3VJtevpbkyZfhU8p+M7K5mGtVrTcpUbRrMEc2+X1xQpyeTXerT0GTK3d1Da+jJMb73BHN0XLM+8TnuD71NkA9pT4V582HQ2ntOI2A7eOBx16LaXtLBuxvfFpzq7b5771bmm5zq7f57fUT3k08+UhozJiebyVeQU8ewVvZ/ZE56JItWpyPz1GHgoE+sHb3jD79XhI4DSLEZL2tEOZgPm9qyj+Xs2XNVICh+rw8nF55/Nr75+qvAZTbNZe0oW0++8GKD+WtNTbV6TqylbCpbNm/Gz04/UxFY7geT04qK1rXZ3E5A6vd3EEHlYEWPPfoQXvrn80oTy0Euf9yxQ5ntMtG1UNwbFg6YteiExThh4XxFWlnLGixx8fG48LyzKdLzINx+xzJccOFFjXhPcNnu3BdC2gq6bIsfHPnKWf+iZ6OHzYQ0Kq65z0YrVeKSB/7aWpEevu778WppLH2vz36INGGfwSNvrvQX6iOfn6l+tIRzuI46q8qFkIYDp4vPa8lvvOkzevrl57u4le6ozueLYoiMhaGFd+EPvvgcvB0u0vRZBPe7lPIvHx7PxtfrpmMRQhr8NLt330ALlE3x7+oW/7XmO/DWs7I+0Fyo8V12x8uB672x07RP3++vwHk3PtsLXflEtdm0P13dkdpqR7sIKWuqPv38axjI15c1V19v2Ix1RDRvuuG3qmstpXpjAnLzjdfhlVffUCakrDG74bfXBCz6unpsnamPg1m1RTREJlkS4sJrDlurh6PWrvlgHVjD/OSfHiOfSd/37QkyW+WgQzpqg30of/h+G/765ydxA5nZ3vr728mP1EJktW0L/5wTnv1EP173OcykIf3xxx2qW6zF/NXlv8GUKdOUr2ZwX9euXa1S9n3+5QYVdOmxRx4KvtyufY7K++Af71WmvNx3ttg8nUyBX/znP9QYP/n0C1oI9WG5lYg3Z2h49fX/KG1o04ZSSfH2z5deU2mHPF4P/vHcM02L9Mixhv4Agqh3j7R5WDXy33dWKMdn/pKx8KrDdz/8hMkTRquIux3RkB5WAEhn+wQCoiHtuccQSkPac61LS0cSAkJIe+5p94SGtOdGIy31VQS6UkMaPMaWUr1x8M3UtDSKuJuDOjLf7Guy9o3HVR7SH7/4b6upX5KHTFR5SFd/8g0e/surXT4Uxoo3fzCohccvQnp6JpFKs/L/vPH665RpbFsaZlNdJoLBSiu+j01k+TmwhjuUcD5ZJpRdJbyQYafULf5Iwtw+7/uPuR3WCDN/Yb/jUKInqwUr5bYvocBOvSWiIW0FebbFZ5t8v/A+f/nYXptFXij8yMinINA/EGDTaPm77h/PUkYhCPgRcNVUgjcRQeBwRKClVG9MPA4eONBnh/Xlhm2YNXUssiYdpwJdaTRaeCk9TrCYo2IUiYtNHaxOr/zwy+DLXbbflKgxMRw1ejQRNuB3t9zUZjLKHaquDp3ex092w3W6K8kot+HnI/72QrXPZr/hyCjfx/lKe5OMch9EQ8ootCCnnHoarr7mtzhx8UK1osIRrOLiEiTKbguYySVBQBAQBAQBQUAQEAQEAUEgMsKCe265DGNH+shma4g8/swbWLH2i9aKyfV+hoAQ0lYeKKv2H6BIWqzW5yS7dgqvfPFF5yvTiFZulcuCgCAgCAgCgoAgIAgIAoKAICAICAItICCEtAVwgi9FRUcjKjJKJaMNPi/7goAgIAgIAoKAICAICAKCgCAgCAgCHUNACGnHcJO7BAFBQBAQBAQBQUAQEAQEAUFAEBAEOomABDXqJIByuyAgCAgCgoAgIAgIAoKAICAItI5AvNWEuGgjoswGON11sFe5UVBWDaerhxLltt5FKdELCAgh7QXQpUlBQBAQBAQBQUAQEAQEAUHgSEFgRIYVQ9OiFBENNeaDRVXYcbACJXZnqMtyrp8jICa7/fwBy/AEAUFAEBAEBAFBQBAQBASB3kAg0qzHjBEJSLSZVPM6owmmCBu0Op06djurUeNoyI+5aU8Jfsq290ZXpc1eREA0pL0IvjQtCAgCgoAgIAgIAoKAICAI9EcEzEYd5oxNgi3CAJ3JDFviAERY45sNtY7yf9sLc+AoycWkwXHQ0L8fsyualZMT/RcBbf8dmoxMEBAEBAFBQBAQBAQBQUAQEAR6A4Gpw+IVGTVFWpGcNT4kGeV+6XQGxKQMQmzaENXNiYNjkRJr7o0uS5u9hIAQ0l4CXpoVBAQBQUAQEAQEAUFAEBAE+iMCmYmRSI+3QKs3IC5tGLRan4luS2ONjElCdGKmKjJqgK2lonKtnyEghLSfPVAZjiAgCAgCgoAgIAgIAoKAINCbCAxJjVLNWxMzoDMY29wVa2I6lTchyWZGUkz/15LGxcXBZPL517YZpA4W7Mm22ttFIaTtRUzKCwKCgCAgCAgCgoAgIAgIAoJAWASS68lkhC0hbJlQF9h/1FLvZ+qvI1S5UOeuuvparFz9Id74z9v4xwsv4+xzz4Ne3/FwORMmTMSqtR/jv++swJv/eQd33HUPYmJiQjWtzt1z3wM4ftEJYa+HurBp63accebZoS61+9yZZ52Dm265NeR9ZrMZ761Yg1NOOz3k9d4+2fGn1Ns9l/YFAUFAEBAEBAFBQBAQBAQBQaBPImAwRZCpbvuphikiGo5iwBrZds0qA5CSmoakpGQsXrQAgwZlYfnKNZg0aQpuuel6LDphCS6/4jeItlrx4gv/wEsvvoDJU6bi0cefBJO10pISrF2zGo8+8mAAy4jISIwaNRpnnn4K9u7Zgw2bvkNJcRE+++xTPP335xAdFY0tWzbjrjtuw8yjjsZ551+IE5eejNPPOAuvvvIy7rxrGd5669+YOHEyLr/sElxz7W/VtR07tuPPTz6Ojd9uCLQVvHPn3fdg6NDhiKT2k5NT8MjDD+CSSy+Dy+3GFVRPXl4ujpm/QI0nPSNDjYf7fvudd9NYLFi8+EScf+6ZeOW1N/HB2jVqnDdefy1qa52orqokn10d7rz7Xiw96RR17tZbbkR1dTWuue56jBkzFt9t3Ypzz+5Z4ioa0uBvgOwLAoKAICAICAKCgCAgCAgCgkCnEXC7OpdTNDmm46as+/btxYb132DK1GmkJTXgoUce8xHOhx8EazLT0tNx97L74Ha5ce3VVyIyKgoJiYkhxzxx0mScd8GF6tr+/ftQWFiAq668Ahf9/DxkDR6MS375K6xZtRJVRPZWrVyBxx55CFFU3+AhQzFu3ATs2PEDZs+Zi8t/fSWu+NUlKCZSe/udy0K2xSeZhGZlDcYLzxPptUYrMvrcs3/H+PETcOyC4xShfPSxJ/D6v17F3Xf+Abf+/nbUOGvwxef/w6FDObj+t9egqKhItT9n3jHYtWsnamqq1bHVasO5512An190Me675y7cdMNvadFAiz/cfhdqnbU4ackivPvOf8P2rbsutH/Zort6IvUKAoKAICAICAKCgCAgCAgCgkC/QEBPOUc7JF7fXfllnSO0TL5KSooxafJk2GwxWLt2FXbv2gWv14t58+ZjwMCBpMl8CV99+QUqHY6wXb3+hptRWlqCv/31KSx/712MJK3pgw89CtagWiwW0symIjf3EFxEbpkQsgZ0yNBhqj7WTJaXl5FG8h4wSd66dQs++fgjsHkt9y+cMPF95+23cNmvrsD27T/grf+8iduINDJZZYIcn5CgTIg9dXXUt1IMGzaciHIhBg6qbqR5femfz+OVl19s1Mz4CROQffAg3nzjX4Hzc+bMw0UXX4rVH3xCmDQuHyjUjTuiIe1GcKVqQUAQEAQEAUFAEBAEBAFB4EhEwFVTBY/H3e6hO2vs6p6Kytp236slc9Shw4YpIsfa0ZUrVihCV1tbq8x4Bw4cBI1Go0xtN23aiNmz52LO3HmIpeBC4eTC88/GzGmTcN+9d9N4PMo0l0ktn9u08VsQw1W3shaSzWxZ49hUtmzejJSUFEVg2ZyYyWlFRXnTYs2OuZ2A1O/vIIJaVVWFxx59CFMnj8NZZ56GXTt3KrNbbp/Hx1s4OXToEFKJRLMWNjrairHjxmP58neVqTOT4It+canSGIe7vzvON0esO1qROgUBQUAQEAQEAUFAEBAEBAFB4IhAIL+sRo2zqryoXeP1wovq+nvyS311tKcCjiS75oN1uOzyX+PJPz1GZq/PwmG344nHH1Gmum++9Q7+9dor+OH7bfjrn58kU9YaZfLKvpdul6tNTX304VqkpqXj43WfY8TIUSD2p+5jLealv7wcr7/Z3OR17drVWP/NN/j8yw0465xz8fijD7eprVCFKisr8eAf71WmvNt/2kvBilYrQr1m9UrSBNvw/Y7dyMj0pc8Jdf/zzz2LzZs34SPq/8Yt3ys/2cf/9BReePEVzCUT32f+9tcWNcah6uzsOU1sbGwQ9e5sdXK/ICAICAKCgCAgCAgCgoAgIAgcyQhwHtKjRiWoPKTJWePbnPqlvPAg7IXZKCivwcdb8rsUQo64yxuTUJaFxy9CenomzBYzbrzpFtx4/XXKNLYtjbKpLmtLnc7GZsUcIKmOzGhdYcgtazCZUHaVEI+DnQi3mwIesbB21hIR0SZCGRUdrcyX2VyZNapcV3l5uep/V/WvrfUIIW0rUlJOEBAEBAFBQBAQBAQBQUAQEATahMDsMUlIj7fAFGlFfOZIIku6Fu+rLCtA6aHdqsy67/KR1wENaYsNNLl41NGzccqpP1MKzg0bNuANChIk0jsICCHtHdylVUFAEBAEBAFBQBAQBAQBQaDfImA26jB/fAqsEXroTGbEJA2EJbq5r2ZdnQv2ohxK9ZKrsNi0pwQ/Zfv8SPstODKwRggIIW0EhxwIAoKAICAICAKCgCAgCAgCgkBXIBBp1mP6iHgk2cyqOp3RDFOEFRx8iMVdW4Mae6na5/+EjAagOKJ2hJAeUY9bBisICAKCgCAgCAgCgoAgIAj0LAIjM6wYkhaFKLMhZMMHi6qw42AFSuyNfTJDFpaT/Q4BIaT97pHKgAQBQUAQEAQEAUFAEBAEBAFBQBA4PBCQtC+Hx3OSXgoCgoAgIAgIAoKAICAICAKCgCDQ7xAQQtrvHqkMSBAQBAQBQUAQEAQEAUFAEBAEBIHDAwEhpIfHc5JeCgKCgCAgCAgCgoAgIAgIAoKAINDvEBBC2u8eqQxIEBAEBAFBQBAQBAQBQUAQEAQEgcMDASGkh8dzkl4KAoKAICAICAKCgCAgCAgCgoAg0O8QEELa7x6pDEgQEAQEAUFAEBAEBAFBQBAQBASBwwMBIaSHx3OSXgoCgoAgIAgIAoKAICAICAKCgCDQ7xAQQtrvHqkMSBAQBAQBQUAQEAQEAUFAEBAEBIHDAwEhpIfHc5JeCgKCgCAgCAgCgoAgIAgIAoKAINDvEBBC2u8eqQxIEBAEBAFBQBAQBAQBQUAQEAQEgcMDASGkh8dzkl4KAoKAICAICAKCgCAgCAgCgoAg0O8Q0Pe7EcmABAFBQBAQBAQBQUAQEAQOawSSEmIxaexwDM1KR2Z6MmKsUUhNTsCe/TkoLq3AgZw8bP1hNzZv23lYj1M6LwgIAoAmNjbWK0AIAoKAICAICAKCgCAgCAgCvY3AzMljsOS4WZg1dWybuuKorML7H36JFR98iUN5RW26RwoJAoJA30JACGnfeh7SG0FAEBAEBIEeRsBi1mHk4CgMSI9EYqwRsVYjDhVUI7/Iib3ZVdh9wNHDPZLmBIEjDwHWhF5y7lJMmzgqMHiNNx+augI6Lge8TlKj6Gif9SiRtB8DrzYBXk1coPxrb6/FP15dETiWHUFAEDg8EBBCeng8J+mlIBBAwGw2Iz4hAYdycuD1Njdw0Gq1SE5OQX5+HjweT+A+/47FYkFERASKi4v9p+RTEDhiETh6cjxmTIyDTqsJi0F2XjU+31iMA4eqwpaRC4KAINBxBJYefxSu+eVZ9RXUQlu3i4joLjp2t1qpV8vEdBhtmarsdzv24OG/vCra0laRkwKCQN9BQAhp33kW0hNBoFUEnnzqb1i85EQUFhaAiee/33wdDz1wf+C+E5eejPv++CBKS0sRExOLm264FmtWr1LX9Xo97r3/QZyweAmqqqpQQoT0l5dchNzcQ4H7ZUcQOJIQWDIvGWOG2dSQHU4r7DWxqHZZaKFHA4POBbOxErGWIrXPhd5fl4fvd1Z0G0T8N1pXVxdyoam1RnmRqtLhQE1NTWtF5bog0KcQuOCM43HRWUtUn7SefdC4t9J+60S06SC82iR4dONJc2pFWYUdtz/4LLb/tL9pMTkWBASBPoiAENImDyUxMQlut0u90AdfEq1SMBr9e3/IgCgkkNleYpwJURE6mIxaJMWbkV9cg1qXl4IpOFFY4kRRWS2yc6t7FIxTTv0ZPvhgjXrxHDQoC2s+XIcTFx+HnT/9hMioKKz/divOO/t0bN68CdOmz8AL/3wFUyePQ3V1NU4+5VRcdc1vcfKJi9TxnXffg/j4RFx15eU9OgZpTBDoCwgsmpOM8SNscHt1yC0bBCak4STZmoO4CDYbBN5clY19ZMbb1cJ/vytWrsWN11+L9d98Hah+7Ljx6nzgRP3O6JFD1O9ARmYmnv3Hi7BZbfQbEIl33v4v7rz994rYNr1HjgWBvobAmSfNx68uPEV1S+veBI1nbye7qINHP5W0pemocFTiuj88QcGP8jtZp9wuCAgC3Y2ARNklhHU6Ha67/kacd/7PyTXBiz17duOMn52ssBetUnd/BftG/SMGR2P4oCgMpU0fxnQvmUgpS2aKJdDpymo3+ZdV4rsfK5TPWeBCN+288/ZbgZr37dtLRPRHzJ49VxHS+fMX4ODBA4qMciF+qS0oyMecufOUlnTxkqV47923FRnl66+/9ireWb5KaVpDmfZyGRFBoD8iMGxQpCKjbPCeXTKEtKLkj9aC5Fek89SA+MgCLDw6Gc+83tmX5saNLbvnfvzsjLMQRaQ0lFRUlGPyhDGNLrlcLnV8+x13Y93HH+H++5YhMjJSkdfjFi7C6lXvNyovB4JAX0Ng7swJQWR0I5HRfV3QxTpo3V8TKZ0Oa1QGbrn6Qvzm5oe7oF6pQhAQBLoTASGkhO5dy+7D6NFjlKboi8//pwiqH/QlJy7F5ClTMXPapIBW6dbb7gholSJsif6i8nkYIjB2WCSmjI6iICaGQO89nkh4vJHweiLoJZRJKAdRYF9MTtvrhkZTA422inzOKhBjdmJKrA1TJqThQG4Nvv3Bjv2HKPBCF0uNoxSeusYmTAmJiRhF31vWhrKkpKSQX2l2o5ZzyM80JTXNd50+P1i7JnA9OzsbJpMJsXFxKC6SyIQBYGSn3yMwY0K8GmNe+YBWyagfjAJ7OiKNdsREA2OHWbGtC013/3Db78DbV+t9f8v+NoM//QQ0+JzBYMCC4xZi4YJj1OnKykosf+9d8LwlhDQYKdnvawgYDXr88vyTVLe0dd83IqNGgwZGgw56vQZ6nUb5d2tCuHhziAR3nRd1Hi9cLg9q3R6ycONlJpqt3d/AY4jCsKwM1c6zr7ynzst/goAg0DcROOIJaVpaGs4973ycfupJgRd7t7vhxb81rZLOYOqbT1Z61SICqQlGHD0pCumJRlXOAxPq3MlE+uKIhPrOhauANSXeOqKotGm0lbSAUUxbIQal62iLxLbd1fhiix3VNc0DCoWrs9XzTWZjvd6Ap/7yN6xauQKbNn6rbrfZYpr5jzmdTjLl85ki8icf+8Xp9PmasamfEFI/KvQiozPAYvURloazstdfEIiz6jFwQAJcHgOqvANh9Bk+tGl4Dm8WrJYDGD8+E3uLOh8UrLI0r03tWiwRePjRP6GKCOe3365XpJN9TRMSEuml3dBoISqHFqWmzZjRpnqlkCDQWwic97PjVU5RjbeAghf9CLNJS5uOiKgWoYyUvGphWAcNainGLr+6esi6xwOjKqyBhe5nYYLqrPWo+ddVtwVe/TycfcoCrPtiE3bubbxgq26Q/wQBQaBPIHDEE9Jp02eqaKMnUKCYW279A3iF+YXnn8Vnn65TD4i1Sy1plRwluX3iQUon2o7ApNE2LJjFJnpO1JArmNudTuQyob4CJmwNpK1ttcaS1tRKRCafXg6zMYwUksn00rvm88Iu8zXzBkXL5WBGDz78qHoRvf66qwNdLC8vI41n47drjshbXk7h8kn402hsINtms8/0mO8TCUKAVuI1hLFI/0QgLZkWEWmBp6qWFmqaLPS0NmKHM5buOYgMqqOnviMlxUX485OPqyBkHOPgttvvIv/wmbjt1pthrV9sCl5o4qBGvMgk0hgBDT9rjfxdN0al+dGwwRkYOWQAYm1RyExPxsFDhaikGAR5+SXYun037I7O+09HWsw457Tj6M/PA6thOyzRJtKCNvTFC7JO0kYT8YygZ0bzlIYX/oMK+It6a2nPCQ19amAnjlpBGlUX9BYdImmrdVWg0r0DVe6ROGnRbDz29zf9d3bjp5esq7pwMbobeypVCwJ9CYEjnpCmp2eo4A/79u7Fxx9+iPETJuC551/CWWecis2bNirtUvBk31SrlDiwsV9PX3q40pfmCMwaZ8akET6tdl1dMpn5DKC11hC2QM1vbcOZVHrfGQmD/gAiY8pw0dnp+GRjNX7Yw5Nm56QkZyfctdVEQvV45LEnlHnuzy84J+APyrXn5uYiPSOjUUMc8MQfRZc/+dgvvM/fbY7IK9KAgFarR4TVv0DRcF72+gcCCYlmGMhUHa5YGE30wttO0RqiEWGq65LviKO49QjXhw4dwuOPNvjAffrpJ3j1X/9WgYsqKnwRf3mhyT9P+RahZJGp6WM1R8cjOp5WC0WaITBh5AAcM2Mkpo8bTHMMu6iElx/35uHrzbtowXUbXG4yE+qALJ47HnG2WjKB3w+dhxeADZRLlMknWShpbTQj04JPUL1VNeQXSidYg9pY+BXW/zecXH/JQea/9P33FMOsq4MZuaAwhThtyTS89sEOet/rXrJYW+NAWe6ext2UI0FAEGgVgSOekHIex++2bsW/XntFgfX1119i4qTJWLz4REVIW9MqFezl8OQihwMCC45KwvCkGFQS/3K5smhiYm1iQTd03Qa9gVdqczEtCyg7lI/N231ays40xsG3nnvhJThJA/LzC84NvID66/zkk4+UWR9/f3kxZfqMmcqk73+ffaqKsE/Z1RRl9+9P/0WZ9p59zrnkZ7YyZK5Sf51H4icTf/m77r9Pviw2HpWptDk0cNDWXqk05UOnqaPvyE/tvbVLyufn5YF9R9n/u6iokH7LXLQQlYk9u3ep+nmhKY/KiDRGoLqiCLyJNCAwcewwnH/68Zg4ZpjvZF0tykkBand6UU3rqKxUZhcVcudENE2XvA1Js9E2BUvnjsRr//0A/37v44YK27CXkWrB6XMnIUKfS+ZJRaiDBR4tk0myWGD3T8Vx3dSuFxu2FuGHXRWKnNoozsMpC8nnmwIJvvjW7mYtRUcZcN4pg+k8z+sp1PlkIqZFtOVSoMI8St9kx7nzzXji+a8DfqbNKpETgoAg0GsIHPGE9MCB/SodRtMnYCaTEhbRKjVF5vA8nj01AZNHx6jOu1zDiIyS6V03ittFmkjyUdMbDqionJwuhifWzoglIgLHHHOsquKn3QcCVe2lqNDHzD1KpYC4+cbr8Mqrb6g8pZyX8IbfXhPQoq5Y/h7mzpuPb77dAofdQaZXdlx80fmBemRHEDgSECh3+KLTGvXtNc3nF/NaRUarahriDHQ3ZvPob3bv3j3guYoXpS771RXKb5zdS1g++nAtzjnnPNx3790qyu7Sk07B/fcu6+5uSf2HOQJXXHQqTj/xGDWKGgoElEsLtbkVXtT4/jxCjo4JahIF9SJOilhKMXQ5pWuZOXkMnnr+Lew90Lq2/+jJ8TiKtkEZVuKelO9XQ0Ehtb4YB00b/N/6ApSUOWn+TEVaMgcYZLYKWCx6XHbu8EbFf9xTjl37yGS3kWhI25qoNo2X/9Y9mD01DeVlA7H6f/k9nrKtUdfkQBAQBJohcMTnIY2JicEnn32Fa/7v11i37mNl0rh6zce46v+uoIn+A5xy6mlKq3Ti4oVKq3TXsnsRF5cQiLLbDFE50ecQ4FyDnHOQpSfIaDAAen0OmUDloI4m05ffPogCymXa3cJmvakUrOsQRdjlwCdNJSo6GlGRUaRFoRVqEUHgCEMgOlKPK84dTJG0NdhVOI4idDY1AwwPSHxkPr2QH8KOvXa892HX/f2wGf7sOXPBPqJlZWX0O1WLo2dOJU2OG5dcepmKb8C+3gaDETnZB2n+uUKlJ+OeDhgwEM//82V6UY9AtDUavPD0+9/dFPJvP/zI5MqRggD70t536+WYOmGkGvL+Ykp1V0R+jz6+12YYEqNIW5qkQYRRQ0GEXLjr4eewfvOOsPcvOSYFY4ZaYY2OxKlLzySimETBjHxa/aY3VVa58Oo7e3EqaUQTE3zKgaZl/MceMsF97b19mD8zBWkpfvNd/9X6T/JD9WqSUFS4DSvXrlUnV32Wp9K1NSkph4KAINBLCBzxhJRxX3j8Ijzw4KMoKSnBwEGD8OQTj+GJxx9Vj4Rf7h946FFVJlirxC/7In0fASuZ8fz8tAEUgU9HL3kD6SXN72fSc33XG/aQ+W4RpYOpxBvvy/em55CXlgSB0AiccUIGsjIiUORIQaEjNXShJme1pGEZnPgDaUld+O/aHOza79NQNinWLYdsoptKAfYqqyrDRsROSUlVVg+VDke39EEq7R8IPHTHlcpEt4atdnK9KOtEjCLWmI5M0SDVRjskN979FDZv29kIKB2lbTltYRr9vVEqNQpMlJE5HcfOXUDmuZVkTttg6RN80659FfhyUyGGZ1nVIq5Br8W44bFIT21OOLf9WIq9Bx046TiySgor5KOqGwpHZTXeevclardQlfzo60J8+53EUAgLm1wQBHoQgSPeZJexXrtmNT7+aALS0tJRUJDfKHUGr1BzJFPRKvXgt7ILm5o9NV6R0TpPbK+QUR6K2zWIIgg6MJDiaUwcZesSf9IuhEiqEgSOOATWf1eiCGlCVB6cbhMqauJaxSAl5oAio9l51T1KRrlj7CfKJrstiVg8tISOXGMEbvq/8xUZrSIyuuWgz0+0M8iwVnU7kVpKA4r0GA1+f83PcfVtf0Juvs9XV0uRiM48IR2ZRCS9MFIKliFkout3lwkfXMhR6SLqqoEtykjzZqQipSvX5eBkIp1JQRpTN+Ue3bitBMfPocm1RfFZChmNREy1TFyNREpzcOyMROWfukFIaYvoyUVBoCcQEEJajzITz5YmfIfdTn53TX0UeuIRSRsdRWBAWoQyEeL73RRNt/dES6Z3GWRut0v5z3z3UwWR43baR/Ve56VlQaDfIbA/pwqff1uEo6ck0Iv0fhjsLhRXhraeMOqcSLLmINpUTlFFPVj1aX6/w0MG1PMITBw7FONHDcXIYQORnBBLKXwiyZJGR36TFSgptWPHrgP4fscefLXx+y7p3MmU9mTh3Glkok6a0ZzOk9HgTv2Y54WJ3iYTbNG48uLTcNsfn1GXTz421UdGNWbSUBIZpei5RoP/tbMhBVlwXf79hHgTRg4lZ1WSlKQIRUr3HrQ3IqRbSTuaEGei674UZv57m3/6NLj+tr0cRElDOU3rDmA+kdJaIrZbd3Q+8GDzduWMICAItBUB/y9DW8tLOUHgsEHAH8TIXZdG/jGU5qEXpa4ujgKS2Cg3WjlmTIjDFxuLe7E30rQgIAh8samEgo5pMWN8nPILjYkohr0mhoK6WCi6KBsXeii9iwNWs8+kr4xI6/KP81BaQeFHRQSBDiCgJRvXs089DictPIp8I/2awsYVRUVGYEB6CjgCLrAA9soqvL/2S7zx3keosHfMTDwiwoxfnLNENfRjHsgioHGbOq2O8mj7Nh3lYOYcu+xrqqXzHk+dCn7r9XpUfk2OS6A2WsQPFial1kHADApydML8GZTjew+GDYqie9lcNouK+ubgWpf/vvB/R9ZoI3bvb2567g5K2eJ01mHL9lIsPTYjuBth9n0LwA1tk8WwhlJ7aT2kKc3GotnJKC134WBuJ+yXw7QspwUBQaBtCAghbRtOUuowQyDOZlSTIS2Dos5NIeD7gLjJf9WoLceoIdFCSPvA85AuCAKfflOEwmInpo+PRVI8wEGLQsnm7WXk01YCR5X/ZTpUKTknCIRH4IRjZ+JiIoVxMb6osjWOMtiLslFjL0W1o5TmqVp4iXDpyF/YHBULizUOUZQ3NZpyIp996gKcfMJsvPTmKrzZzjQr3KOzTjoW0UR0ix1e5FEkXRb2S9bTZtCT+Son+QwjHNnZJ/5P3xHf4SJS6q6tRa3bRabvHgqOxD6lwCXnzML69b6FHK9+IJVsTYPpq9P/fzpF1f3sG4qES3EXMshk10GRsQ/S/gKKuOuXzT+UII00o4nxLQc98pcP9cmBlYBaIqUFWDQ3mdLJ7Ffa0lBl5ZwgIAh0LwJCSLsXX6m9lxAYSaSPxV0XT9rRvvE199TFkA+NmRKCU2RMMic+cEhWY3vp6yHNCgIBBLbvtoM3zo84kHzd4mKMiLEZUFDkRG5hDfZlV6GiPlVM4CbZEQTagcCt5Fs5/+jJ6o7KsnzKYbsNjuLQAe7q3DWorbajovAA8ndvRoQtCQkDR8GWNBC/ojQrUyaMwP1/ehnllLqrrbLwmGmq6MFSDUxmM4xGE2k/G0go5xk1GYg26kkrCsoB6nEhMoLygxJ35WL86ab/HJU1ZOlqBqUChZPSw3DQR96YErrJz7nAUYOB9DkyS4tD2YnIzmetaOi0Li313URBCI+hqLkffZkHs0lLf39uTB4TR5pjCu1LUkULQ9t+KsNpx3feFcerZQ1rNWKj7RSpNxGrPwu9KKUalv8EAUGg2xDoG2/q3TY8qfhIRWDIgEg1dK/Hl3u0r+DAprt6/SEMHRgphLSvPBTphyBACGTnVktuQvkmdCkCZpMJd95wMZHIkUTy6pC9/SuU5e5uVxtV5QU4sLUA0QkZSB85E1PGj8RDt/8Gdzz0HHILWnf9mD55NGn/41DiNKHOYIKZiCcL+3xaLRpEEWdkMlpSWIgd321FbQ2RTjLZnXHUPHDua5aC3EPY/v0WlXaIUxKNGTcJA5NTyMQdcDi96pO1rbxBd5DMfSkiddYYHCzseO7tgRlRuJC1oxTgKCJCTy4vWtUX/o+PLz17WOC4sztebTppSXeAU8Tt2GMH+5iLCAKCQM8i0PAX3rPtSmuCQLchYDJqkVIfic/jIXVkHxKPx7danNpqEIY+1GnpiiAgCAgCgkC7EfjdNRcoMlpTWY6dX7/fbjIa3CCb9+78ZjlYw5pFIdt/f91FMJlaDgzE9x89aybK6qwoq/WZtjIBHRivQVaiBvGkcGQyWlpchO+2bMCgrKGYc+wJmHfcYpjryWgdmeV+/90mTJo6C0fNW4CJU2Zg25aN5IRZBxvx1fRYDYZSPtKEKA2izZWwGCvgJquklPTJyg81eAzt3WdT4mjyJw0mo+2to23lKQqw1hepd+508i3tQomNjUV8Qvg6LRYL4uPJXyCM8L1m0mqLCAL9HQEhpP39CR+B40uI9QVP8Hgp75m3sd9Lb8PhpT6xpCXKBNPbz0LaFwQEAUGguxD4zS9+hqOmjoOrpoo0nOvgrPT5VHamvbpaMiHf/DGqyoswYsgA3Pib88JWx0GKJhKJHDB0NJncakCpPBURzYjTEGlsfNvun3YgLWMg0jIHQqdvPGcWFRTAYomANcZnbWSLjYPRbEJJkS+XJ9fEtySQl8yIpGIioUCdJpV8YW1ITU+HgbTEh4N4tSkUgIki9pJP6uih7TczbjrGtLQ0fPr51/j8q2+x9oN1WP7+Gsw/9rhAMX+O+6/Wb8LylWuxgjbONeyXjMxMrFr7MZavWINvvt2CZff+kYh542fjLyufgkB/QEAIaX94ijKGRgjEkw8Yi9fT90gfE2Svt+/1qxGAciAICAKCgCDQYQSmkonuaUvmqvuzf/icyGhZh+tqeqOHgh8d3PYZ+Ww6MW/WRCymYElNxRYTi9nzFhLJHIAYSieTYtXQRj6iTYgo3+f1eFBWVqKq2Lzha2z8+nPs272LLvhqdTprYCZCGixMUGtqqoNPEeGtgklnJ1NgLZn2JlHubSA6KgqxsfGIiPT5fja6oS8e6Hypn6aM7byrj9tdh7vv/APGjByCKZPG4r9v/Ru33nZ7YNRLTlyKyVOmYua0SZg1fTIFgfqart8RuH77HXdj3ccfYdaMyer6nDlzcdzCRYHrsiMI9DcExIe0vz1RGQ+iIn1fa17tbK8YKEBDCpnIJJMJTYzVSmlaLJQ3zaBypzlrKZIg+c9UOBwUIr4C+cXFamtvGxwGXwNyvhERBAQBQUAQ6HcIXHjWCWpMHJTIUZIbGB+nUtHrNDDQpiU/TR2ZpAbFFgqU4x0vEULOGcobpztxU+5qD58k4aBHeTu/Rcboo3DRWYux8qOv1Hn+LyEpGVOmH02aTgMiyBx3RKoRURTktjzMlFNDPqPcGKd7GZg1hIiuGz/t2Ea5s10YOmIUHdc208xxOhgXBS8KFpPOR7q92kTSklKgI5qGIyg4EeuFo6Ktyi+10t5xn9LgtrprX6WC0eTSOwCQkWJGdl4Y0NrQgYKCfHywdk2gJO/ffucyJCYmobCwAIuXLMV7776N6mofsX/9tVfxzvJVvu8FaUIXHLcQCxcco+6vrKzE8vfeBZPY1aveD9QpO4JAf0JACGl/epoyFoWAiaLyKWlHdN305GQMJROZjBTfCmkoKE1GA3izRkYig8qPwzAKEe/Cgdxc/LRvP+UnbNtkq6L+NgQ4DNWUnBMEBAFBQBDoQgRMkTZYosP76nVVU9MmDMW40SPgrKpA8cEfyXTVBCNpDY1kbakPwz41REC0Ot/rmKeOo9x6fCSxiYUmR7p1uWkjclpRcBDOQRVISk7CBeedgeUfbSRfxARMmOSL5mujgEVpNvLBjPRZ5Oi0RGZ9fLbRUJlccttDRowmIumbOzmo0U87vsfwUePIPNdCgYUqiSg1vC5yNSaTJXBOQxWb9Xbf/bpE8kvlPKZAbEw0KigirpOi8hot0TBHxsAYwWlm9NDQ/KxBkwE26llXHlBWYWqThkopdeJarFjjGUIBjvIxbZoZjvVtj2Tsr9RdW91oEcJ/fu68Y3AoJwfF5K/LkkLmucGENTs7mzA1ITaOTKINRgp+aKDy2f7bkUP702bMCBzLjiDQ3xBo+IXpbyOT8fQqAhxWPjE5FXE0QUZbYygwgVXlVwvulIcSbDscdjho1bS0pJAi+eXSamHHEn8H1xvYDzH5Bq7V77A2dMzQobQi2vCioiXTI422giZUp9qgqaPSzCB5Qqck314TbRQS3xNNE4cJQwcMUNvug9n4fudO2KskQl9TnOVYEBAEBIHeRMBN/pfV9taj0na2j3OnLKK5wY2SA99RRFuvIqNM2Fi8pIk0RcXAFBENvSmC/CstMBhD5+h0uWrgdlbTVkPkthyct1SnIU0maT3NBg3l/vSgaO9mZIyfj7lTh2PtpxsxatRwdU8shSpIJEJKyk3UUp5Qg0GvtKv1CtZGQ+Q0MDy3VVdRQKIIf3R6D+VFdVF/PbQIa0J1pUPt+2+somP2I+XrLHotkVFKFwOO20CWSU4izawhZe2f1uMkmyCghhSqTMz1RHbVfXxv/f2qkm7+j9tkou+qbWV+JpcaXV0V0uPrOvR94QWFpjJs+HDc/Lvf4+Ybr6fvhg8zG1lgOZ3OQFE2jWaxWW0qRyzvB19nTTZfExEE+isCQkj765PtpXExCc0cOBgpaRnNesBrr1paNmVqV8cTNK0KW20xamNflzHjgeKiAmTv34ucg/ua3d/WE7VO3w8+NM0nhuA6Jo8ahVFDBvtOEenU6YppxbeESGgL91E5jYYnjnIqn0cTqxmcysVD25DMDAyiQAYbvv8euw4cCG6q0b5GEdxGp+RAEBAEBAFBoBsRqCOfS966WyaOHAh3+SG4Sw8orSiTLlN0HCzWeNLQxpLG0IOPtuRQN4gtosG39MSZA8mcV4sf9pdiZ3bDee5vUowNM0cPI1Jaihp7CUXaLSSzX+Jz9kOoLd5L+XPTMWvmdCKpLkrl4gYHma/j6kn85I/JcChCymUSk1Kwd9dPGDVuAjzk+3go5wBFhk1U98bRou22rd+ivLREBTYqKymh1DDViIvjHN++udagKaN9ql9rVZ88vXNbTM7qyOeV53zi0IqU6g2RRMo43ykTUh9R5z50r3CHiJDSxoGhWhbqGb0CWPRuxEY4kUe5iDsjyZQe5/l/voK/PvVnrFj+bqCq8vJyygfb4NRrJk00S3l5mcoTy/t83U9KOdIuXxMRBPorAkJID5MnO37ECIwbPgxZ6RlIJm1eAoUSZ/9GdpyvrK5CXlER9uUcoi0H67dtQwH5N/akxCUkYdjIMTSJJQWatZCfTARNsBaaONlUScc2PEHC/jAu2pykgKwiE6QqWvHl+3kbMnwkdu34QU2MQbe0abeSs3azaOpnZN9R4P8IMos5esoUJMXFqnM6fSGRywLab//kyOSU84p6dUVETNnc14YZ48ep5/PVli2BNhvvNPa9aXxNjgQBQUAQEAQORwQWHTUKOgeZ0tbYidTUIjI2GVFxaUoT2jAe0liSpvCE6QMaTtEeL9b6ZUByNCYMabDa4WVcvswmx7xFJw5AZWke7MWHUFN6CB4dzb+D0rHvQDZSO6BEGz5qLLZ8SxFhP1lLGkQXbPR+MWzkRNUdHcVVGD12EjZ+8wWMNHfW1jopD+lkMn9tMLc1aH1+kF4NhdoNIzRklWKGL9PyL42IzHrDlO3100Ss4SnEgFRLpwhpJllPvfLam3j5pX/i6b/8udGwcim3K0fS9QvvM/ksLS2l9xGfj256Rib2cIApEr6el5fn6gdiVgAAQABJREFULy6fgkC/Q0AIaR9+pBxYZ9HsozF/+gzEx8aE7Kme4q3boqPVNiIrS5W5/Oyz8MOu3fjgyy/VFvLGLjrJQRpGUZLsQYOHqRr1NMPYaOk2mnY4YENLwhOwiTeaqKxs00OTVIXLAzttiLZh4rRZFDY+U+VAqyHS3VYps/sIn1bbfGUzinKrHUt+GNGREcocV2fIoReBttcdrg8aIr96/UHyU3FQEIh0pS01UTCkdRs2NLnFQ+35Ju8mF+RQEBAEBAFB4DBEgOfBGSPjMXMkRcOh/Jx6vRnJgyfAYPaZwIYaUjABbXqdp86WruvJVcSWNBBRsSmo9EbArYumdCUORJHFjqO6ljSQ7VtcZbPd6UfPI81nDc2LFCW3SX7TZLL8SUpNhZNMcFXE3aCpXcvWRWqupYlcE368PEZyLVUb79eR+wsd9k3R+LSVKZ1IzzZk6DAio2/g8Ucfxr9ee6XZODk40dXX/BZ/f/ovFLG4Bmefcy4FLFqpTHrZrPejD9finHPOw3333o1Iilux9KRTcP+9y5rVIycEgf6CgBDSPvgkOarrBSefhFMXLAj0rramDFUOWg2tLKS8ZqW0iukgcxgyP6Jodjqa/PSGCEpknQBLZBIirJmUR2uI2s48YRFeXb4C69avD9TVVTtsbst5zjiCHksczTaxFFWvM2KlOnhjYlpSW4dkMv2NT0zGlo1fIz+XzZxal6ISn2ZUo4gmT8y+2ZMJ4jHTpykyqtVWki/OfrriMzlqvda2ldBqS8knyEkRCAeqAElHT56EzzduCtzM7bIUlYbW3gYKyo4gIAgIAoJAn0cgyqLHrJGJiIs2UrwESnOSMphmFQ+qStnqJrRw5NxNu8gyh/wp46wm8leMUhpQf+miCqe6bqTFXb4WE9Vg2ukvw59evQVOTTqRxEgMTo7AHoeO/EvNKK3kOaj9c5tR+ZMGt9Cwz6TbTAu6TUWnXFj4rC94UtPrTY9NtPjMhJuWZomUkr9mH4w479XQgjV1PD6m/ZH6/eOdOm2ayiv6wEOPgje/PPnEY3j4wT+S+e57mDtvvsox6rA7YKd4GhdfdL6/GO65+04y9X1ZEdFoa7Qqv3bNqsB12REE+hsCQkj72BNlAvOL035GaUd8keAcZftQVvg9EdEwphpe8tFwOdTmrCpAedEPxL9IQxmThdjkCUhNTMT1F/8CsydPxlOvvooyu71LRhwcWt5MprkJRi3lIOu69U4mpRFUb1GtB5UUEmHKjNnYtnk9Duzb02r/HRTVr6TciTibiXxCyXTK4yPMRxG2NsqL1l1k1N8xJsIGIruu2kHKp9TuqMTWn35Sl7k/LIcKREuqgJD/BAFBQBA4TBGIJaI4eywtAlMIXYM5QmlFI+OSlSltuCGZaK4clmEj81WiYrTo+v3eUhQTAZ0w2GeiGxdtUia9bGFUUVmLz747RP6jKUi0NSd8FW7S5FHgJL5HZ7Zh3z499BRcKIGOS+xOSlPWflIart/hzlPoJN8lTWjSHOo+I715cpAjDyxESNmvt30a3VB1du05HxG1RXf8FZnTuPAWTtxuN66/7mpa0I+mVHVRZI7bkB6I7zlwYD8WzJ+DlJRURVYrKd2ciCDQnxHo+F9bf0YlxNgs5K8ZQauDxd3om3nOksU4b+lS1Xo1aUOLczeFJ6Ih+hg4RSZD9tJdarMljEZcymTMmDCefEwG4o/PPIsde1ondYG6QuzExSVg6sw5ROzYNFeLJHNorWgsRZHjKLYJMTEUHc4KC/mfGCnaH4uLfF9rKQRgaYWdyGMZ8ouKUUDBEoKF/U5TqG5WJpYQMR07cZoyRco+sDe4WMj9XfurMH08EVLKjcaEdOywYUgjcg6NizTKB7tcM9q0E0xK9YYDZL47SPn+FtLYcsnPV6vzjXH3AZlcmmImx4KAICAIHC4I2Ch9ybxxySrFiZmCFcWlD6MotVGq+6xNDCcWYmMjM33xC7hMUowFX3yfh/FZ8UpLmhIXgZSgm3W0MLs/396MkNZ69KiuMym/zERy3awo11NqlSi4nFW0QF2LeKsZxURKu1vYZJfFq2m7NpH9SXmj9KrkT8pa0r62QKsjikymyz3whuwgJQFv4aQpUQ1XTs4LAoc7Al2n0jrckaD+Z2UNxtbvf8TPf3FJYDR6cuhnc4uv1m/C8pVrsYK2VMof1dVy6emnB8hoce4G5Oxa2TEy2qRjrDE9sOM/qKw4SBpDGx684XpMHzeuSam2H0ZGRWPKzNmKjLIWsykZZROkEVmDcOK8eVgydw4mjx6FAWmppJmMDJBRbs1Avq8clCmDcqiNp5DoC4+ahdPIRJn3I5qYDcXS6nMcrSqzjJ88nfKutY7/rv0+wqfTFiv/2gkjhqv7OQBRi1F0VamW/3PSqnZ1jW8SbqmklvxJOWASy4SRIwkzh/JXrapxY9f+Lkxv01In5JogIAgIAoJAlyIQQa4ps8f68m1y9NyETP5918FNqcxYOOJsW8VMBJUD/NXVpwNpep+ZNKluCvjXVOxun8Y0NkpTT+58bRsonQznPmVhDS77tHanaDndi5LQC9Ph2ua8rCweZerbB19FNSqwha+T8r8gIAh0OwJ98Feg28ccsgEr5Xd6+pl/wE4au2BZcuJSTJ4yFTOnTcKs6ZOxfv3XuPW2O4KLdHr/fNKKnrLgWFVP3t4PUZofLjprx5qqc1cjd88aMufdriq4+bJfYuTgwR2qbDxpKQ2UlyySljcTm/iLjh4yBD9buBBTx4xBTHQU+YcADspHVkzazfwaD3Kq63Cwyrfxfh6RuiJK0WKnMjzfRljMSpt42nELMGX0aAqB3zDBKVJKBJhl3KRplEC6uflS8IBy8quRnVdN5NOFiSN9q9asnfSbzAaXDbVfbq/F8//eRXlFG8KsMwld8VE2XnlnL95avR//XXMAVWQe3JLodPmU07SafFFs5NPrC5SwfXfj71hL98s1QUAQEAQEgb6FwAwKXhRFiTbNUbGIz/Atdra1hwVl1aikRUkW5q27D5UjLoriQNS7vBwssBM59RHaGlcdDhRWIjGm8Xzn9mpR4zH6/Bybu3WqqL46g1EFRtL487+0tYPtLKdtKU1aC3XxcFlLyuIBEec+Jl0dX6KPDU+6Iwj0OQR6wCChz425WYc4xPZfnn4Gzz37dyxevKTR9cVLluK9d99WCZ75AvsEvLN8FREbylUVZkWzUQWtHBxHmsGzyVSXJW/fJ3CU71P73fFfYfYXVK0GtoSRuPnSS3HN/fejoh1+CRwaPpZykxnJlDaJQ+PWSwz5QEynVCeJFCqepYaYaCWRTE7lEk54vuWNUm+T2ZFXZWMzUb1RFJ03graRg7MoKFAK1n/3HQ4V+rSMHDDJyVWSBnX0+MnYtJ7HE142/lCGMcOSMHiglqIHeupTu4Qv77/CfjerP8sljW4DIeZrn39bQL6hWvz8Z4OpLi0+/Tof/6Nzx89pWWOr0xXShBtLOU+tlJ8UWL+1geT625RPQUAQEAQEgb6PwKQhcUgif06dyUJmukPb3WF7VS2+3p4PI1kJsWbUYtJj6nByJ6mXAwWVFNComM7TfEdzUXoCBSxqksulmsgoiy2Co9nX39jkgzWlXn5HoTa8bjbd9d3TpFinD71kcOuTMB1poQU2iaXsOIqQEsVuoWTPX/KSN27AP7bnm5cWBYEjDgEhpPTI77hzGX766Ue88a9XmxHSFDLP/WDtmsAXIzs7m7RzJsTGxaGYfAIjKex6RyWBUrlcef6FZNapR2H2V6iyHyAfw+41EynO/QamCJpQE9Nx5YW/wBP/+nebus+O96MnzFBl0yIokh8RcpbMlGRMGz2SwtyTWRHNfWW0okvKTxLKm0YEsz1C8xJKaOG4kupRqWMoANGxs2Zhy0+78OM+YnIkaSYvaVndGDhkFMod1chvEghAFar/L7uUEn4njKAJu47G/B1NzIxty5Mmr1h/+PkhTBgVj70HHaRhpXxp9WPNzqvBsUelECn1/dlMHB2PN1fup6FSPrUWhqojU129oQQmczScnkHwGCsQ2c53g+qKYoqqXB88IniQst/lCPDfIJvhiQgC3Y0A55IMFnYRqSOzz1Amn63FMYgnf30OfMIpJESaI8ApWIyW8Hkym9/R/ExKjBFjhvrqSBw0huYVX8A8f0k2ldWQ6S6nTvHPG/5r/s+hGbEYnB6LaqdbaUVN9ZY//uuzx6eR6a+HAh5RyB+ya2Uf0qZS47KoNqwWzk/Kc62W3h0ooBGR5GAJ9MfrgUFDeb8pKn+XC5m2qrme6qcdVT3Ph3xOpzc27xOdU9iQltdA/XbSLV7a11DwQg15lHaLUL88/Fy0XhjIz7YtonXTsySy3d53PM4/W21vHA+jLe1JGUHgSEeg5bfzIwCdC3/+C8qhORj3Lrsz5Gg5GA8nK/aL0+mb7G1k4ttZuXDJIuVX6SjbqyLpdrY+vr+covI5qlsmLgUHP1Mrp7MnjcfMcWPa1OygQUNUORtNnpZ6gjYgNRmzxo9RZLSKNKJ5ZIbE2s7OipNUpwU0WVe4fHVNGD4UY4ZkqWr1NNOx+S5L1uCh6rOl/2KjRqvLJuOPREyJobYirAWNpei8I0mb2VQMpLllwuqXqEiDCrJU2YrZrsGQTRjlwEUBKCLNI/y3d+qTNfSs2Q8lfI39nPkzlPCLbTzluBURBASBvoNAJC3AffDxZ5g6bXqjTrUWxyAjMxOr1n6M5SvWqBQSy+79Y9jfhkYVy0G7ERid4bOPtSZlNiOj7amM12ojyeS3KRn118Hmu5xOJhQZdXu0cHl09PsORLUSR4iJH0f/ZdF3UzRbD9Xsk5bdV+oLNfsImO32MZ9NTcA3tlmX5YQgIAh0AwL+X5JuqPrwqPLXv7kKa9asxDXXXq86nDV4iHqRt1dU4L9v/Rvl5eUwGhvUWWazbwWynCLDsjRd4VYn2/DfRApyM330cEoNUk2muv9rk/aLrW8ef2urCnBw0zkTA63w+Xe/2Id1WylgD51Npih9NwddDxSs36mtpqi2B/6HxIxZOGXODHz46YdNizQ6tlB04fg4G5m9OoiM6ulTo9KZzBgzkohtHcqJOHLe0K6WMvIvddVpVECj0VkDCKsabNu5Ezy9FhFh5ck8OsKAvJyDIZvOysygnGyxKKuoIU0pBRgy7ESdczT12TdBN72J/UXLymuw5JgMRdh5bF4KCKHMnqjw0IFR+HxDHmprE0hLqkFOXpUy29bQ6rO/TNM6OaiRVptN9ZhQWjoeIwdEdfg7E1z3HXctU4d3/OH3wadx4tKTcd8fH6S2ShETE4ubbrgWa1avUmX4xfbe+x/ECWSWXlVVhRKKGP3LSy5Cbu6hRnUc6Qesie7o3/WRjp2Mv2MILLvnfvzsjLMQRaS0qQTHMaiursadd9+j4hhcdeXlqujtd9yNdR9/hPvvW4bIyEgVeO+4hYuwetX7Tas6oo9dNZWUw7vjweRGDbAhgiPJeiMp33cMXNXNI6XXuZw0F/C8EX5O6OxDqKkzqPojjbxASua4vNFLgKfODbezebRa1px6iMB6PbWk76shN5mG95nO9oXvryOrI6+OtaPVFGnX9x7g9VLfaGG5jrSFTftUR8GYuL/so+khnFgBXEu3e7ykwaRz3SJUv5eiAfOzCfXcmrdZS313gFPIyVzQHB05Iwh0BwKhVSjd0VIfrfPpp59CYUGh0oKyJpR/KN2UksTt9mkZ+WWdV6D9wvtcjl/4OyMchZaFAxjVuds2Sb756R6QxQkyyKfETFpC/7ZuSw5pRp246tRxeOTXR+GGsxrIarg+cvRdZ3UJBqWnY86UKeGKqfPpmYPUJ6d4MdDSLvuMzpwwQZ1jLWZ3kFFVOf3HvqgcFImFI+Vmkl8pi60+6u6AAYPVcaj/hmT4nltlNWluidzyZGcw7iSznapQxbH5hxLEWI3Y8F0R+XkWUc5WF/bnVGLn3gpVfvqEBAq6FINd+yronD2QK84SEXpdR6crJeK6V93rqK5EjVMPToXTGTlu4fFKC3LRLy5tVg1rWB565HFcdMG5OGbOLFx26UV47PE/gzWiLMEvtt0VoKtZp+SEICAItIrAH277HcaMHBJycShUHINFJyxWC6cGgwELjluI119/TbVRWVmJ5e+9q/7WW21UCrQZAfbTHJHu++22Jg9o833dUbDW43ProbXYNove6JsD9F4XNMFmPm2uIXxBj7ee4Ho7ZiruN+RhTSsvqPcN8Y2lorJjWt++MQbphSBweCEQ+k368BpDp3r74gv/aHT/1GnTsG7dxxTI6B11nleZr77mt/j7039Rvjlnn3MurTyv7FRAo/TkZJUXlBuoKN7RqP2mB2yyYyIiuPtQBSZSMIUl0zNwsIA0lfVmq9WUgsRA1y9aNMIX4p1+0l3kg+Qih85aInOhfJH8bVQU/6i0pMcffRQ++/Zb/+lmn2kZA9W5KNIKsnDaGA7qw2a65d2gGVWNBP3H7ehp5ZXNhbntYloM8NDkV0SW1AnJKaTBNpHWssGs2n8rp5th0VF03XIilxoyCTIbnURKfyRt6zBafGisjZg4Oo7qaVihZT8YNq3S8n8kfDxuZKza+JjNe9OSyZeHD5oIa0b9ZLSSIgvzptMV00JHywGQmlTT7JD9mXm77fa7lKl0cIH58xfg4MED2Lx5kzq9/puvUVCQjzlz5yktaagX264M0BXcl8N5X3xID+end3j1vS3al5biGBgpkqpeb8ChnOzAwHNof9oMn79/4KTsdAqBYWlWZZFjirIp7WinKuvkzRxhl8XUDkLKKWnYn9RN86SedKRdqSV1k/UP5+zUgKJAeGnTtE8Dy/MnT7Ec5NBLWlLU5zVVg+yl/zQe36I1R+oXEQQEgZ5B4IgnpK3BvGL5e5g7b77SSjnsDtgddlx80fmB2yJsDdHxAidb2Tlm1hwVvMhespN+hOugCRHIyMhElAiYnj4LKUx8QZkTc8ZnoMihgSXaikhbJhEkLcqKHBRgSYuSGiN25pIZsacaWSlWJMVaEEn94Ch9TiJ0/jDywV1j39XkAXMwacw4ZA4ciuKy8uDLat8SEUmRdVNVeHYbaQJHZQ1CEgXPcNPsUUqaZO5DR4WjFLNPro5MioLNokPVZ6eFShORYNb2TRo7Ht9s+x42MhZisjpg6Bh6IWtutpuWmqFw1uldKuBDRaVXkUqzkciheQdcrkEUQCQp0NzYEXGBfd7JJ8Y7ID0KQ7Ns6rx/YZmJaW5Btcolumhumi9AQ9CdesMBem4crERL4f09IOW1al9ncNPzNqAj35kaB5FwMslqSVJIexz8Ysplc3JywC+0LC292HKALhFBoD0IRFFO4oSkJDINj6PA1760FNVkCl5cUoS83By4XS1/X9vT1pFctqU4BqwhZQmOc8BBjboixsGRjHnTsQ9M5tmUfDZjkpte6vFjN5M2kiZZ11rth76ekFL4wS4lpNywqy4CRh2ZMHvJ2qudhJTv5zmVWC089D6h7a7ARtxQm8VntZZX2DGtb5ubkYKCgCAQQEAIaQAK387FF13Q6Izb7cb1110NjjIbFRmFvCZRXf0JqBvd1MrBeDI95ch4lRUH1WdwcSagFtJE6uq1chQhHjsLTFh0zHGIsSWgjkLC2+lfVH10X62jHNY4K9IzYzFymB7FFZXY8uMe6q+O0qdU+lZ16Z2FSWkNmdcGa0yJpqLSfhBRtoFkDjsC6zY2z38an5hMZIoizZEWVk8vP8MHsbZUQ9F0yUeGdYM8kbQi2Qf2Ysf3WzH32BNgpAjFLHyck71fRSx2uVyw2mIxgfKLchvhpJy0vhbyg8xKT8Pu7EOwF5ejhgh9XEIy8gsKmt0WRWSacdZqawM4V1AIX/ZvsZjJ/Ni4H7q6ctJappPG2/fC0agSniXV+HyDrKDcpG+v5WdGAfRpsWDh7DSkJjX4o+r0JUSus6k9nsQ0sFdSxGE2FeYbSPz96Mh3RjWqagn/n80W0yzCJr+o8gstS0svtkJIG3AVH9IGLELtsR/9iNHjkD4gq9llky2KfqeiMJh+J/bs3IEff9jarIycaB8CLcUxYOsQFl7Q85NSXhzwxzhoX0tSOhQCiRTkLobCovPvdl+Ivu2h+YteE2iuCdXb8Od4HtfS/Omhdxo9kVL+v6vETX61RjiITJaRY4wv/Vt76ubXnTp1Q8cXuNvTXstlaaHd41ucP3AotHtPy/fLVUFAEOgIAl33i9SR1g+jexx2O3hrKvai7KanWj3OTIxVzv6V5Tk0ORDjrBf2CbWo3JdkAKO1ICI6DQVFZiQmu5BbqqGtWEXRrayuxfZ9xRieEaOc9K2kuRyQ4PMRiY2KQZkjE5U02WSSOWmV4xClk8mh3KEUZY8saapqyFwnKBJuFfXBEpmKzPhohBpLZkoinFUViKbl2KysYcp8uJoIZFUbTXVLigtxYO8uIny+gAIcVICFA+4MHjqMzFqNKs3BN1+sQw4R1wFZQ+rRaP7B1rQVFP0gmqLdDk5Lwt5DB8kPliePmpB9Hz0owxdUQbkD+3yCudayChe9vFEUQ4qSq9MWUx+KqQ/0TEhb6qnzaUO53AlzU/hDYcyf0ZE6nHpcOmmDdIqQ+q65KbR9EZH2QqrLF+TCSSTUTia6riYYuZxm1Z9QOHNdnRV+CTWZfJoqf12+l1Pf5NrSi62/vHwKAi0hEBMbj4lTZyKCFudYOIYJZ3tg7YYS+p2h92U6qcGQ4aPIeiMe67/6jL73oi2tR6jdHy3FMeBI27ygl07+8nt271J1c5yDvDy20BDpCgRSKUggi8Xa2IKmK+ruaB1+v8v23s/uCExIfVrIrnv9c9XRoqc+n1ScNNd0gFPWr9nScPjHo5fF65sv2Vy3usb3vtLLPZLmBYEjAoEO/HQcEbh06yCjKGqt21VJL2kNwYyizJT7sN4vNNKaifjUqbBEpSE5NgKJnISblhDVpl72aHW0XoPKoeOrKOJsU2ETXa3eTCZGgxGXOoXyr8UqP40oC/tRNiyt1lQVqlvTyfQulHCEXRZ2H+UASCwcaKgtUlVVie2kCR1Pms+mkkxmpExGWdgflTW3ZkuDtrFpef+xg5OdkgxKS0NEvTbVGiYFD0fkZdEojaXaDfzHmsvi0lpUEqHl0XAAIiP5lhrNm4m47yWSWeALfhTkz6KhN29WNppMVXQ9XwVIMlm+Vb6iTEbZjJmDIJSUE+lvQka5YZ3ON9EFOtHFO7m5ufRimtGoVn455RdalpZebBvdJAeCQAgEeLFj0rSjFBllEqqlnx0VVDP454AJKr3DUepfRVLjEpIwme4R6TgCHMfglFNOC5hFB8cxYDL60Ydrcc4556kGOMru0pNOwcr3V3S8QbmzEQKpcb5FPnN03yGkHGSpI8J5QVm0ZFnUlcJ+pG4VvZ5+ADyl7a66gYZ2cGDtbjH8DRpvsbq4fXdF+EJyRRAQBLocgd7/6+/yIR0eFbpdPlMQSmmNaCKJnONSQylVbIljyD90UGAQCURGh6XbAhundIkw6tUxc9KEGItKsF1Q5vN1YHJaUFqNJDrvF70+AjEJY8FEl4WJr5/81rl9TvsJsbH+4o0+/SQxPsZGEWKj8f/tnQmUXNV557/al973Rb1IaGETizYQi5BkEEhCGBM7MdiTEDv28czJxInteHziZGwPseOJF+x4HE8SnPjYMRg78YQdDAQwiB0hBAihfet9767q2pf5vvvq9aLuelXVXa+6pP7fc15X1bv33Xffr7vrvf+93yKLq4EpK6zTGk/5EOMHpX17XqOLVl/Ofp/pheaJo4fpzddfptq6eqqrz+yfI3o0xOeXGdWlqaBFurCdcvqs3iZYBPtYQPYPRZR5rawcWy0R9v+UgEQnWHi+yw+Be1gov5baXufPe3n/e1zP5r4sYiVyr/jpjvpjNMD9BFjgLlR57rlnqK2tnS5fs1YN4YorN1JtbR3tfuF59dnowXahxozznj0ELr5sHckElYjRKfM0s1+ACNaUKK1raKLlKy+cvR32KgLf/d4P6NU33qJ6/g78x3t+ot5LmiYpEsdAApW9tmcfvfTKHtp41TWc4uUuVSc/vn7X11SkXal75fW99PJLL9JTTz4xUY83cycgk7dirss3Z3J7NdeHufe28EdKXlILBzjipCy8kKlN7uZrVOF4perKmtQmufPVb2H7CfIkm49jPSTpwNGZFnGFHQvOBgKLi0D+bDYWF7d5X20ipkWFleTX4jdqc4hovJBX3tKLt9lO6uSp0jUr6ujNw/3KjHQ8FKPzWyp4ZXVSkOrHidCVVVMJpiQ3WlnYiKSEcQX7yM5W5AYmpammRr0GsxCjstr59luvU+vSZcpkL8FRf9OVAKdDkfaBYIBiHLTHYdVmcNO1l/0yBjcza+TgSkTH+WFhcn7V6Lh0dQle2ZTUMOOsze08MSD+oRK5WH4vEmFXn40WU0SxOI7z+WNxzpHKQjTCfrmzBYxKd6757t958y0kOUjLOLCVFImc+xVOGSGRn8f9fvrSFz9H9973K+rv76Ma5vPnn/9TktyFUjIF6FKN8AMEZiFQWVVNjc3a6ntGMTrleKssmLBBhpjvHjvy/jQf9inNFv1biVOQrmSKY3Dq1Em6fusmamxsUkH35HsAJT8Eqku1+5HTMz0ie356n3svfPuZcxE/0jhH5xez3cRc7GvTnDnMbi8ethyysi+pMt3lsIPZFnkW0co8LkzvYh6vlgSbHXPZd2CUwlMi7s+jSxwKAiCQJQEI0ixB5buZu6SexNxWiVG7h6rqVrMfohagwuhcrXWlJNvU0ljtoZuqWtVKqYuFpm7OO7WN/t5T0sj6zcrpZg5qq6QxzXy3JJWrUm935mtdtbaCGmbxlqmMjY6yOPJRmKM9HuXAJpLbVcoJ9iVt5Mi35RWTNypZQZXy9t7X6fiRQ7TqwtXqs9GPUGoMtVXajKxR21zrYmyOLHlo9RALuR5vdvvHHn2YZEtXHnrwAa5/hJrYpLmLI+zGp0wGZHqwTdcn9oNA05J2BUEEZk6Fvy5kRVWClTU0Nqvouzkdj8YTBNLFMdAbnBlwT9+P17kTKE8l+3R6Zgl6N/du531k6pY6p370yPhi3ZPPIkEOQ7E6dqXp4f95EXaT9/lM5+E56VSZeKPvKODrOK+ODqnzvfFu7mbHBRwoTgUC5yQBbfnrnLy04r6osO8oOXkVjnO+UHnN+VmJUaMrkkVCLwtcIzGqH+/21rNv6TL1Ud1v2Z9kPLWKprfRX2NRLeiSviKXcuHUq2d9dXvc1MoROG28uiqbRPeTYpX3Kd/XMw+UICnBkLaSd2bdmZ9lDHLbKmN/KYfM9ioBeWarxftZhOfpU6emidGpNOTBFg+vU4ngfSYCldUp/7k5PC+KIJUi/qQoIHA2EShNCVK7Y3qwuIW8BjG1FUOlKXONOQ3Hys8cUsRsN98lFKvhAIa8zpH0sSjN3nR3cp47/2PK9hotiS7V9JW3BlXgw2yPQzsQAIH8EIAgzQ/H3HpJcpS7OOcM5VJWdR4Hx5ndXDa3TnNr7S1rIZe3Tu5KnBMmfURG3dxTj94anbxzpD2htF26fNXktmyFatvWfh6noylXZnuSCiaRsjuSXKS9nLewivMZZlvk0ChPqzqdDo6Ym52QzbZvtAMBEJhOwONOuRLM5XkxdYzkNEYBgbOJgEtFveeAdKlgQMUwdnvKTCGc3hPGeJgpHxTL5LKkcfscapM8Mx6IN6kjLIlOFqaaa1KmLvShLFQOUjHVFd/RsfEovbRXWyXNNGbUgwAI5JcATHbzyzO73qL9anbS5a3llCtaapHsDsxvq7KqZTTYPUxJzsVppdnNhYMcKVdKnM18pczleVQdeMaPztMn6eCBdzlAkJsFZYialrSyz+l5Z7RK/1HGwW4wvMrs4HQ8iIaXnhRqQKA4CCTmY2dYHJeAUSwyAi6OJyDF6iieRyWbcuK2c25xtorKHHJhxm+MIyOofWaskErHYU6dFmNxxwnWyJro5leJ9WBcJue582tGbHxWvdbPYpTFM5dnXxlQMSL0GryCAAgUjkDxfMsW7poX9ExlHMQoGdX8E0oq2hd0LFariyP6amOwxGf3mRgeGlBjDGcRzCjdxYjJ7rYdt05UW3gW9cprtrCvZowikbASpZJPL5cizwlj7O/pZN8035i22pzL8WgLAiCQPYEgBx9zSwoosajIdVZKjuES4YknFBA4mwhInAcpuogrhrG7OHy1BHMPsDcNZ4XLuegxAM0SpDKgMK+SliQ5k0ByjMVeiJLW6enIpg5aD9BkJVbYOX+5TO1pLu9jZImdUAeK3+ih44isOxeKOAYE8kFAmyrLR0/oIysCK5q16Kie0iaO6DqHu0lWZ8m+UQmb7lo53Yw1EaCa8pmrpMODmh+IRLbN99ylpDXwshlfrmJUrk7SfAbYmTTC6WX6e9ObHGdPAi1BAATSERge1nLzSaTpXIt+zEA//k9zZYf2C0sgHE3ZxeoqbmGHo87usmpxHcbDuc4MTR+8BCEyqyQtdookWlX3liTn9E6k/9/X41JYlCA1a0Sz9Rvn9FVHmEKEjncEeHU0e5/X2XrDPhAAgfkRgCCdH7+cj26v1/yoJMpuURQ2xRVxLEUf29RxySrmQErw+UUFFkmRaL8SlT0aidBQSjQXydAwDBA45wh0nT6lrimZ6x2D24sglYjbvd1a0JBzDg4u6JwloKf+iMc0EVgMF2q3JMjBZruysujPzkVz2rAlzZoqJovsBHlpyKeZ61qSXWlF6aQgjU4bp7kfeGU0cZQDLwWouz9MjzyD7yZzeaN3EMhMINfHi8w9okVaAk2cnkV8UmRl1OHUVkrTNi5ghdOjpXRZUjv7im1nx0k1GjGRLZYylhLHg1h1KZZfCcZxDhMYGx2mLvb7lpLMwbo+kVqEOXb4wDlMB5d2rhIIpyK466nLiuU63TZNIPvnYAWvC9Kkbrpg4kUFwiXUN1yhzqCJ0o5pZxNPINHHFs6JWrgV0iCb6R5iQeqnvsEQPfh0F4VMzDkq2QWamppVloFpF48PIAAC0whAkE7DYe6H2grNJNaVEoDmni373p0sjq12NwdIsFFFiWPGgZ2nT3AYhCT7hSQ5gt7Cr5LGeHVUF6Q9KbE8Y9DYAQIgkFcC7+57QwUQk+fYjKKU2yREuPJrb1cHHT96KK9jQWcgUAgCwZBmshuLzEH5mThAr01bGh0OJNVKaS6nSia0ayrU9PLYuId6hrSc4WK+a40f5uFq49ctoq1UoNVRzjNqib3PX0sh6ugJ0r890Uk+jqxrVrl51wdp79vv0S9+9Wt6c997dONN2806FfoFgbOeAARpAX+FNWWaIHW4tS/nAp4646n01DOz+ZHKwY64NiM7ZOJMYsZBphoMpVZHHYkoBcb92R6GdiAAAvMgIOb7b772IslqqYhSlW5Q7iCy8We18XsRq7oY7evpoj18DAoInI0EfCFNrMTCHKCniIqY7XpSvqSDOQ4tMSFIC/f45w+4qbO/mqIxDhLFgY6s8fc47dsg6SnErSmBah5iMdE9xbEyTvDXVJL2Hx6l+x/toIBEhzKplJSW0re/+32687/cQVs2XUWf/qM76Xvf/yF5PB6TzohuQeDsJlC4b6Szm1NeRq+vPtodxfeF5HBpuVDLPDNXSOXinfEw+1sk1CrpyAKK0nF2OPGlBKmMCQUEQKBwBCTF0isvPEMnj8kqBz9b8h0kIVtKhMp7Eavi231w/9v0xisvFG5wOBMI5JnA4Kg2ERsOFt/EZ4ldW7Ud8Sc5zUr2F66vkCZITBgKV4JhpxKlYsbL3xgUi5zkoEKHyZqUYEI5XECOQ7YkZFV2PwtSLWPAs6/202O/7VX50HPsKqfmW7deT6fZ9/6tt/aq415/7VXq6+ulTddtzqkfNAaBxUJAi2m+WK7W4DqrqqpI0pMMDmhfWmc2lVktL6c9GBzUok2eWZ/NZ7ck2eZAAjabm+LR4hJTVqsmRD2u9Dcpd1xugE4a5ASgbN1L3lSC7WyuPR9txFR3IKzduOyxMC/MmHcTy8d40QcInIsEZKV0/9tv0tHD71NDYzNVVdeSOzXrHxwfp/6B3gl/03Px+nFNZycBh7uEnB5t4jXbK5BEJBZnCT8b8H3b4WTXFuPEnzaHiyxWG9/mrfxq7ny/28qrpImYyhE+GODYFDY72V0zJ7v1sVgsWlxd8YdVY7M4+B4qpg35L1bu1sI/ZDwOT+m0E4xFanlSuZlXSI+TgwbJyTlAk5ZSntyq44PyZT0mK6IDPInOz3NJftay2CiYKKfeUS8d6OB0d1WN08aUzw8JDoAV9A1RY2MjdXVO95nt7OykRvYnRQEBEJhJYNEL0ubmZrr/3/6DamvrKBQMUldXJ333O9+iZ595WtGS1CTf+Oa3aPuOnRQIBDii6yB96pN3UvccI0ZaOBx6MRabTbvRekRppil2vvmFQwlyud3Ux741zXzvc5p809WHIv4ufeE4xTgCQjQWJQ4qT2Q352aqnxOvIAAC6QmEggE6efyI2tK3Qg0IFAcBh8tLpdVNOQ9mLO6gplIrxfm+4ymrMTzeLoKUxY8SpSxMzS4VzggNs6gcDVjIzc8WDucsgpTv0ZL7W7ZEPKq9yuootzfrDsp6XJ1HmLvOmASw877O0RqKRu3U6OnlSQLJ8jrOwpE3vrMnWZQmLRwIySIrqbk8L7EVV2KM+xlhIZrKJ8oXGGWzjWDISgFqZWuO8Jz+BnL5PUZ4NV0EaUVFJYU4uvjUEg6HqaK8eAJaTh0b3oPAQhPI5b99ocdqyvlj7MRw19f+J/3n00+p/j/5R5+mL//VVyYE6c6bd9Hadetp44Y1FGTB+rW7vs71X6U/+ePPzGk8SfZ7LMai+5VUlRrPAIdCQZ4t5j8bh516WJw2us0XpQn2+ehlXw/JhRpn/xdZhaGK2U2Li5EtxgQC5wqBlpaltHz5BdTauowa6pvYamT66od+nUND/TTAK6UnTx6lY8cPsalat16FVxBYEAJR9gP1D+X+d3jS5qJqZymN9Z0mWWU1KjG2fEom4yRmsbpprFH7+dbZOTpthSNEUXan6R6JsgAK0pmGS7IimuTVSomuG4/I+BK8qsrCj8dpVuFTcP8WEubhYEocpk7W2c88Gzh1DU8qR8d7qJ99YD0uK7nZOstukzH1slDuVa2TFn7AIBbZFom/wc8dLPZJxi2KV42fVz+TYlYtLkWTVmcygS2Rc8MRDsYoLka8Ghx3RtkyLTKnvwHuLusiK6RSRkdHyOWS8U8WN0/mj46OTu7AOxAAgQkCi16Qik3/0089OQFE3n/la39NdXX11N/fRzt27qKHH3pAiVFp9Mtf3EcPPvKECuGd4C/6XIvFWpzIranZ3GG/9mVqdF2BcR+VlLLpE68ed7FQbODvXM+Zd0GjDnKoi7CZrqyMSoRf4S1iVA9bn0M3aAoCIDBHAm63h9atu5ouvWQ9W5I0zOhFfEanFrYMpOrqOrWtWrVaVZ08dZTeefsN2vvWq1Ob4j0IFIxANDROsuVaDvmsdHFDC0V55ctbWUt2x3SRMbU/ccVRYpQVWaFSxZTagxSyx6mfXWlO9QWpVcviNjEsEaBJzr8k900RzPyBYuLwwrlMzSoJ/lIQURoLBxU3/TxDLD5dES/XxTko0yDF42IUTeTjFx//ahwOCznZtcnJr5IijzhPKPHaZjZF/GgjLD4jHLo3HJXnBZGlqcLfUQle4ZZ8suPDPfpeU1+7u7tpSUvLtHO0tLbO2bpuWkf4AALnIIHiVEcLCPq6zVvY7r+TfUXZ94CL2PtPFawdHR086+Viv6nqtP6mRsNPstlrMQqqWCpAUIDFXzZl3O/j1RGeLXY6lSitciZ5Fjm/JkqS2mWAb7KSpyzOYjTA55zLJEA214M2IGA2gbq6BqqsrKHy8koqKSmjqqpaGh4eID//Xft8I/x+UK0qmj2ObPsXd4Wrr76eruFN3ksR8ak2eVbkLV1RGlUWJlJbe9tyku2aa66nl15+lt588+V0h2I/CBQVgSgrnVN9AWpvKGEx00cV9W1FNT4ZTG1JnDrZp3Sc9WY3W602zWIVqovRBK8yshdpwa9hjK1Xe8eS1MZz2SW2INmnrGjqg4mykIxGY2LAyya/POfNE90y121jH17xSbXxTvESissENT8XiOiU97JJjIliKs899wx95+6/o8vXrKW39r5JV1y5UbmG7X7h+WIaJsYCAkVDAIJ0yq9i5apV9KW/+Ev60he/MCF8xN5f7P71Eg5rPgEV5RVKkDYsX6NXZXy1lTnJwzN//HVKNjsHFOBtoYus2EqgBnm2FP8aF89YNixvnTEs8QWR4pgS9CjKNwG+B/KspoNGWceGIlYWpVYOdjS/m12YbyySXibAs6YSfEFmUcORKAeVcE/EBXS4nGw1bKHatgsp4KqbMV7Z4Smv5fF61WazzfStmfUgE3cm2fQoQV7mm/3fjD6cwY731Wyz/hmv5hGQQBw1LRfM+wQOFnErlq2gtuYWam5syircf4D9Mrt6euhk5yk6fOzIxPfQvAeTYwftLa107RXXTPg7KRHK/2/yOpeihCl/X9Q1ttKtt/0Brd+4jV564xXqH5QIm4u39B7VInAuXgKFu3JvRR2V1U5fscr27GNsUlpa7VCTyR7uxyZuK7MUl5dzenM8BqutcPd3eZZw8j24rtxO7rIqMV4l1n3UkBKl4mJjZVWX4PuovI+zGayNDWbNLBwfks9l4XtwDZUGreQLJ0kCFpdW83on38tL3exnm/Bym8z3ZZkiV+nP+Vlj1sIPL2LBa3hFEsDJ4SUn56Say/131vOm2Sk+pMNdh2nc7+dnyc/Rvff9Slnb1dTW0p9//k8nrO3SHI7dILBoCcz+rboIcTQ0NNJPfnov/d+//yE9+shDEwTE3t/Jq4B6EfM1KeIfICWXB4oOTz01VXvYp2KYZ/mcyoREdbKAPyxWnmlkM5bQOK/UsH/NycMD1Ns306xJfEGkRKeIc+1zgFdPHOphO8F3oU6+6bh4JrOUzW1K+YZk5/fZFJnb9PNMtJ9XRQP84ColycJUfGIi7PdyZomGYxSNW2jg1AHq5VXr2UpwbDOPt4rHF+C0FMHZmhR0nzJfYo65/M0UdIA4mSIgv6f5/I5KSkrpyis304b11/J3h/g+aSUeGCB7bIhTEIyzv1OE/ybL+L2PRR5/F9hKKGav4ejVXlra3KS2DatX0969L9OrrzxP44HCpZ247rqbaPOmLWrQ0UhQyzcq/8aZrfm1CzX4KcLUyk+YDdWVdNuN2+mBB++jd955w+AIVIFAfggERvtJtrmUXj6oJlFHzdVe6j70BlU2tM/aTThQycKvWgUPEhPRQhQJtpSQPOFRH8WGjlDMUUNd7LbJnjVqpVSEaCSq+U/G2awhIjb1+fhnNri4ON+bJd1pcGyQOjs56vaodk8/cfQQVbr53r1tJQvSAFljBbovW/j6+XwRjgMyn+92g0ueteqhBx+gxx59hJo4eKZY3sXjIq9RQAAEZiMAQcpUWtva6N5f/Bv9/F9/Sv/wox9O4yTRdMXuXy/yXlZMh4eH9V1Zvw74wkqQRkKj5PbOvqqXdWd5bhiNag+8A2MzxV+mU8X4hujzRdXDt0TglYQsYTb9lQQ5Ik5dLEzlVRZOdX0q1jWiOyNsjxviN+IjOrVIdDq1Gi32uiggcJYQ2LRpG1236UaecNLM1+2RHnJEOske6WYxqk1iGV1KzF7JD5SNFHW1kNfTyOayN9AVG66jF196hl544UmjQ/NSd8uu2+nyy69Qfem5RfPScaoTMfON82Zl6wexrvjQrR/jVdhK2v3i0/k8DfoCgbwTeO/kmBKk/sEu8lbUkjNDgKO8DyCLDq2JMNmjQ/wdUqUi77L1K/tTcsbRmGbZFeO0bYUs/ZwjVRejxzhN1Pv799HVGy4p5BAW/FySJuv0qVMLPg4MAASKncCiF6TLV6xkMfor+v7d36H7f3HvjN/Xb554jD77p5+nf/qHH6kQ3h+9/Q76zROPz8mUrm+YbwrtfIMIDRWVIA2HhtUM68g4O/yH+A42xyIrmbLJirKdc7bZ2YxIzG9ly6aIsI3yTG4kwrO9EKLZIEObIiGwZEk77dj+O9TUpE1eOUInyB04yCI0txUZEa2yuYNsou1ooJBnJZF7KW3ZvJ1WrriInvjN/+PUVOY83OhiVP5bE3xnMPIRnS926Z89F9Rq6datO1WKiBd2a5HO59s3jgcBMwgM8oTyoU4frVpSRiM9x6l+qRawy4xzzadPayJEjugAf39Usnmsg450BaixjCPrsqFuXKLUFqCEeXF4kMXoYMqw48C7b9HxIwcLcGacAgRA4GwlsOgF6foNG/ghspn+9tt3q03/Rf6fH3yPvvOt/83muw/TdZu30mt79pHf5ycfByD5xJ0f15vl9Cqrj/6QZl4TCee+wprTyXJoHA4Mqdadg/kxnxFBqUQl92pjPzpJ2C0+LFYtOZk2MhacEqAowaH4xIwlzrOIxRjsKQeMaLpICaxdexXdvPN31dXbooPkGd/Hq6JdM2g4+H/Ayabs8ioBO/Qicy9RdpKS6JDil60Xe7SXSnmLho5RsHQNLVnSRn/0yT+jhx7+Be3b97reLC+vO3Z8eHJllJ2x5uormstgZAVWzmPjObAtW3ZQIDhOe/a8lEsXaAsCBSXw1rFhaqryUBn5aKTvJFXWtxf0/NmezMLp5RyRARqP2Phe3M4pYew0GHVSdQnPbxk6W2Z7hjTt+Ourn0Xo8HiSvLwYG+GYG3te3U293Z1pDsBuEAABENAILHpBKmlcZEtXxNziC5/7LJWWlVEp+4b19OSex2xq3yd6Nf/MoL9H+ZFOrVuI94lEhFOpcFg+Lid7U9OZeRyICE3ZUEDgXCSw6dptSkzJtbkCh8jrf23Wyyxx28lpZ1vVVElaXexDxSki2H/Uwv5cUidbhP2oz7RSEHHrGOqiQOkVFPauog/ecge53V569dXf6t3N6/Xyy6+k9euuUX3ECyRG9QHLKqyslooJ784dH1H5Sk+fPq5X43UKAY/Hw5HNvRwBXpwhUBaCgEyavnF4kLZe1kD+Af6/5ABoJRX1CzGUjOcM+odp+OQBcq1dwnm7z+MJdQ52FExSudtCVSxMPSwY81XENXKEw0wMByTarQRUEjedCB19bw/EaL4gox8QOMcJLHpBmu3v1+/z8Rf69ATP2R47td0RiTbAj6BhCXDiLCGHs2JqdcHfj4+eIndJvQqw4gtCOBb8F4ATnrUEJHCRrOxJ8fj3sInugVmvpczjYCsBbUk0wr6hcTbFTXDUR71YOcCRLdpHznCHEqUWj538s/wviti1JsbVaumN227lw5MsSp/Xu5nTa21N/cTqbpzvBtmsjMbYrN7vH6PKqppZzxngAExJXukt4Um8bEpCdDpv4lO6/abb6J4f353NYXlp09Z2HrW0LKWG+maqqKymUs6vzAkmOD1PNY2MDHF07xD7x4/S6MgwB2c5SadYLEuqnnyX5198ldrbl07r9n9whE6ZLJWUO9/45rdo+46dFAgEaIgF6ac+eSfyGU6jVbgPfaMh2nt0iNYsr6bhzqM8sWwnTxmHjy2iIpFeB0+9r0Zkt8XJ65DggEl2o3HRWCjJmyZIRZyWcVpV+xwsecWyQ9LMjLJhlY/71ItM4juSISrh6GXRaB4ioekd4xUEQOCcJgBBWuBfrwQYII6CR+y36R85RVX1C+fgH4sFKOjv1gSp9Yxs2gXmgtOBwNlE4MILLiVNFBJ5x14hV+jIrMMvcYnJOkectHoowv6gcauWPmlq44RE2XW28EphNbmChzl9QZBkRfXMlVI5xh3YzyurEQqUX8nn/5CK9v3++29P7S6n9zds+yA/UHNKCBaE2fiM3v+zf6L9b7/Jwq2c5XCS1m64mm68+TZ1zlEO9HbP33+bJ+7GOBWUkwVrNd2w81Y6/8LM33GySsqBMKmxsUUFhXrexABO7e3L6ZJL1tPqi9eqlFXpgIkolSJiVcq6dVer196+Lnr33TfZbPo1Gh/Pn1XJnb//MXpx9+QEgx6Rc+fNu2jtuvW0ccMalTLia3d9nb78V1+lP/njz6jx4EfhCYgvqcdppwtay2nw9EGqbllFXk5xUgwlHBjj6PMsRlkxHherJ3eNCiYYDgXYLD7EedTdKs5DMGKhIIvUXjaQ4q8pNuW18IQYv+e5MjHmkDk0kZkSiFDSrsjKZ4TnrCVQUiiWZP/U6VcrE1US8FFiQVgrZQJOm4Sb3gqfQAAEQGB2AhCks3Mxda/FWc8rEcc5JckIjY+dpJLydlPPl65z39BhrYrTTSQTPE2KctYQkJxmkudMohGjFJZAdXUt3Xyz5jPqHn8nrRh1iBku+4wmOZCIz7GSA4fxgyA/6M1W4hz4K8L1Se8F5Pa/pZnv8hPhVJ9S/ThX6DBbNHgpVHIJ7eJx9LFAGhrKfdVu1arVKlCSPHSqIEP6CQxeL7z4Mrrto3+gHmoHB/ro+3/7Vbp83Uaq5zyr4ie+67aP0gXcRsqLv32aHn/w37MSpNJexmBjUbqZAzi9/fbrNDKaXz/7Vasupo0bt1B723I5nSpl7hGq9A5QmWuEBcY4+/dG2L83yRHAbfxALj69Dt6cFAiX8apSFQ2N1yuB2vCBZrr+A7vojTd2cwTkZ2lsbP5j1YO66WPTX3fs3EUPP/TARP5CWTV98JEntIkE9sNHWRgC+44Pk43V2koOcjTUcYgSjct4IBcuzGBSZw1wmpWhTr6vsxg9yenbXjs43bw7yX8vIc51LJtMGjkkACGnbeMsarxNrnJmexHijhOVjYMZSkwIFBAAARCYKwEI0rmSm+dxidSKpJjM2h2l5PIUdnbVP3KUBfEYcUB4srgaOGFYfgIazRMLDs9AQNIO/fhffsapMiqopLSEHnzgP+hrX/lL5DfLwC2XaklqLwnd05Vt2z/E7CvIGeLJpNB7rKImzW+nHuNx2ijEgYqePWwjv2VIPbx6eSnigrYqauDAKFIS/OC47+ggdQ8FVL3LYaNrz2umcuoht8tC8fDsD3nqvM5qspa207abPkKPPPHA1FNn9f4qTilj5YBjSgimTIozHbj2ymsnmtQ3LqEmji587Ohhamppo0oW6rLp5eLL1tHjD/+azUyDVFZeru82fmUxKHlKr7p2Oz3PQi8fpcRbQh/YfCOdv1ITC057iJZUnqCGig42Zcy0winLQOL3L4LzlBrOgL+RusdaqX9sCV1x5RZaz2l5frv7Gdrz1uz+w+qgND/Gh3smaj79mf9Gt3zwQ3T8+DH61f338SSDFmyukYPuPf3UkxPtOjjvssvloqrqahocyH0iYqIjvJk3gTfZdFcCkl3UVqEi7470sChdtXTe/c6lA1//aSWM5dij3X7l62rUj5jT6ia1Ns4hLgEI5VUsJiwcgNDCkdfkvfjNitjkF36Nqy0ei1OM85uqnUYnQR0IgAAIZEkAgjRLUPlulrC4KBSJk5sfWkcH36equos5QEJlvk8za38B3ykK+LpUXSCc+6zorJ1iZ0EIfOWrd9Fvn32Gvvk3f00lJSX06ONP0Q3bbuJURI8V5PyL/SQrV1xAF6y8iCzJGPuNvmGIw263sJmbhS44/3xqqNYE2bHuMdp/YogF6RJ1bNdggIY5ncSN61qVae87xwZpXyfRJq6WFVbOmZT2HHL+qKuZLlh1ER068r7a0jY+o6KuroGWtp+n9iazFKNndKFMc7s7T1PrR2RlaGY5fPA95WdaWlY6szLdHmUfmKRLVl9OL7z8nHoYTtc0m/3Lli6nHdtu4ZyuXuYbpfaaQ9RezStI8yi1pT0km6/6EJ0YOp+FaTNtve4GFa39N08/qlJX5dr9fff+K69acboOh51u2r6TPvRCT1UAABkISURBVPbx36ebt29j/9UxnnwqV6aQep8qPzN/kEkpCFKdysK9vnNihFfQ47R+ZTX5h7qp9+g+FnezT1KZMcpIaJz6T+ynURakUmQ8750azelUKtK9RCZCAQEQAIEFIgBBukDg5bRBFqRWnoV08r1ruH9/QUTp+OgJNhPWblzjIU63kk0UkwVkhFNPEnBwXtfrb9hG267fonaOj4/TIw8/ROJjBkE6yWm+7xLxKE1duZra37pLbmfTWxajPk67EvWxhUH6kmQxaneXUb2nhE3itYe9+goXvX20n4KhCLl4Mqqrf4yaazz8PcApkLiz1voSev7tUYotcZONAxjJWNIWrnOO7eUgR2vp8tWX0t7Xn0vb9MyKjWs3qOsQ39EEL3TkWhL88Przf/57uvDiS2hJSytH0p4+zj6ORv7YA/fThz96J59Hrj37h10bc3Dx33p7UyPt378316FNtNfS8XxYfa72nKZVjfvYVy7E1gQTTeb1xusYpIsaXqJedwsd7LmMVp23ikp3uenff/0z9u3VVjezPcE//OiHE01/8i8/phdeeo2uuXYTPfH4o9zXqPL50xu43drq+ujoiL4LrwtM4Gi3j8bYqfLSSy9myyMOPNXZSRZeXSytblaReM0YXjzGaeSGeijC6ZIqG5fyd5GVdu/vo3ylbzNjzOgTBEAABNIRgCBNRybL/fXLLs2y5WQzh4tn62VzekkWKNk4RvmWyUppWdVyjtjXPNk4X+/4gXhs+AiFxvvYTI/DpkTZDIejA9pt7EfCY3FyRBOja5E2UhwufoItgmJ38bh5Bamm5Xwad8we4dBdVqOuze70sJ+M9hC3kENPJj380OA15JxufOIXVFtTpfx9ujo7Jpp18vsNV1458RlvzCNwwfmXUHNzG5uUjpE7mF2SdysHIJpa+keCJGa7ThajUmRSqqF68mvY6+Lk9exPKqZ0bD2XsbgD71HYvZxaliyl83l8Bw++k/EYabAqZb7KrpJzKEn69f0/ZQEdo9/9+CdnHO8bG6Gf3vN3tOX6HbT68vUz6jPtkOBK7L5J4uM6V0EqEZD1oFNLaw7SsroDmU4753ox/S31jNKBrrXq7+Njd3yK7v/lP3M03un+e9meQKKUSiTdslSU4u7uLhJTfb3IewkeM8xBpFCKh0D/aJg6/C5aV8Jm6wOdPKnVq7aSygYqqaonp6csL4MVwSt9+8Xcm+1oXSWVZPVW0wB/Z0CM5gUxOgEBEFgAAsWhLhbgwvN1SouVfTBz3OTcFv0HvxFxyBY/aqePfTtHBw5QLMpJvfJUJMXMQM8eCgX6VNS8cV7M4OdgbRC8QqsVTnZgcB2TQ5H2C79JagYpMguddtypaxNfmKIoqWGkHa8Rfz62POWHJw+jepGgRmK6h2I+gTVrNOEvkXCzLQnON6oXXyBK750cpouXVqf+eiVqJXtxi5lqqljZd0tKONsoQ9zWFTqqjrnkkrXqNdOPqqpaqq1tVM1yNZAQX7Jf/vyfaWR4iD7xmc+pwChTzzfMwZX+8Qffoiuv2UKbb9g5tSrr94mUSG5tXZr1MVMbSgRdXYyurH/HVDGqn7fE6aM1bbs5QFK/Yvvh37lT+ePp9UavbW3tdN3mLcpnT9ptum4zrVi5il595WV1mFg/3HrrbZx7Vgs899Hb72CLiMd5QsBofd7ojKgzk4DNW0sRWympiPp8ovGRXuo7/g51H9lLo32nKMJRcHP1vYyE/DTGJrnST+/Rt5RpsPQh3x+hhJNsnLotOfGtYubVoW8QAAEQMIfA5NS8Of2f8732HX8752uMRoIclS5IsXBw4lg/a4wIr/jJ6kkw1kNBXw95Spt4tbSJV8U4i/UcSjg4SMHxbjbp0WbSYxx8Qcx0JZCKXqyco0zGEgkF+WaX/lqkjZQYR9MrhhLl+PNRtjcc7DhIfR3sdDdLCfq28LVVM78gRyWdZD1L04Lskt+3cDTinG4gEh1xbIwfZLg4OTKiLkrlIRWme+mo5W+/pEpYseIi1aEjdCrrjq1xCYjDaRJ4BuiV93tpZUsFm+hq1gay38n/87Iiqpd4SmS4VSCd7OYLHRxcScx2L7zgMg524+G/DeO/9bq6uYlRCW7ys3t+oEToJz7zZxyMbfrto7+vm/7lR3fT9ds/SOs3btIvaU6vQqSivIoqKqpzMn+t5xQtu27+PXXOFSxGW6o1sZ5pEIPDITajjlNL0+R37XuHR8g3PmnP3FDjpqWt6f1hbRyN6dKWV2hfx9XEUZ7og7fcTv/xwL2ZTq2E5ne/9wP2CS/lfKcj5C3x0pe++Hk6deqkOvbRRx5mwbqVXtuzj/12/eTz++gTd348Y79osHAEODQX+5XGWJSKS45N/Z/zjZh8Ax1qk6BBDreX46G5lUmvTFJaOaiQlASvkCeTCYpz+2g4xFuQTf4n/w7l9i1CNMxbnO/p5WXZfU8sHA2cGQRAAAQyE5j+RJG5PVqcQUD3DTtjt/FHuaMoUTj5ICoHRFTkuoQKdOTidBFBf5fanJ4qcrmryemu5GAJkw+zM06SFHHpY3E5wquhA+zXpT2YyqmCLOD0GduZx8k4OKtgys9tRr3sUOOVl+ljnrVtIXaqIcuYOfpfunHLWNV4i2TMKY5px5uB28BAvwqYIj57x44eUa3FfK+nZzJSZ4YuUD1HApIyRIo90qN8O7PpJh5P8ipZnCK+btp9OE7LGsppxRItuJF+vOQyDErOhVSRh1hXfECli4nx8dkU8TWVccWcjbSSTXElR6ZRaWhoUtXZ5B2d2k+EV+YPHnhX7Xr3i/91oqq2vpG+8OWv08ljR2hkZFiZ84pJr1623riLbtz5If1jdq+yaMyXX1FRmZMg3b79Np6AslNTxQlqzVKMPvtyD/3y0RO08fJa+sOPrJgY33fu2U9N9R4qL3WqfZdfVGUoSKWRiNKLGt+kV49vpdWr11FH50l6/fXdE33O9ubQoYN0xbrLqK6uXonTjo7T01Y/xYT3C5/7LJWyCW8pi9Ye9s9FOTsIyGST/H8HeR7XzmmRHBzozMHi08aO0pGgn2/Mfs46nLnIPJVE81UbC1EUEAABEDjXCECQFtlvVFYv1cxqzMIBOGwc3MOqVjj1VU6L+H2yP6T4gWqms/LcxjOlHOAgfoaZryy8hDnthKzOoJz9BKKcePyZ/3yKbr/9Y/Q337hLRdnddcut9M1v/PXZf3FFfgUtLe1qhI5o9uJfrWBEEvTqgT206sJN1FY/XYxKh028Wnrw9Agtby5Xprun+0aprXSYje/K1CpItlhkXCJIW1qWZhSk5eWpaN6TlsJZncbFq/Hf/P6P07aVVdH5rozqnYspMWeAYUFape/K+Lpx42aVY9TL5rOrGtJbe5zZkT8Qo8oy+T6dWT71e6toWVv6VdGZRxBPKI7TyoZ3OdDR5fSBrTfTO++wuwRboBgVmejr6+s1asKroz61GTZCZdESEAslnnNmARpX5tmsTzmtCqdWYZcSsdrXXUtkDlWeAxJ8A598LdrLwsBAAARAIC8EIEjzgjH/ncjqSoCjeQY5JooE73Hw3UtmWK1suiOroOmKCojCM6hRPl5ugCjnFoGv3/U1+slPf04iRMvKy0jM+Z568olz6yKL8GoaG1rUqGzR7APVyGRQN6d1CfMqyIG3X6G3vCt48khzkDy/pZLzkVay+W4J9XGgoyffOM3/40kqCR+jq1d51f+uHJ9t0cdVX6+tfhod53Rqfq383Fv0xcsRirMpDoeTrr1mm2q6vG4/P+hn/913y/UtNDwS4of/mWeSldPGejddeVktXbgi+7RczZUnaNDfQAP+Jtq06UZ66qkHZ3aOPYuWgExAiDjlMPeLlgEuHARAAASmEoAgnUqjCN/LbGkkyuY9vKGAgPiVXb91EzU2NilfsnE/m32hmE6golJbqbNFc4tsuqS2RAlPWQFJWv0UcbVQzF4zMV6Jt7VmRS0lQwNkDZ4iL1s/iDCSAEi5FGtcm6Sq5oBFmcqS5rZMTRa8XlZHpZTpq7nax7Q/N2y4ljyca7S6pJdqy7JfxU7bIVf8we8sVxb/wxw99S++tZe+9JmL6ap19UaHTKuTnKciSDesv5ZefPE/KRDA/+o0QPgAAiAAAiAAAikCEKT4UwCBs5AA/MgK+0srK5VIxhyqJJlbUC8xuRNxWeJmU3s21pMIvU7LCQ6yVcomqRFKWFxkYzFpSbIA5W9j8RsdD8WUqV4uV2hLBU8qK8sccbmPgw9JpN1iDsqpm+xKCplsymWXrlfNllQdz6Z5Vm22bNSCP0ljMa387Wu9OQnScs8w1ZZ2K1G6ds1G2v3i01mdF41AAARAAARAYLERQHi2xfYbx/WCAAjMjUBCVi1TS3c59KBEaTCqgpuISb2IT1tsmPOZcjCi2JD6rAU/iZOP20n73Asfk8p56nYvfM7d3Mc/9yPa25erVCsexzgLwPysjsbY7UEi7+rl0PExFeBI/5zta1PlSdVUD4qV7XFoBwIgAAIgAAKLiQBWSBfTbxvXCgIgMHcCVi3a6lw7CLHZvWymldT4rBzFczGV85adry63rqxrTpf937/6KnV0a3mf9743RH/3lSt48iBOf/jFF6m+2s3BpZJUwUGPPnvnBTn3LwLZaonRkiXtvCpdQ8PD2fsg53wyHAACIAACIAACZykBCNIsf3Eej4e8Xi8NDuKBIktkaAYC5xaB1Apk0V6UjI9FaSJdGqSiHfj8BrYkFQG5urRvTh398H9dOeO4shIHPXTP9TTEwY4kj2RZ6exReGccOMuO6tJ+GvA1UVvbeRCks/DBLhAAARAAARCAyW6GvwHJafe3376bXnl9Lz3y+FP0KG9NTc0ZjkI1CIAACIBAIQi0tS5TpylzZedvmu2YJOBUTZV7XmJUzlXuHlKnrKlpyPbUaAcCIAACIAACi4oABGmGX/fOm3fR2nXraeOGNXTVFWs5yfmr9OW/+mqGo1ANAiAAAiBgNoHS0jKy2eycsznIabFyi0xs9tj0/r1OLbpuff1kkCS9Dq8gAAIgAAIgAAJs4AUIxgR27NxFDz/0AAWDWmLzX/7iPrpp+w6Ough0xuRQCwIgAALmEihPpYVx2HKLfmzuqKb37nZo9w6P2zu9Ap9AAARAAARAAAQUAfiQZvhDaGTz3KefenKiVUdHB7lcLqqqrqbBgQFqWL5moi7bNw6XlyrrL1RbtseY3c6ZtBlei4xZynVLiuuhqrbtQgq46mbF4ymvJRl3LLaLt1mbFHynw0WGnNMNaLDjfYqFtQfbdG2wPz8E7C4P1bRMD2Aj+4g85Gv9dH5OYkIv+pd5/bJLKRxhf9I0xVtZT3I9evs0zRZ2d8pls6JhKf+/aDlWZxtQA+fjlWsJ8e/mheN3zNakKPbZ+f++rKphxv9+79G9RTG+xTAIb0UdldW2mHqpZTVL1D2n7ZLNJFshi/xfz/Y84vSU8phcdP3qQo5GO1fVkpXUMDT9m6ZqyTLFiGgFN5KtMEWWEDI95+RjJJGgn4a7DuejK/QBAouKgKWqqmouOQYWDaRnnttNd3/32/TIww+qa3Y6nXT42Gnaet3VdOzY0VlvAIsGDi60YAQgSAuGWgmcMwVp4c6OMy0mAhCkhfttF0KQFu5qcKZiJQBBWqy/GYyr2AlMn7oq9tEuwPhGR0dJRKhe9Bx/o6NaAA08UOhk8AoC5wYBWYnG//W58bvEVYCATiAw2k+yoYAACIAACBQfAThCZviddHd3UUtr60QreR8Ohzl8//DEPrwBARAAARAAARAAARAAARAAARDInQAEaQZmv3niMbr11tvI7Xarlh+9/Q76zROPc64/ExPcZxgTqkEABEAABEAABEAABEAABEDgXCAAk90Mv8VHH3mYrtu8lV7bs4/8Pj/5/D76xJ0fz3AUqkEABEAABEAABEAABEAABEAABDIRQFCjTIRS9aVlZVRaUko9Pd1ZHoFmIAACIAACIAACIAACIAACIAACRgQgSI3ooA4EQAAEQAAEQAAEQAAEQAAEQMA0AvAhNQ0tOgYBEAABEAABEAABEAABEAABEDAiAEFqRAd1IAACIAACIAACIAACIAACIAACphGAIDUNLToGARAAARAAARAAARAAARAAARAwIgBBakQHdSAAAiAAAiAAAiAAAiAAAiAAAqYRgCA1DS06BgEQAAEQAAEQAAEQAAEQAAEQMCIAQWpEB3UgAAIgAAIgAAIgAAIgAAIgAAKmEYAgNQ0tOgYBEAABEAABEAABEAABEAABEDAiAEFqRAd1IAACIAACIAACIAACIAACIAACphGAIDUNLToGARAAARAAARAAARAAARAAARAwIgBBakQHdSAAAiAAAiAAAiAAAiAAAiAAAqYRgCA1DS06BgEQAAEQAAEQAAEQAAEQAAEQMCIAQWpEB3UgAAIgAAIgAAIgAAIgAAIgAAKmEYAgNQ0tOgYBEAABEAABEAABEAABEAABEDAiAEFqRAd1IAACIAACIAACIAACIAACIAACphGAIDUNLToGARAAARAAARAAARAAARAAARAwIgBBakQHdSAAAiAAAiAAAiAAAiAAAiAAAqYRgCA1DS06BgEQAAEQAAEQAAEQAAEQAAEQMCIAQWpEB3UgAAIgAAIgAAIgAAIgAAIgAAKmEYAgNQ0tOgYBEAABEAABEAABEAABEAABEDAiAEFqRAd1IAACIAACIAACIAACIAACIAACphGAIDUNLToGARAAARAAARAAARAAARAAARAwIgBBakQHdSAAAiAAAiAAAiAAAiAAAiAAAqYRgCA1DS06BgEQAAEQAAEQAAEQAAEQAAEQMCIAQWpEB3UgAAIgAAIgAAIgAAIgAAIgAAKmEYAgNQ0tOgYBEAABEAABEAABEAABEAABEDAiAEFqRAd1IAACIAACIAACIAACIAACIAACphGAIDUNLToGARAAARAAARAAARAAARAAARAwIgBBakQHdSAAAiAAAiAAAiAAAiAAAiAAAqYRgCA1DS06BgEQAAEQAAEQAAEQAAEQAAEQMCIAQWpEB3UgAAIgAAIgAAIgAAIgAAIgAAKmEYAgNQ0tOgYBEAABEAABEAABEAABEAABEDAiAEFqRAd1IAACIAACIAACIAACIAACIAACphGAIDUNLToGARAAARAAARAAARAAARAAARAwIgBBakQHdSAAAiAAAiAAAiAAAiAAAiAAAqYRgCA1DS06BgEQAAEQAAEQAAEQAAEQAAEQMCIAQWpEB3UgAAIgAAIgAAIgAAIgAAIgAAKmEYAgNQ0tOgYBEAABEAABEAABEAABEAABEDAiAEFqRAd1IAACIAACIAACIAACIAACIAACphGAIDUNLToGARAAARAAARAAARAAARAAARAwIgBBakQHdSAAAiAAAiAAAiAAAiAAAiAAAqYRgCA1DS06BgEQAAEQAAEQAAEQAAEQAAEQMCIAQWpEB3UgAAIgAAIgAAIgAAIgAAIgAAKmEYAgNQ0tOgYBEAABEAABEAABEAABEAABEDAiAEFqRAd1IAACIAACIAACIAACIAACIAACphGAIDUNLToGARAAARAAARAAARAAARAAARAwIgBBakQHdSAAAiAAAiAAAiAAAiAAAiAAAqYRgCA1DS06BgEQAAEQAAEQAAEQAAEQAAEQMCIAQWpEB3UgAAIgAAIgAAIgAAIgAAIgAAKmEYAgNQ0tOgYBEAABEAABEAABEAABEAABEDAiAEFqRAd1IAACIAACIAACIAACIAACIAACphGAIDUNLToGARAAARAAARAAARAAARAAARAwIgBBakQHdSAAAiAAAiAAAiAAAiAAAiAAAqYRgCA1DS06BgEQAAEQAAEQAAEQAAEQAAEQMCIAQWpEB3UgAAIgAAIgAAIgAAIgAAIgAAKmEYAgNQ0tOgYBEAABEAABEAABEAABEAABEDAiAEFqRAd1IAACIAACIAACIAACIAACIAACphGAIDUNLToGARAAARAAARAAARAAARAAARAwIgBBakQHdSAAAiAAAiAAAiAAAiAAAiAAAqYRgCA1DS06BgEQAAEQAAEQAAEQAAEQAAEQMCIAQWpEB3UgAAIgAAIgAAIgAAIgAAIgAAKmEYAgNQ0tOgYBEAABEAABEAABEAABEAABEDAiAEFqRAd1IAACIAACIAACIAACIAACIAACphGAIDUNLToGARAAARAAARAAARAAARAAARAwIgBBakQHdSAAAiAAAiAAAiAAAiAAAiAAAqYRgCA1DS06BgEQAAEQAAEQAAEQAAEQAAEQMCIAQWpEB3UgAAIgAAIgAAIgAAIgAAIgAAKmEYAgNQ0tOgYBEAABEAABEAABEAABEAABEDAiAEFqRAd1IAACIAACIAACIAACIAACIAACphGAIDUNLToGARAAARAAARAAARAAARAAARAwIgBBakQHdSAAAiAAAiAAAiAAAiAAAiAAAqYRgCA1DS06BgEQAAEQAAEQAAEQAAEQAAEQMCIAQWpEB3UgAAIgAAIgAAIgAAIgAAIgAAKmEYAgNQ0tOgYBEAABEAABEAABEAABEAABEDAi8P8BS99PqAgSrcQAAAAASUVORK5CYII=", "text/html": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# el problema esta en medal\n", - "px.sunburst(\n", - " df_sunburst_test,\n", - " path = ['event_game', 'team'], #, 'medal'\n", - " values = 'score'\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Participation by players" - ] - }, - { - "cell_type": "code", - "execution_count": 42, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
player_idevent_dateevent_gamescoremedalteam
0744832024-08-15A3goldThunderCats
1744832024-08-15B0not playedThunderCats
2387262024-08-15A3goldThunderCats
\n", - "
" - ], - "text/plain": [ - " player_id event_date event_game score medal team\n", - "0 74483 2024-08-15 A 3 gold ThunderCats\n", - "1 74483 2024-08-15 B 0 not played ThunderCats\n", - "2 38726 2024-08-15 A 3 gold ThunderCats" - ] - }, - "execution_count": 42, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df_eventplayers.head(3)" - ] - }, - { - "cell_type": "code", - "execution_count": 44, - "metadata": {}, - "outputs": [], - "source": [ - "# crea barpolar en subplots, con jugadores individuales\n", - "\n", - "def players_score_figure(df_data, sorted=True, ascending=True,hole=0.50, h=400, w=900, theme_colors=theme_colors):\n", - "\n", - " \"\"\"\n", - " Creates figure with barpolar subplots to represent individual players scores in each event in a given date.\n", - "\n", - " **Parameters**\n", - " df_data: dataframe containing desagregate players, teams (factions, color, etc.), scores and score description\n", - " (medal, cups, etc.)\n", - " sorted: sorts players by scores (default: True).\n", - " ascending: way player scores are sorted, only takes effect if sorted is set to True (default: True).\n", - " hole: set empty center from 0 to 1 (default: 0.5)\n", - " h: figure height (default: 400)\n", - " w: figure width (defautl: 900)\n", - " theme_colors: set colors in HEX code (default: color_theme palette in app, max. 5 colors)\n", - " \"\"\"\n", - "\n", - " # copy to keep integrity\n", - " df=df_data.copy()\n", - " # sort values before building the figure (if ascending=True)\n", - " df.sort_values(['team', 'score'], ascending=ascending, inplace=sorted)\n", - "\n", - " # team list\n", - " team_names = [i for i in df['team'].unique()]\n", - " # event list\n", - " events = [i for i in df['event_game'].unique()]\n", - " # other config: color theme\n", - " color_map = dict(zip(team_names, theme_colors[:len(team_names)]))\n", - " \n", - " #---------------------------------------- create Figure\n", - " fig_polar = make_subplots(\n", - " rows = 1, cols = len(events),\n", - " column_titles = [f\"Event: {e}\" for e in events],\n", - " specs = [[{'type':'polar'}]*len(df['event_game'].unique())]\n", - " )\n", - " #----------------------- config unified legend\n", - " sp_legendgroup = [True]\n", - " sp_legendgroup.extend([False for e in range(len(events[1:]))])\n", - " sp_legendgroup\n", - " \n", - " #----------------------- traces: bar polar by event and team\n", - " for e in range(len(events)):\n", - " for t in range(len(team_names)):\n", - " fig_polar.add_trace(go.Barpolar(\n", - " name = \"Team \"+ team_names[t],\n", - " r = list(df[df['event_game']==events[e]][df['team']==team_names[t]]['score']),\n", - " theta = list(df[df['event_game']==events[e]][df['team']==team_names[t]]['player_id']),\n", - " marker_color = theme_colors[t],\n", - " legendgroup = team_names[t],\n", - " showlegend = sp_legendgroup[e],\n", - " customdata = df[df['event_game']==events[e]][df['team']==team_names[t]][['event_date', 'medal']],\n", - " hovertemplate = \"\" \"Team \"+ team_names[t] +\"\"\n", - " \"Player %{theta}
\"+\n", - " \"
Date: %{customdata[0]}
\"+\n", - " \"Medal: %{customdata[1]}
\"+\n", - " \"Score: %{r} points\"\n", - " ),row=1, col=e+1)\n", - "\n", - " #----------------------- bar polar config\n", - " fig_polar.update_polars(\n", - " patch = dict(hole = hole,\n", - " radialaxis = dict(showticklabels=False,\n", - " visible = False),\n", - " angularaxis= dict(showticklabels=False,\n", - " visible = False,\n", - " categoryorder = 'array',\n", - " categoryarray = team_names)))\n", - "\n", - " #----------------------- figure layout\n", - " fig_polar.update_layout(\n", - " legend = dict(font_size = 10,\n", - " orientation = 'h',\n", - " yanchor = 'bottom'\n", - " ),\n", - " hoverlabel = dict(bordercolor = 'white',\n", - " font_size = 8,\n", - " font_color = 'black',\n", - " ),\n", - " template = 'plotly_dark',\n", - " height = h, width = w,\n", - " title = f\"Players participation during {', '.join(events[:-1])} and {events[-1]} events\"\n", - " )\n", - " \n", - " return fig_polar" - ] - }, - { - "cell_type": "code", - "execution_count": 58, - "metadata": {}, - "outputs": [ - { - "data": { - "application/vnd.plotly.v1+json": { - "config": { - "plotlyServerURL": "https://plot.ly" - }, - "data": [ - { - "customdata": [ - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ] - ], - "hovertemplate": "Team Dog PatrolPlayer %{theta}

Date: %{customdata[0]}
Medal: %{customdata[1]}
Score: %{r} points", - "legendgroup": "Dog Patrol", - "marker": { - "color": "rgb(240,205,204)" - }, - "name": "Team Dog Patrol", - "r": [ - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3 - ], - "showlegend": true, - "subplot": "polar", - "theta": [ - "91241", - "19980", - "35087", - "89288", - "41633", - "57834", - "49277", - "87129", - "45238", - "71206", - "33798", - "98288", - "54373", - "20388", - "15435", - "42048", - "77101", - "79841", - "29961", - "92893", - "37843", - "43027", - "76251", - "31841", - "62500", - "30055", - "45848", - "24532", - "75262", - "53673", - "85093", - "14096", - "71476", - "45693", - "88001", - "31613", - "46967", - "51535", - "90811", - "15653", - "47685", - "64113", - "96391", - "28043", - "85952", - "48726", - "26946", - "74607", - "75695", - "49262", - "83017", - "32219", - "39636", - "68141", - "53423", - "26820", - "99364", - "70496", - "65219", - "20496", - "65333", - "92783", - "65922", - "68430", - "46060", - "11798", - "20107", - "63970", - "62880", - "74377", - "93602", - "88138", - "33162", - "97418", - "95415", - "33981", - "65759", - "77919", - "66666", - "45382", - "30454", - "55886", - "17342", - "46727", - "12940", - "26779", - "96693", - "29369", - "78789", - "17964", - "35912", - "69071", - "64520", - "65262", - "81536", - "15011", - "97507", - "40465", - "17694", - "21047", - "17691", - "43050", - "39496", - "90471", - "53061", - "60044", - "28072", - "63710", - "45504", - "68611", - "36895", - "41988", - "84290", - "52375", - "66693", - "54840", - "66700", - "23587", - "33042", - "92851", - "70341", - "85621", - "14040", - "11270", - "55294", - "19978", - "20025", - "49081", - "70422", - "32890", - "58106", - "40037", - "84960", - "52978", - "33843", - "75810", - "34980", - "74024", - "79250", - "16009", - "94055", - "68246", - "63454", - "14522", - "56923", - "26087", - "80830", - "72080", - "99040", - "79643", - "68939", - "10471", - "11661", - "37697", - "70827", - "24675", - "70376", - "97235", - "12864", - "15919", - "70722", - "45500", - "40264", - "41224", - "54377", - "38048", - "99616", - "38615", - "49994", - "37712", - "11155", - "80922", - "91244", - "99895", - "60502", - "53412", - "24738", - "72584", - "46728", - "52495", - "14671", - "54612", - "38017", - "88546", - "76905", - "29169", - "27369", - "42057", - "17833", - "21542", - "37782", - "71518", - "55220", - "42310", - "94780", - "92424", - "26365", - "79870", - "35148", - "44906", - "68989", - "97023", - "99905", - "70949", - "70251", - "90385", - "28204", - "22981", - "36345", - "87698", - "35104", - "18792", - "66646", - "60682", - "65502", - "55794", - "73981", - "67058", - "12632", - "50509", - "70572", - "51470", - "49550", - "21149", - "85310", - "80354", - "26682", - "78415", - "64792", - "78699", - "42840", - "98541", - "31002", - "76049", - "27001", - "56209" - ], - "type": "barpolar" - }, - { - "customdata": [ - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ] - ], - "hovertemplate": "Team Go MagikarpPlayer %{theta}

Date: %{customdata[0]}
Medal: %{customdata[1]}
Score: %{r} points", - "legendgroup": "Go Magikarp", - "marker": { - "color": "rgb(173,172,194)" - }, - "name": "Team Go Magikarp", - "r": [ - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3 - ], - "showlegend": true, - "subplot": "polar", - "theta": [ - "10731", - "38098", - "18671", - "34001", - "51519", - "90256", - "88929", - "66089", - "18591", - "28930", - "30977", - "67382", - "18101", - "19847", - "91507", - "18605", - "87970", - "54654", - "83594", - "75650", - "85934", - "24057", - "16548", - "88391", - "27307", - "98021", - "23274", - "46892", - "92479", - "25962", - "20152", - "85664", - "16402", - "91853", - "99558", - "29743", - "52731", - "97731", - "68102", - "82978", - "88532", - "28941", - "17613", - "51468", - "38221", - "53404", - "58914", - "83283", - "69344", - "81709", - "74803", - "85486", - "99402", - "38655", - "28926", - "60266", - "35549", - "62820", - "99837", - "21870", - "31611", - "83951", - "18492", - "24284", - "34187", - "99287", - "69565", - "90716", - "55737", - "64826", - "40425", - "99015", - "96584", - "39818", - "59524", - "65157", - "67311", - "83447", - "23657", - "19264", - "52913", - "68786", - "79506", - "83024", - "42995", - "43172", - "37910", - "18922", - "20673", - "13357", - "96252", - "82230", - "83603", - "73947", - "24148", - "23405", - "68490", - "86202", - "47376", - "87699", - "75134", - "18171", - "89275", - "76062", - "99632", - "62534", - "67272", - "40762", - "62624", - "25164" - ], - "type": "barpolar" - }, - { - "customdata": [ - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ] - ], - "hovertemplate": "Team Power BirdsPlayer %{theta}

Date: %{customdata[0]}
Medal: %{customdata[1]}
Score: %{r} points", - "legendgroup": "Power Birds", - "marker": { - "color": "rgb(251,230,197)" - }, - "name": "Team Power Birds", - "r": [ - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3 - ], - "showlegend": true, - "subplot": "polar", - "theta": [ - "26962", - "18714", - "10114", - "38708", - "75895", - "76836", - "44026", - "33293", - "83963", - "85944", - "19225", - "90642", - "40420", - "19546", - "96118", - "88662", - "73630", - "12127", - "12881", - "12089", - "82703", - "43019", - "66837", - "99531", - "63518", - "74759", - "77119", - "36071", - "14430", - "55128", - "67267", - "57510", - "83182", - "40049", - "32217", - "82229", - "87016", - "65298", - "66939", - "11613", - "23477", - "40550", - "39881", - "10568", - "57982", - "15021", - "31474", - "13333", - "51104", - "18670", - "57239", - "49624", - "66767", - "71117", - "38606", - "93572", - "40228", - "81125", - "57094", - "45032", - "73388", - "70000", - "40302", - "99073", - "94696", - "59815", - "59731", - "61337", - "37074", - "80105", - "80862", - "91721", - "76073", - "94974", - "77842", - "41577", - "82617", - "94899", - "76299", - "97386", - "98482" - ], - "type": "barpolar" - }, - { - "customdata": [ - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ] - ], - "hovertemplate": "Team ThunderCatsPlayer %{theta}

Date: %{customdata[0]}
Medal: %{customdata[1]}
Score: %{r} points", - "legendgroup": "ThunderCats", - "marker": { - "color": "rgb(160,185,205)" - }, - "name": "Team ThunderCats", - "r": [ - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3 - ], - "showlegend": true, - "subplot": "polar", - "theta": [ - "11112", - "30689", - "14392", - "39831", - "62227", - "98238", - "59850", - "11684", - "18516", - "72485", - "85445", - "77077", - "31219", - "16272", - "11872", - "82225", - "43269", - "84078", - "52546", - "74037", - "96600", - "66675", - "20733", - "98532", - "80615", - "82761", - "86489", - "63001", - "67400", - "45415", - "11251", - "69064", - "86098", - "47625", - "86265", - "75747", - "65738", - "98571", - "90860", - "70584", - "39343", - "70721", - "63251", - "56583", - "67154", - "49513", - "39001", - "48878", - "29526", - "19357", - "95564", - "18871", - "22771", - "76875", - "61709", - "18843", - "81263", - "97977", - "99028", - "48393", - "65734", - "83480", - "76043", - "10504", - "38894", - "54171", - "31992", - "82979", - "30018", - "12339", - "98394", - "25585", - "90246", - "14225", - "86876", - "66063", - "76439", - "99995", - "59306", - "32046", - "79752", - "45274", - "12652", - "22558", - "33763", - "27828", - "54483", - "10778", - "33324", - "99677", - "71139", - "18340", - "88135", - "90756", - "72468", - "67027", - "69873", - "37403", - "31842", - "21125", - "53823", - "47471", - "42433", - "95586", - "80400", - "22872", - "67483", - "86436", - "50901", - "60018", - "95085", - "25342", - "15382", - "38469", - "30333", - "97154", - "95711", - "67361", - "84069", - "88525", - "61450", - "48578", - "12238", - "92293", - "92968", - "85569", - "79395", - "52912", - "49169", - "24101", - "56544", - "74483", - "38726", - "52140", - "42651", - "41345", - "82962", - "97266", - "22683", - "68238", - "67873", - "65637", - "48119", - "76550", - "98750", - "30547", - "84325", - "80692", - "35288", - "46633", - "14288", - "25508", - "17253", - "33164", - "38396", - "80154", - "65268", - "22587", - "65089", - "22148", - "19673", - "18600", - "31233", - "33328", - "89054", - "95123", - "99019", - "89475", - "73245", - "42431", - "20851", - "39901", - "36192", - "41989", - "83562", - "75348", - "19392", - "22909", - "24892", - "80528", - "30092", - "71491", - "95240", - "48376" - ], - "type": "barpolar" - }, - { - "customdata": [ - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ] - ], - "hovertemplate": "Team Dog PatrolPlayer %{theta}

Date: %{customdata[0]}
Medal: %{customdata[1]}
Score: %{r} points", - "legendgroup": "Dog Patrol", - "marker": { - "color": "rgb(240,205,204)" - }, - "name": "Team Dog Patrol", - "r": [ - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3 - ], - "showlegend": false, - "subplot": "polar2", - "theta": [ - "68141", - "55294", - "19980", - "19978", - "35087", - "89288", - "76905", - "65219", - "49081", - "70422", - "45238", - "46060", - "21542", - "37782", - "84960", - "34980", - "92424", - "33162", - "44906", - "94055", - "68246", - "95415", - "79841", - "29961", - "92893", - "97023", - "70949", - "72080", - "45382", - "30454", - "31841", - "78789", - "30055", - "24532", - "10471", - "11661", - "37697", - "35912", - "64520", - "45693", - "97507", - "15919", - "88001", - "31613", - "73981", - "41224", - "51535", - "50509", - "90471", - "38615", - "80922", - "91244", - "99895", - "41988", - "85952", - "24738", - "26946", - "66693", - "64792", - "78699", - "54840", - "23587", - "33042", - "14671", - "32219", - "31002", - "85621", - "11270", - "56209", - "99364", - "70496", - "20496", - "49277", - "27369", - "65333", - "65922", - "32890", - "71206", - "71518", - "63970", - "62880", - "33843", - "74024", - "79870", - "97418", - "42048", - "33981", - "77919", - "56923", - "76251", - "80830", - "70251", - "17342", - "28204", - "22981", - "62500", - "35104", - "96693", - "17964", - "85093", - "71476", - "24675", - "70376", - "60682", - "45500", - "65502", - "17694", - "40264", - "46967", - "21047", - "67058", - "12632", - "54377", - "49994", - "45504", - "84290", - "48726", - "80354", - "78415", - "74607", - "49262", - "66700", - "83017", - "92851", - "38017", - "88546", - "20025", - "29169", - "42057", - "17833", - "92783", - "20107", - "98288", - "52978", - "55220", - "75810", - "93602", - "88138", - "79250", - "54373", - "35148", - "15435", - "68989", - "63454", - "65759", - "37843", - "43027", - "26087", - "99905", - "99040", - "46727", - "87698", - "53673", - "69071", - "15011", - "70722", - "17691", - "43050", - "39496", - "38048", - "99616", - "28072", - "37712", - "96391", - "11155", - "28043", - "51470", - "60502", - "53412", - "72584", - "49550", - "21149", - "85310", - "52375", - "26682", - "42840", - "70341", - "27001", - "91241", - "53423", - "26820", - "54612", - "41633", - "57834", - "87129", - "68430", - "11798", - "58106", - "33798", - "40037", - "74377", - "42310", - "94780", - "16009", - "26365", - "20388", - "77101", - "14522", - "66666", - "79643", - "55886", - "90385", - "68939", - "12940", - "26779", - "36345", - "29369", - "18792", - "45848", - "75262", - "14096", - "70827", - "65262", - "66646", - "81536", - "97235", - "12864", - "55794", - "40465", - "90811", - "15653", - "53061", - "47685", - "60044", - "63710", - "64113", - "68611", - "70572", - "36895", - "75695", - "46728", - "52495", - "98541", - "39636", - "76049", - "14040" - ], - "type": "barpolar" - }, - { - "customdata": [ - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ] - ], - "hovertemplate": "Team Go MagikarpPlayer %{theta}

Date: %{customdata[0]}
Medal: %{customdata[1]}
Score: %{r} points", - "legendgroup": "Go Magikarp", - "marker": { - "color": "rgb(173,172,194)" - }, - "name": "Team Go Magikarp", - "r": [ - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3 - ], - "showlegend": false, - "subplot": "polar2", - "theta": [ - "91853", - "99558", - "51519", - "97731", - "96252", - "82230", - "28941", - "18591", - "55737", - "24148", - "99015", - "68490", - "86202", - "60266", - "75650", - "67311", - "89275", - "46892", - "92479", - "10731", - "20673", - "38098", - "18671", - "18492", - "24284", - "68102", - "82978", - "99287", - "66089", - "51468", - "90716", - "81709", - "18101", - "19847", - "64826", - "74803", - "85486", - "91507", - "18605", - "54654", - "59524", - "83447", - "24057", - "76062", - "79506", - "67272", - "43172", - "25962", - "21870", - "18922", - "16402", - "52731", - "90256", - "34187", - "88532", - "17613", - "28930", - "69344", - "73947", - "40425", - "23405", - "99402", - "87699", - "96584", - "28926", - "75134", - "39818", - "65157", - "85934", - "68786", - "88391", - "40762", - "42995", - "62624", - "37910", - "25164", - "62820", - "99837", - "20152", - "85664", - "31611", - "83951", - "29743", - "34001", - "88929", - "13357", - "38221", - "53404", - "30977", - "69565", - "58914", - "83283", - "67382", - "83603", - "87970", - "47376", - "38655", - "18171", - "83594", - "23657", - "16548", - "19264", - "52913", - "99632", - "27307", - "98021", - "62534", - "83024", - "23274", - "35549" - ], - "type": "barpolar" - }, - { - "customdata": [ - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ] - ], - "hovertemplate": "Team Power BirdsPlayer %{theta}

Date: %{customdata[0]}
Medal: %{customdata[1]}
Score: %{r} points", - "legendgroup": "Power Birds", - "marker": { - "color": "rgb(251,230,197)" - }, - "name": "Team Power Birds", - "r": [ - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3 - ], - "showlegend": false, - "subplot": "polar2", - "theta": [ - "26962", - "40302", - "94696", - "12089", - "82703", - "99531", - "10114", - "59731", - "77119", - "76836", - "91721", - "10568", - "85944", - "15021", - "51104", - "94974", - "57239", - "41577", - "19225", - "57510", - "38606", - "90642", - "40228", - "97386", - "96118", - "98482", - "70000", - "66837", - "63518", - "37074", - "74759", - "38708", - "11613", - "36071", - "44026", - "39881", - "57982", - "31474", - "13333", - "76073", - "77842", - "93572", - "82229", - "19546", - "57094", - "76299", - "45032", - "73388", - "87016", - "12127", - "12881", - "99073", - "18714", - "43019", - "61337", - "14430", - "83963", - "67267", - "18670", - "49624", - "66767", - "71117", - "40420", - "82617", - "88662", - "59815", - "65298", - "66939", - "80105", - "75895", - "23477", - "80862", - "40550", - "33293", - "55128", - "83182", - "40049", - "32217", - "81125", - "94899", - "73630" - ], - "type": "barpolar" - }, - { - "customdata": [ - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "not played" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "bronze" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "silver" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" - ], - [ - "2024-08-15", - "gold" + "application/vnd.plotly.v1+json": { + "config": { + "plotlyServerURL": "https://plot.ly" + }, + "data": [ + { + "branchvalues": "total", + "domain": { + "x": [ + 0, + 1 ], - [ - "2024-08-15", - "gold" + "y": [ + 0, + 1 + ] + }, + "hovertemplate": "labels=%{label}
scores=%{value}
parent=%{parent}
id=%{id}", + "ids": [ + "A/Team C/Bronze", + "B/Team C/Bronze", + "A/Team D/Bronze", + "B/Team D/Bronze", + "A/Team A/Gold", + "B/Team A/Gold", + "A/Team B/Silver", + "B/Team B/Silver", + "A/Not played", + "B/Not played", + "A/Team A", + "B/Team A", + "A/Team B", + "B/Team B", + "A/Team C", + "B/Team C", + "A/Team D", + "B/Team D", + "A", + "B" + ], + "labels": [ + "Bronze", + "Bronze", + "Bronze", + "Bronze", + "Gold", + "Gold", + "Silver", + "Silver", + "Not played", + "Not played", + "Team A", + "Team A", + "Team B", + "Team B", + "Team C", + "Team C", + "Team D", + "Team D", + "A", + "B" + ], + "level": "d0d766", + "name": "", + "parents": [ + "A/Team C", + "B/Team C", + "A/Team D", + "B/Team D", + "A/Team A", + "B/Team A", + "A/Team B", + "B/Team B", + "A", + "B", + "A", + "B", + "A", + "B", + "A", + "B", + "A", + "B", + "", + "" + ], + "type": "sunburst", + "values": [ + 2, + 1, + 4, + 4, + 1, + 2, + 3, + 2, + 1, + 1, + 1, + 2, + 3, + 2, + 2, + 1, + 4, + 4, + 11, + 10 + ] + } + ], + "layout": { + "autosize": true, + "legend": { + "tracegroupgap": 0 + }, + "margin": { + "b": 20, + "l": 0, + "r": 0, + "t": 20 + }, + "template": { + "data": { + "bar": [ + { + "error_x": { + "color": "#2a3f5f" + }, + "error_y": { + "color": "#2a3f5f" + }, + "marker": { + "line": { + "color": "#E5ECF6", + "width": 0.5 + }, + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "bar" + } ], - [ - "2024-08-15", - "gold" + "barpolar": [ + { + "marker": { + "line": { + "color": "#E5ECF6", + "width": 0.5 + }, + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "barpolar" + } ], - [ - "2024-08-15", - "gold" + "carpet": [ + { + "aaxis": { + "endlinecolor": "#2a3f5f", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "#2a3f5f" + }, + "baxis": { + "endlinecolor": "#2a3f5f", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "#2a3f5f" + }, + "type": "carpet" + } ], - [ - "2024-08-15", - "gold" + "choropleth": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "choropleth" + } ], - [ - "2024-08-15", - "gold" + "contour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "contour" + } ], - [ - "2024-08-15", - "gold" + "contourcarpet": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "contourcarpet" + } ], - [ - "2024-08-15", - "gold" + "heatmap": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmap" + } ], - [ - "2024-08-15", - "gold" + "heatmapgl": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmapgl" + } ], - [ - "2024-08-15", - "gold" + "histogram": [ + { + "marker": { + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "histogram" + } ], - [ - "2024-08-15", - "gold" + "histogram2d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2d" + } ], - [ - "2024-08-15", - "gold" + "histogram2dcontour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2dcontour" + } ], - [ - "2024-08-15", - "gold" + "mesh3d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "mesh3d" + } ], - [ - "2024-08-15", - "gold" + "parcoords": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "parcoords" + } ], - [ - "2024-08-15", - "gold" + "pie": [ + { + "automargin": true, + "type": "pie" + } ], - [ - "2024-08-15", - "gold" + "scatter": [ + { + "fillpattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + }, + "type": "scatter" + } ], - [ - "2024-08-15", - "gold" + "scatter3d": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatter3d" + } ], - [ - "2024-08-15", - "gold" + "scattercarpet": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattercarpet" + } ], - [ - "2024-08-15", - "gold" + "scattergeo": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergeo" + } ], - [ - "2024-08-15", - "gold" + "scattergl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergl" + } ], - [ - "2024-08-15", - "gold" + "scattermapbox": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattermapbox" + } ], - [ - "2024-08-15", - "gold" + "scatterpolar": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolar" + } ], - [ - "2024-08-15", - "gold" + "scatterpolargl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolargl" + } ], - [ - "2024-08-15", - "gold" + "scatterternary": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterternary" + } ], - [ - "2024-08-15", - "gold" + "surface": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "surface" + } ], - [ - "2024-08-15", - "gold" + "table": [ + { + "cells": { + "fill": { + "color": "#EBF0F8" + }, + "line": { + "color": "white" + } + }, + "header": { + "fill": { + "color": "#C8D4E3" + }, + "line": { + "color": "white" + } + }, + "type": "table" + } ] - ], - "hovertemplate": "Team ThunderCatsPlayer %{theta}

Date: %{customdata[0]}
Medal: %{customdata[1]}
Score: %{r} points", - "legendgroup": "ThunderCats", - "marker": { - "color": "rgb(160,185,205)" }, - "name": "Team ThunderCats", - "r": [ - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 1, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 2, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3, - 3 - ], - "showlegend": false, - "subplot": "polar2", - "theta": [ - "74483", - "38726", - "67154", - "41345", - "31842", - "95564", - "62227", - "68238", - "53823", - "18516", - "65734", - "85445", - "86436", - "16272", - "11872", - "25508", - "60018", - "38396", - "80154", - "65268", - "22148", - "86876", - "31233", - "33328", - "99019", - "98532", - "39901", - "80615", - "45274", - "75348", - "12238", - "99677", - "79395", - "56583", - "52140", - "14392", - "42651", - "72468", - "67027", - "37403", - "29526", - "19357", - "18871", - "98238", - "61709", - "22683", - "97977", - "11684", - "65637", - "76550", - "98750", - "48393", - "80400", - "77077", - "22872", - "83480", - "76043", - "10504", - "67483", - "82225", - "46633", - "43269", - "50901", - "14288", - "82979", - "65089", - "14225", - "95085", - "15382", - "30333", - "89054", - "95123", - "66675", - "99995", - "73245", - "95711", - "42431", - "79752", - "36192", - "41989", - "88525", - "61450", - "69064", - "86098", - "47625", - "22909", - "10778", - "90860", - "30092", - "70584", - "92968", - "85569", - "70721", - "71491", - "49169", - "18340", - "49513", - "11112", - "30689", - "82962", - "76875", - "47471", - "72485", - "48119", - "42433", - "99028", - "30547", - "95586", - "31219", - "84325", - "17253", - "84078", - "98394", - "25585", - "74037", - "19673", - "66063", - "18600", - "25342", - "76439", - "97154", - "96600", - "67361", - "84069", - "86489", - "27828", - "19392", - "86265", - "24892", - "92293", - "65738", - "39343", - "71139", - "52912", - "95240", - "88135", - "56544", - "39001", - "90756", - "69873", - "48878", - "39831", - "22771", - "97266", - "18843", - "81263", - "21125", - "59850", - "67873", - "38894", - "80692", - "35288", - "54171", - "31992", - "33164", - "30018", - "12339", - "52546", - "22587", - "90246", - "38469", - "89475", - "20733", - "20851", - "59306", - "32046", - "82761", - "63001", - "67400", - "12652", - "45415", - "11251", - "22558", - "48578", - "83562", - "33763", - "54483", - "80528", - "75747", - "98571", - "33324", - "63251", - "24101", - "48376" - ], - "type": "barpolar" - } - ], - "layout": { - "annotations": [ - { - "font": { - "size": 16 + "layout": { + "annotationdefaults": { + "arrowcolor": "#2a3f5f", + "arrowhead": 0, + "arrowwidth": 1 + }, + "autotypenumbers": "strict", + "coloraxis": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "colorscale": { + "diverging": [ + [ + 0, + "#8e0152" + ], + [ + 0.1, + "#c51b7d" + ], + [ + 0.2, + "#de77ae" + ], + [ + 0.3, + "#f1b6da" + ], + [ + 0.4, + "#fde0ef" + ], + [ + 0.5, + "#f7f7f7" + ], + [ + 0.6, + "#e6f5d0" + ], + [ + 0.7, + "#b8e186" + ], + [ + 0.8, + "#7fbc41" + ], + [ + 0.9, + "#4d9221" + ], + [ + 1, + "#276419" + ] + ], + "sequential": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "sequentialminus": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ] }, - "showarrow": false, - "text": "Event: A", - "x": 0.225, - "xanchor": "center", - "xref": "paper", - "y": 1, - "yanchor": "bottom", - "yref": "paper" - }, - { + "colorway": [ + "#636efa", + "#EF553B", + "#00cc96", + "#ab63fa", + "#FFA15A", + "#19d3f3", + "#FF6692", + "#B6E880", + "#FF97FF", + "#FECB52" + ], "font": { - "size": 16 + "color": "#2a3f5f" }, - "showarrow": false, - "text": "Event: B", - "x": 0.775, - "xanchor": "center", - "xref": "paper", - "y": 1, - "yanchor": "bottom", - "yref": "paper" - } - ], - "height": 600, - "hoverlabel": { - "bordercolor": "white", - "font": { - "color": "black", - "size": 8 - } - }, - "legend": { - "font": { - "size": 10 - }, - "orientation": "h", - "yanchor": "bottom" - }, - "polar": { - "angularaxis": { - "categoryarray": [ - "Dog Patrol", - "Go Magikarp", - "Power Birds", - "ThunderCats" - ], - "categoryorder": "array", - "showticklabels": false, - "type": "category", - "visible": false - }, - "domain": { - "x": [ - 0, - 0.45 - ], - "y": [ - 0, - 1 - ] - }, - "hole": 0.4, - "radialaxis": { - "autorange": true, - "range": [ - 0, - 3.1578947368421053 - ], - "showticklabels": false, - "type": "linear", - "visible": false + "geo": { + "bgcolor": "white", + "lakecolor": "white", + "landcolor": "#E5ECF6", + "showlakes": true, + "showland": true, + "subunitcolor": "white" + }, + "hoverlabel": { + "align": "left" + }, + "hovermode": "closest", + "mapbox": { + "style": "light" + }, + "paper_bgcolor": "white", + "plot_bgcolor": "#E5ECF6", + "polar": { + "angularaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "bgcolor": "#E5ECF6", + "radialaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + } + }, + "scene": { + "xaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + }, + "yaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + }, + "zaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + } + }, + "shapedefaults": { + "line": { + "color": "#2a3f5f" + } + }, + "ternary": { + "aaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "baxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "bgcolor": "#E5ECF6", + "caxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + } + }, + "title": { + "x": 0.05 + }, + "xaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "ticks": "", + "title": { + "standoff": 15 + }, + "zerolinecolor": "white", + "zerolinewidth": 2 + }, + "yaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "ticks": "", + "title": { + "standoff": 15 + }, + "zerolinecolor": "white", + "zerolinewidth": 2 + } } - }, - "polar2": { - "angularaxis": { - "categoryarray": [ - "Dog Patrol", - "Go Magikarp", - "Power Birds", - "ThunderCats" - ], - "categoryorder": "array", - "showticklabels": false, - "type": "category", - "visible": false - }, + } + } + }, + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6QAAAFoCAYAAABACjY7AAAAAXNSR0IArs4c6QAAAERlWElmTU0AKgAAAAgAAYdpAAQAAAABAAAAGgAAAAAAA6ABAAMAAAABAAEAAKACAAQAAAABAAADpKADAAQAAAABAAABaAAAAAAsW5ObAABAAElEQVR4AeydB3wc5bX2z8yu5G7ZluXee8e9YEwxxXRMCzUQAuGm3ITkJl9ueg8ppCeE3CTU0Dum2IAxBhfce++23C13S7KsnZnvObNetOoradvMPse/9Uq7U973/46kfeY0w4EJjQRIgARIgARIgARIgARIgARIgASSTMBM8vl4OhIgARIgARIgARIgARIgARIgARJwCVCQ8kIgARIgARIgARIgARIgARIgARJICQEK0pRg50lJgARIgARIgARIgARIgARIgAQoSHkNkAAJkAAJkAAJkAAJkAAJkAAJpIQABWlKsPOkJEACJEACJEACJEACJEACJEACFKS8BkiABEiABEiABEiABEiABEiABFJCgII0Jdh5UhIgARIgARIgARIgARIgARIgAQpSXgMkQAIkQAIkQAIkQAIkQAIkQAIpIUBBmhLsPCkJkAAJkAAJkAAJkAAJkAAJkAAFKa8BEiABEiABEiABEiABEiABEiCBlBCgIE0Jdp6UBEiABEiABEiABEiABEiABEiAgpTXAAmQAAmQAAmQAAmQAAmQAAmQQEoIUJCmBDtPSgIkQAIkQAIkQAIkQAIkQAIkQEHKa4AESIAESIAESIAESIAESIAESCAlBChIU4KdJyUBEiABEiABEiABEiABEiABEqAg5TVAAiRAAiRAAiRAAiRAAiRAAiSQEgIUpCnBzpOSAAmQAAmQAAmQAAmQAAmQAAlQkPIaIAESIAESIAESIAESIAESIAESSAkBCtKUYOdJSYAESIAESIAESIAESIAESIAEgkRAAiRAAiRAAplKwLIccRzDnb6BJxO3aUtDeJQ6EnKfRc6cwQNfnyk5+17IEcsS7Cdi23jG3ib2zQoaEsRf1QAeWQE86wNfZ2eJNMrGc7bhfp2F7/XYuq+anlO31fPTSIAESIAESCDTCFCQZtqKc74kQAIkkEEEVDSq+IuIzaJiR06eFDl6XOTYCZETJxwpLLKl+LRIcbHIaTzX31SaxmAQnk0bizRpgof7bEiL5iJtWhuS00KkRQtDmuK9sOB1XMEahNilkQAJkAAJkIAfCRgOzI8T45xIgARIgAQyh4B6G9VrqZ7GUngwT0BsFhwWOXDIkYIjjhyDAFXB6SVrDpHasqVI65aGtM01JC8v/HU2vK0hzFFFqnpXaSRAAiRAAiTgZQIUpF5ePY6dBEiABDKQgN5GVfFpQnyqyFTRuXefyMECW44eFSnymPCs6xJmNxLJyxVp19aQzh0NaQeh2qSx4XqCNRyYob91JcrtSYAESIAEUkmAgjSV9HluEiABEiCBWglEvJ+an3n4qCO794js2mPL/gMiJcjrpCFHVUVqW4FANaVbl7BY1VBlClReHSRAAiRAAulOgII03VeI4yMBEiCBDCRw5owDMWXA6+nIjl0i+RCg+/ZnIIgGTLlTR5EunU3p2S3sUS0NGSi8RA9qA5ByVxIgARIggQQQoCBNAFQekgRIgARIoG4EwgV8wh7P7Tsd2bLDdj2hkUq0dTsat65IQMObO0Og9uhqSu8eIo1RTMlEaWDNuaWRAAmQAAmQQCoJUJCmkj7PTQIkQAIZTEBDSlUQFRx2ZMNmeELzUXzoWAYDSeLUtVhSr+6G9O+LgkltDLcFjYZE00iABEiABEgg2QQoSJNNnOcjARIggQwmoNVhA6gOu2+/Ixu3OLJthyNFRRkMJA2m3rSpIKzXkIH9DenQDsWRUDBKQ3tpJEACJEACJJAMAhSkyaDMc5AACZBABhPQcFztL3YQ1XDXbnBk63aHxYjS9HrQ4kh9ehoyZKAhufCcRvq3pulwOSwSIAESIAEfEKAg9cEicgokQAIkkI4E1BtafNqQNettWb/JkcLCdBwlx1QdAQ3rHdjPlMH9tVovCiKxpUx1qPg6CZAACZBAAwhQkDYAHnclARIgARIoT0BFqBbL2QIv6Kq1rIxbno53v+uBkN5rLjclUnyKxZC8u5YcOQmQAAmkGwEK0nRbEY6HBEiABDxIoLRUpKjYkZVrEJa70ZEQvqf5h8CVl5pYX5EFS2wZhFzTc4aYbqXeIKv0+meRORMSIAESSBEBCtIUgedpSYAESMDrBCLesv0HHFm60pad+V6fEcdfFYEmTUTuvTMgjz5tSTFEacR6okrvqOGGtMtD+xgz8iqfSYAESIAESKBuBFhHr268uDUJkAAJZDwB7Q2qxW7WwRO6bJXNVi0+vyIG9DVl/0HkA0eJUZ2y9ovVR5vWAmFqSv8+hhvSa1Kc+vyK4PRIgARIIL4E6CGNL08ejQRIgAR8S0D7htool7tydViInjnj26lyYlEEPntLQJasQGEq3ICoybRC74hhhgxHOK/esGBf05po8T0SIAESIIEIAXpIIyT4TAIkQAIkUCWBUghRC70pVZSsgBh14CGlZQaBzp3CPUlrE6NKo6QEOaaLHVm0zEKOqSGjEc4bDODBTxqZcbFwliRAAiRQTwL0kNYTHHcjARIgAb8TUBGqVXOXrBBZhhxRWuYRuPQiuDodQ96fXb/1V4/p6BGm2zKGeaaZd/1wxiRAAiQQCwEK0lgocRsSIAESyCACGpZrQ4wuWm7L0uU1h2lmEJaMm6r2Hb3/7oA885Ilx443bPpa/Eg9ptrPVMN5aSRAAiRAAiQQIcBAmggJPpMACZBAhhPQqrlqGpa7YLHthumGX+H/mUhgQD9DDh+RBotRZbd0BSox4zFhrCEjh4VzTClMM/Gq4pxJgARIoDIBekgrM+ErJEACJJBRBFSIanjuth2OzFtky6lTGTV9TrYaArfdaLqVlLW3bDytKdrITBxvSr/eYW8phWk86fJYJEACJOA9AvSQem/NOGISIAESiBuB0lKRM3i8856F1h5xOywP5HEC7fNEmjY1ZOWa+uWO1jT9IrSPef9DFMhaIzIJwjSvrSHZCA+mkQAJkAAJZCYBdgvLzHXnrEmABDKcgHpEC4tEZn5sSyAg0qqVfxP7tB1J48ZYcKO8py8rGy+Z4dfaQYC1zc3wiyJq+oMGmLJ7X3leUW/H5ctDh0RefdOWmbMtOVXoSAjXJI0ESIAESCDzCNBDmnlrzhmTAAlkMAENz9UQSQ3DnLcw7P1qnG3LGFRC3bDJX4pg8EBDBiIPMqdl2ANnY7rrNjkyZ3543l+4KyBvTrckf4/IgH6mhEodKTicWBHmiUsP14fmj778RnKuh63bRbZut5Ffasqoc1j0yBPXCAdJAiRAAnEkQEEaR5g8FAmQAAmkMwH1QB085MiHc2w5crRspGvWOzJ4oCPnjjNk/kJ/CLIunUUunGjKq29Zsu9AeE55uYb0Rd5ixB572pIzZ/S9stci72Xy88C+BgoZ2XKoILkUPkH+8sbNIpMvMKUd1ko99zQSIAESIAH/E2DIrv/XmDMkARLIcALqFS0NiXwMz+Ar08qL0Qia+RADgxGmafpEBLTKMeTIMUf27ccM0UdTHyqwogX35Rebrvc0wiDyfPklpvToXl6kXnslRBLCetVU7N56gyn/dU9APjNVcyDDr+fh/asuM6VTx/DzFBzfizZkkCGbt6Rm5Hqj5OXXbZnzSbjKc6Tyc2pGw7OSAAmQAAkkg4A3/1omgwzPQQIkQAI+IOBWz93pyBPPWrIWntDqLH+3IHTVkcsn++PPwnbMObe1IRfD29YVAlLzSCuavh+sIk7oUIEjQxHuG7EO7cU91iGE8+bkiFxxcUAWLnXk8Wcs2bIdnmWEmqppYZ4e3QwZN8qUHfmO+17kGF55zm2DfGLMcQlatKTSVq8DX1yzuo7MLU3lSvDcJEACJJB4Av745JF4TjwDCZAACXiKgArRM2dE3kPBmHfes+X06dqHr17S3j0N6dih9m3TfYvCQpEXX7dEW4xcc0VA7r87INdfXebNrGn865Fn2rWz4e6r2w1Efun6TbY4tiFDBhiyC8Jdva9NcOwduxzp0A45qiiQpHYK533t7bD437ottaIuPKK6/T+wvyl71aucBlaMarxv49p9H9dwCUKr9ZqmkQAJkAAJ+I9AFfeG/TdJzogESIAEMolACOG56qGbPdcW/VAfq504IbJ4mSPnTzDlhdfi3+4j1nHEa7uDqOL65gxbTFTSzUVO4ujhplx5aUCefK5mZVOE6sO7djvSH7mUq9Y60qeXIS+8GubREgWS2sKLOHlS2f3cg/CoNm8WHrUWTnJDhOM1iSQfZxCKGb31fs18kjwk2bJVZGe+LReDuYZSZ/GTS7KXgOcjARIggYQS4K/1hOLlwUmABEgguQRs25GP5juybkP9vHMLltiiXrKhgw1ZDTHmWdMWL5o7CrPh2dQWI3MX2PK52wKueFRPZk22bqMj40YbcvKUIPfUkRMnw1urwN+6wymXixo5Tmd4TL1sWvBJe4Tu3Zt+syiFt3/GB5rnbMiFEKZmWUR1+g2WIyIBEiABEqgTgbJbvHXajRuTAAmQAAmkEwENZyw44sizr9j1FqOR+Wjo7qhh3v7zMHakKaNHGJ/mjmpI7fChphyHF/hUUe1Ce/suGyG7hoyHKF0LcRoxbU8yGIK9deuzr0D4aphzVTmqkX288jwEebOaE5vOthY3Wp55yXJvEjCEN51XimMjARIggdgJ0EMaOytuSQIkQAJpSUA/mK9ep5VJ4yMmtPXGELSBuQBtUz6a583QXa2oO36MIRPGmFKIEFzNJd1/0JG33gWss57TmhZT80U1b1QrD2+DCI2Y9ixdtMyWm64JIK8xfNxjJxzZvTc+7CPnSfZzy5Yi7fMMeQ1tctLdjh0TeR4h1Hp9qseU7WHSfcU4PhIgARKomYDhwGrehO+SAAmQAAmkIwH97a3tXN6dZcmOnfEdoRY2uvZyU556HnmoMRREiu/Z43e0AG67qhjVOYRK43dcgWe0WVNDSnFMLR7ldRsP4d4ebWveeKdMfHthTprfe9lF4XZFjOL1wopxjCRAAiRQmYC3Y7Iqz4evkAAJkEBGENDCRerx0wI98RajClD7d27ZLnKZx9vAWOB0EvmfcRWjCgheVq3k6wcxqtMZ3F9QwMlbYlTHvQWVjJ96wZID+FnQnwkaCZAACZCA9whQkHpvzThiEiCBDCdwBl45bU3y8huxtXOpL65PFtvSuaMh3bvV9wjczwsEenYPe9q3x9nLnqy5n0LhqZdet2XNBpuiNFnQeR4SIAESiCMBCtI4wuShSIAESCDRBDRMd+4nttvSJdHn0vYnC5facu6YQKJPxeOnkIDmyXpVjEZjm4Pq0rPmoF8sfkZoJEACJEAC3iFAQeqdteJISYAEMpiAfsjWliMvT7NEK40my5aucCQrS2TUcGboJYt5Ms/TtKlIty6GaLsfP9jGzY68+LqFQlYOhakfFpRzIAESyAgCFKQZscycJAmQgJcJ2NAKBYe1pYsl+w8kfybaBmbYEP65SD75xJ9xYD/DzUXW4kx+sYPoOfv0i7YcOOSI5Q+d7Zel4TxIgARIoEoC/IRRJRa+SAIkQALpQUBbumzf5bhtLjSENhWmhWOOoMfpJRfyT0Yq+CfynNp7dPV6/6k2LTaleaXbdkCUpn8nm0QuMY9NAiRAAmlPgJ8u0n6JOEASIIFMJaAfpFetc+Sd91IvGNRL2re3ITk5mboa/pt3l84ihmHI5i3+m1tkRjNm2rJiDSrwUpRGkPCZBEiABNKOAAVp2i0JB0QCJEAC4np1VARqAaN0sEMFIuuQu3rxJP7ZSIf1iMcYhgw0ZWd+8vKR4zHm+hxj/kJb9KGh7zQSIAESIIH0I8BPFum3JhwRCZBAhhPQAkYzP4JnZ3V6iQUtfNO2rbie0gxfIs9PPysb69jLkIXLMkOlrYSXdMYHrMDr+QuXEyABEvAlAQpSXy4rJ0UCJOBFAipENUz3zRmWbNqSXmJUeZaUCKqxOjJuFP90ePH6ih6zW8zogCNFhdGv+vvrrdsdee1ty+1Vqj9rNBIgARIggfQgwE8V6bEOHAUJkECGE9APyCUoxPIK2rrszE9fGKvgabJsiNLRbAOTvqtU+8iGopjRuo2Z4R2NprFnL4odvWHh5grbwkRz4dckQAIkkEoCFKSppM9zkwAJkAAIqBgtPi3y6psWWlWkPxLNbdX8Q5o3CXRoL9KokaCfrTfH39BRFxxGP983bfzMqSilq7ShPLk/CZAACTSUAD9RNJQg9ycBEiCBBhIoLHJcr83hIw08UJJ237lLZN9+W664hH9CkoQ8rqcZPMCU/D1xPaTnDnb0qHpKIUqLDfeGkOcmwAGTAAmQgI8I8NOEjxaTUyEBEvAWAXXOnDyFMF14a06c8NbY5yOXtHdPQ/LyvDXuTB+tgb/6A/oasnh55oXrVlx7/Zl7CSHyhejvS0dpRTr8ngRIgASSR4CCNHmseSYSIAES+JSAfgA+dcqRF1+zPCdGdRLH4GFatsqWC8/ln5FPF9UDX2gxowJ44o8d88BgkzBEFaWvIFS+qJiiNAm4eQoSIAESqJIAP0lUiYUvkgAJkEDiCKgY1TDdF1+33Q/CiTtTYo+8EF7Sli1FBg9I7Hl49PgRGDrIkI1b6B2NJqqi9GV4SouKmU8azYVfkwAJkECyCFCQJos0z0MCJEACZwloASMN01WvjJdNW9QsWOzIqOEBL08jY8aemyvSornIilUUXhUXPSxK9WeSbCqy4fckQAIkkGgCFKSJJszjkwAJkMBZAuoZPQ0xqm0n9AOwH2ztBsetVjppAv+cpPt6Du5vyp596T7K1I1PfyZffct22y8xpzR168AzkwAJZB4BfoLIvDXnjEmABFJEwEak5BvT/SNGIxi1DcyAfiJZWZFX+JyOBAb2N2TZSobr1rQ2Wn339bct9NqtaSu+RwIkQAIkEE8CFKTxpMljkQAJkEANBKZBjB70QJ/RGqZQ5Vt79orszBeZMtnff1ICiExu0gRhry3Cj1Y5Im0RBquPNq3LXm/cuEpMKX2xXx/Dreh84GBKh+GJk+vP6JszEI9OIwESIAESSAqBYFLOwpOQAAmQQAYTUM/oux/ashvCza/2Cbykd98WkM6dRFSgeskaNQrnVrZoYUhL5Fi6zxCdTSE+m0BcZmeLNGoU7lepebP2Wa1iI67TCoVnagYMMU1HDPxT4RpUb7GGaJeIlJ5BESvkJmp7kVOFIsePOxCHjpw4GW77U1qaeFpDBops3kq3X6ykd6NP6/SZtnuTxfT3fZZYkXA7EiABEkgYAQrShKHlgUmABEhARAXMvIW2bNnq72Ip2k910TJHzhtvyguvpq/wCXs0DcltI9KurQHPpuEKzmIUmNIiU8dPOGiL4ogKkiNHHTlyzJHDeFbPYl3zCptCzLaEF7Vlc0M6d9RzGtKqlUiXzip8DWnWVKRxEwN5xY4cQ/5iwWGRw4cdOYRHPD3pORhDXq4pr6K9CS12Alu2OVgjWyaOM92bDLHvyS1JgARIgATqQsBwYHXZgduSAAmQAAnERkDF6Mo1NgRp5vya/dztpqxY46RFJdfm8Ha2zzOkQ3tDOnVQUWa47XaOQ/zt3uvIlu14bLNTXuinKwRqz+54dDOkaxcIV4jk5s0gTiGMtQhRPsZ64IBT76rME8Ya0hZi+M0Z6XujILafqNRspQW7tF2Oer5pJEACJEAC8SdAQRp/pjwiCZAACYiG6W7f5cg772WWCOjXR+TccQF54pnke+OCiPlRcderhyFdOmq+pwHvpsiu3bas3+TI8lW2GzLrhctTxc+o4aYMgxDq1d0UzVdVT+puCNQduK70oTc8YrH77grI9A8s2QOvL61+BK66zJTuuGEQYPhu/QByLxIgARKogQAFaQ1w+BYJkAAJ1IeAxp0UIOzy+TQOXa3PvGLd54arTTl6XOTDOYkX4xoCq57FHnh06WS4obUbkSu5YrUjq9Ym/vyxMonHdkMGGjLyHFMG9jXdkOM9+xzZCi+vilMNma7KekKcTxxnyNMv+ItFVXNN9Gu33ajckSVsJPpMPD4JkAAJZBYBCtLMWm/OlgRIIAkEitFr9NmXrHqHWCZhiAk9Rft2ItdfZcrTLybGI6lVbvv2MqQ/Kse2QC7mnn22rFwr8tFcS06hcFAmWFPkn14wISAjhoXzU08WOrJpiyObkfcY3eP2mitMNy91/qLMCRtP1PprCPitNwTcQleJOgePSwIkQAKZSICCNBNXnXMmARJIGAH1jr78hiX7M7y9xuRJprRsqT0d4+OZ00q4fXtDhOKRh2JEO3c7Mh/Foj7+JD7HT9gFkaQDn4fCO1pQqhtyUA8h93TdBkfy9zhy160BeeTRGGN7kzRWL5+mE0LBb7g6QC+plxeRYycBEkg7AhSkabckHBAJkIBXCYTQAuSDjy14qrw6g/iNW/t1fg5tYGbMsmT7jvofV9vIDB5gut7QfORALlpmox0HBVZNRK+4JCBjR4ZDmLXNzPuzkT/qsVY8Nc0v1e8N6Cdy0XkB0ZxlGgmQAAmQQMMJUJA2nCGPQAIkQAKiYlQL58yeS49d5HLQcNJB/U15BuHLdbVBAwwZgocK2zXrHXljuoWqs3U9SmZv/5dfZ+FmgINiPOGWNmvWObJ2I1z4jN5t8IVx/kRTBvc3KEobTJIHIAESIAH07iYEEiABEiCBhhHQMF3tVUkxWp7j8lWODBrgyJiRpiyGZ7M2a4y+nUMHmzJ8iCHHUBRpLkJy6Q2tjVrV7w/sZ7hVeP/4D9wpgV15aUDOHWPIeDxWoi3PaojTkpKq9+WrtRP4eJ6NlkKm21aIRY5q58UtSIAESKAmAvSQ1kSH75EACZBADARKSx15+iUU8Kmm0mkMh/DtJlrl9aLzTHns6eq9pM3Qc3PEUFPOGWrI9p2OTHvHCnvyfEsl8RP78r0B12v/zyfLcx85zJTLLzGlR1fDrUKs1Yirq9Cb+FF6+wxN4b3/LHJ0s7O8PQ+OngRIgARSTYCCNNUrwPOTAAl4moD2gnz3Q1u2oroprWoC11xuut6498Ap2rRq6Wj02hyKXptrUYRHi0Hl7yXHaEb1+VqF0p9/lSX/84PSasWmtsnR4jzqSV2NkOjlK205cbI+Z8vsfXogHFq9z9o3lkYCJEACJFA/AhSk9ePGvUiABEjADYlcu8GWj+ZRRNV0OeTmitwyNSDPv2bJEeSBBuFRGjPClFHnGG7e7YuvW7KbQrQmhHV675ILTbnwXFN+8GA4XLemnbugaNQtU4MyAMJUQ6wXLbel9ExNe/C9igQmjjfkHISaU5RWJMPvSYAESCA2AhSksXHiViRAAiRQiUAB2ms893J5r1+ljaJeGDvKkHGjTNGcU31ov9J1G21ZsATHcIyoLf335SQIpHZtRbbAkzwWOaW79zny7CuW7MqnmI/3aj/4wyCqPdvywUexX5u9uhtuj81OHQxZiHzfVcgzpcVO4JYb9Pr2989w7DS4JQmQAAnUjQCLGtWNF7cmARIgAZeAjc/6Mz6I/QN/BJsKsukzsZ/huB9gb7o2IDshyvbtj2zhz2f1gA4fYkqjbEOefN6SxfDE0eJPoHdPQ5o1NeokRnUU25C7++AfQ+7NgqlXBmToQPR5Xey4VXrjP0r/HXEGfqbvvCUgJjWp/xaXMyIBEkg4AQrShCPmCUiABPxGQFu8fDTflqNHGzAzeEQPFjhu4ZnS0vBxRg033O8FH2p7oxjQhs2OrENuZZ9eqI46Oiw09u535MM5KKCE/pJq119tymaI3EFoQdGiGUJgN9vyyWJbTHwyvvk6M7xR1P+vvBkOyezSWeS8cabk5BiYB46JdjWHCqI2jNOXLVqITBhjinreZqMyqRYvohiNE9wqDnMh2pFs2V5/sa99XvVx2UUBufxiQwb2NdxqxydOVHEyvvQpgePgo1W2z0P4bnYWVemnYPgFCZAACcRAoPKnlRh24iYkQAIkkKkEtIjRrt1hoVgfBjkttbWJIcNRUfaaKQEISEcKDoeP1KK5IRPGmtK6VbjIT8FhR9oi//LiC0xZsiIc4qphvldeWvarO7eNIX3gFZu7wJZpMyzp19uUju215YfjenDVi6uPkyhYow/ND8zJEbni4oAsXOrI489YEDCOnIvzxttGoKLrZz8TkMIikW98v1SeftFCkR1H7kJlUlr8CWThFrOGhL/0ev0FaWRU731ooShSyL3xcefNAVyv8b8+Iufyy/NaFIfavUfcnz2/zInzIAESIIFkEOBfmGRQ5jlIgAR8QyAEQToLHsr6WqNGhuTlGqJCUvNINXevF7yhEVu91pbZOP5GCNWDh8StgroX+ZYbNqE9BwTlfPTmbN/OkDZtInugXyfE6N594no4dyD8t2tnHA8e2GPHxH20xbna4pwzz+YUDhlgyK49jhw55kgTVGTdscuRDjhmdnbZMRvyVV6eyE3Xmq5n92//DsnfHy0rrqMFjDSH1ORfn4YgrnJf9URrP9z9B+OX//nXf4VEH/36hNe0HdaWVj0B/RnT3xE0EiABEiCB2AkwZDd2VtySBEggwwloqO6sOZYUF9cfxMFDjsxCwZmIaTjuuWMN2bYjLCKssrfcTdRrGi0winBubc+hrx9BUaWKpj1Ro/siqjf0QvQBnTbdcluv6PYtW0KgQtBOnlSmCjV8uDn6gR5pYIXV0RCbY0eIzFvoyFMvlAnRyDjXbYR3GYWcvvmVoDz018rvR7bjc90JTD7fBPcKF1DdD1NpjzXw/H3/FyHXs33zdfCsI6R3ybLK116lHTPwhZISDd11ENVgSJCBABl4BXDKJEAC9SFAQVofatyHBEgg4wioN1O9j1u2xnfqR+GlbJVTfcuIIoToaggvXJ7uibPQMkWFY3Fx7YIggN/wV1xiIjTXdr2tkZGroN4KATwfojFe1hKhyBdB4GrY6IN/tNxCTdUd++U3bNFKsNpqRD2/tIYT6NYl7HV/6934C9LI6J5CMaoFyE+++7agdO6AGyvw5KvXnlaewKYtjvTt5UhPRD8YZcEP5TfidyRAAiRAAp8SKLs9/ulL/IIESIAESKAiAS08NHN2/D7sG6YjWvDHbYGCCrSam1qVaThtN4Tgtm6Fd1GZdzDCbYuQk3kY/TxrswvQauXYcZHVa8uLvq0oejO4P3JVW589Ao6r1VkbNartiFW/Pwhjuv1G0xW9P0TvS60aXJOpN/ad9203v7Sm7fhe7ATOx1rvxLWSaNu0Vb2lpbLvgMgdN5kI5aXiqoq5inWtxE0jARIgARKonQA9pLUz4hYkQAIZTkDFouZpRqrhNgSHhuj+9xfCsXwafqsFkj5C9dnqbAfacazbZMvtNwVEt1ePy4wPrGoFbOQ4zeBFVfGqY77/7rLYQc3hzEfhFa2ketM1ASlBiG5T5JEeO4GCLBDGdbULUNW1RzeRJ563ZaH2U43RXnvbkkkTslwPrtsGJ8b9uFnVBM5F/ujvH05eCPS/ngqh8rMpt1wfQP6xIx+j6jStjIBGIXz8iS3nT6g++qFsa35FAiRAAplNwHBgmY2AsycBEiCBmgnsQ5GYl+NQubTms9T8bhC3D7UAkVap1YJFcTF4RrVnpYrWM3XMHVXv7qUXmu6+f/1nSI7XI3RzIir73oScRK3AS6s/ARWGN6D9z7d/kjxBGhmtXpffeSDg9pedMQvtiE5F3uGzErh5qukWDCMNEiABEiCB6glQkFbPhu+QAAmQgFsJ97lXrJhCZDMFV/euIpdNNmXVOkf++UQ1scYxwvj+N4NyAIL/3/9p2HEip/v3n5FkW409iRzIOfBapcK0Fc/Pvxd0rye9DayeaQ1/ffK5kFukqiFj+t7/BGUzjvXSG/FhWJ+x3HunKSOGBVzvff7u+hzBn/u0QVi8Rjcwl9Sf68tZkQAJxIcAQ3bjw5FHIQES8CEBDdVdhfzLWPI1fTj9Kqek/VO1Z+nrb9syHaHDDbWXEEL8wBeDKNRkuT0vG3q8L36zzNv64A+C8vRLFqr6hgOB0iGn7wtfD49PPcxfvicoV10akOderT/HTh0M6dLRkAf/kHzvaPRaPfq0jcqyaA2DMPD5KHy0ak2YefQ2mfj1kaMiy1bacs4QU9SbTCMBEiABEqhMgL8eKzPhKyRAAiTgEtAWDpo7SgsTmITCOT27GfI39KVcjVYg8TD1Eq5YZcvX7g+iOm/DRZW25ok2vakQ/Zr2P73qsoCcN86Qxo0NWb3Olv+8GG6JM2aEKddfZUoO2uIUoYrxgiWOvPqW5Xo1u3c15LorArJtpy2aNxuCrnwWnvOWLQw3D9Z0c3ttN28w+vzVfa3VafejBdDpOoZKVzzeeeNNya9H7m/F48Tj+w/Qg1N75t732YDkgEuqvNHxmEs8jzF/kSMD+wsFaTyh8lgkQAK+IsAqu75aTk6GBEggXgTOQHDUVGwoXufxynGuvBS5cHkiP/ttadzEaGTuL79pozCSIcOHJv5P0mUXmTIQ7Wb++i9LfvrbkJtDq5WO1Q6jr+ujz1jIxSyVPz5iyegRBsJQw+9pBeIhA7W3pCF//LslH8615atfCKJasSH/esqSZ1623AI/2panJrsIPWG1/+tnpgakaydD3v+w/t5RPc9540x5692GHaOm8db1vfVo4/PDX4WkXZ4hes3QwgRUnNc1T5vsSIAESCBTCPCvRaasNOdJAiQQMwHN8StAa5It2+PjBYz5xGm4oQqsG6810QXVkR+gpUt9ihfVNi3txfrmDEtuvT7xf5IuhCCcC3GghZy0Z+rKNbaMOCuEt6GisXr4tAVOv96GFBaKaEhsxA4dduT1dyzZu99xvX/qbX0aQlTb3Kzd4MgRzKMXek/WZNovtCseOejbqv1kr5lSVgG5pv2qem/UcBSVCjnw8qbXdaptiX70q1KxMaybrzPhia5q9Jn1mvYmLcD1wzKSmbXunC0JkEBsBBiyGxsnbkUCJJBBBDTMU/PgMt1aofeperl25Ys8/GhivXBvvosWGQgJnnol8lPfSQx7FZC5rQ3R0ONzx5at7snCsKCbCG/jrTcEIC5tOXBIXEGl+1RlKmjVNFQ3YuoBq018aWGliGm7nV//OEvmICy8Pi13JkNcr1idXmI0Mjd9/s2fQ/Lf9wXlJtzQmDbDlhMnot+t+9e3o+9pbhvDFXX6M3ocrYrmLrTd67PuR0v+Hh9jnW++NiCB+t+DSP6geUYSIAESSAIBCtIkQOYpSIAEvENAPRiaJ7hvv3fGnIiRqgdP8ynV+/bo02UiKhHnihzzpTfC/VYTJUi1qNEpeD1feM2SHbsqCzktyPPIY6FPiyA1+0xilYP2lT1x0pFOKEpUV0Gal2u4ntyH/lYhaTYCM02e//bvkHzutoDblmbadFu0yE9DTHvWbtnmSACfXkYOM+SSCwLyWJKuz4aMW/c9hJscmjM9oK/BqrsNhcn9SYAEfEWAgtRXy8nJkAAJNJSACtI5n1QWKw09rpf2z80VuRqFf1astuWJ55IjRpXPomW2aEjtlz8fkL8/lpjzLkcBJS1O9I8nQqJFqxojN3ToIFOWrLClpNSR7Cx1eTquJ04LOK1EleVEWBOEsY5D/9BWOYYrsOp6jokoyqShw14wvYbuhii97sqATJsenxZKFnS4tgsa0LeMwKjhRriAFZawdw9DNmx2ZB1Cqfv0MmT8aMPNF1ZmH85Bv1TcmMhDTvT4UabLUa+BkhJHFi9HqP5ZwavhxhXtFeQ7l8IT3qVzOH83B+t39CiOiZziQwUVt678/fxFNsac2Bsdlc/KV0iABEggvQlQkKb3+nB0JEACSSSgOW/LIFg0By5TrR0+pF+NvMalEGhPvZAYUVgTW+2l+e2vBqVtru3m3NW0bX3ee3maJXfC8/m7n2bJyVOOtGplyMfzbQgRgViy5fN3BJCXGXCr7KoHM972rz+Fqx6dPi2yG/mqf/m/ELyGdReWkyYE5EW0zPGKPQlRqiJyKrzu2jKovq2UtNpxE4Q6N8oW19P44ZwyBi2aGzIABatUiGpOr+Ymt8XNlYsvMN0CZXv22TIOAlTD0F983cbNBxHN6S1AMatpyGFWr7OGjW/ZHhINCZ7xQVno+ES0OlJTMZqTI3LFxQGZiarCekwtdqWtkN6IIdRcf7esREucYYMNqS4c3CtrynGSAAmQQLwIGA4sXgfjcUiABEjAywRCKBDzzydt98Ool+dR37HnthG54RpT5i903JYm9T1OQ/e7+9aAdIPw+PlDiQtHDcJJ1RLtXTQPUcVHxLTQkXq9tOJuuv51HDbYlHtuD8g3vn82kTUyeA8833xduOWOehqP1zGnVHNIiyHkdT8Vc60hDHWN3p1l4+aCuN71Uni55+H6jdikCYbrhX4TOaxqmrd7L9rSaFVk9VJPnhSQ/0TdePnCXQF55U2rXGixelg1v/h59ItVr7p6p5tD/C5YEj5mAGPReT3+rBVTJd0siOn77tS+pFEJyJEB85kESIAEMpBA5XiUDITAKZMACZCAZTnwCpYXJ5lEpSVyRq+eYson6Jmo/TVTadr7s1N7DbNM3J+oEKaonsloMapzLoUGTvdqqNo6RgsvedHUA74chZiuRdh0M1QZrqtpTvOsj22ZOdsWzTkuhMdxMDyUEbMqYFGv6X6E9kYsnLcroq9XZbr+2RCMEVNvqIaRT58ZFqP6ut7IaNdWxWy4hY/2pT2IqtxaNTkWUy/r0pUomlVhrLHsy21IgARIwI8EEvfX3o+0OCcSIAHfErAsAzmMZR9cfTvRKiamXqNrLjdlPUId1XMUMc1vvOOmAHpvRl5JzrN6u7S9yg1X809UReKtIJAGDzDkmZfK1qniNun+veaUrt9ku0WzaqtKXNtctNVOG1ROrs6K4FFtjbDsiGkbIxWOxcW1/6xr4aQrLjFl4VJbDqIgUcSKEcq9dYcjr71ll3vUpWDTIhxTex3TSIAESIAEEPVCCCRAAiSQ6QTUW6YFdTLVrrrMlN17HPnXk+VFTmERPuyjzcbX/isojVD8J5mmYZi6Lp+ZmmQ1nMxJ1uNcmquoxXw0dNXLppWbt0HUXXeF6VbMretcVCx2aC8ysJ/p9oGtbn+tptytswFRii0MxxXzmscZSw7rBcgnPXZcZHWFwlZbt9syuL8prVufPSuOq71r6/ozshi/cyp66KubB18nARIgAT8TYFEjP68u50YCJBATgRDC9Javqt1jEtPBPLaRFng5geI+f/lneTGq09Bemw+jbYcW+vnmV4Ly53+E3BDJZE1RQzLvQXVWLxXvSTQbFUnRxXYSfb5EHv+Rx7WAVUAuv9iUt9GHNhZTj6XmjWq4q3rSV66xZe366n92d+xEpV14Y2+Hp1/DdQ04S2d8gAJLlS/3cqfXcGL1ROvPwP13l90U0Wsxf0/4Bpa2CSpB+K1GGBxDLnJdW/doD9kxI9DCJlDmwS03CH5DAiRAAhlCgEWNMmShOU0SIIGqCeiHW/0wqTlp+w9UvY1fX9XcOG3x8qMHay4edCM+eF+CSqWHkCf3h0dCrtcoWUy+8aUgxIcjf/6/WhREsgaUwvMMRAXZL94TlAe+669Yz59+JyhHjojMnhebKK3PEgRx+12r82plZXHiJADhGW3WNCxaz0CY1sdGoJeqtv/RYlo0EiABEshUAgzZzdSV57xJgARcAuoxaYUiJVOvQp9EtKTo3CkzwAwbYkiXjob88vc1i1H1Xl2Ioi0P/jGEQiyOfOeBIAq6xOkDfQyoX0YRnEEIj+yKsMtMN12HTVsTJ9pSxfc3fwm5VZX1mkyUaRTEyZM4erzEqA4UxypEP9P6ilE9xAq0gEncrPUMNBIgARJIfwIUpOm/RhwhCZBAggmoKFUPRddOhtuD88ZrTeneNcEnTeHhdW4TxpjyjydCbhuL6oZy3nhTrr08gHDeEMIUHXljuiXvw5OsoYzJsvy9jus5uw+tOjLZmjUVGXkO+me+5j9Bqjmd//5PyO3l2aN78q6tdLieHCynilJLmyDTSIAESCBDCVCQZujCc9okQAKVCagwzUYVzo4dDOS1BeSWG0zp1dNfH5BboRDLFHg9tQ+kVgqtzkZB/GiF3UceD8nmbWXbfYCWGx/OTa4oeg1tYLSSqrbXyFTTGwiHDjvuw48M1m9y3GtyymT0DY0UC/LjRKuY07KVtpj6y4dGAiRAAhlKIHP/umfognPaJEACtRPQj4baizAv15BLL9DWJ6b06+OPD4yXIRdUPTIffFR9Tuag/oaoR/JxtOfQvo+pttMlgvYallyDPqmZatp7dO6C5N4ISDbrmbMtWbLckSkXZtY6l+D63oiWS5rPTiMBEiCBTCSQWb/1M3GFOWcSIIF6E3A9ptmG2/rkovMM+eytpgzoV+/DpXzH8yaYUoJ6OBXbu0QPTPtcfuXeoFvZVnslRlsXhDTfdG3AbcXSo1tyBfqsObZb4ffOmzMvdLdPL0NatjDknffLr0f02vjl68eesaQYAk0LbmWSLYWXlII0k1accyUBEogmkFm/8aNnzq9JgARIoA4EsiFMtfjRBRMDcs8dpgwdlFxBVoehVrlp/76G9IWw+fP/1VzESPsuPvS3UKWw3PGoBPqdryPRFtM+esyR++8KuDl/VZ4sQS++hAJHWpE000xbvWxHP81MsT8+HBK94TEAVYUzxY4cFdmP/rI0EiABEshEApn3lz0TV5lzJgESiBsBzTFt3syQieNMue8uU4YPxYfmNP/cnAOvp3p4VdAdh+CszXZUED/t8+Ad/kxAduYjrBBOOi1s9Ld/W3LbjQH0UKztaPF7fw36TW7YbMu30BM1U0yvtzEjTXn1zepDrP3G4hSKHOm1qmHKeu1mii1ZbotWA6aRAAmQQKYRoCDNtBXnfEmABOJCIAtCoUljQ8aj2Mz9d5tocG+K9jpMR7t4kuaNisxbWL+QT+2VuGqdLb+H56pFc5G7bgnIyUJHAvgL0qhRcmf8yjRbIt7e5J45NWfT6+v4cUd24GZAJtn8RbYsW+VkVOjuznyR4tOZtMqcKwmQAAmECVCQ8kogARIggQYQ0HYxjRDOO3qEIV+4OwCBaiRdpNU0/NHwrpnwYv4fWrzU12zoWC28os9PoNCRFhn60beCsnGLI9qyQ3Ntk1X0ScMa351ly923JtE1W19wcdhvMm4mLFyWWWI0gu2fT4akSSMDUQiZ81Fl+Sp6SSPrz2cSIIHMIZA5v+UzZ005UxIggRQQUO9oEBpp5DCE8qJC7SQUEGqK3pGptHZ5IuNHGfLo0w0L91yMyqeDBxpuXp/O58XXLZk+04Y4DYvczh0Nuee2gDtvFeiJttfetqR5c0Muu8jff8K6dzWkLSo9Z1K4bsVr5/FnQ3LeBENycyu+48/v16H9TTLD4P1JkbMiARLwGoHAT2BeGzTHSwIkQALpSsCERlKPYV5bQ0YNN6VZU0OOoAiQehiTbVdcYrphjx/Pr1+obmS8pxFGmL/bkS+j+m7bNgaKGomsXBsO2c3F9+q1nD3PlmGDEboMj+ySFYn16Gk10lOFItdcHnC9pZFx+u35WsxP51rfUGs/8DiMYj96zQ0fYor2KvW72bh31AbzbdPKcH+P+H2+nB8JkAAJKAF/317mGpMACZBAighEvBza01NzLi9Bb8XWrZM3mBHnmOKg2tJ/XmyYdzQy4g3ok/jT35bKyVMiJ046oi1gfvmDLPnmVwLy428HpVcPww3n7dfblI7tE1/lSXtyqtD//B3+DN3VmxqaP/rmjPisX2Qdvfj8+LMW+gIbMmxI4q+rdOCzZj3DdtNhHTgGEiCB5BGgIE0ea56JBEggAwlEPKb9+4jcdkNA1GuZ1zaxIFq1Epkw2kBobf3zRqsa4fETItMgkE6c1Kq98ISiKuj/+3HIDQm+HRV3b7g6gHxa5JueqWrv+L/2MiqxjoTwbpzkwkrxn0nlI2qbnaIiR9Zt9L9XsPLsK7/y3CuWnIfK1s1RVMvvtnsPfoZKue5+X2fOjwRIoIwABWkZC35FAiRAAgkjYJqGmxvWu6chN18XQLipKR3aJ+Z0E+BZW4WQWm2TkijTkNlIjuwuhPP+80lLpkyGR+9dS44cDZ9Xv2/SOFEjELSAcTBPW77+xSQkriZuGlUe+SIUM1qOKrO0MAFd59W4nlWUZoKt2yBuuHYmzJVzJAESIIHM+M3OdSYBEiCBNCGgoZgazqsFa6ZeFZDrrzalc6f4Da5HN0PawQP78KPx9Y5WHOH7sy3p1MGQB/4r6PZk/cq9AZn5kS0zPgjnq35makBuujYgKo4jwrXiMeLx/Stv2qIif+gg/4RzdkKRqC54PAuvIK2MwN/+FXKvuZ7d/bPWZbMr/9W6jTYFaXkk/I4ESMDHBPx3W9nHi8WpkQAJ+IeAClOtSKsVaq++LCCHkQ+5eKkt2ouwIabVfd+f3bAiRrGcXz2kP3soJENQffdLnw/K4mW2W31X973yUlPGjjRcr2kfiMWffzdL/vSPkOTvib/H7/ARx/XK3oaQ4dXr4i/CtTiVCu82CIPW3NjWeM7JMdyKyq73F+uo8kiLD50pFSnFQ3Ns9x8UOQxP8TEUgNp7wJF9+2Of+yR4AffUYftY1ssv28z82JZJ4w3ZvjN2nl6c+0mExRfg2m6H649GAiRAAn4nYDgwv0+S8yMBEiABLxA4c8ZxiwYtgDDdtr3uIx4+zJDe3U350a+hipJkKqwnQkDNX2S7fUovmGi6uaS/+XNI9p4VVdddGZBOCE9+5PHEefx+97OgfIRqwm/OqL8Y14rB/XobooWoesELpy1XNB+2qNiR4mJBdWEHIlMgMh0pRP9VfUSb5rI2a4YqqaiQ2gYFrPR4zdD6p0kT9KZFbq1WI96xy3GrxW7aimNBcFRlf/lVljz1goVqxfWfS1XH9ctrv/helmzeZsuK1VXz88s8tdXShfh50jx0GgmQAAn4mQA9pH5eXc6NBEjAUwS0kmhuG5FLL0BBm7EiCyFMN22JbQrBLJHRaDPzHwiZZJre0tSKt2pjRphumO4f/14mRvX1zh3E7WF63RUBtKGxE+IpfXmaLbdcH6izIO0LAToKhZFGQsw3b2bIcXg3d+Y7Mh2hx8tX21IIT3A8rDmEqrYBUrF7LfKHc1oaELSOLF3pQFjZbj6snmc0GJbC0UsxWj31F14LyZfvC8raDZbrka5+S2+/s3mbg+Jh3p4DR08CJEACsRCghzQWStyGBEiABFJA4Ay8cyXwmi5cCq9aLdVWx42BRw8euQf/EP+w1VinfiEq7x48VL4yrPbSnDTBcL2j2ipGRekrb1quRzXW48a63XceCMqx447844maRXm3LoZccC7CikeZYmHTPXsdmQcPr3p5k2laoGccqulq2HYAXjC9AdG/bzgc9Ynnap5DMseZjuf67jeCchQh0Z8s9reX9KapaKPUjmG76XgNckwkQALxI0APafxY8kgkQAIkEFcC2QjzVK/p+ecaCIsVWQTBotVzK1qTJvCswcv3x0dSJ0Z1TLPnlhd0k1EpdvL5pvwa4bv7kUe5bYcjIQzxsovCIb4V59HQ71+aZsk3vxxEnqeF8NrKR9MCS3puDcVVL+g/Hg/By1aZZ+U9E/PK3IW26ENtxFBDLr0oIB0gPvRGxDiIZRWotKoJvP62JQ+guvKKNZYbTl31Vt5/dd0GW9rlBtxCaN6fDWdAAiRAAlUToIe0ai58lQRIgATSjoAWzLERI7t0hSDUE2LlrJY6H3lmmqP4u7+lVpBGA9M+mnfcFJDfI3xX8yYj9qV7ArLvgMjr7yTGA/i52wNuhdpf/L6MhYpQfWh48YIljuuhjYwnHZ819FgFqubnatXiDysI/fqO+Ytgr2HdVZn2O/0D1ipV9tPvBF1PsXqsT54KF4XSGxw1hS5/67+DrhiNhIynauyJPG828pK/cFdA0DWKRgIkQAK+JUBB6tul5cRIgAT8SqA05LiVXZehT6V6+D53W0B++ttS2b03fWasxYFUUG3cUiZGr0ebm/GjDYw1hEJBiRlrTkuR3/w4Sx592pKWLUSuQgXjkhLHrTw8a463PI7qXb4INxuaIbf1LfR3bej4td2QromatuTRKsH/eTF8Y0DFuorBVJkK0mkoSLUMN1paNBcZMsCUW28IyKvwhFb0vEfGqO2NfvmDLHn8WStuub6RY6fT803XIWwXFZ5pJEACJOBXAgzZ9evKcl4kQAK+JZAVDH84HXmOgUJCqP56HC1HEOaZTqZVZKPt0gtNOR8taTR8N1FiVM93/ITIux/act9nA277lTemW/LRPG8J0Qi3WWhxog/NzZ0yOezlfeF1S5bjRkR9LFpw2kBi4zAaQh1tKujvuDkg/fuYrpCfPrPMQ3v3rQEZNhjeeHjtCg478hrE4so14bFccYkpjRsb0iFPZGB/0y1cpUJRx63h5PnI09XcYQ2VrslUGJ9Ay5P5i23Zj3xkzQvWc2iF44p2sEBkDW7IaFGqj1Fh2a+2CTd1tP2L3lCgkQAJkIAfCVQdu+PHmXJOJEACJOAzAsGzH1C1x+WDP8ySb30lKN06p58nZexIU65BcaM/IMf1AERGdabeOy18pB6y+pj2Cv3KvQG3YNGKNbb8vx+HPCtGo+evHsLv/iyE8FVH7r41KPffHXD7oUZvE4+vlf9/o3rtfoRUf/8XpfKv/1juummFYLU16x156K8h+fZPSuXt92z5r7uDEjx7W7tNa0PORWGtpRDLWlhLw8t//O2gK1x/g312oQet9qeti2nOsbbG6dWj+mv6lWkhGToIbXUgkv1qtYl4v86b8yIBEsgcAvSQZs5ac6YkQAI+I6DeJPWeqBdt3iJB6xJTvv/NoGzf6cirb1lS0UuZqulr+4o//SNUY7uXi1AAaSr6lWrPRfUEqRh58nlLDhVUL2Cj56O9UG9Hzqrmq379e8nrwxo9hkR//TKKNunj218Nyi+/n+XyiWfho+5dDcmDJ+6xZyz0TzXkBLzN23barldUKxBr3nIeCkJpOK2GQ+taaWVn7a+qNn+R4xbe0q91WxMbvDsr7Lmcj+JN3/6afuSoW1zwgUOCcFU9YtWmYeo74HVVz+3iZf70kqrXv+i0Iy0Quk0jARIgAT8SoCD146pyTiRAAhlBIITP9torU63ktMgnEA1LlosMR0Gcr6MC6V5Utp02XSvzpvaDuoZbVlX1NrJImis4cawpT6GHqgoZFdraluW7Xw/KbxDiW5NXVb3En78zgP6eprzwmuXr0M0Ir9/C46hhvDcjt3DYYEOefik+lWZVbGr7GS1GFW3Z2Y57k+B+FNfp3s1wWxAdQRVjDftVUVqVqYc0+j39Xgtv1dU0T3T2vJr3Um/tvbgGFi+reTsvv7srX2TwAC/PgGMnARIggeoJUJBWz4bvkAAJkEBaE9h3wIYHsfwQ9YP/4mUOwjstV5hqhc7DRwLy9vtWWnqQNNzyQhTu+SXCPPMR1hmx2cj7bIyiO5+/IyC/+lOFRMezG2k/0S99PuBWWvWrVzTCo+KzhvHq4/v/E5Sf/G9Q/oneq1vhVW6InTjpSGGxI797uDLvfn0M6dPLlP/9aemneacXo+hSIq1vL0M0FHjr9ppvqKxEePaxEyYEm5HSNj6JZLEFDAb0ZfuXRDLmsUmABFJHILF/TVI3L56ZBEiABHxNQIsYrVpT/RQdfIZfvtKRfz8FoYIPs7ffGJBffC9LJo1Pr1/7V14acMM6o8VoZFYzP7KlC3JitaBLRZuAtjI//FYQc3PkZw9VFlAVt/fr9yrk16Gwz3e/EZTzGri2Gu6s4dLaPzZiWt21D4Sh3ujQ9yJ5y0MGGtI4AXmb6lXVcGANwf7yvUF54jkLbWAio6n+ee4CR4YibNevlr+nvMfZr/PkvEiABDKTAD2kmbnunDUJkIDHCagg1VzRWGzVWgdhu5YMggfp2itNuQoi8P2PLfkAgi/VpkWMNN+1KtMKsH9CIaSDFfJItXLrtSiS9CTEylzkJma6aa6t5lFq/1It8xaa+gAAQABJREFUQKS9S+tjJbim/v6ohcJJgU8LEAXQAPPx50K4fhwIX1v+8IssOQNxunGLHfc2Mdqj1rYDrgDdh3BzDeFeviq2ubw3y5IrUem3cyeRPWnU/qg+61DVPnqDSQs8tUVYNY0ESIAE/EaAfUj9tqKcDwmQgO8JaPsOLWazFFVX62MafjlquOnm+H2EsE8N502V/QBFmLTwzeLlsQkPbUkyBmN/+LGQbK7QWiZVc0iX8/buacgXPxcQ7U/73CsNW9OmTUSyssItWDSnN2It4L1UcXSqMPJK+jxrq59WOYa8/2Fs11L6jDy2kYwdZcrYkeH+vrHtwa1IgARIwBsE/Bvf4g3+HCUJkAAJ1JmAhk5q/8X6mlbmfe5lSxag1+O5Yw35/c+Dcv1VOGgKbNYcG61Fwr0tazv9XfDcjUDBpu+iJQnFaGVakfDlc4YYcieEe0NMe8VqdddoMarHO4keoekoRnVs7+DGiuadBnwa+7Vrty1ayIxGAiRAAn4jEPgJzG+T4nxIgARIwM8Edu91ZM26+gvSCButfLsWwvYYhIcKvakQpTktk1sYRnNH27cz5DbkuKoAKixypKQkMsKyZxWjQxByrL1FNZSXVjUBDeXW3FvlqeHQK9c0/Dqp+kzp96rmmmrPW63+W3A4/cbX0BHpjYBxyJ3WfrE0EiABEvATAYbs+mk1ORcSIAHfE9D8vfcQ4hpr/mhdgHRB/t3Ic0z0ohS0jwnn8NVl/4ZsO2aE6eYtqij9yz9DrqiIHE/bwqjQ+OYPSyt57CLb8Lkygd/9LOiu4/Noh5MpdvVlARk9wpDX3vJn2O4t15vSLo+KNFOuZ86TBDKFAAVppqw050kCJOALAuodfOSxxAqMDh0gTIeaboVbLSqjxYNKk+SVVO9PdJjo1VNMueSCgHz356VuexdfLGKSJqEFjn6Oysrvz7YQzupPgVYVyocfypLnX7XkBG5u+M3GjTZEb97QS+q3leV8SCCzCTCHNLPXn7MnARLwEAEVapu3JT4Ec/9+zcez4WWypE0rQ/7ymyz0+wxKi+aJhxUtRrW1y5TJAfkrPKbFyGmk1Y2Ahnj+EVWKp1wUkHPHZM6f+127HenX259exL37HeaR1u3HgFuTAAl4gEDm/IXywGJwiCRAAiRQE4HSUgeCtMzT1bhxTVs3/L1DBeJWwH0RIZ9NcK7f/zxLvnZ/EH1BG37s2o6gvS/vRdXUF19HH9UdiRfhtY3Hq++rOHv5TUvuuSMg3bv6U6RVXJsFS2wUN/Lnx5t9B8p6wVacN78nARIgAa8S8OdvbK+uBsdNAiRAAjUSMGTnrvAGrVqJfB4iY0C/xIuMI0fF7Vn6nxfDocIP/jBLvvWVgHTrnJhzB1Eg9gsQo/MX2TLnkzIBXiMavlktAWU4D/1atSVMo0bVbuabNz6aZ0vz5o60bu2bKX06kRByyIuKeYPmUyD8ggRIwBcEKEh9sYycBAmQQCYQ2Laz7INor+6GrN/kSKcOYVHYtKnIpRcl9le65uTph/3HnrGk6LQh3/9WUL7zQDDu4ZGfvzOAD93inicT1jUZc3wCecCFRSJ33dKwdjDJGGs8zrEb1Zt7dEvMDZN4jK8hxzh8pCF7c18SIAESSD8Cif30kn7z5YhIgARIwJMEtJ3H9qjQ1Z4QpEuW25LbJjwd/b7gcJlgTeQkC5GbOG+BLY8+bcmRY45840tB+QHE6bDBDf+Tct54UwYPMOWnv01SFaVEgkqzY//i9yGXrTL2uy1fI9Krhz8FqbZ9cqKTrf2+mJwfCZCA7wn4/6+S75eQEyQBEsgEAllZEKS7woKzSZPwjLXvolbbNExH1GMa8aA2R/GhdnnYxigTqG0QvhjZL168Sk6LLFziuMJ0Hwoh3X9XQH7yv1kyBi1a6mNtcw2546aAvDwtsVWE6zM2v+zz+juW26O0ZQu/zKjqeXw4x5KO6G+rPzd+swMHHbFsf4ptv60V50MCJBAbgfp9aojt2NyKBEiABEggTgQOHMKH0LM6Tb2hkT6kR4+JtEdfwmYI2T1+XKRfH0MuOs90vUNaoTYQFDdv8NyxprtNnIZT7jClyGtTb+2/4TFV0XznzQG33cikOnribplquqKaeaPl8Mb1m9lzbdmBNVLh72fTiIKD+JnpjN66frNDh8M3ovw2L86HBEggcwlQkGbu2nPmJEACHiGgQnTr9rLBRntDDxU4MuocU7SaqnqDRg03ZPpMWxYsdpAz6EhbhPS2byfSrYuB90zp1LHsOPH+ykH9oRXoW/oYhOnGzbZMvcoULYB08QW1/6nROfTva8pDf2WobrzXpeLxlHHf3qacM8TfXrYNW2zkkdZ+7VXkk+7fl5SI6E0gGgmQAAn4hYD/flP7ZWU4DxIgARI4S8CyHNmzr6za7MeomnoMnlE1zRvVXDkN1w3CG6qFh0JnNV2jbCMc0ou43jUbHFHv2CmE+UabhvtWZc2biQQa4ERbvc6Rp563ZdVaWy6fbMqvfxyUKy+t/oA3XWfKh3MZqlvVWiTiNa26e+M11a9HIs6Z7GOu3YAbMZ2TfdbknO/48ap/bpNzdp6FBEiABOJLgII0vjx5NBIgARKIOwHTNOTAwbLDquiMmPYlfH+2LfuRV6ZeE80T1RzSPPQKbZUjoqG+rkd1hy3qWTlxMrJn+PmCiQHXg3neeENaROUVTj7flBY4TkNt/UZHnn7RlqUrHJk0wZCHfhaUqVeWF0KXXGhKAH+NXnurTHQ39Lzcv2YCr6A3aTY86hdO9O/HgGUrbWl69uehZhree/fAIe+NmSMmARIggeoI+PcvUXUz5uskQAIk4DECKiqrMw3n3YD2L+IYrmf03Q9smTDGlEH9TZn5kS0Oip9oQaO9+6o4BooedUYIr3oxd+Y7cvVlputlzcoWN9/0GHJS42Wbtjjy/Cu2fLLIkdEjDPnDL7Lk5uvCwvRqeE41zDidTYtH+c1m4Fq59oryNwf8NsfDRwzpgOJGfjPNj41EQvhtbpwPCZBA5hFAgBeNBEiABLxP4MyZcOVJ9bRp6GqkAJB+7WUxYUGn7d4b+/po5d33Pywv7gpQBOXccSaEp+OG9EaOpsWQ9L1DBeFXSlAIxgC/7sg33YmcVLWhgw2Bg1a2oeWMHruhtnW7g3xYR7qjR+TIYYZMmZwlx084CNctP+aGnife+6twG9gPoc/rbTwcV8B7vfPGbPSUvQzh1Fddasrb76c3//qu57Zdtturd8u2Km7I1PegabDfUfzM2LbOyX9iOw3wcggkQAJJJkBBmmTgPB0JkEBiCJgBQ55+yRLtkdmokUjrVhqyarjPebn4upUhzZsZ6N8n+CAnrshSsZruZiEfdPfehomFjyA8tLCRhuxGW3RxJGWmfEpLNcQX4nVd+Jz7DzjSsqUhGla7dIUtu/Y47nYVc1GjjxvL1ztR6VUfn7s9UElAx7J/sreZ9bEF4a6eZ0Ougzg9hets7YawONXneIj1ZM9Jz6ce9asv968gXY/c6Wuu8J9o07D9AH7n0UiABEjADwQ88HHMD5g5BxIggUQT0I9mKkbVVHjtR26liqkyC3+t/RdbqViFyGrbxpBciNUcfN0Ygqz0bDGgrDTyqmrl3IgHs2wudf8qOgc1snf3rmCg8weTrp0NWb7adr3JeehhqjmpnTsZ0runKadPa1ElR7pgm127Ra6FgHn25bBg1cJHEW905LixPg+Ax/E0epnOmNUwwR3r+RqynQrO+YtsPESGDTblkcdDbm7uRHie77o1IPv2IyT5VUs2e8wT99F8FJ262BRtC6Tz85vpNX3vZ3GR6i+I6F8HHp9oUREmQD3q8VXk8EmABCIEKEgjJPhMAiTgaQJFxbF92tSiPvrY5X46LdtHvaVaBEi9qipY83IhVpF7qdVmTYSxWla4Ym2yQ4BVCCWixUNOS5FiiMH3EN6rLWHy99hu4aQuEKH79oc9yJMnmfLWu7ZbbXfSBFNWrinjpReL9jideqUp2jf0oBZZQU6qem3UqxuLDRtkiAoir1lhoSPa/3UG2ooov/GjTLntxoBof1ivCVJlv3Cp7RY38qMgPY2bU8fx894BEQJ6k8pPVoKf36boP0wjARIgAa8ToCD1+gpy/CRAAi6BhoZMaoEQzafUNiphizyHP/SpWG0dCQFua8CrGg5xDaGokPbfVE9hQ9qkVLeMWrwkEaahy0sQgqve5M1by86hoagr1tgIazZEU9T0A29xMZ5RrVR7naqpQFbPrVbiXYuQSBWjF6Baqwp33W4Tjhd9zMj4p8AT9+4sBWa4IcQaCjzjgxjVa+QgafCsjDQM/JwhplxytsfqG9MtmbPAe+Jacb7+DgTpeQHXS56PkGy/mYa36s9u+YgJ78/yFG6MNG1KN6n3V5IzIAESoCDlNUACJOALAuqxSpRpeJw+yirVln1od8N/z3pWNQRYQ2BbNDckG5VqQ8jH1Lg6FW/1Kaykua4HC8rOFc/5RTzFFY8ZXVn3rRm2DIEXMwivp74eqepZCBYqQE+gsIpW+O3d05COHUTmQZDtgXf1mimmK0hbQrSfg6JIGgqtYlbbjKgYVevb2xQvFprJxRprvu3Xvxh0Cxu9Mg0tbdBeRNfKy6Yh2RMRtvv8a/7rBas9fLXStN9Mf4bbIbyeRgIkQAJeJ0BB6vUV5PhJgARcT55Wak2FHYMQ1kc4Qa1sDNkQLa0gyDQEuA0KKmmuam4r7REaVVgJHkX1qlYnVjU3s+BI2TGTPb/j8CzNW6Dnd1B9V5/DYlLDIFWUfbJEVZghmou6eFm4+NFAFP1RMa4i/PqrAjJ/sS1nShy56DwTnteyuWjF2r8/6h3vqK7T/XcHZDi8oqtRafc/LyJfNMqznOy1iff5Zs2x5Y6bAr4UpFohWm+ghH9G400udcc7eqzsZzJ1o+CZSYAESKDhBChIG86QRyABEkgxASuEdibwFqSTnYFo01DWcMhtmRDTMTZvHs5X1TDCNq0NN/xTw1c13DWSL6q5qiqCtPjSyTaOHDmS2tlpP1M19YRqBWMN84x4Ow8hzFk9UCpK16IliorXfvCAbt5my2b0H1UbM1Jk+87w1506ofAUCiWt21iei7thmv6nHlANC//Rr0JSU1/YNB1+rcPSCsoqSLXQlNvXttY9vLOBCtLrr/ZfaOsx3DDS61JD5WkkQAIk4GUCFKReXj2OnQRIwCUACSSFReqt84ZpyxR97Hbz9cpEmStAoworjRtpSg/06xwzwnQ9juqZ1H6rGjJ75KjIPlTCzUcorFaqTZZpAaTpM+1yhYtWo7+pekavv9p0K+5qmxn1kEbCqFVoq7mVQfHcu4cpW3e6L3nmP825fRpeUT/bAVxPI4eaEKT+mueOfMf16Os1Gbnh44d1LCzS3ssOBKn/xLYf1odzIAESiJ0ABWnsrLglCZBAmhJAEKxbMTZNhxfzsDRE9zA8oYcRppvXVmToAJGfPRQOa9UQ2fZ5BqqFar6m4VbGHTkM/UFRWMiCFtfiRCUQqyfhKVaP5V7kcoYFb8ynj2nDhUvKBHT0Duvh7Vy/SYUockbPiGRD3GjRI/XgaOXeiHdU9+nRVeTJ5/0leqJZePXruQvtcEufV7w6g+rHrTeAWiAyQW/k+MWKUGxMb5TQSIAESMDrBChIvb6CHD8JkIDrIYh43/yCo0UL9fqWzUYFpxYGilS6LXsnHP7bHkJVBWuXjoZbLXVA33AlYK2QWwKBqL1Ej6IwkYabagGbhIQAo2CRilE17Z064wPbHZMKZg2bVNNCR02aGLJ6HT9Ju0DS6L95EKTavkYLN+lNET+ZVqTVyth+EqT6s21Wl4Dup8XjXEiABHxPgILU90vMCZKA/wloDpUKNj9ZC/Q/PXEyNlGgFXCPHXdk4+by2ysXFakqVrUPY9fOBsJlDRmHvplZ+O0fHQJ8GJ4jbYvhhgDHieVxjOs4xrXpbB6pro8KZr+JHT9dd0eOOqI3M+YtLH8teX2OWvSsJW7y+KmwkfYR1jB/GgmQAAl4nQAFqddXkOMnARLwVV5YZDlzUMyooRV2NVx2H0SmPipaM/QXjXhV3RBgiNXRww259EJTtLdqJARYi0Vpb9Y9+0T27K18nIrHre37Du2NT72ltW3L95NPQG9K9EDV5HkLk3/uRJ5Rb4JoOyY/mfY/1jB/LYBGIwESIAEvE+CvMS+vHsdOAiTgEih1+336C4YKxm07EjcnDQfWMNpIKG30mbSfant4VN0QYOR/ag7oIBQtag6vrXplzkSHACNXdDdCgI/GmJvXsb3IgqUNF7bR4+XX8SOwHn1lL5rkv7KtR46Gc6/95CHVVT9TSkEav6ufRyIBEkgVAQrSVJHneUmABOJGQD16fjMVpCeR95YKU89sAYorrd1Q/vzZqFIa8aq6IcCouNuvjyETxprIZQvnqmphpcJCFGbSEOCzVYCjw6lboyfr6nVw7dDSksCiZbbcjvYvAWhSzf31ixUgFLlZU395SHVt9OZQpIq1X9aK8yABEsg8AhSkmbfmnDEJ+I5AMtueJAteo8aaF5qss8V2HvXG5KNVjT4qWssWYbHaATmrnVAFWPNVx40y5PLJ5qfhv+hQ4Xp0tOIpLT0JqOdcveB5bQ33hkJ6jrLuoyoocCDc/CdIw9Eh/ptX3VeYe5AACXiZAAWpl1ePYycBEnAJ+NFD2rSxIXv3ecdFpbmmWoRp89bKYjXsVdV2L4ZcMJFVWNL9x1b7W3ZGmLZ6uP1iR1FcqzFaJ/nN/Pi7z29rxPmQAAnUToCCtHZG3IIESCDNCWi1WL9ZVjZaVBzzx6wOQNgcOBjOSY21crA/Zu7NWagHOy/Xm2OvbtQabZCFkHO/WSmiFmgkQAIk4HUC/qtc4PUV4fhJgATqTEDzqPxmmsOnVXL9ZO0QBqqeKlp6E9AWKX6rSBsRbqbPHPShUHpfSxwdCZAACcRCgII0FkrchgRIIK0JaOuDWC2AuBCtFmuYsQujdnkibavxGOlx+qNvo1mH49U21kYILSz14QfNli3h9Y2xGm9tjPh+4ggcOyHSKidxx0/VkbVIk9/6dmpeN40ESIAEvE6AIbteX0GOnwRIICZPYu+eqAY7xpDGyM1Ur4JWptyNvpqfLLHl0KGaIQ7oh96caC2j/TgrWgDlZS+7yJTtOx234mXF9+vzfTbCdUNnP2iOHm7KF++p3q3z1f8tdYvQ1Oc88dpn6pUBuXqKKU88Z8ncBdW7dbW36vad1b8fr/HwOA0jcBxe7A7t/He/2u3ZiR8lP2k4P0aHNOzq5d4kQAJeJEBB6sVV45hJgATKEajNS6A9NMePMeXdWZbs2RveVb2QQwai3ybCSA8dqiw0y50ghd8sXWnLF78ZFnE9uxvywH8F5evfK/tInQ4he+NGG7J4uY2qumaNgrQRhLZWcKWlNwH1kGrbIb+Z40MPKYsa+e0q5XxIIDMJUJBm5rpz1iTgKwJODXpSQ/Qmjjflwzn2p2JUJ6+9MZeuKNtRc8smjtW+mqbo8TZssl3vqWNXbqnQo5uBYxpunp0W7Im3GThlyAofV8cSEZ0WPLvR30fOm4NQ2DtuDkh/jL2kxJHpM235cG5YxI4ZYcr1V5mi3smiYkcWLHHk1bcs9zhXXGK6HuMOCEke2N9027k8/qwlU9CqZfQ5+B4e5FfetGRnfvVz7NXDcHtWPv+qJb/9SRbOI3IcgqYqa4xWNkVoK0JLbwLaRkl7zvrNLPQd8lvIrq29lKTy7yi/rR3nQwIk4G8CFKT+Xl/OjgQygoBdgyLNQS6ceua2IaS2JhszItw/8613LfdD64UTTTldYsqyleX30+NdDiG3BB5BFa25bUS6dKo+pLamc1b3nooBx4ntQ6aK1/++LyjrNzny1POl0hE9QL90T9D1WJ4qFDl8xJFHn7Fk/wHHFaVfvT8g23fpvGxp09qQ4UMMeWmaLa+9HZJbbwjIj78dFGXwm7+G5DwI+SsvNeWRx6pP0lWv6OLljitCteXL2JGmvD+76rDc2GZUHZX0er1vb0P69jKkY3vD5Zheo2vYaFrhpkJOjiH/76v++oiQlWWI/lzXFlHRMHrJ3TunhZ9+qpLLjmcjARJIHwL++muTPlw5EhIggTQh0AIFjLQtjH1WU2nxoXPHluXHbd/luJ7TQfAQfrLYdtuT6NDXrHdk6GCjkiAd2M/ANg4EaVioprrlTHf09sxD2PFjEJ3NmhpyAt7JbcjTHDbYlPmLbFeIN4FnUgVUm1aGFEKkdoJoXbYyvEDzFzmyaGlYQGp4sGlqaHP4+/kLbfn21/TPRNWCFJvKWHhg//R/4QpMi5bZcv651QvS8Bm9879yHYiCVRoq3bm9LXktTru5x4EmTcQpLhTr4D6xd20Te89hJCb6p9Sz2am7BPsOku7Lp3tnsWIYaXaHG6Xj3pXinPFPnyizFe6ItR0Vw+y5CQmQAAmkLwEK0vRdG46MBEggRgKmugmlvCczsutJ9FRUQabVdd2QV7wRybvq28uUwiJb9u633cq70eG3+yE6J44rE66R42no6979VZ8rsk1Dn9WDYxixnSMvNxwye8dN5b202dnh/XUO6vlcuwFiG8WbNMJPhWRVpq0xot/T79W7XJ2pOG+CXEP1io4diUJR+FrDmdvnQbRXkZcb24yqO1tiXg8C22DkEvfpaUrXziIdW5dIiyaWZDWGmxqXlV1wEIJzh1hLt4i9b5cU7c3Hc74rSBMzotQfNWviJRLsM1BOv/RY6gcTxxE0mnKDlC6bL85x/5R6zp50WRwJ8VAkQAIkkBoCFKSp4c6zkgAJxJGAq0erOZ4WaNFKlP3gIVy/0RHNCV2wOCyN2rYJP+tr6ulsDQ/i0WPh1zSctai48kE1BFZFaXUCuPIedX9FI5CDgdhC8U6cdKQQuaG/e7jqPjE3XRNAyG1I1mHuas0+U1641n10ZXtouO4GhAqXnHUO6nP+HkfGjTZl2vTKXlXNTVTRmgpTT3L/Pob0wHPndiFp0+yMNGpsiglvp320QKx9u8XevkWsOdvlDL4+DdFpH6ml/HIqJpKEc5otW4tz2ofJvnpXqpobV0nAmphTGNXcXUrM2XhUEiABEkgIAQrShGDlQUmABJJJoKYCLBqqOw+hq5oPWVKiIawIR0V+pn421Uq7EduB0N0B8PhpKxgVuCpg9bWKpoJryEBT2iBS7shRR/rAy5pK0zFqoZbJk0yZhcJNaprX2Ayhylu3QyyiXU02cuf0g3huG4SfwoO5cm3lebk71uG/LDgQR6Lw0a//FHKZRXY9VGC6LWCmVRHtqTcGtN1OoqxlCxENvdZCS107OtI+ByG2jR0JNm0MgVUcDrHN3ybWbPV25sspFaHweOIuRaKG5MnjGnB7Ky+/mVHTnSuvTlZ7RNFIgARIwOMEKEg9voAcPgmQQPkw06p4rFlvu5VqJ00w3Z6h2nqkMcToHoTeqgBVm4d8Sa06e8/tUHfQbxq+uwA9SivawYJwP1INkVWBpf1H42163GCMVU7VK/n3Ry25+9aAW4BIx6K9UR9/LuRW0p023ZbP3xGQ0lDArbJblde3PuMfPsR0BXmEX+QYK1bbctctATd0t6KgP3bCkbYIMW6oaaiwFhTq1gXeztwSyWkakqwmAIZ4Y7sAeZ17d4q1cjNCbXdKsXo6ITydIsRu02IiYHbuLs6xI5W23W0Z0tZ0BK18vWl6F6XEZ32HXK+vN5eDoyYBEiCBCAHDgUW+4TMJkAAJeJGAVpidWU1l14rzUYeCekZPFYbDdyu+rx48/aVYXIuDSD2QmmOp4jERptVw73sAJ6iD6dj1M/eJk5hD1G/2LNx61KqpGm4c/XodDh2XTVXEa6GgP/2j6vDi6JN0gJd3gBYUgke3S3tL2rYocVvUBADePnpY7P27xdqJEFt4PNXb6T4OZ2aIbTS3eHzd/Gd/d9kWP/qHcof79olGkm+Z0gKitJM+AvbZZ0QKBG1pGWPec7mDJvGbVi/OlcLffqf8D0cSz5+IUzW66jMSHMKiRolgy2OSAAkkjwA9pMljzTORAAkkiEBdotZUQIZFZNVunlg9iFqtNpFmwzmrBYb0OVZzx16FkC6F/is4HKVQYz1gnLfTQkd94NmMmN4YGNzfkN4oKNStsyMdW52WZk1sCWoVqlCJ2Af3u4LTmrPJFZyFZ4VnnaBETsbnmAloDmnp/j2Vtv9tyxK33vIBeEr/50Rj6QkRugf510tK4Z1vHJKxWZXzhisdJFUvaKNhC+NL5R2ZRMw9OyrvIBHH5zFJgARIIAkEKEiTAJmnIAESSCwBDb/1m2kobptWEJKVIyc9N9UhqGLbuydaqPQzUYHXkb/95LRkNw6KiTsJ1mFUsd27S6x1G8XevSNcTAjC0ylkiG3KFloLPRXsr/L0kHWSjXsKKj1vblwq6DTkCTPbtPVVu5cIdM33pZEACZCA1wlQkHp9BTl+EiABVKT1H4Ti0wiJ7GhCkNbBRZpCDF06hUNstZpt53a25DbXEFvks6Ksrn3imNgH9iCnc59ktZsghX/7oZyBCLUhRmnpR8CA101DoauzvfCQtkLIbkUxegrFwt4rCchheE3HZNkyPI08poFuvX2ZR2wEEKNPIwESIAGPE6Ag9fgCcvgkQAIoUATh4zfT2iutctJrVs3gjNEqturt7NpJ3Cq2boituqhDZ+BVOyDW7u1iz98sFqrXFsHTaeEhpWWJtq2enS3Wjk3inEQ/HlraEVBPotEUebpafbga22ubbu5oxbd/fSpbeiKvdABCeadDmKo4/Xbz8Nq/XRKULSHknyLPdBDeH5ttSTLrUxut4SH1YysbeLNpJEACJOB1AhSkXl9Bjp8ESECCQY/EDdZhrQrRBjLc77QOO8VpU215o49u8HZ2yi2V1s1K3RBbA9WRLPTmVLFir4fo3L1DSiA4VXg68ILGYhYq32ZNmCxn3ns9ls25TZIJBMecj4JRlfNHo4ehHlItaBRty5BHqnZLk5A0h+g8D4LzrmONZReKIHXDtq3w2ih4TAvhRZ0GcboQ2z+AXrBq0/F9F9MWPeJJvD8C3tVm9SiQpGHE6HIk+uug4ocbo2UrcU6h2pfPzMhi2xefLSmnQwIZSaDi7+yMhMBJkwAJeJuAVpH1m6kgzctN3Ky02q22T3Gr2HawJQ8Fa7SWUAClem14L+0De8XatVXspVulFAJUhad9cG+DB2RtXitZI8+lIG0wycQcIGv4OAmtXV7jwfchJHcYvJzR9i68ofrKL+ElLcT7OQjpVYvUU54IgVqMl0rRU+kcCNP/OY6LDZWq1eacCchBKyiDIERVsD5RZMg34Fn9GK8XwBt7cXZIzsX+1dkZHPeZ4iyZje1VFus5B2J8N6PQklb/VQt06AJBetz92lf/UZD6ajk5GRLIVAI+/BiXqUvJeZNA5hLQVid+s+Po2dmhXcM8v0H8hh88wJA+qGLbtbNIp9Yl0qKphSq28KpYIbEPIcR2zw6xF2qI7a6yENszJQnDGdqwUhrdcHfCjs8DN4xAoFsvOb3o4xoPsgdezymNygvEEISmCseLz75+HKJ0Lx6d4PnciFDdvxRmuyG6jeD5PAHR2TjKA6oe1x+3OOOG++qJv4n2Ms9DYF7VKCQBw5bHirLcQkqjq8lJ/WtRtpu3qlWA20MIay7rhxDIPzrZSJ5oVezuG2jfKRw+XuPMPPgmq+x6cNE4ZBIggYoEKEgrEuH3JEACniOgrVG0hUhJ4nRU0pmcRFuZfi1iE6RaSKh/H0N6dENBobyQtIF3qVHjgJiAYiPEVvM57S0aYrsdns7dUoTvnRNHkz4nPWFo3Uppcl9eSs7Nk9ZOwGjRCmu0otoNVYaWwCOpQjPaRkIsvovQ2/HZ4XBb9ZCq6GyES/hZiMvLIC6vg8dS7RN4MjWnVE3FaREenSscbyq21RBftaVZpmirGanixpPmpS7F8R7OOS2tz3plNWT4Guw/GB5XrQjsWqs2Ym9Ydfab8k/rjp2S367aJp2bNpYuzRpLn5ZNZWL71tI0zaulGY2biqG//ALhcOnys+J3JEACJOAdAhSk3lkrjpQESKAaAvqZDMVc/SVITzqiRYQiltMSYYhom9K7hyFdOjpuQSFE17o9O53iQrEQYmsjxNZaCeGJ8NpTGmKL19LNtJ2I5ptmT5oiZ+a8m27Dy+jxZE26DMWmjrsVkasDodLnUfSLrWiXQ3AehGj82vFGyBl13PDcjnjWPFEVphH5qs/rISI7nhWP6h3NxdcR4QitKwcQptsxSqCqt7U7jlWVLUYu6mAI14gYjd6mV1Seq9msRbU3YfYUnpY2jbLl9t6dJL+wWD45eExe2L5f/jBugLRM53wAFJ9ybEsMCtLoZefXJEACHiRAQerBReOQSYAEyhPQj6qa/5gan1/5sTTkOw097thepB3yO9vkGtK8mSN//2mJZDXBr2rTRIgtRCeKAlnLNiLUdqcUI8zWrWKbwBDbhsynun1Ll8yV7MumUpBWByhFrze5+V64sEsla/yFUrp0HhI+S2MeiQrVe5qWyq1NSmUnQnq1gm6Xs4JQPaMPI2T3PXhFdTsNZLgSAlatYoGkIxCfIfxAt4sSoJqzenmUQHV3PPvfcWyrYbq1mdEcgvR41b8h9hSVSPfmjWVw6+buY0qXtnLn7FWy9USRjMjFnaA0NbNZcxGn9rmn6fA5LBIgARL4lMD/b+8sAOQozzf+zPruadwT4kKUKAmQBIJLsFKCS6E4hVKjpUJL+69AW0qxQvFCcSjubgkSgYS4u1zO9lbn/75zksvlZO9u925n9/na5XZnvvnkN3uXffY1CtIaFHxCAiRgXwKmiDf1zbPHh7POkqyom8SHdu4owrNAMpDKB3mvzxDh6UGstFTcbLcD2zfBDI5C5K6bEFz+dYMfpu14zyxBOvUwOy49o9dsiMCJSb1Y//k/QM61v0N08VcIf/A6IvM+hLlL3pMJNL/8GmrZl9pNy7z8XVxqt4uw7CTW0iViIe1YJSJDEns6oJb4VIHaVc5VfzjRkbaIwO1Zq0/tsS2BKy6/jTVn/6FS8qVCHsF6u20sr4BbvvBZLgK0o9cNdeF1O6SubmFl1qV523cjLG4YEzsXYFdIsk5LH+3f7k2svhB+bCRAAiRgdwLVf/Ptvg+unwRIIIsJaNmXvNz0EqPiTYceXTVTrgOdOpgolNIpOX5xTfS7YYoVKr67CKa4r8aXi/DctQ1REaFhFaLiglfdfF26wejQKaPEqO4tuuhz63O0e9IhiDSRQKeaBX+mloBr1HiJ0fQg9NQDlRPJc8+0WfCdeDb8515luX9HPnxDxOn7kn15ZbMXox82uleJ0FES21ndjq6ylFa/VtfbE317LLNbRcSq5FK33vraATLWP8rcVnbehkrFuIaPli95ttZ3uXVsQ1kIhV4X7v52HdaL+24wGsNvxw+Gv8oV9tNtRVhSVIZ/L92ACjl3dJ8uOH1AD7y2YTu+3lVqCdQje3W24k8bnCQFJxwSF2to5jI2EiABErA5Af4ls/kN5PJJgATEm1U+seZbCYDq/9CaSkY9e4h7YRex/Ki1MzeK/JxoZUIhSYgSK94NU0SmKbGc5o6tluUzKOLTDEpNlwSalllxDt4feOO5BHrbq0v4gzfgPepUCtI0uW3eI09BdOG8PauJhBF+5yVAH9LcE6bBfcgR8J4wB2aoApFP30Hkk3clAdKXe65JwrPeYgnt7dzzpYxaS9W62pA9cpzEjw6X37VflXjEXTiKPuImrKVjtJTM8SJ21RLrHDi8wXjqmLi8bg6G8OPR/cVt1y8+Fia+2F4sSY5W4Y8Th6JHwAsVrAd2LcR3RYQ6DQOhWBwvr9+GtzbuwBEiRDeKy+/P5i3F/00cYiVGWl0axAtrt+IIcf1dLNbWAXkBjOqg1szkNkehuFqkg6U2udviaCRAAllIgII0C286t0wCmUigY4fU7aqwUKw7VdbOahdbnyQU8siH1Xh5OWK7doi1cxOwdgviIjhDKkKLdrZ6QfEtm6DWnUxs4fdeQe4Nf8/ErdlyT66R41DxZJV1tJ4dqNuuPrQ5h4yEa8wkeKbOkl8CL6JffozwR29Wxp1GqyuP1jNICw6pEO3SgHVUh9PzP5Ks0m9IfOqLFS6sE5dfTZA0UNyEC6uuc/bsg+i3i7T7Pm2LiNG4iFIVntrUHjteXHO7y+ulxWWVglRcei8Y0tsSo9pHvwB7evUW/HT0AAwpqHTr3R2J4pX123Gh9FtdEsS7m3eiVKyp3f1e3L5+LQ6SrL1nStKkrRVhPLJioyVce8kcPSWzb0/56XU2JLl1xvqb0VkCztlIgARIIAMIUJBmwE3kFkiABCAuu62jIEk20b27JhSS+LaOQEfJDprrl7IRPpd8RDURExfbuFg5sUYSC2kpFRGd5WrtbEbil+auUC2kjoOOaO5ltugfW7VUytGssdxBgw/caos1Z+oivbPPEhdyya4rmZkTabGli6APbY4efSzrqf+Ca5Dzw5sQ/fpLhD+sijst2pHIcK3uo1JOy8roo77m6NS1QQupJjQq8LjETVd+1z2VolBjSteIlbOrz4MyEZW7w1FLNFaP/dWOEiuGtFqM6vHOEle6JRi2umyQ6w/t0QmXDu9rvR7fOR8PLd8oglT+TrmdOETEqc67YGcJ/iVuwrmSyfe2A0dYfZfuLsMicQPuInMf1L3QEsjWiXr+48hN34RL9SyXh0iABEigQQIUpA2i4QkSIAE7EdASKIm0blICs6smFOogbrYFUeSJm58/4IRTPlDGSoorEwppNtulWy132wpJ5mKWFicydNL7xLdthmYH1VixeBIsrklfYCsHDL/1AnwnnwsK0laCbOXlXsl4XDuWV91Y1TU1kaYiNvS/xyq7SuC0Z8pM+E46B/7zrrbKx0TENduKO123KpHhkt7HENFmFMjvj3y5U19zyT57iJXyyk++QURccVUcloi1c3bfrhhemGtZSQs97r1qksbkCyqNM63dVGAOyKv8I6RlZIZWJUTSPpoIV8fUpnGpaoGViF28LjGomjDpx6P6W+c+2LILj63chCldCvHlzmI8Jx4Xeq6rWFnrbRSk9WLhQRIgAfsRoCC13z3jikmABOohYErcWI54z5WVAbliLe3RzZCEQhLXWRhHh0AYKljdAQ/McBgxFXfbt8BcuskSoCG1dGpCIf3kmE5N1hOXdbomHITwG8+n08qSshYVpP45F8Nz6HHQ52xtT8AjtUcN8T+3Ek3J9CtLyvGH+SvxszEDrNjHZq2ovGyv++iePB3uGUfDO/sMK8Nt5BOJO/1M406/atawrensHj/Nyhzc0Bha1qW6tEu5iEy1iOaJKPVVudDuDkVrhGb1GPuLUA3GYvhMkh1NEvGozDS50ZUj+lldNKb00J4S31nVNolbcI86ovLZNVssF9+bJgyx3Hr1S4DHRYz+RNyA++RIDStp//hmDV6XOFV19a3bjDwR2un296ruIvmaBEiABBIkQEGaICh2IwESSHMCZhznnGqKi1scDvkwGZOag6a41mLjHhfbqFo7Gyj9kK67i61bAfeIAzJSkCrziuf+A9+p5+8lZNL1XtRd13qJV7ym2CfvucriG14paaIlTi6RMj7V8Yt1r0m31z6pPapCsbo9uWozBuUHrGyzmoyn2hLol8RBzW2RT9+V5EfvWpe59h8H18jxUAEMKbgb+fxjRD6uijsVcZeq5j5gKuJrVyQ0fED2qI/abWKXAuijdlPBep1YLv+5eK1k5l2PYnHpvXBob+TItZoUSQWpxoVWN3UB7lklMvXYw+K++5lYRn8vYlTLzGibu203dkpJmT8vWCkjSFkoEbBF4UiNMLY61fqPJjTSbN3MslsLCp+SAAnYlgAFqW1vHRdOAiRQm4DLiCP01jOIrVkuZVKKap+y9XMtsaFukJnaQi88JqVFzoLnsBMQftOeVuDHO1TWt9wtJUpuLvPgGUmuc76I0nRvnulHw8grQOSLj6ylrhNX0xKxEB7UtYOVSVYPPi2WPE3Mc1gti19L9qWxpfrQ5uzTHy4RioHv/RBG7bjTz6XeaZJd0x29+yH61actWXKj10wWy+gEcb3dJkmKVKCqGNVWLrGoA0XQq6CsbpqlV+NIVazetWSdWFSDuEnKyuh11a1cRHl/ue63BwxGdeZfFbYa31pfMzp0FpB7i+f6+vEYCZAACdiBQP1/6eywcq6RBEiABGoTkHp8zu6STXNBrdIVtc/b9LnG6BmSlCWTW8UT/4bvhDNsK0ir702BZHXtIWVHfGoytUHzfecCsY6+VbPSp1Zvxqn7dcMucVMtlWy56sL6mVjubp48rKZPMp7EJJ5UH9qMgkK4J82wrOSBC66VRFdrJSnSG4hqvdP1q60+rfmPs2svhNY1v25qInNqnK2K9dpNhekfxPJZu83q1Qn9cvxWcqRvxLV3p1g+f/nFMivTrlpST5B4VXUDVrGqXwqoy24viWvVR0PN0bU7DKkVy0YCJEACmUCAgjQT7iL3QAIkYBFwdO+VcSTM0hKpW1oGdT2stmRl2iZDrz4N7zHfge/0i1Dx2L9st71XpeRIXFa9VSyka6IOnJlXmW01nTeiYhTyJU51KRctf6KPMR3z8dHWXQiHTLy4bptVZ1MT/+wIhS1BtZ/U6nQkmPAokf2rN0P49WdrurqnHgavxBT7TjobZlmJ5fJrxZ0unl/TJ9En7ikzEC8rhinJytqzaZKi6narZNPVMjNqWdVESOrO65Q6MmpR/Z64/V4v9UxHdciFW8IOVhWX44+ThlqJkKqvr/7p7FGZwbf6NX+SAAmQgJ0JUJDa+e5x7SRAAnsRMDpKCt0MbPHVy6EJYjJVkOotCz5yJwIXX2dLQbpKYkk17i8sibVK5PFUMP1ddr1Hn4rQ68/V/La8LDU0T+pXWdfS63Bgt5Qz+lLKm/x54lB8U1SKB5ZtQO+qOMgrRvS1ypFsFQGroqo6KVDNYK14EtF6pvLQ5ho9Ea5RE+CZfpTUl3FY7//Ix29L/Km4GMebjju1EhqJC3+6NRX0KkD1cYAkVapuh/fsjGniLr1wV4lVhuaoXp3rFaPa3+iwJ2lS9fX8SQIkQAJ2JUBBatc7x3WTAAnsQ8Bwua2MoXZLXLTPRuociK5eJoL0kDpHM+ulWsEiB85E7o3/ROkvL7fV5jSJUXUrE0F6+W4vDvXG0E/cd9Ox5f70z+Iyu7Kmlqiu8cyBPeASS502r1jn3pTsrif3625Z726X5D03jR9ixTM+smIjvthejM5SJ/PB5RugIipVLbpgrrjgz7WGd/YfAte4KfKlxY+lFFK+xKN+gbCKV407lQRm9TXXkJEI10rYVF+fdDumSZU0PrWxZvgC4q67t6twY/15jgRIgATSnUBlFeh0XyXXRwIkQAIJEDAl066j674lEhK4NK27xFcthbro6QfxTG7BB/8B54Bh8B5+om23mSOZdgvkX9Z1YjVNx+Y75Tw4R41H+L1X91qeWyyQhpUvuDLDax+JeTy6d2eoFXSwJNupTq6j9TQLpC6ntlWSnOc1qaW5RCyoqW4x+R0IPf0gyu/8P5Tf91eZzoTvtAtRcOczyPvjvfBKDLKj1357liGizdG9N+LyZU6mNUeXbjBjlXVNM21v3A8JkEB2EqCFNDvvO3dNAhlJQC2kjl79EEuwzINdIJjhkLUnjwi10DMP2mXZzV6nuWsHgv/6C/znXCHupM82+/r2vqBc/HbfD7uwSwyjw6T8Szo27/FnWMlw3I3Utu0i1s/qxDya/XWXlDUJxeJWwp0VEtd4/mAfHhZL6bmDe2GSZJpVkdqWzdyxDaGXn6qcUjLNeqbNgveIk6zESGbxLknU9I7EjpZaVmD93cm05ujZV/yZK78UyLS9cT8kQALZSUDqKrOycnbeeu6aBDKTgJZ9sWNinKbuhnviwXD07o/SX3y/qa62Px+44garNEjJTyTxThq32nVIdZl+sY72dZqY449Y9UjTbel5f3nAym5bLqI/9/qb4ejcDWFJKNXUFzhLdpfh30vXSzyjA9eM3A9qTdXkO7dI9l3NNFu3aczpsIKcpCY/qjtHQ6/dBxwI54ixcPbsJ4GWBmJSaiaydCFiK5YAKax32tB6UnHcK1Zu16DhqRiaY5IACZBAuxCgIG0X7JyUBEggVQTM8lKU/+O3qRq+3cY1OnWB/6zLsfucw9ttDW02sceL/JsfQuTrzxG8849tNm0mTxS45ka4JA6z+Oo54u2qKZhgWRTV1VXrdIbffTnh7avg/GRrES4Y0nufazR77JUffyN1NwvQP88vZWS6W300s+yjKzdJrGrbuNQHrvkNDI+UTZF51UpquN2ISnKw2LcLLHFqigXVri1w+S/EfT/PrsvnukmABEhgHwKMId0HCQ+QAAnYmoAm/PAHbL2F+havbopmcRE8R9g3vrK+fdV7TARE2a2/lvIfx8Mza3a9XXgwcQKeWcJx8gyU6Rc1tZyiKp68DyXXnmXFXfvOvxqWK2gCww7MC2CrCM9n12zZp/czq7fgihH9cK1YUrcFw1ZyJO30kQjYMqlr2hbNOUDrgFZZbsVKanhFmDqccA0YCs9hJ8B/2c/hP/cqqX96iO1q/OrfNiOQeX/f2uJ9wTlIgATSlwAFafreG66MBEigJQSiUSuZSUsuTfdroksWSLxcFlhI5UbEln0jlu4b4T/jEjj3G5zutyZt1+caNgb+s69A+R2/F6Zf77PO+PYtKPnpBYhK3KV/zsVwT521T5+6BzQL709HD5CkR3uXWdoVilglYqZ2LbRceQdKMiSNPRUbpSVeq8vK1B0v2a9dw8ZacbL1jWuI9d0Ql2OtWew+6AgEzrsKgUt+AveMo+GU+PN0b44efWBKSR42EiABEsgkAhSkmXQ3uRcSIAHA7UrY0mM3XCpItfxFtrTw+6+h4vlHkPuLW8S/1J8t207ePt0e5Fz3O4Se+4+45L7S6LjBh29Hyc8uFLfewfCdfZlYTStdbRu7SIVp7fbc2q0Y1THPih0Nx+N4Q0rHDCvMwbxtxeiX64cmS3pl/TbctWSdlSCp9rXJfO4cOsqKH21qTHXj1eRARkFHeCRG23vaBQhc9Ut4jzkVzoHDaoysTY3TlucdfQaIK7KnLafkXCRAAiSQcgLOX0tL+SycgARIgATaiIChSVbkg3h0/mdtNGMbTlNRDqckMzFEnMW+XdiGE7ffVDER4Y5OXRG46EcIvfBY+y3EhjPn3/4kInPfR8UjdyS0eq3nGZIkRy5JnuU7+VwgGkF8w5qErtVMu4+s2IS+OT48vnKzJTwnST3Ng7p1wD++WYPzh/RCnnxZ1F/cfTt43XhAapgWelzoHkhuPU3noBFwDx0JOJtZRMCQsjdyjSF/O7R0lGvwcLjFG8Gh5ZakPqtZWmzxSAhGCjt5Dj4CjvwOKZyBQ5MACZBA2xNo5l/stl8gZyQBEiCB5hJwduvV3Ets0z/69ReW227ouUdss+bWLjR4398toZB/+1MovuyU1g6X+deLS6qyin75iVVGp7kbLr/nZoQ+eB2By66XurBDLZGqJXkaa1/vKsVxfbrgiF6dsVvKxGjT2qXzdxaji9+Dbn4v/rl4LXZI7GlPEaFjxJI6f2cJxnTKw8PLN+HsQclJduQePxUQt9xWNf1SSxIiaRSqZrN19RsgTzyIbVqH2OL5iK5YjKZ4tGr+Ri529tg3kVQj3XmKBEiABGxBYG9/G1ssmYskARIggcYJmBJH6uzTv/FONj0bXfSFxFQOgqNjZ5vuoGXLLr/7z5bVO/+2J2DkF7ZskCy4ytGhM/LvfAbRBXNRflfLMxSrZbrkqtMRk8y0gYuug3vclEbpTZG4URWj2lSI6kPbTokr1Uy7Wr80KEmNfjluEI7t0xUvi+vugXJNhcSYLtpVYvXV/0TE1belzZCEZs6+A1t6ecPXuUXgikh1Sv1P9/Sj4L/gGviViVor21Ag6t80xo82fJt4hgRIwL4E6LJr33vHlZMACTREQCxE6mIXX7uioR72PS4f2I3CjnDtNwSReR/Ydx8tWHnk8w/hEOu3XxLRRCVBj7ljawtGydxLnAOGIe+mOxER62ZQao0mo0XmvmeVSfEeexpcA4dLHdOVgGRBTrSpi26hR+I0RdCpCNW40+0VEXmEcWr/7iiJxPDVjmJM79ERi6WczJ8WrMKB3QqtfonOUd3PPX6afBEl1kz5/U9VMyRbr/Xw51hJkFwjxsE9YRr0iwDEYzCLGrckt2ZdrtETxVorglvci9lIgARIIJMIUJBm0t3kXkiABCwC+uFXSz1ofcVMbFpD0TvzGIT+92gmbq/RPUW/+kTcJ11WTKlZuhuxVUsb7Z8tJ71HnITAlTcg9NITqPjPnUnddnzzehn3cbjHTIT3uNMrv+zZuqlZc/hdTkyQ2qSbgyG8tmEHvjugh+XGuzMcwZLdZVZW3sdXbcLPxgyEz+nEXd+utfp18nrQVVx+E2m+E+a0bcmn6rhTcRHWL0qcgyV+dephksG3T2VCJCnThFjySt14Zx4HI68gERTsQwIkQAK2IsAYUlvdLi6WBEggUQJGlx6S2MSZ1A+Eic6d6n7xjWtgSoIj79GnIvTyk6meLu3G1/hZtY4GrvoVXMPHovw2qa+ZxS1wxQ3QZDfl//wdwu+9mjISZbfcYAku/7lXwiHW2IgkQDIrggnP11GSGc3s0QkHdxcLv3xppK1c3Hi/FUEaFtfdX40bLMIUuPHLFTiubxeM7ZiPWyUhUr64//aRZEm1W7EkUXLKGDkidLVZtUd9e/ep3T/lz6u+BNN5XCJM1a1eEyTF1q9GbElV3OluEagtbZJwSUvVsJEACZBAJhIwTGmZuDHuiQRIIMsJSBxpxTMPILYyMy1orrGT4B45AcXXnJm1N9ol2VRVlJrlZSj50XlZySHv/+4Rq1mhJcqjknCnrVruT/8E5/AxCL32rAiuBS2aNiYfP/717Trop5CLh/WxBObn23fjzU07kCdWcBWcETk5q2cnDMjz4/3Nu6ySMtPEpfffSzdgVIdcTJUsvtq83/2euLGnZ71aMxK2YlAhWYwjco+0xm5868ZmMVPB7T3hTMvzo1kXsjMJkAAJ2IAAXXZtcJO4RBIggRYQ0DgyKSAfk4yYmdji27bAM+NoxNetQnzj2kzcYpN7iouVNPT6c2KR2h/+C68BQhXyBcSSJq/LhA4ecd/U+qzRFUtQetO1iG/e0KbbCkucqlmyG77jxU22a4/KL37M5iUkumfpenSW2qTnDO5lCU3dwMbyEMqicVw0tA/6SO3SZcVlVvKjG79cDqeUX4nIHM+u2Yr15RW4cEhvKzbVIfN7pESLoR4Radh0XVbcaaAq7nTkeCvu1CgQMR2LQsvtNNXcB0ytTNRWZVluqj/PkwAJkICdCNBCaqe7xbWSAAk0i4ApMVzld/yhWdfYqbPGq2kZiJLrL7bTslOyVs9hx8N//g/E+vQ1Sn9zVUrmSJdBc2+8Hc7+gxH8998QfvvFdl9W7i//Dme/QWItfRqx5Yl/IWDClNIqla67tTfxkNQo1ZjT0R3y0FtcdRdKFt5524tx+fC+Vre7l6zD4IKA5f6rB7zHfReaXEgz4dqqifXX1ARREosaW/Utoou/ki/Qvq233mngkp/CErC22iAXSwIkQAKJEWCqtsQ4sRcJkIANCRg5uRldIiT6xUciTIZYyVRseHuSuuTwm/9DybVnW+67Bfe+CN+c7yd1/HQYzHfW5Si4/xXLMlnygzPTQowql9Ibr0bF0w/Ae9Sp8Bx+YsKo6hOjevHZg3qhd8CHD7fusjTmqpKgJETKt8bV2NGvJRvvIRKHqk2T/NhSjFqLr0y+Zng8cA0dJTHh30HOtb+F74zvQ13yjbzKPRuFnQD5W8ZGAiRAAplKgDYc2WEAAD/GSURBVBbSTL2z3BcJkICV0Cj8zotSHuXDjKWhlkHD40Pp736QsXts7sbckw6BX8SbZuNVoRR+4/nmDpFW/b2zZsN7yrmWe2fw4dsR+eSdtFpfzWL8AeRdf4u48HZHWBIexdYkp+ySWkgfX7UZcyQzr8aR9sv14ajeXaxpPYceD/cBUiNVkv5kUjPDEneqYQe7dyIqpXZc4uZruNyZtEXuhQRIgARqCFCQ1qDgExIggUwkENu0FhUP/jMTt2btSa0ogUuvR/EPzkB807qM3WdLNqalUHzfuQDxshKEX/yvFW/aknHa6xrP9KPgO+U8GDl5qHjyPttkVNY1e2efgej8uQi/81JS8C0SUbp0d7lVy/T2qVJeRcSakSvv/cuut5+rbnOJaGwua482lxr7kwAJ2IgABamNbhaXSgIk0HwCptQBDN72O6tMSvOvtscVnkOPteovlt5IK+k+d0yspN4jT5EMpXMkNi+K8AevoeLRu/fplk4H/OddDfeUGZZFrOLpB60aoOm0vkTW4ujYFTk/+YOIxgKEXxFr6cY1iVzWZJ8KKQ/jc1ZGG3lmiXV0bOZZR5uEwA4kQAIkkGEEKEgz7IZyOyRAAnUIRCMIv/k8Il99VudE5rw0fAH4r/g5Sn95mVVSInN2ltydqHuz9/DZUs+xj5VEpuLZh8WKlx7vC82i6jvtQjj7DpDalWsQEotu+N2XkwugHUbzn3WpFRsZ/uw9RCQzb7KakV8ITfRju0RGyQLAcUiABEgggwhQkGbQzeRWSIAE6icQ2yBuuw9nrtuu7tp90OFwSvmLkp9nXjKf+u9qy4869xskJXOOheeQoyTLaYVVMiX83isIv/VCywdtwZWeg4+AZ9YJUs5jABCPI/zhG9aagg/cmjRX1xYsK+mXOPv0R+AHN0qcp1NiS59pdg3O+hbkO+EMOIaMTNtSL/WtmcdIgARIgATqJ0BBWj8XHiUBEsggAqZ82A/e9luYwfIM2lWdrciH/cDlv0D5P26UJE4f1Dm578uPw07cUubZ90TVkQcKgwi0UxWNJypceDzotgqC5BomOjhMTHbHMNsXhTfJa3INHys1IQ+Ce+JBMDp0gllWatWF1Pqmkc/ehZYOSkqTOFDvgTPhnjzdstBqCQ9TYlsjn75jJSmKLllgTeM/9yq4ho1Cyc8uSsq06TRI4IJr4JG4XhX/kU/fbfHSHF17wn/OFZbAbfEgvJAESIAESCBtCFCQps2t4EJIgARSRcCU4vORt19C5PPMzbar7FRYOaV8RMm1ZzWJUtKkIGZWdlsec+APpR7cW1BRc507ycKvZuAEnqggXSdrujYnjHJZ42p5/h8RqH4Rpz/JDSNV+VQdYmHO/cVfEV2+GK4BQ0U49rZij60vMuTLjHjRDsS3b7EsqmZFEHHJgAqpJWk1qYHpEJFpeP1wSJZZR2d5dOoKBKT0kM8nMb451nWRRZ9Lrc5vEP3mK8S3bKiXRsGDr6P0hkuSlqW23kna6aBzyCjkXH49zEgYIYktNXdtb/ZKfKdfbLk201232eh4AQmQAAmkJYFU/buelpvlokiABLKTgCElIVxjJma8IFXLqGvsZHiPn4PQ/x5t9GZrWhhHleis/oegrgjdFTdwT7kb30Qd8EnfE8VCeaQ3ao37kVhYHxWRWCR6LEfOHeyJ4Qx/xLJqPiOCssI0sFGuXxhxoJ/TxOUiLp+X45/Idf1ccZzpj2KAU2Vx402ttCOk/89zQ7i+xItXQy4cW7WGxq9s/tn41k2A12dZ8Mpv/Y2V2VTFpbPvIDi6iMDs0RsOqQnpGjdFRKZfHgHpUzWPCFMzGKwUsEU7Edu8HpEvP0F822bE1q0Q8blxj3htYmkxKfPhmXksgvff2kRP+52OLV2I4qvnwC+ZoQMXXSclecQS/cXHCW/EOWy03IdejB1NmBg7kgAJkED6E6j+HJL+K+UKSYAESKAVBIyOXWC5Se7e1YpR0v9Srbuq8XVNCdKmdqJ2vz+JS+8oEYOX5ISwPmbgZrGiThXhmSeWyi7iRnuFiMxeIjaLRFf+X6kXg6SvutbuECE6L+LEWSJQ5/giuE+E63XFXpwqgvY3eSG8FXbhmaALPxRrZ6LNL8JvgjuOpSKOj/UmelXz+zkkWU5s6deVF0q5DRWSlphs/lAtviL03CNWOZNMFKTVUIJ3/B7Rj96EX0SpQ6zRGltqluyuPt3gTxXqWneXjQRIgARIIHMIVOZOz5z9cCckQAIkUC8Bw+G0isvXezKDDsaWLxHX0PUI/PB3rdrVShF+W0SEHuKJolQEZ6GI0MEiOD8Xi6c2fd5HLJwqEL+JOqGxnuukf3WbLsL1IHn0FME6RUTqYJeJE0SQqoCdIWN+Ldc1t/VwxLGh1hzNvb6p/p6Dj0R85zaY5aVNdU3p+YhkpDVDFXBPPSyl87T34JH5n6L4iu+I4N8k1tIfwTVqQqNL8hxypFXeqNFOPEkCJEACJGA7As3/RGC7LXLBJEACJCAEJMbPPXpiVqAISZkb9/hp1qOlG94iVs6YXHxvuQd3Vz3UDTckD21vi+vtJbt9eEd+qkVU3X/jVeGUVoda//HUOaevdazmts1xB/qKoE1V0xjc6OL5qRq+WeNGxY3Ve8SJzbrGrp3L//ZLlN12o1V71Tv7zHpFp8b3uqfMhOFuOBGXXffPdZMACZBAthOgIM32dwD3TwLZREBi/hw9+2X8js2SYiuJk//8q1u81wJxydXY0F+Ji23tR3UM6SMSW3qduOxq4qE54prbP4F40BYvRi4Mig79TNyA93epTE5Nc/YfgujCeakZvJmjlt/9Z7gG728lVmrmpbbsHvn4bRRfcpKVedh/8Y/gHD5mr314pH4sGwmQAAmQQGYSoCDNzPvKXZEACdRHwO2Ge+yk+s5k3LHIFx9Jgp0KK3lMSzY3UASmSr+XJYlQddM40iXiaqs2SrVyhqsy+mwTC+nyFrjgVo/b2E/Nsqvuvb+XGNXe4rI705s6QaoxxtHq+NHGFtUW5yR+NbZhjdRLPaYtZkubOcr++BME7/s7vNOPhufY0wCX/M6KtV9LvTCrbtrcJi6EBEiABJJKgII0qTg5GAmQQDoTMMRt1zVyfNbULwyL6653xlFw7T+u2bdFs+r+SKyfb4ScuFhcc/Xxa8lyWy6utupse5pYRW8rc+MiOX6TiEWXHkxi0zqpp+3y4zIZ/16xxo6WONSrZD2p+kfLOWiElQU3vmldEnfRuqFCLz4O72HHtW4QG14dfvtF7L7oeEhdOgSu/jU8hx4niYxSmMnKhoy4ZBIgARLIJAKsQ5pJd5N7IQESaJKAGY0g8u4r0BIp2dDckw6Gc8Q4lFz53RZvt0xEaEQslerGW1t3huVYkZzTjLu1j7d4ona80H/uVVLeZSBKf9tyN+dULL/gX/9D+V1/zJr3a12G+f98Umq6dpOiuWIZd+2x1tftx9ckQAIkQAL2JcC/7va9d1w5CZBACwgY6gIoyWuyRZBGPnsfzn5DkPOD36Dsb79qATGtMyrKsx7FqW67XfVcBjTXiDEIf/RW2u0ksuhzaPxk7ffrLVKORy3I9TW1JN/QjHI69Y3RmmPXSnmf9bFKO7bWte0ubtZnizV9rJTsaW4LXPZzyXhchnJ533qPPBmOQcNpKW0uRPYnARIgARsQSJX3kw22ziWSAAlkLYFADjSBTba00KtPwT3xIHimH5UtW272Ph2duiH27cJmX5fqC4L33gL3mElwdOxcM5W6Lv+nMGg9jvFGpYxOrOb1z9pRjFYvUBNdPd4hiPsKglbd2tslS3Nzm8bOeqYdhtArT8IMh1Dxv0fl+VNWORzEos0djv1JgARIgATSmAAtpGl8c7g0EiCB1BDQ0hHuA2citmppaiZIs1HN4iJUvPQk/OdcibDUuESwPM1W2M7L8Qdg5BVIQqNF7byQfac3S4sRk7hWjyT5qXjmIauD9Q93lcXaKT81zZRaI2u3hVIv9qGgG5sl4ZTWfr04UJkJuUhe/6HUAy3ro99Iaz3Zi+RcZ3G71vYbiROeIgL3TYkd1mRVh0oSKa0pe5/E8a6RpFZT5fkZYvEM1JnPurjOf9SCPkiSY71b53hTLx0dOsN/9hUiQJ+GWbSzpntMSvIE16yA56iTxeo/iNbSGjJ8QgIkQAL2JkALqb3vH1dPAiTQQgLOnn1hdOzSwqvtd1lsyQJEv12AvF/fZr/Fp3jF3pnHIbZ+lRRSbb5baYqXZg0ffvUZeGYlXvZkkwjHv4pb72n+KO4sqMAUceN9JFj5/bMmnzrJF8Ut+SHrUSAu1ypcq9tauXaeiNkLRaSqtVWF6d8kedWxcs2NUgJoqWQ8/krK7zTWvpQ+r0p25mcqXLgv6MHFYjFtTsv52Z8RXTIf0W++3Ocys7wUoacfRPjN/0HjwU2NLWUjARIgARKwNQEKUlvfPi6eBEigxQScLnimzGjx5Xa8MPzmCzB8PgQuu96Oy0/Zml3jpiC66IuUjd/agdVV1RArrmvUhISGeiPskqzEcfSS+M3dYuUcL4J0mYhELaGTKwJ0klg5t8txFY4OEahazqd2O1OE7FCxnA6Rx0B5HC1W0gkyRm+xtOpPLcPTWNsqMaSrZMyN8lPjjx8TwavzJdI01llLvYTfeqHR7tEFcxG85y+IrVtpufQ22pknSYAESIAE0ppA4/+qpPXSuTgSIAESaB0B18gDxO2v+fFtrZu1fa+ueOFxeA46HJ4jTmzfhaTR7M5e/RD9el9rXBotEVFxV/UmaCXdKuJvpYjGuyV2Ux/3ymOAiMmdcnyjCMUrpZTOwyIS10gfddRtzMaovx217cbqhlshmZUba0dKXOslYmG9XCyjN4lVtaO4A79Rq55tQ9d6Z58J1wEHIvTCow112eu4ubsIof/eg8h7r1gleyC1W9lIgARIgATsR4AxpPa7Z1wxCZBAsgjIp3HXxEMQ+fCNZI2Y9uOYO7dJgpjH4D/rcsQkHi8dE/m0NUQjvzAt40drcwg++A/k3/pfGDl5MMtKap/a57m64aoV9CyJ9azb7qmq6fp9EYzaNNb020Ysnio9G5ef1jCN/qeXCFJ1BW6sucdOhu+0CxGSOFkVms1pkc8/QnT1MniPOhXOrj2BLPuSqTms2JcESIAE0pEALaTpeFe4JhIggbYh4HBI9tmD22auNJolJsl7Ih+9iZxrfys+nPlptLK2X4p7/DQpLVIqyXN2tP3kzZgxvmUj4ls2JJQpeZK41b4lsZ/VrrhqN/xU4j61nqxXdGFYfqplVGvLft5EPGgzlrhPV61TqzGn70iJmsbKvjgKO4ob+c/F0vlqixONmTvki5ZH7pDSPW9WWUt1h2wkQAIkQAJ2IEALqR3uEtdIAiSQOgIqSrOoLmk1yMjc92GIGM3/3Z0o/sEZ1Yez7qd78nSxEqdfdt36bkRI4io9h5+I0EtP1He65pjGj54qcaC/lIy5OSJAi0SbdRcr5ci8MA4Xd9o/SpbdC4p8luVz/xbUB62ZqIEnWicVZeJ9IOc1e6+WptF5G2q5kmhLMxzXrrXaUN+mjkc+fQex1UvhPfpUGJKt1/B4m7qE50mABEiABNqZgGFKa+c1cHoSIAESaFcCZkUQ5X//dbuuob0m954gYlQSPJX+4vvttYR2nTfvrw+LwHsS4defbdd1JDp5wf2voPQPP0rI1Vr/cd8lcaM+ceGtW6ZF40wL5bjGhLZny/3tHZYwrnj24aQvw33wEXBPngFDvnSC0c4bTfruOCAJkAAJZA4Buuxmzr3kTkiABFpKwOmEe8qMll5t6+tCz/8HhteHnOv/Yut9tHTxjsJOUBdmu7TYsm/gPez4hJarEkwTCtUVo3pxVzne3mI050d/kKzPAaRCjOoeI++/htCjdyEucdOIhPUQGwmQAAmQQBoSoCBNw5vCJZEACbQtAcPtEUE6s/XZW9p22UmbLSTWKWfv/ghceUPSxrTDQI4efQC3V5I7LbfDcq01Bv9zJzzTDpd12zs7dM7Vv4Zzv8FSU/T+lLKPbVgj5WFuRuTLT6y6pSmdjIOTAAmQAAm0iAAFaYuw8SISIIFMI2BI7UP31FmZtq2E9mNWlKPi6Qfgkkyn/guuTeiaTOjkOeRIK97QTnuJrVqKuCRg0rXbtQUu+RlcI8ej4ol7pYZo21guw2+/iNCTD0gG350waS2161uH6yYBEshQAhSkGXpjuS0SIIFmEqhy283WJCjmrh0IPXEfPAcfjsAF1zQTnj27qyiKLphru8WHxRXVe8RJtlu3Lth/3tVSamkaKp68D2ZJcZvuIbZmGcrv+pNVc5aitE3RczISIAESaJQABWmjeHiSBEggmwgYDoklnZadVlK9z/Ftm1Hx33ugyWCyQZQ6uvVEdMkC273FKx67G44evS2XVzstXt9TnpnHWJbK+PYt7bN0yeMYfvVphJ5/tLKea7Th7L/ts0DOSgIkQALZR4CCNPvuOXdMAiTQEAGrBMw0GIHchnpk/PG9ROn3fpjR+3XkF9oqoVHtmxFbtQyeQ4+rfSitnwcuvNb6oqPisXsQ37qx3dcaW/4NgneLtfTbBW3mNtzum+YCSIAESCBNCVCQpumN4bJIgATaiYDhgGfG0e00eXpMa4nSx/4Fl5TMyLnq1+mxqCSvwjPzWBFGm6Elf+zYKh6/F57p9nifBi6/Qd5LM5EuYrT6fmv8auiF/yL0ypPW+8CktbQaDX+SAAmQQJsSYB3SNsXNyUiABOxAwIzFUPHQbYhvaX9LTnvyMjp0gu/kcxFft9Kqfdmea0n23DnX/d5y2Tz2939rcOhLAmEc5o01eL4tTqyJOXBdsRdj3TH8PHfvBED5dzyN4CN3IPLB622xlBbNkfuTP8Eh2XQr/vsviRnd3aIx2uIiI5ADz5EnW27Q2RpH3hacOQcJkAAJ1EeAFtL6qPAYCZBAVhMwxHXXc2hitR4zGZQmOqp49G4YXXog98bbM2qrzn6DEF30Of5TGKx5dJLanD8V0Vd9bGY7i1EF/kHYiSkiRhdFnNgd18qie1rk03fgFRGVri33t3fA6N4LFVKqJp3FqPIzy8sQeuYhhN98vjILb7x9v4hI13vKdZEACZBAKghQkKaCKsckARKwNwHDgEM+SDuHj7H3PpKwerO81BIUkCzEeX95EPD6kjBq+w9hFBQiunQR3KLxqh8q91wwa17rP5BxeTxR4cJlu304v8iHf5R5UGFWrr9IBOJPxHp5nhy/QB5/KPVge5VoXCmWTX39lFz7fbn2Cnl8IaLyHRGYVxf7cKW8fiPkqhyogf/qNCpIj/dFMdQVx0dyfe0WvP9WOPsPgaNn39qH2/+5JAfLu/lBKE9LjMp7yC4tumCeVbc0tmaFxJaG7LJsrpMESIAEbE2AgtTWt4+LJwESSBUBddvzHkYrqcVXMpOGnn5QsvBuQsGtj4lQH5sq7G0yrmvYaEDcshNxyf6fCEq1Tqrl9M/5IZSISvxQRKI2lyiuk0Qs3iLH9VFgmHgo6LbOqWidL9dFTAM35IZwpDeKP4pA1WNX54TxPXEHfiDoQrhK3FoX1fnPkqjDEnWDRYxO88QscVqnC+JrV0jm2mPrHm63187B+yP/n08gvnkDKp59WBS9Snp7NbO4CBqjG3n3ZWv9pg33YC/iXC0JkEC2E6AgzfZ3APdPAiTQMAGvH+4ZxzR8PsvOhN94HpEvPkbu9X+B56j0dRVt6ra4px4GzbKaSHtVrJiHiph0i+U0IuJxgjuOz6oslbkiQCeJUFSr6JciHh0iUNfH1C5Y2bqKC/Dp/gh6O02JRY1a1tYLAxEMcMYxRsZRF+FlYkltqKl1VIWojjhZfq6QObbUcdutePoheNMk2673+DnIveFvUtt1HsJvvdDQtmxzXN/r5ffegviGNeLGS2upbW4cF0oCJGA7Ag3/S2i7rXDBJEACJJBcAobLBc/k6XB07pbcgW08WmTeBwi9+F/4z74COVf8wpY7UQtpZP7cJteutj0Vm+pae3e5x3p8LCLRV6U5N4r4VNfbh8UqukbEoho7G4o89FRdU9sg6pX+QbGg1te0OqbOtVnmUKvrc2KpVQGsIrV2i8x7H5od1j3xkNqH2/x54NLr4TvtQoReehyRz95t8/lTNaG5c5vldhz58M3KKcRbgI0ESIAESCC5BChIk8uTo5EACWQgAc8RJ2bgrlq+pdgyqeF439/gHDAMeX/6N4zc/JYP1g5XOjp1kfqTC5ucWf+BzBMReJ5YOX+VF6p5XCMut9peEqE6WhIO3SjnzhPL50HyPFlNXXtVxPYRa6pXpK4+RotVta4g1fkiX3wkyY1OStbUzRvH7Zb3wP1QkR+8/+/Q90Ymtsin78p7/u+Wm7cZ2TvbcSbul3siARIggbYkQEHalrQ5FwmQgC0JOHr0hWv0BFuuPVWL1gy8WnLE3LEN+X/7T1rFMTa2ZyOvAEZOvginrxvrVnNOXXIfF+tkdSKjoBjIPqqyUnpFMIbFwqk2M3Xn/bzKlbfm4lY8UeE5U+Y+zR+teWjc6RZx8V1dx803eNcf4Roxts0t+Z5Zs1FwxzOI79iC4IP/gFm0sxU7Tv9L41s3IvjArWIBfk9iS+XLB1pL0/+mcYUkQAK2IEBBaovbxEWSAAm0JwHLdVc+fBuB3PZcRlrOHZK40vB7r8D/vR8icPVv0nKNtRflkZjg2NqVtQ81+vwsEYR+EZ6aKVfdc7+3249vxT1X2+ESF7pSXGo1w66e39GA+22jE9RzUsXvXBG3Uz3quLunBWQdWo/0/Tpuu9ojtn41PNOP3tM5xc9yLv8F/OdcgfA7L0Nji7Opad3X4CN3iRDfKpl4aS3NpnvPvZIACaSGgGFKS83QHJUESIAEMoeAacYRX/EtKp66v8Wb+u/KTXhUHqIrJAGOgXyPC7N6dsIZA3vIMT1q32YUdoL3qFMAjwfl//htwkmD2nrHmnQntma5WPRua9bUKg21zEuhJCKqW6xlqx4X197qONFmDZykzp5DjoTvzEtR/P3Uupc7Bw6T2OEbrLjV0CtPZrxVtKnb45lxLFzjp0K/tGIjARIgARJoGQFaSFvGjVeRAAlkGQHDkCyq/QbCtf+4Vu18ardCPDPrADxx6Fj8fMxAPLtmCxYXlbVqzHS42CzagYrH7kZManvm/fYO+M+/Oh2Wtc8atGZn9Juv9jne1AGVG53rEaN6nWbTbU8xqmsIv/cqDKn/6RozSV+mpAW+/2Pk3nQ3oiuWWPc60110E4EYfudFhJ78N+LirmxGI4lcwj4kQAIkQAJ1CPArvTpA+JIESIAEGiJguD3QBEexVctglpc21C2h42ohHZDnh9fhgN9ZmTn1qdWb4XVKtlbxW/lkWxFm9OiIw3t2xkdbduE/YlndGYpgeGEOLh3WF519HmueG75YhmldC/HGxh3YXhHBTLnmrEE9EZNBfjL3233W8vvxQ+B3OTF/ZwkeWLYem8pD6J3jw6XD+8p6Avv0b+6ByCfvICaCxSucXH9/FMG7/4zo1180d5iU9XfkFyIqojkTW2ThPOF+EqLzP0vq9tzjDoTv3CthxE1USOKi+LbNSR3f7oPF1qyAxvHq3wb3qIlSoJYfrex+T7l+EiCBtiXAv5pty5uzkQAJ2JyA4ZRSMEeejNAzD7ZoJ5vLw3h5/TZE5MP9/J3FmCEuu/1FmGpTQfn2ph01QlSF4qqSIP7xzRpcNKwPRhbm4rFVm/HHBSvx50nDrGvWlAahri7nD+4tQtOBP8xfiYldCizhet2o/lYf/c+DyzZK8h3TEqMbyyvwl4WrcOWIvhjZIQ+vbtiOB5dvxK/HDarp35onKliCj9wJ9+RDpC7lXyUL7Cco+9NPWjNkUq51T5qOeMlumMVFSRkv3QYJ3nszCu59CZq4yZR9JqMFrv413FNmIvLuy4jMfT8ZQ2bsGOHXnrUSZrkGDReffDqgZeyN5sZIgASSToB/MZOOlAOSAAlkNAERpM79BsM1dnKLtlkmNSNXlpRDhaRTrKSfiSX0U3lUt6N6d8ElYgFV6+ig/IAlUPcX0Xhoj07o6vfiHLF+LiuuvL76mvNEjO7fIdeycI7vnG9ZPzUmtVfAZz3WiKhdXVqOq/ffz7rktQ07MKZjnmUZLQpHMEGuWbq7DGXR5JUt0Ykin76H8ntuhiMvHwX/eh7e40635m+v/6hAji1Z0F7Tp3xes6wUsY1r4ZnR+uRG3uPnoOCeF+Ds0h3Bf/2JYjSBu+caOwmu/oMpRhNgxS4kQAIkUJsALaS1afA5CZAACSRAwJDEPd7DxXVXXPXMXdsTuGJPl4EiMi8f3q/mwIfijqvWy8ldCq1jbsfeyY22VoQxpGCPK22hxy3C1CPW1DD65VZaVmsGkyc+cf8N1hKW6pJ757fr8Muxg5AjrrratgZDIlCDuGPJOuu1/kfXtTMUlj77jlnTqQVPtDxMxbMPwzloBLzHnAbPYceh4uE7EPn8wxaM1rpLnAOHI/S/R1s3SJpfHXrlKfhOmCP7fKxFK3VPOgS+Od+H4c9B6PVnJTnV4haNk20XGR06wzPrRKDK/T7b9s/9kgAJkEBrCFCQtoYeryUBEshaAqZYN30nno3gfX9tFQN1y90kAjESj9c7TqFk4l1fVlFzLhiLYYe49mqG3qZaWMb808KVOL1/D8vaWt2/QETt5C5enDu4V/WhlP+MLf8GQXmo4An84DeVmW6lpmNs2Tcpn7t6AkdBRyvpUvXrTPwZfu0Z+L/7PbiGj0F08fyEt+gcvD/8Z18O136DEH7/dXGz/ijha9lRvgiafQYMilG+FUiABEigRQTostsibLyIBEgg2wkYIkgdnbqIVWR2i1Bo0iG1fv531SaJ48yFu4GYs/GdCywXXBWlcbnmdXG37eB1Y796rKN1F/Kvb9ejp7jtHtOny16npnQtsJIgrasSujrux1uLku6yu9ekVS8in72H4B2/lxqO25D3uzslxvTvcPTeE+ta3zXJOObsI3NIspnYulXJGC6tx1Ah6pHkRok0R4/eyPn5LZIZ+XaJrd2F8tt/TzGaCLhafTyHS43iTt1qHeFTEiABEiCB5hBo+iv25ozGviRAAiSQTQTEIuKWuLHY+pUSm7gwoZ1/tKUIJ22pzDpbKMJyrMRyXjyyT4PXThRBqvGjV3+yGAVVVlFNVtSQgK0eaIe4374uyYp8krX3rHf2WMr+OGmoxI/m47sDuuP6eUuR63Zil2Tv7RHwYrSspS2aGRKL8HuvICpWOPeUGci/+UHJDDtXEiHdJpbTlSlZgvvgIxBbuW/W4ZRM1s6DBsXynH/bEyi/8/+A0B7reu1lOfsNgu+cy+Hefzwi8z5A+T9/3+rM0bXHz5bnzqEjrVI7muyMjQRIgARIoGUEDFNayy7lVSRAAiRAAhYBqT9Yfu8tSGVdxlAsjt2SgKiLxI9qwqJkNM26q6VktOxMoCq+NBnjNncMI0csxJIB1z1+mtS4XIzQ0w8m3UqXe9NdIoA/RsVT9zd3ebbsny8ld0IvPo6QuPDWbu4DpsJ70tlwDRlpxfFqLG8q37e1586054aUEPJf+ENoTDkbCZAACZBAywlQkLacHa8kARIggUoC8r1efMt6BB+4jURaQcDw+uASUeqecBDMHVsReuM5hF56ohUj7rk0/+7nUX7rbxBd9Pmegxn8zDv7THimH42Sa8+yduk56hR4jzwFjg4drTI80S8/pkW0lfffd84VcHbvDYj7PhsJkAAJkEDLCVCQtpwdryQBEiCBGgKmWEmjCz+HJpVhayUBcX90j54grpCTYQRyEP3qMwSffgDxDatbNrAIhsLH3kXR2YcD4VDLxrDhVQUPvYHwR2/CI1ZRsyJoWZ2jC+bacCfpt2TPESfCPWqCxCW7029xXBEJkAAJ2IwAgx5sdsO4XBIggfQkYMgHU9f+4xDfulEE1KfpuUi7rCoWReTLT6yHs/d+UvN1CvL/8gBim9Yh8uEbzXa79Rx2POKb1meNGLWso9NmWa6kLsmeG3r5CatEUVve/qh4DRSHo1bcs9bbrW5aksgjcc16bLnU09UqRwPy9pQ1qu6Xzj9dY6Te6P4HUIym803i2kiABGxFgILUVreLiyUBEkhnAobHC69kNzW3bUZsw5p0Xqpt1hZbv1qSRq2G1td0jRgD94EzrRjI+NoVCIs41TjJpprGTUa+/rKpbrY+rxY7z8FHSdmWwYhv34LIwrkIv/U/SVx0ZZuKURWZT63ejG+KSi2eKkqHF+bix6P7Q2vonv3eAtwwdqCVWOvtTTuspFt2EqSOnv3E9flkuuna+reFiycBEkg3AhSk6XZHuB4SIAF7ExDLj/ekcxD8159hNpDh1N4bbKfVq0v0gnnWwygohGvoKEsY+E+/GDEVp5+8g9D/Hq13cc6+Ay3xWu9Jux4MBOTLj1Mk3nYaXH0HIFZSjNjCeSgXEWoWF9Xsyty5Ha6RB0jsbGVm55oTKXiipYxu/Go5juzVGdeM3A8eKWVUJIm4Xly3DZqUS9u/Dx7Vrgm0WrNtIycPvlPOpRhtDUReSwIkQAL1EKAgrQcKD5EACZBAqwhI3KNvzsUI3n9rq4bhxfUTMHcXIfLZ+9bD6NAJrsEj4J1xDPxnXYa4WqeXf2MJ0Mjc960BNBtqbOmi+gez0VH3QbPgPkAEqOzX0bWHZTmOSrmhyPuvilV0a707iYpl2DXuwDYRpGXijlsiFtEZPTpaYlQXpFbRMwf2rFnbzQtX4aKhfdA7x1dzTJ/8WY7rdVrmqLr95svl1rWD8gNWLd4Hlq3HpvKQde2lw/vWuPre8MUyzBnQA+9t3omVJUFcJ2K4q99bPUzSfvpOuwCG317uxUnbPAciARIggRQSoCBNIVwOTQIkkJ0EDLGSGl26w3fq+ah48r7shNBGuzZ37agRp5BkSM7+g+HqPwT+712HwJW/tKyFVvbe4WMQkYRG5u5dbbSy1k1j5HeAe9wUK37W2W8gnN16Ii5rj69ZbiUqUpdls6L+GqO1Z4589q64Oc+Ao3M3y5W39rlkP893uzCsMAd/XbQas/t2w5CCALrVEYZrSisQildaS2vPPyDPj1fXb68RpEt2l2FtaRD95fjG8gr8RQTrlSP6YmSHPLwq9XUfXL4Rvx43yBpijfT7+9ercbhYZocV5MKXghJGvpPPgdGpG62jtW8an5MACZBAkghQkCYJJIchARIggb0IOJxw7DcInlknIPzG83ud4osUEZBkSLHli62HzmDk5cMzTTLrSsIp7ynnI3DJz2CWlSC+c5u4+a5EbPVSqXu6BLElC1K0oMSGdYpYdvYbBPeQUXD06gOHCB8jrwAxSZBlSvxs5IuPEFojArS8Mi4zsVH39IqtXQXX6IkSU/rCnoMpevazMQPx9OotuOvbtSiNxNDF58HpYr08rGenRmec2aMTHlu5yXLxVavq2xt34FC5RpMfvbZhh8Sc5lmWUXUBntA5H0+s2gy1yOZUic/rRvXH4PycRudo6UnPrNlwDhgGSL1eNhIgARIggeQToCBNPlOOSAIkQAIWAUMsdpqR0yzeZVnxiKVtCZgSV+no1FWyHkvG3ir3XUeP3uLu2tNyedU6nd5TzoPDF7DEnlkqYrV4p9SU3STWxM2I79qO+MZ1iBfJMXkOEbPNaoFcqfvZWR6d4OjWS6yUXWGIpdIp1nOjUI7l5gPSByI040U7ZF7J0PztIvn5mmRr3gTEY82arqHOaiVVa31bCFK1kp43uJf12BoM4eNtRbh98Vr0zfU1Khg7et0Y2zEf74rb7TG9u+DDrbtw8yQRgdJ0nNViBb1jybqaLQ4UN96dobAIUr91zGU4as4l84l74sHyOzyRYjSZUDkWCZAACdQhQEFaBwhfkgAJkEAyCWg5GM8hR0HFUXTx/GQOzbESIGAUdJCSL3uEjJZ/sUrA1LpWXXq1n7rJOuSnJSBVuEoSG8jDOu/xiMnVAdOqY2qKWBS3U03UE48C8tKynolVXH8aaknT59LMcIUktxJXYRGz1kMSDllrEKusug/Hd2yTcWSMFLa4ZHzWuZ3DRqfUGmwKCHFWr9mJxnGq6+77m3dhcVFZo4JUL5rVqxMeXbEJXbweKz602t23QCymk7t4ca4I3bZszmFj4Jl+lNxTflRqS+6ciwRIIPsI8K9s9t1z7pgESKCtCcgHWu/xc2AGy8VNdFlbz56186m4NMQCGdu4tlEGmg3ZVIukPBq1Scp9NNzuSvHpkn8+nW7oFw7azFgEkEzAEDdSyHNTf+rrNGnRJfPhHjs5pYJ0mZR8eVbcdedIEqM+krRIs+4u2FmCVZJo6OJhTbvTTpCERneINfUREaXq5lvdpnQtkBjS1ZYLr44bl3E/3bYbo8WNt9plt7pvsn46JXOxb/YZyRqO45AACZAACTRCgIK0ETg8RQIkQAJJI6DlYE49DxWP3LmXxS5p43OgfQg4h+yPmLjBWtbMfc624IBYMs061kw1jtqhRT54A+5rbhRLcEexzO5MyZI7idttOG7imk8XW1l2TRGOmmDoCklGNCSB+E6NF9VY0tc3boeK0Oo2Rlx5vzugO66ftxS5bid2hSLoEfBagrS6TzJ/Orr3lt/V85M5JMciARIgARJohIAh/2DY5d/TRrbBUyRAAiRgDwJqjat4+PaUZzy1B43UrtIrmVFNif0Mv/1SaieyyeheKVsS37wBkfdeTemK1TK6W8q/OMR7VxMUJaupS/BOEaN+cYkOpCCTrq7TKOwI/zlXwJC4YohAZiMBEiABEkg9gdRkAUj9ujkDCZAACdiTgMcL3+kXWTGL9tyAfVatCY1i61fbZ8EpXml07gdwS7bdVDe1dGqSomSKUV2zxqd2kvjSlIlRsR77z7ysstYoxWiq3yYcnwRIgARqCFCQ1qDgExIgARJIPQGrRqnENfrPvNQqS5L6GbN3Bo0h1Sy5bJUEYquWWkmZnIOGE0kdAhpr7D/zEhg5kvW4VmKmOt34kgRIgARIIAUEKEhTAJVDkgAJkECjBMT6YkjJD8sao2U/2JJOwDl0FOIlu63sskkf3MYDxpZ9DdfYKTbeQfKXbolRcdOFluGhZTT5gDkiCZAACTRBgIK0CUA8TQIkQAIpIaCiVCx4/vOuEkvpngQuKZkrCwd19R8CU8qdsO1NICzxo85+g8QSKCVt2Cp/B1WM5heKFmXMKN8SJEACJNAeBChI24M65yQBEiCBKgKWpfTsy63sp4SSPAJGt56IrluVvAEzZaRYTNyY18A1akKm7KjF+9CMw5brPMVoixnyQhIgARJIBgEK0mRQ5BgkQAIk0FICailV992zL4Ojc/eWjsLr6hBwiNiIN1F/tM4lWfMy8uUn4rY7OWv2W99GHZ27ye+cfBFEN9368PAYCZAACbQpAQrSNsXNyUiABEigHgIqSiWW1CdJVRw9+9TTgYeaQ0DrSKr7ZXzb5uZcljV9Y0sWWHtV191sbPr+8GlSMU1gJO8TNhIgARIggfYlQEHavvw5OwmQAAlUElBR6vXBf8alEuM3kFRaQcA1eARim5ldtzGEsZXfwpmFVlLngCHwnfF963etMT48RwIkQAIk0HYEKEjbjjVnIgESIIHGCai1xumUOqUXwzl4/8b78myDBIxe+yG2ZmWD53kCiHzwOtySiVi/BMmW5ho+Br5TL4Dh9tAymi03nfskARKwBQEKUlvcJi6SBEgg2wj4Zp8J9wEHZtu2k7JfZwfGjzYF0iwvRWzTuqxJbuSecBC8x55GIdrUG4PnSYAESKAdCFCQtgN0TkkCJEACTRIQS6nn0OPgnn50k13ZoRYBnx+QMjoxJjSqBaX+p9H5n2VFTVLPzGMrf4+crvpB8CgJkAAJkEC7EqAgbVf8nJwESIAEGiEgH6DdEw+C78SzGunEU7UJuIaOhqnJjKKR2of5vB4C0QVzYXi8cPbqV8/ZzDjkld8d1/ipMFwUo5lxR7kLEiCBTCRAQZqJd5V7IgESyBgChohSpyTp8Z97JQx/IGP2laqNOPcbhBjrjyaMN7ZmWUYmN9Ks1f7zroJz0Ajo7xAbCZAACZBA+hKgIE3fe8OVkQAJkEAlAYcTjm694L/wh1IWJnOtWcm43Y4u3RFbvzoZQ2XFGJGP34J7xFgrmVambFhLJ/kvuAaOrj1FjDozZVvcBwmQAAlkLAEK0oy9tdwYCZBARhHQsjBSN9F/9mVZk4imJffPyC9EnPGjCaOL79yOmLg4u0dNSPiadO7oGj1BfkeuYI3RdL5JXBsJkAAJ1CFAQVoHCF+SAAmQQLoT8MyaDc/hs9N9mW2+Pmf/IUBFEGZxUZvPbecJY4u+yAi3Xc+hx8NzGH8v7Pxe5NpJgASykwAFaXbed+6aBEjAxgQMjweu0RPhP0csQXn5Nt5JcpfuHDgMsQ1rkjtoFowWmfcBHHmF4hbe05a7NXLz4TvrcrjGTZYkTVJjlI0ESIAESMBWBChIbXW7uFgSIAESqCRguNxwdO8N//d+ZCU9IhcJg+zRB7G1K4iiBQRi61bCPWZSC65s30ucA4YhcNGPJLa6j2TSdbfvYjg7CZAACZBAiwhQkLYIGy8iARIggTQgoHGlYhHyzT7LqlmaBitq1yUYhR3bJX40FItje0UYMdNMeP+7w1F8uq1h1+KFu0qwqTyU8Hit7Rj55B24Ro5v7TBter3WF/WdfA4gvwOG/C6wkQAJkAAJ2JMAc6Hb875x1SRAAiSwh4BkEnUfMBXO3v1R8dxDMHc3LHT2XJRZzxwdOgNiIYtv2dhmG/t4axEeWbERxSIuvU4HisIRjOqQhzMG9sSg/MZL9Gwor8C/l27A5C6F9a732TVbMEXO9Qh46z2f7IPxzesRL9oF1/7jEP36y2QPn9TxjA6d4D1+DpySRRfMoptUthyMBEiABNqDAAVpe1DnnCRAAiSQbALywdzRXUrDiPti+LVnEF0wL9kzpPV4ziEjYbahGH1j4w5LjP5w5H4YKSJUW2kkitc27MCK4vImBWk6wowu/kriMA9Ma0HqGjcF3lknAIY4eNEqmo5vI66JBEiABJpNgIK02ch4AQmQAAmkKQF14XW65AP7bDj7D0P41adgStbZbGjOPv0RbaP40Ug8jvuXrcdlw/rWiFFlnOt24eT9utXg1n4PLt+I9zfvhEPuzcweHS3rqbMeIaUuv7cvXotvikrR2eeBugFP6VIzVJs8sWqSTpoOo1MXmDu2tcmciU6i8aGe40+Hcz/JpCx1edlIgARIgAQyhwBjSDPnXnInJEACJFBJwC1ZeAcPh/+Sn8I5fExWUHGIiIq3UYbdjRLbWR6NY2KXgkbZPrFqMxaLwLx+zEBcN6o/5m4vxvNrt9Z7zZ8WroJH3H7/b+JQ/Fj65rjaR3TFNqyCe3R6JTdyDhsN/+U/h3PgcGbRrffdw4MkQAIkYG8CtJDa+/5x9SRAAiRQPwGxlKq11HfMdxAbNgahl5/IXGup5LMxCjShUduUfFFrZq5b4nYdld/pRiWZ0UPLN9Tch4mdCyzL6Zvi1nvmoJ4YUpBjnTuyV2e8vH4bTuq3x4qqJ1aVBLFsdxnuP2Q0CjyV/yx38rVPxtiolIDxnnAmwm+/WLOf9npi+APwHnUqnAPEKsoMuu11GzgvCZAACaScAC2kKUfMCUiABEigHQnIB3nn4BHwXyrWUklYk4nNOXws4ju2wgy1TVbarn4PSiSRkbrVatP8rh4Rp/r4bNturCgptzLu7gxFMCS/UoxqvyEFAWwTMVu3bQmG0CvHVyNG655vy9ex1cthBsvgHDqyLafdZy6XlKAJXPKzypJGFKP78OEBEiABEsgkAhSkmXQ3uRcSIAESqI+AxpZ6fPAd/R34zvg+DM1Im0HNJXGFsfWr2mxH3f1e+MWl9oMtu6w5NSb0TMmsq4/eAV/NsRyxoq6XbLrVbUNZqF7R2SfXBxWv8WaUjakeMxU/Y0sXwT12SiqGbnJMR+fu8J11qRUHreVcmLioSWTsQAIkQAK2J0BBavtbyA2QAAmQQIIEJBOvs88ABC7+EdyHHJngRenfzdG1B+LrVrfZQtVV9xxxxb1PEhtpLVFT/qdNLaZl0VjNOiaI6+47m3ZKvGnMOv6eJDea0GnfuNNeImIDInDfkr4qSteUBrG+bI+QrRmwjZ6E33sFjl79xA26/pI0qVqG1hX1X/ADOHvtJy66jChKFWeOSwIkQALpRoB/8dPtjnA9JEACJNAGBNwTD4F71ESE3nwesSUL2mDG1E2h8aOxjWtTN0E9Ix/Zu7OVhOjepevx10WrLctnSSSGEYW5NZl3zx3UC5qs6HsfLIIpQlNjSecM7FHPaMB3+3fHHZJl998ynlpgve1ZX1P0dVx4uuT9Efng9XrXm8yDrqGj4JHM0PD7aRFNJliORQIkQAI2IWDIP5KVX+3aZMFcJgmQAAmQQPIImOEQ4lK/M/zOS5YISd7IbTOSWvJ8J52N8tt+1zYT1jOLWkBL5dHJK/G69ZR0KQpHJM7UqNddt/ZwwZhYUkXUatmX9m5a19V7+GyU//OmlC3F2bMf3NOPtOrnqks5GwmQAAmQQHYSoCDNzvvOXZMACZDAHgL6vaSIoeiyry1hahYX7TmX5s884npsdO6G0NMPpvlK7be8wCU/Qej15xBbsSSpizdy8+CZcayVOEkzQTNONKl4ORgJkAAJ2I4AXXZtd8u4YBIgARJIMgG16knMnkvqPeojMvd9aByhitR0b87e+yG69Ot0X6Yt16dC1D12cvIEqbzP3BIn6pkwTXhorR7NT8xGAiRAAiSQ7QQoSLP9HcD9kwAJkEA1gSqB4BLB4JIsq5FP3kLk47erz6bnz8JObR4/mp4gkr+q0PuvIXDlDTACuTDLS1s1gfvAmXBPORSGJisymE+xVTB5MQmQAAlkGAEK0gy7odwOCZAACbSWgOFwSmFNJzzTDod70nREPnrTspq2dtxkX69CSR+agIctBQQqgjA3roNr9AT5cuKdFk3gmTIDrskzYLglLrY9EzW1aPW8iARIgARIoC0IUJC2BWXOQQIkQAJ2JCACwnD64T74SLFuzawUpl98iKoqJ+2+I+ewUYhv3tDu68jkBUTmfwb31EObLUjdEw+W62ZVWkRZwiWT3yLcGwmQAAm0mgAFaasRcgASIAESyGwChtsNyMM9/Sirfmnk8w8R/ex9mBXl7bpxV99BUn90RbuuIdMnjy763Lrnzr4DEVvbOGvD44VLLKLuA6aKV6645apVlI0ESIAESIAEmiBAQdoEIJ4mARIgARKoJGC5XcpTj7hgeg48FCpWwp+8DXPHtnZBZHTphtjCue0ydzZNGl+9DM4xkxoUpEbHLnBPni51bSfAjMfFqi4u32wkQAIkQAIkkCABCtIEQbEbCZAACZBAFQG1fklz7X8AnMPHwNy0HmFJfhRbmdzyIFWzNfjDUdBB4kfXNXieJ5JDQGOI/Rf/GJFXn4bWra1uzv5D4J52GJw9+gIOzZgr1VYpRqvx8CcJkAAJkECCBChIEwTFbiRAAiRAAnUISFZerSNpSOkV74lnAuVliMz7AJH5nwKRSJ3OyX3pHDgc8ZJimMGy5A7M0fYhEC/aidjm9XCOHI/Y15/DNWYy3OOldEsgR2JExZ2bjQRIgARIgARaQcAwpbXiel5KAiRAAiRAAnsIRKMwxVoWW/wVIl9+iviGNXvOJfGZ5/DZMDw+hF78bxJH5VANEXBPOBiew46ThFbykUHr0zJRUUOoeJwESIAESKCZBGghbSYwdicBEiABEmiEgAgVdd50jRB33sGjgFAQka8+RXThPJgluxu5sHmnHN37IDr/k+ZdxN7NImAUFErJl0lwi2UUPn+lGNVatRSjzeLIziRAAiRAAo0ToCBtnA/PkgAJkAAJtISAuvN6JMuqPDwHzYJHSofEJfmRisjo4gXiatu6DL2ODh0QS5H1tSXbzZRrDF9AvkgYAbe45Tp69BaDqMm40Ey5udwHCZAACaQpAQrSNL0xXBYJkAAJZAwBQ5IgOR1wdO0B96EnwDPrRMQ3rUNErKaxpV/DLC9t1lYdnbtJ/hxnu2X3bdZibdDZ8IsIHTRCYkMnwtmzH8xoBNUZldXazUYCJEACJEACqSTAGNJU0uXYJEACJEACDROQeFNIVtaYiNOoxJzGViyBuWtHw/2rzrinzISz30BU/PeeJvuyQ/0EtFSLa+Awca0eB0e3nnuJ0Pqv4FESIAESIAESSA0BCtLUcOWoJEACJEACzSEQE3Eq0adqLY2t/BbRpQsRW70ckLqWdZvvtAulJuZKRKQGKluCBMTU6RwwTB5DLSFq5OQJbrVcs2ZoggTZjQRIgARIIEUE6LKbIrAclgRIgARIoBkEpHyMNiOvQFxHJ8E18gCpbSnW062bEFv2tVhPFyO+eUNlnw6dEf/4Les5/9MAAYnhdUo5Hoe44GpMqFPjQcUibbniamIiNhIgARIgARJIEwK0kKbJjeAySIAESIAEGiAgiXVUTMHhgLl9s7iY9kLFUw9IHOpamGXNiz9tYAb7H3a74ezTH44+A+ESd2ZH916AxILCKXVChRsbCZAACZAACaQrAQrSdL0zXBcJkAAJkED9BMSN1wyHxdrnhllRjtjGtYivWykW1I2Ii2BtbQbf+idNn6OahMjRubtYP/vC0asvnN17w8jNByIiQIUJaAFNn5vFlZAACZAACTRJgIK0SUTsQAIkQAIkkPYEYjErMQ9cIsgiIcnAux2xLesR37IR5s5tiO/eKXVQi9N+G7UXqCLTyO8AR5duVuIhhwhPR4dOIsS9NXs1GANaGxmfkwAJkAAJ2JAABakNbxqXTAIkQAIkkCABcVu13H1dLsnh40BcXHzN4qJKkSp1UePFu4DSEsSD4vqr51pZHzXBVUHrfSInB45ALiDC01HYCY6OnUVwdhERWgDocVMSOsVj4nYra6+KsU10fPYjARIgARIgAbsQoCC1y53iOkmABEiABJJLQDP4SnZfU3+Km6shSZQ066wpFlaE5BEWS2skbLkHm/LcsryGKuS4HNP4TG0S3wr5PxySKEiy1hpioTW8HnGd9crDA8MjD3lueOW11yev5af0MVVoilXXurjqOrraKlA2EiABEiCBbCNAQZptd5z7JQESIAESIAESIAESIAESIIE0IcDUe2lyI7gMEiABEiABEiABEiABEiABEsg2AhSk2XbHuV8SIAESIAESIAESIAESIAESSBMCFKRpciO4DBIgARIgARIgARIgARIgARLINgIUpNl2x7lfEiABEiABEiABEiABEiABEkgTAhSkaXIjuAwSIAESIAESIAESIAESIAESyDYCFKTZdse5XxIgARIgARIgARIgARIgARJIEwIUpGlyI7gMEiABEiABEiABEiABEiABEsg2AhSk2XbHuV8SIAESIAESIAESIAESIAESSBMCFKRpciO4DBIgARIgARIgARIgARIgARLINgIUpNl2x7lfEiABEiABEiABEiABEiABEkgTAhSkaXIjuAwSIAESIAESIAESIAESIAESyDYCFKTZdse5XxIgARIgARIgARIgARIgARJIEwIUpGlyI7gMEiABEiABEiABEiABEiABEsg2AhSk2XbHuV8SIAESIAESIAESIAESIAESSBMCFKRpciO4DBIgARIgARIgARIgARIgARLINgIUpNl2x7lfEiABEiABEiABEiABEiABEkgTAhSkaXIjuAwSIAESIAESIAESIAESIAESyDYCFKTZdse5XxIgARIgARIgARIgARIgARJIEwIUpGlyI7gMEiABEiABEiABEiABEiABEsg2Av8Pa9MYT1ouqscAAAAASUVORK5CYII=", + "text/html": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# df de ejemplo funciona para dejar huecos entre leafs\n", + "\n", + "# PROBAR HACER UN GROUPBY VALORIZANDO LOS NOT PLAYED A PARTIR DE DF DE JUGADORES\n", + "# INCLUIR LOS NOT PLAYED A DF TEAMSCORES\n", + "\n", + "#df_sample = pd.DataFrame({\n", + "# 'vendors': ['A','A','C','D',None,'E','F','G','H',None],\n", + "# 'sectors': ['Tech','Tech', 'Finance','Finance','Other','Tech','Tech', 'Finance','Finance','Other'],\n", + "# 'regions': ['North','North','North','North','North','South','South','South','South','South'],\n", + "# 'sales': [1,3,2,4,1,2,2,1,4,1]})\n", + "\n", + "df_sample = pd.DataFrame({\n", + " 'medals': ['Gold','Silver','Bronze','Bronze',None,'Gold','Silver','Bronze','Bronze',None],\n", + " 'teams': ['Team A','Team B', 'Team C','Team D','Not played','Team A','Team B', 'Team C','Team D','Not played'],\n", + " 'events': ['A','A','A','A','A','B','B','B','B','B'],\n", + " 'scores': [1,3,2,4,1,2,2,1,4,1]})\n", + "\n", + "px.sunburst(\n", + " df_sample,\n", + " path = ['events', 'teams', 'medals'],\n", + " values = 'scores',\n", + " #maxdepth = 2\n", + ").update_layout(margin = dict(t=20, l=0, r=0, b=20))" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "RangeIndex: 10 entries, 0 to 9\n", + "Data columns (total 4 columns):\n", + " # Column Non-Null Count Dtype \n", + "--- ------ -------------- ----- \n", + " 0 vendors 8 non-null object\n", + " 1 sectors 10 non-null object\n", + " 2 regions 10 non-null object\n", + " 3 sales 10 non-null int64 \n", + "dtypes: int64(1), object(3)\n", + "memory usage: 448.0+ bytes\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
vendorssectorsregionssales
0ATechNorth1
1ATechNorth3
2CFinanceNorth2
3DFinanceNorth4
4NoneOtherNorth1
5ETechSouth2
6FTechSouth2
7GFinanceSouth1
8HFinanceSouth4
9NoneOtherSouth1
\n", + "
" + ], + "text/plain": [ + " vendors sectors regions sales\n", + "0 A Tech North 1\n", + "1 A Tech North 3\n", + "2 C Finance North 2\n", + "3 D Finance North 4\n", + "4 None Other North 1\n", + "5 E Tech South 2\n", + "6 F Tech South 2\n", + "7 G Finance South 1\n", + "8 H Finance South 4\n", + "9 None Other South 1" + ] + }, + "execution_count": 37, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df_sample.info()\n", + "df_sample" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "RangeIndex: 1002 entries, 0 to 1001\n", + "Data columns (total 6 columns):\n", + " # Column Non-Null Count Dtype \n", + "--- ------ -------------- ----- \n", + " 0 player_id 1002 non-null object\n", + " 1 event_date 1002 non-null object\n", + " 2 event_game 1002 non-null object\n", + " 3 score 1002 non-null int64 \n", + " 4 medal 1002 non-null object\n", + " 5 team 1002 non-null object\n", + "dtypes: int64(1), object(5)\n", + "memory usage: 47.1+ KB\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
player_idevent_dateevent_gamescoremedalteam
0629162024-08-15A1bronzeThunderCats
1629162024-08-15B1ThunderCats
2316692024-08-15A1bronzeThunderCats
3316692024-08-15B1ThunderCats
4905642024-08-15A2silverThunderCats
.....................
997652252024-08-15B1Power Birds
998827682024-08-15A1bronzePower Birds
999827682024-08-15B2silverPower Birds
1000783602024-08-15A3goldPower Birds
1001783602024-08-15B2silverPower Birds
\n", + "

1002 rows × 6 columns

\n", + "
" + ], + "text/plain": [ + " player_id event_date event_game score medal team\n", + "0 62916 2024-08-15 A 1 bronze ThunderCats\n", + "1 62916 2024-08-15 B 1 ThunderCats\n", + "2 31669 2024-08-15 A 1 bronze ThunderCats\n", + "3 31669 2024-08-15 B 1 ThunderCats\n", + "4 90564 2024-08-15 A 2 silver ThunderCats\n", + "... ... ... ... ... ... ...\n", + "997 65225 2024-08-15 B 1 Power Birds\n", + "998 82768 2024-08-15 A 1 bronze Power Birds\n", + "999 82768 2024-08-15 B 2 silver Power Birds\n", + "1000 78360 2024-08-15 A 3 gold Power Birds\n", + "1001 78360 2024-08-15 B 2 silver Power Birds\n", + "\n", + "[1002 rows x 6 columns]" + ] + }, + "execution_count": 40, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df_sunburst_test = df_eventplayers.copy()\n", + "df_sunburst_test['score'].replace([0], [1], inplace=True)\n", + "df_sunburst_test['medal'].replace('not played', '', inplace=True)\n", + "\n", + "# score debe ser int dtype\n", + "df_sunburst_test.info()\n", + "df_sunburst_test" + ] + }, + { + "cell_type": "code", + "execution_count": 65, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
player_idevent_dateevent_gamescoremedalteamteam_playedmedal_aux
0629162024-08-15A1bronzeThunderCatsThunderCatsbronze
1629162024-08-15B1ThunderCatsNot playedNot played
2316692024-08-15A1bronzeThunderCatsThunderCatsbronze
3316692024-08-15B1ThunderCatsNot playedNot played
4905642024-08-15A2silverThunderCatsThunderCatssilver
...........................
997652252024-08-15B1Power BirdsNot playedNot played
998827682024-08-15A1bronzePower BirdsPower Birdsbronze
999827682024-08-15B2silverPower BirdsPower Birdssilver
1000783602024-08-15A3goldPower BirdsPower Birdsgold
1001783602024-08-15B2silverPower BirdsPower Birdssilver
\n", + "

1002 rows × 8 columns

\n", + "
" + ], + "text/plain": [ + " player_id event_date event_game score medal team \\\n", + "0 62916 2024-08-15 A 1 bronze ThunderCats \n", + "1 62916 2024-08-15 B 1 ThunderCats \n", + "2 31669 2024-08-15 A 1 bronze ThunderCats \n", + "3 31669 2024-08-15 B 1 ThunderCats \n", + "4 90564 2024-08-15 A 2 silver ThunderCats \n", + "... ... ... ... ... ... ... \n", + "997 65225 2024-08-15 B 1 Power Birds \n", + "998 82768 2024-08-15 A 1 bronze Power Birds \n", + "999 82768 2024-08-15 B 2 silver Power Birds \n", + "1000 78360 2024-08-15 A 3 gold Power Birds \n", + "1001 78360 2024-08-15 B 2 silver Power Birds \n", + "\n", + " team_played medal_aux \n", + "0 ThunderCats bronze \n", + "1 Not played Not played \n", + "2 ThunderCats bronze \n", + "3 Not played Not played \n", + "4 ThunderCats silver \n", + "... ... ... \n", + "997 Not played Not played \n", + "998 Power Birds bronze \n", + "999 Power Birds silver \n", + "1000 Power Birds gold \n", + "1001 Power Birds silver \n", + "\n", + "[1002 rows x 8 columns]" + ] + }, + "execution_count": 65, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "aux_team = []\n", + "\n", + "for i in range(len(df_sunburst_test['team'])):\n", + " if df_sunburst_test['medal'].iat[i] == '':\n", + " aux_team.append('Not played')\n", + " else:\n", + " aux_team.append(df_sunburst_test['team'].iat[i])\n", + "\n", + "\n", + "df_sunburst_test['team_played'] = pd.Series(aux_team)\n", + "\n", + "#df_sunburst_test['medal_aux'] = df_sunburst_test['medal'].copy()\n", + "#df_sunburst_test['medal_aux'].replace([''], ['Not played'], inplace=True)\n", + "df_sunburst_test" + ] + }, + { + "cell_type": "code", + "execution_count": 66, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.plotly.v1+json": { + "config": { + "plotlyServerURL": "https://plot.ly" + }, + "data": [ + { + "branchvalues": "total", "domain": { "x": [ - 0.55, + 0, 1 ], "y": [ @@ -17344,31 +8999,163 @@ 1 ] }, - "hole": 0.4, - "radialaxis": { - "autorange": true, - "range": [ - 0, - 3.1578947368421053 - ], - "showticklabels": false, - "type": "linear", - "visible": false - } + "hovertemplate": "labels=%{label}
score=%{value}
parent=%{parent}
id=%{id}", + "ids": [ + "A/Not played/", + "B/Not played/", + "A/Dog Patrol/bronze", + "B/Dog Patrol/bronze", + "A/Power Birds/bronze", + "B/Power Birds/bronze", + "A/ThunderCats/bronze", + "B/ThunderCats/bronze", + "A/Dog Patrol/gold", + "B/Dog Patrol/gold", + "A/Power Birds/gold", + "B/Power Birds/gold", + "A/ThunderCats/gold", + "B/ThunderCats/gold", + "A/Dog Patrol/silver", + "B/Dog Patrol/silver", + "A/Power Birds/silver", + "B/Power Birds/silver", + "A/ThunderCats/silver", + "B/ThunderCats/silver", + "A/Dog Patrol", + "B/Dog Patrol", + "A/Not played", + "B/Not played", + "A/Power Birds", + "B/Power Birds", + "A/ThunderCats", + "B/ThunderCats", + "A", + "B" + ], + "labels": [ + "", + "", + "bronze", + "bronze", + "bronze", + "bronze", + "bronze", + "bronze", + "gold", + "gold", + "gold", + "gold", + "gold", + "gold", + "silver", + "silver", + "silver", + "silver", + "silver", + "silver", + "Dog Patrol", + "Dog Patrol", + "Not played", + "Not played", + "Power Birds", + "Power Birds", + "ThunderCats", + "ThunderCats", + "A", + "B" + ], + "name": "", + "parents": [ + "A/Not played", + "B/Not played", + "A/Dog Patrol", + "B/Dog Patrol", + "A/Power Birds", + "B/Power Birds", + "A/ThunderCats", + "B/ThunderCats", + "A/Dog Patrol", + "B/Dog Patrol", + "A/Power Birds", + "B/Power Birds", + "A/ThunderCats", + "B/ThunderCats", + "A/Dog Patrol", + "B/Dog Patrol", + "A/Power Birds", + "B/Power Birds", + "A/ThunderCats", + "B/ThunderCats", + "A", + "B", + "A", + "B", + "A", + "B", + "A", + "B", + "", + "" + ], + "type": "sunburst", + "values": [ + 110, + 124, + 65, + 55, + 27, + 20, + 39, + 46, + 174, + 201, + 66, + 45, + 117, + 147, + 128, + 120, + 40, + 44, + 114, + 86, + 367, + 376, + 110, + 124, + 133, + 109, + 270, + 279, + 880, + 888 + ] + } + ], + "layout": { + "autosize": true, + "legend": { + "tracegroupgap": 0 + }, + "margin": { + "b": 20, + "l": 0, + "r": 0, + "t": 20 }, "template": { "data": { "bar": [ { "error_x": { - "color": "#f2f5fa" + "color": "#2a3f5f" }, "error_y": { - "color": "#f2f5fa" + "color": "#2a3f5f" }, "marker": { "line": { - "color": "rgb(17,17,17)", + "color": "#E5ECF6", "width": 0.5 }, "pattern": { @@ -17384,7 +9171,7 @@ { "marker": { "line": { - "color": "rgb(17,17,17)", + "color": "#E5ECF6", "width": 0.5 }, "pattern": { @@ -17399,18 +9186,18 @@ "carpet": [ { "aaxis": { - "endlinecolor": "#A2B1C6", - "gridcolor": "#506784", - "linecolor": "#506784", - "minorgridcolor": "#506784", - "startlinecolor": "#A2B1C6" + "endlinecolor": "#2a3f5f", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "#2a3f5f" }, "baxis": { - "endlinecolor": "#A2B1C6", - "gridcolor": "#506784", - "linecolor": "#506784", - "minorgridcolor": "#506784", - "startlinecolor": "#A2B1C6" + "endlinecolor": "#2a3f5f", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "#2a3f5f" }, "type": "carpet" } @@ -17728,10 +9515,10 @@ ], "scatter": [ { - "marker": { - "line": { - "color": "#283442" - } + "fillpattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 }, "type": "scatter" } @@ -17778,8 +9565,9 @@ "scattergl": [ { "marker": { - "line": { - "color": "#283442" + "colorbar": { + "outlinewidth": 0, + "ticks": "" } }, "type": "scattergl" @@ -17884,18 +9672,18 @@ { "cells": { "fill": { - "color": "#506784" + "color": "#EBF0F8" }, "line": { - "color": "rgb(17,17,17)" + "color": "white" } }, "header": { "fill": { - "color": "#2a3f5f" + "color": "#C8D4E3" }, "line": { - "color": "rgb(17,17,17)" + "color": "white" } }, "type": "table" @@ -17904,7 +9692,7 @@ }, "layout": { "annotationdefaults": { - "arrowcolor": "#f2f5fa", + "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, @@ -18060,138 +9848,124 @@ "#FECB52" ], "font": { - "color": "#f2f5fa" + "color": "#2a3f5f" }, "geo": { - "bgcolor": "rgb(17,17,17)", - "lakecolor": "rgb(17,17,17)", - "landcolor": "rgb(17,17,17)", + "bgcolor": "white", + "lakecolor": "white", + "landcolor": "#E5ECF6", "showlakes": true, "showland": true, - "subunitcolor": "#506784" + "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { - "style": "dark" + "style": "light" }, - "paper_bgcolor": "rgb(17,17,17)", - "plot_bgcolor": "rgb(17,17,17)", + "paper_bgcolor": "white", + "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { - "gridcolor": "#506784", - "linecolor": "#506784", + "gridcolor": "white", + "linecolor": "white", "ticks": "" }, - "bgcolor": "rgb(17,17,17)", + "bgcolor": "#E5ECF6", "radialaxis": { - "gridcolor": "#506784", - "linecolor": "#506784", + "gridcolor": "white", + "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { - "backgroundcolor": "rgb(17,17,17)", - "gridcolor": "#506784", + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", "gridwidth": 2, - "linecolor": "#506784", + "linecolor": "white", "showbackground": true, "ticks": "", - "zerolinecolor": "#C8D4E3" + "zerolinecolor": "white" }, "yaxis": { - "backgroundcolor": "rgb(17,17,17)", - "gridcolor": "#506784", + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", "gridwidth": 2, - "linecolor": "#506784", + "linecolor": "white", "showbackground": true, "ticks": "", - "zerolinecolor": "#C8D4E3" + "zerolinecolor": "white" }, "zaxis": { - "backgroundcolor": "rgb(17,17,17)", - "gridcolor": "#506784", + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", "gridwidth": 2, - "linecolor": "#506784", + "linecolor": "white", "showbackground": true, "ticks": "", - "zerolinecolor": "#C8D4E3" + "zerolinecolor": "white" } }, "shapedefaults": { "line": { - "color": "#f2f5fa" + "color": "#2a3f5f" } }, - "sliderdefaults": { - "bgcolor": "#C8D4E3", - "bordercolor": "rgb(17,17,17)", - "borderwidth": 1, - "tickwidth": 0 - }, "ternary": { "aaxis": { - "gridcolor": "#506784", - "linecolor": "#506784", + "gridcolor": "white", + "linecolor": "white", "ticks": "" }, "baxis": { - "gridcolor": "#506784", - "linecolor": "#506784", + "gridcolor": "white", + "linecolor": "white", "ticks": "" }, - "bgcolor": "rgb(17,17,17)", + "bgcolor": "#E5ECF6", "caxis": { - "gridcolor": "#506784", - "linecolor": "#506784", + "gridcolor": "white", + "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, - "updatemenudefaults": { - "bgcolor": "#506784", - "borderwidth": 0 - }, "xaxis": { "automargin": true, - "gridcolor": "#283442", - "linecolor": "#506784", + "gridcolor": "white", + "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, - "zerolinecolor": "#283442", + "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, - "gridcolor": "#283442", - "linecolor": "#506784", + "gridcolor": "white", + "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, - "zerolinecolor": "#283442", + "zerolinecolor": "white", "zerolinewidth": 2 } } - }, - "title": { - "text": "Players participation during A and B events" - }, - "width": 900 + } } }, - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6QAAAJYCAYAAAB1mCsLAAAAAXNSR0IArs4c6QAAAERlWElmTU0AKgAAAAgAAYdpAAQAAAABAAAAGgAAAAAAA6ABAAMAAAABAAEAAKACAAQAAAABAAADpKADAAQAAAABAAACWAAAAAAL7lmzAABAAElEQVR4AeydB7zN9f/H32Rm/7TILKukIRIyEkoadkkhpSGUykgplURZoZKiZRYKJau9RCGUUFZGQ9lF1v/9/NzO/V+6uJd7OY7Xt4ece873fMfze33f3/d6vdPkypVrj2kRAREQAREQAREQAREQAREQAREQgSNMIO0R3p92JwIiIAIiIAIiIAIiIAIiIAIiIAKBgBxS/SKIgAiIgAiIgAiIgAiIgAiIgAgcFQJySI8Kdu1UBERABERABERABERABERABERADql+B0RABERABERABERABERABERABI4KATmkRwW7dioCIiACIiACIiACIiACIiACIiCHVL8DIiACIiACIiACIiACIiACIiACR4WAHNKjgl07FQEREAEREAEREAEREAEREAERkEOq3wEREAEREAEREAEREAEREAEREIGjQkAO6VHBrp2KgAiIgAiIgAiIgAiIgAiIgAjIIdXvgAiIgAiIgAiIgAiIgAiIgAiIwFEhIIf0qGDXTkVABERABERABERABERABERABOSQ6ndABERABERABERABERABERABETgqBCQQ3pUsGunIiACIiACIiACIiACIiACIiACckj1OyACIiACIiACIiACIiACIiACInBUCMghPSrYtVMREAEREAEREAEREAEREAEREAE5pPodEAEREAEREAEREAEREAEREAEROCoE5JAeFezaqQiIgAiIgAiIgAiIgAiIgAiIgBxS/Q6IgAiIgAiIgAiIgAiIgAiIgAgcFQJySI8Kdu1UBERABERABERABERABERABERADql+B0RABERABERABERABERABERABI4KATmkRwW7dioCIiACIiACIiACIiACIiACIiCHVL8DIiACIiACIiACIiACIiACIiACR4WAHNKjgl07FQEREAEREAEREAEREAEREAERkEOq3wEREAEREAEREAEREAEREAEREIGjQkAO6VHBrp2KgAiIgAiIgAiIgAiIgAiIgAjIIdXvgAiIgAiIgAiIgAiIgAiIgAiIwFEhIIf0qGDXTkVABERABERABERABERABERABOSQ6ndABERABERABERABERABERABETgqBCQQ3pUsGunIiACIiACIiACIiACIiACIiACckj1OyACIiACIiACIiACIiACIiACInBUCMghPSrYtVMREAEREAEREAEREAEREAEREAE5pPodEAEREAEREAEREAEREAEREAEROCoE5JAeFezaqQiIgAiIgAiIgAiIgAiIgAiIgBxS/Q6IgAiIgAiIgAiIgAiIgAiIgAgcFQJySI8Kdu1UBERABERABERABERABERABERADql+B0RABERABERABERABERABERABI4KgXRHZa8puNPqNWpatmzZwxZ3795l69ats6U//WRr167Zay+ffTnLpk6ZbI917bLX+/oh5QmkS5femt/cwn7+eaVNmfxekndQrlx5K3XuuTb+7bfs999/S/L3UmrFo73//Z3HHa1a2223t7JKFS+yrVu27G+1ZL9/qNcp2TtK4hdq1LzcsmbNZt8tmG+LFy9K4reO7GrJuRYJ70179uyx7du329atW+zbuXNt48YNR/bAtTcREAEREAEREAERiFICx7xD+kDnLlakaLG98O7evdumT5tqHe6/x9avXx8+y5Xrf/6wm2Wv9fTD4RFocmNT69T5IbuiZjVbvWpV/MYyZsxgXR55zD768P1kOaTV3SG57fY77etZM1PVIf38y6/tQz+2hzp3jD9mXhyp/e+10yT8cGLmEy137tyWJk2aJKyd9FUO9TolfQ9JXzNPnrw2+KVXLG3atPbxxx9a0ybXJ/3LR3DN5FyLxO5NHOrOnTtsYP9nrG+fp4/gkafurvb3byp196qti4AIiIAIiIAIxAKBY94h5SIs/P47q1/vGkubJq1lz5Hdypev6A7RozZi1BirdfllsXCdovIcMmTIYNmz5whORMID/Ouvv6xShYvs77//Tvj2QV8/O6Cfvf7qy/bLL2sPuu7hrJAtezY78cQT/7OJI7X//+z4KL1xqNcpNQ732rr1gsNNRp3M4sknn5KqQYnUOIfEtvn9dwusXp2rwrmRkT7p5JPt7nvutXvuvd9mzfrKPvv0k8S+dsy9t79/U8fcieiARUAEREAEREAEjjiBmOgh3bVrVyhl3Lx5U8jUjXlztI0bO8bOLnmO5S9QYL9Q7253n014d4rNmj3P5n23yKZ/8Km17/hAfAkwX3y6dz97ulffRLfR8YEHbcCzL+z12cUXV7DhI9+0ufN/sK++nmvPDXrRTjstz17rDH1lmLW4paVlzpzZWt52hw0aPCRkFFmJDFHjG260tye+F7bxyedf2YtDXrXLqtfYaxuJ/XDV1dfasBFvWMGCheyxx7vbR59+abO//T4cI45jwiUp5876+zvWa+vUs6bNbg6b7NtvYNgv+y5foaJRnkiGtI47GQkXHNj723ey8e9Mttlzvwvs772vg+U+6aSwWvkKl1j3Hk87/2zxX4vsn/MfOXqsLVi4xN6b8r5dfc218etEXiTlnF4dNtKyZslqlSpXiT9mrjFLYvvn/f/973/Wu29/o+z72wU/hOtb+sIyfBS/RNiT6SNr/MFHn4VjffnVYZY3b9749Q72Iquf+5M9e9mXM2eH73PO55cuvdfXcGxg3ej6G/Z6nx+e6tXHOnTqvNf7EYb7/r4ldp2Sex78XvV8uo/NmDXH5n+/OFyjhx5+NBwf+0vqUq9+Q/vyi889c9jXTjjhhP/87hxoO8WLl7AhL78eft85Bti9NnyUVah4yX++FmFBefbrw0eHY/74sxl2U9Pm/1k3KdfiP1/a5w2qNQjM4Pxv2rTR2wl+9OqNKWGt5GS8D3Zf6dXnmXAd9tl9+JF72rPPD94rw36w7fHFpLI60L+pw7mfJXYuek8EREAEREAERCD2CMREhjSxy7Ljn3/C2+n94X1/y+WX17Jt27bZ5Env2kZ/WCxWrLjd1fpuO+usktai+Y3ha2vXrDEcnaFDXrSFC7+P3xROFOWlQ4e8FP9eg4bXuUPQ11avXmUvD33RChQoaLWvusbKXlTOqlauEN//V/GSSp5ZzG5Nm7ewwoXPsA0b1tua1avDdnDQ2tzdzj54f1r4c/rp+eySSyrbPe3ut/enT4vfV2Iv8uXPHxytiZOm2OZNm+3rr2e6M3yaXXNtHStYqJBdU/vy+K8l5dxZeX/HOvOrGfEZUAIBW7duDdvesWNH+BtnYP36P8Jr/odz8taESVbMy6vfffcddz4+s5IlS4VzXbNmtY0aOdzy5csXjj9Dhozx32P/ZcqW9YxmllDKSyl2pUpVgpPNQ35CJkk5p40bNtpud5j/2f5P4M6ONm/eHPaX2P5z5cpl706eHpzkN0aPCk5FrSuvsjfHvm0tb2nu12h63Hf/ZT/h3cnh5y+/+MJy+u9BtctquDPwotW9tnZ4/0D/y5Qpk03wQEQh/52YNnWyrVyxIryuemm1vb6WNm2awGn+/G/3ep8fLrywrK12ngmX/V1D1tn3OkV+h5JyHlmyZnU20wwn/N13JtiqVT9b0aLFrZn/XhN8OCFd0m4vBI5wKu99vo3Nm/etLVm82HBQXxw8KOFp7Pd1ocKF7YLSF9rnn33qfcsr/HftRKtZ8wob5g4nlRNzZn8T/11YnHfe+ZYzV05/f7ZznhIYdOve01asWG6ffPxRWDep1yJ+w0l8kTFjRmt4XeOwr69mfJmkbyXlvvLrr79Y6zb32AuDngtOb2TD9Ne3vO1OG+3/vghAsCRle6yXVFYH+jd1OPczjkGLCIiACIiACIhA7BNI2hPjMcYB5+fKq662P//805YvX7bfo2/YoE68kxhZ6cGHHrHb7mgVsmJ8f9So4cFpuv6GJvZIlwcjq1nDRtd7JiedDX/91fAemSIyQ1MmT7JWd7SMf/h7/bVXbLw7Gc2atbDnnu0f//3S/gD97MD+9pqXqCLgQ9aLpWnzm0Om6OZmcQ4x7/EZGb2kLs89O8BefOF5I3PM0vnBh+32O++ySypVji8RTMq5R/aX2LHSB0fmr+Q5pezhLp3t55UrI6sn+vedrdq4o3+2NbvphtBbGlkJ5yBTpgNn0tauXWt33n5r/IM2GedpH3xsre5qu5dDmpRzatv6Dqt66SL76qsv7d572kQOY79/t/IABfu70ku/IwGJQc8NDBnshz0LjAOzc+fO+O+/MXqk9evTyyKOORlfem0JTqxcuSJ+vcRe3NrydjuzSFF3dJsFAa7IOjzUExQ5nCWxa3ig7SXlPNq0vSecV+Pr6tsXn38Wv7nkHi/OJ8GF9ya9E7YxdswbIctcosRZ9sMPC+O3u78XXIOypUvF/76z3oBn+nimdI7Vq9dgL4eUzwigNGt6gy2YP48fg0P9+Yyvra6vG3FIU+paEFygYoKF+1KRokXDv+ea1avYP/8GzcKH+/lfUu8rb3qwBIe0Xv0G1uupHvFbq+33QZzgUaNGhPeSur3IBpLC6kD/plLifhY5Fv0tAiIgAiIgAiIQmwRiomSX0rrKVara5VfUsltuvS2UdObPX8CeeLyrUTK3vyWiWEo/4fkXlA5lsWRGWHiQZCFz+fFHH4SHVR7sIsv1jZvYp598HO/wohBKNo0MRSQTwbrfzp1jZC9Qj024vOllxb179Yzvk8PBo4SP8r7/uYBNRDmY7/DZhx/EZeISbmN/r8e++cZeD+dkd1kSljAm5dwj20/sWCOfJfVvHHicQISOEi7ffjs3vJ/wvX1ff/P1rHhnlM/oMZ3kWdYLy5QNmbjI+sk5p8h3DvY32eVPXGQn4oyyPln1V18eYoXPONOzvOfstYlXhg6Jd0b5IOKone7Z34MtOESzPZuHGnRKL8m9hkk5jytrXx2CJ5FzPJRjDuW5Xv6NM4pTyvLWuDHh3y2OalIW/s1Egi+Uq/N7TnYPJdvIv+OE2/nCS4Mjzijvo8i9bOlPlvAapca1QGV3+fLllj59ehszboJdUevgWfOk3lcIvPHvq379RnuV5tZv0CioFqNczJLU7YWV/X9JYRVZd9+/U+p+tu929bMIiIAIiIAIiEBsEYiJDGmhQoVDP1jk0lB6R8ltwnLOyGcJ/6ZU8JFHHw9ljjwkskQyW+kSlBuOGP66XVqteniAHP/2OLu4fIVQavvkE4/Fb47SWxb6rvZdcrjQUp68p+/1duQBOuGbOLKjRgwPgif0n+II4aCMG/umrfv994SrJus1DhzZGEorI0tSz531EzvWyHaS8jeOfB7Ppk6dmvQRMAfb7gp/sOeBl+xlJPOYnHM62Pb5nOM+9dTTvBx14n9WZ7QQC6XQONX7WzZv2hQ+ypgxLtCxv/VwzAr67/HofzNZ+1vvUN8/3Gu473nw7yVfvvzJCpQkduyXePn1yaecYpPfe9cILLFs8dEoM2fOMISOejzZ7YBBJdaHXbv72odS1Mjv+C7PWqfxfuyffvyRVQ66bPKy7cg1SslrsXzZUmvSeG/HOkeOnEbfZZ9+AwI/HNX9Lcm5r7wxamTodeb+RD8u5de0Czzy8P9XdiRne/s7poSs9rcO76fW/exA+9RnIiACIiACIiACxx6BmHBIEQq5p+1d9o/3L650ZzTSz3igy0Fp5Ni3JoYMZYf729ncObNDDxz9eogIJVzoEyTLeUOTG31G5jj/+6aQVaGfMbKgMsnS7bFH3IH7/xLOyOcb1idt7iCjIMh0UI5aucqlRr8i/aPMT6XP8lAXHJJI5jY5536o+0v4PTLQkWxJwvcP5/XuPXGZ7z0W1xeXGudEiSXHvX37tv8c6rZtcQrCmRNR6024cuQ4E76X2OssLrSEk7fl337WxNY5mu/tex4Z3FnHcTtYufXBjrl+gzhnbd9/c5Hvke08mBJtDxeBauAZ+JEjhoXs6k8/LgnjniZ5729Slz1UUrgDy5La14LM7ZAXB9nA5waHUvyE95F9jzc595VJ7060R13MjKwoDilZXgJRb48bG7/Z5Gwv/kv7vEjIap+P/vNjat3P/rMjvSECIiACIiACInDMEogJh5RSvwNlqRK7OtUuqx5Gf9CbGClnS2w93qNHkOxDa++ZO//8C4KTOMDVQBNmnZYvi+tVneslujjIh7NQAskfFCopPXz8iR4hA0Rf34FKkPe3T0ZN4FxRlsiSnHPf3zYTvs+4nQMtzIJFYZSMWkotbIuH7cj80+SeE2wPtmzYsCE4iJGsW8L1Ixnvg/XOJvzOgV7Dh9LTU0499UCrhc92745zwg/XGTzojg6wAuXRHDOl7oe6IIpU04XFmDv68Ycf7LUZAgGdfMYwZbsHckhximvVvipUQ3Tu1H6vbRzqD8m5Foe6D641y0knnXzATSTnvsJ98J2J4w2l5C4PdvLy3YZhDjAOcGRJzvYi30nq3/v7N5XS97OkHo/WEwEREAEREAERODYIHPyp/Ng4j2QfZf5/nSMUbhMuuXPHjSBJ+B6vETciw/j8C0PcUUwTSmsTrjNr1szwOT2siS2JOTX7rocyacL1cD7pU0UJlNLUXD5+5FCWxt7vyvKZq5CyJPfcw5cS+R+OJktkbEsiq8S/Nccz0JdVr2m5vT824cJDLGWxyVko7WTsyxeu1Btx0JNzThz3/q7zvseBUjHObpYsWfb6iP3jADADN6WWhQu/tyqeFY+Uj0e2uy9feooR3DrjjDMiq4S/c+bMadlcvflILWThihUrHsrXI/vkWMuUvSjy4wH/ruU9lARKBjzT14a8NHivPy+9+IL3bn8YyuRZZ38LatX0W+/775hyaxzeQ12Sei0OZfs422QxWajMONCS3PsKJd9Z/bwZPUSP82i/byVckru9hN890OvE/k2l1v3sQMehz0RABERABERABI49AjGRIT0U7Aylb3bzLWHu5Yhhr/km0gTHo5GPZEhsWfXzz/bppx8Hh4ERF7/99uteqyGS8sboEXbjTc1C7yF9n5RfokLL6Je1PoqjvZcGH2jBmfjwky/CyBgc0V9cXbaEK9MiCMT2/1i37kBfj/+M+ahTp7wXMm5kWG+7vVUQjYmMv0juucdveJ8X3303Pzjh7e5tb88OeMYyuiDU6tU/249LluyzptmT3R4L41NGv/m2Pf3Uk6HvE2emhTvwI71H90DlyAhWNb/5Vlu0aKGdcsqpduddbYIT0qN7t/j9JOec5vtoEQRlEKZavHhRcIgR1Uls6f10zzAvdegrr1vPHt1DVpCsHdd0YP9+oTQ0se8dynsvDxkcxtm8/OpwV18e6o5FNru2Tl1XBb7sP5v7asYXIbvImCJ+NxDNanHLbSE4kBRl2v9s8BDeeKZfH6tStZrPlX0vjFzBASxT5iILJZ1J2B4cERT62oM5iS0TJ7xt1WvUdLGyK+3tt/6/7DThujhClOgisMS15NoWL36WNW9xS5jHG8mgJ/xOUl4n51ocaHv/+1/uoLLMOjjJ/Mw5nXV2SXvl5ZcOqiKc3PvK7G++Djz498I9i1E4CZfkbi/hdw/0OrF/U/QBp8T97ED71WciIAIiIAIiIALHPoHj1iGdOGG8lS1bLswCreoP1Swz/CG/T++n7P72nRK9slPemxQc0tdfeyXRzzt36uhlscvcYWodnMjISjgI9LcdbPnLZ3m+P32qKwXfHnpII+ujsNv5gQ6RHw/6d34XM3nhxZdDyS+CKTh79KBGlkM598h3E/7NvEgEU5o1u9lGj3krfMTIm8QcUjJON1zXwB7t1t0Gv/Ry/GZwRua7Q3WghZmyMCVLzLLMhWIaN6q/V3YyOef0lDuWZKnot0NVmfPYn0PKXExG1fTq08/eGv9u2D8Zyv7ujD3Tr3f4OaX+xzkUKVIsjBlizA8ZeY4LUS36lhMuT3R71M44s4h16NQ5vI1j9mT3x+x2Dz4cqYVSd+arMtKnSJEi3oO9yiibZbTJHXe2Nn6f97dQCVC+QsWQFY30Nu+77rRpU7x/d7vV8z7T/TmkfKdtm1b2wuChxsgmFkpuBz33bBBFCm8cwv+Scy0OtPm8p58egl6sQzafEU/Ml23d6jYvr51woK/Gf5bc+8poL+1n1NMbb4wMv0PxG/r3RXK3t+/3E/s5sX9TV9eumSL3s8T2p/dEQAREQAREQARih0AaH1US15AWO+eUrDMh44Ya5do1a0K25kBffn34aDvdHzCrVb3kQKuFz04++ZRQnrpq9apkC9XQF4cqLaWIZHh4wE7Kcker1vaA992VuaCUl5NuNY4BJwEHKrElOeee2PcTvpe/QIFwnjhGB1s4rzx58tgaz44dTMRn0Y8rjLmUD3XuGDKZ9PPyUL+/JTnnREbvJC/RXu3XKOEs0cS2jQPLKCHKhX9csjhJMyQT205S3uO4zvRyy2Xel8wcyP0t/J4U/rdsF9XfSPny/tY/Uu/3H/i8nevzZatWKn+kdhnKnIt6xp0lJa9PUq/FkTrRw7mvJHaMKb29xP5NHer9LLHj1XsiIAIiIAIiIAKxR+C4zZBGLiWlt/uW30Y+S/h38eIlwqzTrglGKCT8fN/XOE0Hcpz2XT/hz4glUW53OAtKw1u3LjvgJpJ67gfcyL8fJkfcByfrQI5WYvvD2aK882BLcs4JYR7+JGUhixcZL5OU9Q9nHY6JzOzBFn5PEstGH+x7KfV59uw5PMtZwWZ8+WWY+YnjUaPmFaF8duCAfim1myRth3FN33+3IEnrJmelpF6L5GzzcNY9nPtKYvtN6e0l9m8qJe5niR273hMBERABERABEYgNAse9Q5rUy3hry9tDT+bYMW8m9StaTwRimkCOnDm8/PqVcI4EGFD9RZCJ+b8vPP9sTJ+7Tk4EREAEREAEREAERCBlCMghTSLHb1wsZOrUyUkun03iZlN0NYSQUH7dsmVzim73aG6M3tefDnOMztE8/ljeN2Xu1zWoa8VKlLAcOXLYut9/DyI9EfGsWD53nZsIiIAIiIAIiIAIiEDKEDjue0hTBqO2IgIiIAIiIAIiIAIiIAIiIAIikFwCaZP7Ba0vAiIgAiIgAiIgAiIgAiIgAiIgAilBQA5pSlDUNkRABERABERABERABERABERABJJNQA5pspHpCyIgAiIgAiIgAiIgAiIgAiIgAilBQA5pSlDUNkRABERABERABERABERABERABJJNQA5pspHpCyIgAiIgAiIgAiIgAiIgAiIgAilBQA5pSlDUNkRABERABERABERABERABERABJJNQA5pspHpCyIgAiIgAiIgAiIgAiIgAiIgAilBQA5pSlDUNkRABERABERABERABERABERABJJNQA5pspHpCyIgAiIgAiIgAiIgAiIgAiIgAilBQA5pSlDUNkRABERABERABERABERABERABJJNQA5pspHpCyIgAiIgAiIgAiIgAiIgAiIgAilBQA5pSlDUNkRABERABERABERABERABERABJJNQA5pspHpCyIgAiIgAiIgAiIgAiIgAiIgAilBQA5pSlDUNkRABERABERABERABERABERABJJNQA5pspHpCyIgAiIgAiIgAiIgAiIgAiIgAilBQA5pSlDUNkRABERABERABERABERABERABJJNQA5pspHpCyIgAiIgAiIgAiIgAiIgAiIgAilBQA5pSlDUNkRABERABERABERABERABERABJJNQA5pspHpCyIgAiIgAiIgAiIgAiIgAiIgAilBQA5pSlDUNkRABERABERABERABERABERABJJNQA5pspHpCyIgAiIgAiIgAiIgAiIgAiIgAilBQA5pSlDUNkRABERABERABERABERABERABJJNQA5pspHpCyIgAiIgAiIgAiIgAiIgAiIgAilBQA5pSlDUNkRABERABERABERABERABERABJJNQA5pspHpCyIgAiIgAiIgAiIgAiIgAiIgAilBQA5pSlDUNkRABERABERABERABERABERABJJNQA5pspHpCyIgAiIgAiIgAiIgAiIgAiIgAilBQA5pSlDUNkRABERABERABERABERABERABJJNQA5pspHpCyJw6ARa3NLSVqz6db9/Sl9Y5tA3fpjfvPyKWtb1sW6HuZX/fr3JjU3D+f6wZLllyZLlvyvoHREQAREQgaggcLzYqFNPPW0vO7xs5Vr7buGPNnnqB3ZT0+ZRcS10ECJwPBFIdzydrM5VBKKFQLfHu9rGjRv/czgrViz/z3tH6o1zzzvfGja83ro+/FCK7rJO3frGeRUsWMhqXl7L3ho3JkW3r42JgAiIgAikLIHjxUa9MXqkTZ821U444QTLlSuXNbr+BuvWvadt2bJFtiplf6W0NRE4IAE5pAfEow9FIHUITBz/tv3yy9rU2XgUbTXv6adb2YvKWfv77rG72txtderVl5GPouujQxEBERCBxAgcLzZq0Q8LbcrkSfEI3n1ngs2d/0OwWwqexmPRCxFIdQIq2U11xNqBCCSPQJUql9obY9+2osWK/eeLHTp1tr7PDIx/P0OGDNbxgQdt+gef2sLFy2zytA9DhDd+BX/RtHkLe2noa1a8eAl7ccirwdjOmDXH7m53X/xq1zW+werVb2iZTzwx7Jv9jxw9Nv5zXgwb8YYNfumVvd472A/XXFvXdu7c6Qb/PXtn4nirdElly50798G+ps9FQAREQASilEAs2ah9EZMZ3bVrp/2xbt2+H+lnERCBVCQghzQV4WrTIrA/ArlPOslOPvmU//xJly69zZ79jZ177vl2feMb9/p69uw57NaWd9jSpT+F99OmTWuj3hgXHMkpUybZPW3vMqK9PXr28u82if9ugQIFrVq1y2zc+Hdt8+ZN9tyz/cN6997XwUqeUyqst2LZclu5coUb4l326ccfxf355OP4bfCCTGfp0hfu9d7BfqBc9xPf3qZNG+2dCePthHTprPbV1x7sa/pcBERABETgKBI4XmxUQsQ5cuS0Dh072zp3Rse8OTrhR3otAiKQygRUspvKgLV5EUiMwKTJ0xN72+peW9tmf/O1TZzwdnA0e3R/3Hbs2BHWrVO3nqXzPpfRI0eEnxs0ut4uLFPWrqhxqS1c+H14j9KjnN4Hc+ddbWzUyOHx+9i2fbtdeflloZeTN18aPMhmfTPPqteoad8tmG8zZnxhX8+aaeeULGUD+veL/17CF337PG3bt21L+NYBXxcrVtzOOutsGzzoubDeD+4s//TjEqvrTuprrww94Hf1oQiIgAiIwNEjcDzYKOh2fugR69S5ixHgpY+UhaDt6tWrw2v9TwRE4MgQkEN6ZDhrLyKwF4F2d7e2P//8c6/3+OHHJUvCe8OHvWaNrmscRIDoaWHh52nTpthvv/0afq5Spaqt+vlnK+aluPyJLBs3bDCyounTp493Zrf9/Xe8M8p6u3fvDpnWsmXLRb520L8HPff/pcIHXdlXuNYd6H/++cemTp0cv/o7EyeEUuH8BQrYzytXxr+vFyIgAiIgAtFD4HiwUdCmT/SD9+MCxLTA5Muf35o1a2G1rrzKateqYVu9hFeLCIhA6hOQQ5r6jLUHEfgPgS8+/+yAokZz58wOWU96O3FIyTSWOvc8e6pn9/ht4XRmzZbVmre4Nf69yIu5c+dY5swnukP6XyXfyDrbPNuJ05paS5069W3zpk3WsdOD8bvIkydveH2t95YOHPBM/Pt6IQIiIAIiED0EjgcbBe2F338XbGxC8tOnTgl6DDVrXiERvoRg9FoEUpGAHNJUhKtNi8DhEBjhWdJHH+9uKNXimNLj+WmCvs4//lhnO73ns+41Vx7ybvbs2bP3d9Ok2fvnQ/yJUmIizQvmz/PsbfG9tkJm+Fov25VDuhcW/SACIiACxxSBY9lGHQg07SW7XIyv3MXl5ZAeCJQ+E4EUJCBRoxSEqU2JQEoSeGvcWNvuvZ9Nbmxqdeo2sJHDh1lCB3L+vHl2josSFS58xn92S+lRcpe///rLMmfKZAgrJbZc4IJG5/ms0qQsderUC3Pc6te92q5rUHevP4OeH2ihv/TskknZlNYRAREQARGIQgLHso06EE4E/BDgW7zohwOtps9EQARSkIAypCkIU5sSgaQSuOrqa2zjxv+W037w/jT7448/wmZQxJ04/i27887Wtsf/Gz06Tswoso/BLzwfMqevvD7Cej75hM2bN9dOOeXUoIZbt16DIHYUWTcpfxMVxgjf1aatj2iZYHnz5t0rI4uiLyW4ZUrHKfPub5vp/lXSnTrlPaMseN+Fc3rARSRwWimX0iICIiACIhBdBGLZRiUkXbzEWXZFrdpB1ChrtmxhPFqj664PAnxvvDEq4ap6LQIikIoE5JCmIlxtWgT2R6DLI48l+hEquxGHlBWGD389zBVlhue+c9FwWBvUvca6PvaEDXzuhXiFwI0bNxxSmdH706cZTm7TpjcbI2FwJosXKZjocR7ozUsqVQmzRt9+a1yiq61Zs8Zmzpxh19Spaz2e7LZX1jfRL+hNERABERCBI0oglm1UQpCIBfKHhRmkv6xdYyOGvW5U8mzZvDnhqnotAiKQigTS5MqVa58mslTcmzYtAiKQKgQQJ8rvIkd/bd1qv/76y2E5eUjf58uXP4guUTKsRQREQAREQAQOh4Bs1OHQ03dFIPYJyCGN/WusMxQBERABERABERABERABERCBqCQgUaOovCw6KBEQAREQAREQAREQAREQARGIfQJySGP/GusMRUAEREAEREAEREAEREAERCAqCcghjcrLooMSAREQAREQAREQAREQAREQgdgnIIc09q+xzlAEREAEREAEREAEREAEREAEopKAHNKovCw6KBEQAREQAREQAREQAREQARGIfQJySGP/GusMRUAEREAEREAEREAEREAERCAqCcghjcrLooMSAREQAREQAREQAREQAREQgdgnIIc09q+xzlAEREAEREAEREAEREAEREAEopKAHNKovCw6KBEQAREQAREQAREQAREQARGIfQJySGP/GusMRUAEREAEREAEREAEREAERCAqCcghjcrLooMSAREQAREQAREQAREQAREQgdgnIIc09q+xzlAEREAEREAEREAEREAEREAEopKAHNKovCw6KBEQAREQAREQAREQAREQARGIfQJySGP/GusMRUAEREAEREAEREAEREAERCAqCcghjcrLooMSAREQAREQAREQAREQAREQgdgnIIc09q+xzlAEREAEREAEREAEREAEREAEopKAHNKovCw6KBEQAREQAREQAREQAREQARGIfQJySGP/GusMRUAEREAEREAEREAEREAERCAqCcghjcrLooMSAREQAREQAREQAREQAREQgdgnIIc09q+xzlAEREAEREAEREAEREAEREAEopKAHNKovCw6KBEQAREQAREQAREQAREQARGIfQJySGP/GusMRUAEREAEREAEREAEREAERCAqCcghjcrLooMSAREQAREQAREQAREQAREQgdgnIIc09q+xzlAEREAEREAEREAEREAEREAEopKAHNKovCw6KBEQAREQAREQAREQAREQARGIfQJySGP/GusMRUAEREAEREAEREAEREAERCAqCcghjcrLooMSAREQAREQAREQAREQAREQgdgnIIc09q+xzlAEREAEREAEREAEREAEREAEopKAHNKovCw6KBEQAREQAREQAREQAREQARGIfQJySGP/GusMRUAEREAEREAEREAEREAERCAqCcghjcrLooMSAREQAREQAREQAREQAREQgdgnIIc09q+xzlAEREAEREAEREAEREAEREAEopKAHNKovCw6KBEQAREQAREQAREQAREQARGIfQJySGP/GusMRUAEREAEREAEREAEREAERCAqCcghjcrLooMSAREQAREQAREQAREQAREQgdgnIIc09q+xzlAEREAEREAEREAEREAEREAEopKAHNKovCw6KBEQAREQAREQAREQAREQARGIfQJySGP/GusMRUAEREAEREAEREAEREAERCAqCcghjcrLooMSAREQAREQAREQAREQAREQgdgnIIc09q+xzlAEREAEREAEREAEREAEREAEopKAHNKovCw6KBEQAREQAREQAREQAREQARGIfQJySGP/GusMRUAEREAEREAEREAEREAERCAqCcghjcrLooMSAREQAREQAREQAREQAREQgdgnIIc09q+xzlAEREAEREAEREAEREAEREAEopKAHNKovCw6KBEQAREQAREQAREQAREQARGIfQJySGP/GusMRUAEREAEREAEREAEREAERCAqCcghjcrLooMSAREQAREQAREQAREQAREQgdgnIIc09q+xzlAEREAEREAEREAEREAEREAEopKAHNKovCw6KBEQAREQAREQAREQAREQARGIfQJySGP/GusMRUAEREAEREAEREAEREAERCAqCcghjcrLooMSAREQAREQAREQAREQAREQgdgnkC72T1FnKAIiIAIiIAIiIAKxTSDdCSdY9qxZLWe2bPb7+vW2eevW2D5hnZ0IiEDMEFCGNGYupU4ktQicmDlzam1a2xUBERABERCBQyaQMUMGOylXTst64om2c9cuy3faqXZzvXpWMG/eQ96mvigCIiACR5qAHNIjTVz7OyYIEGU+NXduS5cunWVzQ69FBERABERABKKBAJnQvKecYqe4jSpasKAVyJPXPnr1VbuwZElr4c7ogiVLrHjhQtFwqDoGERABEUgSATmkScKklY4HAjncCT35f/8Lf87Mn99mjB5l5xQpYq/2eDKUQB0PDHSOIiACIiAC0UcgTZo0nv08LdinrFlOtFzZs9ud119nFUtfEN7/ff2flt4DqLUqV7bFy5fbdbVqWaaMGaPvRHREIiACIpAIATmkiUDRW8cPgQzp04dypwJ58lgO77vp/2BnO694catctoy9Nn68nXpSbndGs9vpp556/EDRmYqACIiACEQFgVw5cljunDltz549RtD0vBLFbfrQoUYrScPLL7eZ8+Zbk6tqW59XXrVSxYrZlM8+t2xZsljJokUtz8knR8U56CBEQARE4GAE5JAejJA+j0kClOT+zw39Lu+5KVqwkN3V5AYrnC+flzkVtvWbNlnTa6+1iR9+GAx+jxdftLOLnBmTHHRSIiACIiAC0UUgbYJs6DlFi1iBvHnsixEjLGPGDFa/Rg17/LnnrYTbqmlffBlEjLBbf2zYYDe4YzrinXfsonPPDQHV/HlOi64T09GIgAiIwH4IyCHdDxi9HXsE6AelJJfe0Pxe+vTN2DFWqngx697uHhs3dZrVq1Hder70khUpUMC+//Eny5Qho1UpW9aWr1ltN11zTYg6xx4VnZEIiIAIiEA0EEAdl0DpCd4jyt9tbmwSgqRF8hewJStXWJZMma16hQr28y+/hKDpyEmT7LLyF9vA4SNCNnT37j1B2Ahb9sGMr+zyihWNUl8tIiACIhDtBOSQRvsV0vEdNoHM3kdD700uN/alihUNpUxXXVrVBgwb7mIQeWzTli3hAeCqqlVt8bLl1rJRQ3tu5Ei7tFy58PdpJ53kZb25LJ/Kdg/7WmgDIiACIiACexPAvqCSi/NY+uyz7bPhwwy7RSD0mwXfhQqeZ0eMtMsvucS6v/BCCKju2LnDyKQ2qFnTvvnuO7vuylrW99VX7Ayv9Fn966/hs6svvdRO8SCsFhEQARGIdgJySKP9Cun4DpnASd53Q8SZaPNlF5cLjmjvjh3DbLbbGjb0CPIMa+l/P+kluTU96vzUkKHBcf1nxw7bvXt3KH/6aOYsa3RFLevx4ktW4owzDvlY9EUREAEREAERiBA4IW3aEOi84KyzglbB5BcH2xkupteyYQPr2LuPXXJhaes/bFiwSVv++stYv1GtK2zOwh/sRndUsUkXnH2WjZ70XtA/KOU9o6t/+83t1lWG83qmV/rMmr9AfaQR4PpbBEQgqgnIIY3qy6ODOxQCyOFTmksfDX2hGPrvvAQXOfwOTz9tldzQDxg+3A39qXZipkxme8ya1a3j4hDz7NYG9a3H4Bf9u6Vs7NSplj1bVitzTkn7ee1aa3L1VZZFI2AO5ZLoOyIgAiIgAk4AJVwqc9K7oB7tIWVKneNq7kWD80gA9fRTT7O/tv3ttqiBfTRzpt3hSrpPvjDYalasYP1efc3yeMUOVTt/b9/mYkZX27uffBwCqlT80I6SO2eOUPVznTuvr779dhBBEngREAERiHYCckij/Qrp+JJMIFeO7GFuaFqPJDfxKDGOKRHneYsXW3ZXHSxaqKBt2LzFDfz1buhnhb+79B9g1Tx72stVC087+SQvm8oSDD2Dxd+a/r7VrlIlPASc5mqFKBaqbDfJl0MrioAIiIAI/EsADQPU2lFzx+ag5j6ydy/72rOYdze9KYgQNffAaJdnnrEaXrHznGc58558SsiM7vKKneZ169oXc+aEwGjXgQNDxc68RT9YxgwZjBaUOQsXhvLdvu60YvvoQd3699+eVa0VyoF1IURABEQgmgnIIY3mq6NjSxIBJPGZyZbPI8ufe+Yz7yknW6sbGoe+mnbNmtpLb44JfaEP9Okbosz9X3/de3BOtZ07d9ruPbvtZjf0n7uhv7luPXv8+edDD8/7X34ZsqfXeA8Ohv5678950jOnDCHXIgIiIAIiIAJJIcAsUOxTTq+2IYPZt1NHW7JihV17WTVr7xU79IwiQERVzyn++d/bt4fs6KfffGO3eMVOt0GDgnBR31dfDUFTnM2NWzYHu/XKW29bxQtK25CxYy1n9mxewnu2LVu1yhpcXtOeHvpyyKTSi6rxL0m5UlpHBETgaBKQQ3o06Wvfh0UAw4wzemaB/KFfpsOtt7iBf8pqVapkOJ/negR60iefBEOf0x8Itv1r6D+bPdtaNW4cenBYt/crr4SIcu5cOUNEmb7SUd6Xc0WlS0J2lPfpH0UoAln9UOZ7WEeuL4uACIiACMQyAUpzcQS3//OPt32cY4+2aRN6RnE6zdIYgkPLVq22ds2b2ZtTpthtLqbXdeCzITuKE0q7CWPJdu3abbfUr2+ffP1NaDvp9vwgH/lyhi1yAb50ro9wfe0r7VP/7AoXPOr/+rCwj7PcXtFmck21S4N4X6HT88Yyap2bCIhADBCQQxoDF/F4OwVKkYg6I1ZUuUyZYKR5DxEjZO+vqVbNVqxZY2RHJ338id3pPTiPuqEnIt3lmf5h7uivf/wRvs9g8RnfzgvbeGTAALvQI8zTfbYbTmfd6tXtK+8rRcWwlwse4QDT+0PZlRYREAEREAER2JcAyrcF8+YNgVDUcs8vUcL6PtDJBo9+w9redKM92K9fUM9t+8QTQcl9gAsXFT79dNvhFTu0mzS84nKb8/3CUMb71EtDQnb0qSFDvHz35FCGu2nr1pA5HTpurFW44IIgapTNW1IuK1/e5i1aZHUuu8ye8SoglHvLuY7CcreFOL+IImkRAREQgWgloDtUtF4ZHdd/CGR2J5HyJrKi8yeMDw5ox5a32vOjRlv7Fjdbl/793VA3sPt6PmVVL7rIJfBfC9nTlWt/sQwuIFGjfAVbuHSp3ecRaSLJdatfZo94Lw4PA0Sad+zYGUp7iVbXrlrFer/8SjDq57sK4k8//2yNPRLdffDgIETxn4PTGyIgAiIgAsc1AQKju/fssexZs9gd111nD/Tta+XPP9+GjBlrJc48w35a+bOX1mb32aKFQmnuHdc1cjG9+Xav26SnPehJ8LNz335WrFChuFnYHni98eqrwzqMI3sstJScZV8vWODiSOlDP+nUzz+36u6MPjtihKGjUO68c23hT0td/6Cy9XvtdcuZNatdUrp0KN89ri+OTl4ERCCqCcghjerLo4ODAKINGPq/t20Lf994zdXBaFcsfYG99vb4YNzn/rDIHdVcYeYaY1tudEXcBUsW2z1NmxmR5CZu1Dv26W1lvXRqmmdA6bep5nNGcTRbN7kh9IdWdKM9ygeNZ8tyYij7nf3993adC0L08LEwqBoyy3Tt778H6f1MfkxaREAEREAERADRvDCr2m3EtKFD3IZktVqVK9lyL8m934OlH8+aZV3vusuGeq9nmyZNrEOv3tbo8ius7RPdrXTJs22aaxZg4y4+/zz7dd06u/umm0JfKEFQnNr8XpmTxv/btv2fIMY38t1JwX4NHTcuiCQhajT3hx/syspxTmgu31Ylrx761t+rVOZCe3X8eMvjFT5aREAERCBaCcghjdYro+MKQ8LJhlI+e06xovbx66+FqPIVl1SylV6GhNGmpPaB226z4RMnWodbWtjDXnZ7c726IUta7tzzbPR773kfT5ziILPc7vYy3nHTpgXRiPZP9zJmtzHXLV26E0IZ1LQvvrD6HqWmhwfV3SIFC/i+4ka+9PTyqdNPOTUo96psV7+gIiACInB8E8jqY8AQI8rrbRz53Rl94u67g34B/aDtevQM80JbPfpYcB4RJSrp9oYgKA5s2VKlbN2G9V6x09wmfPBhGO9y/1NPGYHRke++G7KdpVwHAVtHJrXnSy9Z5QsvtDcnTw6qufSHfvbN7OCE9vFqHhxaSni/W7LErvIKn2eHj/BMbVZX4L3UPp89J5TvHt9XS2cvAiIQzQTkkEbz1TmOj41oMwaWEl36Njvfdrvd6wb+/ptvttbduoWez9sf6RoymfTZlCpezEUfvg4ZUpQM//JsKiVOyOSTAcWY165cxR579rmwvSyZTzQc1DZNbrTh77wT+m5Yh+9eWLJkKK1qXqeuPTHohbD+/3LktN/+WBeGjjOnlHEyWkRABERABI4/AvSJIljEWJUKF5wfVG2xCYtXLPdqmtyhHzRD+nSheoeez6Z1rnXV9+/t4VZ3htmgd7kKPM7n1VUvtUcGDAzq7b/9+aeDTBPsFgq7zM1mBEzZc0qF7Cf9pQRbJ3/6WQia9nEHFzt5abmLbMGPOKFVvU3lVfufzyGt5I4r6vBVypYNDiwCS+glMOdUiwiIgAhEIwE5pNF4VY7jY6I8FyOLwMPlrhp40bmlQu/NV/O+DRHoX9b9HgZ/Y3R37NoZVAR/WrnSe0hbhChzR1faffTZZ8MDQEcviypVrJhHh2eHnh5KlxYvXx5UDZ94YZCr6Fayl8aOsdzu+NLnM9/nlTa99loXnXjGFQ5PDyIQ6zdttBb164Wy3QJ58gbpfgSRyKLSl6pFBERABETg+CGASi426ouRI+wC1xfo3aFDEM97/O629vr4Cda1dWsb6NnJ+zx4+pDbkjt97vVdjz1uV3pPJwq55xYrHrKkJ2bObNUrlLdlq+PKel9w0SNU3LFbZxYoYJu2bAkKva1vbBKEi2p7OS7iRmRkCdQuWrrMW0quCMq8p+U+yS7yjCs9qnGO6WuhlBel+A9mzLCzzzwzOK3M09YiAiIgAtFIQA5pNF6V4/SY6NEkKzrrzTfsTI82P3HP3fbeJ59aj3vvtbemT7cn721ng9xoP+by+Y+7Yb+3WXNr0+2JMPi7U58+oQRq4kcfeZbzJDvNHxo2bd0SsqNs41YXO8LRRHUQ5d0TM2UOzuxXrrBL1BlBpGIFCwWVXjKnt7sgBeNgShYp4n2j6+wvj4QztPwpF57I5zNMixUqKLXd4/T3VKctAiJw/BEgWIqWwB4XLbrfA6C3PNQliAq1cmfzau/hxJG8rPzFYcwKjiqOIG0fO310C9lNRowtWr7MuniWdNjEd4L6e7snewRBokEuzHf6qaeElhACnnc3vckGv/Gmj3LxsWQvv2yn+n6rkgn1clwCpARdC7kYH7oJv3jPKVoHzNDGWUbVd+HSnzygW9H3M9E1GDK6cu8VXgY8yQX5VNlz/P3m6oxF4NggIIf02LhOMX2UWTxSjDogZVAIQNzapYs1c+evxYMPBWXbO7p2DSNYUB+selFZF3sY55nPojZv8aIgTnTWGYVtw8ZNQdXww69mWidX3sVhbXLV1aEcCsXCn11pN23aNEGxkD5RBo537N07zBelvPevv7dZG49EI5dPpPnLOXMD89saNfL9jfEe1mK25rffQ5kvAkn0k/JAoEUEREAERCC2CTDyK4eXu77Ws4ed432g559Vwh3T3XaWZx6ZM1ql7EX254YNXhZ7hSvc/mSP3NXKsEUP3XFnsClkS+958kmrV6OG95j2CU4jvaSZMmbwapsaYVwLmgg4lcwTRawP/YTKZcuEz1DsxV5RFrzTq4c2btlsdza+3p4eOtTfy2fpvVrn9z/Xu0pvjaDWywg0ynaxYxe6aBJ9pf/4cVLZw7paREAERCDaCMghjbYrcpwdD0IQWVwY4k1XEixasGCQuwdBgdPyBAe1lJc3oSxYrdzF9qv3cN5ct6734nxn3Vw84q1p063LnXfag95ng4N5rz8sUJY7wgUh8pxycohm/7Fxoyvt3hTUc2+oXTtkQot4OdSWrX+FP8jtPzdyZJgHN2rSe0FAiUzo2++/H4QoxkyZ6iNh0vlg8nr2yltvhczoDlfx/d37fZj3ls57c7SIgAiIgAjEHgHmXTNTFGG9Eb2e9r7Pp0OlTnv/+yG3PQ/07hOcz/t69vQZoze5au4ToeKm+QOdg7DQU0NeCuWy2Kyc2bKHEt9Vv/xqnW+/zW3Se0bA8+7uT4axLO9+9HFwelHKZf1b3aZRuVPijDPs519+CWPJWjVuHDKwF593no+CmecVPbvdNtX393yWqbeZIGJEhvXqS6uFsmHmk+IEvzFlchBeQowvj2dbtYiACIhAtBGQQxptV+Q4OR4MPFHnrD5iZfyzA92Z7Gk97rs3lNV2b9fOunpJUjfvyenQq5c9eMftXprbzdp5iW7Lhx8JpbMtH3449IBS1nRm/gJBxIj5b8xxmzV/gYsg3eajXAbb9VfWsid9bAvZzBN81igiFPTkvPjmm+GBgVKp3C5YRJSaXlN6cpgHR3SaMqyPZs60mhUrGLNJGSyO0MTzo0YFGf6zi5zpJVaS0j9OfmV1miIgAscRAQTuyH5ecPZZIVP5hiu2M2rsuREjw8+jvAT2wnNK2pipUz1TeoZ9/9OPoWQ2TZq0oUS3eoUKtvrX37yXtLlN/PDDYMce6NM39Im269EjZC6XepYUhXeCoAgZoaZ7n4sdkdVcsmJlaCEhO/rq22+HHlScWEqHb7rmGhs7dVqYt/3BjK9ckd58G3VDNpbSX1pe0EuodnE5e8cdXTeN7phWD/O387lTqkUEREAEoo2AHNJouyLHwfHQD0OZ7MU+wLvqRRcFA4+AUa+hL3ufzSXW95VXQ2nu8+4sVnQZe/pHMfjMFeUhAWeWWaNI21Me9VjbNmHweNsbbwzz3XAgEYjAMOc56WSf6/aHO7PNvP90dHAyn/Fh4afk/l8ozZ3zw0KPUje0Dj4CpqA7rfTg/OgiSYhLdHVFXn5m6Pgns762Kl4u/L73Be3YucsfCK52x3VIiJ4fB5dMpygCIiACxwUBFGkpyyUo+f07E4NT2dpnh85btDgEJHH0cP5oGbnX7cqsefODrsHEDz+yR9u0tkEesKRt5O7u3UOWkz5RSm9fGz/eCuTNE7KgtJgw7oUKHPQN2vq6zCNlH/SbomEwxoOgdatf5sq5r4VjwVaSFa1bvbr18r5Sjo/RL7SgVLigdAio7nTbdMNVV4XPT8rlJb8+i/TDr74KlT3pPCC75rff/FjKHhfXUScpAiJwbBGQQ3psXa9j+mgx9Od6L2ZuV8hdOm2qrfLoMeVG9NJQ/rr611/dwFYL5UmU1y5ZscKau+DQ1wviSnQx+Agd4VCSAb3HDT0CD21d2KiclzAhUMRcOAaC46h2vv32MO6lgcvd93vtNcvr80iLeFnwyrVrjdKnh11uv/RZZ9uKNWvDfNPWN9wQnOJzfYQMkfF169e76u419thzz7uyYS6r4RHvyZ995mVXJYJh/2PDxuDgknnVIgIiIAIicGwTYCwKCu9kITu4YvvNnR8MlXTY+AAAQABJREFU2gK3eWVOe59zfUfXR8PoMXQOOtxyS9A5uMUdymadHghBTFR1L/HezdGeyTwjX37b7AJ5J5yQNswKnbdokZf33hUczOZeaYMTyixSsqRpPMVJ+e47H38Ugp2dvYWlcL58lu/U04K9CuW7z/QP9guV3aWupnuT2ybmZaP4SxCWcTD0tjI3e7OPmrnWbSpB3RMzZ3I9hatcJOmNIBrImBi+o0UEREAEoomAHNJouhoxfCy5smcPhj6b97gg8HCdK+c+6H00GPZHWrWyO314eDd3Nvm7qxvt2x55xA1+C2v9eLeglHtTh452nZffoqZLpnKc949SenRC2hPsn507Qt8O2UseIh72vpurfRg4w8KZYZrX+0lXeQ8OyoVkNZnNhnObMUN6a+bz4Ub4HNLanm0d7SVZGfw9ot8vvjnGzitR3BV2f7c/vQ8VgaR+HqnOkTVbEIYY7iqJbJv+HravRQREQARE4NglQAsJPZdjXZOAGaPc+/PnOS0EN1GnpUqmhAvofeatHcULFbYZ3/ooMv98y19bLVvWLD4DO3doCWl4xeVBDfehO+/wUtvx1vHWW13IqK/Vr1HTRfYGuHL7mbbebQpBz1YuTPT29PdD5rXD00/bWWecGca9bNqyNZT6IlpEv+isBQvcfu4Iegj9fNZocbc7f3uV0W/eL8qoMoK0CAMiWvTm5MmhnzSH21pGolW6sIx97vO4aVdBBZiKI9SCtYiACIhANBGQQxpNVyNGjyVOuCizDXeDS5kRZUMIC03/coaXzZ5ro96bFMSI6Ous4qVNw91BZBj4B15qVOj0vCHii7HFiG796+8gcT/n+++te7t7giBRx1tutTbuuF7lPZ+vjHsrPEwUduVBMqH0n1IKXNf7Z4aMGesR4pwh04loxI3eh/Ool+Xi2KKs+/V3C4JKYv/Xh4WyKvp0Rrzzrp1XvHh4SFjtx13nsmqGM0pZFcPOeRBgPunRXsjSkh1GCZLoNyN0UFokms7DFWIWsGesDg9eBAj4mbl0rMtrSrz47BT/DpkCHmgQ9dAiAiIgArFKgHmg3P+o3Bk7oL899vzzNuChB92xm+IVOffY9C++DNnQL7+dG8psv3DnDlEiSmGfuv/+YA8YRcaYMNR1UdNllNjdT3S3y7yHk0Ano8KyZ8tqVNXQPjLShffuuO76IGiEw7n051W2ywWKWje5IWyPiiHsEMfV4PKa4RhqV6kSspyIALbw7Q8ZO9b7W88OlTwIGVHK+6JrKmT0e3aza+uEFhXu/5TtTv7003CfZ4wZGgvFCxc+4peTrDP26WS3T9gh2m8I6mKvsDnYnlNPyu2OdY7wOXaL9fg8rJs377/XKWcYg8P14tpRiqxFBETg2Ccgh/TYv4ZRewaZ3TBiTHB+3h30QshOPtP5ARv//gfWsWVLN4zzrWXDBrZo2XK7zuekLfcB4cxTW7Rsmd1x/XX2lffLoKb79vvTXfDoPuvjvaU4mHe580mZFNlUsp2TPvkk9HqeVfgMW7JyhUvt3xGyoxjyx73cFpVEjN3SVT/bXTc0DlFq5sQtX7U6jHEhc/qIl++eU6SoUVa8cs2aMB6GDCsGlH7SV73/BycaB47eoYqlSwc5/vWbNoW+VxzU1Foo58LZ5KEmYrz5mV5a2GLMGZmD4i/OP+uUPeccV1U8JYwEuPj880If7Jke5ce5xpEng4yzX9ZFOWpXqRwi/wxj50GF0QKoFNM/i0PK/iPiTQQFCA6wD5xc9g8zLSIgAiJwrBHA0WHGNOPErqxcxSi5pU2Dipx7mja1xvfdbw94ewhieoxloXLnnmZNwwzS2xo2shs7dAiBSZTeq5UrZ0PHjQvZU9o90qdP5xnJ8vbdjz+GHtPBrmuAvbuv51Pe83mBzXX9Au6tCBoxPxsn8iEvy+X+iyO6dNWqMNrlwX794st3Fyz5MZTqEgjNemIWa3xlbZ81OiGMQUufLn1of6Ekd8rnn7vOws7gpL40ZoxlSJ/BBf6utBe8bJd7OnYW+5xSC+dKABMHGHtLQBO7xBIJkkYcTPaPyGAhVwWGO3aV1wSFr6xU2eeBFww9vO191muTq68KTis9vehL8D3Wz+2OKhlpnFv2GVl4TZYb20SAFTvFscBZiwiIQHQTSL2n6Og+bx1dKhPAMPy9fXtQC7zKnZ92PZ70QeDXh1LdB9wZvblzZ5fNv8Nu9eHij7dt4yq6T4RSXYaM02dzy0MPhdLeG/3BoFmdOiGSzGDxV956252mQqFUiawgog4z3bFlGz1cTbe5r9ul/wArWqhgyGKu89lwRLMRhrjGpfDf8HKmLCdmDlFnHFmEkYZ6VpXobUsXN6LPhqgzY13W/P6bNfLyqwHDhwfnj6h3f59TilAShnTCBx8Gp664O8IY25RYcv6buSRKjNOJIWXbOH1nn1nE+5LyhfE4DFdHaIM+I5Qeh3Z/ImSXecgo7aqQ13om98RMmYMyMFFx/jDQ3TcYIvFslx/9jeBc83DDCIGiBQuEByRGFOCQ3udjcbq2vis44vB/uv39Vu7c86ywPxiEHqd/s6uIRLFvxg5w7XlQQD1SiwiIgAhEGwHuf1TG4CwhXPTbH38Gh5JZ1dwnuZ8hXoSY3vQvvzR0BT77ZrbfHwvZl3PnhvvfCg9cnpQrzhnavWu3q75fEjKdD9zW0sti3/eWlNuts5fq0gLCaJeLzi3lTugPQe2dYCnquAjxoTBf8YLzbdnqVe5E/uPjY260Z0eOCAq5CBZxrMwcHTB8mDtqRWyzl/Ou8XJinMpnXBuBey5CRszLxhk8t1jxIHB0lpf1Uua7zB3buCzsz7bWZ2mjgcCxH4rNIhuJs0xmk79x+FjS+H9U2sAUxXraXQhwYnv5gyNZ3OeBI/p00bnnhnNitBtKxDioadOk9fU9YOrHFsySb5Ne3gz/zkylleYSDwKzHewUvbft3DbheGKLuvizxFP33xeOi3NFDKpYocLhM/gRvOV4CUAQnOY1jqsWERCB6CEghzR6rkXMHAlGIouX0swYNTLMED3bh4fjHGFEmTWKgS/vRmOkl8NW9WguY1QwTC94uRGOHhL3lPJ+PGuWG9g8IYvJyJVybtBXrFkdDP1bnjWlPOpejzYTYe7khh95/l/WrQu9NUSzh02YGCKsD3rU+wyPwKK6Sza2ZcOGLgbxQoi00hO6ePmysI0eg190ZyqX0QNEmRVGb7PPK/157S/BwaPXlIeVJldfHZSBMXKU9aKqWMB7iZK7YIgj5bKRKG86P08eKqo5lxce7eoCGRjhvKGfqMIF59vO3bvCqBwM6w/LlgbDzjns2LHTNmzaHB52yFpS2rxz187QY8tx/rXtb9uze09YH4OOkWbZtWtXMPCZ3CHf7Z9v3LIlRNM5NgawM7bgpJy5woPBlr//Mhx8HiwoLyMiThSbh7VCeU+Pm6nn2WYeVlBSpr+XBxgc28hDQGS/yWWl9UVABEQgJQhk9vshwT6cqSd9xFhjL7vt1bGDdejd2/p26hTaNKjMmepZRu5vs709BNXbOQsXhgqbma6qS18oWUgCoa95nygjy1Bqb+MjxW7t8nDIRvbxEt6zPRCIfgG3W3o9cWoZA9PR55de4QG+dz7+2DieRl4h9N4nn3plzjX2hNum/C5mRJULQn3oF/T3jCjOMwJ9r0+YENTnmctN+8v1niVlfFmmDBm9DeVqH/3yWih1xSmjvYT7L60w9Kry+rKLvY902rQwuuxAPLlX4+xSFYNNhxkVQrSCEIzELmGfXu/ZwzO+54c+2ssvqRjWoV8Vu8P4mR+WLvXd7AnzxrGfGze7nXI7x8i3bdu2BztFIADnEzv2b6Q0vE/WlwX1YNTts3uvbtjGls1hfY5ph9s55rQSxMVuYetwOAkQMAqOQMAgbKk7tAXctl7qasUEaFmHkmCC0Tmzeymx2362p0UERODoEJBDenS4x+ReKRnFUcK5oQeH8qanPKPWy4UZ+j/YOZTWEhFGbZDo7ipX1UW5dt36DS68cGHISmKkf/beTxQEv3F1XQSOkMZ/8t52od8zTtnwQS/xrWVPvTQkRIwpj9r2z/bgECFWRAkuA8zJHPIwgPgDQkoDhg0P5alTXCkX5UN6QId4iRURVYzmH+5s8eDBAwGGm54den2IkmfJfKILVfzo/ThlbeHSn8Lw8eoVyrvT/LU7cZtDadbBnC0ePCLlTBj24Kx5NpH3MJavehYZsQqMaumzS/pcu5+CEAUOJ44rPIgk47xilOFG5hRRpfWbNrrzvz2U7f7PDS1McDDZB302qC4SeebBKM4hjfsVxLHkT+ZMGcM2//57W1gnu0ePef93305mV2nk8+3/7LAly1eEkjKyn5w3D0TnlSjhDwW7bPGKFcHJ53eAcyUz0Ltjx1BGjBOLwc/oDx30CZ128kkhi0qpsRYREAEROBIEcEIJlqLWXtwFiqZ8/llwDBEbusUV22/xih1KdZu07+CjW1oG9dyurVsbKruP3902iOxRsottQ6n9zkcftUY+uxqxvWru6BFspb2B+y7CRK28RQR70/HWltb2ie5xJbQumHeqZ2BxiuYvXmz3Nm9u7Xv1Duq8ZEm3euCPLOmTHiC9sGRJH1u2LtibFvXqBz0EsrdXVa0axIlQ1d28dUvIeFItRNUPTl0dnFEPoGKTyFhSWYTNQwNhrDujBDYvr1gxfB7hzr0Ypxf7QlCTDCLBRY7hCh/LRjsHZbU9PROJ/aEMmHNY6QFbArfZvMqGdeZ8v9A/t+DMUsVEUDOtBye5/2/avCWMfON9nF2cx12eXcau4ZCSIY5kSHe6TUF4kIXXnGeu7DnC53/jyHrAFKcSe4btzuDO6/+8nYSRcIvdTuFIozCM7fvey6bJzLIuNu1WL50mkEpWFgVjqo1OPyUukI5TyrnDmWPUIgIicGQIyCE9Mpxjfi/cuLP5jZxy1/IXnG+jJk0K0dz7PYOJ4W5w9z1BVRfDTjS5jRvn3h6Vpj+mp//8yMABoeTmAY8cU9aDui6lPk1dTp+M5r09enoWtXwYBk42DocIQ9PGDcn4Dz4wyoARkUDYiHKpbB59vd6d3qmff2E3+4NG5779giNFpHfBkiWhX6e394jy8FDxgtI21UujcIZR6sWgYaSeHjI0RNHpvaEPhxlyzE6d9PEnwfGil4UsbqHT8wVDjAFMuBAFxqAThaU8iogxWVp6hCjR6tf5gWAwMZrlzz8/ROJxnil3pV+U6DgPNoU9u/uXO4oYUpx9ysZwBHFAKZNFVGnVL78Go43Dd4qXkZGN3uP/ESTgO1s8Y8pCaRWOZsR53uUPJv+42iMlu6y/zV9z/rm9/4aHji0+toAsKv1A/M1oHow157Rt+z8231kSBec4Nng/7Q9Ll4UsN4YfhUeuAw432dWqZS8KAQpGGdAThNOfwY8Nw69FBERABFKTAP313JNnvjE6qN8SHEWv4EK3WelOSBdKYanIoQWkbKlzQpVMpTIXhlJYAqfPjxwZZni+4/2eJdzx+sZF8E7z9g2cL+6rFUtf4I7PT0HngCwmbRWMJKtbvYYN9LYPsorcDxEgauP7JlB7nTuzL7mDigNI+8g0t1eNfeRZb9dLwDEky4l9q1W5kn00c2YowWVu6eMuvIQDVbtKVQ+aTgqBWZxJsrllPLO6yStdGCdzYcmz7Zff1wWHlSAn92yOEZtRwDOclNhyb2dfBBG5lzMfld5N2jdwOOu5ICBBWAKlBG/JEGMXOOaiBQq62vDcoGFAoBHbQRCYQCm2FpuAneZnWKG5wDrYb9pCNvln2KC07izjkKI8jN1hweGMlOxieza6M8tzBnoN2z0Avd4rgrCvrI19I0CKbSUQi4OKjcvvZcHsb6EHnPN4EJR+Utab/d33QewJZxibVdhtOPac7XHulF0zJg6HmAAGdlSLCIhA6hKQQ5q6fI+LrWPQcLZmjxsbMnN3uQO61o0g0UuM1BwXbyjj2crXxk8ITh9zPRu7k4e4Q9NrrrUOvXq583hlKGOqW6NGGOpdzdUJUbgtWbRIMKwoCzLDlJmlzIOjFAmxiTsfe8wa1KxpL7hgBAYQ52fJiuXhs/a+XaLWM+Z+69dhTyinen7kKLvco71I9tOjcos7nqgjYlgxWKxLpJnyKYzjzZ7lQ+0wizuNzet4xs/XpbynoZdOsS0eAugzHTp2XMgEEl2lpIksYVzmMVN4EEF8iSwvjy44dJRN8YBBpBejiXFn3mqmjBnCLLmffM4cxpuoc8kiRf2zBWG8DQaZ46QXiSWrb4ueWEqZWTJ5JpN+GzKkPCTxIIABR7iDBSMdlyGNy0zymocLSqFYMN7rfWg7zjUR87+3bwtOKE4w36Wkl4eMs7wMm+8SvWch0gyvBUsWh4cbrjsPRShSMhSe8l1KjImM8zBHeTFlXvSk4nRrEQEREIHUIMCdLnI/psIGoaLH27YNonh9OnYKmcg+Hhwd/+EHdr+X6M710txGHszEcSRQSCVKeReG435c6cLSQfW9mbeJfONODX2iY6dOCdlTnMRO7si0crE95mkPGDYstKhQjrph86agoPuyZyoR7GNdRoZxv2W8zL3eD0nQFDuxfPWaUNZK+e8jA58N2yCgiTI8YnRUDOGg0VfKWBiygpTyorCL000Z7ZipU4PDSuXNhA8/DPdzxqURKMYpw8l83e0xrRRUEuEYczxkOP/n6rU45QQpccQ/+fobv7fvCNsgw/zF3DnBUUSn4dc//3BOfwZnliAjwoR/eVCVICsOLefCOWLXyJCifI/diGQzKd+l/xb7QOks+8FW8x9VN9gu/mBLsT0nun3DXiDYBDcCo2yL4Cw2k2AnTuxWt2k4mozYYdt/urox17O0Bx+w+1RE8XzC+UfsVFUv5cXG8T3O82z/bkEPflNqjXOsRQREIHUJyCFNXb4xv3UM5Xo3tvTFYOh7dWhvt3ftas893CU4afTazF+0ODii3PiZ24bB2L1nd3DCNvsMN8pw6APJ6o5Vdo8g0y9CmRBZwFvr17ePZs0MzhxRY8qoyJ4yk5SoczF3lFjIHjKDlPfIqOL0EvUs5kaTBwwk9h90g1/EjSRRYSLJ1/s2EDGK682p6a/fDGU8OIw4fPTDfPrNN8EBQ1J/tI+n4djo98HgY9iu9ozsZC/JIgqMwceQ0qfCvLfnHn7Yt501OHtkd9/1fiG+g+HGaGMUI84pRh6jerJnN3GqP58zOxhinGycuB8925jeo/j8zDZ+XfdHcDbJLuJQMk4g9OV4aTEGn/ImjCusCTjjWLLs5ZD6k1qcQ/q3H6MrEfp/bBtBJ44Lx5aHCXpoeZggC0oGl2gzDPmZ6zfPry/BApxfjoMHA7LORLoJIGTw9yl7pqzrfR/1g4NKAOP7n5YGJ/YXPxctIiACIpDSBLgnnezBwUmDXwjBTTJz5xQrGrKeqKe37d49tHhc77aL0S0tOj9oT7sNI1ja05XdaQshaNbt+UFu2zqEv2lDaf/002F8C7YOxff23j9as0JFG+66BYU8E0qLA0E32kdwIBn10sHLclHiZZ5pRi93JRM3duo0LxWub08NGRqqaHAgP/hqRigDRpuA1glaSwi4krXFEf3RleQJmuJc7vF7PePLnh0xIjiFOE98j0Dm9bWvtMGefSXLx3xSjg37hJOJw0nQEn0HjptqHBxVAqVUAKE3gHjgHrfTqARjm8kW4xST1cRpxY7xvd1+TDiGOHhzf1gUbAzZTzKq3P+xObS8cC1wIvk5ozuo6d024eyT4cTJ5M92SnbjEqTB1gaH1NcPdsr3S08p20Ef4ff1fwbHl2A1DiMtQARWCRhvd7tFhhjHkmNFYJFSYux/Vj8Wnll4BqBViH1gX5lnXqp4sWBPp3z2eQhmY+O+9nPWIgIikPoE5JCmPuOY3QOy6jik1cpdHG7i9GT0dafxDlfTbeqR54e9ZImenL4PdPL+z2fdsLcPTipqeG+//35QxsP4UaI70RVrH23dOvS99OnU0Xr77NDH2rYJfTf3e/9nyy5dQlaSWaUhG+elRzhi9NrgHN7f4uagZEiP57duFDFglAo/52VW9NOMmz4tGMHbGjUKjmf18uV94PnSUAbU0rOkyOgTRScCTbYTlcDcLubD6JlL3GgRHUd1EaOMgAKvET1iP3MX/uClQl62W6iwnX3GmcEwVy9fwR82pobeGASaVnikmF4bynERX8LgYQgZtI5xpYyKkqnS7ohjHMlSkm1lPM33P/0YSl7JhLI+hpaMJwYf55UHCxxFyop4KNjsXCjNwkEl6sxDTFzkGYc0zgkl+8l/lDfRs0RZLw8ErPvHxg1h2zxE7HIHfN0GH2HgDwIYdgIHBArY7uleVky/EiqOiFZxLGRJceZxYHGecdQ/9ExwRR9zQNScB5JlPm6HUTP0D8EBhlpEQAREICUJcP+kf36Yi+7c7I7m4EcfDVU3qLYj+kbwrZDfs5gnyn2dYGYDr3bp5G0jCOXd91TPME+UAGgzdwppCUE0qJOLH2EnELnDoSPgmsudoPxe7rnWK0baeY/pG+9N9r7RW+yuxx4PziVCffT6Y7vmexUJ7SgP9x8Q5+R9/11om0CF/okXXghOKyq4OGtkU7v7e7R6YLPGuANLSe4Wv/8T0LzGe0JpG/nT7QXKveOmTQ/3fsp/ubdy/8XpWuh6BKt+/cVKFS0Wgo04xThrl3olEraYoGc5L8clg8mfk/z+jX0b73aZDDOZQgKM3NtxptkOysS0cDD3tFjhQuHeTqksDjC2gNd/ui1J70GAuBaP7aFcloxx5oyZSISG7CQ2if1jnLAfYfHPsIs4r9jJ4JC6XSOgEGfTPGPq2VVsHDYV8SIC3gR6Kb3lWLHZfzjDUh4s5effPNAKD+wvdotMKL8jrL/FA6uffP21XXROqcCH84Ivwki/uM3SIgIikPoE5JCmPuOY2wMGAscHeXkcGHoh6dWs5TPEKK1ZuWZtULZ72cepkE1s92SPIG9/axdGuTS3G9rHCUa0cGeV0S9NXdmws88XRZ3wrhtusFsefCiUyeDEklnE4aT/BmGDLW5QEB6iDAmVXQw+5bM4kZSy4hR/5eW4ZFI79ekdlAoxUmT57vDvPeTz4ooVKhREgnA2GY/CKBh6WIhY09eDk01G9GUXPKInBal9RrwgY09GFuEIFAZR/R016b1g2K/xB5RhEyeGqC+CE5/Pnh0MIsfN9t6f8WXosaUsiEgtxpps6PklSoTtwY3jx3B/MWduMNBkITG+ZCDjDG9cafR3P/7kxhvRiCwhy4yDFxGAoC9z46bN/rC1w7eRNjyQIfiEWASGHwPPvvibhUw1fEKE2h1a+nkojeJn5o1i6HH8MeSU7UYeIuDJWAEeEDb4gwG9WAhscLx/uAOLImU577elN2vNb7+H6HXlC8uEB45ZXn6cx0ulyGDz8KNFBERABFKSAI4G962rXJiuv4vZtXa7Ur/t3UFkjb7O57s+Yu+4AF4L1xcgUEivpN/qQpAOR22tB93o0Vy2enVwrn70qg/aELjX0TZB5pLAX10vfeVex1ztl98aF3QSKNm9uV69MGqMMljunThHdzW+IfSL0vqBcB4jTM7Ilz+0alCeizOKveBYcBhDVnPiOyEYeEv9BiFby9gv1HfpYz2veIlwn57jAVG0DdgHThS9rGQEEUyiQiiP90J+OPOr0MOJiv0IF+rDUWeMF844nNgvDjOiTAQOydR+5yJ+jD7D1nMv/2J2pIonV5h7OnP+vGD/KRku6D2pBIJ5HqC6Bt0Dyne3e2A0o6v/oomAzeNnbAIMqdpBjRfq2BtsUrxD6u+yLawUzxs4lJwT63Bt+RldBapuCHyyDgFOdAvo/aQChyAtGgfYUSqVCOKSGUbpn2ww15JnADQvMrmDTPvJIlfcr1mxQrCflGQzhg3lfi0iIAKpT0AOaeozjqk9YDgwCBhaopqoCDa5v31cFvS5Z11G/55Q5krvJhFoHCUUYj93Y3bxeeeHyDEjTRByqOHOJhnMmq72h/NX0Y0gBhHHjwgxPSyIL1CeijM50Z3Qbq6OeI/PdEMR8XEvo8IJCn2NXoKDWuFAf/igxAnpewxxpTJlQj8o41mGuNOKYi0KvkPHjg3iO2TsUAG80Ue5oESIciBR8J4vvhREd3B2kdRHFbee97cibsQYFF6/6OdASQ9jYhCeoG+FhwXKXHlIoQ+TBwAc2J3eJ8Ox8hllTzDkwYHyV/aPgaxw/gVBcIlILyNVWJ/sKA80ZCB5UEGsiB5OMpaIRBDpJ4IbiTrndMNLRhOJfK4PggwYeXpu4h63/u0hDaaebKkbejfcEVGJuJ+3+3vb7bTc3kfq0WyyrWSFQ6+wP6zg4C5xRV0eVBhOzvaXeBkZGVWizWRjf1yxMkTB6cOhFHmGl3bl8QceHPmNfq14oKI87Dfv69EiAiIgAilFgHsr/Y2oqlLOSmDu20WLgp3p4gFJymfr+1gXKnbauVjeIHdOB40eHeZfY2Po5/zM7VVrdxJnuQNDr+achd97Nc5NNv2LL62bf5dAJH2njz77XFBwb/vEE0EPoaeX+NJuQkYS5+lGD3JO/vQz63LHHfZA375hzBmOHKWzbBcnln5OhImwJU3dNqEGTzZ05do1nnH9PTjN/XzeKK0lfP7siJHBAbzY+1rRWSBLS5B1/PsfhL+xE4x4oT+yhlfqoBSfLUvW0F7CODPKW+mJ3eRtHXCh7YO+03e9WgmbTY8/dpB5q5ndmSzrgVdE81AAxlml5xRnE7uFZgHzPrE5VM5QTsucbuwcgVKHEDQOsBXYdIKhrIMTizOKbaBah/eo2EnokPLswEIwlsBonB3bEca78D4/4zCjv4ADio2jbJdKIlTc+T7tJ2RDS55ZJGRZeZbAcS/zb/kz2gs45OX8dwW7RckxJcDoNmCHp3qWGSZaREAEUp+AHNLUZxwze6AfkV5AnFHKcYlyMlftyiqVfczKU0HgoYn32TzjGdPHvYezx73tvL/y06BYu9TLOlH8Q8UV5w5j/T/vHU3jcu9kCnF6yG5i1BrXvtK+cqNNBpRSp253tw1ZVqLIjHOp5v2ZM+cvCP2RZCPpS0RlFyXeS71Hh4wiWT/WR0n3ysqVjawcpak316trXV0ognNATIgeUXpFOQ8MJM4o2VacOZR2B44YHowwx4RjSt8LKoijvSQLg0g0FdVe+iaLeOSVB6ExU6aEKDGqvZQBERnO6+fMg8LULz4P0V1e4yDSgwNXxJtQop3vDwj8TAkwRn2eR7mJ/hK1pzeG8jAMJA8GKAL+5qISGFSizkSm4UkJLxFkjDwPZ7DlIcSRB+44nfzHNQiRZ3c+Od/I6BcUDCm1IkNKxpNsKyVMkYcNlAnXb9zo62z0c3LRCP8u/VLf/bgkjIDhOCin4oGG0i6cbRjAmN5SHFey6ESjeTjQIgIiIAIpQQDHh/shAbv+bodwAh9p1SoE9sgAMh+ZbGGtSypZV6/AYdwHc0gZL9bSdQ9oE2nlQnkov7d+/HFXfr8/tILQTkJmFfXVZp0eMEa/UNHT5KqrvL9zdLjPIdqGU4lzR9DxEd9mZ5+BTeUNjirlujhrBCFxijt66S+ZSBw7snBUBzEfG2EhSnQJ4ta9rHoIxJItZFRJL29loVWGUTNoHhD0ZJTLUA/o0nJCxQ/v46Tx+rUJE8J9nxEv9ExSrRJn+06zdz/6OPRTBvvojjdzTU/zbdA28v6XXwbnkTLkgv6Hih9GsyAaxLYZd8ZCWwvKxAsWLwn2itmi9J7iGOLQBefT7TzaC2gFYIMQOKLHFBuBLUvjQU/Wo1onLnAaNh0ypLzCvmCnWJesKM4sNvEf/5msJraQ605ZL2NlKHUm+4wdxaYSHEYhn2wnWVKuDbaT3wfUeeFc2NdHcX+TH9PHM2eFCi/O86efV8YdjP4vAiKQ6gTkkKY64tjYAY4NDhLlN/28J5Q+G4wzRgxjQWZsmIsmkIm800uW6JG50WdQDnzIy3TdWR3oc0kHDh8RZpi9OXlKkMZ/y3tX6B+lZJa5cDh8fbx8l96ahzyijMGnr6ZTn75W051GZoxigCmlWuzODPvoNmhQcByfGjIkHANlVd8u+sE63Xqrj5R5xuemnROiq8wha3V946CMyww4+kpxdumvoRSIhwkMO9Fs+knImKLky4MAY1/oByWaS2/OZ7O/8X6Z30IZE8YSFUKMGRlfzg1jealngdf89mvoDcVYVvZMLdlfMpqcAw7oJ977QxSXaC6iQCj8IsbA+medcWZwrHm4IsuJA4tKIH/YJ0JQGOJIuS7Gl3JdxIyQx8fZRH0Q448RDmW6xKD9fV77JQuvuXZcV4w5jiILDwUoJ5KVze6RdT5DKp8Sp0L54gz9Vnf46XtlXMBpzhznnKADziuZXSLaBBeI8POAxoMIWdZf/PeFUjHWY3yAFhEQARFICQJkBHEIO7W8NVSmdHQb9Wjru6y594++5M4l9okgI04Z2Ub63FEvr1KmrD3nWceGl18RSmlxMrE5KKwjXkRWkmoc2jieeX1YUMIlk0rLAi0HOFPc4wiE3u8K8KyDmFG7Hj181mcFfz9O6KfZtXWCEFHLBg2DOi4tCzifX837Njib/V2VF6eyttsYqnWoHIrr6fwlOLVUEWFbEEFCxIgRMvSNogJP0A8nlaodgqYIGgVb5tU15c49z/7y8ljEeXDCqpQtY2960BRbQGaQACbHzjboKWXeNf2WOL6MeUEDADtEgJIROWRVCVgy5q1U0aLBocYBhQPHj32iQgbbhi4CziAZVCqImEfKewjmEcQkUIqji8jRDrdD/BxZIhlStsuCQ0oAEzuFvcM2M+uVgCsOPJlwyoCp3iHITW8p28PZ/8ezn9hcN3ueNV0f1iGTjX0kqPuNO+ucK8e22u02uhDwxw5qEQERODIE5JAeGc7H9F6IFCKYg5PIPDQUBYkk3+LO5vM+IPzDr2a6kbsoOCH0FqIGSHnsdbWuDKJESO3fRJ+oO5DN/O/H3AmNOK0tvY+0gxvxlq5IixFnTimiEziYl3q/JRlFsosYIQwnZU6ISSC3f8+TT/rA7kohy0mJURPPblKSdLsLFxGRxkms4GI6kz/9NJTpDn9nYuhVIcNJSS5OHpHSoPzqDyVI1PMAgGAFmU3KY5khR6YP5wrlXIwZxoqxJ/SXjps2LYx54SECNUUys+cVLx4yk8w0JYvM9zCSS39eFZxNBDR4EMLow/Zif2BALALnDTVDRBgwkogXoaxLbyk9MHFR6H9CeRLRdiLQbIOyWpxTHiDIWnIMlEEx45OHAzK/9Ia6PxoeQnAwcUR5IMFxxGgzi5QHHB54EJOgLJjXZGZZjxJeyptwhHGY41QO14cod4nCZ4QHBI6HKDzRadhzHN/6eXHtznUmPCww/40M6gVn+Xw8P18tIiACInC4BBh3gpMy/eWhfr/+NmQiman50pix8XOwEdejwgbRPO7btzVsFFRgEYrDIVq/aWNoK1jizlTI+nkPJU7jkuUrQhCR+yiBWe5/jBFB6fbr7xZYV3d6cWjbt2hh7X37jFDBoWQbjOVCAO/em5vbg8/0C3oHqK3jOLMe1TgNXWeBElu/PQfxJKp60BZgX/Q4XuNK7mQkcb6wjWgz4MQ1+TdoSrUL7xMMJfiIngHBTcpqsSXYhfe8HBd9ghoVKsYJH/n9HJVc7u+IH1HySssMLSw4nNyjsZ0I1iH+E8au+T0cx5JAJBlo1OSzu12iioegZlx2tHBwULHVtPfQeoKju9aDAFRH4VzSNoMziY3B/lCSm8kD3WwDp5MFx5F1WCIOabBL3u7BdcbeYcewMdhKzgP1XFpVqMbB1hR0O8Rx4kxjX6mIwmEmsIygIaKAiAayT2wtx1fB22jI5qKJwHqU/GoRARE4MgTkkB4ZzsfsXjBilG1+M+ZNzwzOtlxeasNNnKhsu6bNrJ4LRbzU7fEwc42B2vMWL/J+jTND5JEB2fSjvOXGlqwY0vV1vAQJZxFj3McNL84f8zwvvaicG9TJwRATUcboE5HFsN3kUvbves8hZcJErG9r1NB6uEOJqBKOFY4kzuwjnlmtX6NmyKSmT58uKCUSra5z2WVhHiaZw9uva2QDhg8Pioj0uRI1Z9YcKrP0CzH/FEP+gxsk+njWeiaUklyUcjGEH7iTicNV3vthcYxxtiiNwikne0m5EmW7yPljDBlxQlnRrAXzfd3MIVOK04swEQ8csMSAMoOUjCYlUYgV4dgRISaST4kVjv7/sXcfgHZVVdewt12kC4pCgEDohFBDkQ6hSpduAxQUBISgKB1EegdBKQmhI71XpUrvUqRJryqogIqVfzxz303yfp9+FvwDvu6Nl3vPObuug2usMeeYY7bZUfU3kxaRdR71n64jk4mUkysBdkSUBBcxtUgB3uWrWyQ0hDT/+Mz4cc4VZeZ8CPxJchlEqF3lrCsrLnotWiyzybACUSaB1hLAdyVz6jgLGi7BCKhFDrdgNVNIq5pUmVZtctSW6lXbb/0I9CPQj8BbGQGKE3Ol2s51tx3ZjNln76huLq1SDDhg/tEXVCB1xwQyN4znweE77ZjWLvs1R6d+dFRIq5IPde5M+BBIBn3mMSUhDzz208qS3pCeylqLXXjN1cGiLeJ+e0w5wwuiwpVDTjyhShYEHs2remur69xhU466hxeGUInANG3I9j7m2CoxeTTBypeDAdUTO5hIbaRfJtLM5fXp1G8iTJ9afrmqveeZoLTkvB/8oAgZWS9SqfWZ1mNII5kqLFJfykUXWWTwJLgqY8inQcbwomuvqaGHQzDi+qh93p8x4zKv9hIhZlw3UwKgiORtKZWBATBICc7Djz9RpI2zLjkyEqotDZKH8Mla/yYy29YY6I3CWeSRVPaVKJFssMq+lDldVhQl5buAmMr42uDLqyHlroHkBr7aOtJInmErpZFxl4l1X5Q7CKiAq8Dtz0NcPbP1DDIMc5k5CWbAMs/quWAXoiug3G/9CPQjMP5GoCek42+s/+OuZHIWFT50hx2aNbfaujl+771KuioDaqIHZkwbNkpNzSGJOuvpdlBkuiecd37JYx+IsQOLeoQImZMtVDdCWsokgfssMoZ0kfAAI1Hbx555unqJXpQalx0326zZ7YgjKsL8zYMPrn6ml99wQwESIqln207JvNoHGD8ZIwjn/OpnPlu1okskG+k1aasaHY6LaldFtzUu13csRjtvXJosKpt7gMZd7xPzzlNZxWtuva0WB5EEvQHY9VFVN3ryhReU/T2yyzVXBhRRJYGyCBH5ZXCkKTdJL6v8AvmAuYUPUEU0GTDcHMkW0GQu4fktiBBLhFImVIYS8QPygNd7xpRJhLA6MDeWpMYWO57B+fWiA/LAVd2o8yChFh7ZqQDdbxFh0WHyJWDteATVIoKbpCi35+FwjBhbUPhxnPtUXzpk2unqO1Hj4/4tYjyvaz6XBYP60gVjjsFcQ2ZUTRKZb7/1I9CPQD8C/+oIkN1y7FaLef5VP0w2dP1mjS23ilHR7s0Bo0aXu675h0KEvHTMuedWFlIrFw7vnHeZG3159z2aI0JSSXMPilnRISecUJnPA0aPbvYbObLZOYRSXelWOY7i56vBus+nNcye8UpYLnhw5Y03VWBOANZcp/WLchLtY5yDs6uMqfrFb262acjoMaWkQf7uiVz2K5/esAKz5lUtsUadc3ZJSGUJqWn4NHCxpdRhqMcdV4DQ+zKU5twlhw+voKPSEEFD7cpIc2Uf+Rncl4yv/bjSUulwjjfPwxOy2msSVDXPywpzplWaApOZ580/x5yldiGZFUhF2rSa4eqbKT5z/yTV4xM+UBEhmfAeppnvYRPFjcymH+uA15OlhQ+wyvpA0PPPCY52W2VIw0iNkWvALVlL2U/nFoiVNaXM0RuVTLc1N/pjkXOlOAgn4yV4aT2CyPqO/PfADJC0mFuxwDJfhJtD2GXMKafIkPutH4F+BMbfCPSEdPyN9X/UldjCq6f4ZKKqHGQB7Bpf2bI5cf/9yuVvg1U+WWAlirzUQgs2u4QQIoYb77hjo3H49gceGEOI7cpsYae0dLkiJFL9jszfunGl5R7LMl/2keutespvfnHTap2yRxqU75gaHhJhzcTXW3mlMmqQZSMtlXUTkWYmsXWI557f/W7V4iC2TH/0JGVYgRAxMrgxkW2tYo4+4/tF8jgvHpUaHJFopDE2+O9CRpFs8l21Jeonr0wrGxFm4Bs51LtEgFfOeJx0wYUF/CvFLAkgi0Yjqhx1z0lmFGjOMWTGsrq/PNlAgCsjCERlUkV/Ab5FiqisulL3SSIFBEmkHMPB1n5AE1gCZnUxItVaFZR5RzKVpLayqnquyWoCeZkBsqsC8BBSm/f9jK0hjZ1+3gf8jIzIshFemyzrL375chFq4yJzirRyNRQ512dOVBzZ9d8A2RUJtHuUifY9W/jMMsPgqotl+uTe1NaSm5HF9Vs/Av0I9CPwr45AZbOikglXqVIO85KWWYKkm6R1GInuyGRB94rzuxIM7rCCfCSnpJk8C2QamQtx1N1st92r/lTvbNjDzZ3j7ldCQrWNGbnf/s2GqS/lhYD8XZPaSlk5QTylEvwT+CEwLNr5sMNLOQNDEDh9qfUIhVsyqwgjfEIeN4rcVpaWLJZjO/XRfCGA/BCuvPHGIqjVFzOqHXisDOKnTz9T7zOHuz8YqrZziqhZ4A2PBaUs1D+IIcJsP07B5vIlF1igMq38Briey45SrfAvmDbtWdyXICqJMPULjPxJssQ/TZZW8BNhhRO3R/Vj/p8wWKl8BWbAAiSWJFldpyDqCz9PDWc+K7luMFqQljzaewKkcEfZideyot2GgMIm+6s99fr3f/xDBclhm2sItLoHaqy2LvjDFVCFjWS35MrIJaL9UmTWpLrUPEg2POMdwTVeb1L3p75Y0ICDMWVTv/Uj0I/A+BuBnpCOv7H+j7mSrBiw1+aDFJYsFJFC6tZORHlUJLokSICXXFZ0c6ZkyE6OCZD+a9sFuL+eKPKmkTLtM3LbRl+2Q9SQHnJo8530IhUd3idRZxFsn4sy77rFV5qvRmr1tY03LjOIjWIoccCoUSVxZbgAAOcLaKgPUnO6U+z7NSsfc965BS4LhlBekjoZ1vz7Hnts+rsNSrZxlpL6IrzkwBxoN8n9HTxmTAjVNEUAuROq19EgXW9TPUfVbF5+w48a0tuhs4iqn1fOwNUMPc8og7j8YosGvF4s917Ea9mFF6nMqIbl6ktnmm76IvJAFBnl7shlVtTW/gCQjBdYI5QWAcaZXBmgI6iO48AI5HPzRWiBqcUPWTEJkwWCjDPAJdUCssihRZIspXMCXFtHSN2TZ/AaORYt1s8N8IswM4ewEADqIs8WJRZV3iOZIhX2nud4442/lNmRNgfuQ6bU+X+e6L3ggGi0hYlMu0yye5Nh79u91FfS/6sfgX4E/oURoAhhqIaMyFzCHHWa1DCIE+JGorvn1ls3m8TU6Jg99ijSt0kMgchmp5h0ssI4WUPyWNlC5RrHp6aTud1hJ51Uxnej0h5MEO2cyGMRN/OzrKwsH2noCostFlJ5cznCfys4hsCqAYVVgot6lep1+p2UiTAj0qtals79IYyMlNSUmr8FbA878aQKrpo3KXL0rZaVFPTkBq8vKqLFQO9nmWPveOD+wpIpc0+yoQKjPAtOiruubaXFF2t+Fnfbm9Ob23gpU7n29ttKZiuoCDdJUwURzdOIMLM5pRfu0+eyslRDCBt5tKwjIqfkgqrGvO/cT0SF1LYke2+VlFg/OA9cgjUytTLAXTkIPJE1fT9CGmyGjd6rLZFSrrsIreDse7OfMaL44WcA32CkDUmt9i5RH7nmBPlukFv/LVD5cArm1UCR47sX0IbRSC3SzROCCmiefL+CtbK8JL/wr9/6EehHYPyNQE9Ix99Y/0dcCRFFQtigI5GixNsGZIGiyKGI8sY77NgcuWtMiCJb2jvRZ61T1JPIjjHeAYiyl1ql7JJI8Vaf+UzzpUSf1d987hvfrLqbzbNAIH0inUJ6dw7B5GarvnPx+Rcoa359KwEeyc8ma61ZhJfMinsuQCenJdvRQHxMZMKbrrNOMqlnBBynqKjwqRdflFrVlQK4af6dGhFmRxYLQHuZtIc58fzzKwMK/IE5kkh2y813lukHl4viGWnvAuTWXn65hikSssgmH9CJxiNlI/K8F6Wu6NevvZpjZqjaHRJg4En+o/m5RudImXMNn3NoZYbVBSHa+rhp22LRYIGFoLonzoBaBMheWgDpyUr6+1SkuiRQCCdQBbZA1g8yCMARVZHnV7Of/mo20WgLg67tS1tDmgxpjgG+ji0HxFzDYgDwP5+MqKyCBYdoO3KrllXNjWefZKKJC+i99/QLz1e7GnVDou3AH7iTIbtHtU/MOT6cxaD9+60fgX4E+hH4Z0dAxgshpdrRy3nXI75TOKQXKDUOIx7zk7ILQc+vbbJJs962I4NZuxQeMdWTEaTQQZg4z5oLkSEqFgE/xEtZiZ7TiMx7QpjMd+b91ZZeplqDwC/+Bzvnmtvss28ypKuWy61g6JSRj1LPbJ3M67cjA+bqrh81UgfnEE81oYKSlCMcfXkrUM1wKT/9kkvKVwGxUve5ylJLV+nDvZHnIpXuEV4sFG8DJO/S664v8z81r2fE2A9OqT/VauXGHC8zOiJB0+tCRmUBeRUoeZGhRWzVW+qDffeDP2kee/aZwiCBQ3JYZFjQEvFUg2l8qXYELl2bCkaGskpI8mUKXsLR3wY/BB7JguGb8hSklLsuIkidA1PUiFa/62ALDOo2OIWQ2sdP1ZXmteyq76s93/vzvaW2NAFVEubJs36hIvI5vHWv/kaiKXrgHHUWjORs7z3nQ7iNEUWUsWOC1G/9CPQjMH5HoCek43e839FXE3Ekg9GqhWyVKyBHQqSUgyAwJrVcY8SI5qt77d0cuP32FX0+OvU6sqNapbBMlzElBRJpXSAyqTMvv6ys7DkRrhUQtkjgdHvkaae+KYElV+UMKEqrLoTUlMsuqdVOkU+JPm+ZOhu/NfV2LwjOF5LxPDA1OrKlsqDIE6C3UFhrxHJVr8kw4svJ7h58QktGlw2gH5fIt+znzCGeeoqKkndk1KIAiSJVtjAB7GPSIiYB2pJJcZvVP3RQ5E2i50ybgOwcQ2Yqswj93SwkZo4kWPsWoK+GBegjvTKeZLnMgtj+A3WtatRjIqiDpxlUBFQkHMlFQhFZpBDwc/+1MSGSzbVxGgTAwNf4s+SX/wTAxtOm3xvg/0sWF5Uhzd82iwB1OcwqXN9P9q5nUOvjHLICVUuafZFhGVqyZotD0WpE2nP9MuNg/MjHvCeSbmzmThZaH1VRa/Wjrt9v/Qj0I9CPwD8zAoJdyMnZhx9WbbkE6RYNdijbkA2lxmFuJOs10YcmrPlVtvALa69dDu4UOV9Kvahe2Xp66nV9Scgc/GBys+oyS0cC+2jN8zKt5K4UOlxsLw2h1FLm0JNObPbOeWRgN19/vcIk5RowQYBwvgRnr0qNp5Zl38p9yaI6p/n5i7mPA48/PhnOT1RNI8Iog8rPAGYi0d+/5NKqiUXGBD3Vfz4VbwS1ooz2BIeZCyGMsEN7F1iktZggq2yjbCqiqVwFeVdWc1X6r7ZkdKo6Vt0rzPE5h13ZX6UVvAdkSgUqZWDdh36jrqcel+EfzGBwqP4SRhgrGc4PlGInWcoobciMzfdQBkbwbpARRaaRfMFRQVVBZ3jz+xBXgdBuGzdDCtNsyCICTwmkdGXiiSbMuzwPWvL7h2RLp5piygosCDDAHriEbHLZzSVr/JQKOVYw2Hj9POUpd/7kgTjzTl2lJ9YX/daPQD8C43cEekI6fsf7HXs1bUXeF6C/NmB7+qWXFEiJoJLZIqWyocAYGUN+ACpXW31E1030efRe3272OvroMiHi1MdQAcEx2QNp0lQSIfU7opXknGpRZOAmD1Eh5UTi1ML4jAuh1jHIKDkWKTC7e25/3GSZM2wl+pxrqjFVoypiK/p86AknlnuvaLJ7LQfEvAd4V8ziQL0OSdWQQdO+cUFIJzLqs3NT48MmnzvhuZFoiSIzyzg9CwThXD3f1KCoj/QMxoddP1kswsUYQosZQE76O2PuVSQeoRNd1+pEZNnCAmCLpFtg1X0mkiwYoLYIybQweDZSKW62nG6NHTmUKDQwB9AkVdoKWKDIjnbRZNlRizGZUUCtLgf4+y78/nMiz/igqL/Fgki0bKxINnMpCwQLBYDOIdH5SXkRYmPfyqF+Xd8doqrO1fcn6o1Ek/Gq91XXKnKt/si5PpHxch6Z037rR6AfgX4E/pkRkPmybfO5zzWrx8+Ayd5ZV1xerVoWmWfeZp9jjg3B/Er1rz5w+69HjXFbgmPTVXnB1SFjDOh2SzZVZvOLqRPlcbDFt/asvtrMjJBV9Zs8EI6I+R31D2d4GFfYFo8EbWMEZ/UYhTWnXnxJKWmUMpgn9Sw9Le/Jmh4SzBk+dK5yeNV/edN11q4+pysvsXi1+BLUk0E9MoFaslJ9MBkCIo9dZnT1uAMz5Lv34UeqJlVGF/6YS2UiyX3Vb3KBP/vKKzOfv6syv/BDZnVQHGSpgXgjIKhwBGFW/4osIrILzT2syCiiac6mdkIGEWyYQDU196yzhLz+shQ7cH3iiSaqzKj9kFGklEIKlsO0lyLTlR2FQZQ67nXSBLyRST+wqpXrvq8CoPABrsGibnsjf3eYBpeQVthKucM8D8llRgSTBF2dl7zYegNRl411TiZL1hmCpzBdRtWzWIvIjnMcNm4kyOpzue729aPdt9D/7kdg/I1AT0jH31i/Y6+ECCEOOwZEuQ6eFCMI8iIZME20d4jBEFK6dbKibPORDtJNhf9AF0Cvv912qQ/dpZx2LQaQyS0//ekiX4vOO1/VHZL7AC6kCxiqkUROkFtyYMRRuxQS4T2OOrLqcSwggPKl119XWbpZBg8uIyAtZr515FHVow3wIlRMJQ4Zc0LJebneMuCRGT30xBMr86oexwIDkbS4Sc3ou0i+9FLzvCLASCV3X8BtgYCYAj4S4ZsSrSahnTn3MCwAzU0XYC6U/RB61vsIH4LLkOjqSIVFxaeLRNgigFOu+9JiZvYhaYMS4kkiJav8wWQ7LUqAo4juEyGesp2MGpBfkWFkVFZYhgDhRKKRSsCvVim7lySMIRVTI0TYgkBG1H11pFR0W4by3SHwweH6+w9ZZABvG9JYhhHZx3sWMsimMQP0DpL9VCP1Wv67QbYtQhBR3y/SjjAzObIQcawMsAi6cejBvoa5/1c/Av0I/IMjgCjpeymQSKr6lQ03qJZj30sfbCUWAmOUM9QyyOBGMdc7YuedqjaU0zrCYV61z7Fnnhn32zUL15BTXgff/urWzebJnO6betQvxBDJb6/126YQ+uammxaZ5UfwnZBV6h3u6B8OyZJVe/jJJ6odGX8EhHnPKHkWmHPOCtQ9kuCpbOn+keQuETMkWUrlGpuuvU5labnvLhxSGHO9UtwwuZOZXDMy33sfeThBzCerrvWB4Ae5KRxDBK8KvsDDEMg3tIj5UDBEZlT2lNMvDGvdh6+qYOas2VewFTn91auvFS5xwb81xnoCvMZ4oWFz19x+e85hjucVAOs46vIAgAcyqM4FFx967PHM5y+VBJbc2TVhomcsrEqgkmoJqRXwZpQHl2zvDf7ACXJeBPwPOU6daCCp5LyeEdEU7PRDZgtj1Iwy+fO5oKz7zmEVfGVc9ErMmiibPhKHX1hJnQRPqzdp7o9SyT3KgnLeRUDJjp1bxhrhh7f91o9APwLjdwTeM8EEE+w+fi/ZX+2dNAImeYSHk54I49px+dt23/2ql5s6UE5/QO/o1GYekMjxtqmVAdZkrsgbENKbE1ADYZ9t9e29mqNSr+M8FgWAWP3oqDPPKrJ54vkXNFt99kvzpn0AAEAASURBVDNpCn521ZPuP2pULPa3rPoe0ehdjziipE3HZv8FA9TqQJAokWMEcZvPfq4i1sD3kSwykKDPRXKlPnT1ZZYuOaxIKXmUPqTqYZHLUy68KJnb+SqienUixI73zBY4ZF8yg52zLoC66JprqvZx2ZhdqFcFYMbJ4kdGlpRWqxnALSuMxJEeI3vXx8DIPZMBzz37bM1tP763yDeC5txqkzQgRyYnCPEHiqLZSKeIM4AlkZ0pEf73BLCfTDT9hewLrCdKLQ4nRSCvFlP2mVSpdcn9UIGxzCpp1Mupj+E+KRptAeH6JLnuGVkmkxKTtjjw3wIya18W/LKjQN+9IMeIO+OjzrkXaCO8yLjanT/lOuqPLVrU7DJy8t8HN0cBD0EIZiL62fZbPwL9CPQj8I+MgLnFXGo+hA8CkIKiTIK223//5ug9do9r+mlVHjFFAmZnX3FFM/LzG1Wf0VGUO2m/QpJ76733Zq6apAJuyN0ikcee84Mrm/XSe1T5CNO+fZNl5XkgI+q1YOan49rL/G754AUckGkzpyJ1/BKobL6+yRdKNuyeTkh5xywxxNP7U/0lIyVtZGDFr199pVQy2rwcmjpSBE62U1ZVYFbw777c24YpaVFvb37nkWDOFLhcY5llq1zirkiS1ZpOPdVHm4uuvuZdgoUjFv1EeRVQ1sw1y6x17ituvKHUKUpnlOTwMkDyqHNmSrnKzffcXRikrn/BtCyDpe7Z3O6cFEPmbfWwAormc0FTQUu4LKDMLND7sE4Q++mY3iGpsINaRz9xBFFdr16pDJQER+GR4+CHgCgFkH1sSGr3udflhRCM02rM9m5YFaLrPhwLz5DMN/Lfid9IKqxDdJ3T92UfXgakvsbAs8oAwzPjAf/cG5x3n/3Wj0A/AuN3BHpCOn7H+x11NVFHgPDhREGPjPvtFbGof+iJxyuaKyrMBOK0iy4ukjLPrLM2R51+WvVsY+BA1sQlkAmATaZv5SWWDLCfVuSTlf7e225btabfTRQbOd0zUehdIvMVdUY61fp8LXU4B6UW1cJiu403juzqmDIiIoXlcgtQfhFABMokuztu9qVy6UVOgaEamC+kBufgkFGSLLUhorCbrrNuya9ItoalzuWM1LGqB0JAb8vCRC832U61nCtGQkXCI7KsjyhpqrocILrE8AUqe4pkiW7LPHIllLnkyvjks89VRBXQLZZIvPOQOn0gkd+hAXNZTK815raP2lTxX9nSl3+tZvRDVXPpmk/ETII8CwEs4J82PdQC6GTSzwckRXABvn1lKkV+geevAqwWBQixRZvvE0gjpJ7XYg7YfiCEW2YV8ba4cDzzIRck50VoXY88CoADar9bUto2NVeb6nw+E6nWPxUpbRcWE2fx00qnEF3Nz9XuWFAyZiJpQ6rVFvVbPwL9CPQj8PdGwFyHEKnVV7epfGOLZEdlO29KIJEhnvcEPvkCaOWl3l5d/9YJen49Ettjv71nBTuZIFHCUOowsjGHaf+hZELN5A/SYmWZAYI5Ii629oUHt99/XwVtBf6YElGEIGiCoIKmu6YOlev8hmmFJmBqzp8hRnY33HlXucYfcPzoZpG556nMICktgsrUCHZSylAFrTliRGUpkbwNIgUmxRUwXCvGS9RBsoqrh4zecu+Py81WYFXWF8FUMiFresHVV5WcdXjIp2AlPG+DpgtWkPCGu+6s++c+L/Op5ZgAohIRDsKymspJBD1hn3H6ReSupLyylzBvzqiaZB3JjSmQqGWQPwHVSSacqN4zTvBS9lMQ07n8LUisphM2GUdlK+7DZ7LCsMozI6vw6v0hrAz+bGS6fwwZdd7Cq/JDeE/w84NFXH3uM9Jf+MSECe44N3NB57WWkCVFzAVG4ZdrKrlBVgWEkWMZUq/7rR+BfgTG7wj0hHT8jvc76mqaVpuE94vcVlZzly02r7oKtTekudvss0+zb+psLoyDrNoNWUb29SS5COsB+X18Isd6eIo2clkF4Jxpge6Bo0aX7HbHQw6pXnDfPOjginBzyd118y2anfNbm5fdv3Nks1nkuscF3JdOvQugdG9qQR57+plEi1dpvnv66dVfVJ0Q8AV6SN7nV189ZkUnpL5m2ZL9cgXcGEEdM6akRupUL0ymc/Vll0lU/YmKTuslJ/qMzK2T6DiC+liIoFobgMU1WFbYgoF7IVBzTRJVRk3TRJ7KBELDctlM0tvFUzNbkqpHf1rkTLRZppSLIrD9SIhZRZtDWB9+4skigwCehMpzkvI+G1fHdyVIgLjOOGiaui6nR3VDgFY0GBFF8hBBJNVizXfjHmVO9V0jkXo50iWLmBbgE3HOAoBU2LU4E5NcI6RAumRSWYXIftoH6bZg+M3rv6uItKi0fUTNRa2dA+CTScvMAnyLAYsP0WcbKS+gfyUGSF0vOPdiwUXK1W/9CPQj0I/A/2sEzIPmm8MjvzUXySLKhu5w8MHlEYCE6Lu5Q2o79QiFS4KkjI4oe7Ry2XyDDWr/Y761R5kQUeKcFIXO8p9YNMHLR6vUwDxoPuNkLqCI0JpzmfAwz1FzqNYQvpn3r2ZYlPMePOb4kvLunrIS/UNJYRFB2VH76IetNpUR0UsJPgo2fiGtXdSnzpnApDIH9/+pBEdvDdGUHVWXetblV4SUNc36K61c/gUCx1qOIabwjcvv4wleUthQ2zDGo+ZRwwk/YYL2aMieIOmzL75Q2ChoqLxE/SVJMNyQ7R0608wJRD9RhNg5KJ+0RZPpRPzt57vwXHABfsncCmIio0NSw0rlA09lRrV1sR+cQPgFSq0PyGwpZxBpQU/BWITTeTyXz+BIS0hbOa8sJwkPvINVyKzvAxFuDfxa1Y/jeCUIsMJKf/8lP/wXEOi2XczrhVnIpvv2TDCtcDIY7bdSG+uffutHoB+B8T8CPSEd/2P+jrgiYiNbN2yWWavlyZGp/9REfN2VVqys2Flpg8L0YWQym6z0RWI5viJmh0XGxGEXKT3oG9+oukwRbA6wSMeQmPlck76lqyy1ZMlkRY41E98ykW3W9pulPYv2LlrIjD77nKrPvOS6a0uCJOsJgIcks6lmhUkE0wfRbfWqXAgRUWZFZE1HnHJyWrIsXyTW4sH9A3y1M0gYcrlh2s+4f267yKiItOioljAi2u559QC+eh2klYQKWHEhtMBYesGFyq3w2dybjCtzIgsJ0WXElavsjVkAWMRYCHW92zg9AlfGEfOkz6gFiQw0hCWRmm3GGQuAf/r0U7UYAeIWEbOmVcyfQwKfyUICyFsQIKNThGx+JO0EIqKta3VuhSW1zedcbGVAAbi+bB3h5Kzr3Ewe9GhjWCSraeGAbDq/zcLAvsit61m4VO+3jKt96icAboFhMeE1eZSFgvG0QLSAMGZkv230+fe12HA+YwPsu+vVRft/9SPQj0A/Av/HCJgvEI7r0g909yOPrGxdtSKLU/rpUd98OzJcDq+yXdqcqAGVKd1zm6+G0MXoKERIpvLia6+pdmA7H3Z4KX622XefIq76jG605ho1jy++wAKlWDEfm+MRMgFPpnRqPWEJt/fN0jaMdJe5317fO7rZJn24lZsgiNxszX1c1JV9qHFVqjIiMlwOuQxzNlh5pXJ/F7RFyEiPuf+S/JqPP5/7oQKSpVth0UXjXH9B4YS2YjK+8IzjLkwj31UPKwNqTpUN9JngqiysoCl1D0dzZSCI4cLJ0noe6hxKmDmHzFiZQi1OYBcCidzCGJLowuKQOQQd6UTkBBSRdngCbyozGqKrFdnPokyCKa3HwYcqqKw8BL7CKniJLJLjcohnjCQIgGBaW7RZ0D+9mSEVOHU8DI0NX2W04RXMCR+tzS8B2DYTyi/hL5XNdZ0/Rq1TpDRYCyN95hn+EDxzTzBMsNT9IMQCqMi8Ptv91o9APwLjfwR6Qjr+x/xtvyIg0QQaeMjskfwcFCv60w46sNkj4I+k6tX5vdO/XyBO9iSDyf7+2di+r7T4Es1BiQ4f+I2WlDI8kjldZcmlYmjz0wI7YMMogcEPR78lFhhe5hOrLL1UEcJlQmBFkecLuSOzlRFFfmTPZGLJYrnoHhyTIvU2CC2iR6KLbDEw8p6IsrYqJKuyoMeccWY56SKsDAssOhBQslP7jjnv3CJtIs4lR87Ch2mSCDPA1BLGseS75F9kSyLfIrPMkNRzqj8Flu4TubshixFAOWMktjNPN31JgS0K1BDNFXmUxQJHPwsDZE5knJEFEHwk0WaGRN7X581iSOZRA3TAD4gtzjqZrkg+UyDtVUjOOAsD90kz3qK+wNtzMHYgk0X+3p3Mp8i3RYhWMzKhJV8KAFsMiBJn6IuMGkeLDZkJC8IC9b+0boedFMr31JJS7WH0MY2UKhJd5/TflPvRqB0pdY/AX4TcGFkM9Vs/Av0I9CPwt0bAvGGu4WfwvShjzjjk4MIiipMVFl2s2SGKm1MO2L9UM4JfZK/HnXV2EU0uuDtstmlzUYio4J4aS+UXcEDLML21OcYfnECq/qA7JrvKdV1bl5jclUT2yhtvrL6hTOq0MmM2tMNmm4UEHx3Pg6+kZ/bh1dv00BNPKMKp5lKwD9aR+cItLWXUlyJqsqPOQ+Ujw2o+hE0Csqcko4vIrhQyOSqSYzWl1Srtsssj+52m/oZfSOGSw4cXTpmvV0qZiXIRcmO1m+pJEWEGctqZwVMqIEHFIdNqPzZjJM53lyzXuCDOApaCsEia888eRZA5mnESAinridg6v17gngW2wAbjTrqM6JHiChL/Hh4FDxE95/MbBpH9tv2w/1BBT8cjmhQ9jocZVETKSJR8wB0YBYdgX14Whr0e9RKHeDhTgJX/gOCjQCp8c17SYpt9kFKvlbpY88A/eCdwrXZURtZ19DtH9h1DBaW0pN/6EehHYPyPQE9Ix/+Yv61XRIYU7pOLnhFgPyjSVs2huchuf+BBzbGRNnHIRTiQ1b2PPqY5YZ+905P0sPT1HFHNwhFNTcVFhw/avu1TeuiOO5TDLekS8wgkV8QT0CBaTHmArcirDKD6Tf3CgDMSJWOrVhIwn5P2K5wKGUzIjCK73P/0CgMWMqJHBdwZSJz3wx9WZFc0WL85taEyq6zeLTIsVIDn8qkfHXPueQWuAJ+seJpkLpdMdPy0NCG3KNAvTkRZbQxnYI23r06mF7EURScfRqhEVWWEH33qybLjJztaYK6hzXsDbiS6xteCYO7U3SKGpGHIJ0fAWWaIO2Gi2qLP5Lh/CpkTmdaDTtaUmYLP1NogkkDbuWRsyZJeTPsAZhr+lkkGsqRYk+Qc9ifFlZm0ECFfAuZAlzW+2lGRZFlQUWby5DdJZoDezvkomyzpe+t7eV8WGGp37Ec2heAyhADsJRPOdUWYLRYBPVBnIoG0ItHdgkKd6y+qFcDLb+t///3F+xHoR+CdPQKUO8iR7Jv5/KtR4hy+004VpBTw1PuTuZ5eopzOZbaWClk7OAqaI+KFoDRkyw03rF6gAnVafainRAD3PfbYZp94G5D4CqR+M/LfvdLeZZ+8v3vIJpf2b3zxi+WkSxl0QLKcO6f12C6pEZWF1QbNuY889dRIcReuFmXmQYSQamZkHOL3O+64Ioz3JwiJ9FDi2B9mwr/nQ+4+s+pqlW1F6hj3nR4MUtIhqKmPtT7giCPzPIRba5eLoyLynme99tbbigTCnQlDHGVJYcGyqX1FAO8MBprv9SalXhFgFehELmeeYXBlUclxzd1ku1RNFE76jJO3yjy7F7iIpPnsjyF4iKSa0KmCSeZ7PbHhMq+BwoPsz/SPUge+wGGE9/WsBeD8+5HMnAPmVSuXwM4r8Cy4AdPgjH7ZMAtJRDIRTjgGcxDW1tcAFc0/wRnBZiZHfBusZeCUazknrJJ9FjRV46rmtAuUIqXIMMwi7bVOYHBYGdh39v9F+rvrR+B/5Qj0hPR/5df6tx9KRBLwqnEUTT58px0DpDeEIP600UoF0O++1ZZFxLj1kdt+IwCv59t+xx5XLrUWAABvg0+uXAB/UDKlFg2H7PDN5oBRo5uN1lgzWcub05tz1pCrFys6adKXzdNbDJEKDoWspNYxkdi5sgC5O1HmNbP4OPnCC0sirKXL1p/9bPOdU08JMV6geTIyGuBBysSlVzuXE0NAybIsYMiePr/6GtUHNBgVGdXSVZNKguRHj9FqJB5328sD8tqPIOdavAB77QTiVlhgJZvLtEFGmAOxGhvyKpFu8tzpA+q3BLheTM2PczgWWTWG7wvxmyX7aMIN8B9NptRzA3HZUq63JLpIqwiwSPK0yYoCYDVKanBkFQErouk4vUZJmqr9SgguQHZOCxDAjhCTSQFihN3C47dZDADrNuPJICL9RRPFRzDV8IiyV0Q6CwDfiddAv7RQ+W0f15AJBu42keYipdkXaAN7z+A+a3GRfbjzWlhYhAhIIOFqbC0m1B4JQPRbPwL9CPQj8NdGwFzzsczpx8WISA3oPQ8+VA7sspqc2alGzNl7br1VlZjsmMzl7ffdX7X8a6+wQrNXsp5H7bZrtWhhOnRzDOUExbTU+uHNNxU55G672xabF3E94OtfL2M9PUcRWeR0lwRfd9l88xgVtX22d0lGlL/CrqkV1Uv0hPPPq4CloCoS1qlotkhdKZnuWssvV0Z2pk2+BHqLfjoZUqZJAnoURpx4hyVgaW68Ivi78pJLZO7+dRFHih1E78d5dkZ6MoZcdmeJKy6jP8TXvMx46YlkSbV4gUPw7Y77H0hg97l67fyCvLKxApt6lZrT7855XUvWcI4Zh5TK58GUqpApe56PB3PgHCwhX0UqYfZkkRIj91xzlZJ4n2swvBXAhgOceRFO2dcio/kNZ4wF5/cPBvMnjpIH0bTxIJA9hScIZIdZrmet8r7cDwIZOMrvdxW2/SljiLjqWeofv73Wxuz9GRe4aH3hmsi1c5PpWoP4bLLcP5Irg9qa+7WO855dtrvf+hHoR+DtGYF3TT755P6/22//RSMgErj2CsuXERCwZb4g4sphrwyLYmakZQoSBpD0UCNX+t7uuzU7JUIM+EhGH0495Horrdx8L+1hDg4pRXAPiwHFNyL9leHUKmbFZB1lGUmEyYtmS3aUfJVkiCkQGax+ahuvtWbV14zceKMiuXqbkuuK8MpEAhxZUrKqzdZdp8im+k2RTS62G8aa/9S0ddFqZKFhc6Uu9orKfiKxLPJlgEWnH3vm6WblLAgsJhBDsluk7UepyymDh8idjIWFg3pVxMr5ET9Ra7U2zmOR4xlEWRFRJHKKkF29Nxk+qLUBgjLRgwdNU4ST7InkGbA6n1od34Wm6TKisqiAmPug5xLdB9A+k2FkumBDAgGrrOiEiUh77frkziRSnclQSZ8C6oBWrQ6HXkQXwCO1FhwdsZRRtRjsFgGezz2Ksnvfc3Z1NsYkWF/mR85pgWJfpJM0t7vX7lmYMBmH4846q56nHqL/Vz8C/Qj0I/A3RkAQERbJbDL8Gb3XXs1mu+4aJ/clan47PwHIo4NHAqGbxMTu5tTwM5j7XEzuDk996JEhpUpNPh3PgCtvurEUOLJ91DOw4IzLLour+0YVZN1n5LaRAR/a7JX6U0Z7yKlM6M6bf7lkvVqWIZoILmXNgsEXhj/hQYVnP7r9jmaj4JcsKAM+dauTTzJp4aTaTz4IrmeuhzdnRI6rN6pgLDM77vAwEDlaJffmfpVALL/YovVc6hqXSssYAdAfP/RQ4RRi6pnN3zKr5ui7fvJAEVWOuXAAERVopFYalAApaa0aUnO6tmEymWpbvU/RMnkI6jQhnDAAViGoFodqNBFNWVM4AzeY5jm3fWEFDCDRhW1UUb8MDvw22WFY5D2ZWJjlO3A+2IDIlponGE0qLKPqvSKjwTSkFcbBL9lSzzi2/KM10nN/cE5A1H1MMhFpbptVhVcwkWIHNtW9hizLMiPoxltgmNmSDCpiy2G33/oR6Efg7RmBnpC+PeP+tl8V6SE73XfkyGaLPb6VzOf8JcfRw+20gw9qvpRm4QgZoLj+zjsSkd46RPOgZr+R25XMV30LoDCBy0zKZKrLQUo7KdQOm25apHL9ZFLPDkFkuiC6u+Lii1WUW03nyclyfjaLiOPOPLN6lAJ+Vv5kuiS0FhAI17xzzFHZTwsOxIazryjsE4kAb5wm5+pJueKSB18fAwryqB/deVdI1KvNOiusmDpSzoXvymJkiSwYriuC6/ws/QEywwfZP5IdQK0NgNrWF0JARddlSkWi1bDKWiLDosQdOSXFdZ9PPvd89XUTMRa11pxbr9HnQkRFaI07gkYODFy1RhH1R/DY3ANgNaeynq4FVO0n6zgWeNXffKgAm7QWWbS4Ic3yfXkORJaMSUaURFjU2v35ziwQLGSAsSynffUJtY1LYi0gEFnHq5VFYpFNhNSCB4BbPFg4eB6kU3N2Ui7PhEB7Ztc1Hmpv+60fgX4E+hH4R0ZgmtR/agVGrTHm3HMLlyh4zKuCjnqPyqR+Pa3Dlhy+QNXi33TX3TEb+lzahx3bHBH1z44hmKvGt8C8TrJJsSELpge11mKbb7B+9areKbWkeo+S5wq+7rjZpnUOWc+jz/h+s27c2M/74VXVh5p6RlBPZpRUdpO11moOP/nkwqHvx2CJOoaRHfzZOLWrWsOQxPIkoEbS1/SSYJC5UbuX01KjitAxz0Ncq6dosp9nBbPU4zMSVEpCJbNQspyIm0xoEdwYGykjeSq4o0RintlmK0x8OBlPGUtyX+PnmWUEtQST/dTz03MgmIzupv7IRysIyp9APSh1C6yQRaXiUQ6iXOTV1KhWQDJY2rm2C0b6Qf7M+a1CpiWZxolMV8sxcl9YAQ8QROdxffsjt8bDJouLwLq+Y7i+wyD4DatgnX0dQ5EjeAyHnPcDA6TXcQioa3hW12gzta1pH/xUBoPEIthIK4m1tUC/9SPQj8DbMwI9IX17xv0dcVVgMXzo0LLS14oFAeGMe2hqcb6b6POeMYEQTWSScPrFsdz/1h7Nlnt+u0wbzkqUl3GRRQMCyIFQE3GuuyLTWsLsePAh1eaFI6Isq4zpxmuuVbUznHa/m76m3whp/XauQ46lebim5N85+ZSqwdFiBclBBm+8685qJcNBl2z3vpBDILPKUkuV/GnZhRep/pbkSupYEWDZQwsVNvrqkWRpmRchlAulbketDoLIfEK2Vh+2oclwksjemtYzAHHhAD4ShhgjVXPNOktFgEW2ASJ50/Sp/5Q5JdsVyVVjql5W9Pfp51+o34DYAoJpkfddC6F2DkAKIH0uulu1t/msMpIBbBtwFVm2n/si2QLOgNn5yKidS6SXvgmxdAzJk2sjlq0M9z31mX0tHhBTG9JrwZLD8vPuNwG+I6WuSVbs/I6TUUV8keDcRj23BQpCTZLlvy2RchnqlxJNN4aPZsz6rR+BfgT6EfhHR8CcyDmd0mb3I48q53fmP7/89SvNFiGTu6Vl2EHBmgNjyocImuf5CuyRshOSW+Uke+Q4pE5AUdkC9Qln2WUWWrhMiDZaY43mmAREt/r0p+PQfnL1OWVAxKOAtJZZn6xlkb1IZM2Fav5JhSmJDom5EXxjqNf1mWZqxzVXoHThYcNqzmwzuKuVk67AqZIWJkizzTBD+Skgt8OCLzDvR3fc2dZ7hjwy+EP41I4yJhKo1ILFfkpdzL9qbpEyz8j4Z/oEUbmyI6oUOwia0hQY8sQzzzYvvvxSkTzeDfqQIpMCp10piTmcUzE8EKz0+SuZwwMi9fxwaOIQfGOhhhP++E6QQ5iU3aqMBJmEIepc7esDuAU/HGP/P/6pJZdIqushv4VdwUX3y//Aa0QVKYWPjmW4p9yk9UJIADaB1tYv4X2F6x1WwjXE9LVIg9WTkgm7BlykQrKfv09JuZD76bd+BPoReHtGoCekb8+4v6OuSh6133YjC8gfjamBRt87hEySNAF3QLPeyis1R5x0cnPS/vs1m++xR2RGI6rVClKiVuXS668vosqtV13ON2KQtG/O2UmgdsnigKPh3scc03wzphEi2CWZSkZUVJq1P6t8CwH1n1fFgVckfPKJJ2keeOyn1Sz86AC+Vi8XRrYLjBlJ6BOKgHIYBHZ6vpFVkTRpE0DyRWIFqEiQyWwnirSIdT6iWy1qbr2tgI88WMNzxJLMie3//Y88WhFUboOIp6gyMyLW/Gp6SIZkUjt5rnPKOtpH5FVmUSSWgRNPwJczloAfESSfJXOy6CI5kt0U/QW2orn2Fym2nwynxRTC6/2qEyV1Coj7DhzjXgB2B8yIrkUAsK0azywEkE37tPUzscBP1hN5RUgtFMYF5HEj1RYVTCNc336e0cKg60PaRbctHOwrw2sRJcLP9IJsG3Hut34E+hHoR+CfGQFBQ7WYe8ZU6Cvf2rOyirJ1SNuh8S3Yaq+9q7ZT9hE5si/nXGSU/8GuW2weGe/JVXLRZTcZxalPZdzHpR2GnHrRxVHrrFZ9SpHgc+JuS81j7ppjpiFVbmE+pXBR8sGs6NgQ2a0TTBXELaO74Keeqcz5Tk4JyRrLLtO2JIuKZcVkZU9PBpWXAFKsFRkzPq7x6usZ73FdfyzlHkpZzLHKRWAULLwhGVeBRUFkShwlJ/pmIsqccZWDwBqkGPbAJQFJQVPnYEbIo8Dm+jCuU+gIGMIBRLSVtH6osqGypbAB5giCIrYyr0icrGIXPIVnAsSwpZPcClD67jocgYVwS1YUiURAK6iaY5Xk+Ls7nicCLIFdfmCa1wKdncme86ghRW4dL8hqq2BsruW7cr+Oh1uuR9mDdLtfP87nPgWvL8sapt/6EehH4O0bgZ6Qvn1j/466skzntp/fqKKIpEwnpF8b8F8mbVCQJBlE/dd2T0RappQBhFpSEhdmO2pc2NO3JPO4ENztitQyidj1sDgUpj4HKd1tiy2qtYz6HJHrr39hk3Il/OYXI5E69piS1172o+ubGQdNW5FW0k/tXPRnUyt0YgwihkT6JLJ514M/qVYusrcAe+jMM5UUWDScU66+n6smg9rJnT6ZSDdSiiAtuYCanJfK9l6PNRlNgA889YnjdouMIlbku0wguOUieUgnqawFwMsxOkIquReKBj8bIupY50GaEVlAqA7IIgFxA5TIGpmr89leStRba5k3azkDqAgoSRFAdYwFSlnWI4LZ13kRSyQSmANiAAvMSXWBcIF5SGh3PMD3oz8bEwmSJ2YQspnOYQPuztnt2y0wPDOC2V4jPUtzXse0CwyW/a1JhMWLe6iMaWp6PAMpW7/1I9CPQD8C/8oImHPgzehvf7t6Y5vvZRiPj3P66fEs2CwlJovON2+VUVDJbBwZrdYrByY4yiH3y8lgksbOOnhw8/O4fevzzDxJTaZ+ntfdfkeVc5wfI6XVIvFlnARHbrr7rkhzZ260WJGtQ9ZkP5V7kNduk/KSA0aPrtZhzoGozRVFEaMiRkYlwR2Q0l54zdXNcot8ovwFno1z7adWWL5kw57N+QRazdOywZeltAVWLBfpLudbpSHKZKb7+NSFYZnCKxCMECLHyBopLtxhpuf9KXOvDPhgz/PBaWqWSTMfc8+VKVQnSr1ifkfISIVhkqApdc5rCSAifDKUiB3MgleInDkfiTX/V0Y09yPo2wVBmRd57b5s9vPPa8m2Io6yovVeIKcjkvbzXIUvOdazMClyTtgKj8qMKNgE61q0eqPutSWpbfsyOFTnGsiYVkA3GdrK1gZTO5xFoD2H6/8mqh/j2G/9CPQj8PaNQE9I376xf8ddWaZundTKAGjy2SN22rkymmQ9s8eM6MzIdNnvj9xv32anL305EqUzqs8b9zzGPqvHnIEDrj5we6ceZ+9ttqmebd/aeqsisn6TUe06Dinlpjtyo41i2X9C1dtw2dXPTSQXcMyfv7nibr7+Bqn1OamalCPBiOByn/hEzIsubxaYc2iRtZ/89LGSd8nquqelEykH8moyRZUR3cmScf3EvPNWb1QET283UfOHUnND7qUWlFkE4jdjiCdSaTEgSkzaRBaG7JJCdeYQ+pjJLIsmA03ZU+cSDUZCkWoEDznUK1RNDhBkDEFK5G/gaGEAfGUYyYa5EHfRYJlI0Wy/1W46BqADcFlPAA3Au0WAyLhzyRi4J3JjtaYizf75c96XWXUeC4DfIqT+Ccrb501r/bpGS2KLmCK7WRyo6UF4XQP5rAh1ziezS6brvi0MnNtJb0tAo9/6EehHoB+BtzIC1DwHbb99c8pFF1ZA8StpwbJnSj6O2HmnalGGMDK2E4SkyBEE3XfktmVOxIWX9Fa9JCJiTlfryWxv/mDILT++p0joVZHIcna/ERkdMlPzVNzPkTEBQiRuqeELxlzvquYLkesqLyHNPSs4ZM6fLGZG90QO/Knlly8JKBWPeZJjLiNBwV6kDzYJ0ukRKmjJRRdRRLSvD7H1W1ZWTSziJUj6zIsvFM5wlheU1QJHsBgued1lQN0rjwNz8oPBLs8qsDrTdNOXkgYmMdKDFd5nrid7ScEie+g3LCm8iixXltM8j3gKzCKzCKXzI4jmf0QabglCwhvP7PMuE2l/EiY4B7dgAyMl2OC3YwJl9RtmwKBOuovU1k/OqWTENeGdY9yj79G9uVaR0bz/hmsH3wVt7Vf3mOMFFTyPa2jTpi0PZdId999fY/lW/tvsj+1HoB+BtzYCPSF9a+P3v+7oTh7FeXf7Aw+sOpprImklK9owjoUcDA8P+JP0rhdZ0zWpewEQMoQ33nVX89nVVqtaUTIpjcjZ8+8Wu/zdIgP2WsuZ3b7znWaXL/v8qJa8Rr7LGAIZXWbhhUqmRHrE9RZQAHe1PMyRSHRFoecN0F+Sv1dbZumKbsvKjUj0+cxErUWKLUo455IzidYimepzSF+BPKMijr/AH1gxyWBSJEoKoEW5tWx5Om6KjB20ftH2haRKnzR1qO5R9FmmFcgyzNBXrjMZ8lmwsLKK5USb3mxtDebvymgBGS1gzPUBq3trZbFqNdusJxMJxBlx7Eie/+iA7LgZUYDtOcaCd2tCZD8LGgsFCxOv/SCqwNt9O07k2n6292Yx8ruQVwTUosK9jLt15JecuK1RDfkd+NtnIvHV+y3nJ+vS+kcfu37rR6AfgX4E3uoImGPhE2XOlQlW6j361ch2ZUEFHZWYLBtlD8KnV+k2MUKiyDks7V5kPRn8qHVHwhC66ZN1vPeRRyrj6rMFh85VvbRhACktTwBBPwZ5QyO3RR7h3Pe+f3rzpXgnHP39M0piq8+yHqDLLxZpbvqKrrzEks2dwS9KlJWXWLwkwTBH4JfJEvURF/vHgjOLzjdf4cgjTz5Rhn1cdu/MvagFZUykvtQ9CNYy6WFk1JkWaa/C1V2AdPA0gwoDBG0RT5nNQSHKmZZz/78pnwUY4VjSY3P+y8EpxAw+IIEThrB1sly4w0xJxhWpNK87V2VDQ0LhFZLnPNQzrWyXykZf6tawCIao9XzXAJ44p/ecB0mtf+cXStrhUwVO87wwCEb6jSS3JScd/ml9Fs+F3LfNNTqsKiKMpAY7A3EtUc0+zjuuYZJzw16mh/3Wj0A/Am/vCPSE9O0d/3fk1U3SXGyP2nWXZrv99q+aFBFQBA+x3Pmww5u9E3U+cNToqsvRr1RdpMzjJdde23w5ZhOI6x5bblmZ0d1CQmVCy0Y/Bkd6vBUZ3bStKSV7UuPDUOna1NWQJv02AAgo9VoTfbYAOCU1OcwbAMh9jzxcRPW0yHUZTLCxv+GuO4uUahNDTsusCPCrr2R6dEuMirQlsSh56vnnKiuKSFvgMDHy3HqKIorqi2QVZxsyY2U61fXITspuTp1rIZvIKjyVdSXjZR9vgWMhgORNlMUAV0OSVVFnMijnBpYAtiWhamyYGk1QYA+oRXzbCHQrh0IabQC8osM5tiWf3e+2rrQgvfBd5Ph9RYyLkIZ8ulZlSHOSlpAC70ibcmrfLeLoMrKkouHGzLXaDGsrzXUfyPHA7dT9WCC0i4VEyXOcKHmXNbVYYIjBWdkz91s/Av0I9CPw7xgBpI6vAYImS3n8PnuXlJdfgLnrtnvvi+HQp8pU6Mjg2Mh996vg6hmXX1Y1nOZ/89skUbNob2L+VnOpbZd2KRzbH3z8scKVV37zWgXuyGXtoz5U4PNL668XE6RTqk4UbiG5cycAyk+Bgzy5ruync18Th/FPBt+Y48EHLr9XhEyTw2oB4xiEjo/B1bfcUgFI6h1YpvREcFZZzd1pYWYunW3GuOdmrn8oyh4ETz2oulg4pfxDrengqacpsug9rcMQUUHUKaJ4MokrXWmd1v9ceDFRAqatwc/7at5GUJE9v20wR9kGdYzANUJPZWNDQGU6GfV1Wylwgmeu1SJYPqm/C2gK0GCRrYho9ztvta+DVcE6f4dH5nfbm1RA+D35W6kJYqzsZNzzuE9YZZxkTuGcLGjbR3sgM5trdeRUEPWGBNP7rR+BfgTe3hHoCenbO/7v6Ktz/9vv619rxqR+08SO4GnyfURku18/8IDmM6mRUSvTtimZsLnnoQerpxriKIK9/6hRJc/dM5lRZHSv2Ol/c7NNm32TEW1lvcfUfmp99Hg7/ZJLixCqwwQwTIVkNmVmR8dZkenDvQ8/UgC82PzzNXq8LZuMqhqblxKdXik96i6Oi646GYSao67osBrR626/vSLCCC05FxLGQffxp58pEFdDqkm5HqlII1Is4+nciOQUMYEgefpFiKhm46Kxsp5MJZA5xAtJdV6SXX3owLBodrnNxsTBAkhEWSaUdNcztk63rbut/byH+NpEjJFkPy0BbWt0vEYdB/5XC42WLLbncSRCajEBbC0U2gxpazrhGvYvsln7trKnvF1X9QwWFq5jH7/tr+5KU3J/u7j783m9dGi2Nnva3mdHTi3GyMg4NVos9ls/Av0I9CPwVkdAoI+i5qvpec3TAKaceP75FRSbe9bZihBS5Ah+HrbDDg0neUTwxihkpk6ZxaupG/xdDHE+HtJoTteWReaR3JWxHRLIPZ3EllxX0FV7tEvjjKs+VPuxcuI9/7wisOZBmUplL/Bq8ZBLmUrn0HqGSRKMmSMyYGSU/FirluvvuL0ZNsssNccLhE778Y8VwVTm4Lr6iiKPDz72eB2PaDI0khmV5YRx5LzKXARRHY+owSrlIgKETIyQUbj1dPY1D8OB6iOd95VhwHjvlwNu8Mr83pLQATluzo3EteSuxY/OUAjpgzMksgKU/gYMfne44noFMQNfvNftG2Pfr/fyeQtFA++3L+o87TnyvnPlfdjUBmnHYqWjYFT94/r5p+4n50WuEWWvBVeRXBitHlYwWEDZ737rR6AfgfE/Aj0hHf9j/h91RdnD7VLj+WgA8M70PmNatNfRx6Tn6PYB+u8mQzpHZSNlAMljr7zxxjIf+t7p3y8Suud3vxcX3S/VMRYMyCgjo/1HjW6+vonfo8pd93tx12U6RJqkRkaE94kYSSwe4slgYv1Ew/VlI69SX8OcaI0RI5oL0iBdjav6G/JbNTsAiFnF0lmsqA8VYeZa+KtXI3V6xIJj+spqypgijwBfFJl8ihRXXY8FyjMxnkAsnZsMjBEFSRCzCLb9yCSZ7+sBb+SL1NdvoKfWRpYXuCF4pFN+ADwSp77UmCGNwLUleaRQ45DPLBIcWwA7QABdvyOSSGFwtc5JfitSPoDdFcXuCKlz6wP3Zg1pQNiB3ndtn1lYIJPdawsTixr7uGeb83cyX2DfAX2dJ5+7L66/Beg5ziaKTSIlOv/jhx8q4k4Ch3wbv37rR6AfgX4E/tURMF92ap6v7r1Ps2TM9Z7/2c/L2OfzaeeiFZmyEcFQQVKtWfQPZVJEwaHkgPQXGVWDiYzKkPIPoPwRiCRXRV6UedyXgOgaI5ZtTrngwuYzceQ9IaZKSK4WMObq+eecM6Uk1yZ7u3JzfrwMqGcQT1lPQVQtW7R/0bqMeocaxt/XRX3EWGe+4CnZL8LpXgTyEFOZywUTZIVnsEqwFLFFeJk4fSAKGEQUIVUigWR5D2GFj7BLYJU3giynnqzUO5Q4vAl81hE1YwoTkFWBTTigDKMwJkFJ94zQyTi2NZoFJ/UVBkKK5NVvaFT/a3HFDvBl3K171aJF90mLa92r9rc97N3t2R3ZnrNe5dzOD8cQZ/cNu/zdYl0bWM2L6tH9e9ibz2Cd5/lVMB4xhbHOh5zCvH7rR6AfgfEzAj0hHT/j/B99lU4eBaRZ2bPT3+mQQ+NkuGaRRRFkoMfMYfVllk2tzEUhrhvH5XB0s1OR0WRGN9202e/Y40JGv9AcEBI6cqPPNweNGdNs+7nPl4ESu301PwvONawAG6hwUbzq5lsq6+ozEiYGQ+pUSHm1d1l47rZPKKBmFKGdC4dZNTlawbCxHzbLrFXfasGAmN75wANFThFoJE1UHPCrMQXciPBEMXuYbYYZS+Lr3ACLCyEyDKhEvQE4d0LjAwi9Vk8K5JEwBHSyRJ9tIsiVKQ34dRIioAcwO3MgC6TKRiaKDShFs8mi1O3YgGorQRLBDTC3/yuyZ7HgvEC7SOWAZBcY20TaLSqcn9wJ4pJZ+dxnssJ5hDrWa2TWwgT8+21z/SKb9ss/bU0PsG/lT87XSY3dA2t/J3Bf9nF+iwTfw5ORzGmNI0NARt3JwupC/b/6EehHoB+Bf2IEqHng0ncTCBXMnGPGIc2FUcjsufXWzY6HHhoTvs3KFG+NGO9RbFD1dK2zBCH5BchSqiWdPXJYhkEIHhfa6oUZt1cZxwWGDg0m3dx8LnilDZlAKaMipkJq751nreVGNCeHsCKn5kCuvPDqhzfdXMoYru1qXaeLQZ7spuCq30pPqHcmicLHde4IEZXF5R7PZE7va3gAlwTzHnvm6ZpPZXK9j4hToZDTygDLHHqtlASxgtNTTDpZ3QMSrsZTUNTcDIMmCP4gvoURmadhgvke5pifs1u9bsldiwEktS0BHPvb3N/+tHhiz3bLGZwkm1/OUz95BevqH7sMvG8v9+Z1t8HhcTef1dnH/muc1wP3mPuBc8YDZpX3QZ63SHXdSZ4/z4vAGw949UKyzXAe6XZJ6qdx72Pce+j/7kegH4F/zwj0hPTfM47/68/SyqMWbj4fae3eyZDqMbrvsccmIzl7SZmeTx2Onm4XX3tN8+X11m+OOOWUWgRU31Fk9Ljjmq9tvEmjT2mR0ePHVP82zrlbxinxO6eeVsRThlX/UNk2tT3LRabL3VdU+pJrrwtwT1UE8K7U0qwT10Ky3YoWzzSkGoir/VGXI0O6wNA5i8xxUewah/tbBlZPUfsA6rlnnbXAl0svUigyjfSSX8n4lYFR5LkvRf70s0SvYR+5rkWN+hXgDryBnqiy+3l/wO23kfIivK8lovznRNgBG0BkZQ/8SHcRSUTRpjZHBBtxswDpAFAtDIC3tcTzfxpCWAgBV9HqynLmPlzDQqIIbj5zPa+RSyTY6Rxj/7GEdKxEC7G0IZ7O4fqu3d2HQehIqeeq82VRYXNOfU9bgwvHtVldsmab57LQcS5yMhF/0Wr3yKm4e+7auf9XPwL9CPQj8A+MADUP1c19jz7SPPTY4+V+q8aTXPcbBx1UPgQc2AUen37+hZqfzOGCkEjo3QmoykLe8cD9VUv6k5yDg62MoG3KySaPlPfp8iC4IO7tArL6kGrlogWZOZczriCqHqUXBQu1BNMX9Adx9+UGjwSS3io/EQiFcYvMO08F5wQ+1cCS4v40rVvglLpRQVhqmyFR6iCr/BPIZpFYpR+eRV0qMjnVlFPUfO28r/32N0W+BEVhmLIWzyLAiWAKDCKvjkNovQd34IT5X49q83rN9Pmjww5qlwqk5jdsqIDjAKH0mfneBg/dZ+FM/jbfC0hW1jEYIOiKJMJ6bcjsBxfqtfPl9Zs/dcaWEI+9pzao6nV2rQ2+ul9ktrK39Vd9VP8aeJz83T5Pke8cA4eMhfvxd5cthr0CAYiqe/Pa3/3Wj0A/Av/+EegJ6b9/TP/XnhEgkUftlZ6iOx12WLPWiOUqogvMpk9di+juZ1ZbtZqSdwZGO2y2WWVGZUwPTkb0q5/9bMmout9bbLhBc+Spp6ax+TpVd7P0ggvFXfCBqgO1wLgzi4N1U5Oj39yIRRYuEAcK8yfKfMWNN6QNzPxVJ/N4wHzEwgtXrSiQAez6irZZ0bmriTrgFLUmcyLjVSdKkntvAF6gFBEFihYDZDsWBDK/9lc/RL5EqkvuxHmQeQQHRe87DykUoEZQkbGOAFb/sxhWTJjIPeB0HzaAaRGAzNpkdjnpAtUO1OuDiuIWlNZLUdsWdPPvAYT1yz3bOqJnnCwKHI7sIbtthDgLiVoIDBDSkHCyNFHybtFh0VCLg1ogWBi0keKWLLaR67pYXa+uWtd1bde08LA4Ae6+Dz9dXSqw99r4uCc3KLtq48brHLKmsrT91o9APwL9CPyjI6DtC7OjQTGeY2C078iRzY5R8+wzcttmn5SLmP852VLECFwigYKYgpMLzT2sMGPxmAzxLhgal13ElorDnE3aOWP8CBgTrRy/Ai3HymwviiAmQ+ZI7cC0IzvnyiuL3Jrb9QXtTIwYB82VTOzVt95ShkczpjyEWeBHPjx5va+XKRxBkMl7yXEZFumZ+uBjj9U9TJOgrKAnhYksHkdcxJVTulpTQVDBzo/mnHBCllZGlULHfOyzyeMcD2vMvSS7yk7M+eb3NtDYzt2wC9FGHisgmU/N1AKxwAf+mMfhSVChfpM3m/s59joGwXRO87q1QtWg1r4tTsBcuFTGSMGbDnvcCwxqMaf9L8C+3QZrYUm3dbjndZW25NgO/2Ryu6Aw7HHeIp65PwFUZ3Udn7kXzyw4DRPdr+/kNylroa6yH5zs+rB21+9/9yPQj8BbG4GekL618fuvPJp1/QFpOH7EyScHLD8G86o/GuMGhkadLHf3rbYsd101owclI/qVkM+jTjutyCerfGSUQ+KX1ls3Fvrfj0nSapHhXtrMG6dbJBChKvC+5dZyLTwlbWHU45DCioKvuNjizWXXX18LBk6GgF19EDInqsy2H8iJRGsFI2unBkjtjEUIWZbIMimy1jAWJ6+HmCHCJLuIJVMI1/MeoCR/AkTAcNIsBPRxg5FqRttaoxDKgJVaUosegA0ofQYERchbQAaAbVQYWAPCym5mX/vXcQY2/2v/lYu0/ytABIpv/gx8AKztDlydb9yMJtLcZixbp0KfdwCMrAJ2z+Q99+lYoD72Gu39eta6pYHrdPfq/bHbWMJaz5F/WbAU2c2CpCLzGR/HWOh5/qonzYm7CD2JlO8fiTXe/daPQD8C/Qj8IyPQqXk2XOWTzf7HjWr2+9p2zR5HHlV9QGUvZQTNW+osuagjn5xuOeWOWGSRCnT6fV1eD4t6Rm2psgzzo/nfe0zySHO5vK+Z38pDmAaR7iob0Y7s4muvraxqV0O6UMpLZCmfSDCUOZJsq9IPZSRPJxCHfMqmwgXmfbK3cAqW6bv98fRPdR/uQX2rdmTwlyz3+Z//rOZtNavehzGwq3wEMtfDMLX7AqCCqCSyHaEyFshZNy/DEUTO+9rPFJZknkY8WzxoSajPTeJwwj42b3ntfIKShSV5bd9SziQr2835hVN5H9m1r32cH6GF4V3mtIMWn8Mpv/243+6evHYP3vO36zoXzLH57mAa0owsI+N+w3TPKjihfzYs8l5OUecApo6tsUkGFUm1D6WVNYqs6itkvjmm3/oR6EfgrY1AT0jf2vj91x6NoDGJAOb6ry0673wFwNt8/nOpHT2+2T61ouS5jIwOGD262SwZ0OPOOrsyqCddcEHz6Tjnnnj+BWXNj5x+IRb9o/L5p5ZfLue5royEkEmA3RkbrbXcclV7M3EylCLIaoGWWmjBymgC3yUWGF6OhcAFkOthihgyLRLZ5F6rj9yLaQouuvzx1NkwIkJEyXBIoCabeKL6DFFleDTtxz5eMqcXY14k2g3YLRS41iJRQN15AarPAJRaHYsGoNcZJnTkEGiS2Gr1AhABHeAFwBYi6lvaKHCQMP/zWb0XgIWSwckCbLQQkBqjjjwCYccCYvtZGHTgjHR24G2x4D7s10XAi3zmgpx0/d2dy3/gzmVRUKCbF+7CeWsRkN8A2+Y4iw6vK3KdfV0DGa0oei0OxpLVbl9jAOjfl6i0CLraLsRdpF9rnT9kESIi7zvpt34E+hHoR+DvjQAi0ql59MwW9Px+PAeGxLldb2e4Iqt5TzKj5LPn//CqKhk5/6of5veIlIL8ICZ7S0Rqe3OZ9SGlkyYraY5HBheca2gM/G5K2cgK1XMUwaSsQfj4F1wYSa/2YgyMkEk9srnzyuAqF2GoJ/MJX5gbUeIIqgqemnu1s1Ey4j5laEmHyXB5FCClM8eYj5pEqQwcmWrKKar0QsaUQZG5WC0tkmwjvxWQ1EvVDA4DYCPy3hK0tte1eZd89k0MyHngjs1cPu5m/u/es0v3cc35Gf+Bw1qCN4AZMo2tFLglkF0QVlayApbBP3N9lyV1H9AHzsEVUmJ4UuQ2mOaZ/A3P/HiuwrzgZnvulpB216n79TiFrbCpPdZxf8i5lc0gxN2mLY7zwjNP73gYxTzKOkR/dt8lWfRrWUMIovZbPwL9CPxrI9AT0n9t3PqjMgKAcYNPrlwSoKuTxQT6R55yahkZqS/dIrWhx8b4YZNPrVXtYkSUAf2qSy3dnB933DWWXSaypyvKIGL02edUzQ/XwpWzEBCB1vMTYeTOumJ6v5175Q8C9vOW3JZkdskQ0Euuvy41p4PKTRCwA3JGEBYHHHcBiki0DCmyqDVNOecOmqYWFgDewsB7ItRti5fJyhRCLc/PQ3RtFhJkTqLR9imJawBSFhSwA1P96pAooIWAeY/kpyVcHyhy6T1gK4LdkUIg6zhAiugCNeBrYQLU7YewdqAqwtxmQ5E/QN7W9NjfsYhjEdO8BqLeb6VHbV2qc/txn0UEswgA/O7DddpFQHuca7oJ+zpP1hW5D4Q6zyaq7RlzLpvPkWTEsn0GpLeVIpM71UIh+wB/92gcbOOCuPFBni38AL/rkvVqx2Px4Rp9xrSGrf9XPwL9CPydEUA6OcIfmOAotc3zMf4RWJS1lMnUU1Tv7M+uvnqVjHDm1TpGwPSUSHHXjJO7HqGw5NG0AJNd1UKFUdFiIZ6XhGSuGX+DC6++prKj5lXY88kllyzZLvXN5Nn/jvvuL1M+WMSZfYEQ2keeeLJKPxaZe57m8WefqUDorDMMrvnxxw89XCRnugFjJXWuUyTDyWUeEWWwZJ5ksmdORESVOXgPVpmfBURlgWGRuZdKRrlJF7Q0v/46/Um9Ngeba22FM5nHu3m+CGBea5HS4UFxuuxf/+Q3wug+nMvvwos6X/tZe26ksp37XacNtgaLgiOujKzCSveNALakuJURO6/9xs2QwojyXKhjBTPbIG+XYa3jQ0zLMKnuBQ9tA6LGo8Apvz2LratpbXFbsLhVDlFWwWtjK4vqWSl33L+x4Rfhvwv9tgUWBLdhVb/1I9CPwD83Aj0h/efGq9/7/xgBEVb9SVdafIm4Dp4RN90vVoaUcRFyuvqAGdFycRkkl2LgcONddyXr2TYAZ1rUtXU5KRlTvU0tBESX7/7JT5oJEuVlyX/jnXdVY3EyqMHTDCrweujxJ5pl4qyLiCJtDCmuuuWWsuoXbdYcXYRY2xZW/oBk3iws1JuKPH98yo+U2QNTHSST8YNIJ7noz17W0+2DRXQtMgA70Pe3BuhIKCJGEgWAOlIFUI0J8itaDveAJlC0MLB1RMzfLS6OBUnPAdAB/58HorxYoOwp8HNAEU77ZN/6yXvAGNzKpgJ/94O4wmH7dwsU13RuzwGISZUd84fcY0Wlc53K1gLu3LPz2q9Iav6oxUmORyq1TADsda8WIwMLEdf3j//Z7NP9FIHOtZ0HoNsX2Nf9529A/sdEqGtxk/O5t8pHax1EAABAAElEQVQ6Z/FhoXDTPXeXjEw/VIuCfutHoB+BfgT+XyMg4KiMRJCTmkUdKGwQID0pbrhfXHvtIqPUPQePOaHMisace26z8Zprxrvg3GRBV6z2YoKd6kHN73qX3h9HXgodZFQ2lcQXfshm3pEWacjutbffVvWICK2gLUdchJZiR39spIo8l1pnmpzT3+a5ubM/FY9WZFrPDJ5mmkbA9OW4/gqCwiobqa85k7nRlAne/i6ESYuyTqrrXu1vru0yn5Qm5nRYkv8178scay5HvMzl5mNYILgIe2Qs3xPyCky831E4ypX3DBDV2j/HwkRzeZ0n+3q/DZCa613Uach822BkhzHehylw1dzf4RcsKlzJ5905YYl9ZSntB3O91xHRcUlxh0XOURiUu4dljvdeF0DtAsiOdR37lrQ4v42B78QxyCfiDL8opCiMtExzHzAaiX0gWW7k9eWMcymFPFy/9SPQj8DfHYGekP7dIep3+HsjYLJmIjRyo43ivHtcakU3bEadfVZawCzTXJ4G4HOmX9rDcapDDMmQpp966mo8rl4GMH9i3nnLSl80+vRLLql60TMuu6xZaNiwihwDSC1gfhi7/RUWXawILaAdlOixyDNJrozpkzGUWHL4AuViKLM5P9lTIs/kvLPNOKSA9eEYWmjfAtCB+SuRb7HItzB4MTWjiGfnSohoIqfAqrPMB+yOEWUHNsCXWRGpD7LFIAI4AbqWMIVM5h8ABuSMlc/qdYF5S+iAXoFnANHvcUG1iFvI4QCeF5AC+doKMDn0kv62Ut0PBKjB6Lig7tpee995LBzcC7LneuRKFiw+swCxv/dF0UWmO6C2cHEssO6yqYA4uw5sAxFxr/JmR7Cdz9b+Gvu3xY19nNOC6APv/0CNK8JsgdFlRWWQjZsggQyAzITFi+8G8e+3fgT6EehH4G+NgDlj/fQGRSoEMNdeYfnyO2C2d8DoUc2X1l03jrlnNdsmkMp8b6M11mzGnHdes9GaazRjzjk3SqBPNmenDzZTJDJcJEhbmLvj9s7ESD9s5JRTu3lLyciP7rjzTddcGU5tyVzb3M0nQUmJ+W9YsE22lPJj6EwzldKG6Z5gKnmvkhKfeU01JHj6XAKq7uFjCaqaO33+at5HtmTr4CPC9afM03BMMLabz7mqI0xey5qqgYQF5lLHyFDafN797ubt7j2v7ec4m+u6D5u523ncn58Ov9pAY3sfRVKzD1zwOYyBA3AY0lWGNHjk/uFSbdnX+0ggEs2cyXWcC/GFUTDHb6/9DXDco/tzLcaBcMt/B56uxcC0RAu+6L3qM5tnMG5w1bk64ukZO3wXLKUwch/wXLADTnWuzDLh7rd3jq8h7f/Vj8DfHYGekP7dIep3+EdHgDxq9y2/0nwnmdGlA8633PPjiuxyqDWRAwCkAoCQdZq4RZOBL8J54113V6T57DgUrr1829KFzApJZBq0cKRN+repVxUtJlFiMKGGA8G06OCWqE4I6KrHmTZ1ocjkI5FbATuSqKdik++eRM6BEMKKZGoizhDixV+8VPWKwHSqKaeox1cLqm0JgoQIcTn0PEBP2xYEVbQXeAE5RBWYiSxbdAB7gFvR5oxFAWjAFhDbvHZuoKnvXXeeNpPZZkC72hpksKLdAXKA7EZaAte2ZTHWztFdFxgD/T+ljihv5pg28/m+2u+DuVZqNLO48L24fncf7ouE2LPk7XyHqe8ZkPXWIqMGwOVbEiqyjMAC9W6hgsD+PnVJ5F6IK+LeHeu/BfVE9rXQ8cyub/OZ/0ZEwS0e3ID7VF8qMl3jlM9uT68+tV2+Q8/Zb/0I9CPQj8BfGwHEYdmFFyrjotEhmVrEkPJ+44t6Y48ecMy9sAKqMEw5CrXO5yLnVUqyYWS8AqXaiQmsmrtlLhHLFRZfrLnwqqsLx7RoefbFFyqgyjV32rjicsK9JzJcwdPf/O63Jf+VNRXwlAWVLRWM46SLUDqvOY1xDmf3ifOeUhS4xXCvzIyCf4JxyCgCKvNqg1PmSPN5iwXMeD5Qr31u7nQM7HiTYOW9Dp99jmB1+9Yf+Zd5vv6XuRrp68ipeV17tBxW2GIGNxcXcczc3RFAeFpB0tyXz83nA6ds7yXYoU1Oe3wb8LR/YVxO7nngAhxSH9uSwJSZ5FwtduV0uUV/ew8mtvu3hklKTApP3ajnGXgOB9Wz1ZULat4MGBufCh7nmJY4tyU3nWNxqZ9cNBuc8t3BQBjru1ES1PpJ/Kn3QKhR6v/Vj8DfHoGekP7tsek/+RdGoJNHXZHMKKkQYNCP86MfnqKksoAXmUQggTFgQVrIjGaefrpkTH+SiPMijT5vmpiT6A6JNT4McdxSwxes7Niscfq1IHj4iccj1R1WklwAN2cizPc8+FBFZhFkTrpATQ0pgBe1ZJHPjZBUl1SVmRGwFMVGLBEc5BYJJdNF0BAjNTzAmkQH4DsvRG1lpYhTKx1yHNJIvsPoAFy1gNlmHQv3vAkX89s5gR3gRloBG3IGDIGmz5E2wOw+EUTn50jbgXHOVOfwHtBFhicMOLpHP2/kWO6KNvfiGs4lQ4pQe89+nkVm1zlcE4n3/SDUxtc9uqYbRzLdo8192t95PRpQBuSe5y+51xaz24f2XXomW0uO23N4Pufx8+cAuu/Gfu7Lb/frvymHek6LCEEN92RRZ2My0W/9CPQj0I/AXxsBc9SCUd6Q5+6bNjDbbbxRc9hJJydDuk5UPedUtlMv7PVWWrE5LWodpSgMipDTkyPvlSlFSoenBlQg1VxEAnzrj++Nz8FiZVykXMQ8RX7LQfee9Dc1H84yePCbwdNqaRZZr5pDgVC9Lils4NczwSEGRojox6acIrj3fAVfYRKDIwZ7CKW5FyapC4VtXenIBxJEZMhnXjRvm0/VPrZzcCt9Nb8jjNqbOA9sMFfL8glkFmZkfu3ImNfmdvO+8xSxyyvzMnKqpYrrtX+3GUtj7ZxFPHNOUtcPRuFinpc5hHFwxyDCWPM7Yo1Etudp77/DBd+n6xUm5V48GyxyLvipzYybc6zvRfATdrkP91+B3OCKrc6Z3+1n/B7GYq17tr9xaUlom/F1X/6pscv1kXz3YxOohUldqzLB2TKVis8GhZcyJd+Dz3tFTw1Z/69+BP6vEegJ6f81JP0bb3UEACfgRtqYOIgEy2QtOXx4uRYunfpQ9TwizT9++OHKVOqhpmZy6ljbI5FLRHrLTGLVpZZqroil/qBEmT/0wQnKAn9Z1vwhvLKrwFy9ztyzzVZSpqeefy6uiLMXQJPkalTOVRGZ1VcUUD/74s8KFCwkEBokBrD5HL4wQuoMIvSHAzruD1kFggjhRIhafqtlBNJAsasVBXyBzgLWjpQBOYDWAvzYEe6kVIDP3x34AtU6bwAbCPqfz7v6FmcA4FUbGiDsFgKAtCOzLXlra2FkVN2fcwJOixGACrQtRroFgmcSwUemZRS87jKzzt0RRs8DzNso+ICMN/dai4yMif1snqd+D7wG34ikcWjBXiS+JeoF+AMk13Xdn32cy7NbvLyaZu/dogDgfzhmVL4TWXQLOWBPgiYo0G/9CPQj0I/AXxsBLu27brFFtS5bIz4HnN2XWnB4yWzJbe9LfegSwaurUiay8DxzV0uY1ZZeKrLdK5t1Q1bPvOzy8ix44rlna24STCXH1S7mmttuq3YvAp23Rr1D5iv4+lxas/A5YFiEwMApPVHhjYCpshPY9LHgGsNAAVIlIGpLlTP4DHEzr1PymMeVppgXkdDJJ52k7oUiRdDUvAjPBErNpQhWRw5JV13XLO1v2GY+Lzzybv4HW7xusSeEL3NzR0CdFxZRuDivn79G/szdXfDUse4ToYS3HYnz/cAgnyOkzmWzj+eVgaXggQk+c/wfYU3wyDkKG7Lv+32eH/ftmWFPR3r93WGk4IDng2HuR7kKRVVXeuI61i5URu5BmQii3mFW17PbuBsHA+S+Ck9zPteClc7/aowOQZ979nNZjI9IrwW6+60fgX4E/ucI9IT0f45H/+rfNALIwoiFF2nmCxiz0t/wk6s0p0b+pCbn+MilOlDnRviDm24qB0QyKJKXSUIa/U2i+4ObbmxWWmzxgPytFR0G1ACdmdGNd98dEHh/RZ5vuvueOBB+vJk45g73P/Jo1akCbrJdBBlxVYvDiGGGQdNUzQjABz4fTRRa7YcIM0LDRMKxv4oD4WshrAgZsGEcAWQsBAB4B5Yyhc6DIPqNcDkPYJKBRGYdZzEA1DrC2IHkuADsM+fxXIgXYAN8wLRdTOQLCsAVOcwfgNS9AX0RavfkvM4zUaTK7s357G+hArwtVNxnEc4AqTGRjXQNpNDzya4C67FktHXg9WzuF0gzeGivRVYlMp3saRYOzmPrrmuhYWHifPY3FnDcfs7lx/12m/ddVyTa/o63Twv4eZbcn888k+9BBtazIKci0D+6887UGGXBlZqqfutHoB+BfgT+2gggjNunRzYyqrRDOzD+AWo0zV1kmepEOerKbt6dTKdSlEuvu75qUDnEa//yVDKY5qJZZhjc3BRMouIRgHWO2UNuzUcIq9fcwgVoZTiffPa5Oq/5GN59dIoPh6yEiEam+/rvXy/ZLsL3csiseY3XAWJmjicDNZ86RhkDh9iXYniEpJnb4ah51r7uzaalC0wxn9r8to85/z0DZLM+83GmcLO4eRtR6+b39nUbIOzmfseYs+2jpRnpMUURvCLlbYljm6FE3iZEOnOPNvfmPAjpn/P3h4JZ6kPdFzIosOia8MFzIXXu13lhLGz0GXzwzDCiiG7GyfXrHvO3cyCiMNL3oFQHaW1JuOdrCWv3fHVzA//yfH7sC3ds7sG+nsf16xky1jUWOZdr1f1kLNzbyyk58j15JvuQZtsQ337rR6AfgXYE3jPBBBPs3g9GPwL/7hEANBwJgcYXPvWpuBWeE9fCtZoxqcXRc/TkCy9s1l9p5bLGX3fllaqxOCnVT59+quSmFgYPPfZ4SZ5+cPNNzdILLtQ8HFddADTTdNM3N9x9V7PwMI3Gf5XM2Ashr8OaB/O5680REyWZWZP90FlmrgwomdN0MVMCdHpbAgZ1OjZ1Ol53RJR8WG9VwIEAI2dIj0yrWlNkScRaXRBgBTjACikEoAwSZCOBX0VwBwC9HeMWxAr4CvLb+tE/A92MmXMzf1CPimzZz7WAaEWoA4AFhFk0WJw4BiDW57kHG3AcWHIUKJNKIZKesUhj9reAsaABqK7nXgH4ewPSxgiRrvsZ+Myiqe4lmVNE1z6+47rfLJqc27ksXnxmPES738zE5hksenxmXN2gCLvfzuu9kkLlXkWmEV7j6rm6Z/tNvk9j4l78eF/gwELF8RZpMt4zDkrAIeDfEWP/zfRbPwL9CPQjMO4IIJ633ntvKXcoL6hiJplo4sIU0ljKGfOKeUYvUSodfUu1HkNKmfYx2qPCgTW8B+adbfZkWe8o9Y8smKDnIsmwKiNxrlkHz9DcFfd4ah+Ouw+lv6lNKcvPf/lyKXvIeSfM57wOfh88+0hIp56XCPNruU+kbKoppixsETTtTIuY9an5z4WKwJoLzZOZYDO3vjvz9lh3+DYgyQm+dYCHY4U3wQnECabAUvhlbjdHI8eIpvGAHeZyc7Tf+Tg/A/vl+NeTUTSfI6fdVvs4FywqzOINIDDZlqt4z30UFuSccKzFpjYTKQPLhGlckuv5PJtAtPtCbN2/90llA6N1747tspR1v/kAfnlGJSuezWvP6T334LXnc64Kkua1chbjIUtqbHzmuT0rLHIPME8trICGgLber0j2ZMlgq/+Fe4Lbzimg7Hvqt34E+hGIKqMnpP1/Bv9/jYDJXc80EeYtP71hc+J551dftzMvv6xZZ8UVm7PiWrjq0kuXe6G+b2p1OBaKRJO1iGBq0TJ8zqGVIdX37YlElQEnydVNkUj5jQg+FDK6QLKxamlEmDn4WmQ8meOZHAEMsl2AMVUyoiLHiKhI6dQfnapA6Be//FW9z8lQhhJJY5EPMBw/aepOgQ3QBFbqQ1vQbiOxgEbWEJkD3EgZ8LP46KK4xsQ+weEiXmW5n/Mhja7h3H7bDwkOdtc9IbiAFzl1Tkhe+2Q/pBCYiw67B4AvWu0fQNtGgkWH20iue3GOlpCG2GYf73kmCxqgb5HgPWNgrFwLoCOjiHABfn3eGkiIGJP/tlnMPN8AoCO5Fj0ysC3wtwucIuoDCx3XdW+u57yI5++BfRYW9vO+84k4y7yrQzK+sggWke4vH9di0vv1HPn+ZMYtOi0U/DfTb/0I9CPQj8C4IyCAeN+jjzaDggHzzTlHMpz3NEtGuntzfpPs3vWTB5rBU09TZBGJM7/AESUi19x6W7PiYovVbzJfZEU7sXlmnz3qnXvKadfc9XBI5yfmmbcyovCEsdETcX9HJJFZhn3Pp2YUQRV0VHpgvuVG73j1pIKDCDG8QHQRUVk4BJppHxySRTXfOZZihPs7TwAEypxYc2vu0W81n+bXN4N22WfczTnMuX4QQzX9NUfnPEifcXNO8z5M9aMOUwbWsW1w9vf5+y/NhzJfO49NOBYuCRh6VsfZvyWPyWLCtuz65n0PEEWvYZ/zuH8n8rxeI3e+G9JbWAgrjZtNWzPzv+O9Byv8wCX36hnU0TqPW4RhcBvWkQC7P5hW331w3X4tVjMubNvkdPfkO/BT95HzWgd8OCSUSsk4wzXfjzHTck79MPxCen3e3XPdeP+vfgT+C0egl+z+F37pb8cjA9PtNto4ZkVXRZ47a2S3DzbDh85VEidNwm+4865Gjc45V/6gWWWpJVM/+qMyeBA1NsmTTDGOWGz++Uqyi1CJKpNGzZT6G4BtoTBXMqKc7X6WFi4zRSallkaU2uSv7ga4/y5EZposQAD1r15Nz7ZEO6eMOQRAtUgowM5ngE6mDiEFdAhVyZICVIgbgASkPkPgOpLYAktLBoO2zXtDNpE+wAV8bX4DPr+BEVCy2QcpBYDO85f8kNTaD7i7fpGyRFY7cAWqfgAgkomUtmAdSVDkwjK8XBq95xkcB6CZN+Wkb2YdLTyQONlTWV6LCvft2ZBqJN1CwrUqC5vruN+q+8n9GgcRbcf4fnwnPrev+/KczJbelc88O+I97hi4b8dZ+HRRecfbfGcWEPb3mf0sDj2z1cnvcr+yCcYMoZ40CzXBAwsApiB+d86SdcL+X/0I9CPQj8DACJiL1Hfqg33smWc2n119tepR6vXJF1zQLL/Yos318T0gwSXRNT/rHUqCu/j881fZyfAcz11X3efsQ2ZMTemPm9lmmKHwS2B2/ngmPBq3d4HSYcFALckQS0FVxAQRNf8KvL2UjKwMWwVHQ6raTOhrlVGrQFtwyrwqM2tONMe7JySVkqfDKnOuXqHme7hS5CfHed/x9ocR5llzNKxFwnwG3wqvAllQqwtomn9bOWyLZfDEMa3ngIxi264LHtjDZ+Zk+Gpf53Tf7qd1qw8GDfTydH+ex7kQO+8rNWmzu22rGgFO98uoyfvwpzAQRuf8/kYijaPNa5juN4zJwRmrtuzE9+5chbV5LhhrK4wJkXTMuBglKAyHHNOeqsUyz+gzAVzjKAAKuSoQmj+QXqov5yKd9t26J2TZz+WpLXXP1h/91o/Af+sI9IT0v/WbfxueG5B+etVVIpl9oQAP0UEc9OmaOsYNj8ZpUE9SMqiVl1i8uSgOuxYJMqy2sth/4P6S8ZLvAgtEle2+4xGURyP5ne5jHy/Q6wDehM8uH7EbFIddIMcMAjkih0KyXpFpC0AASGQHaFok6IMmw4jQvTuA08mBkDXgYz/AJNrrc6ALdJxDJBRhtSFHAMh+wA7gd78rG2m/nMv1XMNGhkTSY+tAFXByzAXmHQhWBjLnrgVGANZxXdYTEQOQMs6yjUip/QEyp2HHkBVZiNiPbNl4iID7TDS7qxdF+Fqy3mYsycgsgpzX9dyjZzImCLsxcE7j0D2rz7pxc24Eu10koPNqkdqedJ4ZMfaP87hfRksWAhYt7rdMmpwv17QYsDgx9hZOQN9zkP9OOdnktdgjIXf/nq3f+hHoR6Afgf9zBBBOap7RZ5/T1olednnzmdVWLXXPSsGky390Q8yP0tIsZkVTBs8QQd4Ew4cOLaM+7rvMh16Jmc3sMw5pboskGG6Zt+wnI0rFI2A6y+Dpi5g9k/2nCg5xy9VflIEOF3pKFGZt5nxuu+ZN85rAGkyaLF4LiKY5XiDQ3AZ/ZPAEEM2L5uY6LvOl+dxc6nzmXGTMZp/OMb0wKvOuedk9OyZTcO1vLvY/94nQmu8FHZFA+zH4MzcXVuY6bdkKnGwDjHDYNalluvl5krwnqGhOhr/woc6R95HqjrjBL1giMOkei+nm/uC163sm73sWclkZTq/hhPu0uUeSWZ/ZHzYbI/fnut29df1I3Zd79T58cY8yqDbjaAyMkePzK+caG2S2P+yG+85tPNugtjVA7jvBcXiGVCOtviMBdVvvFF/D0P/rv3AEesnuf+GX/nY9sgn93kceianQoDKReOyZp1vZSmosELWSQ8Uld9iss5Tb4TILLZyo9B3lUvh8HApFVbkRctVVGyoSTXY7V/ZXM2riZ0Ihgi0Lx8gIqfx1FgdkucgKklrEKxlTYKUGFcgykxDFBfakV4AGaAB4f4tcuv+qswxAIWmRu9c52c0jUkDH7854wsLiNyG/SCAAFIn2Xp0nIOl9wFbSpRA7EdICv7znNwCt7Gz2lZ3spEWe0/mAmftznH2BonO6X4SwA1uLBvt4v1tEuK7xRqwRVGBpcVVkLyAMzAvA857xej3PDvgtGoByRbZzH54F8esIuuuorXX/xtWixPn91AIgwGtfm8WUzb4WWAi2hREwr9/GIT+u6V48x++yIPPcngMpt8BQp2QMLXJcxz6+HwEQCwILQA7Os0w/uFyaZYY9S7/1I9CPQD8C446AueLemOZ9cZ11mouvuTYB0nmKhK685BKVxVoyhkVX33JLs9yibWmJuU4Zg0AoyS8Vz2xpSUZhIis6LP21GdiQjjIgeviJJ6tfqOyd8hPzlPYuSIjMKeWOiVN7skyfNYeZD1+OrwHiggyav5CgX0bdI7hqzkbCaj7P++ZShm7Im/0QJ3Orz83Ppe7Ja8cJKJpDbdUqLJhmX6RsbFa1JVU5Tc275k5zLRxyziojyfybN+rzyg4Ga4yLZxF47LKmru95HOs99yYbWlg1EOTN5F/3CeNcy74ThaBW67JgDaKKzLX41ZaUIKI24+r53AN8F0R1PDLcZmODkeo/c23YJFjqc2Mh0+q5nVvmuGpDgz++CPdnrNqcsCuFjPonxxtvx02QH8/ie0Nm9aPtAqeup1SHhNf5KXq6IPgU8alAuJFz14CHhdN5/n7rR+C/aQR6Qvrf9G2/A57VRCtTZdJdeYklm6tvvbVZYv4FYhbxYElsGUPYh6PgvQ8/3Cw097ByKSSHeipmREBs8DRTl0nErIMHF3GScUVQX/jFz4v0DR40TUlxGRCJNAMcxNWkj2Sq4xHBJuMFPECPJApJY51vQ+zeJIMBEgsPYIQAAheA5/OO9HVEyudtNq913EUkETrnroxmPkekbAgikuV5CzwHotn2A46Oce/+sfAA0KK7HaCLqroHtS6uUaQt+4jqAsTu/AidqDmwa+tb2gj5BKkxQhJd23UmzTMii8bDYkYNEoD1t/EA4K6vdY5zIn/2dV0R+RqjnMd7v8n4IKr+NsaeyWLBIsLzF2EdGAPXdg6k2GZMbRYrPnO8e/eMFmTG2IasWhghxTIETJPcm8WZwIAAhuyB66ob9tp3bnMuNT391o9APwL9CIw7AuaMO6O6GRE/g8ee5n47RRnqzT3rbKXG4ZJLvqtHqVYvylHMU8/97OfNnDPP1Nxx3/0hpTMWcXrmhRcHHOSfraweJQ+8ghGUG+pBYYlz/H/s3UmQHdmVJub3MM9AYMw5mWSSLCbHKnY1yZKqqqvJ6u4yqVrayGTWa8m0lJm00FLSRhutNOxk1iuZzNpMKw1m6l601aCuoYtikUkyB+bMnDFPgRkI/d+5fiMCSDCZLCKBQMR14MV7z5/79evH3c9//nPOPZcT0FhSxIQu5QTlIDVEg252DH2jx6yj52ACAoSAcnYW/ky61jlVVDP4gZjCCseCAfS57U2fQkdzwtLptruQ9jsmNUKLjLV5rVUvhyuWchBqL/shZOX0zHo4CTM4Zo1vbVvHOZlj0u36DbsKa4Ih9qXLYREcsMAvfUAo4SAdXtXg02e4Qj4wpBM+slkIsbPtYhyW5QDNuWhHMSHO4sIwWJF2RSk5oBHVmr+0+pz+pQ/lkE6vtaG/zhfGFDPNcSyO58TIv5+HbdWV8F64l/7Bzz05X8eyrWsn6ms5mGwkeApXDU3SpMJUMMqwI5hJtmMZEtgoEhiEdKNc6TV0npS5OULfjxf4n2W+0v/zT/5k9k/+nVYc4g++9a0ip6rbinq9C+RTNVc1xL//1a/NXn/nHWgwU4nQlC7mEgWa5oP7jWfaWBzpuE89+lgRHIq9VcrdWQaDbZFU4GecDvQESqrwARFzsxUAZp0fRSUZBkAK0ABOIAIsEKaK5gWZnBMvLZAGPEhrK8pzowwBYAgEAZJ2yjMcsESMeE4ZKBVhzW9AVsVY/eANb17cBn7Sa/WJFxg0AldgyRjQhn7wAANR5A+II2tAl5e++hWQcx5IJBLISEESyaFAO8dnREjp1T4ybD2jgCFQRk2MgjJE0g9jYxgSwJicakk/bK9N3mfzoNb8eDlWRVQjI/vrr5eItiJO+u28yMpn16SbVWRW1yJtIOmOqW0pygirNhhCPc2LMUR+2jmRFDnHQ0x5pHmnyd15Of5YhgSGBIYEugTouJ++8krw5YkaxsBRSk+I+hn+YZqY7//kp7N/+J1vVwEj6bdt/uqLqQL/1OyHL77YSGkcZkipVOD3k+WDfDwW7OIUpatU84UXIqIq58KDU6nwTkcaPkF3wQzVdRFVet5CxyOOHI324cBE8mgyepje9rLQ9fCq41ZF9LKPSB296Td6HQZW1DTv9oE/dCyshCN0OxKrT/R6cyq2IRgIMVyjc7VBpcIx+ttQCoBSpDBytZ8+N5xsw1icl/5yJEp9ReSK8KYN2FTETXshifqpvgPcq2NEr8uGgRmcjGQjutnSfLcWfl3M3NpkKpoLE2TO6E/HNufpemjbb4gsmcJUzmZZQeSx+kUOztUL4XQOXvZD9EVPnZN23U+OISJO1tqBPSW3bMsmcZ6uKWe5e0hkXVTXPTOWIYGNIIFBSDfCVV6j5yg9Stl7pNRcpKKhf/o336/KhX+RaV2AuFL3iJ1U3OdfenlmjM7PMtYUkErJfemNN6oaoVM0RocBAQR5q3m2Acz7GZcDCHgkERpeaQAGiG1rnSgcAgUUgAgDAKgW2AccGSOIoe2Bi7ShQv/8AUxAVntIDsLoM2Dr0UGGQ20nuhdwZjz0tkQ0HdM5SZvVFsMCgVJJFjEHyEgiUsZAAb685Ppl3x691Li0YuDLOACCvL6Mhb0xDBzT9vZHUIH+YsDaWEv9dm6AvpN0gA/ky9Mc4skoAaSIPWDl3QbqvNL667w5AMjReWnPi/HRAVm/XY+ayDzn2iO+QNp5t/Ns42zJz9x21urz9gD+3qSYOY7r47zISOQcudYGQ0R/W1GMlN5P/0UYGDn6f/bihVz/hVon7Y1M9W0sQwJDAkMCXQL05KupX0DXfO93vlOVdxUrUsVdpW/YoL6Bonwcps89+2wRS06/J1Mx9/mfvTwzzQusUFhPvQOORlHOR48cKXJ3OnOHIh2ch7bhaFyII5COlbVDZ8myof/OB6foYxhBzyE/MkSQrTaUxNjRNmVWxwPngBy1oSItm6RjgH37Z7obESryE30IE+hw5743uhMxo3/p3MKtyfEIl2AsHOptkAv9zmnoPPShxp3CorzsL00YIYQLXk2f53eR03zXrn7DjkoxTpuFTWkPNqUr9V3Ul26HC36n6+Hsof0HMkxDZVvRUtOncbDuLZkhtbaj91Ub1r6UYH0GPs7F8Bqy1hf2gX773N9tY95U3/XfMQ3Pca7adu6mboPdsIhtAdddp9an5vQ9lGgoMnshx0NObQObtG+MshMlm5HN05/K8b6eJTAI6Xq+ug/BuQFnqbkKRrycQkVPP/ZoSu2/lHlFv5FpXX44+63nnpu9EgIKoHg2ldD/2he/WOsQG+RHCrCIKa+uwgA+AxZEFDCZbFvhJGChaiEAQUqhVPNWpmJfwARZ4e3UrvL6QBzIFflMgzzKe9IPYCM91DsABWyABnEGwEC9pRdJWW3TljQwbeN9ADGAKg9swMaCELX006v1HWA7HoJmLAqSyBBBWtu6VpiHwcIbbF990a7z1A9jgIAZQ8Gr/8YgICtjL20LIBUosjBEgGv3zAJ8hsjBgCP5XEq7+o/QG5d5KftqD/AaH6N/PVLqnBkn+l2AHDJO9mVEBbQRSMfnFbcuYiwgBsL6Z1vHdjFdF+fgWpApGdvXz0Dc/eFla7J3XzEMXUvHL3Kc/otiP3rkqFOtY0qbey+GIDlqbyxDAkMCQwJdAoiBbB5FiP6jf/KPZ//q3/xFihr9dlJ6X6jquLJxzDP5+YxPf/7ll1MZ/vOzn3/wfumkowsHZy8myiXaRXcpXsRhqgru6URIjSmlN2GTLA8F/rRHt6n6zgHKMSp1VHSUc87SM0DoRORMG3QiZYjYOBa9CJc4/Tgeq8DORDCRWft2omfsKD2NZHOc+l2qL/1b5DPORiRLo47HCUlX05cieo6DFNLZdLnzk61C59tOG+QI70r/B0MKf3JcbXSccB4IHv3dpheDTakSH91se/gDJ2XkyLaBTUizSLLfqo+RD2zSbuFQMEifOSmlJNvHb4207i8yLeWW3BBgOOtYMopggnNA/Mt5mmPBGrKDS95tax3c4YBGLhFb8obTtnH+yK3rCDvJWnqx3/THSx9EyzlnnTMSbBup3MYXi2qT01iGBNazBAYhXc9X9yE5NyDwk5+9MvviM58pBQ/gKGFA/nzI6lc//4UC9icQzSw8yV985pkqoY9QAmvzlT5ypKW9SJGS/oQcIaUFAAEkY0p5IYG9NJwC1Ch+0UEpOY7bwKMpfl7dIpwBQcADOIACkAX4CN8KmLfiDq2yXouQFpAFdAFPRUuzvQXgAijpt73oAgKIIAJu5LYZFtcqqgl0ATGSpS3Arq9AWIQTaAI6IMYbay433lzt8PwyUIzpFFkE+M6RsUMuvdiEsbXG/JBREd/023WRbrQQUk9Wzl8/jHFB8PRf266Bc2UQlPzymz4yAgA/smlfvzl389I1r3HSu3JuDBGA2xdGjTQx+zJsFLPQb98ZZa6riAJZW2fh9UbCGTxejBAvRoh+6T/HBJCXLkdW9ncuHBi+k21FCHpHxvuQwJDAkEAkgCiasuU//qM/mv3rVIH/9te/XlOW/buZ8uWl114vx59oF+eowntvvvNu6V5j2l9JISNElA4SXX06NRDoVhlC9C5d+MGJk6XXDgWb6CuZG1JdkT/DHegnOr7I2URM6VPpqfSlcZmIJAckTKBT6bIitSFbdCNd7cURaBv9gT+2s57ehI/WaYeeha0IV5HF/N4rsouKwh0LLIBNsoPUHYCP9D0sgzmIWX3PJ3obhui77W3j2PoOj/TJd+Mufa5U5eCL7bRhH/IiI5hm+IXK9Jy2zquRUcQTMb9R+l3/bV8pucHgStnNuVUbosvBGotrZRiLRR9l2IhSOz+41R2osIhjE4lEYuGGbcnosihp1jUHcX7PfjAK0S/nt2yffO8E2nnB/oqC5vw4G9gmcAm0uS84euErhze5jWVIYL1KYBDS9XplH7LzoriBORKhaMSrP3+rSA2gfTdjb0xOztusWERVzg0AKm6k6IQoKVKpWASvM3KDtPKcSndSSde4FOBFoSsUAQA66AJ7x+flBUTAETg38hkQTduIE4C2Hsgjb0hfK+6j8msr7lCe0BwDqFc0L0TJMYHepZA7YNbIJ490S8WS+gNsASQPaR/3yNhgIDBCEDwR2Q7s5X2eSCjAA9LaBua29Vl75Fnr0wcEzMIAEeFFwm3vPBBX/QSU5Gm9YzEMnDfDgIzIV+QYcJoj9cjBhWbIRKaizGTo/JBhqWT6oH+7p6JHCCVDoeTEiHDu2YZcnV83qhgRjBdg3w0XfWeUIePOwauMgrRnvI7rSS6uj8WYLoZDc0jsLUPp1JmzdSz9dl7kq2rvl5Nu98Jrr5UcnftYhgSGBIYEVksA6aIjZPOYf1T9gh+88ELmIf2tjBl9qaZmoYdOnD5TQ0wMIeH8RCrfCEFFROm79zOc5PFMP4YUnkrKruio4RQIKt1Ix8ILx7sRMorI0KGl84IrCChnKaJXS36jQ5EiC71G58ENhAc29G290490qHdjKpEdWGTIhv3oXr/T/0hcG9KRtNOQS/q4E0ykyxQvXT/DVQsMoGxhRthX9QOuSgkWdUx3q69SWsmGTGCU/iJ9zpMeJx94tD+kveQRnEaQLTC7zjHbwR1V4KuWQY4rtVnbsqG0zV6AxUcSsYYR9qXj/ca+KNIdzFe13zqylP3jN7LRFwScDbA5+CV6DKdcky2JpOq7YlJkzfFMfl3+fS5X9gd8rWJLOYZ99Zc8rSdr5wt7ObnJHRnmsJCdJNsHYa7tYGWONZYhgfUmgUFI19sVfYjPh5KVHgWIjdkxvcszTzyecTfnCwQRNUT1uRQ5ej+RT9HLo4cP1djRowczXjSAYQ44ler62FFgIm0TCLVo3/4CEIQIWfEbkAKElL1FhFBKDtAIsma9sSGtAI8qg1JpgWcnT7bTd+0Aeem+BUrZroE9QivVJ5HObOdYNR4ohAwRA0wMAu0AY+NXnIvzrVSlgC3QAk6WDkrlfU57DAHEs/bPtnrt/BkogLKDXkUj03/nXn3PMbRrsX19zs4ILQ++hTFUnuSAdZHPGEqOTzRSjHjMydZ3UWnncy4pbCKtyKwoKZLtvLohYBvy68WISm4ayOI36ViMLsWYGAi8+13+tiFDY5o4Hmr8T4y5ltq7Ut3RuWhXYSbXRhsMDYaCKKnfRaFzuTLVwtEYg2eLSJ+M88I9Q0ZjGRIYEhgSWC0BjsefvPJKOUY50Dj1TN/y1VR5fz7TxXCcnk10k94yFtAQEpV16WYO0yczRzZnnSJJ9CVdxkmGqCFy5h1FjDhTLd0xiNhUFk/Ij7b1w770H/3aM0xKb0WncRjSuQguMkif6oO5skXyLPov+mofzs+qslvpq4tNd0Z3N0zbXHhAp9t2fwh0OUCzL2xApGATooZA0rX0vv7R+bBM/5Eq+/fxpHBEcSLr7UPv1rjRrIdndD7SC4OkJMMkhE0/pUmTLz1Orzs+TNPHsguCTfrSsGle5BQZdEx9KEdBHLSin5ySjks+jrUj+NdwV1aPOg5trK1tOUDJzbYimbAV9iCi5OA3Dl6LYzkH610D+8B5xD4fW1ZPzgnmkafzh9l9v0cOH6lrK11cu8YlSx12T3hpcyxDAutJAoOQrqeruU7ORXoU8Db329/85CcF/iKhKtFR9iYPl877dsbqGK8B1Mw9qogRUFKxUOoOkqUtoMrbCcRF7YAaYOG9BahIG4MAcQEOBfZR9i0d19yYpmdp6TdE3EGXYeCVHeu4HYh4TIEQ0GAUADRgaFvtMyIWAqDLnuj0AQlHXkUXMUr7AErRWWN7elqU352jPuivfiO4wBqxdWznhMwCesaPNCTA7TzIRNtFnEPorO+gyiggT20AeUaFVCUEk3d2S7bXT8c/mDTeii6mH/rAww9IHZu8a4xp2mEQkDmDqcA+56gfPNZXAvbaICfngjAjw80rnXS1yKmNyWmVC8lCO/pbkdK0T77aYoQgsoyE8k4nPZe8GS/O0faIaERbxo9rzAAgJ2O4yOSJVM40Ab1IhXOwbixDAkMCQwKrJUCvyOYx5vO5z3225ramf44Fn17LegX4Pgjh5HST5WG6MmMBYY5pXcw1Ks1UJJVTz3L6fKuqbtoxkUVOSXoQmUNe6CsYRGf1BSGh22AKwkJXOqa+2A8uIFZ0JH1GT94IJiBfsltqTGOIqsgo3SqLpaKA2cc5whypw7JpHBdporuRPgTWsRAsOlY0zza+05uwwLnQuyKUZNX2bTgHQ8y7imRb4EYV4QsOwB5YAb9ggwim9izlLE379LjjwRc4isCeSx8up8+KHdoetsAmuOhYSLr94ZrPnMJkKDvIuVj01b7wCBBr12/kCXdqdX6C9bYh23oPvjs/5+t6eec0tQ/85vjmCLCeY5yjAM4i6lKzfSY3Q0/IsBHyRNDjrHAfHAn5Zsu4Ls88/nhNC1PXvTpUXR9/hgQeegkMQvrQX8L1eQKIj2JG3/32d2oOuKfiHWQEfDGTjktzQsgAO7CX0oKomGu0AD6IgGT0IjvGDAKLUvIBOJEx6asgx9gOKT/SUAGPYgYApggl72aAB8IAYwQVcAAZwABUOyh4t87vDA/AA714NO0LbAGUBXkESCKbyCnwZTAwOgCifRE6PuxTosNpE5kyLYpiGKoeAmGAaj8vgF4pWAF4UUt99B3wMopEG/UNuDkOI8M2+mJdJ9Ad/MmLJ1d/eIClTTXvcyu+wJPPcCB7yylForIY+2JhKHg5N8YI+XSPNSOAg0CEF3kkRzJnfNhGX4Cz74wDhhOgJjNgzrAim3YNFEBSqTdGSYCdUeb3PrZK6hZjy6sAP6SVMeE+cVwgT76PpOolGTrfzz315OzFjAtj8OjDWIYEhgSGBFZLgL6SzUNn/N5v/73ZjxM1fTQ1DIAKvJGlY7yoarr0rjmyObzoMXNOin7RiaZ4oTPTXNpaLNKpEB89Vw7F7EsPIUf0ovWWTqAwM5FIqb090qhvdBtcELlTeVd2DsyTIkvnyvLxTm/ano6lexFc3+nofXHWFTakn84TVmiTTqcz6Uo4wbmqsJ4hEtpTkIj+NUQFGUSk6XHOVDqbHtYG3UoXO4bjyiyCNXBDtJgz1DmLWMIax/a7fpYjNr8pXHQkKc4wXGSa3B2jZw3BXtejoqYhqmTuXLTNyUoGopLOpcuVk5JMO+FXQZ6zllwQdvvoM0zRDwTSZ+u8kF7yd82co3a8O0fvftOGa0g2fb32RW7hP6y7EBuI81zbbB7RVpFz52dfMiU/fR3LkMB6kMAgpOvhKq7TcwCA5uL6yuc/XyRjV0iMFCgFjURHgSpgeyeGQfM0t2JIUnlYBpWGGUCULguEGAbAHSgBRWCOZALrDhiUeyOmbQ4xut5+CGsHE15nZebtC+wBEi8o4odg8noiogryAAyeZoAJpLXF24oc21+byDeQ0TfgA6DKu4vIBnguh0TpL3DSvzPxpu9PKipjADEEuvqkHd5fpextz/MKeLNZXqnEmGPZllEDFFtaUosU2r68wOkbcG4R1ni+85lsgZ9zOHb4UB2HPEUEnJuKxfrN4LAvw6CPJXUNGRhI4sK+TARexlVLRbOf3wE2uZU3OiTVmCSGDePDe0t3nlKj4njgVddXXmcRXedCjtLSeul9+/T7ozkcpE4pQLGlSLRoqlRwpLwKicRJ4ZwYh9YxVjguGA51r6zTZ2yc1pDAkMDfXQIcWhyh/+h3fmf2ty+8WONKj58+VeQJOVHL4KlUjlfsRi0DFb7pPJFHYxwRJes5IOl2usaLo4/OpeO9w5ZOHuEXLIFxdBwdiBBaT3e13xXfa+NA6X1OSPpROnA7RsssQfRgj/3oUzqYPrWuiFv0dh+PSUragQmclfDKucAdeKGNNn+2iGUb24lQ2tZ28AaphG1wQFTXMeCGSGM6XNjJ8QnX9eFGsAFOwhDjVel5Dl/9tI6MYQFM5OT0Gf74DOtOR7ZkCMNsD59gJNLIcetcWsZSG9qhnoA0Xc6Bln0V0prjkz2cknHUs504e0WhyRTOOkeydxzvzt1iP1imb2SGeDs3OG9/C/wkp94m8nkkw5Dsq4+ur+En+qZ9jo6yDXLMHqWthsafIYGHWALzhYWF4V55iC/gRug6oPtWqhp+9oknZm++926U+6Yq/KDqoQnKESxeUONzGAgAV2EIQNlJFACnyIGtFF9kowMGcAM0tgHiSCPgREYAAuCwjgGg0h3DAbjYB9jla/2G4dq+L9oCPNoC9jzU2mJgeHde+gMg9Y0n1jgc3wEcsNY4Y8XvzlNasnQuhSaMQXKO2pOmZPxjkeb0STn+hQA9YLQAVH2pfufdcRFyBpHz7PvZVjuPHT1SHnd9F909OaWXIdgA0vEAoXRe8+Zpn6HB6NB/fSojJOuNPXUdrCMfbbbxsBkzm2vl2B3Aa5yrYhshnuRn2wg5skLuM/F71pE5+TkH2+uT4/brYh9OApUXEWaXx++MAfu67vrCYHFupq5B+pFRkWPRXgbCzlyv7//0p9U/8h/LkMCQwJDA3SRAd/zTP/iDmheb7jTERLVdZJWebNj1XvRQyFGK63yQ+bUpJkQJSaKPEFQ6H+mjp+j9PnzAOnpNBov0U841+tx2xpDCEs42WTHWVVZJjksvc775zfZ0Hh1c2GPfOO56aiyd2vECJsAKEVbTuCBIIndN77fhJPovAmo/kUqZO46NlCKc2tB/jlQ4Bjds/2GG1Ig4Wg/TkEd9IxBFghBo50qvaw+Z685U+lwf6X7HNFc53IE1sLHklX5Lw0VG4YNjkrH2yNSx7auPiK/P8B0W2daxbYMsWo8Mwm7T5yCT6VTaknFkDG7LoOq45B3WuCbsFPKvcwmJLjIdDOMYIEvbtHTpDMnJsbxq/+zjOrdMH0S+DSnSH/eBa0AGzhWxVuyxprG724051g0JPEQSGIT0IbpYG72rzz37udm3v/b12Y9efrnGk5KHVCheZ4Aj9UZxI1PGAF3gAmwYBIAfaAF8IMcri2TwtiI6oprGWgJNgFKEJ9sBbCAEmIM1RWaAAvAA2LYDOsDOd+QnPK88uI4D0ERXgT7QBSTa4n1lFCCU2rIU2ZzGumjnWEj1mYyL0c9OAHm0TW9j/BFgP3b4UPqQ/dO59GvJuepLFt34Oy/p+1KAdB4v7FLOa96BUqVEhTuQcSlaoovS0MikF7Zocr01ezQRVF5ofSYjHt0O9tKuEEgp0yK5PN0Al3zIaTqHulbkZL0TYmCQVxlg+cyIka7tmpUDIWBPBvpL5rZzTMYEIw4Z1T5yqk/uCfeN+Ugd4Gyipv1ecE6Wv/jBDyoizmAZy5DAkMCQwN0kwLn1ve98pzDB73BIVXjTvtD5sOmdDz8o3S8adiLFauggOEVn0kVIGr2DqHFOalN0tYhhHJHekRg6SjStkxjHgzdedOHqz7CEPvSydP0KI+lVGIYkibbS0UiOPugTPU8/W28dvW3RZ/oQ7h6OwxHwiUzKFBJRFPW1II76KAoJC1r1+evpytKvhU9peonsRI6j9+c1LCV6/dS5s0X+RS3hMcIpi0jWjQir/hq/ezDZOggfBzMZwF4yhxnOu2X8tCwk8nEOsJzMyFd0F4Zb4A7ZGi4i1TaXoGwKv7EvJrEXftmPc0DfpE83B3dLtyYrcnbtOADgujZdF985GTg+tCm7R1RaP82Jq27GWIYEHnYJDEL6sF/BDdZ/EdHvBvR/9NJLVSgCwRTZFPVEkBTtATwAkYI3xkM0EdBQ5gCVN5rSL+9o9gcmAAdIiKw1Emm+tlY1T8qStpAbXk378n5674s2CrAC7DeNC0l71gEwBoBtgY1XeWhzXICuD8DUut4vnnIRX7+3Sb+vVOQXqOsHAA1oLgHKLCud6J35FN9z/KV4b+cAXtQSALNGRKcBOW818uy8fWc0AE7yLRKa9b4jiQwCZJZ8/I4kAncg67SIlydZW6sXUQDyJwufAT5jTjsIq7G21mmLvMmJIYCQWqTj+kzm2j6YcTmulfvHNWYEtjGrIaq5Zxgxr739dnmh9XMsQwJDAkMCd5MA/fGtr3+t9CHyydmpoNFrP3+7SNzO4IvCRrJI6EZjSA1BEK2DU0gHTKD76S24AZfoOjqKDkUrHcd6+k4l2ivBQNvSc3Qf0oRM0nN0Lb2lDY4+ulv7fUgEZ6D2bF/DG0J+HISedgxEjeMUMaI74ZQsHZlFdKyIqDaNK+11DfQzWTpZdeu+4lNEU45UMnReMIis6fTTGYfZsEdab4hpZGPc7+XIXNVeDgAOXjhCnhyV8Ed2k4rxZMsmKDyJkKUTkxsMISeY7zvcEtWsa5H9IbRr0K5Zey+sD3apcuy6sls4yaUMw1Rtdhx0XfQJiWZjyEriNFCt+N/++McVKb3bvTjWDQk8bBIYhPRhu2Kjv0US/jDTwrz29juJbB0oz+z2pNRQ4sZ+GGsBnHlsASaPJEXPOOCBBgbICEAGWvYD2ICGkQBc7AdJeXX9BmyNCe3oihRagAywAELAi7HAIrBOG4BImhRDoIyMKVqKKAMVxwSOjgksexTXGJw2lqVNARMvb0U/03rvgiM98AVBjUznDCMpRKpOInYFoJF1T48VDUW0gbwUMPIjGwYOctkmEm8eaL85SdeQDMmUMdVL3nfjrLUhZTegnm16ZEDU1X7a7cDfnQpdxuRucT/wOBu3pF3ODAWgRB8UyBBt1QZjwZyDHAUMiLEMCQwJDAn8IgmY1/g3n/vS7OXX30hxIE7HHVWNV9YI/cJhKnUX2ZAFoxYBwlcZG8EbBKqNVQyRLOfnrKKPcKSTUrgFf+he+EHHduyBWfQhPVx6MpE2BAze0a3e/eZFF2oT2YF/sIeTVJQREdU2xxw9iOAhSsiQc+iFm5Dp6P0HQUB/0SXo65ecKycqkO4YImMK/isSKKLrGolWcj7ajr63n6hwTxPWIFyxHnaTl+sHW2CIBam1P+zqhN81gi2ul/a8c2x7l92jTa9ORu3HkeraOIa2D6QwoM/kDzeR7L/80Q+runEdePwZElgHEhiEdB1cxI14ChT2d7/z7fLUwgBAYr43pAiJMOgfqaDARd4odQCPTEg3kkYKiFELgCQVqlKgAgKA3AKIrfed15KnuIFPi9gBfSBhf+ABKCw8quUhzbE60fXOMNBvnmXA1Meu8MryyAJ/C8NCe6vTeeuHNf4nl2Ep1XjnvegQUAa6UoyRVNeFrJDxBs6KQsQbnPMVCQbKyKXIKePJ/gAfzJv/1f7dAGOYdSMMgEth85trwDHA4eBaM74YAzzQohOi6TzZrqlpCRDmmo803mpkVX/cMwwW14v3333FGHPPKKqlgvNYhgSGBIYEPk4CKsP/7je/OXvhtdcqSir6yKHFCQYPZPcgFnS9caGwAfmES3QU0kM/0XvNCdeqpEvZFSWj5+BP1G70nLGkrdo43UYn0p8WehDO0Zl0Gp1qe+3Sw6VL6eUcTxv6xXmqHUTUZ/rUO11uSjb9sm3GLqb5Xzv9tvp5P/4EI5ai2+dNbrPZI8nmcW7OGS5zHpM/xwBcQs5FR4uY5pq4buRKZogpERvqoz145DfXimOArMne9dWWq+G9EdRgVhwQyD27RHvScjnPZXspzufauLatxoWCfW2KOvfPX/zt31af74fMxjGGBO6XBAYhvV+SHse55xKg2L+dYkcKFShmBEiQO5OOW4BpS+m9UpG4IiPZBmj0dF3jFoFGEZaA0eVEUhkOvM4NdFtqKLBBMoGNNNGKymU/QFT753efgT1PK4ABXtY5HqDjddZH4AakRAeBvu9AXiGmjA1ZQn6yNGvCp4dwiZyWEhGdG5vkVEQe9wZozVfHsEEgRbKBtu/AlxzJCgAjlowq8qtXtrNYB9RXikZIpc61yb3Aky2iTaYWbYmWGtfkupC5a2p7hiDiywnheuqL390vNcl6DEOFImynHYWORDd+/LOf1TYMy7EMCQwJDAl8nARg0O//9m+XI4vTjbMLkVQFvMhhHG+748DkgDNNiqmrd6YIAAAAQABJREFUCjuii+AHzKAXYQIMorNEW5vzrk2nQm9ZisAENZDNIkVZB0Qch0OW3uuEyj4IMAyFTeocyBLxbi/4aPwiZ50+w1hjMbUV3beUPj7U+JSTLALuPGUoPZfiSCeTPi0rSUEhpFCEGF7DDkWNelE862ASGZKf74U5kQgZWzqWdSyyruFRHKe5jq6rayFaLm1XezCPU4A9YH+LY8IsRfdgn/m///z73y9nQm0w/gwJrCMJDEK6ji7mRj0V6VHPPv1USuwfLwKiCMPxU6cKtHkxER7ggVwY4+gzoEB8gK3vAICRAOgBuugkUPebd9X0Nhk/6l8IDE+2hfHQvZ8ApnuiETEEVoTVPJzScSoCm230SUrQxXg83z9+otKzjp86nS48PJ7mX+FeW8oUMHPnDHR5d4E44id9l7dfQQnXiKe65JntXAvCJD8GE9DmNOiLa2JbxgIDSiVJhl7fRkQVwO+MsSdF2DUytlSKFMLpeBwP2hEx5502LorHmscbGWWQuZdE30V13TOI6N+++GLdOz2i3fs03ocEhgSGBO6UAFKBlIqCwg/psdYhoDJuKn0TAcl/OlE6bCdCMAUZoqfoG2M1Re8QGk44Oo5epc845GxvMbxEgzVUIdshNTDOfhZFlSzIjwid3+lT7SNkqrQ7DvyjB5HVYCV4e+iJaJ34qj8hiksZnlFRUxHgwovIFC50rEIcZc/AosKFRE2Rc/ImtxaDbhlB5GxBPMMhqw1EVVvd0S3bypznnAgEqsARbCJz+yOvHAbk7xi+w60/+5vv13HrAOPPkMA6k8AgpOvsgm7U03ky6VG/lTE7Io1IT/PknounM5NcT4BNNkgoYEdkgASlz/vM81zgHSBHSqWWFkHKvgwI4K9N4NEBA0hYCpQmDzRwAlq82cD/UgwFqTYIle0ZIowLY28QnKQYr0uQL8Hc8Yc8eKSB7OPHjpUxRHbK6iOByCAst45B5gu5M5q8I5mML6TTPrYtg4xBkC/Wk6l15ViIvF1rcve79aLS3QgTGWX8uWYIMmPB/KkqCSO37iPrGWuMAR5z56C9n776ahFV98hYhgSGBIYEPk4CyIhsHsMCROKQG9NhmSvbAod6ZIyuoofoHvqOPuTQ0wZ9xklHF4mmdb3mN45SkVb6SiXZ7jTVPjyL4vKxdKtIqGggfUnXal8fevqq42hfxgn82yDLUiLBc9hh2A2iLirpmlmQRdcCfrMpjPPFz8nJOtei4xJsMfd3vWebhnOZZzay1qb12byuKdkjtIbtMAa0pU3XsR8PCf6rHz1fx9CXsQwJrEcJDEK6Hq/qBj0n6VF//6tfnX2YOd7MbYZA8kRKg0I4KXfznAGARjpaUQHKnzFQ5AJKBDAUP0BwgAcCIpIKLIAEMGIoAHO/eVmQJm0BJsDDa43sOK6IKKJqonT7piCE5tqOtffG+RP5L8X4mXMOeFW0FFAnAl2VHGOMWciNsUSeZNydCKKdvP9IP+LoN6m5CCUvM+OsRVzjhZ4i2a55RSXK+dA8zntigGmLocEIQEBdZ/eNaLpCS5wVCmddj6GnYJZ7jBEp/e6vYyBI9xrLkMCQwJDAJ5GAbJ6nHnsslXZPlP6i/05luAnsQHykxdJuRYSiB2X00H90IR1G53Fwgg56E97U2MPoPfv0oQwdk+xLx8EhjkDbIkqmXxFFhWF0nd8QT1Fc+JbhLUvBxA2JTxFujTMlG/KGB0hqObojp8XgBcHAjS5D14bMvexjIXty79V3ybWipvmtHKzZjhPWUCLyh2mippyetoV9nej+8KWXNDmWIYF1LYFBSNf15d14J6d8/re+9tUiJEgEULAAF+DAc6wiL0AB6BaRM4CCxLTxmzydU6pNUkeBCJJjf4BhPI5oqrYLYNKYMaVABWFFbAGK76Zq0SdjXK07eTqpuRuUiJawV/0JQVwK6Z8/HQONMUT+ABjxdI2kjvXUZ7LsxhXgdj2Jkae50qGMycr1Znz1qojliQ7JlfLG4+3aGjNsP4acY5VRESOCYcgAcGykllHBScEQETlQUbImro8xKLLw2NEjNZWD9YzLsQwJDAkMCXwSCSh29OXPPzt7L0NMVHe1GCJgbCiCogAcfIItdI8CRhZRVamdisZxeMIjwwngC51X5AWpCeHsuOcdAsIebdKjHKLahWnaE5mjG5FfwGfqlrGUBJYeP3p0LsupO5o5DWC61OqaQzSytJAvuboGMAnG+GsdDOljeBFW0U74Yn5zqdH2tbge7BBXDC4Z8uM6v/T66/X7+DMksN4lsHnnzp3/zXo/yXF+G0cCCIe03ScffawK6ZQ3OYgsZck4ToAhfRZIAGtjQ5BJi3U8lwiH3wA+QCkQz2dkB0EqMprta/8APGACHAoitRRO+94qQsWoQFoUxVFVNwucGkskEK//PCR0KR7oOfLXpoWJpzjXi2xFH0VAAbbr5vqIXHMgGOtkHdgH8sbnuvYcAq6p3wD8zpBRIF/jd3OdiN93EVXrXA3tMdpcb9fYeFHRUcetqEX64b7wQpyNeWU0uravvPVWbS+CMZYhgSGBIYFfJgHE71yKu332ySeLbIqIIR90oLHzdBd9YqoxelBRNmPkaz1sygHoLN8RJVkdCA6cotBE9OguupADFhnyottk6diHDoRtxs1/cPJkdOisCuolmjfwaeUCzsk2uLK0a9fOZEQb/5sxnvkHlzgxq9ZBZO6aNAdom4fU57pOuS7k7npxnJI7h4LrKi3ab5ZORmGZdGyZXI4NX8YyJLBRJDAI6Ua50hvoPCn5n7//fqW+LGQyaUAPABQpAAKWNm5RdcGANuKZl0WabgP3ViEXaIMMYA/kvXsxGLxLx/FeRkCOYZtKg8qUImdDWhBR3m/rx3JXCRQZTXRyKQbW3NgpxI8xxUiC1yKnroMIppdryaPPi0zuIt2uOTD3HfBvjWHXiGccEdm2CGPas86r7oNszxBQ4IMTwnWU1iu9m0OhPscQFJk4vHCgju0+EcUwyboCGIoeKXSkf+Ma3/X6jpVDAkMCd0gAJpk+6jOPP17OTNkddBGnmmwO+oTegT2IJ0yi+xDXIqvRd9Z7iZD6jcOO/rPQkfShRcS0skQyTp9j1mrOOPqTHo3+XMrLxm2H2mv86RKILOeIO3k2jGl4Dy92TBFrjlIOStjvGsEwY31dH3gj60Zk1fXs43Rb4SmR8GCVrK1sez7RcNuejhP7rdgwYxkS2EgSGIR0I13tDXauJwL4gNmcpJWem888xO1zhBGAqfSbGAHNiwwujE1spBTBUF1XGqelSGv2QZZsx2AowwF5mlJHlfD3Wbn8pHIuxVAYIF/S+/g/QJ9H+FpkKf3MuCbA3gk+wknuAL4IZlKmfGYUlBEQA8D14VBgHAB4Bp5KllfNP5vDM9ikxTmOcVTuDalrDASGIINCuhUyymHBCFTYwjujwbjjY4mOSmlj5Ln+xmQ9/djjrcBRDLyxDAkMCQwJfBIJIJZqChiy0CKdlyrKBlPakARZJJmmLP+MrffOWeY3eq+m1IpiowftT0eKtvpOl5lai85rhKiRJQ5UOs24VbrWPMt07yfp70bfBukPViwlMjpH/JFT2EKOCGhl7oSEwqD2fUvJH1a4ZnBGFpVsqi0ZSmLpjlPXTNaNNswQMIaBbPS7bWOe/yCkG/O6b5izlh7FC/z4saMVaZOqCUh4qIEEslFez4AKQiMdFzoDdL/lR9yzRcCQogA68BBZ9W5bnlDjQXiqRc4cExnOMoCeFH6FRTQU6IdMVtEj16i5CZL2FEdBjwAAfYQS6QT+jLhK6c367THKXFMGgPZcBUDvd8SzOR9uJZ13WxHNtk0bRyrdl5GxJ+lYZfSl3f2psCuaIE1LO1KJVesV1Wjl+s1Ba7xyK3TxK5zu2HRIYEhgA0ugZ/Oo2KoC+WINKzGswPQuV6eoaRyg0WEqkXOWIbKwp8bMRz/RfXShCJtUUbhVTjS6Meu6M48+tC+HXJxqS9FpA59+9XtvzqGt4jtHdTlN47yES/BC3Qp44vr47hr5zdAhjgDXquyKHJeNAZO0wclpPSKq3sRYhgQ2ogQGId2IV32DnTPyeebc+dmxw4dq/GiBQggkgEZmKkoacEE4kFIAjoeqWCj9s4inFVk6wCMijIDyQCca5z1TuNQ0LgPof70bjMc+RtNSjKsSehXgEC0to6ul2bpArgtQt7iGAN11EFUVZXXdLVtCZKWquXbWIbg809o1v16arX3dC+WoqHtiewyKVKS0f+4BTg1Tv5y9cL7uGVWcFRQxdYOUbNPYvPHOO2XwOeZYhgSGBIYEPqkEODBl1hw+sFAZPIrnGcsuakavITayN0Q7ZYpwrNFXSBEcuhGiSpFV9k7eRe1gmYgoEupFT8E+Fd7p2E/at7HdRyUgWpprsJTrMXd9yJps1R6AS35Xq8J6EVHyB2cdr7zDLO+wxcV454MPavjHR4821gwJbAwJDEK6Ma7zhj9LgCAV5rGjR8vTbNwfL7RIJ1BAVmyjYEGPdnFL8ziLwjEGbMML7bv0KQZDcaYYANqTohvSNID+3txt5YluXuc2bQ6g79MauBYMAcJGQqXUilJ3T3UVs8qPrpXrK5WNA4LR4JoqLGFb311DqdaKSSCz0t8UA2FUiIT2qr0MP04LkQzTJjg47/YHJ07WFDDun7EMCQwJDAn8XSSAfCKQhgWIsqnGKt3TEAV6rCqOR8dxpjW92IYrID1FSkuXZcx99Bad5p1+Q15l7dBtppXJMjDq73KB7tgHqQ+ZXMowoDknJ4cprIEDMMY1YUuQe3eeErxtOEhl+bjOnAhvZ7yoirtjGRLYyBIYhHQjX/0Ndu4A493jKbUfQmFKEXOuITGAw5hCgF+e5uC1saPAo5A7fxAPIMMrjRR5tyg+IAUK2c1Sm/swlnsjAYZXDKtcoqW5iCYSioxuznsuR0Dd2Kp2faTbIpkVBQ1xdI0YAsioa2xOWvtaJ9JQnunsjMxaL92K4adokSJHFscz7cLupMv5jbGh6Ihrvn/P3tlfP//8GO9Tkhp/hgSGBH5dCSCfCq4dOXiwyCS9RHeJvMnUyJeGQ6Wvmr6j5xBP20nphVN0ne051ZAeGSd5H/j0616gj+5fjlNDOXoKr7G7uRTlFDAEqDlSV+wH26oSX5HuZOG88c675Sz9aNNjzZDAxpLAIKQb63qPs40EVDcE4vt27ykvss9AgieZNxOwW3zmafayDrC0peG6down4X0ey6cngch+vphKkLlGc17liowikjG4ENBGJl27pSKjgN41dd1ET71EOV1Phpt0a9eyXe9WCATxdY0Vm3D5EU+GBdLKGbGQqsmLKfnPGWH5MA6IH7zwQm336Z35aHlIYEhgo0mA7jkZR+cjhw8XLtFBomrIpXoFm6P3RN5ETyvLgw5ESvNOh1nXhxlYl0rvmUHm1iCjn+KNJPuGI8Ci1sHmZFS5FtKwVzuzYZeX32DOy2++We+fYtdG00MCD40EBiF9aC7V6Oi9lEBPYTLPJGAQJUNcEMwCkgm+a9xiPkvRVXm1lhAWZFT6E+/zWO6LBOYKcSTVac554IpIb0MsGWC+KzyEjEqvNlAU8PNEi2yqttvJax+HxfBjyIm8tnlHMwdp0nWlcZv4XFQ0F52ru07QtZam/YOfvlDX/76c9TjIkMCQwIaTAOeZAjcHgk/0FVyS5imLg15DRlXg9Y50crRxzHmns8rBls8pkBMFFuU4lk9dAmQejKmCfBwCHKKuiewr73CIY8FnWPTTV18tJ+mn3rFxgCGBh0QCg5A+JBdqdPPeS0Bqp5dxgkADiREBM0cbooOEQvLGSfIp/6XgKECRwhDDs3nvL8kvaxEpLVDvYN+j2KIHQJ4DwdLBf0einNLYLiY9G/m0fkdSchl4xgNXsaOsQ0LxTpUsOStMG8NBgagiwIqKuO7Pv/yzcd1/2VUavw8JDAncEwlwfNJDHGXGhLZ00DZWkYOU3utTVdF9jZS2yq7RV4OM3pOr8MkbEYl2TWCG6wanOA3YE7CHM4Ej9CevvPLJGx1bDglsEAn0HMQNcrrjNIcEbpcAYvLqz98uLzOwv5axg20MobkrG7kRMa10qJBRlQp5nZGfsTwYCbyXccCuG480oAfwvXhEctPKCOiElTHA6dDnHbU9gsrLwNngu7E/iK1ttVsRiKy3380QUW09/7OfzX4+Jip/MBd8HHVIYI1IgL6438tb771XKbxIjrHtPTUUAdUf8yEjonQfMmToAudZFipuLPdZAqLUUq7L6TldgiKmhSmXKzJ6n7s0Djck8FBI4P5r14dCLKOTG0kC0jylz1xcvFSeaKAuTQr4t/TdhusZi2Ps4BiPswZuDulsAB8ZRSYZYRUd5ZEO8DMALAod+eQ6lgFXHuukX1uXl+gCJ4T0N+lUFtvyZhtjyrD4yx/+cKRml2TGnyGBjSsBBdRwvGef/VIildvvqyAQTI44ZJQztDncFDNqn+lB6+i4D06evK99Gwf7qARgkul1zi+2+hKujUJ4L7/x5kc3HmuGBIYESgIjZXfcCEMCkwSAPiJqShDjBWusYQAfOVFpFcBIyRkCWxsSQEhN3SOiySuNSIoU1BjSdNF6UQXGGnLpOoqCW6zLDqnAu2N5UnLFjjghGBPSezkpzmau0bEMCQwJDAns2rVr9pWv/NbsypXLs2ee+ULpiMXFC6V37od06CxDFg7u31+6jBONI66TUe9TZPR+dGcc45dIIHg0v3L12lIwac7p/XbmGR3LkMCQwC+WwIiQ/mLZjF82oASkRyGfFSELiCCn5hg9e/6CtN1BRtfYPfHe8RNLpjhAQhFQpNR4T+nWiCXSaawVorp6sV2LqBo33CryStlFXI0P/v5PftJI6+qdxuchgSGBDSmB7XFcIRX0hgwM6bGipN/4xrdmjzzyeGRyf6BBH158/fWaJsQwBMMW6DZZPVMBow15fdbqSXNgGwdsurmxDAkMCXy8BEaE9OPlM37dgBK4lOk9RNx61V1zwykoMZY1KYH5hcVLS4lm15QwogR9nBeiuS3TJMSGrIq8DDfVD5FX6VOip+YoVbIfOU1W1eyl19+oKMSaPNPRqSGBIYEHIoE9mXP4i1/48uxqnF9S/emWG6nEvSVTfFAwTz39uZpa6vLlS/elfyfPnKnhJVJBZYqktoFu3R9WfF/OcBxkSGBIYKNJoA2a2mhnPc53SOCXSADII6EIi+I2Y1nTEpgb25tqyXNzy4oabDGeKk6Fm0lpY7Qhm7575eflqKizEhW9kOt94o0qBLKmT3R0bkhgSOD+SkB0lA4x/6c02V27dod8Xs06cxaHB066ZmHh0OyJJz4ze/PNV2bnz5/91Dspm8e0MOfbPNiDjH7qEh8HGBIYEvg0JXB7HtuneaTR9pDAQyYB6VEiaWNZ+xKIYTjPdD1L0m0V/mCd1fx8KWok/XrTphQpyvW8lfTd7dM4Ut85Ht6MYTfGXq39azx6OCTwICSgmNEjxx6vaaI4tCpVNsTUHMeNmLY5qpFWwwOOHHlk9txz3yji+mn31xj3GnrwaR9otD8kMCQwJPApS2BESD9lAY/mhwSGBO6PBEIw57t27qx0a4xU6q4iRdv3bE9ktFWjVAQEXeVsWEwqNgI7liGBIYEhgbtJQErujsxNvC2ZMooZtUjp5hpD6nNP272RLAvLrWk6ML89+uiTte7tt1+vdN76Mv4MCQwJDAkMCdxVAiNCelexjJVDAkMCD6MEziVigIgaK2p6BGNKpeTujFFpUfxDpUoVDwcZfRiv8OjzkMD9k8Du3Xtn+/cvzKTtGj/axoxm2Gi60CKiPiUbIw4v40q9G1OKmErn3RpC+8QTz8yefPKZytKojcefIYEhgSGBIYGPSGAQ0o+IZKwYEhgSeJglkPn6lkQ/byRdV4rd1RDS7SlghKCeOX8uhYteb2O/HuaTHH0fEhgS+NQlkEBnEc9rCp+FbG5PpPTqtSs1JGB5DGl6Qc8goN45xKTRSt/t1b5FWZ966pnZsWOPfep9HgcYEhgSGBJ4GCUwUnYfxqu2DvrMu7x37/4C+3PnzqyDMxqnsIYkME+kdClVkueKfqiSbDzpux9+uIa6OLoyJDAksJYlcGD/wdnCwuHZzp27KmX3YuYcvZYMC6Rza6Z8MU4d6exLFTjKl0ZKFVNr/n7bGCZgPcwzXYz5S0+fPtl3He9DAkMCQwIbXgKDkG74W+DBCGD/voXZkaOPJAVqy8wk4x988M7s+PEPAtpJeRrLkMCvKQHjSU0gLyq6mCqUozjVrynQsfuQwAaTwLXrVyva6bSvxKm1OYXRkNMLF87FwaVY2paqvKto2rVrrZq3XN6KjmafhmVby+mKvSKsleYbYioNePeuPbOzccZqbyxDAkMCQwIbXQKDkG70O+ABnf+Vq5erMIRS+kB6z559s6NHHp1dXDw/++D9dxPVGtVtH9ClWTeHzVQw6+ZcxokMCQwJ3D8JSLHduXN3YVNFNC9eqPRbRYwQS2NKb966kfHp12pcKQxrc5PeqMipnoqIVmT0ZqvMa5sipPlN1e+bN6/MDhwQhT00O3Hiw9nlgXn37wKPIw0JDAmsOQmMMaRr7pKs/w4Bc57moHMBu9L5fdmyeevsyYy1+fKXf3N28OCRvnq8DwkMCQwJDAkMCdwXCSCkhw8fnZnyRSEjKf/eRUXDSOv7rRBNRYu8VO3uVXg3JWIqnbcI6Kak6i7dbONK04bxpUVeQ0iNL63iayG5SOlTT32ujndfTnAcZEhgSGBIYI1JYBDSNXZBNkJ3kNGa1y2ElBeZ15nHeHPSd80TyQPN2wykv/jFr8wef/zpAPXWjSCacY5DAkMCQwJDAg9YAhcunC/SiUBymBZ5DD4plKauLnyCVdJzVdbdFOKJvMIu1XiRTphmHGkbP3qztl3KtFMwLz/Ubytkd0uOd6OcsE888Zkirg9YBOPwQwJDAkMC91UCg5DeV3GPg5GAIkaAXaS0gL1SmvqYm4B9gBxoL+Xlfdeu3bOnn3p29oUvfDlFIfYNIQ4JDAkMCQwJDAl8KhJQeOixx9ocojt37GoEMkdCNm8mEopgVuptvjfiuUnQNNu1uY6RTOsRWdsbloKIIrdXp2wgqb69Cq/120JmW/pvG8JyKNlBx46OiryfygUejQ4JDAmsSQkMQromL8v67ZR53aTiIprNgzwv77NxOptUJQyyV5Q0v8t7ausyz1sILNA+fPjY7NnP/cbs6NFHC/TXr6TGmQ0JDAkMCQwJ3G8JIJZqGiCVop+IIlIpAnozuBSEqnlGe78Q1LZM74hqSGaPosKuy1cuVWpvFUMKYb2aGgrw78rlS0Vmtet4nLRSf5HaHTt3VpaQ445lSGBIYEhgvUtgENL1foXX2PnxBj/6yOMFvsbP1PjRAHh5n1d5mH33aulNOYmAtVSpW/E0X0+K7759BzLm5rOzp5/+XIH4GjvN0Z0hgSGBIYEhgYdMAkjh4uLFimyqAM9RikTWK9FOWTvIonGiHaOQVlTUd/u3YSeNYBpbuiXDTXr0FNnctg3BDPlM2yKmHK2mgeF8NXxFGzsyrEU/4F8IMegby5DAkMCQwLqWwCCk6/ryrr2TU+IeoawxowH1G9evF9lEVBWJMCYHCNc4nXiQN21ut6j0pluKQiCmE/BLh1IJ0WTjn/3sF6ti4do749GjIYEhgSGBIYGHQQLSdR999IkilTAKEYVHnKcIKrIJdxBTxFEUdHmZcClv2a+l717P1DGiq8gmYqoAku+IZ33Puu07dtQxtqeQ0mKq+Wrz2rWMQ03D2snSQ7DLhxofhgSGBIYE1psExrQv6+2KruHz2b17T9Kethex3BxgViiieZdrVE6Bve4H50M6p7L5E/AXYY0xwAhASBkLNuxl+K/G89wmMd+dFpYyp+n7HczXsERG14YEhgSGBIYE1ooERDIPHTq6nDYLmSoSWliVYSRZREcV4FsyRjSEUUqtdUCrcCnbioz6vLR0vdVECHZpx35SgBXpu5x0XRk/3tuQlRwtjtkdGbd65szJOtbFi+f5ZgchLWmMP0MCQwLrWQIjQrqer+4aOzeeYSm2oqA8xZYWDUVN8y/k05Kf2xIYLqoa4gn4W4GIRE0D2hbkVMovcEdsy4Odd17uR5IW/JnPPJuCSHtaW+PvkMCQwJDAkMCQwMdI4GIilK3qexsDKpvHotAe3EEqZerAIvjTX7ZRqM82vXKuSKff0Uk4Jl3X79Jzt23bUcR0Z8aJIqT2OXf+bE2HdsV4U+NVR3SUWMcyJDAksEEkMCKkG+RCr4XTVEqfdxhII49AulcfrM8hpdhoRUABuShpPMtb5q1qIfIqsuqdJxuIX0uJfXPGSYkqD3RIL8DXHqA3l9y1a/vruKdOnVgLYhh9GBIYEhgSGBKYJMCB6AUTEhGsKuwTGbuvMpLBw2nq2IgjTLl+41r1QeQSNll8ru/5jJxeuxZM8y+YBYO8pPpu3hRcyracpnBLISPFkuASh+ylbGdaGNFRTtWOi4a1ILN5d8AA4ViGBIYEhgTWvwQGIV3/13hNnCHAhecV5Yy3GfgilSKjvM8NzFtXIbDvliKZjIHgskqE2zKm1G/XM/aUAeN3i/E4ly4tVsEIxSD271+YXTl7ujzNvh84cKiMDeD/wQfvlhe8dhx/hgSGBIYEhgQemASQtl2pBcB5+JWvfjPFfnbMnv/x92fHP3xvdv7C2RCz80VUP+0Oikp+5ulnZxcVGKp024wXDUZZoFFDmvq6nM0TMGq/5A2RFQVFJm/eaDhla+sQ0T68BOmtqrs5HvJpaplzwapdIcQwTF2ES5cu2rWBoE9jGRIYEhgSWOcSGIR0nV/gtXJ6pnsxt5qIJ29ylc+fyGQR1Qn4C+AD8uWBnkgp44DRwutcn3muE2lVIt/YnatXW+EInmfzlJqYnNda9ULALoJ6NoDfS+rv2bO3vq8V2Yx+DAkMCQwJbFQJ0NXf+vbvz45kSq9XX3tx9vbbb5behhNf+MJXZp/LNF+XLy/OXn75J7Mzp0/OLiSKev78mdLx91Jm0nXhiqUcpgEm2TgWw0wU1uuL791pWpk7lZ6bLJ1svymOUkT2UvrMEWs8KaerBUbtDB4hvSrFw6pt27fXtvinbW/cuJzzOzuio13Y431IYEhgQ0hgENINcZkf/EnyHvMAA2SFHbh+u/dZpHQlRatNPi76iYSKgPq9EdIQWeCe34zXYSDwNvNAHziwUODvM0/34uL5ioryPO9JOpj1oqNnzpzK50sD7B/8LTF6MCQwJDAkEGJ5ZXb+3JnZCz/929liHIgIngyXr37lm+VMfO31l5PV8k5hh4q0z37+uaqEa90777xVKb5SfUPiljNmflWxwhf+zxvBKWm0qrlLx+0kFNHs2Tg1hjQIVqm7gCwYBYc6ifUZfsG0Hdt35vdLRaLhDwfp1kz7sunypsIkztJzOfedNc3L+RnHre851oiO/qoXcWw/JDAk8FBLYBDSh/ryPTydZzDw/lp4jZHGa5M32lgdoF4B0VDFm7fM+9ZSpURFL4dMKrvv9ypiFEAH/uVdTtXe6xmjI0raiOjF2cGDh+u7FKltiaI6tvFBoqS7d+/mbR9g//DcOqOnQwJDAutUAvQ43Sz6Se/v3r1v9qUvfW12OJVu33v/7dmPk7orcsl5aZzpFz7/5czRuXP25puvzE6e+LBqCBwIeX3uuW/MvP/87TdmJ09+OLuYNF/pvhygn2SRUrs/EUvOT31CHntqrf15MPtUL+KkbagJh+lsdj0YtXUb56hU3TYljH1hmP22pq3CqrxfSX8Qzu0hqnAJVnGWyvypmgiFZVey11iGBIYEhgQ2lgQGId1Y1/uBnK2JwKXL8iy3+dxahd3ucZZ2W2Dc06XiffYbw8A7UmoS8Vmyqa6lyASSCfzNYbpl1+6KmKpMKAUKYVXUaEc86RfOn5stBPDNBdeKR7QxOw9ECOOgQwJDAkMCQwK3SUBk0DQnezLU4ktf+nqmXDmSsaPvz77//X9TEU9OS47Gz6Y6u/lBEcyfJpJqXClc2B0iqXK7SOM7SfUVJeVtVGX9q1/7e8GbzUVsOSMRQGSwOztXd4RT9MDCoSKHsEgWjkhtxygRT+tnSbG1WL85UVWRVdu1aV42za6mT6K8zotDFC7BvhvBrfqcflaUtJyyW8tJqu8XQp4PHDg4+zDjZkNQ8djhNC1Jjz9DAkMCG0UCg5BulCv9AM/T1CvHjj1WwD2fbSqgroJGE+lEPMMYi4D6jDwG8avKYQP8Vrlw85aQ0JvXy9vMOBAVPR/SCdAZGcYiAf9Li4s13YuJxhWNcHwGibZj0Aywf4D3wjj0kMCQwJBAlwCip5jR7//eP5698+5bs7/+qz9NZPNcORY5Lx999MkinOoBvJGo6KlTxyvKSImbL/Sx/A4j3nrz1Zo2BQksvAkhhQUIHpwQ8Xzyyc/Ovv61Q5WZI7q6umASEongIpqtcu7Vwh/95PyEHcaN9sUxRTUbXiVKGuIsPVdkVB9g2IQ3dezCqytXZvsztISDFC5Jz/WuffNznzt3tvqcInyDjHZBj/chgSGBDSOBQUg3zKV+cCcK5BuBvBLwNeXL1jIirgag/VZpTnlv4I6ctiISIqfzqlbYqh1u3mRc6eYC9B0xNqT+SoWaz3cVqPOOL8TLbYyOz9KwLkzjiqSFiZxmGWD/4G6FceQhgSGBIYFlCSBiRw4/MvuzP/9XpZ979fRHH3li9plnPh9yuTvjRN+cffD+u4k8miM02TLR/Y899mTSeo8ZfjH7+c9fqyJBfrP9kSOPVEbNyRMfFOFDNDktjUuFPQivlNs9IYS2hRMya0RdYRD8EJWVgWPh7LweZ6dK7jW8ZFPzaUoj9l3xJf9FVUVkOVtN8YIEI6ciort37a3oK8eo4y1KQ576xakKt0xLdunSheEwXb47xochgSGBjSSBQUg30tV+QOcKkHuaVIF3yGdFSNOfYocxAqoKYb5AYx5qaVBIp/UKSzAOpEFtvgHwb5WXG+BrtwA/xgXw53E21ujcuSv1eWcMFOOJ9sUYSUGjAfYP6B4Yhx0SGBIYErhTAnDgvfffKTxAND/z9NMVEZXd8m4ipi+99HyRNxFI0UeZNlJ3RSPfe+/ns1OnT1QaL8emIRvGntL5xpFyStpPpFXUFMlU+VbaLwxxPJiCVMIOfUFIe5RURXiLaCiymffymto340kDS7fmsnbmN40lvbWUDJ25Ps7TVtpbSiry3DHjNF2S2ZPpXOaXMgWZPiG9IadLpiNDltPX1Eiay/IpSLxTTuP7kMCQwJDAepfAIKTr/QqvgfMDuAX26YuopyhnY6L81LJzWwRUxLOipFkHlRkG84D0LPWNeKOvB+h5uJHQqykEYdyRfRSFqJSpjEVCTo3VqehoyCmPO+OGl902YxkSGBIYEhgSWBsSoJ8VE/rs5744O3r00dL5b7zxs0q1LfIWnd/Hdz7x+GdqnOW5TPnyyisvVOVaOh1hVBxICu/W4MPxREbPJ/31aqKeflPdfU9eN7KtAknIp8VvLePmWjk84Q1CWQX08ttMDb4AFGIqmpklpLHtE+Qq3yo8Epm9fv3m/GpwZ3emFNtyc2u+L80VMGpR0htz84se2H+wju2zc07K7hxpViFeRBXRHcuQwJDAkMBGlcAgpBv1yt+n8+aBNtF3I5flSW7gHk+0pf9tRNT40Xios972vaAFAgqspecad8MAEEW9HGDfkfZblHSxIqO83gCfYSFNVyEL3nEE9cyZk+1wdeTxZ0hgSGBIYEjgQUqATv/d3/tHsxMhkc8///0qOsShaBjHpujwhYXDsyef+EyltHI8vvrqixkreiYOySvl5ORsRETNcW0qsA8yZlSWjBRcRBZeSNU1Rcti1jseLEEkveCMFwypZdX3cpcGMSotN21ZEFLrOVihl/2s27w582RnfU85RmARYmNkt2eeUcc0fypM8vlciOhCoqOcscaOKmiUaWxGBk9JefwZEhgS2IgSGIR0I171+3jOUqukJQFwwM0IkP7ECLDU3wA0AwQZbR7oVrnQNn2dIhG3AvI17UuiotrzeXO83irwFuDH4GB8+MwTvjcklEGClPbj3cdTH4caEhgSGBIYEvgFEpDOirD92Z/9y3IuInMImirqx44+Nnv88acrDdfYfxFRRBQphRUw5NDC0RREOlZRSTpedV7jTLUDR/ZkChlFhGDOxWCDVN2OM44remm5liJDN4MZFjgBP8ot2jHqVgirNJ2glbbKeToRVBFaBZeK0C7drP4Zm2o77SiWtG/vgRwrv12+XOfJSes8z547XVPVOKZxsMukuHoy/gwJDAkMCWwsCQxCurGu930/W97kAvApFiqyeWMuZUqwcgpY5o0HOygdQyJjcpIr1QyDkM54tBkuwB2ItyhpGw9knWio6KfIqO+KRkiNYjzwSO9JCpXfTp08PrzP9/3qjwMOCQwJDAncXQIciYdSYZfOlmp7YOHg7KlUwjVVV0u9fX/245/8f+VQpPdbNHJz1QM4EiLK0Sn99v3MVypF90rSXhtZ3VrOyE5GFRC6GFKLPMKjbVu2FRlVn8D+Mm5gixzcRjYbLjWXaUvZDWMNpLThJsiuOUlV3YU5t7ZI9W3FjLRv3mykE9aJlMIhdQ1si1DnILNdyRpCVs+cPbW0f9/C/MqeK5HDqQkQ7y6vsXZIYEhgSGA9S2AQ0nV8dXmARREf5CJ1VjSzpTk1EJ8HmGucTjrGCADUS0spKhGvs2IPyOncPhmmcyOgHj5agD+N40k1xlQtTOoTzzTi2gsZGatqCjeeZwUutK6gEUPF+NOxDAkMCQwJDAmsEQmEmNH9v/mNb1W1W3hlTOVbb71meEVFEw3bsI2IprRWVXGbw3E2O3nqw9np09kukc8im8ECKbwyY/ZnW8SR/u8pvL2dLcENTkqL2gRwBY4go8hiYKOW1Y5UK2yDFBf5DEG9dfNafbd+164Q0PTTC8lV48D5IK0wWASXc9S2xpbaTvZOor/zkNJqsx11/B0SGBIYEtiYEhiEdJ1ed2C8Y8eO2X/6n/yXs3ffe6uKRABm4M3bDCSvZX62yxmv4/untdRYm7iagbvop375zBAA/p2o5mO+51uAum0H3G+UsSAKyuPc0qCM07mauUZDSgPwAB/IM2QYIjtjGDjHVNQNKd1fhY/qWLPFycz4tM50tDskMCQwJDAk8EklsDPk8dnP/UYRtddff7l0tiq45pM2PAM+II6IqBReRezgw8mTx1Nd93hlx8Ax5A5JlKJrG9FIJPPcuTNTdDUpuUUkW5ouLLE9/JPee0v0M0uLkN7Re/wUTuUY/iUEm323x2kaPIsDdSmFd28ioGlLVNdx5vNUfs95iLAaPypb50rGvJreBUZpr9KH05a+KsR39uyZOw48vg4JDAkMCWwsCQxCuk6vt7GbW5Oa9Gd//i+LfAJKxE1kcm/SnZTHr/E3iTQibOZAO3H8/Uovuo20BvB9/7tGWkVIeZwbyZQS1YpDNPCvv0VS9c2LMbItUdIqJJFrA7xN+XJlfqVIadsu074wRALwKigCfEaJyCivsyJGiC+SmtL7RWTX6WUepzUkMCQwJPBQSkDWCtL4b//m/y0d3xyHIXGJLO5FQjPFi5oAMl84JU3zgrhdQVqnyCl8QDCT9ppUXmM1t1da7Nk4JKXEwgnYBw+QW05a04lZ16OZMEU7tmkO05aSa51/lkrfnTAK2W0pui0i6ndOXdsbXiL91+tS0oSXlna3SGnwSbquaCgSKsMHrp4+fWIpGDlXZXcsQwJDAkMCG1kCg5Cu06tvehURxMuXlJ7fVoCtrL7y+CrTAmFjd16LZ7rSWhMpvcZbHHK6KcC6L6BpbGb3OANgVW1PJ5VKwSBpR1evXSnPMNA3QTlv8+rFPl6OZTxNZhstoMZQa/62coKvAv1sB/oVmPD70lKqIGabpU0I6JXal3HSSGnIa7zSor5IKKOEQaAAhv5Yh/wC/bw0PCKkqy/O+DwkMCQwJPAAJYAQIqQKFNHr0mwfyxyju4M7SCMCp/quuUZFEUUhpcPaD3G0j6EZe/fsjxNyd0jmjRpL2osfSePt2+6MYxIhNXYTfti2fp8ctSKehor0LJ6lYImoaJHSfO7zYdvXmFPTjVl3a3NIKXxLv2ANHEKKMVhwZniJY+3a2ZykRUqDobvjNPW6dPnSXHoygjyWIYEhgSGBjSyBQUjX6dUvb21SiP7wD/9pATFg7gBvjI4iD7y6QLlHT7sXuUA+qU+7d+0tQlkgmrE6yN6V7MMoQHhN56KwhLGcJiPvKUva7e0XMkfGm1IWv8aGBtwtN25IbUq01NcCb5wRiPM6Z9zoloy/2ZyIbn50Lkvpp+iphWHRDQXHSjGI6gujxDlYF89zeaEZCOfOnR5ktCQ3/gwJDAkMCawNCcCT//A/+GdFRJE7xM0UKB+kSNGZOEsRPEXtEMAePTWWlLPRPJ4ijUgpQnhZgaBERUPwpqhoxoUG82ToqNq7JQSyts06kVlTsng3x6hhI5vmKaYXnPGqJW2uxivbtOyehke20Zdan8+cuKK2IrmOA6OyQzUFPzlrZe54OdfFbKe2gXNBTGHWWIYEhgSGBDayBAYhXadXHxE7eOhIKhC+U2lCxlwCPQTUfG3AGgUEqrzHCi4gl70qLXAVEVU4YnnfAHgnryKfQFeKEq8zLzfSe+Pm9QB9I46MAQQTSbxzAeBB/GYEhJWWIcDTnJdKiVfyzgutsiGvtH7a5nqR0nmBvnZ5tGtMafrq3Jz31q37inwzDkSBs79THaT0zoswvg8JDAkMCTwgCcASr1dfydyiiZSafxRRbPNMZ67pqG06H8bs3oGELiSF90AjdcED+KRY0NnsW+S19m0RVMq+Fy+SAsxhaoEtXsvR0WCWpTlC8/vNBhNLmeqlOVGDTbeyjtM0//SncO76jSK5hsCAFwCzbb6t+g5nbSc9GE7CLuviGM26XYVdCHKPlm7aNMywugjjz5DAkMCGlsDQhOv08gNA6UIvvvSjAlCgCWo3J2rKg4uEGp+jxP6uInHbyhgA8h8aS3ohZfTj2RWV7GlS2uhRVGS0A30gu0gukL929VrAPkZBpUI1sC+0bji/DOwKRBShDCm9NW8l9wG9BWHexHOd44m+bpk3Mto5pfE20nKldXXQR34d98KF80s5v7kxOvp4K4bFiJCWWMefIYEhgSGBNSMBEc4f/OAvK/rZdT9MQOB2hICaz9MQk70pTrc9NRGQPENFjA3laBRhbU5WjtLmZHVyit/BBhXbOSi3bwsOBE84M1t0dCXqCmPS8GqZZNWS8nqFPxyeihTBK320vdeNVIXXluEwNTdpMHDiskWy4wxdikN1XjiZvrTz2lq41RynuyvdWK0HKcZjGRIYEhgS2OgSGIR0nd4BNdVKgJNHFigD/4WM0ZHWujUeY55dRNN40EZAz6VUfau+C2gBfAfg8lIH5BvA714moq3q7c0yCrSFJJpkvDzcE3jbt8Um0dYsvmY6F6DeSen8VopIZFLxMgxCIKVG8WI7Pg96A/1+qzIItlbfjR/derWV8Jc+vGXLtaT6bpmL7p46dbzG8vBQj2VIYEhgSGBIYG1JoByShn4Ek6Stmjd0394DqXGQgnxxREIMdQqk8R7/8P0ioo2ANidpz9aBJdqSmlsEMA7X7nSFN7Dp+tXgU3Chp88Wgc1+IpubDR2xYb2gkM/5LfijuJ4Xp6ljOGb9Br9u3Vi6cuXm3FAV/Z3NZfRk3lL7bdo0dyyRW5V2EWpFBm0LX9VcCKGO83THHF6OZUhgSGBIYKNLoFv5G10O6/L8v/e9Pw7xTGGgeIdFHS+GwJ1L5dlEEatIBALJawywAS0g5Um2AGVpuCKU25N6hHwCe0BfxRyyXUVQE4k1FkZbquGaNxSQWwC4/bzzNCOHRRCBdvbXL8dpxLcBfqVpBeyN36k+pT39A/jAfFu83Zs3ZQzr1KbfGCzSexWT8JKq5bg80QyPsQwJDAkMCQwJrC0JKFT0ve/+cRhgc1DCEJXSkU+puJeNvYRR0fHNydkwCgG1wAC4IFOH3q/PNX7TVCvSb28WLpkTFJFFSFs6cKs4XxgHk4JzDU821ZhTn8thmv0t6iXI2JH147dbN1vqbraZd8etPjq+VFzbwyXbeoeTho/oo2gtDBUFTvbRfEo1dkJY8FiGBIYEhgQ2rAQGIV2nl1766osv/mgaWxMgBsYhZzWGBvHMCyHMnyaBGAWipry4AL5AE9jz7iKBxsrkn/0ZDsb6APoC+SKiiWgGsBvRlB7cyug7Tvco1zidbKOd7tWu+dwYBVlnW8bJpqlPZRRUXxkQrRgFIBeplXps/rcbN7YG3L1frxSuipqm38Bf1HR4n9fpDT5Oa0hgSOChlUCrL7A0+9GP/iZkccKR6PDCp2CESut0PgzwKlxIpJKjkfORc5SO37ZV9DFkNJ+LLKYgHuzjaEUERVg5JuFAJ4/Gh/rXsne6QzRr6pjLZLNkK1uHA1al91qyTSes+mXp0dZyfmYdbBIR3bLlxoRPyejRp5zf5cuns//mOofqf7D15s3T1c74MyQwJDAksJElMF9YWJgYyUYWw/o7dwWKjmS+0QL0gG9fgHBFKgOKwL28tiKfSZMC7n1MDC8vly3DQNGg69dUJkw0NCDfxuJ0kOe1vt1z7Vg1j6hS+v7lmPWKx1gxI71pYA78W2EjZFYlxUaUQ07vMEp4u5FOjmSktL1CRhHlGAGMAdFZfanPZQA0I8R8pGMZEhgSGBIYElgbEoA7R48+Esdnm4Jsda8QvpZNE+fj5FzkIG0kNM7G4JTfOzHkaC1MCvEUVVWZFwm9PpHQnv3TCW4/VmXr5EvHIBilTZgFUzhX+/esKlK7GutWO2DhVo/itv7DqJDnvBRH0ofqR703rNJHFeKzHiSOCGm/MON9SGBIYENKYERI1+llX1w8P/vsZ7/QUm6nVFsRQ+m3DSQboANPJe8BLYDsEc+a4oWHucC9RSARvQ6qALhHQ4v0Tt7iFfIJX/MKyHsrxM02RUbzS9uH1zmgH1JqO+nFNxWQSF8s0nbrOP17tmnAH3Icr7pDNsNFKnAjqQwYr5tbM1dcDBKVDccyJDAkMCQwJLB2JAB3zp8/N3v0kScr40VxH7UOvDhFNwcLELkaw4kk5iXLx1zZhVPJ0OEc9VoZLtIzgBqGNOwI5kyZQMusLzgi6mlBPlcvcKkyeqzMZySziGr2aVipeFFznBbWwcG8LCK3t26ZvqalCkvHtU0n18uO1Gy3Nfs4T+cSh+ntnajWxp8hgSGBIYGNJYFBSNfp9UbQ/sE/+KNKQwKQgE/KEIJZY2oC6Ncy0Tgwr0JEAfqKMCKdIYC3bgLaBrzGdXbv8mry2VhmE2CBdYwG6UiioIAYyWzeZx9bJNTW0Fc7q9ut7WMLAO2lTPWiz1KobiVVynegX9+ti3f81lJIZ7ZpRNo4nSv5nuq8OU4ZMukHQyD7Ldshrafj75DAkMCQwJDAg5QAp6H5rn/3d/+wdLvsl0q1DU6pSXDp8sUVfCqM6hk5k1N0GaOCB1J74cKEU3CpuT5zhlkHh7w2Fz41jCoyCZ/8q99bVo/tCp9q15Yy3Aln/ZIfZQ9ZVxFS+CQFeMm0Z8Gj9KVw5yaMkrnTMAruXrrUCvW1egqtH34fy5DAkMCQwJBA7P8hhPUpAYD5p3/6/xRwrgbrBp4NaDu5BN7NM9yIYkkEuN9FNMAb+WyAHlAF4NP3vnmD9OlbGQlpN15ly+rjFClNP4vs4o3shvoztQD8TVhux9ypre/V22rHObZziHHQP+e9DBPveQ3AJ7yxDAkMCQwJrB0JwCRO0j8JRi3jU+nurtMbJjX9jmE2vb+abHYsufOsCqOCGw2bgiWclJWF07a8DZ+yCom07qZK7w7V/hQudZLb/JoNEYvA1h54bvZMJDdv2Z4ztfVfE8sZRHVezqf9Vlg1nSssHcuQwJDAkMCQwCCk6/YeMObmXOZqa0sxveVzLYIHSPOv/vs8RTCXf6t11vdXI5+FvMst9Q+F4jA4S//cvi1vUcT0diOjGxv9fTWpXG6rN7D8Xr2ufk/0tfq+OUbBbctkwJw5e/K21ePLkMCQwJDAkMCDlQCiZ0zo+XPTHJzBmdVLI30T4ZtwKgjEQzlh0qT9J3xCOBXIg2MfXTom9V/gkM8NZQpRahNUdDVGrZBjOzSCydHZtmmttTZ6yxMw6fH0UZ9a9DWu3OmIfqwDVoaSb2MZEhgSGBLY6BIYEdJ1egco5PPd7/77dz27IoBA1b94ajshbO8r35t3GPiurLttmwmY+7qV7ad98nuB+OQNbl7m1hZA7vt5X/Ym51jdK91+b31cafsX9CVtdCPDfhbR0Xy+3dK5q0TGyiGBIYEhgSGB+yUBaa3Gf37zm7/z0UPiaqXPm67/xbp/BWeWseIOrPoIlqxqV8YN3GmO0EY01TTo+AFGqt2OY9pexrwJh5ajn1Nfqn2f87rtN5jU1jvhfgxR4rEMCQwJDAkMCYwI6bq+Bw4dPHLX8wOGjSg2EC3QnojpMjEs4G1grdLu8njSPq70tnVtO8BuuwLiWylABNy1w0VceNxAuv2eX5eNgQmogXjbMB7m7DNRyXmMF1PBaKKBej8t+/XPH33Xl9Onr3z0h7FmSOAuEti1Z99s1+49UwRmirYsR2R8b+tWsgbco9P6ul/dsLkh6397r/vVsaYbtRuibdV08y7f2227trbt3+/6dvNP35bbqlb8WTlmfV7eq447HWWlD1Mf227tONWAZmrjtsfqz63Z5ZZWtdv2b7tN+y2335/Pvs3d3u88J/ukmEwM9dWycvyxrB8JSFU1jvRuGOUu6o7SFTxqBPCjuBUsW8akNl3MyveOS60WwjLuwCnYM0uKbuoRLc3dc57diWTm/lvdRvUl97T7sZ6J+tOuheEqK9OUTdFZ2/VLtfpzX7fq3fykXmMZEvhlElC1ee+BhYxR3rI8TGo1FvUst2VM6tjE/po+Lx+jVHHTx3kC2n3t3QbT/b1a/658bvvUlrVx7e2PHftbfa410/r2edph+mH52/IzkjXtf9u/Nri9zalr7Xd/p2002fatFf2HqT9t3W197ue4fMD82tvKh/bxLu/TfoIdph0cy72VwIiQ3lt5rpnW9u7dP/vLv/qTZkRPxnLTS92wzrt/PVWXwlo2vtsY0T4+tBUsMianpUXd7cGlGG2fRlKIKG+RhFdPoKLQ5gF+itHD7uX42m5ATyFkre3yK/vA/m3L+pA/+uvz6neftRQCXB7smBkxUCgMRSeybTuU3cYyJPCxEpjuQfeTG83/vNd9P61bPV66bePO60ubw9BNWs9CX33He+03reufV9paOa51bX17Hvt3z0z77HmMQVzfp/d8Fn1SeIXh4rP3TSkWVt+nKZM2+x4DRxGx299VN83+U5s1T3A999Ox9Gn18abvTTfYpsmLDPpz7Zm+M8uirWvyvn27pdn//s//x9mpD9+bnTtz6g7Jja/rRQKq16pKu4xR7iP/8u7e6ff6R9/bvV/YNOGRe9X9VwX18tmSO6ugo79bt9wWnIvDtO7jrG/1dkEPqFAx132ZtyzVH23WihVsAlC62pZp4/rS1ufvdB5WWtc27qS4DNpbCjTdaE2Mv0MCv0QCuV9zo7Gi2n3Y76tlG670crvX6n7zHNV9WFtOrfs93/MMWHvXxe/9t2rDptMa7/XZRtPn294bBlSfJixoeNFsvbmil+lnw6gJnzo2war+Odjk8wo+Td+jM+BVx6dNnuU6746D7fsyHqVvte3yNvrcsOxODGrPvWd/5XXnNqUj8vv/8F//54OQ3vXm+fVWDkL668lvze4tWjmlrOaZWvH83tnhPJ7LeunjFE17wCsgvV4AAEAASURBVJuxSQGUEVDvTcH4naLsS3+oPdB9td9bXzroT5HaSQG0felcRPZjFF6UjHY78TTpuLnoav7RGDqO3RQW5WPjsQwJ/HIJbM3ciNszH283Gt1Ht0wzUfdni/ZrxR1Vxm8nbp6D3P+rAXr152Yw9OO7HT0ndW/WynrulgGzgWV7vjqxbO81r2GiSpuB8kQ0VwB8hVgilMuLvvcvdR6iPyJHN2dXEpkxf6NopCqn9Z7zvW16J55gzp1svyKXFX2y+jm/7fPKUfvRV72X1qnnvMnBT+TR3jmSVFwdy/qVABxQ5V2tg37f9Pc7z7qr8Lprco/U89Kfn9w0t5HTydhcwafbiWpvux+rv7fbFVZ5PuDU6le/3+1tm6kPObZ7Vr+WSUGty/c8z56ZIp7BpIZPoirts/3okLEMCXxSCUSvz3ft2VNZZz3NvNl419v9Ot23dU/mT8eobq+tvkcds56jel7cv6V8W1emaECtAh6FTd32a/d2d/70Y3Q82hJ82lKkEdlcRThXE8wpwlsH034eqOmtPjd8iv0aTLpyeXF2IxgFDzpGeYbqBZdi91U2w6pZIcrGnDL8bn+Oc5TCw/Zs1/Hv+ifnaP3Kn3rO60mf5GQKxauZ1mks91YCg5DeW3mumdYYld/77h9XJUNTuyilr/S8udFq7rYYA30qGA96NzpLGeRBv3NpyqspLoqtjACGuOlVvMcI3jIpIAqwKajNTXnG+NgccL5xw372aSlUjrVpSp9qOM/zFy0w6cauMBkXlIw+Xrt2pSmmMqCvJyq61Lxt2Ua/TLhue/PMmf7l4sXzd57K+D4kcFcJIEKAzr2MnK6ArfsvsRP3KhDMvdwJWgFe1mdNGaHuO/c/BJtu4wLBuqlXg37vge3q5Rnq9y1y2cC8ni+f8+okVbv6043dNk0T4zfg7BwKpG9NBBN4rzzfy6QyfZ7MAPbAyjM3PX/NQEnf6rmajP7pGauIa2RU/cl7e9bizY4hwiCpuYAzx+LWem2fbU3xGs/lNu/TqxstSLbX5q284c37/b/+T//dbMuJAU39FlmP7+4h99Y//IN/r3AINl2ZpiQrjMrn68GtmgrG/csIreeuOVM8d6uXjhvLz5JnKu33Z0bRu82bPEdTxkCwwmftVPpunofNmUP0huc3x+tGcT0vdzh027Phkcm/Ok4z1vVP5LccpGnDNGt9HtOuFzzjO7burH5ZB3vHMiTwSSTgXrseu23TZGdt2rytsApG+K3uZc9IYdT0nNDzucdv3riZbW4ub++5aEofOcvHvO4WNa3725b9eVp+jlZhEgzIvMGep8JMOJF/juv+Z2d2XCo7M/h0MwSyHJ8T0WwEM8GE9Nez1567qWN3CEfb6VDr0+p3xy37Ms/2Vs9+c+TWNICRGft0GaOCTbAKLsH6bdsnnAo+KbZmXUVop4hswynnDOO2zv77/+o/u6NX4+u9kMBA/XshxTXYBoB/5dUXZtvzYHnAvA4uHJ5tPRollge3KwtzkIqSMAauXJnIar7bv004fi2KI0buZAy0U6XcVhRCV0LAnFLaEuXEGHAM2q4DPgUErHtbNb6UWZxttFdpjqVrJkMi6xzbvKkN3JthrQ+OSYn0YxcBzjrbX4sCvBTPGkWo3bEMCXwSCSzGeeHZQDbL01tEqaW1zjONhHsMGG3atL3d38DTs1EAi6Tme4zXW9fjaCnCZsqiZdqXLrjPpf/l43RbelsGUYCZY7Z9N7XPq4lo0pPq/s6zWc/RRDx5iT3DRUTTn25MtwM5c8/q9J7zcx7zOo8G2M151AwMx9+a52r79p2zbTt2zHbs3NVeu3bnfXc9c1uiU6qfaUvfK003n/XJs3qN7si8wD7zcF+JE+z86ZNNp9TvV7Nti8p2Q6TmPc60G3TC+VQH18ZY1q8EELGLF87N3nzz1bqndgSfduZeW1g4VA4ONyyjlA6nz8upejn3k3sqztWaP9s82v0+qvu+3fvSbmuwRtooXMm9WY5QhvMNz3F7zmCTpeOT56aiMDGiV4zils3jmS3njGfJP+mIwZuGo20O1ZV9Y/hPz5m0ZFOXlbMpx9Ufz4n+X7q+ODu7XAl//V7rcWb3RgLu28poublY9+AWpApB6pjh/s49uWV7s7+o/MKCCaOaE1UGQMt2QWzLPio8asQUTri/bweprEH0kNHYdjCwPVcdD9v93UjurBxJ5ZjJM97J8c3c89dvNGLa1wkyrCyOsfLalGNs9dzmfOChcy9nEnxCJNm0waftO3Ylq2kVRiXjApkshzKcq2c/7eY9f4NB0R2waXqHTV4Xzp0tvOr4xRlWGJtzWI3vnTBfvnhhpevj0z2TwHxhYaFp5XvW5GhoLUhg//6F2bGjjy0DZwfIDsZbY+h6qKVM7cxD7b0e/Dy4yJ90KqQUsWMEUITAn4HQvdX9PEs5dYVVXugts61RHNYzx/tDzJimlLwX4McgAOiNiDZlRAExkCmBPlE6BWqfbrjXuUyKitcrP5QSvBolAugd19gDbYmQnutTC/QOj/chgY9KYGn/wcPzAykE5n7r6auMTPdqeVbLC5z7ahVAuscsBfwIae7bdt9nZe5tz5v707paPxnB9nEfA8pOCAvo057t7Nd/t23rD0DPMdK/6iPDuZ6llYyGdpyp3ekZKU8vwyUgX898yOXOvHbt3jvbtXdfrSuSWuSyEXLtIoWLF87PLuUZunTxYlJ8L5ZOKKMoeqAfu597OaDS14n7Tuecvjj3nKfz6c93efnzjHpOy1NdBsbOMi7+9f/xL+r5l1I8lvUpAZGJI0ceme1OEbF2X/R7Y7oncl9s3bKtjE74hKwyRD17FgYjfc+YFFGFVYVbWQc34Ee/H22PkLZnzfPWCKl7rztF+z3cSOVKhNQz7IYux0vaqTY887mnHeNacNE+8ImB7f7u54Mc1LOd43hurya7Bz7pX42NSz8uB1/PnDlVlEA/xzIk8IsksO/Awdn+4BNnCBtsNUa55xDTyqTJfeW94Yr7cXPhU7PDYEcLALhfG9Fsz1TDjhbZ1If+fQXv8kzmGbRY1+91zwQsaLbhyrOz4mxc/SxOWHgHHlTfkdC0j2DCp527g1EpNLhz155a7zj1yvHLhszzdzkYsRjH1qUQxEuLwafoAri13JfCR5jZoq7s0ZzZhFFTX/Isk5+227PbCPCmKbgie6cyfGIjb/dK//6v/+1/KcJKFmO5dxIYEdJ7J8s11RISuTvjDRBL41c8oB2glxVNHsACzSgvxI4ykGa3i7EqGiK6mgeQsgGmHv5LHvgC1YmcTg+8SoU8zUsZd98e+lna21qAD7z7MakC/yx9nc/Ng92Uqu9ptn7v4L5t63Yrah1FSxkyCBBmxojPW2LA6HMZuVHOPFz2H8uQwC+TgPsEqBXx9Bzk/uF9BVKAfyV98Fo9J7c2c5I047aMgNyP7rtbt7a0NLyAvvvVfeleBYNu+7r3p/dyxljjOczxbF8e7jw3Bbz57h6+niwGzyAQ1hdAj5C2JWA6PQ/Lz/L0HG9LlHPXnpDOGP2inVvzDHk2y1BIG4zhs6dPzC6eP1eRTJ7j8gqnz0U2Jw926/PtoM2oF0ktD32O16OpO3MsRHe3isUhuzsyJlc/6JHqQ57PMl7okBjzRSyiq0q3hPgyLq7Fez2W9S0Bz8WJEx/MDh36au7vltp68+bV5ZOGDV33u9fqfsvzVQZr7uVdMVLp+t2cKrnnRGRg3qU4TcqB6rlxj2X9Eodmou9z+LTUM3faoTwz7m/4k3K5jbjm2PUv77X0757TPGt0g/5fj5HLmaqfnv16uqfvtnMOsHLxfMOovt3OPAv0jGPKSrKewTyWIYGPkwC8uHDudNloZevEiYewIZZSedl4yBi84eS7lXvwZl7L5DT3aH4pHIEBMEabhVG5F5cxKvdtWyZnont6agd+eAY5FN239vecwY3mJI1z5rqU3JZ+mwepnoMir9rwLE/PMfyQdbM7OIHkcZYWhsK59E+b506dnL3/8zdmspeuJkPieg3ZmvAp23Vbs9uSnWA7nmewtRlnbOzaHQIvRXT3LOMT3dGwKRiV42/Ls6mPpTsmjPIMXw1WXl5crKwODlrHGcu9l8AgpPdepmuiRRHPPj7n8mTwxRNbKUKLU6SjpxhFizUAjufNQ3z2LOBPNCUGLIMS+COs+xJ13RMFCPAXFy9Umi8l6EWBlHIL+C9NhQOpNQqBsvDbfFMUCaMg6ykS6yxlEES5UQSAmQKgjBBpSs/+Fn2zDWVXx08/LEUechyK0rY85hdi2DLgy9CorcafIYFfLAHE6tgTT+e+a+nqUoy25D7rXufdqVrtfi3v60SkGJVu5jaOOWPQcm8CbgAH8D0T8bnWPe8+rHs+fwPvrSNu67z85r6tezXfAftS7l3jpfWjiKgoTF6Ol43ruXCscr4ghLn/eZL37NtfoKoPnhfPuD6fP3M6xsyZEL+LlbJUUZ30rxvCjl99qDbjac/+jBoOKm0htrv3Hpjt3X8gxzgQvdDIOqOGUe5ckcmLSX06f/bU7Ph7b09GxKUCd2OYbqaqqEhRGEI78ZxrO+7kmc6xyVC61ZVLo2BEu0nW59/SzTEa1TmAJ5dDzC7GIXQmqd3nL5wtHV6R+NxXCKul7s8JJ9z39D1SyoG6I06PSvvNvVr3Yu5z5FQEsxHTlchNNdagZzbfNi+s8yDeSnl4kASjgFjdph646T71PMHBSiHOMwWf6AQYZfFeOiDvnKSV/hdnknU7QqLpEn327JnqxXl75v1+69aYj7SEOP78QgnQ8fRwGwpxabb15rbCGQSPs29nflMACG54duBInpK6R+n5LZtzr+YeptPdi+5DZFaWQC3R4wUwvvpoKVxo+tmjYH/3fHcqwpbmLG0E0ufaTUp7ti2M6jjCQRryuZoEitqy9a7m+T936kRhyOXofs9sr32wbCemL54xbZLFamJbGT979gef9s/2xE7lFK203WxfGJP3y4mgwqgLZ8/MTh5/b7b46ouJql5oeFg4OxHd9AlWs0vb+U/HnY7teTVcTB/Hcm8lMFJ2760810xr+2I0fulLX0s67u6QyL0z3/dGGVBEHnCAidSdyRgW41gAJGLJkK6HcXr4PXwIH+BHcvf0NvLQdiOi0qUmYkrBhHkGZFu0E6mlRNo4HUb27Sm/5YnO7wwMn0ViGRTltct660qpTb8bPwTIS8FmXQP5BvTW9zndEGrgvxgldPLkh2vmuoyOrE0JiOztDZABOvfbtdxLVxMxBOru/TYupRVCQMIaYDaDFDB2Y7kBZovoSN8tTzGAZ+kG3+ptAvvy4mZfbbuP7attS0UrYzDYH2C356oBo+O1NNftRULLwzwRSNvbt8A3nlzv7blulRg7ASznTm/Hsx2jfnfIbKWFLRwur3Ujm41IS909k+fobDzWF4vYqtDbntVW6RDJhN95YvP8d494J8wrxHZfkWaydjwe8hqnilSE5JLB//zf/hezt159qdobf9avBKTh/uY3vlVRTriyPxileqV7QJ0BhinH4ulE8S/k/qP7y5EyGb3IXGEDjNqWjIZtMdjzHEvxde/CsouLSTeHbQz1wjfkNvdoOV+zX3BCZASewEXYIyMBYe7PnCtQZHQy4isjJw6W1Tjp+bUNg5wD2DbOo+7//LbsLJ2IaGViTOuPH39/KVjcKcD6veDjzH4tCezL+GpEC/l0b0pXRwjddw2fgiPIX+5p93NhVO5H9yF9DH/Yc3R0OVPTG/c7UIJz9PYy+dPTbFf3fdqEi4VxOVY9n9nPseENZ6PnUjt9bLWMn67z98SZu51+D0ZpAx5Vqn0RxEQ+Q0ZhnGeuHXbCufRVuqzMHufs3DlE9x04lNTlw0UK9bmnMJ+LM+vMyeOZLuxkiKeIaojtZNN6Lj2v9eynDyWTnIvzq76SW0gmpy485XSFURwArY5C+r8r41WjW1760d/M/u9/8c8rclsdHn/umQQGIb1nolxbDZmH9NixjCHNv/7wIZaUBG8yA+BAHjjbAW+gff58oht5MQKkEvFMU1Ae+lJ6MWC3BfRFTRkT0p0oEeM0gbCHv+0jlSn71PbNG6cdSqEXoaAwLRQUJQm4KzIaxUZJWu9fGd8UUxSHwku2KcWYPrc+batxqZeSTqFN5wf8/YZwGz8qYjqWIYGPk8D+gL3nANBL2xEVBPLSR6UK1b0VwGqOjjhZMr5EmpSUeF5m96n72Ks5UFqakHs+t3IzcKdnoIG+yIrUqjh7cqz+vLi3K80ekBYZ5en2DK4yDnjDEcg8uwwFC6+5lOMG9BfKAC8jw1PkWUn/PBe2B6x7Mx7JeFkTrRurx2HEgBFJPZ1USlFOKUqrySwwN+9bJ9JFiiMj/ReZ3bvfGKdDZTCYnmAnL/X/z959B/113elhf0FSotjQe++NAAGwk+qURK13LclbPC5ZbyYz2fUk+SO7TpRJ89gZe+JJJsl4/E92HGcmtuNdy7sqlCix9wI2ACRAAkSvL3oH24qEkOfzPe8FoZVWq4gAiBXv5RB439/v3nPvPTjnPN/n+ZaTe3oPzyXUidFw9NCB+vuNrDU+Rxaco6/088kYFM7pj1/uHhiR8TJu3IQ2tjMXaowGo3gfkMrhMT5HxfhEGOGGHDHr+amMI5gDCzojFsZV2gmPfvBNburHM/ZMPuSwO7/Cg4NrGcqFi4gkwclh7BmH2m0GbMOnajvnYYzyVmus5tw2HxrpNO9jkWc8twJ88Mec7oiq1BIY2+7XMMr85BX2fDC3P/oe+Fk9gJCVkDG0jiNpcMEa+sOMu5o/hVEZX5kHcKYTNrWLeBmXzrOGwzeFiipqJd8bj/DPPOjEmGrTGl/nCkNHWhPFFryprYxiqyGTDvOkOx9+wgSCozFvzkjLIJCK0kEWm4e22Zed06EwKtcihQj4qDHjgyMtz9x9kOAjB/cV8eTthHuNzLawvM42FFLciaEwr6KHiszCqLFFOFt6ibYvrzmoZgGx9diRg9X+yUQUwtS6x5A4XOtCeK1nONUXJKt/9/P5R09Iz2dvXkJtjRkzbmDSxGkDI0eNLnUZ6JWKlWcs4zcLk8WNqoxgjoxxwIvqsyKn5wC/ay1SzShuqjK16xqhvENqHGOhVbaV89bCj4owZvFkUHQLHUD3HF17FjFE2UJmYVGYwkJq0euIsAWD91O7zq/FlIEQ45gHFOH8+BARdS+/I6MWQgbIiRNHmzR2Cf379I9yafXAyMwXBM3YBELU1Ko0m/F0RVRaIaQqxjblFzHtQD/FSmIMMIyBagfKJbLkHCDfQKyN6QztjGvv3sSWijwIuTSPjHdhSpUrk7EOfM2Frs0GrK3QA9XWAdzNvXfyfwecnaHcGQfORV5HjR0fkB8dIemKAHDCJEM4jx3eH0U55DNFiypXtQxtxkVTj5sn1hqBxI6qPhoVEoHAl0GT+ciAPx5l+sjB/UVmtVd7nOYdKuJCm3ln76ePrAul5HfkIcaHtkfEM8sI+df//J8kr/V4vV//xy93D9x9999IUZ/DNYaRzvdxIWMkmGBdNw+vS6qICrzGISx5g9gYgxA57Tyg5qy5UtdVukk8GjGkCTJEzo6UGpM8sPAMiUWAVYZ3ve+KdOZvvzvMZe2Yi9YHGJVf2tw0lvM9QQfuWAf83sY4Q/x0QtdPlfFurnsfz9gRUeIww/5IjOD+6HvgZ/TAmay5w6y91m1YZP2FCeXhz/jr9pWu8TyET2wg6zPx1PiFCQ1Pms1lbMOcfFVYRVSpA06ZS2zE3IPoqC3gBWeIl13eKjgrQsnWGyKTIm6M9w5PO0GyCyVuxLHhQCeSwpTRKXSGPCKw7oN0whV40Dyef94TG3s09/GMvJnwY2RI7Oj0Ey+nd/UeRTQLo/aV2PkTZNb75t2c25HjTnB9P3qoeWYP7Nkx8MLjDwwc2j/4M/65+q9+kR7oc0h/kV77K3CNvACge8vNn6qFCHE7Fq/HgUyiEyY3gzQA6v/L35A3erRN6iwko2OY+1/O6Kmce+LksbMAWmQyIAtogXxTooXzXp37NXVNYReLHOPCef5GOgF8A3mJ9NS45vmxAPjd9Y2MDqlmFocYxoqv8Bo5j1HLS+W8NxKW4RkUibAIZ0kpI+W9tMWDS2UXkhwDZZjz+qPvgb+oBwAs0AO8I8eMLdUZ8LfxGI8Nj0u+o/C+l3OLU2Y02wJFQQbgyZgFaghokcuAKuL6HuM1N850DN63yADPoQ3nyVt1jaMjlaU657oO6IlGABaxZOwCeNtmdF7RrrovowFAM9zl0owZH4CPsk7goVDv2ba5FOAK5Y1nknFfYVYxTBQf6kjv8Hg6x8Q4GD1+UhkZno3Bc2jfnoFN61bFwxn1OKRAzlIZ93kbYM7g8Qzm47UUaV7T9OfosSGxo1sosHdwuB4RpkhTnHdv21TkWAhXf/zV7QHGof9rLGatrsicMpAzLvP5VfHQDx+esRmMGRvDsbzomTu8hAcO7K0UC3UOGNL+h10ng0EHD+2rsL/r5IplDI3JmOI1iuBYhJYgWl6Uwp2GPaevOl05pgjl5Zk/7pHavLU1k7ndYRTjuQSTzEciUiZMjWv/CmXUZl4jonDKYT6bm+YiMipCxzzoyCgPFRGVMMroh0W2qajPQlCJXARg+HbkSB8NUJ3a//EX9gAhlCBvvbe2i0B561S8d8EBY1W4qRBTuGCdPvewpnNCsPkaNnUYFVGU8Ji2EcBYW4UH5sUQwBWeDcs5ZfdlfMO4FqrbCuw58bISjoS7XlOEEB6WfZZieW9n/MMp9ptZY7yLsiucSRVd5BEuXBl8481VYG/X1o1t66/MH/d1FInOPEI6i/RGoBo5NutHdpLwt3ady2upfsG2DWsLz803+Op5an4Ho6xLihxZO+TdSlPhiUX2hQTDJ0X59GU9f57paNJVjmRt2rtr28DhYCAhuD/Ofw/0HtLz36eXRIvyRceNmzRg+xfkTOhTV2ZfHieSmdyVUqffLg9PKyDUqcEWF/uWKhhBwa1QqUxMyrQJntldE5vhgZSqyguYkUQkVy4osK/2slgCfIdF1eIEvBFSBqzQqpYf1HLynEflZqhYUHhoLagMAAqzdqndFhntegbKG7Xcdd7X+SezEOYx00bLl9Vuf/Q98NN6oMtJ4Z1EPoG+8SYXxdGp0T7jjWSYMjo7AgbsEClj0zkVhZCxSGVlMDRAb4JLI6IxBqjPIblNtQ6gVkgSEE74KnIb8CxyGQP+6mtSiTAGrTFP3UUuGR6eQxgto8I8ALCIZLc9gP3SVNKVW8OTqkgSY0NIU+XP5f4qNY4OcR0/aWqBtPtqe9/uHVGB91ShIkaI56pnlx/uenMv1wPwkfG+jp0wqTyoiCiDwzWH9+8tEovIHk+4bpfTWkZ/+rUzNCjxHZFe9cyjZwl6dX7/x4fWAwQW48o6a7yo7tnC1ltBIcV65H2OjFHXEUyhuFdkDpgLMGZ3PAr+VimzvKApbEUEQea6rV1E24zh2YhxyrhE5AiohxO6bV0nGDnMLQTXuFNgD0YRP2COon0l0oSY1jw0f3JuiTM5189IJZGVFxTZdTBQq/Jt/oZhcsftzy2U0fub5/52vnmcKVjj1hwwVzwrQ908LvKdviKi+r/Emfyu/2CjtBOk3DPBtYZjPxLFhOOaXv3R98BP9IA1WoRLq/A6LGkXMOqqsnuQVIS0wyjYAR+E4xb5CgZZX1vBo/dTnmrrLfMpY1N0DHuswnbx0Yx3a7Oxb64hpQZneUdjw5VgGoLJvrPWI4pw0/1KRGIHBm+qYrr5UvfRViJtgg9jJ04p3IARhOCj8YLaf1r7be5aH4IJeS9zhfd0TFLQxk2cXNiFWMsV3R+MQhY7gdW1nt3aAhOtDcKGRQYRRbUhGue6CGLmrtQUGHVw764QzoThWhuylng/MnLrB201e9S7IqMH9uwsPPuJf6j+gw/UAz0h/UDdd+leLKSWikyF7SYogoes+Wx8PB++B76An8GAdFpM2vktTEmRCIYCwAagR7MIUJkZAIxjoGySKpzEcGEglwqdc7XFMLeoeR6LRRHSfN4tHADcYnUu2FtMtOschZPcx2dA3c8NxFPBd6hdz0VFvzKLj/CurEf1LpLhvS/vr7Cw/uh74Kf1QMbfmYQJDRO2y5OIhJaROgSwPHnGNWA0BoE7wAeKQI+3w/kOwsj7QMZjGFDNvGOwVvhuxrR7sD1dI5+TgWvMmotdZUFz0H3OlsXP/GEMA2+e225rlI6IdqTymsxDYeoq6h6LMc+A8bv2GQ+Mj1KyY/gjoEKkzCnn7du9feBwQPktinbeo1O0PYc5LpSKUTQ2RsG4iVNjUAxPu5cFxI8VQCOwx48cirIcT1WuZ9z7vuazfkgb3ndExDEEeIw1KMZBV0CCMYJs/x///X9+VgjQp/1x/nugUi7iIejIpTFqbPucCEnAtO7zYCo2BCuIfYoL8WLuzljZf2Cw1npjnmjZ4YxxDQuIlMJsYY2Im/LSBzdgzZ7BnVWvwNpt/DF+tV+FiYqcjqvrPJf1/vCRg43UZp03RxiTNX/yvNfmPUZlPMMS5NV6X9tEDGGZdxTBI+zXWCZyatPf5rV5gSQyOj0LT5I5k4mc+4SQx6ODyCLFonjMJfcmpLZt0Ia22vBZMMk85q31PrxBxj/SWtE8WUP0cbc9jecyrxXe8yz90ffAT+sB6yThh+CIfCFNQkn9D4eQ0m6dtlYbx4gTDygPZo3X2Efl3UwRIuPaf0grTIBH2uEpbfgEky4rQseOMujhFy+mv8ujmrbd61wyWikkeRbPWBFD5ukQjiGFIzNPXQM/1StQKI+QezriT7cGiETivYQRE6fMqHd+N+sEArp35/YSWJsY2605TfiFzwrlEWTHT55WHs969kxk4bW2jzkYYVT4bhNYeV8b8W7YmDUwApt789yOicA6OngHn4issJht8I1/+b+XF1c9hP44vz3QE9Lz25+XTGsmN9X5K1/52wM7d20dOB71uMA/T1iqVoCzMxgUP7JgCeU9nIImwN+5jjISQvIQTmo0Q6B5S48H1E+V0Yk8lqckBry2ATqCiGRaGBkEV191bZ0LfLVt8dNWkcwiqm2bl+6erpEbBMS9C/DXtlAuC6Lqva5lCDEufO8ZnP/GGyeKmDKsFGliePi7P/oe+Gk9wMNnE26GNXA1riilDFLkTTgRIKKaAksGZXCsQJURDtAL8PO3MW98AnsgbuwCSp8pTtSFsnsOQg2SZx74nnfW/KBwM46NZ0o4AHddGdkZyyIUGAt1feaccCNFigg4CgIhhZ6Xgev+JQgFTHmBJ06dXsq0d1W0QQgS8gqgM1UzxxgQTclWlAL5nDhlZoXduufxrA17tm+usKiz1wm9z32sFfqCkSQMamzWFYaB+zJGGCinsi0Mb+m+3JeRIESrDP18p8t4x6jlvLr9ceF6YEoMva985W8NLF1y09l1H8ncl38b0TNNIGwGnzHUjW8Cn6ib8TH6RNz4OcOmwttcvyv/H42hVoYvkpprO7zpPKkTEmY3KWII4YbX3jX79u0uPGlju/P4Z5/Rq68rUgx7RNXYFuZQ8p5PGjc1D2zb0oRWJJrYijyqzHsyY42gWXM058A78znDrIgrXKj75RnNecQTnsCv8gBl/iKTRM5GUluOq/cx1h2dMNsJpvCHZ9TvjGEiKZxEcP2MgBJsGfTWEW0h0LbqgJn90ffAT+uBEkuzvlubYZS1lHhXGBEMcPi95lrwomyhikZLFd7YduYvYghX2lqfNdt/Iaa+IxZ2hLSJpyJ9Lquxb023BlgTrNUVIZdrO/yCb9pFQitkuJwVLToOwbsmIfZyOnlQEVFEDkZVagbMybUdsSVSjsva4HdCsPDbw/sGS8A5uzZkzvCcwk6eUxgzfsr0mtuefX+8l4M7tlQ9g7eSElLPO4QtDdsiruZZiLHj4qnlrYVX+hVuIr48oARWhNk7aaOLmDB3eVU9X3+c3x7oCen57c9LrrX/6O/+/QJ0ACukaefOTNT8bXEpL0wWI8BIAWckyHUBmDYtV2ihzstiBPQRXCFVJjUSiJgyKHhCLGpXZ2GyZylDoynQrSw4cNau+xXgU9nKe5LQk4D9u++1fUw71U1bDkaAwyJL/Qb2qv/WAka1y32E5SKvjAbGPFD3Pv4H9BZSxne8wOwmtkh/9D3wYz2gEMLwKNDv/vDdgOqps4ovsgSkS4nO2Pb76dMMy1Thze++4w1EouSklLiSMVnGbO5g7DWV+f29eBvYJ1w97E84EVCtCIEQwgqHylh1HUCuKoX5Xn5oeUYD5sYyQ6G+z5z17OYLYwRBLCKaedJCpLJHY0C2A3nzUFiUMCeEj9rtqPmU+cK7CpwnT59d3k/vR1FGQIX8tnCqlh/bqfEiKOTeULKRV4WJkBCGBKOAKq3IUVPBXcvIR1xDetOH12ZvU3mu42JUMFo2rV018OT936771cP1f1yQHkAkJ6fPa69p63/Eh3Fj41mIQSj8tuU3RoDIeBFyu2vn1iKCXRXZ9u+IdLXoF/iBpE6aNK08q/lnLqK7bdvGgcEYdzAFlmQANKOZIDqEJ1MmT6+fre0H4j11PvzoxEjrOyI5KmNr4oQpuT55l0cPph7C3roH3OAJEtIujNfzOyqEN+0gjZ7X/ORNNfZEAAjvRV5rLuYzhJmIQzDt8LEM/KHzEWDeo/ZZ9sotDyvBNPM/RnXNw6wf8rJb5EI7R1vdnt6EUcIRPISTfndf9+wLG12Qof7L0OiZRMAME67aCaXWdUfVPYiQQlBtv58o4omQ+h8BhEeieBBLHnvjsUTTzAljF950eNaRUt/7DvbBGgevZBHS4Ivx7ju5lsih79iC/q7xnzmLqMIDOGYuE0thFILnMF88Iw/khKkzg2UwOLZaInuQSpjGpvN8bE7t2fJlQsjnpOmzah2ASbu2bsr525u4qXhT2rZGtGuCa2kf8XTdqITt2obGWgObYBuBtNaCurbluXo/7+0dCaqwbXzWNj//yb/657UtWeXv1pv0f5yvHugJ6fnqyUuwnTI6MolqYciknBTgl+dDNT4o7CqGhlAiAGkCMrSHZ7JODDFlBAB0OTwNRFOwIQsIhVx4lJAsC9DxFJTolN0CfAtUri3AjzHQqdgIousZD4C81Kaoc9qzWJVnKM9RhkMWnwqRykLKsJFL4PkYKb5nBGkLIZar5FkQXDk6FjhKuDBki9I1MUC867k5Q5fgP1X/SB9iD1BLO4IHzN4M8QTwigEBfAALmIwtvzuc7/dGIv+sxiOVGckEuOYU9aNTf5sWwkP6fp409Vg7jGnXmCtyPJE9IbiKVDBagbiQLCotY7iAOXNQ+JP2jh2JNyhgL1Sw5g+im2fnobQNC5CnSB+OR5KB4n2EcVVYZe4jdHfKrLllsDAo7AEqp8Y9O5GoiMfVMTByzwkhnx1pZczvDVlRiILH0/UMIM/h3ZvHtBkSlOwJWYMUOfLscskVMxrM9Xt3bG3VDxPdcCiKOGOkPy5cD/Buzp9/fXk49+ffTQipcXLWmGMsZmwSIcfGiJs0aUrVJED2GIgEy60hm7vi6T6Z8Wl9dTEhRNiqdV3ldgSV0EmYefOtUwNbM7b2xRv6ZsZJRyQRRGv26ITMT4thas1GYEX2HEwIObxyGIN1XsaOZ0IeeUuPyI+OMNRhg5oGyKv5B8NgHMLn2eCQ9r1DiaZD9RPgCXHFeGawOz+/1Fw05xjqMMnhWs9SOGYuDWFS8662fSFhIVwz37yf+/KUemd9Yz3wjlcl+kJe7v7kamuvP/oe+PM9EIw4E1wZVukbIXfwCWGEEcaiqJNO3PR55ZRmzCGZxq7Imm5uNG+nFKlExMCoXN/I11U19l1vrPvbtbCRuOIzoqI1m02mAB58koJRxYgylt235oz5HMI8OgIX3LSWi8aBY+Ysu6wjouOnsE/bOdJFROC0e7DzsgbluxGJrpk4bVaRSjc/GsyAUc6Fv7XuZBs2ZLsE2ITawid4Y56yC/ds2zSwJwIp7ywPsferOg/ukXcpj2mEUaS14ebYynUVVowc79mxubymft8Xu5mw61374/z2QE9Iz29/XlKtCRGaPXtBkcMyVAF6DIwxiYsH/IwEquyu3TEqYmhbLCxO1NuR8byMC+gDYcZHhWEFqC0m3fdAFtgjhoDX4iYk6dosYu4nnwewM84BtPNNYnuWAmaHtvzclfy3SDiPgeF5LLjCcRVJeu/dKOEWsxhKFbqb7xn0ntkzuAeDBUl2HcPDe3kWIVN9HuklNTwviYfJ2DgT1XWYsFxkqiOBKhgCKf+r3FdjO+Bq/L0RAwBpVKCBsWlbB8avz5BSQE9JZtz6jFJ71qgNqTQHGMfa9t2ZgGMR0hACY7V5Dtseo4wJXltk070BvFAjqjMDgOcS0Hf3qpzveLl4Ook8wl95K72bh3Q/3iY5MlNmzq25RB1GKpFDYcOOruASNXnC1Bl1rp/dZ/umVwd2h4A2z+fbabaRT3ORQeDeU2bMqdArobpCuTwD0so7W2p03pUlQYVnNOh/avv+wZ1lNPT7kNY/wwX7A7FE6j71yS8OTMy/l1xPnyFF1npkc2cMOMJet4YTThiJBBEeUddNjsAwOtf+KOMC0dyyeUO8nHvLK2ndN2Z5B6+OwDNmdHAnhuXY4A/ytiPt74iHQqqIsdqt7byck5KjPC4GIuNUrurgYASSkGZjzTMY5zy69iq19svBFKJLmPS9UF/vJCTR+7Sw2R+274ILSCECLsIGAfVu5oX0E5gnOqc9vzzQVMoOfhQhjQ1KaLk8+KJAkfngucvw7Qz/GPDOEVYMm+BZkdzMYYa48z2zZ4BZx9PHcuhSSTjNnbGU9EffA2d7QDiponFInXGlIA+SZ6zLdzQG1QCARzDFHqHGW4mBGWPmls9g0I+JpkP2lTaRQnYY4tlF+JSQYk5kPGsPpvkfQbXOW6/du6J3ssYjefBFCgxSp10EsEXXiFJ4P/KHhxOhls8JG5xHkIUHhSOpT0AoFb4LT4XRqsKOfBNm2XdC4j+RdaWwLAR04rSZbd6FNG7fuC5Ekqgq0oJA2kQk2CoaqkTVGbMLS817BfcGQzphlOJG1kHiMDz2Hk1YRY7HDDz+/T89+2/T/3B+e6AnpOe3Py+p1hSluOuuXyuQ3bJ1Q4Fgkc4sTCq08aBOnz6nCJ+80T2UnyEPEIAV3sToAJqKGQF9eZ0WDcouFdp3p04dL/BluAitFfqHGCKRZQjUInZFhVNZwIRQWSQczmOcWPAshjX50wbSaiHyuwUR8bU4uB9FjHHC2EeAgbsFSs6o57OwIqN+FmLFwKFAd57cS+ofqX+YD7UHFOYBNsKGgC3ipwogcETiuu8pozyaQmwBIpUVYDMCjGV7snXA5fMW3qpQg9ChVtjIeYr9OJwLkI3pdt9Wkl/403V5FsTTfHor6q7nGBYjFhFQVIgRwiABokhpFV4R3RDDZXJA1j2PRESSB1PXxij/WNTja/OuyOXE/H86hS32D+4IEd1WbTC+Gc8AGymfMrMRSs/KY7lz8/qmLqePPDPDo4hJzmVcIKCIMqNEm9s2vlqGBjJqPpqf7ZpW8XBiBDEqtsIVQJ6xhYT+m3/xT4sU9/k5ev7CHbyI1kgktBP+rLOq5vpcXYEpk2ck/HZckU9r6Y4YbFu2vl51Bs4lY9Zk7SG406bOKo+o8b0/oXAbXl9bRZA67195Io3jeDmLnI6ZEOPvrYHtaRv+tDVb3QHiaUhsMGxqxmsR03hy9w15Eo0nRE9osZxU+aUiYXhEEccOvwirAYGE+B4qjyj8IWh2obvwyTwzN+WQ8jSZC2WQZtx29RGQV5V3HQRS9+ABdbhXiapwLnNP+zDOM+kbz8ob6mck1DMSi4Xqyon1HgSqeHrPRGjtCWn1av9H1wOIHwKooFHhUMYO0oekGW9XZ12v8ZlxzK5DLhG3LNMlgFjTK+IkdhMsQvjMeThGpTRXCSXWbhE3vnOt83yOzClWBKf8bN1XPMj3vLXWam0VGc2zIs9EF1E5PImezT1gp0rsSGaXHyo8l7PA9zWfM1+nzZ5fGIToIohHg2XwtkhlsFX0jzSPabPm592vq7XBeUTV9/EGsW2RQoocEV95P/Wjc7Zvem3Iy5rUlYhPWRbqmb0TUq/98rLmGtV5CbRI84HBXQP/6n/9H7t/mv7v89wDPSE9zx16KTWHcE6N4bfshluqAAWPJUUaqCOADFeLwMgipgzZyyqHZ2+8FAihxc7iI2/U/6ey+BwKKeXh4DECqEKAGeBA1ufIJeBVmdE5rrGli0P4l4UH2Lu/g8eWMeB3BNSCqfw4QpA1osAeUeVBpUpbIJHmMkiyePwwi5nFynM6hBHb564zKhRjopAzHhKipcke8Kun+j/0gGIRSKfKtbyOQBcoI4tA0zjyPdX4nYCyIkO8M8IUheqVlzTAV8Qw7SG3Ch8JbzJuzQEGq88orm3cx3Ma4x/wGY7aNd4BLrUWOXacjKf/nTxXzbV8jowySk4dP1Y5oLyZgB/QqwgoPwaIy4k5lWsVUSqyMDwep3imhDDJMS0VON5Q70o1N6eQ0Kmz5hW5ZLQLcdoZ8sEbrD8YzM5jCE2cNqOMAc+ijW2vryv1mnFS4bremeGQZ7b9DGBHWhFW+a+MENfsyj0QUWTDcXnCrnh0u0JH9WH/xwXpAeMCGf3v/tv/pcanSBle0W0MQOHfWVMdNT4YwDEC5Ygikcjqdcn9tf/nhg1rB7Zvz79jxh2SZl3uCN/EeDlnRNiAQ4Se9etfrgJGxERjrCOnKvDOjMHoHirweo7mNczWSsEDGOHe2lMwaHBwV4XqWtOLeGYc+s65VfsgUQPwwne2P3N/RrYIGaKkKBxjE4lmDItCkGICe1TiRSQRY2NZ7h2iat5qkxiDVBbhTJuFSRGDhCN7J9vYEIjcp6KNci7BVD8SX7u0E2uI/FzPWMZ75oE5A6v6o++Bc3rgTOoEDDM2jCHYgBh1ZPFEvOvsMFiC/NX4zM/mIUxqImCwJ2PVOmuswSjjjhDUif7aM36dZ73XDnJLyCS2EDZ9Z451FWdh3JsnRcG9Xe3J1RwVPLWdjHBaa7treTIRWITQumObFiKn69mgcEUthJnzF2ftuKq+35lIC1jWbEIktJHEGXMX1f09z+bXXm7RPxF/HOZvw5yxA1NnNizTD0eCKdsijFWkUDDzbB543hnOj0s6wtSsP4gyjBJxtD/i2LbXXw0BjS2cucxGhc/ugfjC0f44/z3QE9Lz36eXTIsAXq4Q0gl8GRIz4skAwntS2VBVREp3GbXx9FCjhWAB/b0Jv+IRtUjZVByoj8/1DAsblHdeyY6UonnAlCcT4Lv3Ndm8+e23smhR0LIwCc9VeEIbRVJDD51DQWs5SAq9pNLhkPpsUazw3Fyfx8hilj0dcwgProU278UosrgyWo4ePVTnW4SA/YiEtjCs5OH53nYF3q0/+h4Y6oEzETKGjU6IK+BUyRbgU5PlLSOiwKkjjwCySGPChJBN49B4JYYAe20wQn2GyBrHVBUgBnQZuAicgyeUFxTglqobI6AM4pAEBoNQIwYF1dq1yCbPqOepPJu0A+gZB/IyeW+F3MoTLcMjz1FhjQFZRBSAD8rTzJz2nt07Ca2atXBpGQrUX0SRYVPhV0OkGRGePmdhvK9zylDZHu8nsKbQm7vmGzUauAvXnR6FG7gzog4M7h7YGtKiqq7+0m/IrXf0fAoideo1Y+D//KdfL3I79O/T/3UBewARlJZhTbZewweEU2GjscEC3kN5nK/n30/YbHk5sxAbO8Y8Qjt92uxE2cwu4nc8Qsn69WvqGoSMsIjQdSkeM2fMLe+p7zYK+4Y/ESeNH6RPYaW6f/bPVul365YNqfh+qOYVryQPv+rABNSD8ZrsSfi31I3yEmUuTcjY8x5HYwzDLmt/zamIKPZGRYThlugFY1OOK4H0REQXuOA5hCLDvLOEdGg+I6QVUhhsY6gr7gTTeFCNZ8Y9cYmHGebBHLhpmxjPAceaSPpWYZGoIveBq0ePHil8hl/u2x99D3Q9QGy8KjaSrbKOZ72FBeUBzRqNpFlH4RIbjxcPdhFJzU+kyTj0HUwi1jtcY85XrYOsx+YA4hlzq8goocfe1u7tO3hC9DdetYtcCp0nepoH7EeeRxhlLqhMy5PrcH7bKmxKRREheA1fElqf5xCNNDV44V6uU2TIc3uWiurJveADwmje8myKwFFMEBbDHR5kkT/IqighQvKmdauLOJb4lXB471HRP8F3UUTaJEbD5B0hvzCt88R6bmucvibAItJTU2PBHqbOe/Bb/65EX+f1x/ntgZ6Qnt/+vKRaA4IWkbkxJhG+Ip5R0xgbs7MIAFSgvidqUCnKmYTCW6dkcl+XUt1ygfbu3dWAPd9Rm1U5BMwMAqq4Nl2DzAJT28sgm+4NbN2/K3oBoClYrn97SKkSOmUBLOI4tOB14VLapshp1wJoEe3AXnVezyxUxKInJKoAPiT02PEs3Pne9a4V1sUQYWTz5PZH3wN6ICB9JuGiwxijtk4BZIAIsaLuIowAD0ACeeNPFAABBFjx5BXQ5WcH0ud34E/5fVfhiCKkLUcH+AH2DOW6vtTnkMPypsZ4N455KinRwJ4hwHAGsv73HFUdN21Qmm31Aiwp2tRfIVKQXKGJMTHqAS8jWLXbwxFjmsdH/l3IR7Z/EWaLUHZFjAhF5gzgVh1x5vxF5d30zK+/8lIZC0K3Ko+vCGi8ZpOmDcyYtyhhwDPLiNixaX0p18Bde0Ql78DgYJgIxxIyPCrkk/E0uH1LEdZDidpw/pE8J4OlPy58D0zJ2Pnd3/2vQzhfiVcy+VlZz1U8N3bLs07ETDjsTN6GCAzImgJIPJ1CbBm4vIklbmQOjEhu1oyQzukhtQqM8JyuT9s8k8Y0sUYY7tiE6aptMCLGKBHz1VdXl1fWOTWuM/9E9kyYOHngREjulhBTXluHdV9uKIxSGG9Pws55d41zmDMq43b06LG1zvu8yGDmitBdOIX0yTVlqIvYQXJhBJLs/oRbz+mzLtSQQV8eUhiavkFyteueiLLriE819/P7G1lH9CFP6omMZeuFa9wbYda++3keYq05p7+IqO+882babqLVhR8B/R0u9R6wZgIM6ygi+GbmKJJE2DM+u5BVdQhE7xBFpYXAIJ56UTRVAT6/qwprzBZ+RVRxfYt+EdFyZd3D742QxqmQ+7gv8kdINaYJts0OS1XdEkxT8C/jnLCoXWIp0TTTq/CT4In4SS9RKA8Jtl4QeycnXcx1ajTAoDdLpGmhwvZdRTClc6hVQNSEySWU5j4wTI7prIVLCgcP7d0zsHHdqkTYiPzJGgbHMm9b5E/WpLkLC9OQ901Zb3Zt2Vj4U/M2opL+8kzwFEYRVhHdw2mPSMtjC5f0gwifHqMuzMzpCemF6ddLqtXf/y//UanRm5MHRlGmBDMMeE9nxdhAALfFeBDuxGNjIo+MIqfw0cksEoODuyrUiBoMwCfHCOVZPRjCSkVHGp0v3ImBQd2mXqnYC8wVjmD0A15GjQWPcmVxBNAIKoC3+J0bDgW4eVuRac9s83Jhx36uxS8LhPYZIjZsd23zrr5b90E+hUkJJbOQAf88b5ZKlKA/Puo9gORRdos8Zgzy2B1NuB/V1lgEbECpvB8ZNRTpTik2R5zjd6FUSBewNTYVfWCcKiTh8Dty2+Welpc1v/PyU3214TreTmMZ8WTsax9I8hxq69iRQ2UcMB48e+f5PBAyyqPagH5EqbkMB1VvET4hVb7zmdxQBR0QSyFPSCwjxHxyL6G9M+YtLCJNDd6V8EnhzMKTeWFbG3MHZqVCq+fldd249qW6V/UFMpO+cR5CPDNk1XMy2gejfm+Mct0ME33TvG0IsHL+VOjv//H/XSGU1XH9Hxe0BxCiG1fcXl5JkTM8o8ZBRzphgjXTv52131pL3Juec2fEK0qE5Il8Jf/+u+JJtcYb24RH6zzSOGf2whisVxX+vPbqmiqSBGPKO5JzkFftmTsbQl73Jdy8ywGFH56LJ9d91EFA5MojmrnYkWSVeHlwzS+G5eiQUtgmvcS+2l10ztgYvzDnaMa8onnI77miKYEThvDoquwLF0ugSZtCepFS80hfyCflAZYLCp8QBKRTX4lAEs1TczvXSRvpztHnCkWZ59oW+qtPkXZYSDj1f3/0PZAeOBOcGUbAQ/K6wkPWWdXOpVNYk5EzBMl4lkaBdBmniKJ55TDfHERJaROia9hKthQbZs3O95clZcL3Ukv8bP9Qc7VSVzKuzS1rPlxyv04wHZlnkdd5MuMauZQqwvEgSgamCJkVvaNdz+vZ5X+yyVS+VURIGC1M9d2chTcULitwt33jawNvx8bMTet7RfJgD0yEka+/8mJd/27mI5w1f+WwOkcKioOYilRWGktELPMUHhOhEVXeV7UMjoVMb13/SkX/8PBqk20A29kJYyLOddvEeJ/+OP890BPS89+nl1SLwG7JkhvLS8qAkD8q70feDBWJSmybl8mTp4WQHqgcU2CNDMoTmpXJWiG+8aK2rVSuKKIptPdUtmgQBotMMlYUtbCAKSABzH2GqAJmRNICxFBhFBQhzeJAkWYwON9Cd1UIpPN9xjiyaLZQSHvH2R8uxCGLic88l71PqdkWLGAv90iho1IKc223EbnwMoq5axhZ/fGR74HKzcG8KLi8nQCxvB8ZfyrKAiif8Zi2UCg5NVdWiG2FjF8dwzVjj2jCk2rM8doAfN8Dd157ZBOYE17KIIhy3dTn5PlkLPrM9dclhBAwMz6o3CrPvh8Gla0tAsyeDxmdkPnKW8szar4wKOThAGHtAXpk070R6U75FR5MbW5VbGNQZ65Q4ecsuqGMAR7KjdkLlMFhnmqXMs+bOjuhve6vYBHg1mfmOwUecUc8KdZILeODsbA553W5RJ2RxOiYPmdBKdGMFoa+Akzu+/QD91SffORH50XoAOvlvHmLz5JOBMmabY0WOivEFkk1hnlF/X8kgqOQ76q0mbWXN5K3U9iu9VoRo/UROoiSxobxIxRX8bx5cxfnrc4MvPramoGtyU8m9FRuZTAIuRTJY8y9nvElMsd80SYME9GjYN6eGKm+I6KYmzANqa0Q3mBUeUQz1xRjEpIrJ7XyMiNBei/Py0OqErv38hnR0vOKviGuVhRP5h9S2nk6Ow+pMSxvFHl16C8k2XshmcdiyGoDrsJH78dIFhYsnNc9tdWwKmGX+c4a4jyYezxzv691UF37kf8DCYITxjpPH6KJECp0J+XDmLEGE1AJIUQRaz0vHlvL2u4wj4wthJa30xwzr9hbrjMmu98bSW3iCpKpTeKluax4krlhvMIih7oL8BM5PHFErY4WsTY2Od22TlMTANa4h2thhJxNJFXkDuxyb+83PeIlkngw6WLbNqyr+9b6kH4QgTNn8Q0lRm0JpqiD0O0BDidF9MAn7SPsr61+rvYZPTdP1T2mzZlfnldFi2znsuHlF0Iyt9S99Ad8h2WecUbWxkmp3Iv8IqBCe7/7b/+w2u+IfnVC/8d564GekJ63rrw0GwLm1GKKrZ9nRZkSsjs4uGuAx1R4LaD33dyESJiUwrEAuZ+ptjNiTDBW9gTwkU0KMWVZzpHfD8er1FWzZQgIswL4rmcU+LtK+2dhpOa53xtvto3PAbfwKUqxUEAFiVrBiPcqPIt31fWMBgZCLWz5GalkLCCnQocp1Rba8mrlHsgzhd19kVbFj+RF8OgK7+2Pj3YPBBzPBOyHUUqBC7AE+IDN35RcBi8CB+R5LTnWgT+ANvYo0MCvAJ2BkM+QQeO1PKIx3I1HoVNC8swR3zu0CeSbgZDwwYAuA8QWMrydgBjBZJAoYkHddU+gau82z6N4EZVaCBXQRATl4djX03O5p31IZ4dsCgkAqK7pjJUMeR1aAABAAElEQVTR8RjNW7KiPMPbE2q7I/k578Qo592lbCtG5HtkmlLNo4qYe1+f6QvhTTOjRus/RgI1WtgWw6YU63zuPhRreTt+3hOvKkNgV0jJ22+0vCaklkHv2Sv0uHqp/+NC9gABcVG8EV/72t+t9d+eoq+88sKA7VgIhsYxQok8ESDnyCOePLVEvXUJe+PRVLTOuC5BJQImEjsvhiUhcFPG06uvra6UjTRW5I23c/6862vrF3uIrjVeyiPYct3q+4wV4k63hQyRh5dVvuvsPMPRI4eq2q9nZMwSG3lsj0VEgVGdQAqf5KYeiPcUDjhXET7PCrNcLwTY1jEEUfsVmqvD8x4EUUa2Q+SEeaxqPEJqLiGk+sdh/WDIwqA3E01gb2z3Eo3EW/xejHrzoXlAj9Y4J4wy9kUcwS94ykt67TXDi1zzNvfHR7sHrP3EQnggiqSwJGPO2mz997c0EY4FZBNOWIe7onpEUWuq8dlhkjaMO2s8fIMT5prxC3OM0xJI8zsMRG6Rxg6P2IG8h67rBFP/SrZ2cZ8Oi+AUEoeMujeS1+11fTC258HgkKMTSwmeRFBiKYxxP9dMGoqykc7xejBD1A8SbQ4L5521YElhkPda9+LTA3t3ba9oouqT9IX+Q1RhGWL/2prngnPrg+uNUBcBTT8jnjBKLqooD8/RRf6ooE9k1l+bE+UB/9ia/XH+e6AnpOe/Ty+pFpFRIUwVQphFxAQEfowCW7dsSew+EDfBkEHhuIyPwSjRClrYHgLpk9PDOPG5fB6kkvEwavTY8pICU8rw6FHjspikhH2IKsOAB5RBA3QRTWG3SClCaVFj1FsAKtwrUG8hqVApnp3cl/fTAoBUUqJVHKVKq1YI9B3uIyyqQnRzDQUaeejOYwi4P8PF8ydHJ03+qFkT1UL/x0etByo3J0BpLFJ7qbkM3wojzbgCrvYra5uO2+4lYzFjFhED2ICa59T5gA75Etrj83wUQtoqPfvd+EY2nUexFSJlbIodB/bGdwsTvqzCsKjMci6RTF6k4wF7RgSFemLCbV1DRbYhOUOFl9H7IJsKE9V8ybyryrrJiTmUc+XAmBeen4dyfoime/B22t/Nc5rfSDAAZyCo4LjuxWcqJMr6wNhgBPCmMgQYBq+tWlltAPgiMAx8BCGkRDjU8Kw1SOb6Nc8PHBzMM2eumuPA3XnO8T+P77//w/+t2uoJ6cWZjdblcREIVIatPLD8exAsVbydkFoB1vS1614aeD3hbtZbA5YhSLx0Do+nNXXnzi0Dq/PveygGKCInr9LWRbPirV8wf0mt2S/HEFQ9Fwbw1liTpwRnEExr/6vJ/yphMzfhNeSZXRiyTNxcvyEe15DWMorjkSGcepZt27Nn4JFD9bl8VPmrzoNnxjrcsnUNI7uKMiWfzjweKyIiWAIviJTwMYO3cjid6/3M2VaXINuG5VmF3MIZ7+ZnaSdEXhEI7uXZWnpJy+9GOBn6nkE6iXcmuBKA4e/xGPWwUTV732kbfppTfpZP2h8f3R6InXMmpG6YMXF1QmflV6pYfiJ2lXSIFi3Tqs9ae+WPvpdxCFOMcVEpFbkSsgUvGDv2IIUjxqXxas7znopmYRfyujoXvsEvdTgIpsigtd99fa+aOjsMFvDYHjucLZUy70TPjBCZkOckjHZk1HXTZs8rW1KFWtXjCTvW/9mLlkaYPVPipDoH5ZTIvEAMYQxBWKQNwuvwbryX85feVGKttBJCKdJe0QyuDZbMS1SgLWZsf/bqi882vAyxNNfgnqr0Hc7Zz1URpE0hmy3kOB7iPB/bYEzy2BFV6Sdjsib9w9/7rRKs62H6P857D/SE9Lx36YfbIKNQGBLAR9KENFHBFYJQ2VBZfzk6iGEp5IuWlUK9IaAPOBmlzhU+JdRJYQoAzEhASiluqiMCforw+MTV8wzxqAr1BbLa9X1X1t7G6UJtqdQAXHEkpJPRz0C2SMpJtVi4P0COVV1Ga4Xypkudh5xSny2GPvdMFHrX2DKCscOYYGh4f0U6qNvOdQ5FXLVdhobn64+PZg9kjpwJkRsGYIA5gmYrFYUUFFCg7gJCIO2QmwZUhbkXUGVe+Z7IAwR5TI1P4ebCyuXQ8OiUx77U1XjyMx4Zuwgp5brAPeOVF4aR73eGAO+sOWyzbwS3NhXPeQyE8THgWRaInbApBoXiRIz//YO7UmF3bwyNeFHzHrMXLM39TxcRFXrMAGE8zEwYUnkpk89JKWaQeHZhV/OX3lghU8jrpoRVUt+9L6VeqNP8gDwiiaRSkPUBcolsI8qunxilWR+ue+HpnwyrSvh+KdppC9kWMrV+9cqct6kMH+uBghGMnv648D1g/ZwfY+tv/tZ/Up5RHk1ePQfPXhHPEFQezwnjp9Rezi+teiYEdGutqdZrES6TYgDCmHEppGW/51WrYwAmJI/ha921BdickEhFlBDM1WtWZv/NFJfLWEbYFMqTVmJ9f/nlENsYs3DCGi6HdFJEUqR3WwgtUYdRqtqu4ki7dm+rEF4E0n0QZbgjtNd8Q7rtpW29VyMBaSSiuq/fYYb7uFZUj2fwHZyDEwgi8eidGOXep4SkGLAw6ooQecwY+UQcyuuZOcc73PJpEwKYuS7qQQQEEdZ88hmhiXdWKosoooroyTPALvdpZBi96I+PYg8ga0JmCYXW3EYiL2cWnQ2frQJHEWhgF28lLylccL4iR82T2DykohgQMXPOHDK/iJlSQ8yTj2cswgFrvpB8aRpwCh511edF/chbbdjT0kms1QREIqhnlhqi8B4s8hnMmRZhytouRNffng/2EiJ5UUsszXxCgBU5WhCyqe4Bb6TQXqKRvuDF9B0xaN1LzwQHd9W7tLzU4FdEVlE4cllfee7JSmfxbnAcpqtnMHfx8sJHEUHE1CqClPmLTLMVibtyWG1TBodV9RXNI/QYVhKH4Vt/XJge6AnphenXi9IqEB6ehaN5IUdUGNTiEEyhSowLFQ47MoZkLs5kBIKvvrpqYHDvrnpGgK2wEW+nohE8iCYiY4SxIq/G54CbAcMQ8P1gjMkioEMGCQW9C/MdM3p8GdkAn3pMEQbCFHdeKM/bKc6AH0h3IWJ+B/YWM+DvvowIxo+fi1iG+FpQGQ4nQ0i7cF6feTYLR+eVZWyo8jsiiyUPq3aGCCm0z/LcHx+1HkBAETeA3Lz0zfsJsIXROgCU7wCZ8ChgjZhSU4USAdYagzE0/ewAqLyoxiCSZgwLqa3woYxl4KhN9xGqJP/n3fyO8DEAqNrAHjDyeDJkKeLIJALnGioyI0F+0MSQUUR2XwQiarQ51go6LC7Vemeqk7o/4lr5nQuuL8KnyqDQXIr4yPTFghturvAvSvOuREx4TkYDksoAcO3ehHO++tKzAfvsv5p55lmQ0AXL8n0Iw76ESr3y/JNDIVWISEJ6Q4xn5Z5zFy/L+0wog2RtyOy+lO1ncFTYc+awveuo1femoBFlvT8uXg/I8V8Uj/fsEE+eR9ExR44eHFiXfF74YV03nq3F0jEWzF+a0N0F5YlZF6/maxEuunPgQxcGPCbjd08quL+cEODaszfCzdWJQpg8afrA9TEcMzkGXoxRuTc4xEOCZE6OMbgw+HUsQugra1+sdZpHUoXc64Nd1m85qnKnzUf3UuNgTwxTIilyCGsIp0diJO9LZACMHJ0x7tkVa0JMvYvqwci382ACfGRcSxExjxDMLjpHCK9wXVgKn9xHJVy4RfRhICPwwniJUNq3rQuste2L+UQk1g/mor8JVNYCoha8sh5ZL7Rp3ktjQU774yPZA2ey9g4zHoiHcOHajGu1BazX1uAK2w1+ECpF54iW8ZlzkEsEVVVdpNLYEtJqrJl3bDJiJwJrbJZHNOOyotOCP+7L++lvc8018IjQepINlzHtdwSVYFoRRvm5y99U14CTARlV06Ajox322T5M+yJnbANjjjqXJxKp3ZFUMsXyikQjopnP85auKM8sDCKwNuxtRfgWLru5wpTXBn9U63Ufc7hIaPY2nXv98sLL1yJ+bsq65p3YlJ5fFWBpKcgx7Ce0iuZRFRhxLw/1UGSSPnv+8QcqEukjOSovwkv3hPQidPL5uIUJiCQic7ZkUTHw+sVRhGIUKhDx8ivPxzBoCqzwpXkJyZVX4ztl9Xkgyyua65Yuvbk8i2sD+gAYmJYnNYbJgShWyKyFivo9MwuKBYinFCHkYaRaA29GgBAtYVsAHuBTmRkmPKcIqFBZAI00qtgLvL1HW+ySKxfPJkUZIfWZa20JA/SBP6PAgkrta+p4C90tpRmRDTkVUuW+yCejxfswHiwgFhkLsc8RWGR01KixpY5XGNr5+Mfp2/ir1APlHUWmGtAnJzRjA7FDJhEtIUlIK+IHtHk1kUIhs87l0TT+Aanzkcoau/nZ+KYoM5iRwfIS5WcGNwOBF6ULz+3yMYE7bQT51I6Kf6ogIp8UciA9NqFDwL8Rz49VWXrhtTbwplC737h4goC9zwC6AyjPvX5ZGSZbXnslijMvagqWpc1GFMcXCCOi5hcDh0q8eMVtdQ0DQEiv90BSEcsFN9xUlQnl86xZ+fg5VRJT5GZI4bbJOUObN3VzSMtbp5LznTwcZFxJfd5Ue5v6bHc8pBTvVU8/Ugp9PXj/x0XpAbhy662fqbzM0z8Sbts8o0J3F8i9yljYk/H0QvKz5JgyZq2910VwmZqc5YXxxCtaZK/StSGo1lTrtbV4asLuYBQS9txzjw/sSG0C8wNRG5sxD4cYjjyme0MqkTBr+YyQTHULVPndvPm1jMuEq2duyU91ndoH9slWy4C30+e2KINHyLMQXM+2L4axz91DKop3dR3jHGZp81zRlBFtyxZtwChiLE8mAQrxLEE0bXnOMurTV4xm7YmIKPzNM5mL8AzuuUYEkWvMfVFLRFRCsggkz6HPYPrRY21bGIQUXvfF9y7KFLjkbpLxdiZYU2K5MdvGV9tBgFCKQFrDrcewSeoIcdN4ZrexeVTbhS+8g+28JgAamzCFfeXnTkwlihr3BFE3hofOg4nET+s6stth4vjJU8tbqiq9Z4IZ7DVRL9okyKrojhzCImKue4iQ8U5CbasycK4hts4LaSRGEkVhq2dGFhffeHsw91S8mc8V/rHlFFJScIiIaXsx3lD5s120jvDahTfcUjiLXKprALddq6+m5HsirOgiQurLK58ozNTPwpy9uxDjedfHvg6eHgu+EnGff/S+wmT92h8Xpgd6Qnph+vUDtQrQi3zGeKOsjs/EpBADaqD+YowD6qnzeAKFKS25/sYilytXPlYl8rs2EFOGwcYsAOcSzemZlFTxzQnPQ1oZwgwLuaVK2ju3EdBrBpTuB6iKTMiBsb0LouoZKNw8HeOzqFiY9iePDUnlcbUwKjSRda5+RxIRVOQUWAvhtTAivm9lEQP6CK9F0f0AOWWaQWGhpdAh5BVanHsBbYsbQgu8O2Kq7xBQ51LAqd/CuBB11+ob1YG9c398tHoA2ABLh39/wAdgKNBCoPwNvKinTWFuVTeb5zIgH+MRkAN6W7H4uwG8glxRnDP2Twd8r8wYNzaBKw+MMHN7wgFNBBPBA+7UbGqxdlVP9GzAHckUGsTQnRRhSSiV/NAyuDPXkDrbpwh5sp/pxIRKIbLK0iOy5ozfkU5EdkuAHuAi0FRrOZ7yeeTNeH7EW7jV9TfdUQR7zXNPVNiVcCnl/6cGoBctvyV9NjDw0lMP17WNpDZjhUqtuNGJiFAvPflwgH5bEVIRDdfl/ebEeKBUe1cq9stpX8gV44pwpN/l8fRgf3HnI3z5+7/39Wy90op+SOtYk3xPIbXWY0am6BK4wDNqXK2JkafiLtLFO4NkqbIrAmdUzl0ZkeL1jesq0sW/fxedI2dUPqpCR523kRC6bNktZQS/tEqo776aL8JYF8cgNIfWZluZYxFrzLVW2GhBcGd3iaTmA4FRiok1Xd0DeIS4ihTaEy+tmgfEyKlTZtbPtpDxXp6LQIlI+l5f2EcbcfTOjGgEFVaVsR6M8v5wSYE979aieeSZtj1FzW/fw6arI+7AO6H8RUxDIhBY4irhtaIEhl1eeGst8q5ELj8jqZ6tPz56PUBENI5UnD2V6s9+Rwavzhh7J3OOEAk7fE5URfQIJ4QipEsRHvjVcCn1DIj8Q8Xq1AmRE9p5H+WdWoMRNePRNTARThJmjW94RYRF+qz5REnCor2jia7WdHikhoFz3Jswas4QM5FSJFK6iPaFwfLoIs0z4plESG3LQkg1d70f0VOUzetxmvC4+pyQi9DyZsK59aufK1yEfyPGJNIn0TywbTA28trnn64aCIg7zzFiuSAYZX9uAuna2ND6jhAMt+WlIqlEUs8rb1WorhBli5M+PLg3W1Ll+RHp/rgwPdAT0gvTrz93q4xVIUHULURKvgtVmUK9d+/OAncqL9XKOTyiS5fcVMrq0888MrA1YXnIGtCzfQtwRwQZBa7rKuIyFoQ+MTaE5SJl1NnFi5YXuAq9smgJq1LGH0kUslUEMhNWhcVwxIHNW9afDcO1NQBlWwEjAMtLCvyFRQF41Xx9J08OwAt/QGKBrgq48mc8O0NAzg1DoIF3U+kssAgw4C9CmnBfiyXVrhbZGAj6z4KKWhbIZ6GzKDOWGB0WVAZF20funSKoP/c/Tn/iL1sPnAmZHIZ4ARVAayzxgCBrJpm5wxgQWo68KeogvI4BANgAMKAV7oskIqcMSd5A462N07ZJOcMSaVX1sMZtxrsDYFORFZOwrxoFGgEF9sBZe4imA9Cb90Jm3dv507I2AGn/C7sF/iNHj62cUAaB+1GJveeOVMe1n5u5xBNLcUa0eT7Phj7mHktv/mQBMaIoj9Mc0j9IpNyb3dsC8gHxUt1jlPtuTsiuvB3qPJIqdBiJMTflCAF4nlL9pN2tG0JScu/Lsw7YVkeF3vlD3tb7/uT/GXjxiQerH+rF+z8uSg/AHCTPmCcGTsi/26KEzSKYjFwkcVPETASS4MiTRwAV5itn9IUXnqzwWms8sqaI1fwYngoS2Wbr2XMEUuu8sGBbzexMPhlii9hZn2HH8njlCYerkqfKS2jOCCG25Yu8VcKpuYeAylnlYdwUAi2CZ2Tmxdw5i4qUyiuFCxNtPZG5haTyaPKcMj4VXxJeK5TXM9vuDLhJNYFDcIm4SUTyHNryLAiieWRed4a7Ocvri5QTQc1dmFMhgRGTusichqNJVcl3wpARXXhFIOUt9bm2kWXktT8+mj2Q8Xkm82zYNZmXIlasp8ifNVRaR1frAFFC8owbBSaNSfNA6CtBtQRT4zDjUf7lD2NHMZLgVUX3RGhEQhFDRfQQUPdzH/jkOmOfnSiv03iHLbBKtI7nQOicK28TPhJMzScFiWAWMkrILTIaHHDfHRvXD91vVIXKEn02JbLCed5z6qxER2SNcO3WkFTPBJ/tjT0rBdJ2J498w8svZj4rtBQvKnv5xjvqHjBGPqo5SWBFMkX62HdbPqooHMS+kdS2XzeMmpTcVBXoV8eelvtKMKoCfnGqwLfZIcFw9x/+3t+sd/Bv0h8Xpgd6Qnph+vWntgpwyvOZyepvYMvzOTM5nEdD3J5+5uEKj+oUVCCt2APP6IYo0nJuFOox6ZFJhgOwFsK0OkQTkDGKVShcsfz2PMOZgWeffXTgcAwDIDg6eTQ3JEwKGL7MGGBsZxHQhmvkBNnPTRvycIQ5ydlhWADPOSGqgF0oFW8lQ4YXEsHtAJ7HlnptIRkXDw0Dv9oMqUSIEVLG+6jkLnleBglDhYHuc6FewnAdiKiFqkIks7gissJxhfEyLKjIjBnXWWS8j75huPO6OBgwjBwGQX98tHuAkiz0CCk6PUScqMAjM44VQhidv5E0BUhOHT9eIATASoE2tggjIZEOau3bbyacPCHnjAHjHUktgzTAC1yRU0Ujrrr22hq7Qo+oua5FiF0jz9J4VSUQAR4XI1roEoBnJABc5PSUqpwhxNRhnlMeSOsJ8Ef+VMt1jjbs18bwsK+n9xOGOzVzfEpCG3lK5e54TmHJCKq5VEUgEs6IiNr6ZlGELW0LebLvG8PBecCdF1UlxVVPP1zhvsg844Dhsmj5rQmlWlLGiRBcIVzUeAaCqocL065wK2HN2rZfXOcVtUG6/u6Pi9cDIlmuj+jwxS98NZE3T1Ul3DJys44iSrNnLQi5XFrkbs3Lzw28FAw6kbFrnHSRMgRUhOyJJx8MaYxAmjlClFCsiEAK64inChOZK87V7oKE+27fsSkFlRiYrSquSrnyQjcF084S0GDFDQnBs1XY2pyr/gBBk8gqsub1YJR7wsQ5vCfxitpvW2iwQkrwjvcUNhB0keeDEWuNWV5U2MtLyiubiVo5nsg3LIMdMERFXbiDnGoHdsGnIqeJKOLNgT8+I37mksyxRPgEtxRM6jyt9kAViQQHYSCsMxf3xbsEx/rjo90DhD44Y63vRFPRM8aqXGvbErGDkKL8VGOziGjGVKsWn2izjGWFfthEiKS1l9fPtd3PrkG6EFJiPm8r0oo0Wv+t2V2FeVE7HV7Zv5PgyRvKtoNP5oN13jPBIhE+iGNhZ+YQ4dIar4iedhXs8xlCC1uEynvvxTfeVmSQWOp85HdyigvBDJj4cnJEEWafE1uX3vLJXPvewIuJyDmc9BGimveAP65RXOmlJx+qugb6TJ/yoMIoWPRKCu/VvYKR1jPEeWrE3oVE0kQE7cs64np7evM6a49w3B8Xrgd6Qnrh+rZaRrbkuEyJcQe45V/y3j3FmIt3EwhZGGyXotiDUvqU2CcD7nsGdxTgIX3Tp80eWBo1hxHw2GM/GNgRcK+FKL8rr79s2a0VLitXh8IrX1So77IAOTLG2ADePJc8oFRuhSuoxzyX46N2A3h5QryglDGfIcMI7+EQVaqXAkj2jduT8ArgezafNL93gC98lgrNKFdMQp4Oo1WhC8TT8zFSGOwUZFV3eUeBt/7SPzxUjH2fKRZTYB1jhnGA/DoPWXVPebBdKC9jR7uMAfvPMSL6o++B9MCZKK3Dho8eE1CzpcvojJ+21yIgA8S8dgjp8BimwpcY1QoaIWJIIyOVYeBcn1GQiSXyPZ2PBALXUnUzps1PHlYKLy+Kn5FMYY6nAsbK8AN4IGdeIMuuP5bfzUl7sAnzVfiBwTt55pwihnJyPPOECFrjJk/NJuJrC/wp3guSm2mubFq7uox877lweYuakM8J0JFWnkvgKzdG/qiDCiz3Rm6NCoRCq6oIWd5FwYnrb7q9FOQXn3qonrkEtohM8n+ESzFaXnjigTJOsnBVSNakCFuLVtxaqre8ISTVljUMeX3IoGE8fO/f/V8JNR4sYlEP0/9xUXqgRcq0quq8l/PjDRBaK2JmZbDEum/NFSUg9UNqCLFSGO2LLz1dAqnCKSNjCC6M15TncnDvrhJCkTneG6GxSzI+tLtKYRHjKsYrwgfvpsXodL8ioDGyCZcrYjSaPy8Et8wz2OP5eEdfSSidmgGwbH68JjwiQoHNO6KrKKPdwTGROipQi+SRTyp6B+4QX6WWIINCho1VkTzwzLMSYGvcB0vcWyEzeONnqSRdzQPYY64Zy0TcRlJV0G37NiKa5r3K8LZ3+URwHt4pvORcmCiKyXv2R98D8MZckmrBy2lc8kASJ5E4oinCRQhFrrq1HGHtsMs8RUKNvcuGCKl11hjj6JACgpw6bBVDnK2fc28YZCyLpIGNnsFWM0QYmGStqFzSeEfd87rgJGJoWzGFljybyByRO2odXB0hVlVb7cASBLbyRZcsr7xSuANTx6eNuXGuEEphhINYuuTmO2vtWfPs40VekWyYd8Ntn645L6dTgaNafzLvr4+4aqszJJMYW1EMeS+eUl5Uz2YvU0QU4XUdfJybdWtecJO9+kq8rETStq2OcN+RCeOdH2wcM/DMg99LusmGer7+jwvTAz0hvTD9erZVlQBb+FO2OQko8VQKX1UMYkHAH4FaufLxCnvq8mpGZzLyZM6LEbgjsfK8nAoEmUAF7smtAc6KFfGMWmAsOgwFhSIA6vPPP1GgB7SF/9oPjrdT+JXQROFLN910Z5G51QnLQvIApfsCZ0UqnIeUTpo8LfuVbiiAB+jydXhB7e2GCPLwUqCPRMViAAjVpVBTvXl5hd1ShBHPyy//WFTnhHrEsGcAIN/+puYhotpT1IjBglQzGoC9qoaXxTCiZCGvjGHnM2oQbgYD44BRsm9/9jsM2PdH3wNdDwBLQAtIjTUqNEAHSMJ2ASPABpp+fveHChNdWYDIIHcUoMfbiNCab7wyVGcTpfMg5oJSU6nK5qVzkGAKKwGFd5RgAvAo0Tz5Stu718TMX0owZRogM8IVDkJSVTCk4Mq/LMM7Rov91nZlGyfhU0K15N0g0ApDNPCPxzIhS3I15Yp6DwbBkpvvqPu/nGIQVHFE1t6i05MjCMjl87heXqcKhBRnhgJCi4yX9yvPesOtnypDaeWj3x/Y/vqr9V5AfSLxLV5U4Vcb1rwwsPrZGBSZ8/rd+8slks/jfd1vVbxncnYqX0dH98dF7QFr8e23fbaIJMPVns/ETKkhomeOxBj9MYE0/8ZTE+YGK5z3TMTV1xLBY70XSSOyZvny2yLsjBx4NGOjKzY0YvioEj0nZ9xKHbEvqQOmLV92W639z2QswB/PhEiq9L4hqSPbg4NEGmG484J96+NZgTFXX3XNwNyElBOMVIPn7kE4CaGbg1meCQa7x454OhDEiXlmud7yVd3H+QeDXzDQeUgjLIbDFcUTQ5331fx1DiLaeZF5fLRpC7S3QhTMDQSZYe8cY140gMN3sAvmwej+6HvgnB44kzV8GEJpfCGECs8hczyhyBjsglfWSZii5kBF72Rcnk0hyXiWJsJOgkEwjvCJnHXCElwyz7vwXYTTuVIvCJ0E1C5ShbcTeXNPe4x2mIQswyRzQmEheCh6BxZJ3VAbQZgt/EM8zQfEcHYEq62Zu0irSsByNrUjWkY7PLiuE7YLG4Tuwlj5tDfc+unCSZVupZXAcJ7OZbd/pvrquUd/cLaYH+F3biKFFmUdEmFEKPV3YdDIUbW1S+Wppm+ef/z+8tQWgU3/iZQioiqaBAfXrHyiiOqBCG3wtT8uXA/0hPTC9W21jCghYr/3u18vhXlDiN4zzz5SXkMqlu95LJeEZAI9gKzoA0Il/2VSFoTlUYsnBeSffPKBkMoowQE8OS6uWxzvhHCfHyOgIYiI6dZtKR4SRYgB3JFNOT7P5v5K61tEFCwan0m9Oso10ojgtRL7p0p1pggLa6JuuzfvJ5V6RtSm7VksFCbyOxIqd8cChMBa9ITqCsHVJqXdYgfwGTgOqnqFRGXBQUoboNtz63SRS0SUh5OybEED/P73M+ME4CP0QJ4RgRQjsv3R98C5PRAgrk3GgbYQWsAKZAE0jydlGGFFEpsHNMVLMh7NGyLQjzLmVNilJlOshdcKGyolOgYnMin0idFQuagZnwgi8mY+dIaBcSukCdj7DkF2b4aFnxkIBwLU2uO9PB6jFUh7Np5EOTruTS1XDALQK1gkt0jxIqG8wqIYGPZRsxepwgzvg/+CCpelIJfREK+r84RK7U94Eq8oUQeYI6KIowqFvKiMasaP4kSU60P7BgPk9yWvKJ7ekGrbzSyJwCVceOv6tRXO63k6L6qquvYxRfZXJd/09XjY9IF5T4VnkHi3/rj4PUC0/J3f+S8qB9O/FyxRgZ1XD9GyviOnyCGv4+P5d1et1vwROisndEm+twY//sR9Q4WJPhbRM6G28X4L3dXmWQKaUNVlwTRi51NPPVhEmBEOZ4ikyCFPqvknrPXGeDdg0yvZQoa30v6j8+Lhhz+8sUgwgRd53JSqvDw5Qn8VF4KBwvWItXJiVYJ3vtBdXlOC57ixE0s09W7CdlV+dj/YZS4Js4UzChWZH1V4L9eJwukIKYwjkMIlz+F9YBcMg/OOQxGeTqRITX/0PfDnewAJVA+AEFmkJ1gBN4il18ZLJxycIA+PuroGQs9d10XzwB7z1xxBpDpsI4TAHsKmcNuuajzxUPuwzrhFeH2GKAqnlV4CC+BQJlF5H33uf0WE4JDUEQIpUinn2u9IH3KqXduouK+KuVMiUBI2jx1ONengqdBZci6hU04ojytsYcO9vPLxEn5hmwgaIufqZx4LbrX2CavL7/hs+mh4PJffrQJL3l3aCOLq/LXPPxVS+1Jh8idSG0Vho6W3EFHHDTz/2H0l0rIH9I9II15U25SpvIukKrKk34gEyCy86kN2//zIPb+/94T0/PbnT7Rmcl6VCc5TaOBTY4XRKhIklPXxJ+6Pt7FVz0ROeT6Bv5yVhx5OiEBCcx08k82rurTCbM8S0ChKKt7eHCDfkwmkiAR1F0AujAdWewpT2FS8C8MF+jvSLg8rUJ0UY1eoFiWa57MDeJMROfa3fFfPvj6hVXJ4VNUdFUNyWwpNyMcD+Iihd2HgAHkKtsVqQtpHPKlp47Jg2P+N8QL8/czw8LyUY0BukXIP4cnCjAE6govQIqQOyraFThiWQhD90ffAX9QDAAioGH/IXoF6fi7SOOSNB8SAHvlrwIx4vlHhrVRm4UeuZxzwuphLjFPzp37OZ4pHAFMkVBi+cNuWm5LqzjF2O9WaioyYjcmaYBsW45gSDeiFBQJv1w9mv07Pixj6TnEiAIyMIqdAUqiWwkCAEtgzAqjOI2PYIKNItjxVQOw+a7I+IM/Ud55SivQLKSZ0ynZN8cjaFNw2MZtffXlgY3LKzV99osIusEZQhTQBcgaTar3adjx1/3dCbLeX8eIaobyUZsezD99bZJmYVl7UeNiWxIsqdPief/uHA2uefSzP0Od5V2dd5D9gy7ihYlrWYdXX1S4ggr6UAkMKF8mxlL8vJBZ+CZWVLyo31L6axBQ1BVbEqPP3008/dJaA2ut0eYzKqVNnJRrosSGSOCxFhMYN3JxiWtZ8ONj257y2onngzXMhsdZ2BfaEA9uSRh4rIVKEjxQXKSY8nzylzjkVLw9PqWcVGSR6pjBpKJIHRsIZ7wvXeEkRz5GZIweSw3x5sMY7Ho7Qg3DDwjciGBFOGNyIgSgeZLMErby3YoDmqfWhzi9hK5W4YyDDqz2Zt8hqf/Q98NN6IOPoTNbtYZOyJr4TzCB8Xpf0CduJwRgpJDDJ2u87dpCxB2eIgYRRXlAk1Hfmk4gd4qnwXmOzsCrCjDWb95Vdajyzq2AIwkmkHZ65ao1utRXG+7hET7hHlJU7CrsUpBOWSxAdGXIqlHZXbEzeWbiGWCswxLbjGYVJqqiLlLk2kRK8kzBRsSH2ndBf9QwQWIX4YCWSu+z2z1ZFXZjj/WD5sts+k/bHDDz70PeS/rGn3pdgu+LOzxdWPXnft0pg1RfOJ5TOXrS0PLNSRvSl+Tw69qw8VGIuEfWFpMmdW9BP1JDnRHK//tt/rZ6zD6//aSP4/H3WE9Lz15d/YUtU3n/2z/5lVQ98/oWnqhhPTYhMWuAudBcAPvbY9xMG2yrjqhpIdRaeJKfz+SR0U14BnjxOQI7kUauBLm+nz2/K59uzMNga5t0sBjyj8kuvyfdPJfdLviXi674WAsYG8gfghVnJW7VFDGVXmK/FZ926lwq8qcqu9X0+yFYBc8qbiTTz5lbV3RBSJHNSQqsY7odiUHgGBLKB/7UF1J5dW9Q85NTPFD+HsJAqWJRneDMgL8zZVjQqF1L9GNYUeop2f/Q98LN6IIB9Jipv8DuBTxk/gAzxUQwB+AJhnlNjCmhTnHktKbjCpbr93IA2IPN9I7bN8wG8gTt1Gth34VCuRwZLYMk8Ky9sDP/LkheNXLq3UCREUhiW33ktGRhCWYXqKoKkiBDP664tG8uwAJ5Cq3ZFCEImgaatVoQ2mRv2TnM+LyiDhZKMTA7GaFf4CGGdmrxweaVConYkt8fzjwv5uPkzX0x47+6qNqgvKNbyRhkf9hvdtiGhvJn3ck2pybylGxJquzZrGvUY0VQ0YllyfIT7UqFru5k8hzntOwaAPB+quFBd5FwUxtF4j+RK9cfF7wGROQoM/dZv/scDT4QYwhtEChEUmgs/7Gn9XPKr5I0SPK3nSOONK26vvUDVNdiW8HFqovZcowieIkhETTmZI0L64A7x8qkQVmQSaUN8b41Xg2j6crygGiF4KoiEbNqKxnnT8gzSX9bEe6qOgfsgzoODu2oLGM/LW4vEIoG8mnJU3YdwKXQXfgohhm/lJQ2OILieAY7CHVE8CKfPiaan3sj2KwkFdo3iRLCKoe17YhScU+egPFYZ54xpe43uS9u+64++B35WD9g2heeyCGQww/iBSTylyKT1GRGVxwivCJ9+Z5udS5BgnN9baDgsi1c/56lZAN948/3ctoVJAb6MXWKryBfrtygYW7q4L5J7bjQPcqgte2U7xz1Ufve3+gLw6nAEHeR0eub99kTqvJl953lRp2Xdl0NqrUdUVb7dF2EI8YRVRM2xiaJ4NZhwMsIoryyxkmgKQ1wHW1V8t+3L6mceLfwjLI+PkHvTp75YxPmpB+4pQqnP5KXeGIKK/D79wHdSmGhz/gkS0ZE+XLzi1vLO2h7tmZDaI/mbsAyHpZIsTK0Wx8qEACu6ZBu3wxGu+pSS6pYL+kdPSC9o97bGKdCK/wDi5YA6atG6eCefTriSfTqRUzkvK0IIqbr2eGsEtFWTVYDo5pubh+PBh+6pgkEUabk4t2VTcxVvH3r4niKolGLtL0mInEq69oMTdjRl8owCeL/LIzWZgTvS+eJLT1U4kep/K2JgIHoq7gqBYFQwkuXsWPAUUALOckpNfKX298cTKidmTBYq6vHuhDzw8AD5vTEWeFAZGMgplWt0FiVhu8AckVa1Ue6pRbNyRtMfwsUYFNRpz+E8RoKKvv2G4Rdh0P5y3OJMAHCY+YVI2W7ENkhCnJAn4F1qdAzlqpib8cgYYEQiUB3JAsQ1/mKMNk8qj0jb4sUYZoxqs/PCmifmjOuAPfGGsVpl+qOAd6oxgONxGZ95wtBAyMbHyDdfgb1rkVNkk+ItJ9O83ZZ8Te8EPBkUSJ9wrzkpDPGjzDVKNLFJOX55MAo12MD82pBkKrT5tDp56d4PEZaDg3AD9Dcy95HwefGSzk8hGmFPVOzK40nUw42f/Hx5c4VJIcVAngrdlObl8aC+kHDdR+u5GFWqJGofCUVchV0h+gwRBo/wqvuz5cuuvKO1oT8ufg8Yr1IuFLBTlEhxO1EuT0bAfC1kUuRL1QpIGCzR0nePRQgVHcMSRNqE5i7O+Fsb8VIBPTmdxpvtX0T8iMZZ8/Lz5X3pwnArx/SR7wcD4zWJkX19xJSx8UY8nZxUGCTVRXVdxwsZO/BBlA7PqIJ8KuXCja6Q0p4Yua5ZtHBZbRNz8NC+whpEtKvYC19hlS1j7FVKMJLygmTyqqpIz0usEFEjvarBJ3c078Nzqv6B+WOe6RdhwdYLqTDWGGRYMT1pJ/3R98Bf1gPBkVhTA/GOzsoYe7vETsSIINjNIQJQlPuq1g6nhgevFN+DRdZwIiMyibjawqWF6rYifd33jDYiE1wimpZ4mkgZ45RIS+S0DoiSgQHaQN5sgwLreAnVIkBip8bxoQCda4TG8rQObk+UwhBplP6hcN3IREAgkWoS8KQW4YvHEZ4Ji+VxXSpEN8+ggq6/Ffm7Ph5NBY7gDjyenL5ZEdyRjiKtpKvUu+KOzxV5fSIe0WOJNrwytq/ooRs/eVeFGYvKOXnsaL2L1BQeVBiMhPLewn+RPLygCiIRldVDUKfBsyD00+MQUqV+ZdYpz9wfF7YHekJ6Yfu3WhceBBQZr0gVdVlezYpMgpkhqvI8uxBchi/yeksIKEUWAaXwMlK1cestny5l+sEHv5OS+Zvrc7k4tyW0AUA++si95aFUah65FC7F8yrXE1hTqFUJtMUMhZchIoR3WxYJ+Tc8nYvjhbFQrXt1VT0zgktBEtILwIUOA3UqNO+n0voAnwp+FvCjSMsJsrAePXKoKuyefu90kWbVdnmZbPnCwPA9A9rCxoiXo0OJZvjoA+SV2ux5+6PvgZ+3BxQNuiq5IzyFUB8gIkPG2Kix44o0GbOAscsLPX065wb8ESZKMlLVFTtgIBBhOpAXzirfjOeVp1RolbaBPyVark6nPgM4eaL2cgPqVO62ifjV5cU8kLL5FG8eUYCuPWrwqYg1iilQmhUxspcnQBY+a04qVtSRU5+vX/18tT8jcxZRtPea5x6TPPHlWSN2RUja/Jp5/LHaCkZeJ5BnJHhnhY2ERFGGW5jU6bo38KeSP/q9/1CeXEYKI+rmT3+xDJan7v/2wN6EGHs37ynUyh5u9oxTUEKerPa14Tl4dnlcn0lawuaQlT5c9+cd1RfmPOv4Hbd/rsJsESsEzX6iahHAHgS0q4LbeTqRxc3BDAWP3nzLvpqtgjvsUoTv0eCOfTaRWcInj6f0kdeE6WXeTAgGKqYkKmdVPndfWHnbrZ+tsF4k1tgmik5PzYKV8dILtxXNgzR7HpEyBF+kVxrK3mCSKr0zps8pMRb+TM/P5hMchYGKLvG8WhPUaDgYz45oIsWOiKYM1VFZKxRXujJ5dDDZ1jAVxZPoH4a7A976DFYSZbv9TOvL/o++B/7yHjgTEXOYfT2NIRikmjo8IlA6KtLm1KlaV5EzwiRMabmlbauXTxBPgztIJKyyNpcYGmHFeUgmrDK/nONc93AOzFAP4e14Zn1GbBFWi0xqi7fUmk1EVc+AiIgAi+bhyZwcp0YrtPdu0i+uD6a+kRDbLfXdwgimiu515FRUzvZ4RRFbuaHyRUXGqFHgmWGCKBp4cTK1CZBH5NT8ex6G5BkJP0tTTE/F3Cd/8K3CRu/kups++YX6nVfVuxFZ7TOq+N6O4N7zj91fOFTboOX8FXd8vvpXMaTyhGaN0LeikJYk0lBFYqkktpXx7n0Ez18+oD/oGT0h/aA9+HNcD1SR0X/wB/9TkUkFhOTHCMFV0VABhpuTh6VAxGOP/6CFxKZdSjLSunjR8lKdV60WhvdeC32Kp1W1WyG7cmZsPTE9BuJtAXi/r6Yk5T8A/8k7vxAw3hrQX1mGQG0hE++HcCpFIXgi7VsqXOmVFLOwKClggXwqbkF5sxcdMs0zWgZGSKkKwBRjlQ8tCjtCkOXjuGeFYzGwA/LIJKNdiX3AjfRSz4XwUtd5RS14Xf6NYkfIqev210bF7/0cvfzBT/nElR/P818VQ6SBwQdvsW/hw+qBjOEzAfNhQqFazuTIGoMAmkfT5wCGYmx+yt2h8AKyyy5L8YjMAUYsoKSc+rvL2TFWmxrdthdioPKYFNhHdRbGVOJTyK+qskDdfQC5vBmEDRG2TYqfKdYMEGRUO4f27okiPT6APKoAHSAjd7yIQqZ4UV1XntCsK75jbCB/7sEQ8CwKQ/h8UowGlXLtNWovNcT8xjvvqnB5YOy9tIdcelYGgXeWh7o8RFR+DyJ6MGtFgb/UgE9/oUKpnko4lHfiHXYP7crFfSLGgvN5dG1jIHyKEu0Zqc2Itrwn4Wryhijo/fHh9QBS9xu//tsheivKOH48ONQVIRIai3wui3G3L6F5Dz/83fIwqoIu7PXWCBg8nA888O2qYwA3JoX03R7hwVx58KHvFpFUE8DWZTODd612ws4SR4XZ8nIK41VoiGdi2Q1JM4kh7TMeSKKr/VJFFsENBFpEkT2xYY3feWjXRzQVegt34I09Sjs8Ux8BUfZsiKqtyZxDRPHz6PxszovYmRiiKm8W5hF32zYzyTOPR8ocRYpVj98ZT470k/7oe+D/bw9Y+4TptkJ52VIoQgjRjq1k3ihiZD2HTXCEmGrcIoIldg4RTrmlvoMTxmf9HRzzdyt81OonmAfWY55YbbgGyfV5V2tABXlzAAlFFqVUSfs4mvnBJpO+Yc9RpJZ4CcPUMhByC0Os5YRVQufRiDs8pzytUj/kaXbkFBlVlA+miUbioUTKX4mn1MGjuSzRM1JCzq2NANsIpd1n0k9u+eyXq3aB6rvejddzcZwxIojWJLzX+UQm4cTLElE4/wYi7HNVeK8q5uf+woYJpWyAF1NTQdX3igzJ70g1jJR72x8Xtgd6Qnph+/ds6zx9wBvp6jygPJ6q6r6cUCYLkPAjOTGAVkGgh+M9AK5dGO4tIa17Y+QhobyFto+56cY7K8/noQfvqe8Yw/PnXR9l+6ZqmxcV6aUoz0y40qOP3lsVBBkZ8nYUVuKhZZQjnbynq1LIwqLIUKCOC98VzuTZVM5lALhezioDwGSfk8WJoXA8IRKTY8AKYTycpHdkVf6nECmVeu1BivgyBKjO8kOHxdMjDFfYchWBSOiV52JMX6xj8sSxyVO6YuDIsRN5nzNn3nr7nSaDX6wH6O9zPnvgTLyDw5DAClPKGGuhtm8W6JkjvJg89oxRB8DpQqGQTR77RkhT9Tlzk2FAnfa3z51DXe6GqJ8Z4hXuGwMBYCOq8mBUKVRJlhGh0JG93FSn9f34yVOrsq7QP8RNlV1zjtq8N14cBoXCPwwGqjTQVz0XyHoe5/HaInr+lp9DDV+XHFLvr0IhwwfJ9I7jUvzBPm48qbtjzCOSCg8xLp6879ulBMuTVQFxWvZfW/nIDwrseYoVV7r501+q66jN74P/baUor0veuvweRhNv8eIYITdkzVKAiQf1SOa0dUYBJwTV5uj/4h/9fhFXRLg/Prwe4OkjgBpDFYLLsxASejJVYR8KoeSJZLgqWISAWvtVyLUfqZSMCsNN3hfseSRROi1V5GOVVvLJiBSq1iKhcAt28KIyROGWgj8K5PHQ8oAqfERMhZeIqrzVo0cOVbTPzclB5hkV0UPAlatKJIWXo9PGvBiWnsk8FK0Dm1TjlY5if1J5qsL21TsQ4WOuwCthuybzpBjiuxOhIIrJfCa46o+TyYfz/jCqclSDUQhrf/Q98Iv0gPUUxsiBFMFiLTdW5VhKw0B+RLiI0hGRo6qtNfKKbJsHs2CJPP13gg8IrXMQ0CqslXlVXtCQKfhRqST529xG+tynq5GAzMIzIqKIohIKs0YTYNUmsN2KaB/F9xBTBwLqZ0RzZ/ao1z6MEr1j7Z+dyB4RQUJ1ETyYxIuKjMo/vSFzeH1sTgWSeGJVy+VVtR2Mfpm/dEXdl1fUe7jXbZ/7lYiphwdeSjQGTIeVtwSL9MOzD91b7+95pIfIaSWU8sYShhU8IrbyRD96zzeKYCLNcOimT30hqS1zKpUEGW7hzNkGLbYwnPRu/8N/+uu/yD9xf80v0AM9If0FOu0XuQSo/fbf+89KwVqZ/C1KFm8i0qdAkcXpgYThInsM0i4MV2jvvd//D6XEIrXySe+8467yHgJ4wNsBPIL7/R/8SSm8I3I/BHZ4gPj+GIPCY4Xn3h7Q58kUDsXbgahSt5sRMFD7zql+qCiSvDHVFDGzV1NdFzFeGi8HVdgWK56Nir0lBoK8G6G7CltQ3XhhkWFVC1VX3LFzc4U/MUKQTc+qoiiyqh2GiDAq+UQX87giRWbmz55WZPTkG2/VYnfsxKmEoL0TPnymJ6UX8x/jPN0L4eN9Ox0CRugBKgDoz+K9VF6e5w+AAx+AyADgGWUMMAQUCxKuxFhVAh+RA9B+R0jfzZj1N9BFKinHSOsVV7SKh0KkGAaIL1HFvYAfYmqeMwJU82Nw+B7QysVxT5ULqdPaU3RBiBQQ3xblmeFhOxbqsPwdOaW+VyDIJuhU5j+LYQHsEXChSt7RfqONnN5cXtinkysKyAH9LZ+9u5Tq10JQnYN0AvXKHU1uqn5TLh+gU4pXJ4RJPyDGcnUUrJDDoziSEGKgj7ROSjEcXtLNWTeIW3KQkFDGCc/uMyE5toXhpVbYSZv98eH1AIFFbv9/9Q/+SaV4IHwWfp5A264QOBWzE8GjCF0Xhgu7kLlHInTyJvK0qpOgUB/vpmvgGXIpUgcmSE9xKIrks9c3ri0SifAJz5UiIqXkRIqZjBo9pjBrSwzfTfkfztySeypMZJ9R3kt5rRtTG4FYKjpnWvKu10ZENTeFCtsv+0g88Mgm0ikqCP6oZM9rimQjn0gt3CWOwkskWzEkxZKIv7CZINynjnx44/SX4c7wosSdVJ/1N7ERDsAUmKF4nrUUaURCRezADJ87x7i2XjYPaLaFGfJ2sueQW6GmLeInHv3MyS7EF67BIhjERvNzl8YCP5BHGAUXOky0nsMqrgFhsdIyiK+Tgwn7I9wg0kJtRd7YXkw9BGTRdiv2IrXeK3gkJYSHUsXbVxOef/xIcrjT9vKIW68kPxw5hb9I5r6IPRtS/4Q3V9rK3LSvwBCPrYrxPJmKFj3ynT8u7OxqI/ByPhcBtdJPgtdEVvgGYx7//p9WJI9UGWQTCRaV9Ni9f5ronAPV79Oy9iCovNEvPpn8+RJ9360+6bd7uTgz7/JsSfKPL86tPtp3YdjxEqoU+6W7/8bAl7701QrZVQRCeK3wKGrwV7/6d0qdFWr0Wow5ZE/J/C//yq9n79AjydlJYncKTfwwRvJf+5XfKAD22dYoUAeiYt31+V8rVdp12+MBEU70+c//aoVeAFRAjjguSngTkrh/32AZ1PY6HcxCoNqvxUkJfeArVxR4KwBBJaeY2/+UcqzEviIUFlXPxminWntPC54wKiFSiLRFsPYwDbArWIQoUKyRUlUUPVsl71/EYTJ+7KiBMaOSN/GxVLW70v5dEv+zV1f9/vFh8ZJah3tSehH/TT7orYAvYAaaCCM1GRAjlcYcD51xCowBu3ONO0BvzCJwHdkUMsVQpyAzWOvvnKddYKk985qRqy1KcncuoKb2EoyotMMykoRIyQX1HSXZz/J1GOye+3CAm5GhsIOcUoDOg7onYK79uRGPjgSUW4jU5CKuPKG8q0KiENr1a14o42VFAFdBivUBVSGQt3zmS/Vs1GRCE0NBISJe0cHk3o0KOb7zS19Jf3xi4OEAvftMzDrxha/9nQoje+Sef5/n2FxGw6fu/moVo1A0QoEIeUOI8t2/+ffq2Z/4wTfLgGBoCdP90m/8doyWpQPPpWDEw9/5o6jlG8oYkfPDeOjB/oOO+g9+ffPwf6yETntTf+Urf6vEShih8u2qpHcgnHfd9dcLY6RTvJbieyqwI2h3B9MUJeKt3BRxYlPWdEXzYBQM2hoxQ40COZx3f+lrVayOAMnbOSGiys03hWQGf2AMb+inY5jCjF3BKziEWKp+uytiqEgcQunVyQ8f3LuzvK+id3gsRd0w5ifG2CWa8r7yhnoGRFr+KLLpXCTZ3FevgKjrM/OXdxRWXZetLnwOF9VP0Lbv+6PvgQ/QA2eyHg+z9l8hgidrNjLKcykyxfiq4m7BC1gFawpT8rPPiXsMkiKwhUmnC3dgivZK2Mv67vvLL0vOadqDZ22/TTgoyufj1VZOqWuJsaLzRLzwngp55SlFjhUClN8PH4isyJ0oG7UW1EBAXj2Xgj/IrZDeEiHzlKrVwjfrPe+ryrnr1zxX0UETpkwrAVWYrWghAuYtn7m7qrnv2Lh+YHiEqE/d/bV6n6cTRWELHAWL7vjiXy+yC3sCicG9O+o8hf1gEYydMX9R4ZY17eFv/1GF3xKJ78y1XwyeqTj/WFJQbGEGb+/4wq8OfPk3f6dI+MP3/FFCdh+oirr259bXx2MTS/XpjwvfA72H9ML3cd1BqK5QAx5JIasVhpsJJnSJUXvv975Ryi0wpBLfkYRrAPqD+/609mejDFOpV8SQVP2Qh1NhEmFJn/7UlyqsVmEIIG47FirySzFW5ZMqDqSYEQX84YRTMaSBsXCnJ+3/FqXIPqlI6bPx3gLmyZOnVdvUbKxsSYwNm3pTzoVGTY1HB2EWcrsw5BaB1q6qijyoFi/eXEaGxZFyvSc/A3jXV0GKGBoXm4T6x6A4Llk4O4UsTseY+mH9+4wccV1Iwrs8o9kG591amC3YdDGBQAAAQABJREFU+w9eXI9tPUz/xy/UAyGE2eJlxDCEE0jK9UI4uzxSgOtnnwmdBc7CfHhFFTICTsYAAmksI4HA27xt17TtYOxPag9TRSgqHCpjXThUGRbOzVz33XXJAVUNEdl0r/LIBtgRMB7Ma0eMSD7OrsrRtH+bEKnJKcByKvNMqXs5maoEUph5UBHmjhTOW7K8be2S+y3IuuB5NwZgPReVd0dEqp2bXw+BHJNiD3dVIaPdIQVCiG+Naixn01Yu5TmN4TAvVbmBNA+t0GUFH2zvgogK+2KQUJsZIA9+6/+t0F7vLqeHUWCbmbUvPJ0+aDlHN8WjKnRKvqiiSV042vLbP1OGyJb1a5OX+o0yZOSg9seH3wPWaN5JIqJ/ry4MF3ZI2+hCbgmNvKY+f+65x2uvUucTLuGWCJt7YtipWCtC58YV2SIo7d533zfLC6lmAa/m2DETkl/6nRJmXQvHtmTLGd5NaSYrch3x5NmktRCAYJDxquKuFBJtKNaHLPKUIsSvJPcLQZ4bTz8ySuhU4d0z86iKVFLICF4pkCJUGS7xkv4wc1SKjIJIf5ZIis2p6qlSr3ndH30PnI8egDcEetEuDsIosdTarogPu6kJnh8rQdLWX/DM+CfwXTt8eJ1P0LT+ur7zpLIjXVsENHggYkekjSgfHlOeRG3wMlrTOUcItl24LvLIg4gId1E71mZhsxMj6thjmugqzHhPSB1MtMZvyfxz8Dyqjit6R9iud9qYaBgeR0WCeD1FxcgP5fW0/zURlWdzRqrZPpsUNbULeGLhhHSRznN62+d/pdU3ePz+WpsmBA/v/MKvVVE/EULuNT1k+Pa7fq0IMFIJt7vaCPb2fuS7wZu8g7Q0IcZEWuvWw/f8cW13Jn9XkSbbyBCCRRI9KbowfQW7++PC90BPSC98H//YHf6br//PVTBI/o3CRpQxRFFlQUUbVCxELCWTA2nhuTyJAH7vvlQny4JxQyofFpl88oGBDQFWC5wiRAwEJfOp2s5TqIiRcd/93yxPjb1BhezKW91/oOXc3HH756tU/+7d2xKeNa7yShVdUm3Q+VRuxY8uT2irfVEVJRLmNDWE1j3kClGuEVwEFcCPi9eUIs6gQbCFQiGwNjb3vPtjYDOgP4xjdDyio0cOHxg7ekSU8bdDiJO/kQIzI4ZfU2T+TZ+FpPKU+psxIoS3Py7tHgh5zBYv44ZddXW8kglbQkZ5NymjQqSEICGpwJ3qC2SBGGIodAfQAljklEJMNS5VOYYDUGdAKICgQh+jgdfx7TffLAIorKrLyQFqGTQFrD5DKIXmAvZmWFCcj1URCAUhEDghsXJshEwB0N3liRxTuZ/2H0Uqp6QQzMYY6ojvnIha25Of4xnnLL6hDA/Ks6qCqttSi+WiUrJt0/LSU6oEHhj6/a6qHFiVe0Mc7gioy/EsckpcCsGkDD/+/W+GLO8oMs2TKnTqoRBR5FiImDygRRHHbP+i0i8vL0Pj1uT66GdE9lgIiRD9uSEKSLHnRULtdaovfM8g6T2kl8bcQhQJn3/w+/84/54RSe/9xsDOFMNTaVbhvTsTci1S4AchlqrZmi8K68EUnk0V3pE6qSGfjPd7eASZe777RyWoCnlVs+Caq69LCsk3izTCpk9/5su1fczqjF9YAcPgiTxUeaSIbCuCdF+tyWoVEE9XPvdYRQbYbkZoL++r8OI5EXmRUp6NxRl3PKrSQFSGRzaF686O4XoiXh8eT+RTSC/jlRAMmxRKQsr/KhyE1BMnI6j1pPmS/+eyviOWiKS5Y+3zv8gs66ewXLgkneKaeOcNYt8jjrb1QlzNSx5TjgdpKRWSm+vgFiLKQ0pIdfi9Sy/RDrJJKOWtfCOiZ+WgBtPOEG4jAPGESneBS0RZWAQbpIy4r7UfWXQtryZvKBHVvtq2F7O+K2I0NqHIck9Vz/VOsEIVW1E3U1IdF/lU08Ch8BC89TuPrnoGIoSevP87hSNwR+rJU/n9XHKKeCOL+gTZvP2uXy1vLDzSP4oswTb9TEAVUtzVRlClV+TQqtQ7gO2elYhrSzQ4qEqvQohwTpX6/rh4PdAT0ovX1wX21FqeGBt235EKlggpLyiSB5ABPJVZ7sr993+rwqQA9O23fa48jowEYbcMPSX5hfmqeqh0PmNCkSNVBL/7vT+uBWJ8JutnA/ovZmLxSsrxuTPty7dBPJFKhsLxLCpCsxDKW5N7KmdUaBRSKtdn9ZqVRXyp0hRpOZ+q//Kaep6ZKXJBmRbKxWsrpFeYlPd8M4slRVp7HyZwLpo3o7y9tUn7iGtD0t8tUno6hPQTn/j4wLVXJ1QrHtJ3QmjeTTVjuvjRY63Yytshrv1xyfbAmeQoDrvqqpb7KZanC70FQsip3801cw+YI5UdIaUyAzjk1XnIUoVAhbgKkWIgXBfPCjAH6oyACreK8Y3QaqtV0z1RIIagIrDGOs8nVRwhHJ3KuW2/t8vqfDmi4zK/3N8m4rNiNCOBfqc221wcYZWjYw82qrhQW7k6DAV7fPK+ysmkrquIi7QK/VWxd1GMdfuqUZ0ZDPMieD1275/UOzImlmaeP5289WOHsy1TjIBPJhSXB7Yjp4wFlQ4VJEKY9Y9iRyok2mx8a0gxtdlec7d+7suV2/rsw+6XvPbkC6m469mFUm1IXqvD9jNCszzLH/ztL16yA+qj+GAMWZE88IOYKD/U1mHCcm37Yly2Qnp3xDt5e+Wa2luU8TotNQM+8/+xd99hd5bXmei3DEiACqoISUiI3hECRBVIIJDoxg3bieNJnGTiuWZOzpxzzeSPc2Ym55okJzPJJLGTOI47mN577x3RqwDR1YV6BwPWuX/r1SvIdZyY2KCC9muj7/v2ftt+9t7P/dxr3etekdkierfcelXty7UWMbVAvO22a+vzq83XhONOrnISZkWyMQfsf0hndOqhb7zx8sIQ5nfj8rm7J9kQpBGGaXemJhWpFPxEUh9KdpZHgeAsoyFEkrsuWS4sU+cKI59IgNdr2yuL25fymfW7+331tQSBMmfsmu8CmTEcg2uby7brqGEhClvFKHANJQ+4apjI5vICtqD7hCk+d+okEVKZOYodgRBzPByR4YQlAnoIYp7I842jO2UAwudYJAzRNPfDlyofWZdlhTnwLQc7vIKxTLycxzngW+8+O5QKZ1DWojKhVDUwwnNUA9xxkTw1q0yV9LOek8AOAiw7qocnkyU9rPWiRlgZ58EoWGfOfy7rTdlXpnqOhXUCrzvnu/ZY6jM9NyamQa77VPpkI64ylpQ7+lXDGiUdxgx+mGP2jCz/gMOOKiXPgpSaGUuZU2MrAGp8kGhYZH1865UXBG+X1n4Ip6wt/NPH21i7n8Pj0CtgfUeypAi38h7lJXwQrA/+8o9+vzB7C/qobtSX2iWkG3D4SVX1+DwoErm7A7YIHAkrEnlIojPksg/nyykyjAgeFyKJpF57bWq6AszqMw/NIkGNz/U3XFLZSnUu5LnqZK648ryqfRF5Pn7iKSGBzxYwk+zqNcqc4fY7rsuEtVXdBwdcUW1fejU4omCPPHpvkVT3pDZV9JhB0ZAsWGVK1QAdPOaI7Hdfjdz+ydaoAf1ZJpZ9MxExsbAxtSCXej2tYSwqNubWr296u+48NO1mtu2sWJXMV8jmgP6Ru7wTie6at4t8IqT9+sSlLsTTfzKkSGnPnlt33lq4VM3u2jzWBfyN+Ub+4muvDSD20G8UkAP4NoIssrxdotIynR5HTGUtEdO2dgcQkuQAKNlHWU+1MxYMzoNYFjnNd8OC3ELB+USsgamMkTpRGVMAziQJyPcPWAJDwGqRgMQye0AmgT3pFIIpi0lGBNxJq7R80WPNMXNjGqHfqH0R0FFxvY0DdDKoLxWRtR+5kuPY3L+WoA+zCGRTvY2WLr7bernZhzOuGlHEFVFX6wmM1fqQAANw2WIGTMed/LkC7oacblORbAsEsqrpzz1V51HTSv6rqflTD92TRcZnKpMrMu26Je1NVHy7Pn2qDQATJGTZokCW2OJDdL27bTojQNr61a/+25Cz12oupzIgcUUsSXGvve7imtcRV3O/4KlaUsoc3y+E8Lhjp1RW8q4EQ9SwUfhMnHBK9Ql9OA66FtACqbKbAqwceFvMEiRtpLUDUkc6uUpO4Jj7kol9OkSzDPVyThnNqfnsWdweGgmxUhGZWmSVPJHMmPcBoyJu8AK7JLuIK2KMuGpzpkZVC7bNadt/712LjMKw9zKfUfbM7ZLSTfIttK4iPUfcBGB8XgVAYRJsscEpRLJKSUIe4YkNQUWSEDKBPt8d60Ob/qGCpDCKgZ/NHCwuYX8415JQfgS+nzbfaeRTEHPZksUlT10UwijoCvPgYYNVaT8WdQ+1HqUPkyD9OBE/vTr1kfa6BDtfjirHulKgUesX93pAMqMMkZBWZkfajyGbMrcIomsKoBaxjLJG2cecrBkZ9cl4+lv9KWxU/4nUPp55xvEM/Ch0SrVT5HRQyOkpRYhvueynIdyIqHKVSYWFN176k2pXA/eUmLj+cykleSSY+N57jZ+DfffYf0zhpvITJN79yxh3tw0zAl1CumHGua5iwumfL5d+bsccc2LAe1iI5WWpVXm+pAUcd8fnSwGgb8jjZYcfeQXQtygg212wcF5JoY5IPyXtYy677CdVR0PeOyHRHmBNkmuhrKaGDf9114seran2MEcF1JFSxkPOiajemTovPdVkZ5FmUmILDk3Lp0VqwSyJkZE+ciLPFiauLTrusV0SQQP+6njU7pDuWtAsTy3Bxt52Hz2io7/ottsGCLJIJtN9N0BAsot4rl5XM9o72dE+vVNrEZkuGa860q0yua9ZE6nLdr3SDibtalatCef5eZeUbuw39UPXFxEVKQakIseIELBH6JBUAC7KizR6DiBpU8EkwYaQMiyQCbU/qY79REeR0lbSS76DVFYaIs+39TqthArIAzAZWEZd7gt4I59LFi0oOa1IOHKpj+icSCHZ0bseEkgKVVHogC1CKCOJ1OoBCrTVbnLf1R8NQKuBUZtpwTE2BPOVLAIWxcRoRDJNrinqbMEybsJJZW70wpOPVE3oUZNO77wcKZUosYUAg6I5MaR4KtkmCx/ug655c0DdooUMFznlmvjkQ/dU3bpm48B/arJm7oHcmQzryBNOqZrQRkr1s/ULC3U590Tm+XKkvWU4ExdUiyOSLsZL3W3TGQEKmZ3z/owJWZSVhBNc3muBlwUr53ZZ0zvvuqHzVGrCYJqyDuRxRuZ8JSc+58jehJBQOCCz6fuhrARuVb/SSH4RRHWjak25vAu+qk3l+s6113fLffgpWCugKnOq//UbMeJCdOHbAw82eIewPp/PlHtW/rIsQQ+mSLtFsaPXNTkujCVB1tNb+Yma8c1p05ps112GJbPbZNyofFrPg9XBqq7nwab1boZ8rs1arEfJdBMUlGVsyGWM7QqTGod2ct5GjbOmCKfvAqwR/MwTtT40H/suIJ2CoXCPoZz9fL+c1/xaAdIEZJBVuLUyqoX6GZzhC7B6hbrUGCYJ4Obz3xsxDUaZ6/UYZU7kmoyNeBd4zP0Jrgqowiq4hSAioEovFs2fWwZ2ZLkLBIXyXScflk0dEgnvbklWPJ7SEVghM4p4UuPAOmUlD0VZw29BPSnzozbj6e8xceK996Yrixxy5p1w6hc6LwaPBGPhs/NR89x4yU86C9e59cInOHjTZecm8Dm//By4x9e5U0sKe/Qj59NweLKsb69a1bn1qkh7Mw7eK6UrSl1mZa4xTt1tw4xAl5BumHFefxWRYGY/3Gv7RjoB3ElmmRSRRVnUDhmc2ppIBiwOrr7mgiKo/ddFiNXyXBoSqsYFeSSTUrdza6R3ZiY1NxqS3xpnMvJZ/T657Kr1LNIYeYbFA1de9Zzqbo7IF/7xRKbJntybHnP3RNNv0iLvdZxFA2deWR3yJrKp3ll8+52kVy83ta+zZ4s2r1r/ejfWLwC7MS6SMXs/pDQTcBZKKyNvsvXru30BOYLq+ZaQtiQVKZFN7ZUFvw3BUauTx0JK13ZJaY3Kxv1HxFmUV2bUe4iUAkERaItigCOjCchlN+1HnuS9RFJFmhFUEV+1JGpqgHgjrwL67xQQI6KA1Dkr0ryO/Fa2NN8H+/teCAKJeLu+/dUDIX3s6pE8fdj0I0XGViVYwzpfKxV1OxYjSxJsGpXvr1oZ52MY0cqL9ht7eJkGIdgks8DY690/C/i5AXfnRgqBsNoYxFgmVC84MmDXZ9agxmbFssW1qGBcxA6fmYXo9bFTPltGE9rKiJYflSi1DKq6TyRfhPzYk8+qHqcyokg5F92jTzyj6lL1IPW9kblFfB1z8+XnVoR5h5DosVl4sOwXJb/k+39T42uMu9umMwLbyqTkc75rFp3evyHJVsCLEcNHxovgyprvy7MgRPDoSLKnvfBUkUVZGe1WBEVnh2zCMp9pQc4JE07O3zdWxlUAE96oL6Xy8V1EEvXevv76SxP0WxF/gtEd/UZvjSxc5lIwlAfBfTHzU2t3RD5Ds7NI5iSPlMq23hMivF0W8fAU2TQPHJjAyfR8lhnnKTWBb8/FoV7pyOa4yOzbZ/u4wu9Qqp3+/aL8yPvDlE+AlaInQ5kg69shpd2MzqbwjcrcuTYlDT0oRBDJCpKGQLWEElb4nJpHt0mQxONwyhsp62k993bKRZDMJtC5vMqmBEsRSfWRRVKDCeZdJLUx21tRKh91pUirEhIuuhQ7MM78LwvJJVf9ZsmEc01ZWcFT7cRmv/FqEVP3ptyE6gbOwJ9BwRgGecovHI90asOC9L4aJcLQrAcFZJFGiiGk7+mp99Wxh0+cHP+D58r8CCbtnjXlI1EL5gXEuf2Yun9mQtaesphw1N+wVe0n5c+Nl/w44/R2tRwbHzyi/OHsC8sdQzJ8/UU/igQ3rWSyvhUoRaxvueL8cq9Hrpss6QnVfxTxNH72gVvKTeAiUyXB4u624UagS0g33FjXlUSFAew3/+CPQvpuXid97RHAHxWJ7uSKOF+dTKhaGXU8QF8E+rLLz+ksTMalf44fn+wqsnrV1ec3NTchhydOOqMktc8+F6fNfDFFi7dLhsQiQqZPLQ0Z8M23XFnX0PTc86LXIs8WEtOSZdGjdHgWH8jn3VlUWHyMS6T8qWRDWeEDdgsOmdj994vrYSasqY/cG/LbLKI38HD+wsuNHDE0xkUxiInhw9JlK5MRi5V5wDxtXIqEmvAHxNho+YpVBeieR0h7b7/tuprS90M848ia9i8F9LkKZ15/L16yIiZHy7uk9BeO/IZ7EBklvy35U0DdArMIaRZpFtJAmzwKsCOcSCASCozaKLLPQQvg7lwEmFzJOX3uRZotJJBd0WfkDHGVVUVSLQhkV2UsgX1TR8rgyCKAu26/OoeaZc8hpqLQs9PLbXDA3GKEdFUUuMlYDqqILwIJeDntkv+SR5H1ckYcE1B+IwsAkVzElOyVhJfpkTpQwO81qY2RJdVXTn81CwqOtyLpIsUMkPQPlWFFEo0ny3vEQu2ppuC3XH5eyarIt4475fO5/7md+1PPIxoD9NWckvQ+lf8sVLj9ah3zYupFXcu4cStEWC1MbrrsnMoCq8OV6e1um+YIWJz92Z9+t8gfkmi+L8+CmNodEdXMoynXMOc32dHdy6NA8JPyxqJbQPOEuF0KUD6W/6ht9Cal2Ln8igQo8plXLqL12YPJjCoNgYsTQ1yVf7wQVQ6cOybY93QWtbPyfZBxRTZvi1+C7+1hydTyPSDFHZbndglGUvbwSOD0/ljqU+GbUhgqH/Wii/Kd2Vy3oUMGxONg+8IywdRtgkWcwWVHf8bvIGMCq3znENW587tS+I35XvtuwB7lH75PWukhVTCkDVy+GyzxWYYD3M8xUMZ53kulFY5BUGEXQtkETt/rbB9cEewkXRUktb/rUMFVD9KcAwatXhUCm++AWlVzLmwrRdDKZUUkOd7yGpif7zeCyt8AbvJiWLJofgU4KXVkTAVfZUdHB6uUj8BaAcpXpz1TGVa/azmGoMKGp/NddC3S2icfvBuslDmRNl/OMyr4BpceSvsWr+OwYyfVeRnkDQwWwZZnH72/lELUQRNP+2IZDL38bIwz+w+Iw+7pFbSVOTW+ewV71KDecW1KCrjJ5z6OmHhyBV5vuBg5Tc2p5EuyobBQO5g3E9BC9Cl+9NmudjA8FkJ2vU8IuxZr3W3DjUCXkG64sa4rWSRzM+QUyEyBZEkUGAlF+GQ9yXZbEkpmpM6UbFct5yWX/qikSDKteo6S8N51142dbbJwVgcKtK+48qe1j8wlkCd/ch7RZESVrEqGFTE+MMcwk/ClPjxyKvWez097shYMSOm9cfIlHyHfYiJh4U+2xYRJP1TEdFOJNvfsuU3nsDH7FPFk9iC7uVLNaIB6UCS6S+OW63fkAvlcsXK12tAC9h36JXKZSUjEGRndeuvPhEw0RAeh7xni7XnR6LcWLllfZ7qBPz7dywW1Q556ACU1orI5QJ2yABG1IJMJrQxpgBXgyMIBdmQM0AB7UeE28ux5xyGYFgfOJdqLVFpUeMxn3KIcqKv3WZ2oM2OH5YsXFVhbIDB0kG3UYw4RRPLIdtWJqsFRd+oayKQsInAWTZYNVUu5e4gnWatrizCrnyF3zZezotO7ZaEt6q3nG+MF0WNSWvsMSw3545HqA2IE84kH7yrSzLUQ+Xw4UWQRcC64MqCvR9lgEYJoIq5vvPR8XfO4Uz+f55/vPJPaPAsKxJbF/nUXfL8WRO57YiRTFg6PVcZKlvSwqvF5JPPKB+T0kJDTM2N08Xznnjj2IvcIs9ogmdw/+cOvdetHN9Fvs2CnGsvyLEhJxyHxE7jnnpvKBM93aHSyp8clayrTKMAp4DIygRYk9PV8pu8JZphj99k7QYtgGZd3PUcFWAVd4dxdcbKsYEgCnMjmdaklVVJxQBaWXHq1J+uZ+ZtCR29stZ7qQY8dPznPXZvM0dtVbrIki0YOuzKogwbuWCUlXN4PDHlWX8olWHB3c95GjxzWBEczR5Hs9grOwS/lJQgpUz64pL7c1iWlG/fd9tmnmtk2gX4kE860RFTmz3wusFmGRsEVm4AeXJL5gzeUANWuJeTSsXAMIbWZlwVAkVAb3Ns25SakuMpOnMPxPg1tZhYmIpvIq81aBs4xpVsZgqrGUyAUjpDiuh6iCMeY7fEnEHgl71VaQr1DnktRpAc1F13n5FT7/GMP5Z57lELn2dRimvv5B8wIuSX/RV6RzCeDUYKnykaefvjezrwQ452isuCqy99AxpcChzGSGlABZQZ6h8Tt+5bLf1rBWGUsE0//UnDw8cIxY9K0FjsqWdIf1jkFQ9Wg2vcDctrUnPJouPPaS3P/T9V7ph4W5n37v/1h4b9MdHfbcCPQJaQbbqzXXwmZ/OIX/k1lJ00yZLXjI70dxZjoip+WYy5JkxpORkGXySwkAt3W3FgwIJ0WsmzrT0wGgqmEaDHzB6666lDvf+D26kHqPEyHZENJpibG8Oj1GDsgnoMjDyb7vTUuiOQhCK2J4Kmnp4Y0jyhzonvTosY1ue8+lczGa4k2WyRsStuwoYM6Ow9Ls+kQUXU1ftrUiIom90od6arVa0I4342xRZ8Cb3+LLnu+fwgpEyMkVTTP7/qUbpWJFbF1PpHnHvmfSX32vAW1jwVBd9tgI7A28tYYGLHP36YuKpCCLAJc4CGaDKA/bKWPnAJpj2vLIvuJkIrybp9Fg/cTOLfnfD/vu8UAACSj2ibtioAqMun7KkBDKoVgWjwgrf62+Xx4HAEmIZIB1fZFpLWpE31tnVHE2qrtQfBInoaP3j2R2TVFVtWvaNrtvBYI5EjqTTkZMowgLbI4UAfDpRc5RTiR0XHHnVhSI3IwwK5mdVoylsgnsyGSXSYNMrDA/s70HjUuiOu+yWJdd9EPyliD3b5o8p2pt5kXcyVZUrU7FkJ3J4psWSNze+yUs3LtmxpzpYytrO2RKRHQuFxdqoXWXgl6iXjPz2KE0VFrZtRtNl4fmU3uHwobdZd7JBvyTAIeFrWkt8pIyF75Hvi+UPWccMLpCX4u7tyQoKbPET+BSSGmT6aNC2d3hnqHHXpM4chFF/+ggq9wjoz31tuUlcwqIySBWbWg/tZSTOBU31LGf/pvC9Teced1JfWVOb0/wRelIVqbKX9hVOQemfshxLK6q/Md39y3g/bbvbAKzgSWaqFP+WPOQ0gLp4JVVD425LRIR3b2+5x5C31VHdrdNsAImO8qy5jPvQ1Jq58hqYI5iKp94BQDI4QVR0RUPddKdgUVkDUBUJtaSYHTIpE5dyv3lQnVq1T9fyPfDS4GE51UVpNcl7mPOlL7mvuViMj+wSVZUuSzDcQKpjZ1oo1s1z4wllJnz5iYTU/5lsCrUhTZ091C6CgemP/ALUFWSh6tXgQ24Z+2YfDPc4jsDjnnkw/cVfelbERgEx5zcFdviozC2sMSvHKfTyewxP13fEpKFqZW9dEEPtV5yoD2SWCaiZHxRFaPTO2o49uykyMi1+VGf90FPyjcGbjj0JznrGr18k/Iac7FxVfG9fknHs7rmVevuQa/+88GG4EuId1gQ/3BhZBGNZinn3526m527Vx51XmdNxNB7pvo07jDji27/avy2PRImRDBI1NzI1t58SWRHsi4ZEKZZCGQxaHaUQsGRklkuPYB1FqvjDtsfEWnGVLskfYrMpuuhcjq9wbkb8uigBxEJlVvt8XJ+DCEICshuSLz5QqM3HLNZRSxKW2ikQcfsId5PRH93iW59cf2keAil4B7u5BRgO1vAIGQrl4dQ6NIeG3kvAinli/2B/4yqTaGSCWPygRPtmsD+KLRb86aV3+rQ+1un/AIpM9oHP96yB7aALYMC7D0n7+RUqDdElTADGwRTb1JEVBArT4S8P/sZ2/nPd2qIs2OU/NmYUD65BjnRXLVqba9RhFSnzlyqvffj3w3wEjqJKMJ7Ju/I7df97eIrQwSJz/PAXbEVLTYT4DtnKS8spS77JkM/8qVAc/5qXOJ3PCJR+qeEEQGQhYCjnsu30390zxONstVVPaTRT5iMC7utyRI5L3DRo4O2I+r3m4+/9wEjcUjd99Sr42kdmYW9NOemFqLBFlTdaxT87y+rizwEedrzvteLXqQ2ZJQpY5VvaqF1EGHH1PtXG6/+sKYMKX/XF4rgyTR5ntvuqohp2nUvteBY6smyEKou226I0D6yql9fIiiFmTXRsHzTr4jVDawx3dAGQl1z07p+TcpEjpBUBlT3xt9P7nEI5XI4sAsYgVCyWYFOMl4GRxRDJHhCvIcc/Skyp6S8cLIySelpjnS4JkJiOgdyh+BLNixR2ffqQl4MCs6LDjnu98SWsGjzX2DRwfvv2eNpcCpABt3+B1CRrdOkEwgFRltMqRN/WjNgdnP5nvOD4G6JzWlgay1XVL6CX8oEEDBT4qUdrNWgDHWJAipHtjIlsAlcgmHlIh4v7RjQSpJbJFW86p9OOhune+J9Qc8kjHdKudkzoeIMjZy7Rb3lKXAlX7BOWQRNsCvtEYrUgZDlkUJx1DorTmzCh8EHdV0avlC5kv6uzhJh50TYKLU2SnrVd8rRkd7JZDZYsXgKP1eSSJE1tPnU2nJPnkezpECa1PG5I9ShkzX/o/ff0eR4rHJmmopBpP5HSDNzyeQJXg6IRj0QJIkC2J6h1CqDb3r+ssrIMrQD/EUTHUNr2PSmV8pdVHjnxCpfjCO4dJ1F/6gyLCM7HGnfK6CvMip8aBcmhBFkIyzutRG1juoxtF4yBR3tw07Al1CumHHu64GULn7ieaS74ogk+TeEnL5ZMyFquYmUiaLAf1E2d73y6JYPeluu+7dufDC74VcLa9I8uTJZ1UdzrRIDkh7EUsyWvJaZJaMal4Wl4Dd8ydl/6nR9yOXan3UhLLeF9WTWWWuJBuLAI/IBHVnrPtFm1cl6rWpbUMG9e/svceoynr26rVNaoZ6NX1DsyDqHVOjZSvSziPA3qf39iXXNWGTsiCZK1bKkLV/bxPAlxV9t6LOHrcvIyTyKPFlgLF+ywQKaJDcWXMX1KJh0eJu8fv68fmYfwmgr01UtgfJqXH3P+SxzXhaHBd5JFsLGUMua7/si7TKqAJ6z1m4Am8LBOCOmLXGRr4DCGQr562IdRbcyKn9SGQFapxLvSlQQ1aBv+xl1eQMb8yLRJZlAvU6mx2Jk1od8idEzbmQUCA/I/WfJE8zX51ei3yLAvWku+93UJ2PvFeEedrjD3c+k8/yfvm+kti6PpL5RCLN7lnNJ1OhvKzOkZNOLXCeG1AFykN3HhXgv6YWJkedeHoRWy6H6k4ZPshaei3kSwclaHXLFefl/lZVLRCJ7e1XX1QyYQ6H5FGkXQ+G+Fo02V8m9ebUm74a2ZbxGBcS6ro3R1ZlMSOIoEaHlPicb/333NtTJfX6mD8m3dN9jCMwKJ/fgQOG5Hv08+oDqjwEflxy6Y8rI0lWOyEBEKZ4F138w8qKDB8+supCtfpS6kGJQHEjUHpBMItr/Oh85o4Kjt0WrBNcHRm5OfnvDTdeVsFOBkecdi+PGZYFOOLJO4Gx3tAsIOGVvtucchHcV/L50gpmXpWONEHEj3EYNsqpBEhHxQdBGYmgKcUPdc528Cg4l2mtiKjyEiQUWS3MynuF6JgLkdHt4w6v7MSx6ae9Nj+7pPQTekcz760NYSs3XQmCvAlFtAqt8v4gpb5LniOFXU82g1mV2czj2yb4571r1TyIZavugXEUMzKmMEgfbD4G8M3nQYZT5hJhNAevzHyuxITCwPcQ5ljIFFZmLQMH3ZNMq5pUJSNMimRH1XZq1QKL1FNSspDSmstbbwNBWKoa7VFkYD3/4lOPVuAS4dZDG3G0bmKsp0xDkBZ2IZywQCYThpDsqj9lmsQlXqaUCgfGI6JUTTKXXr8AJxL/cAyHYCBi6nWT9HpNjoVpN116bjnk9h88JEZ8n6u6WOQU7iK4cIzc+KZLzqkxErSlAPLe/M//9Lt1rk9DYOsT+rh/YqftEtJPbGj/5ROLDH/7WxeUqdF9iRhrXrxP5LkIpXYqJLj2kckkb7rm2gvjcPhcFgWDijia2JBVE5ja0YMOHNe5MjLeVQF99vqizQwkNPrWExTIaxFjUkJ+60sd0jook4Tzi2Sb1DynBcyDWdwippvil7Je8z67dvqGaPYLaAdsE2FPe49E6MiY+vZu2rcAafsipYBdVpPcaXUmWe1cPG4Br93LmhzX7gPk21YxEFyU2bEIKKJqA/xbpc7U48yRHBsjiZwtT3S3j20EgBDjrD6RsJPlAJ0a5LyvwI6xB8AC0nmzK6LckNKf5R7s2ZgVAV8ky0+fiZZ4IqEi185LOeBx779jyaRIXoE/IAdmpEOizv0TZUZERagdB1jX5v6AqE9AS2YBnOPIpGQdd04QiHRJxlEEtmcW1gAVGKu/YfYjYov8AXI9Qu0n4gzE9WZzbwdFNfFUanCQZCZFajeNBQDnbigCvl++8zK+7PZJftXRIJcWQFwGRcoBvesdEzMi1v3qUEXWj5l8Ru53dlnf9+7Xr4yJEMsbL/5xReb3ConmyitKrQedY44+6fQiuddH9vtWXqsFyPjJn61rs+SfHyK7IlFw49F1L/TJ3HQ3QVFZ0v/6X/465PCcCmDKWh6dzANX20tDTGfNjpQ7pBUx5QJ/CffLqA44wZ904pmVsRTg9JxsKQfdu+N3wDRFiYrv3O3pa0vW6xwI6iNxYFYrigDfkTrSpfmOHRAzJPdy3/23pr50aNWhPpA2MMyQSIg/TduOgwd0BFrViJqnqHbMR+Y6mMQnQVsyOIdo+s6/a77KVLe1wFymn7ffzjyW4Kz9zFt8EjyWOtO1UfN08enj/cCsjSFRSiatB5qWLN4L71cFTUNCMcYmU5r1Qn6HZz1D2uBOKXry/llnIXIClubHtvSEbNff3mdqH3M3fLFf267McY3JUdMT23Myqzb4ydEdxrQyXb4GSkEEFtWOwhclGXwRZF9hF7XP8OzDIGiP9KjWogVWMuOb8UoTRHW8dSQsUQ/KQX5k1Dsc4PkOCMq+lNIT6h8k9NlI+HdMNhNplP10b/DhkXR04LHgPILDD+Z7ryQFBqlBFdAV2KXcqd7WkQdzAtbaBXF1/17PiZ/9atRCd5ULPNUfDwO+Bdeen2BYiLxs7/EhonOSxXWcjW/DcSefFUx+Oa1mLqrvGrmv96u7bfgR6BLSDT/mdUXZS/KnxpGQ3GlhSKcvxHsdctuTIqN7NVEq5g4W2wfnS8zgQYR6bqJYO8Z6G+hr5/JY3MgslE+MbIqklslR70xKE/OFZTzB3EHE++Qpn+9wzp0bO2yR6L33OqB6zNnXsS9EeqFGdP782esW5RtpcP6Fyw6Iey7jIgZFA2OBjwxC2N4hlUuWpr9W6kH1DV22XAb0/XLTXZZ9ZD8BNqBeGemuonv1pEMGZ8IPWJNFFeEMiW2yrRYEhSVlGIHcOl+beQM4NnJeCwdEddacBe6nG4mukfm1/1kbQAs+xiAihBPJFDCp7Oi6UwNPz3tPgDLyZRHQ1teUaUSOEOwRTVUbTQ6FJMqS+tuCwLHAFqh70wG/KLXvXUuCgSdy6jjnFxBCVC0QuOmSG6nhXBoiiPy15JOECdgvW7Sw9rMgeSfEmISIwYMoMuJpYeBztGjB3GrlojWKfTgDAkhg7VyysIdG6vRsiCkplx5uT+X7bWyQUf1G1Xnq3eZe1JyS+Mqy3prMJznWsZEuvRxZ7Ws5r8ytKPNdWm5k4SJb6/zXnPePWQjJko6pa+hL2siN9yjgl419OvdIniaLOiJgD/hdk3nECWecbV3WuT7yKIsB0Xb9Ui/87l/UwujX/nR0T/CJjwASyKPgsLRjYE4ki/lU6pH1CdWq7NAoey697MdFVgcmuHH8xFOLAGlV5s3fL1ly6p+rr76gZL96V3ODdx61ompJKXy4xZP77pcaNWT3qvQD9N1jgKS1CxyEiYck20pFxAl+Uysd+TjeDOZFsqPmAWUlSkxkR/2NWPZZZ2RUtaPmwpAUpPQzmfPgkMCp/YuMhrAKuAq8wqYqWVmxOuS/V0l4c79gs7v9GiOQNcDa1GX2gCfWEwimrdYGec9s3jueBL4Q60lp3g/HCH4KyrRBf72x+6ZPqBIPuOQ89oN9zPuaIHhDYkuim7WigDh5LVVP3UeuJ6spGKg/aP2MUoexD5JJyeMnU0Au7mSrgod8CahmmPpoy4JEIrB5AXUMCet+VUIytYgm4qgkZN9IchsC9/NgzPjOo/fcWjWiakthBDmt4CvTIrjIgXdq2rwgnIenrESJCYMn9aKLQiz13EYuD584Jb2wz63XflDmGvd7d8zxZH1lVFclu+lY5BsxNVYwTGD4kCgw1LPCMAojr2VSyOrszBv33JguE/kukRKrSdXa5cncpzUGjFSj+nSyuNRN3W3Dj0CXkG74Ma8r9sriuU9qBvT9BMZcDZHQ3r37dS686PslbyLpVUej12fV3WThzAl392jxL45MSn81FvdqfWRDkU8LCHb6QH1RFof7ZUFpQXHxJT/MhNgpUiuLKhI9NKRWdvTeRKhefqWJNm/KkaG9dx/VGTFsSKJ/79VED7znL1hSBNLEL0spawqwG8lSG2VuajwHDojJTEAZiGsivmPIqFrRphdpk/3s2XPrSJ1S4xE84VxYkqfso17DAuD9/BfsKYC3CAAI2wT4/Y7wvvrmnDpWu5nu9quNQIhmmRdRCAgCtNFidZsA3IaMtgDvvbfoQiw5Fa4npQHsNojATRDpRCAFfWQmyZ3Ui3qvyxwioC7L2Vjlh5Dmeeckf1JLqQ4V8JFSNeA+uEBf70+mDv0iXQLyiClS2EalAfKs118pqZD+brvte2BFni0ObDKtCB1iygBIXYz75C6o3+dOkRMh1G9EBsVBUP3psiwqALpoNCIN0J+P3J/09rDxJ+Z606u9zJ6Jbqs1ZTwkSzvh1C/GqOjiquvRUNxzjIu8JsZDHHyfSYDL48eHVJLhIp7uVTRbhvP+9IcU4WegtGeyV4Bf7RHH4BM++5WSfyG/3hPSXVIoFvucETkzkod1t01/BJjvwaAVCVTUIi5Yoqf1o2mp8mAy6RbUh8aB98gjJxQeKe3Qt5TJ3qwsYGU0t9++bxQ9k0OSti9FDzd4KhwGfVen3thiGpFVZuK8g+NMLTh6c9qVyag6/47JytycWrNZychw6P00bsyLbFtlfqH6WRMsW5NAqbmNbLNvH0qM9wrXYBaC4ifc2Tbz1DbBLX/LoCJAbWbUd7CMj/KYn7DPz0WR8GZubFjTp3FAP+HXZD62oCqDveBK1YEG/1sFTr1v7sGiK/9VcDQ/YVkFUfO+IEHwhcLmvQRHYZoyEsoVwUBEFGbBQYRT5hLpVDMKC5Ez/iAUBzBNVhRBQ9baoKp5vepO8zmqY3Ne2UPHaecCeyhkBFkrsJtrmOOHjRrdZEcTJOKgy2zI/Zi79zl4XFzY7y8jPq9NGxhk7oUEq0qxEwL58J03FnHd68BDqk+oTKVspGyo18fMCI64JwRTUJVCh9Ee13jtW+DoCWd+OQqfOzqzQiY9Lnh6+zUXB1+XlAmRXtlX//S7FahVx4pkcnXniQCXJwWPlix4q3ppe4+UmNhHWYr7pfphjoTAKjFRArM6rsOwvrtt+BHoEtINP+brrygC/fWv//vIbQ8rOa1IsP5ramN2ypdJ3Y3aTZHlySc1tZ/kvFULmuyoCej6Gy6taDLnwR0ywVx91QW1KHcOk5gG5fY/5eQvdB6IMdGsLBpIeg8ec0TnxpsuS7T5lc7SLG435Y186dgjxyQrurIzbMdBVbeJXHLQZeowZNAORUy3T93odpHuLkg9p0yp42RKEUuyXJHHt7O/jOgO/XpXRHnVqtTorIs2A3fHmJhFmhvDiAB/JmKPIZ/IC5AvwM8+CArwKUIaYrptFgQysghx10ziX/+pCjiuTZ1vD2AtIuwzDnyNs/fAuPtp87yFWfseAH31MqLHHhNlbgmtjA1wBtwyozlJWdgXQc1xottqRS0OLBgqY5qAjwygxQGgBfYAmfV92xLm51noWUiURNf+6ndkSxPRbUmrRuQWLjbk0X2I3I7O95Dd/O4JKs1OewoLD2CNvAJ4/Ty9lt0iuddfVDbVRkYlGyr76RpAmRyKNIux0SuR0DJo4LLr9U17cmqBuZ5wJLYWQdq76On2auz89WVDNq/V2iVzhugxMnzNed+tsSYJ3je1e5f98Fs1prKoanluiSO4LK/s7olnfbXMI+7IYsHYkx8fl9qd+2+9pvrQyTBzC24WVJu/+2m9EZ/yf3wezW3/7b/+TdVZCXr6fshWynTqGXqPXtWCEzEWYoYnUMpsj0vvKad8IRhzeTKcLxWenXba2Z0HI7V9IZ+5YcmcwCQtx96KKmCvPYNJUQG5Rs+4WiO+2rWoRZ2T0hG1cJ/GTRbzqMMOKGmuea1X5qCt8hjFjjkLdqklRTbfziL53XcbLIJJJLx8E7bZJgY370e6m31t8KndEFzfRxlSTvuwD65RFplLFy9d3u7a/flRRiDmelGj9RAk6BUiWLgR0lgmeBlnmOT//kE+KWkalQ1S+kFrMu7tgqu+Ow12aPfybuGOo82T5m7vkfYx76QDAmKpjKTIZ34vJ/i8p/Zp60CVkCCXMExN6vIESHcMmWReRKUyf86MUrAs8HeyopzPBUzJYqlhXo1KTr2n1i4Cql4f1QuVjYApJ3YZUa93l6jsBEH1nyabhUXKSpSPwC2/m/8FNyl8/M7FlwPv/XF7R6hlN/WshsmyorKkSk6GJQirp/X1FyaRknEScLX2chyiemxktoK7Mq/qRCeFuPp7agKvgstHxlGeckmpCKx3fURU1vWV59ONIjjL5EiG+NqoeBa9NacIrPYxSHp32zgj0CWkG2fc66qIIlJKAsX8QbaSwdCzH6q7UU/DOdcXlqRpchaOWr4gktwNTzvtSwXyWr6QAH/2zK/GefeazhtvvlJEliOi7KiFBFfDAZEAckKclWjzykgQN4dNU3ByJvU1spnasWjTMu+tRZHkxrAmEV8EEriL/pLXAmm8Rda0JarLkx2tzGlIJ9MjkijgbCGgvxsy+l6OfSdj7XzrZboZJCAP2G2kUYAd8MiakuvAIMBgH1Fq53t9xpzqrbd0eTdbWgP3L/zTZEV3ivypZ0WLgbfFMAmOsf1MxrMdfxI10t0ipnmPAbR9EUPSVcfI3tjf96ZZEGSRln2QQXb7zTFNthNJdDzSpM9nazzhd8DuGHJdAEp+agEBkJG3fpFYLX5rfkWQ1VzKZooY7zh856rBFFm2GFDzwrhIBHh65LI777ZnyXp79tquItVz833kTog8kixZfJBcyYg+du/tMZwYHlnVqLjrPpRFwbjKkFpMMBR6IWYSQFSN6LQnHi6ye2hMhMiskFdR6kHJdj2Yer2ByWCR2JI3icrrD2dRdE9qSdXFnnjWb5TNPtAu6e2ZZ5c0yr1b0Jz0ud9Mj9M7Y4z0cBYXg8swwgLotjQaN97kVWpJAf/0EF7jc0wUGyN336vzx988u17Xv/Ax6D61iY2AejdZUq3J1HXKYAqUrkwWRl/sk6Lg0Y+aM652MRMTEGF0pF+27yfvAtLec87528o6HJKF4b77jOlcFBWQ75xsqU2ZycCUlZx+2pc7Tzz5UDm8653te/pp3QRJx+y/R5FNeKPvau9IauEUwgl/qIBgD9xCSo0pjOKTAGc853GYBZAE5cxzgq81J+Z35lBtwFRQFSbCPptrxJCvW2ZSo/Ev/1NZ0ewCW2AM0givSlIb8um9qPVAAAsWUep4vzhIV6lJ/m77j/4cZgVbEFvnQ/zUYzoHbCFZbwmsaylHkWCw0ii5beZ7OIX4CUQKkhaO5bpwSk2m+lNlGP4mC24zqT4XsoUNVuYzlM+A+3NNmEdaSymjRYvsqIwoMiqTylhQEFKwk7s7QqffNh8Bihs/YZdSEi7uyOHYoyeWgRFiyk337rSNkp097LiTyoGd0SSMYHi0OEojrcMQxvvizq7XN8y5/5ZrSjm0R9bAHOSv+PHf1VgeEPXf3gcd0rnq3H+osYOXylUu/cG3EjReWqT5+NO+WA7zL1tXZ46hEpIZFXCF5zKrMqkX/P3/qMwqrO9uG2cEuoR044x7XdUCDtB/4xv/sepshET32/fgcsbVjgUxJW2SHe2ZaOhlcRKzHZpm5QjsOef+fSLHa6q2ZuzYozrnn/8PIWTR4+dLahHBlp9hhFrThVnc3pv+TXMTbSb13Zw2E+igZESPP+aQzusz53YG9u9XAA1c+yfT+dbCpQHnrUPstweuBb7IJbMjLrl90w5GzSmZbu+0g/FcQ0ZlykIkQ2Q9Rp7bkNHU55BEZaJuzAoiyc0EjnAivRYPWJLrizwbc8CuJtXEvn2i1gCpT661dPmKytJy/LVPd/v/jcDaRDyD3Wzv+1U2EpDLUNqApN9LEhUAR/69ZzZgT2Jb74Poc94znxULBPuLFvvZGkc4RqYTAIo+exMtKJzHQsB1PLdm1aqKrloMOxYB1ZO0Z+SFvUIgkT+Aqc5E7bY2S+7Ta7DQEMW2eEBkuSJaNKgPsgBxPe5+wyI/0n9UD9Hpzz1ZPT0RWfdCmiRzKlMpC2qxImP5WIzORid63SuRb0612qrMjqMpEGdKxPGQFAsxFeldmAW9BYBsLrMkkW/RbK1ZRNS1blHzo4aItHZcFgiXJgtqDI+KOzeielvq/7we7ry5uZI+kTQjtdwKLQwsnEietI9hOsHif0AI8AlnfKmOJeklIyOdEm3vbpvPCJDtHj7u2PrcPpPPkM+7fqR6kMqGktXukc+VbOedd91QbriDUq82JdlxMtw70qZFT+0pUz4Xt/eZkfHeniDioM7Jef7xZFeUo4yOCRKZL5kuTwTmRr4Hn+aNd8Huu4yoLOfykMPyPghuMDFiQmSO44WQ2S5YV4ZE+a1R6ciYevyd7IeMqhNFOAVXlY34ma+wr2ttAqjGU7aUP4Igg/lO+QqDP9eUaZ2/YLEjnLq7fWgEsk5bGwJTGNWSQHOy9YD1l1r+9xDMdcfAL1jgDSh5bt43c6nfKX8QNkE8hNAa0HsjGOr95V1g/kVKlZXAFi1e9LZ2nOCqaxfO5XcBTf2r4RwCunThgspsmvNbItsETgeVJLYCo8EMqphZ+TmKo26c3kcn26kkZLd9DkgG9PkKmJLQIt0yjTBCIFSJCAd42ELWCjeUdOhR6l4FSQU5kUvXR0z1vlbDiphS6CCmFDa3BYecG9bcd8tVWR+9X2qfNxNEhSG77X1gDPuOrR6izkXaq5/pEzFQIsed8sWvxz3+6gR6o8BIIFiW9L4QV27AgqdTPv9bFeCFm2TKMIwvAyLq3vUtPeH0L5Ufg2Bt9cdOltf6obttnBHoEtKNM+7rrypDqsWK+lETzaVxwrUQPuCAQztTYvhAkvt8pG6D8yUukE9fJrb3jpucBr8kvbekvkbkanKiTHNieKSf6JAhwzpnnvGVavcC+OfFyKiip+uvvHn9IlIsorxbQHynHQd23pw5Lz/jHJfso5pRzoQLFy+tiVq9jcdN2r17p9l0iOLKVauLjJI5iRB7zAaskVRyqLfzWFvrgTwyh7A/Ego0RK0tFIB5uzkeqLDgt3Dw3MrIrSwMSkqTRQX7/SeefXmdtFhPuPXY1Z5mi/yJqCGhTQZyecYujrkBXtuHo8+IYiuzzZtazxtzW5HVAHa9P0hp3iMSH+9DQ0qbTKkIcTvwCCbwoxrwHhWBzPfIuVyXPMq6jDSIjT7zIjVwK1K3AlhJcN37Vp8JeQ0Iq68E3q0EiomC7KQsKPntqGQHZSpH7b5PkdA9UkuDaMoaku66X83COe2OOXJCNQ1nMoE8qydtW7pwKkRkn02N5wHJNC1dtLCMjtTAvBCysDJEmRMhp1xRcwCsBnRu7oUE2Ot7Ij3ggPe4uJ7eUq01tio3wzkz3gh4P1ytaCZ/4bc6N112Tr2mlmhe8v2/KnItwytCjWQyvdg1xmiTzvpK1e0gwUw0yIER9OsiATbOjiGtEln/NGe86gP5KfvH90PGk7uuDOmDD91Z/gPakPmb98GFF34/JCjOzVmUTolx3kUXfz8KnDc7u0bmd9qpZ3eYHM2KAgDxZGLECGl5Pp9jE3A5MAESfgevp+aLl8KWsO0ycqcqPekXnCKZNZchlJmgKtCKFQqkwh1BVP0da8vcp9QE4WwVPLAMmSxH3exPIdSSHPjnnIKm+ZHHm7nT443UN4G5nEv2tYyScqyfbfZ0S3gvfslrLGM9dfmwQDBRMM74KuOQ0YQxpY9aj0tb5ZRKe/Jo/ivMCUEtIpn5XFBAphU+FTFNf+oirXmDZDIF9xqpbmpHQzYFWRFOhFYmVcYTHilNEeTz2DYhrjAJlpK2uz/3i7whf4KAcQKu+ZsM3z0heILuyLO/BeUFX5WWrEh2dccRI0sCu9/Yw8vZfZ/I6StLmue1h0FaZUSZ75HhUvDIQOpZTQHEGZjHANMgWVL7Io+OHXv08Z3bo6gZMGTHyozedOk59TrIcB+8/YYK2CK1xhex1R6NvNZ+zisDilhr4+L9UBrCcfjerINlPsdnHWzcOMobt6PSBo28+LJkTWWAkW7B2EcSjGVg5Jghw0cmiPtYZYZ/yWei+/QnOAJdQvoJDu5HOTViaZMp5VR4ciLJJqaL0jpBzccBqdeaMvlzZXQ0Ky6bo9M24sw0Ab45EaXp0fIPyxeJTPfGtG3RW1S0elIiTtdHFvFSos2Mjkw4n4aN8yAp7J67jayMJinu7PQBHTwwdX4B0or0hvyRzawJwQT4tiXJjiKWzIfIfYE3YtOSUbWogLkIZ/YHGlx7/RStFoUmC84hAfwmelZAE4CvyTz7AQELCPRvTXsAAEAASURBVETUvVg0qAMqqVQe6xdC7fyvz5hbEuK3Fi7xpjQrBDe5BW0hfWtDQnsAZlHiqnnJGLVSWWSGiRRg9nxJi/K+tySzAdEmo4nMNVnPRP7zHpMfkUVV7WjG24KhotP52WRFszALCKu/aaW7FUkOUOuTyAwCKWVKhLi6F9lO9woMvWFqa5gYcc+VnSR1tTiwv8UJous7DPy0q1kZ6VBb++P+kG4RbFFcdvNkRswUEFVOh+5ZvzfNxw+MNIpsyuKGgRBbe06IiIIFghocCwASLZlRclpAzuX24Ttvqut4/I1kY5FiWVf3rd2LKLNFgMWB12YRoE727hsuL6ktZ0J1n6Li6kRPOfu3y6yCE+KQnXauulEgzk3RmDAvMk5MJrwv7P0RZAYVJFfGtLttfiMwLO/14Bhi+YzslQDEySd/vvpcP5zAp+wnEyItYS644HuVGeIGv3uCL6S9vrsUO/vkM3teMhMyP1qbkQ9y250ZTCP/3VK2A/fdPWSwZ2GTwCVMKHIY7CDVhSdwpFfmMvgBe3z3C6syZ60KAUU6kR54BwNhlHPY4KPN/s4FZMw5MAnGrQ72wUHBP9eBi1qm8VoQVLVxAqcuQlS30G1tJKU9kDt4AB9gCHx6992Q99WrK7gn+Om98ZlGKv2ef2otYOzzBtR7gBzZCquSdLDBnzpf1njwwvrBJjhr/haAdV3XR36RV885Lxdd8yxC6TvZNy231jD7yrV5Hij1GBgZrfl2m3UYBp8qcJr1oJ6hHNtJctusqN7XvAFeptbZf13ANNlTbvGyutzeYRP8eDoGRBQ7sqHuda8Dx1bAUcYReedfgBRq3wIT21pSZSO8BRBHBngyprekf/WAzC0Ip5ZiyPbxKUN79L7bKiBKviurqcSE3HbKF76ejOs1dS/u/7hgzuU/+naRbYFbpkWXfP+va0z3z72SBV917ncq8Gv/EyP/VWfKLJBsWGsZWPbtP/7fi5BTNHW3jTcCXUK68cb+n1z5B9+/unPnnTd0pj5yb4E7kEdWzwfymWiAvH6jPz3vO1k4r6pm4xqK//BHf11RMaYSQP+qmBqJNi9OG5lP4zZipyGVIR02dFAyostK1tQ7k7t6UsCKhL61KE6nke8CXK1gkELSW5M+QM+vDelMZlRNKkAH0EBetrTkT8mWAnBGERYNH5ZC2Ve0uf3ZGk0Ad+DTqyKYTQNziwpgv22kUhYNFhBMj95aEKObkOe4BG8xxFR0dtsAaQvuCBtyCdBFev3e1M00zcIpBurNCgiTQAF975H9fCdaggroMUWPkdQCwZ8lY9OS2cp85jHSJ6SU7Ne53IfIqg3xbKLWP4v0aUDt1y4C3Kd7lxWt9i3JDolac5pFLjnrqrdkDNH2d2t+vhn33N07c2K2MDo2+MwguOgidI2BxDORSu1bRhPkWSzy7SObqT6HxBZZJ48SVX40kvvBqRsXZdaEfGzkUPrDLVk4P/3VUusZ2RH52DHs7G+/vrLFk876apFBMmHEdFZqz197IW6+yVoyS7rpsnOz2BhYtvhMJ1xr7/Q+ZeF/5Tl/X8TXcQi1rKkIul5uxpZTIZfUIxMAQ64Bv/fvgNQNTjz9i4lg/7AytEAeqe+aRdRHbbP7R9mHOrj/+//6X8mGfi/z2dIinKee8sX4F9yRXtrccXeMn8HZaUk2o1qV9U225sQsSrVn0WtUsPW0U9MDMM+rF52dn5tb6civ88bBomPGHVj4w/8AdjAWggeUPwsWLS0iCGcoamQpBdXMe+S8CKZsqTlK0Auu9EmQ0/6yqTV3ZX/KHoSy9gN0QRfz3dY53ryJ0CCaK6IYQlRJePNQlZf0zO/ppV2EVzDWfKrkBPHdQrYqH/FakUHGQ7AENgleVg1nxhJWGEfPWVPAF2MFhJr3x5g3QWp/wyfKEL8jsUU+s7/jnEMAFQFtHxcUJLM1l8IXpkYCmK6JcLa4qaZTnaT3tQ2Sku1W5jW4gcgxMUL+mA4hYA2Wxbgx/3NPMNDnoMn0duqarq+9mJ6hMI1KhnfBmPgDMBySUUQOlZwwIpp6180V3HQPr8WwTJBUZtOYqA2VqeTwrlwERg0LIdbb9L6bri5DJWUlN6aHsfuFLddf9MPCZwFOngoc4wVjkVmtxbwf9psZyTFyjFCe/CVE9dr1cuOTv/hv4mtwQQKx0yrDKrgqePpYiK77lCGl5mHURyZtP+9Nd9u4I9AlpBt3/OvqosukT6LKp8aZ8IFkHB55VO/QHWPycHbV6VxzTSzys9jmPoioMo2wSGBapCbkhrgVijavyMT1ad4QQcRu/OEHBVTXlLlR6xQ4dMjAzpx5CwvQZZCQTfsDVwYQQN4kCdydAyiLQANt4KPmEzmV3STdLWDPZK2uUIRZZNl5na+2YFBlVnMOx8u0Av/2eddEUpFh98rK37nIj92XKLR7tADJQiCJ3bVQ7dO2rU00twfSiSwCUeRIVLiRQAkARHImCmzMAwo1xolG24C2v4G9MfOzifvnbQtA/zzH+Om/qi+1RwBaNNm5EDrnRW5dD/CKMPvZXCey24B/1Qbl+4Q8OY+o8/Kliypb6lxqcxgstFlV8iiRaERMKxM1KmTBPl9A3gICaC/Oc0wiLAgYQKhTEd32OSC/kq0kqd0v2UTtVkSTZTxFpS0IXp0WgD/hlM7jkdo6Dol88qF7apGwNOdy3mMjWdLbzcKHTT4gtmiS/bwrDcCR78lf+Fr9viaGDWo9SYEtLhDjsUdN6FwZMilrxdzh+SemltviyDilOjfpLeKOKOvxdtH3/rJqapFkdawX/+Nf1evdKxH2iVkoaO8i4u51y/6e93d/FoK/xWZb8onc/Dd9s0lu9QZVYnLOuX9X7uzaijHWuyKOy1zih2fxe0ZKRfS7Vg/Ky+Csz/5G5/7IyB9JsFX/UQvtLWlDOLnE8zrYIX4G/m5xir/BgoVLogjhsJsWLsElRBX2bJV5yN8yokikuQVp8fvg9OC2tVhFwWMObOS5WpORiTKroQiR9cwveR4mwT9B05yuJMNKVWAWYgsXYSBHe/OtTK37gXMJpDrLpw6jMq5FRCltYATMoJJR14koIoc19sEM86osHryQoRTgtA98aQkNfPI+IaUN7vSqoKvnkUDBPHM1DPImNKQwJSQ5D+xxLFIoq+kYz8PPNcnMeo4cV7mEACklDhySSfXWwFXEc3HqsGGY1+JzITv6Vmq4BUrnvPla9eaEOyPisOtv/UFfSRkJY70Xn34srrRHlnGdrKmaTOcUgF2UkjH9SJ+MoufgZDgFRo0V47zHU6t5QPxNOPS6d87td153SRFNZnd+V7tKLSP4uu/B4/L33vX3LnvuU4Z4ZLiIKdf26+J+a4zHpzRtZupcpz/zRGfUHnuXf4GSEUq4IyPHNT5UPoydEFXqpfvSUkYZzIkhojCY6geOc+6Fw1eek+BpxkbpC2Mj+NltR5aP0EbeuoR0I78BLm9xOiySuKHJfizNIlhzcNFmbrjPZNGIrJ5x+pdLgnt/vvTkU9wIZ858LUYSN1bUeU2kG1vKJotJAqt3GwAGmMOHDk67l0YSiKA3brvJbIZEikKvr9UJCLTk1LGABmkE0oD+3RgbyXJ6XBR7+5gd2USYTfgV5czjrQwH4tvXdUS0nbOJbouKkupkoREAkw0F+stXripyy96fOYX7ch0Rb4uB/L12XUR6swb+kMK1cVjtQdLT1olaiCJ8QBqYAnVgL5uJePrbc8DX4iDDag1VIA7Ajb1MpbG3XxvVLXluJL6A3j7eD5voswizXqNlqZ9jgKfggfuq6+W6jrGwUJcDdEuum4xlEdEAf58YL7iGY4AZYLcocD2yriGRvs6dBdx3T0T5tQJ5YM9pd2EAHPiSMTEr0kyctGl66i0RPCRU9FeEtn+ySK5PJkU++3Dqb/Y75IiA8fS61iEhgLKYu4aUGhz9SJkLkcxaJk6IPFY0mmHRCcmYauPSNxFzgK4vqPE4+UtN5Nj7AJzVGT336IOpsdm3am2u+EmTFSW1VRfLEMJrdhxQZ4Qhc+vvGy7+Uf3NEOPkGEx4nuPv4J2a/m8Anu0+Et7NjtZHcrP9h7kRIyMmRgKhel+PjMvu+Rd8tzKdYw4a1zkhmfIf/fhblRU9yN8Jnl555Xmd5yL7bkpHGuniZjsIv8KN8zY4/JD91pvtMeSbO39hYVC/kFEKHlgFg5A/3gc2wTKYIcjJ34AUF0E0HzLg41fQKHuY6sm69Si8KTK0bv5DiGS/zG+IK+O/BpPUkzYElBoIERVwlaWVfXVd90bCK2hLWaLN2osvv1lkOsqkT0UPU/Mh0om8M9dhCIdwmvdhCLdV4wlr4E5rLITIGFN4Zn+kEenbKrhlPeAff8OnIp4ZP+eDPa6pntSxMpmFYZ7LeQRSYaF9vf+VGU3Q0gYvHUcB4zr2l+1Un+k8iCichV3I7NZ5T5ctXrQer5RcqCX1XEuKBTgFTvvFZMxzZL5at3j9XhOCLIs4L9imTEQAEwYJiJbHQe6R2ZG+1w/cdl2ZHbkX0l79QvUilU1VdnLvjVcUbnkOYRWM9Tp3TED34NSEylrqUYoYkwUjpiS+/AwERNW38kRAxKmHXP+EM75c+OI1q1ElI778R39bWMhXYWTccy/9wd/UZ9396P99yff+urCec/DEuO1S/Tz54N0VfIbn3W3jjkCXkG7c8V9/dS1gvvab36weoWpt9AbdJ19OMqfLLv9JR5sXvd1En/VmI+1li28i2hI3ZE7G8cD99ggZHVSAKttItisjuTL9RduI76KlMQLI5En6BABWJlNqE43U/qWt+QTeFvYmSqC/dYCI6666U5lUpMTmp308DpgQziYLJyIqihoAy3+Mk5pzJ0qZ49yD8/YMoCxasqxZiLQy40TJ2+vOTpYXOVX7KjK9GW1rA3hVGwroAFtDPHuW6QIQBciAWZZURrGp/8yiKItcRNR4qtERGbUBCfusQ/oCekTSfhZVleXMcbKvzSKhcS/0u/F0TosOlvjAshYXyT56o5kXuRf3hVgirSLNFn0/i3sil95aBOQeACsZU68cK8sr6opoLpw/u55zbtdyPqDOiEEz79bIaM9IlFjiqxNtXAz36rw1e0aynr2zkNihgF3dqBoeUly93NT6GL9ZIaSMhB4M6A8P6SV/mvbkI0VGGRy59lEnnta567rLKit7ZDKqiCCplt+vPf/7JfM9Ji6FN1z0o3pf1IPedOm5GeuGmKpBVX+q3xygJte1aNLj1HumGTkSLnL9ehwQnwwJZmSBiDJosvhg/28B4b2/KdeX5RVtN+YWQd1t8x0B3zOZ9j/9k++UcZ76z+3y2Tx+4qnVbuzcnwpkbN1RRjJ69B7Vmkz/0cVZ6G6pm/KRXXcZXh4HzIe0LeMCL2jJNV4glQyXQkbLF07wMAn5NP97HpFU7mGugyutIkcpiceQ2WYeTFYtWGbOE/g0/yFFtjbwioy6D3+3Pgv2LdlvyDDCyrHXdXOiIp9UQ0pgkDbyXsT5+Rdf7wyKbwMcXLRkeS6z+Sh78jlem5KMHlpeyaghaEtDcvJyi9wZs9aVvSS1wSWf63dKwaNFXLM+aMZcSYngwQeSXeexOU+LQTDM++q98T+EkiQYWUVubY3Et3FhF/is9zE4V+ZFqcsURIVHnnOzCHKb/ayMKWxK+YTSikaVM7wIqTmYxJXXgfYmAp+7RIk3MzJY2VLO7oVjWUsODWYhn7sHo+DQganfZFrEaO/ZOLiPCDYIMprL4doL6ZMNH2QXGe4pJWFsR5lDxivbLDMqiKo0pWpBg1HMAT9M/qzJYN3hwTi4zwBP2QisvD545bzwCjEVSNXqzPjef8u19Zzg6D0JhgoG75n6V21d1JXCYeR2wmlfiIrnf9UYMNjTRub6EF4qHucmPRaY7W4bfwS6hHTjvwd1B70TrSLJHZpsxLHjT6p60R/+6G8CEKs7h6Yma3yiUFdedV457oo2m+y29E3UFpiSQ82YNS8AGtfWyKHmp54UOIv0Llq8vLKXwBQrLBlvJndAbJ8VyViSOwEYWCIj6ueaRIffD+H0nM0ECCRakGkfR3qBvOecA+hvtZUziHI2UWggjrwiwqLaFneA3iYz6loi0iTBZLyyrYMiyXojLW5kS5HaTXUDpKLLorsWLUgoeScQRGQQT2OHWAHUIqIhfwX2yULKCCKCzBkAdAPMjSTa76LzNfbr3h+/15Yh9rtraqcCyBBVpBDAWVQAPfu00mARXwEcC2u1j55zXWTYvSJSHkMQ3w5ZbX7vW9Fcr0dEWePu/okaaw3DmRBRfSvO1qS782fP7OycmtF5s2esjzbLUIq0OxaYqk8V5RXhVc9Z9TmPPdQ5NBlRhFC2UVbVhxBBJZ/V0uWRgD6nRFlYJkNqd4A/Un1U6s3vSQRahpUJhEylLKaFxZ3XXlKRYfb8DCQ4AHMdvOan/1jnO+0r3yhpFMm0jKmou8WExcrkz/9m52otW7IgEhl3PwyLSNaOTdbV59g5t8t7rtebzOyVybB6D9QOyQT/6R9+rV7/pvr57d7XRx8BpSL6kFLsnJ4M/KyoAG659eq0cRnYOTWBUwTluusv7sxIBmR5vktb+gYT9MneddSwUvCYx6lnmPDJcCJ+8EbwUvARJlHvbBdVB+WMICiyKsgqCwpnzEn+gzVkvQKcroOYwpgiOXkfqG5s9kVAy8gov2+duc+85ZqwynFvZ150L3DHtWGojOuSJQmIBq9IjKmS+DS4LnNB55dR5WzfZl030fd7bYKEPVpzoiar2C+ql/5VqsELoDKieV1+hxEyoYidcbV/QygbD4OtM25bbx3Jbn7CvApO54Vr+yKrCGuM+XqSmnN4HIkT8NamrDAuc6fzl2lRArCtKstx8AiGwraSB4e8rs4cbF6FI6XgWRfYhVlw1WugaJHRRFopfoYkK8q5HeFclsBQZYPzOtVuy4ZyPR8ZJ/gZr7xU2cQZkdwjgcpEZCq1gxFkhKXOp80XEsc86PH77qhepIz14K3sJI8Dmcnngmfwi/fAbVdeUG7zrvf01PsqE0kx84s2JB0+jQ8OcZ/nHL9/JLUINDWOAOjpX/3dwqvlqU0fl17bMqu3XnF+/Tzpc79RNadtL2/YBv8EgEckSIa4PhSjpedTD7vj8FH5++udv/3j/1j45DV2t40/Al1CuvHfg/V3wPhhchqNP/7Ew4mM9eqIPo/IQpfs6dVMDotSK9Dd/ukIjNhpcOREO5SkCNC/GWIq6wnoRaPJoUWbAQcyKspMfmsxjeyJNANnWUsgszoEUVQa8FoQyLaCdlHqkk3lWGDcLgxQT5sIaNWj5nc/l0Z61S4c7ON63BXbmpyqZ80x/fv1LfAn1QLsffs2RhUMm1x75pxN6z0PmK4NiPaQCUTsREzVQQJKdvGfyaKm37r6y+ByQDCvJ0DzdsgYMtiSP4QUqQN0xhpItxLaIpU5dz2eMSjQz/MZ0ALx/FO/Cw7IYAJ8m78da0MwjX9LTCsTmsWCTR2oc2+b7KQFXLnoJjMK2AGh18A8YnnMikh+ZUSXpCaHvb2FBYJJxiq6rE7SosDiQsR9wdzZkSbtH+OggPo6cFdfoy60cTF8ogyDSHVFoJ97/OFEdQ8u6avFiYgtR1xA/GT6rTGSeBXo537Vl7LOV7cpqmuxxMyIudCgvAcWBZ4nr0KE9YcToXZvzB/8TtbF/ZDsV+2ohuIWHYDe7zLJyOR7aUdw383XFNEG7DfEAVE22H0dfOTERKC/VZlZNv+77nNARaSNpUwuKfLF3/urqk2yeELEu9vmPwLMjYZnIbdP+gNOS5/cEcmonHXWb3ZeefWFzu23XduZle+DNkjd7YMRQPLM/adOOrIzc3ZqztOyzDwWM7vyEoA9yCecEty0v/pNcxeyCbuWxhSPbBdZdax9YRHsqv9CKmEHQttkQ2u3OgfZreNgkufsU5nWHAMHXY/Cx1ZmR+vUQ2pX++T6joGbiKmMryDr4siMHTcg2KUE5dU3Zn/wgjf+b2uDAVHpNLJbwU7zNpyBE4Knfm/m/CQBgk/mJzihfQpip4zEPF/4nfeOggbRtMEi2VVYVrie96FwJ8FQzvDmQDjmWPMuyS/8k9FE3BzrHHAL+fS8Odk9UaTYHA8n1WHCWBjkJ9yR8USWl8W00nHOTW4rGOmaK5YtLYM95nRtUBh5G5YMpKyogCbcar0P1JYWqc1329yPtCLDXHXVocIJ2MUvgCGQ+R6WyIgqjYJ3nGzVhao7JeFdmXuQJUUUBTFh2lPJesrOGp9ftsFu98mPQFkK0jvmyOMqSMr8qCWmTTnI/ODY8VVbenWCrDD0+DjMy3hSFFmbMDh69YWnE2i9pRx9BVrJmW9J3TsS3y0n+WXvyIZ7vktIN9xY/9IryZIyj/jmH/xRyRmvSxH4mzMSbc6irrv98yOAiI4eOSyTdmMCwWFX5BZoiuySObHYF/0FziWjXZd19DfgRxBlPYGFjCZSun1AGXgDfYDegjrXXQuAngEjzckRxyJJuUW/Iw8WGo4FSmRQ2tC08qqSEifyTTaV9i8lx5ExdR9cDoG+bC/iO2366//8C/+EnwF2gNHrQegAlZ/IjwkdUAKP1mABQJrcgazjACLZjNdpX4TPc5U1zWNIaAv2wBkgF1hnfO0nMm0xB4wtEFoAN6Z5uiRKn8lxFmj2tQ/ptOfds+NIbLnokTeR/rqvCkask0Ehm46tyHl+B8hACvBbnDAzQjQtKER2ATlXW5FrphGs79Vfas49ZLhINCOk1CTnWhYf2/exeFgcudKOZX4EyJ0HYXSvFkykTGpr9o+LoPoY9S6P3ntbXctix/7kTPfedFURwqUJTJWZUbKUjCJEwJHRe2+8sgwnXFerGMdo9WIBIqP5+vTnqs2MyLX37NnHHqjWLOzwbwjQI9mnf/X3ilyKspP4ygKIMqsLRVrvuv7yOidp1MSY2Vz+42/Xa1brKpOrZkd/VKRcpJ0hRnf79IwAAz79RxkZ3ZHAxgNx2Z2bReiWWjryUd5ZGUa9sccesGdhglZl/RJ4JNMVNIUVCCBCIVNJngkLYIlWMLCob84hI4qgypTCKnODubWVg5rzBE5tsmtFQHOuHFZzjefNjXV8zgnHzKPwsD2WqmjbzNUCpIKqiK/ep54nKYaBpebJPVP8CJi6v42wrTW/J5vZoykF0T+68QWAK8ayX/8BFfRE/tRaIkMrEzxE6GRBZR2RRMFR2CR4ZrOf5/WezoCVCqUMhzz5IWxpxh3ONGPsb9ddT7r87pj8C7u8X3CEWkhJSNNfdh0O5nFEFA45h/2oh9p7hFvOpb2L+/e34OkOIaLOX/Wiw0YU3uYm43o7rPqIIoMwGVGD5+Z9ZE/Qc9+xh5fsloy1AqbxMlBWslfKS6Y/G8kuj4NIdZFRpSE8EJBk5FnQ87nHHiylDq8DpkTue25UExPjjntbvAwYJmktJvhKRmyOQKo/6gaLlZBMjsQWVunpfdixk7L+GJ5yk5+sI6a/V/4IfB0EXEl0OedaF8C8XklO3HjxT0q9MymGfzYuvvqXCqavyv3A0+62aYxAl5BuGu/D+rsAGHqJzp79ZrV3Wf9E95d/dgQyZGkFM6j+22XnSFHeWlxSXtlGNToAWNYU0QSygAGIAF8yGvsgQogKaa/n7KMGFBm1IYdcD4FvLQwAWoiOiLPjRJBbouQYUuL6O8eWdDfX3hYZzvHAHkkmjZKZlTkVMSc73S5EyALAfc6dt6gi0HUDG+GfPiFismeAGmg37n4hXAG27fsmOh6ihXhx+itHwAA/YDcegAdAIaUA2Dla6ROSKBptnEVl1ZJm5xoviwnjBsDzi/9na+pvCujzgPPa3+a+/G1h0S4gKhqee7EPEPacxYtrOSFw9ncTgU6tVKSI6jC57XHLRTZFh5FVdXLVazSOfe6TrIucVX2osXEtixUSXFlLQP1aWreQNyGCXAWZOKjPIe0dtsuutVAYFXdBEWMkFGAfOn5SItCNS6GIcAvG0558uEwjyGhH77VfLXaQ1xPSi/j2qy+s6LMo9tT0HGWEJDLMOImtvfNZ4HAavCsyXhmCqreJvNf74XFW+K9Pn1bZUq/HOdXznP4bv1dZTq+XWyKCfvNlP03EeWjn1C9/o879UiRVXBJP/crvpGb1nHJCLIOjSKH+/P/8Ro2VTER3+/SMAELqu0nBMz/ydfNkd/vlI4DEIZuHHbxPZRphkaBpExBNT+SQQkFTeND6GpDSIoCceQVXq192iKjHBDthlrKTrbdJwO69Rn6LZHpPkFH7waF6LHOheXXrzK82sl3PbZNjW68DOAnnSISRZGoeLKjMjsybedzr0LZMAHfbzJOvvvnJZkcFBWsOD8GWkjRPC24uCRnrl8+i7CdCgXAKSCKlcMq8B29a0x+PN6RsmypBMBayoz1TJoWYIDAeU4fpp6ypn/mnfiodUfvpsw/fYE7z2YdDMKkx2vO44yh1Gqlukw1V/oOweszrcQ7YaH5032pLvS4BX9eWbRXsRTyVTDT79659HcNoT7CQEZMAMex6N1jEJGheui0YA68JAR02cnS1b0EoBTI9ZxxlhZWBCLDCrznr3HcFWQcx2KxxdR3S5VVFDl8JYS0/g7QVOyySWfJXY6ztmRISuKNkRHCTIy4MGj5q9zLe8578KpusduHMl3+78+DtNxSOCtr2Tbuymy89Zz0xvTP9rmcHa/dPiZt7o9IxtmVwFBxWVwr3laYgun/xn3+vPi+/yj11j/lkRqBLSD+Zce2edQOPAHLTt892nf333i2TTqSwO/RNC5zG0Va20QKgMWdgCNCA/pJIo4A6YK56wBBEUV+kE6ADY2QSyFgAOG/VNOaJci/M455rNxO3/+znpyi27CiCKqOah4rAFgkNGbYAaKPQFgDuk2xq2YqVdU+vz9i4hfb9Bw4pkEQoGfpYHIjOAirR2975W/TVWJDses0lX82k3zrTqtHEKYE5wljjEidBrVeQTxtSKTrsv4Y8NgEB+8qaWgS0QQLAbAPY9R7Uz5DPbLVYyLnss1VAn/Tq5wEkpNk1WnBHbLdL5tJ7KULqfZHtbCO4+nJ6UASa3b2NK6CoMwMM98lYaHb6izIZemvOjAJ210JONfpWu8Pl742XplWkWYRXfaeosogz2/wDx5HsPpS6nYPLSVdEHxElgzoozoRcB8enp+gjkRppOaMOR+aTA+69N11ZZJTFvcWI7CQibHHFAEJtp0URG/ybAtpINwmUPm59cx2kUr2nsTotmc/7kn3lBKyHnLG+L83L1d3ImF7wnf8R4v1O3YvFwfXpLyoy7zrT01P18fvv7AzdeVTntJxTZtdrnZ1oditBqwHs/tMdgS18BLT7giuTxh9aAUjET/YU5shSyn7KlApYwhX/Me+jrEFW4ZHJlMLG3GVzHGIEY5Aac6YdBT7t51iEVKYTqYUvNvvCtjY7Ct8ETJFQWNWa7il9UX8KmxBTgVRY6rUsz32//NrMOt8n9Y/WVzAaVlSLk6hFkCgEUPZQDWETFHyn5jhBxjxZJAmJoowh36WiKWKXnzBMzeaKqHeoWQRRkT8KIIZ6rb9AU+bRq/Dh3bzud4NbMEfeE9YY6zYHah71Pngcvghak7Qi+AKwMKMUQHmf/IRz7mnrtDyzXnCvOVllZmVH20Ankgp/3btjjAEiCVdhE7xBtpWOCKKau/1u/t1xxMh6jfDP/F+GRakNZUJH1aOH9dAQUb4ICCXvAhlVf6s/tb+A6hsJWMIuvUWPjl/Bw+nsIAgKHwUsPSdgyljv0XtuLWxQi/pwHhs/OaqZZCx93tznr7Mh0oKyp//G71dW1PWpeAQa9NPmdn9a8Ao2CvbuE2Ok4075XOeiGBoJkI9NmxpZ1EtCVI037NQyp7ttOiPQJaSbznvRvZNfcwRMxkwkxo3Zp4AXsQTogHh+sqbAlqRJZFHDb7Imf4syt+ZBDXgDe8S1qS0F2uSV5bYbgFdr6jHZUaDUREqbmwfmJFeWBZ5zT6181x7qcSw4SLKcr8yX1smwlqSWyIKEkQUge+7F15qTbqR/RU1Fa3sHzGx+5wrL0VYNCxAH7kgol1qSXYRK9k0kuCGBeq4yUlhdvSuRJIsL7oEixTbga+FQ41iLrobUi2ZmEOtx52jGuqm9cRzwb+WxVSuaazKNAMD2dX9QHvgARJlPiwz7+s+9W0h43gJH3Yx7QVIHJCMquioLzCjC/Yu4k9wyg0hLm7oGokoCJTu6cwwiRJctCBD15vrNuCFwTa3PkCKNFgjVtzR3iOTpZSq7yrmQM+4Dt16XjOfx5VIrkq4OFdnjMOin+wP6N8TN1sLKtUalXmdKXG7V1sh2Tjj1850rfvJ3MVraM0YU4+txmVk2/GRLO4dw6lt64T/8z7L+/9xv//siqcAbkJNbP3L3LbV4UUd67rf+pBZASLIxuSq93DRinxKnXa/bQmBgxscYag8jOt/duiPQHYEPRkAbGAHRPXfdubKN6kdhBhxAIJE+eGHe6x/skkVFTAVNgYr9quVLsA1WqQPN0zXHIjaCncgWua/zwhHkqNiOWTDnaHEJpgmalrHROmILI9uyEwTZuRgDOh6p7ZOgL+K0OsT2zZnz1hPcD17hx/sbySccMV+bMxEzGFKB0cULKshYpRUhJ/DEXGre8hrhEcKGaHLTLWO5ZOmQKJlRRE/JhPkK6a0MZc5RWcpggsddywY/nBN2IYY1hlk/yHrWG5N/myBCE8gub4NgkbWG5+GMY0iBPUayC++sQVyPAkUA1Xvimub8KiUJ5rovuNqSUq8LIXV//YMr8Mr1kEqBUKZ8sr8CjAilwKmSC/gtM2ruJq1lXPRyWjLtm3IPBkI8CjjcqtdEPsceNbFKSPTqZBSEhM5N9tVYwsE34rbOUO/uGy+PimdS56XUmnqdex14aBHT8VPOrN7XMBQeflwbLHXvSkiuOe97pXTS8sx64ObUhcrOnvaV30029brOK88/HXO9MXHW/VqkvH9TOLt/yksYA854dXrh/sd1X93z/Poj0CWkv/4Yds+wCY0A0GQcsfOwIWWt/15AWZ1On0R0RXZXhRAik363MADQspSAoQAjEiagToJLygT0PU7+BIktCGQ2HWsB8V6kUmRPQBwBRpwAE6AXTQY6BVQ52j42xwL7t+O0KGLtfixCtsu5GUmQRM2a+1aZW9QBG+kf0tSWKAJ6oA00RSQB64qY/hTpDHgioCQ5QEEm0uJARNT+SGNTKxowzviQzjYGEORNzYtDPj3n+CKf+d1m7G3GMP/UAsm12scAoJM4PyJqA9T2zTog97J93aNFiAyoSDXy5rzr64lyfwDeAqA/aW72Bf4MEbwGhNvCSJbY/dln7ozX10egnU/POG1cOMu+/NwTBcqymezukbPBO+3cWRw57Yhd96i/LRSQ2H0OPjyyp2RNY8xA3sQBV2Z057R4Mk7IvYWCPm8yo5wMLU522+eAMjAyvhZg7WaBsl9kwMjqPSGIB40bXwseBkmHRsakBsniwvVE9/UwteCwPwfdnfKen/X1b4Z8/mlOubYzKbJebWeeipHFHvuOSVuXr3XO+dZ/r4WNGh31q4BeFoJZhAzDeX/3/9Z9t/fU/dkdge4IfDACgqSCkkePO7DmIT21zW+ykjKRNuRyWcyMYAVsMM9pQQYr7AvnZDhlNpFVZSdVkx4CCncEYclE4Zdj7edxx5r7zLFkwq7TPu86sE/QlFmRazhe0FYpiWM9DheVtkx/deYHL+oT+k19fRnmhdAop3AP5mqPIWFrVgqY7lCvQQBs2zyOrFKKgA5lFzaBwyYbSqWTnuOZB9H0wq+QUwop5BWGeV6W0gmQQ5hhzGB5i4cwCDF1P/mn9jWOMAzBbMcYpghsyqyaT50TVhl/GOl6nnNvhUt5HN7AQ8QT4UXo4C0M9jqsI7i182JoCaa6fa8BTqm1JONtSkzeLudarbrU9XsORsA1WOa8zj802VTEdXT8BN5MdlGLmDpPMqbuB7a6n4Vvzam+2ZQ+E1Iretf1l5YPgd7Z3pfDJ0xJ+7FLy+hIOYha1SKjxuhj3nw29jpwbOeUL/12eRcIWhyf3qQ+F4z+Gk+E362g6rQEenklnPrl3+l850/+U7B43sdKkj/ml7bFnq5LSLfYt/7T+8KBMcJ3+Nj9qm5H1hQBnb+giZySSfmbk63osFpOWEFCVa1ZAiL+LtDIuQC9zCUgQDSRU5HjJgK9jnCum28Bkc2+wKTkwFk4+AnckU3PIaIADKl1ry5oIfB2wJ5EavonLIWqm/wl/5jwyYJIY0RwAdI7iey+y/ExfyNhCFO6pBewIX9IlGyp12NhILprYQQ8iyFmeCqrGTAEyEAdoLdypoosB6CRJaBM1gT0PQ7oW8JqIVELsLw3nmPu4bHmPeOY3BhENJHvyM5yLY8BRwuO6tkWqdbihfMr4ytaLmrNAAmYA9dVAX+EC3H1usjHuAiqmZEp/qBGtLHWJyGz+CDZJZnaL66DgJtMSB+3fUM+pz01tUAb6VQ3yj6fSyFiuHsypOpDEU4LCxFo9S76i8qaMpgQOeeyq05HbesvykJ6fezzmTggxRwXJ3/+a9UvDnmd8oWvV/TY75qLP//EQ1U/xOxIpphjIkdg/dzODfk0NmpP1Qu9+NSjnb3HHNY5IfLfc5Ix9b4hpjulTokUygJJnzmA3926I9AdgV88ArKfspcTjxlb8765H07Bj+Uhq6S9cMrfcEbNJgJqfoMZiCpVD5LZSFobkulv2FaB1ETk4BY8aTHL+Sh7ViWoCvvcg+ArUgT/zNEeR2DhUnavjOyyKIpIUFu8WrFqdeelV2b84hf3MT4qm0eqyfGclFaw03wMB+DR8mXxMcjvCCpckg2FO+bQ5UsXFbb4XUa0MdOLrNbryN+wp83ctQQUXsEdhNO5kFBEEZ4Vfq17bcYRLvnpP1v7d34pLKolQf6Bdw3OdTK279S5YZXzNcHRjHECi+ZtmU2vRzbTPSDb5nxGe/DLWMBcG7my+3ePMpZIoWCxx9VSqhkl463xyDng1T4HJxv65COleuE10JSczKxylCWLFtT5EVDYDzfM66S9e8ToyHGypo/df3thGMwStPbalK2MDw5o8wLXSGZhD0LufJ/kNiRmTupGBU8v+M6f1/ug1ygM5/TreaUn2qo9M/X+MtozxrC6u21aI9AlpJvW+9G9m49pBI467IA6k36e8GJueqgxixCBFmlmrY+4WhgAjsZltzEm6pWJX+QYsJMmAXl94CwIZEEdB9SBPnLpAu8G1JEn0GQxYRHhHADf/wJbtXCwL6BHUEWk1YvKlL6f/XpFIsyCn8TqmWmvfEwj8aufRnRZ3aSJW2S2rSEVXUXQ1JECS5FJIIlgtiRULc/7GZMyi8hYcZTcOoRSnSXS4hz2B962AvOMl62ypevGVT2ORZi9/C4CbS+HGW/jqUbH8RYkMq8WCMgrEup50XAbwmzBAfzds3tHLhFu12TUVBKvSKBEV/Xm9LoYEiF+xoEsCpBbAABbphKyna/HiGi3fQ5aZ3YUiW8yhYiyqDbiCPhlSvVUe+Pl50tyJHrc9IhLU3OEP/diEUBihMhysb3jmouqRmdODCcQcP1A9RwF+L8MVC3EmAydEYMiLV0sZpgVXfjdvyiJLpJ61Tl/X4TzjNTlXHv+92tcZEEtJsiHZVI56LayXsD+0J03lBX/AYceXXWlSKt70yT9mtSo/iKSXG9A95/uCHRHYP0IDIo7PHf1kSN27Azs36/msLlxWUcMW8IqaGpuQ04bM70PjPlgC+JofiyymrnOPu/+LFm5zD0wCBaZD/3ebnAJ6bQ5TmAUHsE1z8EjyqKVIZ117pxfRhRutRLf196cXYS4Pecn9ZM8U/nB6pAaGEAuSunydjKLVBnuT4kBYifIiIRo62VuR1KRUHN6ZUczH5ozqV/M5QgeIgorkHrESTbUvI0cOubDqp3CoYwvAmjzvjhHi0v1YP5BJJ1PcM++gqX2szlnzxj6NZnRJrCNRLr/FpeQ7rqnzKmIKVLqtWg9pue2Vi1wSRBhQNzblyU7ChSVisAJzytPgSX6Uc+MwoU7vLHgBeD3psaSVPeRKGSO7kx74uFS1rwQ9UyR1gQeGQNR5Bx1wmkJYF6/rlzk1mDXmAqcus+dgo0vpwWU4CfTO3Jf+OhaSlv+uZ6jNRgf4z/eL1le/gwMj/geIP1T0vJlRYIWt115YRFTnwu+DV2M+hgH/2M8VZeQfoyD2T3VpjEC4w7etwB0x8EDimiyqx8QwFe3yc0WWGgHw3pfTzWR5p4BY1FnAA/oRaxlQUWWkU8LArIo5wDciGlFnQFOgCn/r58fHgEAZjEA5AG/RYC/ybXUj7pWtUTJT4sQZFTkecbs+Z3FS2QUN+7mXpEx2UDACMwAI/KE/Ok5CFyBJ+AGQs3rjUQsr8V/xqUipDkXItkAvMVPEzU2RjmojgPkBeA1ng3oWyAAFoCjPtSipNmPqVEj3XV8I4OKc2EizO7VoqUizgEgxyPBFgHu1aLGe9bWXlakOdlCx8gI+3x4jikESazeblxzFyZKrT4YWdVMfHhs7Vtg0xtNi5MP19uQumrAzcWwfyL9JM4IqnGSXUaUW4K7W2piXnz6sSJ1991ydTUVf/jOG4tQMi0SCecWqM2LaLkFldf5UTZZBs3M94yt/21Xnh+7/yPqvMyOZEL1jyPX9RpPTF9J5FP24czf+oNq+TJv9pudY+O0a3F49Xn/WJniM7/2B53brrqgSPaYIybUYuVb/+U/5LWtqHv9KPfV3ac7Alv6CDAHEgw98bjDOkuCRYMG9EvrtxibpZZ0TbKYMIGzLWIJN2AOcgiT1HvalKHAk9bd3dxmfwFPGINgmnwb0hlCFoMk86y52vnsqyUavCPHFUAVjDU3y4ja1+NUPfb12LTpb9S1P+l/BNEE/8hPq1wE/oS8qcffJoZA8MhcKJuJXJpX7UfJYz9BSMRQ4BCWmP+RPyTynfgCeG02klSPI+c2WOc45RsygI5bvxU+BYkyfhUwDck1lm2k1P4tofU7nEKKnc974z5hkvtBoGETAsn0T/Z2efwZEGcBRURWwFSgV6swWUzn4S68Kq9JIJyZz6KQVceoFUVAB8cll7xYNlkvUC24lHnMDmFtMK7BD/tT8yCh056Y2hjwxfV9zJETOk89dE/5GDw99b4q6Zjx6ouVfYW17mOPYNZzKTdRSkLFo43M0phOUd68/tLzhbfrx2wD/eL94xLPa0HW9MJ//Mt8BraL4d7v1Bhd/sNvV82pYHJ32/RGoEtIN733pHtHv8YI6PXWL1nP4UMjW5m3MID7XmfIoAEFBKLPorzaqshuLlxE+tOQTWC9JjU1q7kZBlla2RNAB8BIK0IJkBsCSlIaCRVQz7mcx3EATuRSPYff7YtF2cd/zutx8qd2waAdgHqe8OB6bGObGX14+NVRciEsoheyYSJXd0IC5bUhV8ZBtrOIacajjf4Ca9LehlQ2CxvRZw67jkH8KsJsjLI5H1z3p+c/vDWkNOObsf1wtFlmszGlaCP+GomrCUrNVKTD/gOg22SxITqqDtQCoU+ykQ34qzXqUUYPFjIAnLuwx8h5gRvitzIyVOZAyBmAQ/LeTNNuGUhGDxZOyDbnPj1BAfWBhx1TP0l1WeLrkfZizCP8fD6R6L1jVORvxhAP3HptkVC1ogcfeVznxdTfWHSQqc2bpY/oZ4sA9hswuPNaXBLLTfLDA/RLfrcwIuFiejQ9Na4i6ZM++5VkOp+rbCejInVXzCy4Ju4WAwvkc9jI0Z0v/M7/lrrQP68FnKyqbDlizMzprK//u2Rfv1NW/M5l3Ooz/0vup/t0dwS6I9CMABM7eHB0VD08CmbOmV/1mxxu4YUsaYsdiKOAqMBlEc2cwt+IpfM0c2e+g3mcMyy8KpVOnmjMjaLgyfxnB99VZSUwzEK+CZw26h/k0zXsB6/gGbyChYK1G4qQCuDpO+neOJzDIkodczUFC9KGrCGkVDfmeMRO2Ygs6lZbRZ6bOZSa5+3M44gt/EDeBExhk+PghMf1Bm2VNw2uyWw2cuhmvJogc2FVMVB4tS4TWj8Fp4P7GTP7OKespjFGjn8Wp17B3Ax+YRQscb0246k8wusTxHVffhdArd7XwTHGe4KTnuOIK9uLNMt6cmeHzUpOYJP5Hjl0Hzvl+VdfeLb6WMMcqh5tyOCYIKJ7bvuecjF2DTW7cMY9+k+tqVYuepSOm3BS58Hbrq9SktbzgEEUNdCsZEjdk3vcWJv1iAArGbF62Et/8Ne1PuEkrDVad9s0R2Cr7bbb7v/ZNG+te1fdEfjXjcCB++7W2XHIwM6wkFEtU4DYzsPSpywZ0kXJOIo+D8x/8xcuqXYsotOkUaK/jI1kKy0CPA7kSXURRUTU7wBZJhNQ9Uujc33ZRKoLzAMwDbCHnOVYj7cR6dbESOS7dUUE8o1BRNNrjplEE5XuUX1U/3Wv/JPbG3GTmbQBfqAsemxjBKX1C8AjgW2jwBYEItceVz/aktD2PIgrkmih0JBbNZ5NWxiRYpFtj4ta21dG1pjXgiDXB/aVvU50WMABoItuA1TRZveCdAIlNvki6BYvfooO25+MRxS7jRbLXnKMJZ8C/hYGgFltjBYviK8ebpx0kc68tGrDMvP16an9PKhIaf9kEC3+ZE1lPhlJIKdkUKRMIs2HT5xSdaN+MhpiWMTJtqkjvaPAU62P180FV09S1vaku/tHWvVoak+1HzC2/5rN/hYnjCYs6s7+/f+jnHYFB776zf/cuT3ZTpnXz/32fyj51jOP3JeWMWfHaKt3sqf/UIYYn01WlGvv/FlvdL74jT+s9/ua877bGZosMHk3Au983a07At0R+OgjILtJPaJ8A4GESYyPtAzjvM5cCG5tn2Bq2wPU9xkBFWDlBg9vGB6pBxU8RVDNc6S69s20GfwK+co+pg6YJRPq+UYV9PPKnMrKugeEtGfNq2kZ0nu7RjKcuU1A8PWZcwsPP/or/NX3FFhEysyHMn5eSzvfI5dwFDYgok0mMo9lH5ghCIkYmfdhBgJaGJb93yu8Cn5Q0mQs7E/tU1nS4I5yk/dyHF0Ph3W18gbOTxjjJ5ypnzkHLLS5F2OLwLln9+f6/qtMaF6P1+R+4SjfArimLzfsQQCR45LpBm8RQwEEwUn+BogrUz3XIYdFKI2JLOqwUaMr4Oo6AqlKRAQUHWMf+2oNJuD4Utp1UcdQ9SBsHHkH5nkBWQ7ujhmc2kvXqHKT1JGOTduUJx+6q8yMlI3ArKdjdifLinjzV4CbSJ+AwcbcrDkEn73OGa++FK+Eszv3J+hrPLvbpjsC3QzppvvedO/sXzEC++65S2e30SOqifjLr88qUGex/0aIqejukIH9S2Y7b8HiPNe7JLskTrKkCCQJL8IJ1NXOqOkE8hYHwHm7gL8FAsD/oDanMKqIJ1Ax6Vc0OYCEMPk7/w8QBYwCKhYPjUtiakk48+b8rr1N9rcoYDTBSp9ca1PZRFJlCGXYgGxD+tL7LFIjq5zKPgZ4Rdo5HpK9kiQZD4TS2ItCe9yCQeQaYIu8OyegFsUWoW22PJFFgLHzvIWazVgBeM96btvci3O2roeOcV5Ar24VARWJBpSi6O6zBXf9Pi08FgdsBREQT5lfMjCgjYTNjS3+DgMHhVj3LbKpuTeJLVLHrVD9p329zoWJTO910KFF9rRu4VY4YPCQWkCIGpO/ihxz2LUA4Fb7SrKcTIz8TQJMAiUSjsgjvvslq/pECCvnWtLag2MmcXN6rSHZH4dJBBkc84k9Y1ZxXfqK7hl3YL1Mf/rtP6to+6lp80K6671joT/17pvKJp9smPRLHarars+HwD5w6zVVY2Rsult3BLoj8KuNgDkO3uwUl3h4hHCS5fbtvX15IAi+kfDCIooceMTxXb2nzKWtmRsjXc1x5JzvqCfNvAuXzJ1FUNf9XgfkHzjn2raat3NuwVzYRU5cGdU8V1naXP/pDehvYM4X3EPWZEFJXM2T5m+EUIawMqBVOtLMjV531YZWNrkxt0PSbDwEzKHmNdgjiAqXWmILL4yhDCrFi/EwNn76L//UeQwmQt9mQmt8DRjcb/aocyCfzqlvrIyh61XZSh73mpxbSYif9uUj4DW9E/zipAs7yHERY3iErMpUqhd1/4KjsqPqT5HIkbvv1ZkT/HGePqk9nRlSykFdxnRoxrHdj+Ms1c6YlHJwUFcv+kT6SSOraizHHjUh5POelIlMST/Rmxr1TgjdxNO+mPZeV5U8l0s8ifRO6UE9/bknO8eceEbn8p/8bZkBGsNNaTPWxpe6p7ttuiPQJaSb7nvTvbOPOAJ77jayIzsKlF9+bVZn+E6DC9BfCTEVWZYZnTn7raqxkT01uc+Zv7BAQPQXeMtWrlyZ/mQ5B4BGGDkUMj+SHTW9cisESjKfJdENNoleex5Yy475r6Bq3Xzc4hfCBOQBjywpcwiTtubiIM553f/jz7z0EV/1htltRLJ0JnIOsn5WJjKLAfcrmtu62yKDItCyjqLGCCvgtZhBBj1uzMrkKMcaB4Sz3QC6QXYN4+J5m0hnLahqfGUSGrLqOYsVB1lgGERmFvb3uP+QVhFfIM5VUdTZvZGmyhL2DTEtOW4WBOojkdn5kTGp1ZEVFVnt029AEU/E0VisibwJ8dIHjfEPIwWRa+f0GKnt/mm7AuzV7iC2FlQizbK1ovq1sMmdWxS5N9cWod551z3LHOnok86Mi+5lyVB+KdLY/4+9swCwqzC+/iBxd3d3Iy7E3UNIQrDgUgotUgptqVDqBdrSFmjR4hAIECGuxN3d3Y0EQsJ3fvPyqPw/aEI32d3sXLp5b9+77757z93euWfmzJk3fXtzp47zmwm+J6UWsKYK23XADZ5JZgA6s0sxZJo+7kP1nbZyokpVFPOlvtfdaa/95Te6ET6qXtNBfu5HvPGc3ySS7T8QQ8ZT6tTEdjIwAvny5PJ40rpZPR/9ckzXl1xS5KDOoWq5SwlLJ10iOiyMNOOaSRzyPk8RVK4xvMYjcYeEJ1JbXiNm8cjCNhlddlz//4WsovphzikLn+W6TNI0ofa5xKuv57OlBGUKTq+0LrAvKFkglbRloKLBCZ2kJIlS4g+xBgkqZPViHWciYYqqiXnTiTmcPOfal3wkdiXiVqICi8qDbTnJ1HfS2gGRBEePNY6OIyQcwZpRb7gUa6QM8V3bTiRLSV6rlURQQ0oTRFjY66M+dkb3ClQUSfSyEsfGgqcB349nAY9UR4m/Rw4f8CQgx+TKHSUVeb5z60YropnhxD+chRndslmxi+0QrxlRVlXO6LRq8B5SXQg3lWeSnyRG8S9Ahjtr0miR0w42R2ZGTWRSN2P8yC9nX+M1wHpIgb1PV5VjDI4WSk2DqdEbz/zeFTLgHEsg8E0QCEL6TVCLz6QZBMqXKW6N69fwgLpl2y6roCop5kPb1D9apmRRD6Y4AmIMUUKzSbdu3y157lErKJKK4y5SXcwiCMysQxCiN+eIekkJ/sh/6OuhespzMtKfKevsFVAFlCTJhBER5AnePPLD+mS1P5dDLxlvKqC8DrGlOpu4acBsAnImAqZIldYIKXIceiohHAQa773xzHNibAtVSEgVC8fgxFO4eXVUgZ73yEDrsD04E/zBGMJJdhlSmvw9+UcFRs4w9S/B3RcRTr6bGw/kUdxweNUVObFWT5Bl+qs0/1QyKG4qeI0eJD4HMeUzufLk98z0QRlHEMAZ0ULQ371ti1x2c0uuVFg9mxv0WhY3LYKkIfMiC71WVU2qnNzwQAwrew/oHBHJiv47GXBIJcO4MRFC9orJ0XI5Flar29CzyAwXZ84bvafrtW1eXzp3hqS8HUUCh/tNAP2kbXsOdDddejmx8Me58FxVIMmkc2OBjPelP/xcNzmZJN29UzJQykJTAABAAElEQVTeV223bljaq9d0r8a40CuEBLlZu24+axQC32PwLfbbB29zbBMnKv4NBAKB/xUB1D2QyCoVSlvePIkRMYwt49KYPbukuroGE4OokkJCiTVcB4lVVFAhp36N1ev/ljClgkfiVK9znWUd8U5dg3GC5xqbSBIm4xpJRMgoMmBeW6FRL8TL87kwwgrSRgIPdQgxlWtPglQyU/SoxxCu48QTqqPEhuN6HeUOJBHiRjuIx47Tah2OP6HMSSRIWQ88IKrEZv9dsYZtJLFKxnk+560jimGJ7QhTxTlA5PPJuMX+sO9JB13iI/tHVVdf7x4MxD88GqiGIr2lQor6hoQp1VA+i6KF+MpoF9pM6CXdsmG1P9JqwmgWSCkxjuQnyVHGhhHfOOZd2zfLu6CJj/iqVrext4KgzAFP9h8VUUKeW963Ra8oFVBceukJTa7L8RBTkeWisJk25n13sn37709KBv2ZlD67zuefRnzXBYZAENIL7IRmpMOBcLZpUd92qScUh8Kqku1ulkMtQbpiuZI+dxRDiNIli6gKmsWomCKbLVJIQ6UVxHfu2ufVUQI+RBKpLGSU5wV1Q0C/DUGaKmZCtpTINEMouYgjpyJg04PqhkdU8TzIcRYU7PhXgZ51WY9Hoj8yUQIelVgkrTwi5YU44wKclhbkrPSWQNAI8pA4ghKBmxsCyB7ZXyRRELJkUObmgWNkXYKwB3o954aHdXndiajWoWeJ9wGMz7A9FvAiw5yskPI7Y2PYFz6vFTzDzCNBm3V5nV4gJDr0/lAB5WYECRP7S8C8VPuMHIrvJEPMjQBz18g0a1OqaJZ0iS1kumzl6u5ayHEih1q1eJ6bGyEfg9RWqXWZ94gi490lUstNA5jtUGWUcSnMDkUONXfKWCebMyeOSmSg9TvyV+RQ9LeMG/a6mwyNe/91a9C8rX8OcgumEFsy9Enif67+PqiCsk/0Fr3z3B/92BkZ88yvHnY8+1x3h4197zUn7M0kz0I29tKTj/o+IheLJRAIBFIOAdQ7VC3ryqiPa2MuucJDOCGY+9RbSp8oru9cx7huIvGlx9SdciFM2hXISFa58pKk5foJyWVJrJ8Yl5VsQ0EddFxxEfUO7/M9xEJUKazDd89esNw/fz7/oUJKpY/rPr2fXOupNhJLIKFcs+mrpzUGLJLVSAhl0lwnWQ1NvJ8grpBGqqv4HDAmh9hFvIe4EqO45kM8iVOJdTUW7vT2wUQgOU7gynZ5CTkx12qIIW0gnAP2k6ou+w+uyEZ5D8O/RN+qzpsSnMQiSC6JR+IOcTPpX7B7B0S0gPscEKf4HER9k6S4tHlgcLRh1XKX5aISgjCSMCWJynUaZdCXhnsaKVa/eRuPMeWrqcVk/Ro5yssNXvJfKra0mXCcnjAWueazuRUvkQ7T2kECtaH6R6eN/cDnUw9//Tk7LOJMy0ssgcD/gkAQ0v8FvfhsqiFQsnhh696hmUjmVs+YVq9Szmd3EjSpki5evtYDQfnSsjVXVXTfwUMyOCrkQRXDIwgis98gl5DATxWAyDp79lmkdRevnQ7IVDdZsNsnYB87poAj8kNQUnzx7+F9gj3BiR8iEUSLGwpuGiCc3EAgBebzTmS1fR7ZDlntj2cvZjNpaoHEYZBAQE7KlQimuAUmAjZkGwmUZrfqkbsDiCuLBzYFVdb/V5JJUAY4f9R6PELcBYPjxiMY8jr/cYPAwttUSPkOiFoy4DPj1LPSeuSmghsWviJHzjwe9LHBZ98wHcop50BuFrgBgKTiSLhzyybfZwwg6DMlK81NEBVhZrwRtCGY3KQwI5T5nC7fFdnFwAg5FH03lWs1cKkUGWv2lRuLMqqEQmLpyZmrHh3cbKd+NMyadejuLoUtOvXU7+/Laber+jRHeRabzDb7yXEzj5QbjKScCxzO5QJ5x7ippyqfKyQ7XiVTiOaSEFMpH/rCU17Z7XLl9U5EOVkYWWCGFEsgEAikPAKoempVLe8mR5BQWkho7YAo5suby0njfr3GbG0qmclYxZ6wDtdVYg+KHIhVoq0EUzipebQ+19jEexpHovjFcxKmfgHVNpL9payHdHjRsrUpf5D/ZYtFVfmDkCY8CdQ+IoUK13nijicgFbdpBSH5CBlMvA4xFWklMartEy8gWCQ3ncCLcPHI579MmH75e0KqTOwjxhCD+B+fJdHK54hPJEDZD3D1iqle4zmmfHyWdVmo6GJeBPbJ6ijXWe8V1X5Bqmn/oKXkiNpHWMAbI7wDe3Z7L2h+VUhxc2dfaAHBKZYEZZlK1eSYnjgnJDAxwYOA8nnM8aqrGrpSUt1iwpDxYSQOGf9FXGE0CqqXOmrNWDpPc0jlW4CsNzm7lCQrzumoetZo1igGfHOUSG3d/QpPoLbRnOwJai3BPClZLfadj38CgW+IQBDSbwhcfCz1EChepKD179XWFixeZTmURS5XqpgytyuslEhqwQJ5bN6iVe60Sy/pgiWrXZpbolhBY+wL8z0xjcBJF1kvUqSkPIpgvFcVVTLFBJ08uOIqsOzZl6iccsQEbaqaWRVEIJMsSKbIKhOwnJDqNZdFKTgR+OnZgYwisSJYJsmWniSCo98AmM2ef/6zz34A/+WfYqXKeeAGE4InQZ4ABPH03hrtP06FBH4CPOTwn8FeFVDhysJx+w2D8EuQVLLbCddEsrAEcDLKfJbAzcLrEMEEturX4T9JqDAbIuiyH8mAr015JhqJFPvILFH6ZbhJQJpEID5xIiHbzZ0vv8t02T43PPS87lGQxzGWmwn6bgjsnP/tIqMY+SBbZTs+tkUBvERZjI6OuMyK0S6LNb+thkwh1ixZ4J9lJA7fTU8qxI1AT8YaGS9jYRJjYOaI5Nb1GwlwRgrM9/PdK9WvQ0UXGdf5XpCLVRZeg+54wJ777SP+9b00l3ShKr64Bjdu3cXoH6VSzPmJJRAIBFIWAchlj47NvRqKAggH+HxS85DkRLXziWIXMYiYlDtXTk+uHpBTLwohrpdcHzFBItnKhdWNj3SRhmTSosL1kriUIFOJ67M+5NdxvgOJLgs9pSRSl65c70qklD3K/741CBjXdGILRI5rdrICSVKUHk9eJ+7wOj/E2mQcchKpz/KIcy5V1iS5RMdEDEnGZB5ZuAbzegIPEVRit7bvPaF6n225pFdYQmjZjidmtT+sQ4sL137OD2SZ/UtId494zz2fJ4YhpYVYknCkWvuvC+s3bNXR1+EayxgTEqYH9+11R116/XE2hzDuVUWUazEGRsQYKquX6Du3a7wXRkUkUSGsJGKJdSQdSZSiiJk5YZQnRGecfuT3+lLp4ALfpG0XbyVJjiZrq15RHN9bdu6j/tIRTqTZTwh/LIHA/4pAENL/FcH4/HlFADJ53ZVdbcrMhd4TmlvEcuHSNVZTWWT6PnHVxXEXSS7Pke4SiFes3eSjWjA12i2JL1LeAvnzWEH9QEIZC0NGGRKL5Ile0cMyOiLIYHqE1Jf3k/2lBHLFbn+fwE3gTyyJyh7PPSOqmwU3PCLQJf7nAZ8AhpyKmwbkUMiJIcxpccH4xm9wFHw96CpY+42AAi3H4TcABHX9OEnUsSaIJgTztJxJB8Z7pJr9wVFIHG3yJiDxmMSJR2F5mtySIed9yCqLV0gV+H0/tD9IpVgwWmJ/yAR/cljmFk6aE2NqIKnIZ/eJeHKzUFgSVUyGqPAxbxUTCCRQzBQloONMyHMkvKtFMkvLpAhCSnaarDJZZizxmXcHaWQwOKNd6jVt44QTh+Jkzw83HdykMCaHyinfh/NuHn0npJZqaDJrjlxrhfpOuVmhryc1F3pnGTsDmX9NQ8b5W+h/0z32h0fukRHTli8z+qm5j/HdgcCFhgBXys7tmrgLPNJd4hQXTtQ+SGld3aPYwjWVeaGQU+ITyU8e+SHuIdXFsOiEfAwgVcQkrqu0mxC3SKTyGmZGCakv11iqponZ2tBT4hNOv1NnLUoVmCGkXP+59lP1hJieUpKTlowE6Uu0jSRiEj2wFyk+JN6DbEMYWfgc6ySTpTxngeCCCdui4knMcnmwYgfXZCHm77M+8QT5Lc95PSH5BUP1j/KCzgfxjTFYToj1nZ8oZnjilnsJTIz0w/eg3MENnkrpVy30i1aXSR4xDUkvMYvPU5UsWKS444LHQOkKVb0fldhURUqd9SuXJlzi5X+AOR/VVuIVFdW9SIN1vLikY34E+Zw9eYxf53FMby0zvYnD37ZWXfq4o26H3lf5DGx//cO3fNzLIsU5xpoxW5WYGEsgkBIIBCFNCRRjG+cFgcIF89lNg3vYuClz1C9a1uWzazdstaYaKL5q7WYf11JH/TYr12z0rG7dGprjuHGbk0+ceJEirdmwxWVNEFMs7SGBSHHz5cnt0lqGkhOY6dfJo6wzRCwZ8Al0yHKR4CL1ZSGgUyGlh5SLvP7nNwke3PQL6yYDPTcIyIDJmvI5MtUEL8yVxk+de14w/CZfgkECAdEDtzCAlBLcuRlKZqEhexw86yQDPDcPBGxuCMga8zvHS0WTmwIIrH9OO0VGOlE1TfSekn3OnClh3IFxEjcCBP3kd3LDgOSWntKkYRE3D3wH2WAkr/+/vkbktDVk7sA+ErxxuCUwY5XPzUspzWRDnst4GlxytynDzJ0Gpj/LF8zUXLdy/jeBfKpe09Yu1S2u17ixgDxy87Bg+qTEvFE541Y+PeutVHltd8sGN1WicoqJBDdNHAMSYeTCm3SDUkN9p3x+x5aNvv8Jkv5NzlrKfYabQWbV9VYPKVXbxXOmqV9pmd+UJSsGKfdtsaVAIBCoVa2Cu8MXLVzAiRIu8br0+jxQ4uAe+R0g1eX6kEdjzBgXQ0xB8XNUiVkqnMQq4hDXTJKqPBJ7iDvEIZfqar2kwRGx6zSrSjxqfWImryMJRm2UGgvXRuINlUaqlMQKKowkE+kRhWh7xZLj0+sQ6kQ8UnzWdZz3vX1EALIdMCO+JGIJZDVRFdYL/tp/HmPyGkx8YN1ERTURu5KxkDjIwu8JxY6+V/GK/YKEJuMlcmOks8y65tycybxOkoLEHZKYJEyJHTjdMlMUrwRaapD8ovThmCCokFKIKP2lzC1dLylvvWZtPGFKFZX4xXWdH4gucWrZaeUL5notu/S2KaPe81Eu9IpSSUWuW7X2ZbZ2xSJXC7Hv/78Y60DEP4HAN0AgCOk3AC0+cv4RIEN8yzW9bPSkWdaoXnXDUZeg3KppXZs2a7EH5fJlStjMecvctIg+0hlzlSWU7JYqKXIjiGPZUkW9Mrl241YnpgRzemk2a3tklbPLaIBRMfsPHnZ5kq7vvh5yKT31bWCfT8BnfQI8n0FGSoaU9QlgyKSoorIeGehkMEsGfLKwp8OgB1D2Na0ukBGCILIhiCkLgZcbGaq8HC8E0x0NqfrqOb+zTiKY05NzundH7/PcCahuoLw/VJ/nNch/oidHWWoy+QCuB9YlI03/KOuxIDuC7DL8nJ4dblYgfFROIXxkpL9qIXAjiYWI7tG4FbZVTAGenlGqpciZIME7t21ymS0yWqRO1VUBXb1kvpPYHCK8iSDfVoF8hjLXpRwbJFRIcSGVVBYZn1KrYQsnyXwemVT5qrWVwV7iMmB6dFh/8expnnlGBkXvD2T1647hq47tXL6Os2MV9ctykwop/brM/rncj9h2IHAhI0CytGXjOt46QkKVpbheg2xgvIcSCDlvDvkl5MyZLfGaYhJEk6Qn48pIhFIdPSalD+QTlQ7XVLZBxZXrM0lUyFoOOb4e0/WOay0xDWJLwpV16D8lYbtYvaOoilJjKSEVCnEEkkmMgfzRSkFc4BoJ6dQKX8adxLpUj4lBVE8xL8J4MOE8nEiYEqshrknfh8TYMWIOOPEfCU5PpPK9WpeFfSAGkhBN+iLw/Ww/qRBi3AyxD3UNrydVO5BTKpeY3p3tiCxIJAQWY719u3Y6EaSNhFjBbFbmX29QTMEpvlDRkh5nKteq5wlVjhEHXmLPZS3aa77oRKuiudkQViqw4IHRUjER283rVzmZhZwi9eURIyNkwEnFD0QU513IdSyBQEoiEIQ0JdGMbZ0TBDBvuO3a3jZ64ixr27KBS3Qheg1qV7GJH8+zqhXLODlavmqDOxJS+YRw1pDRkeKULV+9wUoULWSFC+Z123oCcQWRVzLEm+TKS7ApW6qYS6HoFyXgk3Em6COB2nvgoGeeCfgEeuS7ngmleqrvogJKYIecQVCJ7HwvY2Rw6oW40XOK9ImsNd/rmV6tSzZ1paz0t6qfNa0uSKYIrmR5WTxDrGM8KRxxlcXdkHjtvTTcGOiXJOGGnLIQzp2celzXPwB0+jVuMpI3HGybG4FERvyfPUNkwqmSJtdjHXpX6GmFMNLnCaGFjJ7JwvgSqpoQSSRYW1UhzVuwkAdzss1klZFEQUAJ5hzTtk3rNKalkQdybtYI0MvmzXTHwuXzZ3kGm33YLzfCqlpv4YzJPteTQeINL+8oU6Nx1kiPc/SIy+H8aRNcQjxLcqnWXftp5ugbusHY7Nn8tNqTAw7Y/seA8TP5K4t1AoGzQwBTvkF92nsLx3HFlTJyiOc14hm9oZBVCCctJSRkuYoWyp/XiSjXHu8t1XtccbkmE6cgrlQN+f8uZJOYlJibnaiOEteIp1ykSTbxnDjGNY716VsdNyX1FDz0PhJTiS8cAwtkEGIKQSQxCakidrAQI5LrJSqT/6yGuqJHx+axSOCxHVczKdGZ+EwiNiWrrmwPUgsxTfxA7JNGRrynmK99gGwmZLzaqP5HbIGMsn2SuRA6njOKhjh2tgvHQbsJBLRoiYTJE5JfYhBqnl16vUL12m7Q9/nnn4lwXqZq6GQf/0LbCOoj5LqYFxGDiEU15GWwdtkiN0kihnKfQsWVPlUStjuV4C2i78I7gdFgyWQ0yVOeg1ssgUBKIhCENCXRjG2lOAJUMIcM7GZTZiy0Hp1a2ISp85xYIluaoWpoi0a1DNku2VuqpXMXrvAg2rBuNSeuBG7kT9t37rFt+ilXWnM1FWBXrNroLrj0pObNnctWrdvkhBSJFP05O9VnigESAQcDJIgoAZqbACqtBHqyyWSbqbB6gNPRQ2aZU0p1lMgE7+LCTUaXR7aH+y43AWwP4jty/IwvP5/iAKbABiFnzCKFfHLXwrGTdU3c9KjfiOCkmyGMjb7Qo7NPvvd0wCczTbCnuolEiOcQccavEOQhlixJwkvW23tz2BY3F7qZQorrJFTyJ96nqsn3UsXkvSMKomcTICGyjC5hviefJ7DTl0O2G5OhLQr2kEIqgpBSZFdk6pkpSrYaAyQyxGSaGcuCfHelXGmRALPsEylFNrVIRkeQzYnD35ERhBx2NWO0ddcrbNLIoda6G6+/raHiAzVO5VWvOCI/pqc0lkAgEMh4CHRq3cj9DBhpRpzCW4BKJ8nUoiKj+CIc1BxtkqKQUxKc9JUi1eU55BUCycxrek15nQQoNI7rNoohHl2uqzjEdiCnJGn/qehJjIzh+k1ikfdScz42Ch1iBoSbGAHxJP4QP5NVUA6QGOyqEoKufice8DknqI4Ar1NhTcSx5F+XXkosfryJ8MVx8z/WT6ibEsSUFYkdkE3iFiSTr/N4JKKZiPGMeUk47eItgBM78Qz39/9lYR52q6593QCP72VGNTEH7wPmlK5eOt9bK1Cu0D5C0nPetPGu8jmgfSCuIM1dqHjVpE0XOeyOlnNuK1fv0IO6Y+tGH4FGXEVxBAAe14VBVn03JoHEM4g368QSCKQ0AkFIUxrR2F6KIQARHNSng1xzV1q/7q3t/Y+mWrXKGsehYLt2wzbr0raxTZy+wHKqklmvViVVUEUWJNXFrAgJbPkyxb0PZ77ceKlWVlQfKdVIBnuXLF7IezeTkqgCkulCRNdv3m5HJX/KI6KYX5VZAtr2XXs9O81oltw5c3g/DgGd6ijkFIJJJRW3w4Rs9SLvP2U/+TxZZoI6AZV1k+SVQIY0aloaHPfyryeR4MrMM1+004mscyLj7lnr0+Sa7DMVUTLIhHWOHTyY88ZNAMftNwN6PSnNTTwmDJHI0HKzBHHNpP5R5LwQeQgjRDEZ9AmIEEluSr6UbP3rDp/hc+RKdUUkyQhDICGl3GjQX1NW2WRMiOghhXTS04mLIfJazCHI2kNYyT4T1OfJkRCjI6qrOdUXCkb0qFauWd/lrQlS+rZIKIYRb1lbkVAqou16DXQLfXDBEThksGd48mK1QOACQwBFD0SUdpMV8kHAWZcYBmncuHWHPBKOuSM8pBKiyfxtkqL58uTyqimEEoUPRJTrCTEJLwQSphClw/q8K3b0nOsz12NmlxKTkusT1zKL7OgS7XLd7Pru+eod5btSaylXuYaoEcldCFKikovCCI6ZqJoqmanfueZyHKyH7JaqKb+T9OR9l+rqIJIVT45HEep0cjV5dIlKLL+xHUgnn8+c5XTSVNsjRvjcU2FFrGJ7kFRkvFRLeY153cwLJT4lrumw2/99ITlMLyiSX0zxUOyQSCU2UhVdsXC2ZpIW9/3euGa5S3RJmBK/IaS0ntSQzwHxqln77nLKHanKaztbNHOqJ2I3rFbLk3pWaV1BIUQMY8YpsWmpRpuBA9XfWAKBc4FAENJzgWps839GgEzvFSKhq9Zttt6dW9rQEerJa1TbM8YE5vatLrNho6a6uy4VuGWrNtjlqpCuUbWUcS4tGrPuVs0Y3esVUgI4lVR6SCGnPCeLXLNKee+x2SzpLsYNpUpIIqUgTIXUZ75lyeRElUrt3n3KPKq3FGKJSyHVTUjo5wqSEFOcDiGfyH0I6ixIoKiukoXmBoHeUh65SeA19pt+2LS+kI1leDhBmiCeIN4E/8TNjF7+cuFmxhe9xsv+++nn+oC/AFklcHOjwELg54aCwO79o3qN3hivvuqGCaIKMd6iHhfONxtOicBYvEx5H/VCEN+oYMx3lNUNEPM3s8sRl8wxI1qSZBXDiNqNWng/DoQ2V578nrFOSHLHqu+mufeHZs2WQ9vK4oYRVFSRSjXv0MNnkLbpfqXI6JvWvvcgJ6OZtB7E90zlxg5Y/BMIBAIXDAIoc3pKAYTjO+SztOIQM0iXLF/niU+IKTFxk0z3DsrMiKQrc7Wpnm7Zvsvd34kzKIeIQShQDijxSv8opIyWESquEFic4rkm81neJ57hc4Csl0euzazHNgoWyGsjxk5PVZwx1SPueMVOsQD5aTIpyo7xnidDtd+JJKhktP9CUJOElEc+6xVOPVJpJYHKdToZc8CK19gO63oSWZ9LJlCTQEA++TzKGbwNWO+YFDMYLeFLwIKChu9M6QWlDnOwIafMDSVGESdpKanZoJnMjhbr/GXymdGLNKaLSilGf3gmsLB/JE9nTxljLTr2so9lWtSkbVc3LeLzKxbOkgooMYqscq36XoXl8xgkRd9oSp/N2N6/IhCE9F/RiOdpAgFmpEFCt27fY13bN7V3Ppxo3To0s6kzFzkJpK9mkiqj7dRPumTFevXNHFW1tIlLX8kWI9GdMG2eFS2U38qUKmZzFi73AFu3RiX1k270oF9GxBS57oIlaxR4TyorXdx7Rlfofchl4UL5VF2VA6qC+q49BzyLTC8rY2YgoIyEgRiTec6qgEammWBGUGeOKbIqDCEI6olgShYXQx/mbibkvlRlh42a4q+lCeC/ZicITAToZJ8OdzSQRAIxx8Vx6iX9JEiq555PE1MqnH4ToZsECCy29XyG15Ae8Vl+J6iSfQZTbj7IPENUCf6YAFFBdelTCktaMW/ALbBMpeou/cUWH9kuWeL9klzVVfBesWiO38gkCSqZafpOT548YRXlwMu4l0atO/nsNsa/bFqz0iu72XLkUBV1q1WQ6cRyZa/p35kxYaTfCEz56D3LJXOkTWtXqEqLYQg3XbEEAoFARkKACugNV3Xz+dnEl6oaW7ZSrvG0h0BKIZ5LZMqHcqeIYlqpEoVtvaS7tJTQMgLRJAZRHT10mOoVY8gu9copMl7miB7UfFJaSfSWJ0NJiJJkJSnqVUK1Y6Di+VLNo2sw12H6SWcvSN352CT0PHYqdkAciTkKJE4a+TshsZlU6hBfeM5CPErEoQRR5YXES6cDE29rO0519Tl/zu/6SS48h9yxQDxpG4Gs8jqxKGloRIKWeEC8whzPpcPJjZyDR+IP312jQRMnjBBj4hfV0Eoik3t2bfPZppBRpLm1GipRukJjWmRgRT/olvVrvCeVCmmrrn1s6qhh1kItJdPHDrcGLdq58RGkle1tXL3cK78x3uUcnMjY5L8hEIT03+CIX1IbAchcd5FPCF3Ty2rYqPEz7aq+Heyd4ZOMMS5UKOmr6d2llWduS4uckhWmx7SZ+klxIVytqmqzy2rJKGi3bdy8w+rXruxZ4RWS69J3U7J4YVu6Yp36aE5aKT0nqGOIxMINAJnm9Zt2SBZ1zKujRUROkTXRqwNZZeYoZBIJLxlmKqn0qhK8CZx5FegJfvSJss5xfYbvQi7FI4EeYppV1dfJ2u/0sBAACfYEYvbfDZxEJk+KQCKd/Vc5FOuxJLPWSG9xrSWrzZII5mTmE5nn5PpJcwiCJrcOZKo3aNYZ61MtPROLfP+Cs/yHqmibHlfamqUL1I+T32eLYlJUqFgJzQktaCtVLaUfFPkSvTl1m1zuhhH0NmHug7MuRPPjsR9qkHkHBXHJn3RTgPSXWx9G0DBTlMor/ah1m15u86aOd7fFdbLjpzKaIOFnueOxeiAQCKR7BDq0aijCeNQa1KniyVLaSMqpIkqMocWExCfKHuLUOhFRiGnZ0sU8Obtj1z7FvP1+PS5WNOHEy/WSOEisQo1DPCO5SrKUbWF8lJTuQq6IWYyFYeGRhCmf5fmchStth1pWUnPB5ZXkJDEV8kkiM0kKiR2Ja6eOg/f1ezIpSgxJ0M0EAdXbHks4lgRp/SfxdEJ7GgviDt/nJFixDpLJ9/I9kEBGyECKIacYCuE3gHPuUcWCZBw813iRyG0uD4QNIou46WI8RL8qxkfzJcctXLy0HzutLS3k9g7xpH90u4yKwC85KqZJ2y728ZgPNXtUvgYjhlobzSCdPPId91dg/AsxDxOmIwcPnOtDiu0HAhaENP4I0gwC9FN2UqWTwFJOAZc+0IG929tr746xzm3U97B4pQdKzIs++GiatWle390HIYq9VFHFhZeMcCMZGk2cPt/7PWtXr2gfz0HCcolVr1TWpboE6/py6KVfhoCP0VAVOfUiucU0gmwnxDSXbgA2btmhrPMnbmyETOpSrUtvD3IoAlQu9ZQmjY3INnOzgBSY56ReIaQQU6q+kFAkvhwf7y8WKd60ZWeawf/rdqRs5eoemLkRSAZvnusXJ11fhnbdDHFDlLhRSD4mekQTr2tNvY81PgGfJTPyJz1mz5HLP0evCz0r3jd6unfUVzyH/2BG1LhNZ7kVbvbAXvOyprZRM9+YGVdfPTsLpk90yRNOvMziZJg4Bke58ubzWaJUcC+XeRGOuqzPzNKS5WTRrz4fqqgQWxwScTpcS5+pSComFBBtbhBiCQQCgYyHQHV5IhCjihctqHi3xONJneoVbMHSNTI3OugtKZBKekohkcQpqqiMMaMNpZAktcQlZLjbZdqHkzsV10IF8rlS54ASuMQqCBTuvIyFIUbmk5EfBnwkUiGfJ04kCBfX9EyZUL6c8n0aqkRwai+MNKECSKDxGKJ9gyD6C3otmczTU3/ucYl3FV94L0FUpbjR715d1TFmVpLUn2s94lCWrNo+UcjjGVtKzDBFscP1279Db5N8ZV+4lu+W9DWv4sahAxjqsT/nd8HtvFO/azwBmq9QEcsvSS5KHhKmuPoSZ4k3eB5g4IfBUfGyFVwNdFj7TOWZdhRku8wcbdtzgE348E3r0GewjXvvNSei+9WrGmT0/J7XjPxtQUgz8tlPQ8cOKWyvTDFZYfozqYJSKX1z2Hi7pn8ne0/S1lLFCvt785esUtW0o0jpVJclVa9S1j6aMMuaNawp2dIhW7V2kzVpUEP9o/uMbDPP9x04pMrpFkl4ZRqhkS8fy0iI4MbNAO8hgcqlmW6YSpBF9nEwioCsn1vGEBtUacUMiWBORTZXjuxOPHer1xRJFNlngj2SKrZLJZRgn+wrBWrWIShyfKz35vvjPPCnodPwlbvCcPJsIoz/thC3YZL/snDs/1x4ngjumZTRJahTBeWGgX4UbgQI+HyGuZuQMwicdFl6rjEvkvCez6WUjIoKa8RL4WIl1UczR4SyomfKIZvIl5jbxkw5COesiR8Z0lx6PzE3QtLMfLf2vQbZxBFvWy31kkI8sc+n74bjy1+oqM9KhYwunTtDErrE/LrzeYzxXYFAIJA2ECAGDBnUzRbKNIgY1OSymrZNyVViERXR0opFs+cv9+RlBVVMiRt4DhBDqKDyuEEmfMQrHHgholxtMSCCbKLkwecA0kr7CJVUSCwtKrSYYBhHohTPBN4nBh85ytxSWk0SBCstzMdOJkOJFxfRG6r44S0iiqf8R1whAeqVUT1P9oAmDPJESKXMoQcUMgkJ5XlmzQ7nkdhDPEr2lyZ7Rb2nVGAmkqYXuZ8AfzXEBbaDjJc2j9RecNel/3PLhtVeoW2gCumcyaN9Lumh/fu8wslrM9UmwgxSTI9ySLJLGw1J39qakT1n6lh3fidute99lXwNXvPWnL0y+gsymtpnOGN9fxDSjHW+0+TRQtSodlYqV8qzufTG1KtV2cZOmW03DOpuL781ytq0qG/0d+5TdbKXzB+omrbWZyCKGxWUr+jRxkaOm+FZYSqk46fOtfwitxDOiR/P96Bbu4Yyz+oZhShWU58OclvkvYVEMJHuYi60QyS2oORNmBvt103CFt0gELCYYwphpbqK8cRJBTLIc55cOT2o0buD7Io+nGQWmu/nBoGgB2lNWvGTfUZGRZ9relkgU3kLaKSJOGZSFiVYEjcBOj4Ct2eRdUDcCLBwI+Dz2RTAkcVC3BLVVWWf6RfVjQ83ApBQem6oTPt8S20vNRbOM8TzwL7d7kQIAYUkk3FGBlVUpJzjgGg279DTA3khkVf6anHhbS5p1GTJntpK/jt1zPsu82VWXM48eb0KitsiBhrIgU+cUFVCxxxLIBAIZDwEkMPeNLiHzZq/zHtGiTkfz1niiUpcdkm6MneUCiquuauVoGUudi1VT7fLtG+jlDVUMksqSYtJH3HsyNFPvApaXOQUMkpCluooSUEc46mQokKi/YQYRlWV58Qrrt8ofSCofB+J15kaq4ZBYGovtEbgO8D1+csfyCn/JYIQQTbx3uk4lCCSidjLe/gPcJ1Oktd/Pk8oevzzEFz1nyKHTTjnirTrOS62zOlkFAp9o8SxtLSUrljVipcu7/OhaTtp1Lqzm+gRa4qVLOtKnqbtutlsEVUc47dtWu/xqHDxkjLkWyJlELLdD6xtrwE2/v03HEskwGmBcKclnGNfzj0CQUjPPcbxDV+DAAGlZeM61lTVzaR8FqK3WO6C9I6++MZIu/qKTvbB6KkerDEtImt77ZWd7d2Rk73HExOj4WM+tpZN6ki2tNeDMy68OPRCMhvWq2a7du/3/pumqpZCRBcvX2v5NOaltgL84mVrbZeyx2VLFnOZEsSXXlVku0ip6NOhjwZiCXHNq30goJOJZluJcTDZZZJUwKuoe0WoyUSTtcVtl/eRXZGVhnRhLrFQkiyy2+llwXEWd79EQE8QUDLREE5ew7mQ7DPZa3pG/SZAr1MRJfhDwBIENCENYzYb5g/04TCf7XxXQ78Kd+RYnftf5zKoYqXKeWYcJ0OcdTEqwtkXuS79NcweJaDTU8RNAVXP9n0GeVCHsDJ8vIQkUvtFuMGESulq3TCwfpDRrzoD8XogcOEj0LZFA09edmjd0CZPX+ijzFo314xIxQViWOP61T22YNpH8hIfhFUyOmKWNslRDPmIS6ybM0dWK5g/rxNL3icxStWTyijJVqS8KIcgmplldsS6EE7aWFDwsD5yYBKlEGWu55gBkvQl5qX2wogtJ6TsCKQ0uUOQ0f9cfHdPk0y9x/4njoFHVuafxOeSpJV7EOJUUrVDBZTqIbJc4gEklGRiWsCCI/jPhf3HtIj2EjwMZk4Y5YodRpntE7GkrxQjvQan20zyFy7qyiT8EOgrXTxnmsaRXWETPnjLFUDHFZc9MfyfXxS/BwLnGIEgpOcY4Nj81yNQWbNBcRgkKEP+MBKC6EFSPxDJvOvGfvbXF9XfoAAOUdyrqmWfrq3sH29/5M66uOZCOvt2u9w+1PpIaS+rW1US3plyzi3h8trpyjxDFuvWrGRjJ8/2bHDzhrWclDJjlH0geFM9PS7zHfp0kDotEmmlJxRXQ4I41VGyzgQmbgjy5cnt/Tdsg8BOsKdiij1/Dt0kUOnFnAkJFP2jZKJ5D6L78tujvpRFfT1CaeNdgl6NBk1d5sQeJWz3NetORAvZLfIvDB2SQd97b9Qb6cZFusGBlNKPQnaZnlH6Q6k+psUFe/yWnXvLXXCZB+ZGl3dyi3ykvNy0rFm6UP2ifT3IFylRxjFhqDjDxqd+NEyzRQd4Tw4zTpFI0T9K1ZXsNVIzbnBiCQQCgYyJQFXFl7ZS/HwqNQ1yXcgnngLzFq1SzCructxJHy/weFGrWnmX8EI0a1Qu5/GM6ilxBXM+Ytwy9ZPSb4rTLvO1ke7SckJ1FIKJ23w2xR16RffKiZdkKfEIoktyFakurrvEXmZrk2SFrNHWkhYWRnMxRssXVDl6kogz/9y7JFmEoyaeJ0gnaxC7+GGBbMJJL9Yxs03RVMUmZ6o+U5qWDI6dvn5IaGr0hvqOnuU/KHdQ5jCepaHi1fL5M90VmPmjS+dMt1Zd+ngStbLM+TDbA0CI6YZVy9xVFxJLRRTjQDCIJRBIDQSCkKYG6vGdXyIACSVoDujVzp1uydrSo7lw2RqvjP7tHx/YdQO6qho6yfs7CbazJCW65Zqe9so7oz0o04uDW217jYFB2rRZBLVXp5Y2ZeZCH8/SqkldzzxT9Wwoskpmed2mbT6DNI+IJ2ZJBLiaVct5Pw4zStmnKhVLe3Cmn/XTT0/4kHKIK9uHNJNJzq8qK+NgIJpUPA8fOeaVQuS6SKwwoKDHBznVEd0IIOmlJ3Xs5DlfYpBenlARJFATxLktIMYjcYKI8vopXHOFCUGcmwKCG30sSHyphEJAIaLpYcEMokjxUgraxTzII9tFwnv4wD5D/gTxhHDiAvyZkhgVq9e2BTMm+03BxBG4FHbX8PHxVrZidTkhLvOfhENjGBilh/Mf+xgInAsEiG333jbQRilhiny2pWLTmEmzlKTL7F4HkEAIIXGKeLJ56y43NiJOTpu1SO997u0mJD/pJ6XXE2KKcggDPtpMiDskPfNIystcbrwPIFn8zuv0i6Lioc2EBBkxN7fM+ZD+IuGFnPJdtKukhQVHWBKBLKd55WnS6a842Uz2kDqZVBxCcgsJRWbLI/EHJpucH0qiFMK5e/sWj9e8j5ssKha2lR6XXHnyWa9rbnPiiRHU4YP7Zby0xVp06GWT5JxL3FqoGFVARBQJM+PNqtS+zF+jIszyydHD6fHQY58vEASCkF4gJzI9HwbVRjK29IFSVcQZkConPaF3DOlrT788zPpozAuVTvpqkOO++f54u1IklnEvZHY7t2nsxkeVVO1kTMvEaRqvoYooxIiMcstGdbyHc4Ey0pXKl/Sq6Lgpc/3CTPCnykpfDoG/mvp2FosQQzqprBLE2S+IKAtDy5EVE7CpmkIy+RzkFskq8l+Gl+Pim103B8ineI8KKZb7C5eudrOl9HbO6jRp5dlkJKeQzqRBBCQUnAnmxxTQuMkhE31Kj0cJcHovvS3IkZE4YXtPhRSyyfy2wiKpS+fNcIkTxkb5Chb2m6X1K5day04E/oR1Pj05zDddPHua9+zgHJxesu3p7VzF/gYC6QEBrv9DBnbTKJUV1rF1I0+ert+4zbq2a6o5o+t8RFlbJVXpEWVEGdVP1Dt4ILAQE5HoYtSHn0G9mpWdhBKXIGIVtT7tIWvWJ0howQJ5rHgR9f2LiW3TCDQqplyniUX0lEJc96j1hEQt/aReKRU55Tuff324x2T/4lT+h2sujrIcB4SUJCjX0uRYMV5EgcM1G/8CjhHTHtpJ6AEl/qDo2SXyCQkjXmXLrhmsik8kTdNLkvRMTkPhYqXs8m59fTbpKUmwK9WsK3fdCdah72CbNPxtq1qnoQyQ1ngCuWTZirZi8RzN+F7q0mRiVCyBQGoiEIQ0NdGP7/4SASqPZIaR4+IeiCNur84t7NV3x9p3bx1gT780zOqpj+aATI3oDb3xqu723KvDTzvrHrQlGqEysE97Gztptg/3vrxZPRs3ZY5XOgn+w0ZNFSG81J18x2gdjI2aytUQaROzSgn+jJqZKZOJI6py1qxa3geHQ2BxLKxUrqRmmBb0/tRdew74+BZmmlId5SYBYorsCskuEl8EQrxGsKe6Ss8OGehy6s35+6sfuj3/lwefTp5UqFbbAztOhAzJpuKJNDcph6JSeiEFNbLyva6+1WaKeDILj4wz5kXIdbHJr16/se3YvNENL+q3aGvTREI7yKVwogI/vTwfjx0uwybNsxVW3CTFEggEAhkXgdaKSczZbtfyMntP/gcVFVPKyy131PgZieeli9sYtZSg+KlRpZxNU7UU0sT6VEOpmJIMLS+X+EVKmFINpToK6cSZl3iD+qactkOVk1ExyHOpnjIaJn++XLZuwzYnplRW8+bJ6QoevBSQ6vJ54iKxikRvWlkKyakcYziveMpll0cqnFQ/mYeN/BayStsIRBTpKdfqPTsgnyc9YUiPKMQU3wJi1oW8UB3FFZ9qMAoed86VWREzRxkBg8s7CYydqorSRpJV5Pxczfi+kHGOY0t5BIKQpjymscVviADyV/pcIJCMX8GB8JZretlTz78jAtrD3hshEyMF1bIidZDKm6/u6ZVSemEwLnpfpLPD5Q09OK9ev9k6tW7s89ro+8SRd4WC+ubtu7wfldmlmERUlSy3hJwKmVVKkG6m3lIMjMgyYxZBPymSJzLZZGKpruZUZhnCfODQYSe8lSqUsswKeJBb7PupHHITUFg3FswtPaBqKb2vZKHJTCPXSo9LjlwMV0+46WJCdCFllr/qfGCr3773IFumnhx6P+s3SxDPRq07eX8oWfjiMntaPHuqzJCut9HvvGwt1a8z9t1X7TA3RpL4xhIIBAIZG4HKihG0pWDch7SW+doQ0U8U77po9vZYJU9PKv4Qp1ACocjp3LaxxygqojXVS4qPwWzFRGJk08tqOXlctmq9xy3ceKl4LtXvhzU3u3TJIm7At3vvQSl7drqyqIiUSAUUYxkfQ/wjWYq6J0/uHD63lAopCp9J0xd4LEsrZ4xrcO58BcQnT3llD0LJGC0kt5/SAnI62Qexwp+AGAWRR61DLM5oC8eP8d5BOQOj7pk6epiPI5s29gN34wW3IyLsKH2yZM2W5lyDM9r5iuP9JwKXZMuW7cf//DWeBQKphwCBNpuMGVZojijBkVEwrw0dYw98a7CMjd613l1a2loFZ7LBvVVJZRxMR0l1d8pBd8lpV94R46bLkCiXenCqOWmtr/ExVDGnzVxk1ZV1pgo6Vb2lmDk0kpkEroZInnDoxXwIx13Wb1C7ihwN99paEdOCyi7XqVFRboRHbJNuJsg6k6mmQgrZ3CwiSl8OEimy0zxHHrVHNwMMKue7Skr2yzFhwgRpTY9LkoTySIY6IyxUfPnJV6CQMeJl3vQJbo8/Z/JYH0SeTe7DazQGhmHiH4mMdtSg8vf/8bRn4oOMZoS/kDjGQODrEUD988CdgzU3e5pXNKmMYtiHq+7nn59yr4NObRqJYH5qM+UgT6tJAY2BoUJaXvGEEWhzF630FpHL6lR1BdGSFWv9S6mkkkglLlLdrF6prI9v2aLEK8QXVQ4J3MyqelIBJTnL+rShEOfwrKU6SrUVcoyLPOPI0pKiA0UOZnj0NyYktsyoxihQbSMinsklQVSPfelVkJaOIbmP5+OR40aZ07xDD58/2umKa7+U6+7ZsdUVPcsXzPYRZhkhqXw+MI/vSBkEgpCmDI6xlRRCAAKH3AiiR6VyUJ8O9teX3rPviZQ+//oI9c1UVCD6wqun12gczDvDJ4osVvLemTETZ0vye7nkTetdmsS4GNx2Ibo9Jf+lr5Tg2049qIx9wdgIGRWv0WdaWXNQqymgL5Vr4XrJeGtItsvNBNVQSCf9qcx92y5TJEgswbyu+niYo7pXtvq8rgSz95PSe8r3HlK2GgLKTQCy4PHqW0XaG0v6QYBMcwn12zBTtPVpuW4FmRgdOXzAdm3dLLOIrrLMf8O6X3WzvfnM79zkCMlYLIFAIJCxEUCiS2WUOHT9wK5fVj/7yy/h/Y+m+qzsJhpFhl8CJBFXXYyNUP20bd5Az5d47CFhSpyiNYU4ws8GEU4M+HiOcoeqJ9XUwvJQqFWtovr3j/uYmN1qMWGuNklUfA2IR/gj0FaC5Bc5L+0y+DPsU9XU1UBp6LRBOiFO//zRDGepVTJKUvSbnAraZ3DTxeRo7HuvWQONflm3fLE8EXbY1o2JZEaMHvsmyMZnziUCQUjPJbqx7W+EAPPQqDLSK7JABkB339Tfnvzb295L+r6yzMUkPcIIiSzzrdf2culT9qxZfWj48LGyOFfw/kwX5MmSHnXr0EyZ5V02d+FK69e9jQdsTIUwj2BUCwYT9IsiESYLTWWT4L9fvaor12706maDOlVst+zy16r/BtME3HeRNuHWi0y3SMH8flOATIhAz+vMH6W3BznUMbmwsl2OafmqDd8Ik/hQ6iFAxnn/np3WdcAQmyzTonpN29hWDUtn7luNBk3kajjCegy+2V556peenUcSFUsgEAgEAs0b1lZf4yVy0K1pb8mIr0en5gZBhHRCVOctXuVOuj07NvckK6qc/j3beLyipaS74hfxBC8DxsXQc8pncMmtp0oqMZL1Pjl+3FU9IL5u43afPQpRJQYRe4hTxxR/IKCodSC3EFNMjYidqIBomeF7WD+W9I/Ap/J42LZxnbXp0V9ztafYFsUs1D6faKwLVedYAoG0hkAQ0rR2RmJ/vkSAcSmMU8Gc6JH7brDfP/2G3SQzo6kK5pC7y0UcX5Gk93qNhWF0C4G7ryqkH4yeZnWqV3QnXMarIP2ldDlh6lxrrGw0ZHG6pFEQSwL8zHlL/X0y0ms3brWlGkZevUpZK128iJtJIH1ie5BLDJCojhbXcPLaeg0ZFA699O1ww1BIst1DGvGyW8SUHh0cDSvIhIIFuS7z4mJJfwggUyazjEEEzrkXy0CjXOUaNv/jCe6+O23M+97T9JmkZbEEAoFAIIARHjO2mZ9NDIGAvjFsnNWtVUk+BNlttMa9XNG9te1U3KJvtFv7ph5PqIoyV3uvyCLeBsQenOPnL17t6iHaUbbhxKuEaYWyJX0MDG0sq2X2V7lCaY9rGO1tUKy6SOqdBpL5npS8lRYSqqj0kFItpeeUGEsMYyxZBe0vI2hQIMVyYSDgs0WPHXXzIkyODu7bc2EcWBzFBYlAENIL8rReOAdFJhf50qjxM52UPvXCULnvtnRiSMDt1621vfjmSOvQqqFXNWeIXN5+XR9VT6cpCH/hlvpIo+iNqVGlvCz05/lzZL5kqanGdpJ5BL2kEMbLm9ZTdfVzDRvf4GS4acOaHvxXqa+1gEwlaoiokkHmBgP5E2YTmAiQaSYLzQByDCawXGcm6S71tyJDRgpMsD8h6W4s6RMBMsuMtslfqIjl1sw3hpAfUTWU6qnPW9VNXyyBQCAQCFBx/Mn9N9pzr42wTvI5oEdz+twlUvT0dqludo1naS4DvaEy6qujSieOtxPUUtJa8SeT3ODHT51nDTTmpbBaRjD3y5o1s5vxzVcFE5kuqh3GyBCnjkuB07yRWghELlcqTn2mWaX0nWLos23nHq/AUhmlYko8JXG7T4lR2kroL8Vsj89SMcXML5YLC4EDe3a7k+6hMNi7sE7sBXg0QUgvwJN6oR0SZg1keicoSCNBwvK+S7smnvGdL/kS80iHDp9kGD5kyZzZRsq9cJBGwNALiqvhtQO62LjJc2VKdFRZ6GYyNVrk2edeMklCEsw6vA6pnEcvqXpFqZ5icITVPj0+9IkSrPdIuovBETIn5pbSW1pcEihIKEGezDX9r8U0l7SMnA4PK/OcdNil/yeW9I3AwX17vTK6cc0K27h6mR/M0UNR9U7fZzX2PhBIOQQYm3KF2kNwzqWl5FWpeKhSovYhOYqih1aR7fJIILn60cRZmiua3Vo2rmO0nDAajBiDMoh4xusLl6xRvNnuah+I41LFkvIimLWqVfD4RcK0Ub3q7u6+Xt4IKHkgm9UqlfGxZCRQaRqtrfVpQSAWEqsw2ivO+DIZ70F2UfXEcmEhgDtxmBddWOf0Qj2aIKQX6pm9wI4Le3pMgg4cOuqVUGRGzBH9VNJdJE7MJWXWaGWZOzBu5UPJdplLykBwekl5vnz1BrfFx1CCTDL9Mlf2bOcS3Fnzlvn2smTJJMK71quezDKFdDIDDkMjBo8j112zfoukUaX8tR1yLeRGIbMknFRLyUojtaIXKKukUe6CqNf4bghvLOkbAQaw7921XVVRhtFfYvTpxBIIBAKBQBKBQqqOInuFVNI+cueQvl4JLVwwr7uwvztykg0Z2E29n5u8H/Sqvh1thlpIcMAd0Ludu8NDGKmszpOvAXLcAb3aav72Flu0dK3VlwM8BJaEKa0rGPPhXUDCs6hiX02RTpQ5mPZly5rFams/cPCFgGIUWLJ4IW9V4Tv4HH4JNaUeIpF7Ute3WAKBQCAQSA0EgpCmBurxnd8YAQIwWV2CKPKjGlXLucMuLoX33j7IB44zILuF+kvfVL8OQ8WR5ZJtpiK6R0R2iiqkSH0hiAwAbyeDI5bZ85e7uVE9OeeSLd6gG4G2LWR+pAotpBRpbuP6NVQBPWzLNXT8Ev2ONApSTAaavp1qqpQy2Jx1kEaxv3V1Q8DMuc9EqmNJ/wiQbcbhMYwh0v+5jCMIBFIagWOSwGIyhIEdyps3ZWZ0v2IThO8L/deqSV37xzujraNmZjNCDPf3267rLbK5xpOk10nRgyfC8lUb5RrfymPL7AUrvDr6mcadoOphvBi9pfgdrJGEt71aVmgNWb56kx06ctTHnuHmvk6eCMSh2tUrWO6cOWzX3v2eVM2ham2tqhWcqB4SMcUkCXOkWAKBQCAQSC0EgpCmFvLxvd8YAYgdJJPgTjUSS3t6RN/6YILdfHVPN4igZ6dbh+b29ocTXdaEtf1oSaNw0GWsDONXuCHAvmHarMUKzuV9ruhcSanYfge9RyV0iQJ+Q/XykJFeI9MIKqTtNTaGii1uhlvl4EulFqOIXXJPZE5pbhkZURkl0O/WDQCkdIFuNmIJBAKBQCAQuLARQBLLCJVsauvArAin3WGjptgt1/Q0lDiQv65tm2hk2SSfhZ0zRzZ//zpJeTdv22kTpejBnI8EJ6ZGmCERRyClEMvCBfPJhTcRp9q0qO+EFQ8EkqPF1SqCGzxElORpXsUiKqOMg0HCW1Zu8lRGMeKDODOXm1mlJGCRAscSCAQCgUBqIRCENLWQj+/9nxA4JWnRQcl3L1KVcvX6zW5YRH/pOyKg99w6QAPGl7n5w6De7V02VUx9MtVFEkdPmOX9PMwXHTN5ts8wLSnH3KmzFsn2Ppe1UL8OwR6ZVFdlt3ft2eczSzGFqFO9kuaTbvesNPNHi0iChWkExBXDCAaek43evHWXH5tXTzXfjeoqEuNYAoFAIBAIBDIGArSYXHrpJT4vVCbvXgG9+5YrZVK03GMWsendkZPdnb2YYhdS3p4dW/g4sokfz1dS9DKfWY13QjOZ6+EOz/iy0vImqCtTPlpOqKyJeAAAQABJREFUNqmlpI+UP7SO0GpSuEA+J62QUDwUkrNN6VddJ6JKS0qD2lXlbXDMYxXxDe+FDzVCLeZjZ4y/yzjKQCCtIhCENK2emdivM0KAKiQLpHCrgjASqRffHGU3Kxu9bNV6W6ggfW3/zm6xr8S1kVHGOIKgXkVjWgj2VE/p95mp7DXb69ahqcut6MlBCnVcMincDDGF6HB5I89II8di/ijBfJMIKKSYES/MNEWuu3X7Ht8WWerhYz/2weO+o/FPIBAIBAKBQIZAAJKHQgZTPKqU/Azu11Hxaqs7u+MI/87wiSKOBWWMV85bThrVr6aqZXZ32sU9XmHHK61V5FtAlXPGnKWuEGonpc5KtY5ARDu2buTKHpKfx0WE6T+lwooMlxYXCC1JUZzgcdRtXL+6t5oQq/bsO+QeBxnihMRBBgKBQJpFIAhpmj01sWNnisCnqkLST8oy8eMFnllGIjVYZhFUNHE0vO7KLl4FZWRLd0l5qZSSLW4lCe9k9ZFSce2qOXAzZbFPdbSnBpjjVIiUCdKJrIl5cgT1Dq0buhnESkl4MS5qWK+ay3W52UBK3EQS3kP6HkwqPv30hM2VMUUsgUAgEAgEAhkTAaql2TTqBT+CxcuVJL2ys6qbu2RmtMTuuL6vvad4haMusYQRZyhuyqtPdMT46d7rWbRwfpHSpd5WUl8jX+ZIvrtL8aWP5pWSjJ23aJVaR2oY8t81G5Sc1bxR/A+OfHJMs7W3+ZxsiC4jXkiWUlFlFBmtKPSrIiOOJRAIBAKB1EQgCGlqoh/fnaII4CRILydjXOgwZa7o4L4dXEKLE++3bugnQ6OFIop73dSIuW9HZCrRUVVPdzmU4yAmEphL8Nk+9PFI6kR/Dvb5GEmQgYawtlOw5yYDt96jyji3bVnfTZKQ65J1Zi4c71OlxckwlkAgEAgEAoGMi8DnmkFNjMok6e0kSXJLlShsmTVLlHnYdwzpY6MmzNQM0RPuUcAomNJ6n9EuyHeLq62E0WJT1FpykZQ+KHfma0QZZBTX+C3bdkvCu8oq4gav1hEqo6h2mKtNkhRp71Y5zmOoRNWWZCmklTgFGWbfYgkEAoFAIDURCEKamujHd6c4Aic+/9zlsZnktMsAcWRLzCndoccJ0+bZXTf28zmkkMrB/To4QWW2KMYRGFBQUe3dpZWTWohol7ZN3bWQ5xXLlbCqIqarVBldIalU13ZN3bxig4yMdot0Mi+OjDT9O5hQMDaGuXNItmIJBAKBQCAQCASOaDY1xnnEps0yxaskAomHAaNgcH2nWtmzUwsbIef4fPI1qC03XV7PmyenS22JUyiCcI1fKAUPc7n7yjWeGLR4+TorK6MiTPUwNiKxipHfJepl5fvWKe5BQlEE8T04zcd87PibDAQCgbSAQBDStHAWYh9SHAHPRIuUMleNYH73zVfaBpFNss23SyI1c95SkcpN1l8DzGctWO4Z5IEipbMl7yXr3K97a38kC90F4qlqJzIpzJAYC4M8l0Depnl9d+olA40Db1v9flSklOBP1pm+1FgCgUAgEAgEAoEkAlQtiSkXy+2IyiUjxFD23HBVN6+YYtiHC/x4eRxkURW1ieS4zNO+RLOPL29W1+MKI8xQ9CyVvwGqns5tG7viZ/7iVe5ngPs7I2HwO8AjoWD+vB6j1ms+ae1qFV3eSztJzMdOnpV4DAQCgdREIAhpaqIf331OESALjIEDpg70kd5zywAF/c3qGV3gc99wO6SKeuNV3T1DvUE9o9jtUw1laHlf9edQSYWI9u3WyrfFe9k1bPzypnX9BoKbgVZ6zkJlFNMIxsLwvRBWpFGxBAKBQCAQCAQC/4kA48Po66R/lIQpUtv77xxsYybNclO8DjIrgohmUytKs4a1lFxdIHO9izwROlPxCyM/KqUkV4lN/Xq0VsvIEY89mZWQRbVDgnWF5pPWq1nRCuTLoxaWnfquHT6je+iHk7xa+5/7Fb8HAoFAIHC+EQhCer4Rj+877wggj7pCldA3Naf0TlVHkdvSU8oAcjLEZKYH9+vkkt0t6qtJ9pESxAfKmn+dMsrIpHp2aimi+YmC/XrLIfMIMtCr123xPlGeM9+Uvhy2gcshlv5kwWMJBAKBQCAQCAS+CoFDR45KRvuFq2pw3W1cr7pXM49ImpuolM71SmnTBjW9zYRxMi0aaUSZ4hftKN07NnczI5Kn3Ts08zi1VJXRHNmyasxZFVcAMQamgQz6suk1vBGojEJiYwkEAoFAIC0gEIQ0LZyF2IdzigCGRMiZTkhC+96oyXbPzf1tgQIx0qZvqacUSS+VTWS6M+cu9aomPTz05ixbtdFuGNRNsqeNGky+XPLdJt4TSiDPmSO7Naxb1UnpijUbvGf0c/WwMnSc4ehTZy46p8cVGw8EAoFAIBC4MBA4pZiBCy+KHpQ5eBXkyZ3DDw4zIuS79JEygxRzPqS8TTXOhdmkzL8e2Ke9LVEPKfNJqZomKqWJ5GnzRrVsrUbNUEmtK/kuCVXIa8zHvjD+duIoAoELAYEgpBfCWYxj+EoEsNq/7/ZB9srQMXal3Aj3HzhsIzSH9JZreomUyhBi6VqNhOnspHTv/oNuYoTj7r4Dh6yHhpTTQ7paNwZUSnHMnbtwlc+RwzYf+/7imh9XpUJpr6KuUrBPmiAxG26HstCxBAKBQCAQCAQCZ4oA3gMY4eXPl1ttJlfa2ElzLLviWP1alW3clLk+i7RMyaI2bc5iy583txsYkSDdt/+wYlYzxakNHtsgqLSR0EPKrG3MkZDv8oMh31vvT4j52Gd6UmK9QCAQOOcIBCE95xDHF6QmAswQzaqeT1wHX3t3rPeLrpX7INXLe28faBPVn4PEtocqolRKqWw2aVDDZsmMiPmm7Vo28EwyJkX0lC5bvcFlUj5ORpVQSC0z40oWL6ysdmLwea/OLW2oZFdku2MJBAKBQCAQCATOFgFi1okTJ62NRox9pJ7ScnLPLV2yiI2dPNvq1qykftDcNm3WYieo5csUV7J0hRNZRsIsVVsJEt3eMj0idi1WgrRyhVJWuGA+2ywDPhx2Yz722Z6RWD8QCATOJQJBSM8lurHtVEWAgP27H99lb6l3tIqCcT5lk9/8YLzdqXmkVDcxhUCOixQKqS1EFMMjMtNVK5bxoeVkoGtVK++k9LD6R7spswwJJdgP7tdR2eat3ofTsE41yyrjCaRWOCYyYiaWQCAQCAQCgUDgbBHIKUntI/fdYB9pNmmuXNk9oTpq/EyfI3qx4sv4qXOtU+vG9qkqqdOl6GnRuLbiTxZvQ8mRPZu76lIp3aB4dIWUQWvlCk/Mw203R/as3n4S87HP9qzE+oFAIHAuEQhCei7RjW2nKgKMZJknye2VPdva68PGudkDkl2C/Pe/fY1NFGkke0x/KVIoho+XKlbYSSkZaPp1JqtqWltBPHeuHDZPPaf58uSymlXLubERcqje6tWh12eRgn239s3s4KEjIqxrtN09qXrs8eWBQCAQCAQC6ROB+rWr2OHDn1h7jX6hxaSBfodoDtdz4tk+VTiJWVfI94DnE6fNV/xpakelypkno6M6kufmVf/pSrnF00vavUNzbzlhLilO8q8PGxvzsdPnn0bsdSBwwSIQhPSCPbUZ+8CQ0D7x6N02esIsO3bsM2tUr5q98s5ou3NIPw0L3+BE8+are9poSaGyy3WwiiqiYyfP8UzzRbLVJwPdv0db23/wsE36eIFnoz/X7LgZcttFBkwGm7EuvNZCg8Zx6sW998qe7VSRHa9ZpCHXzdh/gXH0gUAgEAicPQIkP3/+/VucfObPk9sqlitpwz6aYoN6dzC8C0YpoXr79b09ETpFrSd33XSFYtpGjS5bbNcP7GobJcnFB6FNC83IVgsKah62ieqHMWcHFNNiPvbZn5f4RCAQCJxbBIKQnlt8Y+upgMDFF1/kZPJ19Yw+eNc19s6HE51wZtJctndHTHIp1ATJdHfu2W9tVUUlwGOn/4X+Y/7btf07+3y30RMJ/H0SgV+V0ltlhMSg8ekyk+ijLPPuvQc92FcqX8oKFsirGXJb3Plw9KTZqXDU8ZWBQCAQCAQC6R2BhnWreWzq0raJDRs1xTq2bujVzPc/mmr33jbQlohg4ndAQhXzvJnzltpNg3t468is+cvslmt7ebIU991rFMuYO4rpUe0aFXwMzAz5I8R87PT+VxL7HwhceAhcfOEdUhxRRkcA19v+6puhF/QvL76rrHEXe08zQXt0am7FihS0n/3+Bbvtut7uNnjg0FEno/94+yOf91a6RBF7/Jk37bZre0uym8sef/oNG6I+UzLMTz77ls8u5fkzL79v/WRyVKRwfie5GFBULFfCJk2fn9Hhj+MPBAKBQCAQ+AYI0BJy/51X2Tr1fDLKpXXzeoph79lVfTtYkUL57NEnXvLEqEnF89Kbo9wDgVnXb8sngXVOaOb2W++Pd1d4ZpX+7ZUPbGCvdj4+5t0Rk61V0zoy8dv1DfYsPhIIBAKBwLlFICqk5xbf2Pp5RiCbHHW/c9sA+4PII7KnEeOma67bpVa6RGGX7D764M02buocHwrevGEt+2DMNBuggE0vKZXN79w6wHtwcNmlIjpt9iI3huivvh1kUKzH4HHGwVAtHdSng2epyVRTWX39vXEaSn7sPB91fF0gEAgEAoFAekcAY70Nm3d4jEHZQ3zBq+CD0dPse9+6Wq66izzu9JF3wbTZi31mKX4HM+YucdO+8qWL2xy57ebKmd1qKklKZRTC2kyxboVkvYePfBLzsdP7H0nsfyBwgSIQhPQCPbEZ9bDq16oi06Hyfvi4635HEqfX3h2jamZrlyl9OOZju+P6vvb+R9OsptxzL73kEsmiptpdN17h7rmz5Lx7i6RQjINhbEvDetXlYrhEdvn5RWqLGO9jvV+4QD53LWTOKb05zCjNLvdCCHAsgUAgEAgEAoHA2SCAK/yTj95j70mmW7xIAStUMK+9qvnZD99zrcegeYtX2zVXdJKZ0RwRzhxWqXxJGy9joxaN69hJeRlMFVllNNmuPQdESpdb5zZN5GVwzEkpsQ6vhOmzl3jl9Wz2K9YNBAKBQOB8IBCS3fOBcnzHeUGAES24577+3ljv/YQgDh0+ybpoVMvv/vq6pFCDfT/GqBKKI+EbqmZiiV9I/Z9PINOVjJcMMplnqqCzF6yQVDe70dPzgfp3Gtev7jNHh6oPFdfDcmWK+Q1BhbLFdXNQysZNnntejjO+JBAIBAKBQODCQgBnXSS2KG2oiDLPukSxQvazx1/wUWV79h3w/tHWzeq5yqeRkqUYHvEZnHeLFS5gf/zb296uQsIUqS9eBwXy57E3h43XTO3LfOb2hYVaHE0gEAhcKAgEIb1QzmQchzWqX81Gjp/hY1y+9f3f24++O8TWrNtiRdXnWbViabv/J095YEfGVEwZaAaFP/r4i3bHkD7eezN64izr1amFS5oqlCnhGei/v/KhW+vTv/ObP79qN1zVTXb6Oe3PLwz1Gwee00/KDcHGrTviLAQCgUAgEAgEAmeFAEnRH373eu/vZDRZY0l3v//zp+2+OwYpNp20keNmWG8RVKqjuLxXLFvSHnvyJe8hZTzZr596xY2NLpKhH27ymBmZTPqosDIahn5SErG79x44q/2KlQOBQCAQOF8IhGT3fCEd33NOESCT/PwTD9lzrw33mWvbNAcUg6HuHZvb86+PsF/94HYbM3m2KqBHrVb1CvaaqqMPqGJKX+iqtZutmyqio0RmO0nmxCzR4WM/9psBZo9O16iXW2VyROV087ZdMj9qpD7TVXbw8BFrrpEvC5audtOjDyQDjiUQCAQCgUAgEDgbBKh6ztX8UFpLMNh74FuDXXY7Wy0i/Xu2sQ/lddBBcWevZo4Sm3547xBPnC5U7Lmqb0eX60JGq1Yq48qe4kULKhFbwPtJIa/0lCLpxQMhlkAgEAgE0iICUSFNi2cl9umsELhYjoOdWjey7z/2VxuiOWy/VSXz4Xuu8xmiuA7Wk+nD3T94wr51Yz8P0LWrVbCyJYvaL/7wkt1yTU/NbduhHpyThmTq90+/7q8xhBwZ701XdfftQFzbt2poy1dtUN7ZDCMJbPUJ/FVUfR01fqbPfDurHY+VA4FAIBAIBDI0AkUK5bcf33+Dk8VDSpgSh773s794wpS5o4xowZToD5Lj3qh4lCtHdntSsem6Kzv7XFLiF+8zygz/BGS8tKowhxQl0NsfTlA/aWPbsm13hsY5Dj4QCATSNgJBSNP2+Ym9OwMEKmvMC/2hx49/5pIkAvq9j/zRg/cbw8a5c+6lmS61SdPmW1v10fz6qVdlYtTPZboQTXprsNBnrlsB9aH+9s+vuRyXOaVURJtdVtPlTi0b17ZSMjZ68Y0R1k8yqIIF8tifnnvHBitDzU1BLIFAIBAIBAKBwNkg0FTy3F/84WVPpr6m2dk3X93DsmXNbC+rUtpbbrrviFzSEsIYs9/LC+EGkdKNW3ba7n0H3d8A8tmnSytvTXniaSVRB3e3nDmyeT/pVXLpRa47dvKcmD16Nicl1g0EAoHzjkAQ0vMOeXxhSiKQNUtmnw16wz2PucwJw6G7b+7vX8Est6Yik7c98Bv79o397WNJb9u1aJAI3M++6Zb6DBgne1yyeGF7SD07dwzp61nnnXv2WQvJcblBgHwWLpjPfq4ZcAwgz5I5k/391Q/Um9PGPvvshLsYYs0fSyAQCAQCgUAgcKYIoLD56fdusl2798vV/VOrrXaSB372Z7vnlittyfK1VkZKnkqqeP7gl8/KHb6P7TtwyGhHadawprvHD+7X0U35HpPa5/oBXe3kqVNOYDFE2qltblCiFDO+iTEf+0xPSawXCAQCqYRAENJUAj6+NmUQqCX5LTIlTCGGjZziVve33vdru+umK3wEC865WTJntikzF9rlTevaD3/1rN13+yAP1sh5+eyDP/+r3Xv7QDsii/zFy9c5iWWe6MDe7Q0r/sdOZ6+P6YZhssbBtBGpXS2zJLLQ1SuX9Vmmp3QjEEsgEAgEAoFAIHCmCJD0JCbdqKrmi2+OtLtvUjJVPSFTZi6y1s3ru5HevRpd9rlaSiZ+PF99pA3tNRkVUTEtlD+vTPle8IQsRkjL12w0elFnzltqNTSDlNnb7ypB26NjC8l1d53pLsV6gUAgEAikCgJBSFMF9vjSlEAgX95cGhY+2B75zd/tZw/ebPOXrPKAnStXDqPy2VbE8db7f+MVUwyO+nRtZXnkivuCAj9jX7gBoK+Uiueb74+3nnLYfW/kZBHRdoar7mNPvGhDBnWzPXImpJenXu3KbozUrmUDK6bM9lPPDVUfTxfbuHl7ShxObCMQCAQCgUAggyBQSoTxZ9+72fbsO2SfSmlTXYZEDz76Fx9ZhsR2QK92rsx5/Jk3fJQLMayvxrgUK1LQfvLb51yts0ey3QMy4atdvaLHLuJaEc3M/tWf/iGi2tUyZ8rkct0wM8ogf1RxmIFAOkYgCGk6PnkZfdeZD7p6/RarI5nTI7/6myFfuu/Hf5IZxFVeEb26XyfvxcElt7lMHzCKQM67dMV6N44oJZnuj3/znFvnT5+z1OgRJdj/UPKo26/rY9t27dVg8eMuo3r5rY/sam0/f57c9hv1oF6tvtETn39uC5etidluGf0PMY4/EAgEAoGzRKB103p230/+ZDerDeRZjQ57UDO0jx47brR/1K1Z0b798BP23VsHGq0nGB/hlvudH/1B6p9+cng/alt37Lb6tarYC3KRH9y3g+XLk8vnbTPy5fCRY95K0uSyGiKks89yz2L1QCAQCATOPwJBSM8/5vGNKYBACVUof/nwbfbOhxPtkftusD37DxrDwBn/gty2W7umdvv3fqtenAFuSHRt/y6WJUsmlz01b1TLfvq75yXTHaTs9AF3x61ZtZw99NjTmlPa1w4d+cRvCurXqmzP/uN9Zaz7WvZsWRKDxru1sh279jkZRe5LRfXkyZDrpsApjU0EAoFAIJAhEChbqph6R282pLanvjilmdilvU90iKqamBlBRDEjotUEH4Tf/eV1GfddpbhzUmPIlloLJU9Jkt56bS/Lnj2rPfvKB15R3bR1p2n6i8hrCXv/o6leUd28NeS6GeKPKg4yEEjnCAQhTecnMCPu/kUa88IIFhxuu0qidO1dj8q06Ar7lYaD/+A71ykzvFruhK0shwL1rPnL3NTh3h//0W7TLNHxU+YazoP0f771wQTr0raJPSk7fWaSnjr1hU3XrFGkvswzpUqKadIzLw/zOaXLNPKlasUyMpooYn998T138V2/KeS6GfFvMI45EAgEAoFvggDxq2Prhnbn93+nEWO97E9/f0djX26UsdE+y6l5oRXKFpea5892o9pFRoydbldf0UlzrrPb84pJvdRW8oGIJq0iefPktCeffct6y8BoxeqNVrZ0MSsnovvU80O9J5UE7DjFO0yQYgkEAoFAIK0jEIQ0rZ+h2L//g0Dl8qXsN4/cacsVhAnG9Mls08DvKsoyMzu0r4aL3/Hg73zcC0PECfpffPGFj3DB7OF7j/5ZmeXeNk3k84oebWQOkUefe0PmD83tg9HT/AaAQeIQXojtnAUrrI0MJqjKPvr4i3b9wG7uZrhILogx2+3/nJ54IRAIBAKBQOArEChfprj96LtD7JBktxernFmhXAn72e+ftyvVM0o7yMN3XyflzkGvfJYTyXz4F894v+iMecuslYz5ihYu4L4JJFYXr1hrdWtUstJKkj4mF3hM/Kii4qHAbNKR46fHfOyvOA/xciAQCKQtBIKQpq3zEXvzXxDIoorlNf072dV3/tQrlJgWPXzPtZojOlLS3SG2Zv1WVU8vMwjlvEUrrUHtqnb/T58SiexqrwwdbffceqV9JnddpFLIdL/98OOS6fazBUvWaEZpA5f8YhhBv+j8xavcmbeohov/QDcF12oQ+ZGjx1zmi7vv26qw0kcaSyAQCAQCgUAg8N8QuPjii617h+Z2072/dMUOc0V/fN+Niltb7LI6VaxI4fwyy1MiVIlW5mHfd8eg08T1YiVcS9n3H/urk05kuGVKFfWxMD9WvELNw9iYlWs3uXM8idgBcuLdpHmlsQQCgUAgkB4QCEKaHs5S7OOXCNRS3yZVy8+VBcbEgTluYybNdpOihx97RsZGHexb3/+9YZX/7ojJbmL0iYwismXNYvTtkEXu36OtPf3Se/bgXdfYseOf2f6Dh9XDU8rulSHStyT9xUSignpwSpUo4jcAyKOY//aFJL3MhHtGBhQ3XtXN1m3Y9uV+xZNAIBAIBAKBQODrEKioaiime0ePHnd3d2S2f/jbW05S7//pn30k2fwlq+UW38iTqq9qxAujXn7751e9reS44tWuPft9rMtP5INwq9Q/x45/auvl9F6vViX7h/pKiU1Zs2Sx8VPnufHR1+1PvBcIBAKBQFpBIAhpWjkTsR//FYG8IqAYO9z4nV/6uBfks48+eIt9NGGmyOXVtl2uuI3r1/DRLguWrrE6NSra9zVjdKCkUGSi77/jKsP0gUHhyJ6efPZNkduWnpH+rgjsZ7Le361gz2xRRsncLvkTlVR5RFhFEdEndeNw09U9XAK1YvUm27w9zCL+60mLFQKBQCAQCATskksusX5qJxlyz2M+2uUXf/yHqqM3SMmzyuNQ9mxZbarmjzZtWNMeUA/pLVf3tKmzFtkQqXtQ/LzyzmhrJ38Dkql3aVwZSVnaVnCbf+7VD73iSgV2uPpOMe7D1AhfhFgCgUAgEEgPCAQhTQ9nKfbREWhYt6pluvRSkcn8Grey1mpVK29//Ptb1qZFfbvrocddwosE9z65574xbJyT1N2aIVpDVdWCGiL++ntjNTi8vlvt33PLlTZ7wXLNI23mwf61d8e4wRF9o9+5dYAd//QzJ7hVNRvucfWl0ofKDcDaDVud6LItCGwsgUAgEAgEAoHAf0MAFc4d1/ex46poYrhXWmPHcNRtS/yidWRIHxs6YpKre4g/tJZUKlfKR70MkW/B+KlzZVbUQ5/N5l4HOO2+8s5HTm5x5P1wzDRrWK+ajRo/00egbdwShnv/7ZzE+4FAIJB2EAhCmnbORezJ1yBQXPNBH3voVpkKvaCq6M32ugjkL39wmyFvuuXqXpq79olVq1TWZbxLVqxzSdOPfv1369W5hfd/fvumK2Shv8jHulyiLPKmrTusdrWK9oBkUtdKkov7Lj2iuOomM8x/eeFd7805deqUrVyz0YeP/12Z6BsGdfeen6/Z3XgrEAgEAoFAIBBwBDJlutQG9W7v1dE7h/STidEL9qN7h9gEyWrv0FgxRod9qgQnLSE/+vXf3E0XBQ+KoG079lpJjTPj5+FfPG39ure2D8Z8bNfIfZeqqldOW16miug0+St0tmwaUTZh2ryYjx1/e4FAIJCuEAhCmq5OV8bdWbLFjTrfrIHhlSRZGiYDosvs2z940gP3bQ/8xrPE3/nRkx7AX35rlP3wO9fb+k3bvBcHIyTMHmpIinu3PjNYgfyp59912e9ezS8trV7RMiWL2iMisP3luvvuyEkuf6Iayxy4Rso6P6/h4zdd1d3lu+tUJd28LeS6GfevMY48EAgEAoEzRwAH+OsGdPGqZ57cOayYjPJGjJtujdQ+QnX0WhHJ38jE6CEZ9DHCpWObRhr1klPVzhnWsklt+6FI6p2S6a5au9lN+wrKGR41Ty+ZH7HOYJnwZcua2Y32WjauY0OHT4r52Gd+emLNQCAQSAMIBCFNAychduG/I7Bn3wFlg7PY4uXrbMzk2RocPsC2btvtAfnzkyetpORPBfLlsRWqZCKz/bVmkmIGcf9PnrKb1ff54puj7HvqM922Y7c10U1A4YL57FVVWbHGx1Yf992lK9dL/tvAq6zMGW0n1903h42XFLiH+n8utnly3a1Xq7L9Q708SKpiCQQCgUAgEAgEvg6BLJkz2fUDutqQux+zu+To/sNf/c0Tpu+OnOyPmBSRaC2imDR8zHQ36PO4JXnuOyKW99x8pXpBT9kB+RngZfC9n/3FZ2kzjow53Mwjpa/08qb1bPSkWU5ON8jkKJZAIBAIBNITAkFI09PZyuD7evST4973idFQxSYDbNfe/Xan5o3SD3qfHHIf+NZg+9srH9oPVB1dKFMj3HFPqLKaR5lm5E4vvjHSCee3H37CTSGwxkfKy8I2cdb94a+etcF9O7rkiVExkGB6c5rILOmFN0bYEA0rX71ucwY/E3H4gUAgEAgEAmeCAK0k/bpfrorlSSugymbhgnltlvwLmIn94KN/cdf4e6Tcwbtg6IiJ7oHAeDEceEsULWS/+MPL7m/w+6ffUNy6wrbv3GNVKpZWlbWg/eLJl+yK7m1s0scLbEDvdpZDEt5pMkLaEgqeMzk1sU4gEAikIQSCkKahkxG7cmYIkFFmlAs9N7gM/kpuhYUK5PW+Towjnv3H++4yyBgXgjT2+IyBGTdljldWkf/Se0Ow/9WfXvE+019rIDk3BLjwIqNiezjzdmzd2I0mIKc4GPJ+yHXP7DzFWoFAIBAIZGQELrroIluwdLUNvPURJT/7OwF96O5r7fnXhvv80WWrNtiAXm0NUyLiUqniRexxEc9OrRu5+d7dt/S3mfOWSeXT0zJnyuRtKMh/cYG/SRVUFEPMz86dK4dUQCOtVdO6MvQbr/nYJzMy7HHsgUAgkA4RCEKaDk9a7HICAbLAuOguV1CfMW+pE8gf3HOdTZmx0Ee87N5zwJpdVtNy5sjmJBKy+tBjT1vfbpe7ccS3JJ8i2F+t/hskuRBNTCUe0vDxQX06yHJ/sUwiZByRNasy0POtQe0q9pKkv5DhWAKBQCAQCAQCga9D4IsvvrCs6u1cq9nWt97/a8ufL7dt2LzD1Th/fn6otW5ez+7U3GyM8n7+xIueMCWW3TGkr8+9PnbsU83PLupxq0fH5t43ynv7NRcbt3mqpL9RMrVL2yZuzHeV1D3r9V2xBAKBQCCQ3hAIQprezljs7/9B4JAcdvftP2T7Dx62eu2H2F49f0huhJ3bNjaqpMxze0KjWx686xq58q5yt0PTeDYqrBXKFLefyvGwZ6cWnpn+tiRRW7fvVpW0mkbF5NFYmbd9rAz2/MyDw203lkAgEAgEAoFA4EwQOH78M9ujxOmBQ0eMiijtJVQ0ccJlNjaxi5nZ2bJmUQV0u1Uun0ic9lHiFLnut2/ubwvkJo8pElVSN+irUl7Kn+dEZLt5TOvTtZXlUOKVUWYxH/tMzkqsEwgEAmkNgSCkae2MxP58YwR27Nrns0I/O3HCRo2bYXMWrnAZFEYQkMvpc5ZY3RqVnKz21DgYMtL3amYpQZx+U8bBbN+9z8qXoZf0b3Zlz7aS+c51e32Gmm/ftTfkut/47MQHA4FAIBDIuAgwx3rTlp22V9XNEWOn29xFK63Dlfd4MvSBn/3ZE5445zLqhcQpju/EJLwTypYqZj+WTJdKKIZ7d8lxd8/eg1ZOfaaY+f3lxXc1Y7uevSrDvZiPnXH/xuLIA4H0jEAQ0vR89mLf/78IUOHcqT5T5o6uXLPJOg74jpXSaJdnXh6mUS9X2zK56V5zRWdjNtyRo5/4yJefP/GSdZLV/m///Krdem0vz1Tj0ptXFv0+cLxuNXtBo18wm4glEAgEAoFAIBD4JghAGLfJmIg2kS2KVe8Mn2h79h206jI5wjF36Yr1Vr1yOTfYI3H66OMvSsLbx2bOX+azsuk33bAlIfulgkp1dKJaSq5Sm8lajSSLJRAIBAKB9IhAENL0eNZin88IgQOS8DIu5tPPPvNZbfSI0sdTpWIZN5cgA43hEc6FU+VMiEmEWn7sUlVDS2mMzM91I9C1fTN7dehYu35gF5dbndEXx0qBQCAQCAQCgcDXIHDy5CnbKyI6d+FK275jj13e+04fLfbks295lXTJinWu3MEYKWeO7G7Ch9Nux8sb2eN/fcPuvKGvrVO/aJe2TS2X3l8o86Qw3PsawOOtQCAQSNMIBCFN06cndi4lEKCqSaA+cPCI9+KMmzxHZkZLbWDv9nZKNwX07mAQ8deXhllzzSV95Ld/996cOZJUXdWnvWVSRhp5VAT7lDgbsY1AIBAIBAKBf0WAdhDiFPFoo6qfDdrfoLhzqf1M/gYdWze07//8Lx6T6Du9SXO1T3z+uV0solpEcevxZ97wcWYvvTUq5mP/K6jxPBAIBNIVAkFI09Xpip39XxAgiGN8RPDHnZdZptNmL7Y7NMu0a7um9sFHU+3Gwd3t6NHjVql8ou/01aFjrHGDGvacbPoPHT76v3x9fDYQCAQCgUAgEPhKBIhPxKbPNbN0+8699tq7Y2V+NF/O7p96a0mh/Hntdb3WqF41eSC85EnVqXKVH6TE6ep1W75yu/FGIBAIBAJpHYEgpGn9DMX+nRME6NmBYGbJnMmHiP9a80j3HThsM+YutaqVytiPf/uc9evW2me6YXiEfCqWQCAQCAQCgUDgXCPAuBgqpbScLJDB0YbN261x11v899feG2u3XddHxHW/K3py5cru7SSh4DnXZyW2HwgEAucSgYvy5cunrrlYAoFAIF/eXOoh/UIkNbOcC3PbxHf/ZH2GPGSPPXSL9bru+5L8Hg6QAoFAIBAIBAKB847AxRdf5H2kpxSjjn5yzCqWLWlNpN6h3QRH+fdGTjnv+xRfGAgEAoFASiEQhDSlkIztXFAIMCaGTA2mEwR8RsrEEggEAoFAIBAIpDYCjCErUaygfaKRMMWLFrQTJz635atjRnZqn5f4/kAgEPjmCAQh/ebYxSczCAI5smf1WXAZ5HDjMAOBQCAQCATSCQJZsmS2L06d8pnb6WSXYzcDgUAgEPg/CFz6f16JFwKBQODfEGAweSyBQCAQCAQCgUBaQ+DTTz9La7sU+xMIBAKBwFkjEKZGZw1ZfCAQCAQCgUAgEAgEAoFAIBAIBAKBQCAlEAhCmhIoxjYCgUAgEAgEAoFAIBAIBAKBQCAQCATOGoEgpGcNWXwgEAgEAoFAIBAIBAKBQCAQCAQCgUAgJRAIQpoSKMY2AoFAIBAIBAKBQCAQCAQCgUAgEAgEzhqBIKRnDVl8IBAIBAKBQCAQCAQCgUAgEAgE/l97dwKnU9UHcPzPmKHspBDiTUqULJV17NnXaH1TSSpli6wlUtnXKEXWrNlSdpGUpbK30Sa92ZOdMZb3/E+eMcZzx3N172SefufzYWbunHuee7/33OV/ljsIIOCFAAGpF4qUgQACCCCAAAIIIIAAAggg4FqAgNQ1GSsggAACCCCAAAIIIIAAAgh4IUBA6oUiZSCAAAIIIIAAAggggAACCLgWICB1TcYKCCCAAAIIIIAAAggggAACXggQkHqhSBkIIIAAAggggAACCCCAAAKuBQhIXZOxAgIIIIAAAggggAACCCCAgBcCBKReKFIGAggggAACCCCAAAIIIICAawECUtdkrIAAAggggAACCCCAAAIIIOCFAAGpF4qUgQACCCCAAAIIIIAAAggg4FqAgNQ1GSsggAACCCCAAAIIIIAAAgh4IUBA6oUiZSCAAAIIIIAAAggggAACCLgWICB1TcYKCCCAAAIIIIAAAggggAACXggQkHqhSBkIIIAAAggggAACCCCAAAKuBQhIXZOxAgIIIIAAAggggAACCCCAgBcCBKReKFIGAggggAACCCCAAAIIIICAawECUtdkrIAAAggggAACCCCAAAIIIOCFAAGpF4qUgQACCCCAAAIIIIAAAggg4FqAgNQ1GSsggAACCCCAAAIIIIAAAgh4IUBA6oUiZSCAAAIIIIAAAggggAACCLgWICB1TcYKCCCAAAIIIIAAAggggAACXggQkHqhSBkIIIAAAggggAACCCCAAAKuBQhIXZOxAgIIIIAAAggggAACCCCAgBcCBKReKFIGAggggAACCCCAAAIIIICAawECUtdkrIAAAggggAACCCCAAAIIIOCFAAGpF4qUgQACCCCAAAIIIIAAAggg4FqAgNQ1GSsggAACCCCAAAIIIIAAAgh4IUBA6oUiZSCAAAIIIIAAAggggAACCLgWICB1TcYKCCCAAAIIIIAAAggggAACXggQkHqhSBkIIIAAAggggAACCCCAAAKuBQhIXZOxAgIIIIAAAggggAACCCCAgBcCBKReKFIGAggggAACCCCAAAIIIICAawECUtdkrIAAAggggAACCCCAAAIIIOCFAAGpF4qUgQACCCCAAAIIIIAAAggg4FqAgNQ1GSsggAACCCCAAAIIIIAAAgh4IUBA6oUiZSCAAAIIIIAAAggggAACCLgWICB1TcYKCCCAAAIIIIAAAggggAACXggQkHqhSBkIIIAAAggggAACCCCAAAKuBQhIXZOxAgIIIIAAAggggAACCCCAgBcCBKReKFIGAggggAACCCCAAAIIIICAawECUtdkrIAAAggggAACCCCAAAIIIOCFAAGpF4qUgQACCCCAAAIIIIAAAggg4FqAgNQ1GSsggAACCCCAAAIIIIAAAgh4IUBA6oUiZSCAAAIIIIAAAggggAACCLgWICB1TcYKCCCAAAIIIIAAAggggAACXggQkHqhSBkIIIAAAggggAACCCCAAAKuBQhIXZOxAgIIIIAAAggggAACCCCAgBcCBKReKFIGAggggAACCCCAAAIIIICAawECUtdkrIAAAggggAACCCCAAAIIIOCFAAGpF4qUgQACCCCAAAIIIIAAAggg4FqAgNQ1GSsggAACCCCAAAIIIIAAAgh4IUBA6oUiZSCAAAIIIIAAAggggAACCLgWICB1TcYKCCCAAAIIIIAAAggggAACXggQkHqhSBkIIIAAAggggAACCCCAAAKuBQhIXZOxAgIIIIAAAggggAACCCCAgBcCBKReKFIGAggggAACCCCAAAIIIICAawECUtdkrIAAAggggAACCCCAAAIIIOCFAAGpF4qUgQACCCCAAAIIIIAAAggg4FqAgNQ1GSsggAACCCCAAAIIIIAAAgh4IUBA6oUiZSCAAAIIIIAAAggggAACCLgWICB1TcYKCCCAAAIIIIAAAggggAACXggQkHqhSBkIIIAAAggggAACCCCAAAKuBQhIXZOxAgIIIIAAAggggAACCCCAgBcCBKReKFIGAggggAACCCCAAAIIIICAawECUtdkrIAAAggggAACCCCAAAIIIOCFQCovCqEM9wKRqVJJypShtQecOXNGYk+dcv8hrHHFCkREREiKFCnMv9DrwOnT1IEr9oD6vGEpTV2JjIoM+VNiT8bKmbNnQ85PxuQtkDJlhKQ015RQU1RUajl29HCo2cmHAAIIIICArwIEpL7yOhc+vk9vKVmkiHOGeL9ZvXGjPNiufbwlfJvcBfQBsmOHXpI3b/6QdmXt2pXy1og+IeUlU/gJaDD627qZIe9Y7mINJSbmZMj5yZi8BcpWqycNHm0R0k7EnDguvds1JSANSYtMCCCAAAJJIRBa90xSbAmfgQACCCCAAAIIIIAAAggg8K8SoIc0zA93uejyQfdw7VdfyrFjx4L+zsuFBW8tJNdcc42cOHFC9uzeLb/+us2z4rNlu1ZuKVhQdEjz3j17ZOvWLYmWHRgirfndpLTp0smTzZ+WwQP7u1ntish7TbZsUrDgrRdty9GjR2Xd2q8uWu7XgnTp08sddxSV667LLjt2/C5ffvGFnDoVG/LHaT3SIc7ffvN13DoFCtwsV199tWzYsD5uWajf6Hp33lVSln+yVFKnTi0tW7WV/v16h7p62ObTuqJ1JmH6dds22b7914SLPf/Z7Tnt+QacKzCwHWfNsOeYmBjZumWLHDx4wP72Pzfml6jISPn+++8u+fFdX+our/Xsfsl8ySXDP3k/SaxuXp8rl6RJc5UsW7rEc8rLPYZZsmSRO4oWk/TpM8h3335zyftTKjON5xRTczw/fhSIAALJQ4CANHkcp8veyqpVq9l1b77lFsmYMZN8sWa1/fm7775NkoD0+XYd5OzZM7Jz5w7JnDmrZM+RXQb26yurV6+87H0KrFimbDlp8Vwr+fyzFZI1a1YT7FwnzZs1jXtwDOQLfH34v01EHzQHDugbWBTS1zRp0kit2nWTZUCqAWCgDtxTvYZsWL/ONgzs2bM7yQLSSpWr2IBPH+C3bftFihYrLu1f6CQP3NdQYmNDC0q1HhUvcadUKl9aDhw4YIPIMeMmyt59e6V+nRohHcf4ma4yAWmp0qVtQBoZFSV16zcgIDVAtxW5QwoXKixRJkivV7+hvD91smVbuvTjJAlI3Z7T8Y+pl98HtmPFp8slytSPUqXKSKeO7eSrL7+QPHlukLRp04YUkN7b6L6wCkgD15J/4n6SWN3Mly+faKOXHwHp5RzDuvXqi95vtOEt5mSM1KhZSzaZqTdvDh8atJpmzpxZZsz6UCpVKBv09yxEAAEEwl2AgDTMj3C3l7rYPXzo4UfkpgI3S4+XX4zb45q16pjAoKNob9nMGe/LmNGjbC/U/EVLTfCa0bbWjh71jl2urb1Dh42QvXv3SMVKVUQf1BbMn2vXP2mCim5dO8uaNaviyo7/zXsTxsmnyz+xi3LkyClz5i6QOjWrya5dO+W+Bx6S1q2fty94GjVyhLxrPk+TPgR06NTF9k5oz+rQIQPjyrAZzv23Yf3auH16Y/jboi34f/yxT/oNGCwpzQuDDhz4Uzp1aCcagLdu004iTCu07veggf3sg2Yu07Ke8/pccqt5CK9Xu7rj9sT/zOT0/Tdfb5Zu5p+m/DcVkFEj37YP1YF98LsOaM/FsDffkeiyd8u+vXsDH3vBV6c6cEEm88PCBfOkmemp7t+3t9z/4MOyfPkye9w0n/aeBqu3+rtgdWnTxg2SP38B/fUFSXtLtR5pXdQXTyWsR5s2bZQGDRtJ/HrzeJOH7D7u27dPKlSsaAP9Fk8/mSQNPhdsvAc/TJsySaaZcrTxShsSAtcPLTp3njzSf+AQyXZNNlm1aqUM7N/HnGt/SMfOXa3JmdNnZNOmDdKm1bN2RMTgocPtOa6B7TFzjenR/SV56ulnzXWogIwd/a7jw3mwc3rxogXyeu9+9vzev3+/dGjXxnzWRnl75Gh7/u/YsUN69ekvs2fOsNehlq3bykbTc67XnWB1XK9nffsPls9WfCoN7m0kr/fscdH1S7ejZ49uVlU/O1eu3PbcyZgxg/XRX+g+ahDUqPEDdt8HDegvr77eW6pVryk7zUgADVw13XzzLdKn/yDRzz1oGlRaPfeM/PLLz/Z3yem/QH0Idj8JVj/0WAU7Ly/nfpJY3cyXr5ncemshmfXBXDsKY/iwITLxvfGSM2dO6dz1ZWn57FOW+ZEmj8mhQ4fkg9kz7bHT0Rr16jWUPea+1rVzBzsCI1WqyKDHUHswu738ikRXqGhH+gwbOtgEnGsuuh60bf2cvNCxi1SpWM7ev+IfX6frlObPc0NeWbJ0haxf95V0Mdui1x5tvNOkn/X+tCnxi+J7BBBAIKwEmEMaVocz9J3Rm+7TLZ6T+xo3kEYN69oHKL156xC1Fk81k1J3FZMa1SrLU888KzpkNSIildx2++0yaeIEKVG0sL3RV6xUWerWriGvmAfNx5o+EdKHa0+pDhUtYoZvas/jM6b8B+5vKA3q1bJBhj6o5M2bT9p36CRNHn5AypctaYZ47jAPdukSLV+3UbdPe+B06G7NalWkdMni0rdPL3m+fQfbEzdk8ACZMG6MVKlUTuZ+NEcyZcokDe9tLB8vWSQd27d13J5EPzgZ/zIp6kDRosVFg2KnYNSpDgRj1UaTGjVqybXXXmcCgPtl2rneO83rVG+d6pI2TNyQN+8FH6NDuocOe0tWfv6ZHUkQrB7pCgnrjZ4bOqR4zOiRUq703XZbostXvKDscPhBG3TefGOo7cXZZoIpPXc0TZk0UcqULCFlSpWQw4cPS5269e1yDeAOHTxkz+EpJtDt8cpr0v3lrlKhXCnT8POg7eW2GR3+i39OV6laTTQg0OtBr1dfMUHwXw1re8xQ/WLF77RlVahYSWrWrm1Lq1Chkh1m61TH9ZhFl68gkZGp7LkfbPjt3SVLy6Ahw2TchEl2uLleMzRlzJRZsmTNar/XfaxcpZoMMMH55EnvyX8fedTWzyoVy0rjRvXlpOkd06QBx9tvDZfoMndL2zbPycnY8HvhVLD64XReenU/sbjn/stkjssz5t5Vp9Y90vzpFraRSo+/BsqBpMctk+mN1KTHThtKKlUoI+PGvGt7NHW50zEsF13Bvsm4SsVoealLJ+lgjqmmhNeDwoULm5Eo6y8KRjWvk0e/Pq/LdjOdRe9NL5h7Ue069eLqe83qVeTnn3/S1UkIIIBA2ArQQxq2hzbxHStdpozN0Lz5M/ZrpJkTVaFiZRtw5jXDn1q1ed4OTdOeEu0R0V7UXbt22RZhXUF7HNeYYbeHDx+SzZs22QdyW1AI/x05ckTSmQBSh8XpELjftm+3ay1fttRug75RVIfhbtnyvV2un+GUKlWqKrPmzLM9Vtrr8vXmTeYhM9IEyCaoNsPscuTIYR8CnNafOXO6LFm8yP66cpWqQbdHe+LCMSVFHdC5mtojEUgzZ38k2muqSYMLpzqgwWfCFHvypH3onzRlukyfPlViTpy4IEuwent3qVIh16UePV+3QczYMaNsuYcOHnSsR/HrjQ4D1yHQ69ettet9OOcDKWk+V0cQhEvSYFDPp/2mR1SPmQ4x1JEFI98ZYXexc9duUrjwbaLHYNsvv8Tt9gLTq33SHLfNpjdzS/ES8sPWrfZ3v//vf3Jj/psumBMcWCnYOd30iSfNKI7pcvz4cdsz/sprvewQzTWrV9leJL0+jR87xvSG1rYP8jp8U0dgaNCpKeF1bvGihbaHMrD9NlOC/37+6UeZOnmSGVURIdEmGBn57lh5rMnDCXKZXtJB/UXzatIecu2Z055jTbGxp+zXn378QR57vKkdlaHzlnXYeTilxOpHsPPSy/tJwHHlys/sMdefj5iGkZzXXx/4lePXefPm2sBRG0mbNmtu8zkdw+o1atqGjw4dO9t8N5q5xBqMaop/PbjdNLbGxFx4bbKZzv0XzCMwPzmQT3vPS9x5lzR78ilb3/WdDyQEEEAgnAUISMP56Cayb1myZJUtZk7f/HMPzfp1x++/mwfp0rblV1tpt5qAcPLUGUFLOXP6dNzyM2aOaOCFQXELHb7RIUu3m3lqw98YYntJD5vgNJCOHD1ihwrrMK+j5vtQkg4Tfu3VHrLbBMunz21Tt+497aovdu2oTdIyavT4uKL0851ShgwZJdj2OOVP7suTog78ZB7Uy5aLlquuusoGE/c3bmB7LtZ8tdF+dWuuPfTaMzdh/FjJk/t8z4dTvT1x/ERIdUnnBeq8OH05ltYR7clIrB4lduz1pVnakBNOKbUZzRBrevUC1wvdt+PmpWh63k+dPsuMkuhmhhUOssOj9eUyCdPZMxf+TdTTZ047XjOCndPqeeTI+b+bqS9JS3t1WtMotko0WNWh1qNMcHxj/vxSt14DM19vg90EpzqecPuC/azTEwJz3bWBbP2m72wQHCxvYJnWnX379gV+jPvau9erpue4nulNvUde7NbdzJ++VzRIDZfkVD+czsuE+32595OE5QR+PmXuBYF7UmLX/PP5T5kpHn/dG5yOodYl7SX/1fRkatJzIdiLAXX0wKOPPm7zJPwvVA+d6//E403stW7suElmKsvbMvrdkQmL42cEEEAgbARShs2esCOuBJaYYarawqs9itqzo8Mq9UacL99/7Pww7dHQG3qgBdhV4Q6Ztbfs5R49bSCsQ5C0p6CUCYB1WJV+Vtmy0Wb47GL5/PMVUq5ceTvUyr7t8paCDiWKDTY0kA4Eo5pR92H2rBk2wL7WvNQnkHS4sM6NdUpO2+OUP7kvT4o6oA9WP/6wVR5v+qTl0pcYaY9ZILk11wdAHcJ2NF5DhpblVG9DrUu//bZd7m/UwLyx+ax07vKS3TynehTY9mBfdd7pPdWqJ9kLo4Jtgx/L1FuHtWoQqtcL/ae9lRkyZBANNufP+8j2+mU3c8T/btLGqITntA6rL39uGLTOQz9p3ny7e/cuO6ddrys3mPl3Olx/0cL50ub59jZQ1e1wquNut7GQ6f09axoadIhnYknn1pY1Pciaspq3i6c2L0TSpG/mnfPBbGndsoUsML1yhQoVssvD5T+n+uF0XibVfmsveUZTR/X+ovc3bXi6VHI6hhqM6jD/QP3XBotgb8XV3ladiqDTCgJJXy6nw3CdPA4fPmKHA+s2atLt3PL993YOc7u2rWxDcaAsviKAAALhKEAPaTge1RD2SYc0TX9/qrw5YpSkTpPa3gD1pQ76YKnDXXVopfb06NtI/27q3WeAHD12VCLMQ8EnnywTvcFq0p7Q2eblEtNnzbEPe/qCkcCflhhh5lu9ZbZNh3ueOn3KDg0OdTsmjB9j535pb1f8XpVVKz+3LzbSIZ/aw5YwOW2PPliGY0qKOqANBTqvq6d50cu9jRrb+cDXZc9u5mmusMMZjx93rgNuzJ3qrc5dDaUuaY+o/mvXtqVMnPy+NDE9HE71KNh26QOkviUze/Yc8q35Ew9TJk8Mli1ZL3tz2FB5tmUb+6d2cuXObV8YpH/SZNmyj2XB4mX2RUZquHjhAs/3U4+vDqmeNmO2fVnZgP7n35S93jR67N//1xBZfYmRzjHWXlZNTnVc/4zLpVJ1M1/5DjMHWl+Odvz4MdEXVek1MbH00YcfyMDBb0gtE3z8YXpKU5hrniadX5nXDGfWkRwadCyYPy+xYpLl74LVj+FvDPb8fuIGRxu/lphGzrnzF9tjpz/ry7ASS07HUF+s1ck0VumIG22oTW8C3VqmcSxh0iBVr3m9+w6wvff60j99C/yAfn0c76/6J7C0MX2P1RoAAAY4SURBVFavIZs3b7QNWuMnTjGNeT/Y4Nbtm+ETbhM/I4AAAle6QAozF+jCsVRX+haHyfZNNm9jLFmkSEh7s3rjRnmwXfuQ8l5OJp0PdtDMl4v/sKUP1toDoQ+YfiftIY2ISHnBSyB0Hqj2pmmP05jxE6WZGb4Uv2ftUtukLdQ6TPTPP/+8KKsO/0s4Zyd+pmDbE//3XnwfGRklHTv0krx584dU3Nq1K02A3iekvJeTKSnqgB5THfamPQvx65pur1fmwert36lLidWjgLP24r83eZp5OK1qG3e0t8jrlDp1lPy2bmbIxeYu1tCcT+d7okNeMYSM+rKhU+bc1L/PGUj6MjLtvdahtH4m/ezL9Q1Wx/3aVvXQBq74KfDG3aOX6GWNv06o30fXMC+Ge7RFSNljThyX3u2ayoE/9oaU322mYPUj2Hnptty/k1+v+drzHqxH06ncYMdQ8+p82bRp0yV6DwmUqfegdOnS22teYJl+dfLQOqLnrQao+jk6AiFhPYpfDt8jgAAC4SJAQPoPHclIc7MJzHG51Cbow3usaXX9N6UP5y60wejOnTvNS4cW2pfZhNP+a6CtPSUpTO9LKEnrwGnTU0xyL+B3XQoEpNWqVHC/cSGuofPb9GVfoabYk7FyJgkak0LdHvL5K5AyZYQd8hnqp0RFpTbDj8/PyQ11PfIhgAACCCDghwABqR+qlOmJgPZO+d3j4smGUsgVL+B3XdLGpYS9vlc8ChuIAAIIIIAAAghcAQIEpFfAQWATEEAAAQQQQAABBBBAAIF/o0Bo4wX/jTLsMwIIIIAAAggggAACCCCAgK8CBKS+8lI4AggggAACCCCAAAIIIICAkwABqZMMyxFAAAEEEEAAAQQQQAABBHwVICD1lZfCEUAAAQQQQAABBBBAAAEEnAQISJ1kWI4AAggggAACCCCAAAIIIOCrAAGpr7wUjgACCCCAAAIIIIAAAggg4CRAQOokw3IEEEAAAQQQQAABBBBAAAFfBQhIfeWlcAQQQAABBBBAAAEEEEAAAScBAlInGZYjgAACCCCAAAIIIIAAAgj4KkBA6isvhSOAAAIIIIAAAggggAACCDgJEJA6ybAcAQQQQAABBBBAAAEEEEDAVwECUl95KRwBBBBAAAEEEEAAAQQQQMBJgIDUSYblCCCAAAIIIIAAAggggAACvgoQkPrKS+EIIIAAAggggAACCCCAAAJOAgSkTjIsRwABBBBAAAEEEEAAAQQQ8FWAgNRXXgpHAAEEEEAAAQQQQAABBBBwEiAgdZJhOQIIIIAAAggggAACCCCAgK8CBKS+8lI4AggggAACCCCAAAIIIICAkwABqZMMyxFAAAEEEEAAAQQQQAABBHwVICD1lZfCEUAAAQQQQAABBBBAAAEEnAQISJ1kWI4AAggggAACCCCAAAIIIOCrAAGpr7wUjgACCCCAAAIIIIAAAggg4CRAQOokw3IEEEAAAQQQQAABBBBAAAFfBQhIfeWlcAQQQAABBBBAAAEEEEAAAScBAlInGZYjgAACCCCAAAIIIIAAAgj4KkBA6isvhSOAAAIIIIAAAggggAACCDgJEJA6ybAcAQQQQAABBBBAAAEEEEDAVwECUl95KRwBBBBAAAEEEEAAAQQQQMBJgIDUSYblCCCAAAIIIIAAAggggAACvgoQkPrKS+EIIIAAAggggAACCCCAAAJOAgSkTjIsRwABBBBAAAEEEEAAAQQQ8FWAgNRXXgpHAAEEEEAAAQQQQAABBBBwEiAgdZJhOQIIIIAAAggggAACCCCAgK8CBKS+8lI4AggggAACCCCAAAIIIICAkwABqZMMyxFAAAEEEEAAAQQQQAABBHwVICD1lZfCEUAAAQQQQAABBBBAAAEEnAQISJ1kWI4AAggggAACCCCAAAIIIOCrAAGpr7wUjgACCCCAAAIIIIAAAggg4CRAQOokw3IEEEAAAQQQQAABBBBAAAFfBQhIfeWlcAQQQAABBBBAAAEEEEAAAScBAlInGZYjgAACCCCAAAIIIIAAAgj4KkBA6isvhSOAAAIIIIAAAggggAACCDgJEJA6ybAcAQQQQAABBBBAAAEEEEDAVwECUl95KRwBBBBAAAEEEEAAAQQQQMBJ4P/DUEJ6udt1XQAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6QAAAFoCAYAAABACjY7AAAAAXNSR0IArs4c6QAAAERlWElmTU0AKgAAAAgAAYdpAAQAAAABAAAAGgAAAAAAA6ABAAMAAAABAAEAAKACAAQAAAABAAADpKADAAQAAAABAAABaAAAAAAsW5ObAABAAElEQVR4AeydB4BUhbX+z70zC4j03qQJ0kGKWMGKYu89mpj6kryUf/qLMS8vz5ievFQTkxiNxl4RLFgRpEjvSO+9d9iZe//fd4dxl2XLzO70+U6y7u7MnVt+d4a93z3nfMfxEaYQAREQAREQAREQAREQAREQAREQgQwTcDO8PW1OBERABERABERABERABERABERABAICEqR6I4iACIiACIiACIiACIiACIiACGSFgARpVrBroyIgAiIgAiIgAiIgAiIgAiIgAhKkeg+IgAiIgAiIgAiIgAiIgAiIgAhkhYAEaVawa6MiIAIiIAIiIAIiIAIiIAIiIAISpHoPiIAIiIAIiIAIiIAIiIAIiIAIZIWABGlWsGujIiACIiACIiACIiACIiACIiACEqR6D4iACIiACIiACIiACIiACIiACGSFgARpVrBroyIgAiIgAiIgAiIgAiIgAiIgAhKkeg+IgAiIgAiIgAiIgAiIgAiIgAhkhYAEaVawa6MiIAIiIAIiIAIiIAIiIAIiIAISpHoPiIAIiIAIiIAIiIAIiIAIiIAIZIWABGlWsGujIiACIiACIiACIiACIiACIiACEqR6D4iACIiACIiACIiACIiACIiACGSFgARpVrBroyIgAiIgAiIgAiIgAiIgAiIgAhKkeg+IgAiIgAiIgAiIgAiIgAiIgAhkhYAEaVawa6MiIAIiIAIiIAIiIAIiIAIiIAISpHoPiIAIiIAIiIAIiIAIiIAIiIAIZIWABGlWsGujIiACIiACIiACIiACIiACIiACYSEQAREQAREQgWIk4Plm0YiZj+8M1/UtFHKsFI9Fo2aHD/t2+KjZUXxF8JjnxX4uLcXveN7HCvCQOcH/+HqzevXwu2MWxl/X+vi5pCT2WL0SB4/5VoLH69VzgvVzfYz48vyuEAEREAEREIFiIyBBWmxnXMcrAiIgAkVEIBKFaIw6EJox4XfgoG/7D5jt3Gm2Z59vBw6aHTx07Dt+PnSoNnCOKdokXtrwJLOGDWNfJzd0jL83a+pY08ZmTZqY8bEoBKuPLxf7HsaXQgREQAREQAQKkYDjIwrxwHRMIiACIiACxUMgCuEZPSY8SyO+7dljtm2H2eYt+Hmvb7vx+8Faic3sMYyJVLOWLRxrga82rcyaQqwy28oMLkU2vxQiIAIiIAIikM8EJEjz+exp30VABESgCAnwNirLZsMlvh066EB4erZxMwWob9u355/wTPYUUqi2gjht3syxTu0da9vGrEH9mEhlibBKf5MlquVFQAREQASySUCCNJv0tW0REAEREIEaCTAbGGQE0WSyfbtvazf4QeZz0xazI0dqfHlRLNCggVmb1mYd27vWuVMsq8r+WGVRi+L06yBFQAREIK8JSJDm9enTzouACIhA4RGIZUD9wPxnE0puV63xbcNGiNCthXes6TiiSy50rRRGTEuWedapo2OndkG5b2uYNZXCVAnlvsqgpoO61ikCIiACIlBbAjI1qi05vU4EREAERCBlBCLo+3RdByZDFKBmK9eiDHdjLDOaso0UyYo6tjN7d5JnWyDgt2z1beZs3xw4AHfqaNa1k2undjM7qUHM0pduwAoREAEREAERyCYB/SnKJn1tWwREQASKmADNh8IYs7J1m2/LVlEs+bYFP0/+UF57tX1b0LmXYnPtuuPXQLfedXhs3TrPJk6Bo28zs87InvbqiR5UZE85xoYjaRQiIAIiIAIikGkC+vOTaeLangiIgAgUMQGWjYbDDkyIfFu4xLd1672P3W9pUDRoADJ3EqS1fod0aOdgnE3NL9+922z3bt/mLfSDkTOdT3Gsby8HPags7Y3NT615LVpCBERABERABOpOQIK07gy1BhEQAREQgWoI0JCIsWOnbwsgQpet9OxoJWZEq9f5dtFI1JYqak2ArrvbYPyUTHAczpKlfvBFc6Qe3WPitFULzEH1HdxASGZtWlYEREAEREAEkiOgPzPJ8dLSIiACIiACCRCgMVEELq9Hjvo2d4FvS1f4tn9/9S88fNhs5y7f+vU2ZE+rX1bPVk6gY3skmGejPreWwXOwYBFuHOCrCWae9uzu2oB+DsbKYMwOZp7KEKmWYPUyERABERCBKglIkFaJRk+IgAiIgAgkS4AilKNGlq2kEPUwniW5NSxf5cN0x4Ugrb2oSm6LhbN0ST32hjq2bEVqjmnvXrOZczx8mXWA0O3fx7VePVDSi3OsftPUMNZaREAEREAEcMNTEERABERABESgLgTiY1oOowx3znzfFqP88yjGjtQmVq/1bVA/le3Whl2HtmZ7ICLTERs3mW3c5Nnb71vQazoYvb4noby3Xr2YW286tql1ioAIiIAIFAcBCdLiOM86ShEQARFIOQHP883zYgZFM5BJ24AxLXWN7TvQt4j/dcDoko2b67q24no9DYl2oOQ5nRFFdnQ+jJD41bGD2eABrnXuhFJejOzB/xUiIAIiIAIikDQBCdKkkekFIiACIlDcBKJRH2W5ji1ZbjZ7bhR9n6nlsXqNWe/TXAhSle0mQ/YUjHFZ+FF6BWn5/eENiA0bPWsJ86OByGr36+0YDaxkglSekn4WAREQARGoiYAEaU2E9LwIiIAIiEBAgP2hHjTiHJgUzVvo2SG4s6YjVq7x7LyzVLabDFsHuFq3cuyjccmL+K5dHOuEHtG9MJ1ajt7fgweT2TLdk81Wr/WsW5eQLfrIs9P7I1uKdCl7iRUiIAIiIAIiUBMBCdKaCOl5ERABEShyAhFkvSKYHzob/aEzZqc/A7dmvdmVTRyrD2fXI+hLVdRMoD36R/dBUJYm2bvbr49jQwe5tgo3AYYPdm3Tlmjgjtypg2MrVyd+rgcPdDE2xrOp032bNpN9wI4NH0JRqrExNZ89LSECIiACxU1At6CL+/zr6EVABESgSgJ0U6U50dQZnv3tX15GxCh3xkeSb/1GH2Wgakqs8uRUeKJDO8d27U5cQMZfTjH6yutR+3AWMqOHfNu2jeN6fLvy0sQvD9pBDLdo7tjkD2Pb5/mjudVDj3p4zDOaXTG7rhABERABERCByggoQ1oZFT0mAiIgAkVMgBlRD1/TkQ2dg9Et/DnTsQLZud49HZsOoaSomQD7R1evS5KV41vjRma79/rWp6drZM5o0MBJqmyXxkar4I5cWXAG7dwFURsyiBlTN5hjqh7TykjpMREQAREoXgKJ3wItXkY6chEQAREoCgLsD+UIl9nzPfvro1GbNTc7YpSw10BctUTWTZEYgXZtnKD/M7Gljy3lO7Zlqx/MF+15KueXxkQlbwQkKm6bNTXr2tmxCR9U37s6a65v/3g8CnEKD2VsBgbNChEQAREQAREICChDqjeCCIiACBQ5AQoEuqMyQ/bBNM8OHMg+kH37zA7AXKe8UMr+XuXmHrRuzV5b38gs2Xhrgmc3XB2y+vXMenR3rNHJjnWDwHzm5cTS4qcjO7p2g48e45q3XIplWMI7f7HZ2We4wfZCui1eMzgtIQIiIAIFTsDxEQV+jDo8ERABERCBKggchUjYsTMmRDfl2NzPs4e71qKZ2bjx1Wffqji0onl4EFxtT+3q2AtjE+fUsCH7PtGruyE2pqXPaY61ac1SXd8WLIa4hUFSTUHTqc/dHbJ/PxtF/2pNS5/4fKuWZiPPceEObFavRNnwEwnpEREQAREoDgLKkBbHedZRioAIiMBxBGhcc+SIYxOnRlGqedxTOfMLR4n07pHbKbQ2yE6y1Hn7jhOxOa5vp53qgi9Kn730Ca5O6B/dmOTNhF49nCBL+eTzMTE5fxHvTSd3f/r0/nTl9WslRkmLzF54xUOm1GzE2S5clR0r0VXJiW8kPSICIiACBU4gt//SFzh8HZ4IiIAIZJoAi2JYF8MRLg//O3fFKLkwY1tSz7GWyKTlavQ+zYXorFxshjCL89ILXQuHK38+VcfUoa2DcuvEs6PcLvd54RLfLhqJywCYG8XjwhGuuQnODx3Yj8ZXyW03vp3y35evNPvnv1HKC1HM96bqtsrT0c8iIAIiUPgEJEgL/xzrCEVABEQgIMAePmbSnnguGsyLzAcsNDfq20t/qqo6V81Rdks5uW17VUuc+HhTGBHR6XbC5FifaP/eMb7M9rKMNhFX5f59HduPXuO1605cf20f+WCqZ4+j/HfjZvSkIoOvEAEREAERKA4CKo4pjvOsoxQBEShiAiwpjUZ9ew9OqEuW5heIlTBaOmNw+gVpd/RgnjMcpj6NWP7qW8MGZs+jnJQivkkTs4uQOWwLJ9v9+32bNM23NVWMOaHj7LlnORinEnOwTTdtZkf3YmxLMsHs6FI66sJl9533PbsRpkar1kaDrGnweAIrGzLQxVzaumdHK25qN3pRWcbbGz2t558D4YzeUiSaFSIgAiIgAgVMIP1/5QsYng5NBERABHKdwNGjvq2GePrnE/knRsl2zXo/MN9JJ2ea+1x6kQv3V9/+9SRGk2DsTetWTjAzk+WsV1/m2u49yCwjezcHY0suv8Q1ZhkrBh8bjec+Wubb40/HxuZUXCbVv3fq4NimrcmtdcdOsyXYRwbNiOYu9OyCc+l66yY0OqbHsRLlRR8lJ4ST2cslS2Pv2ZWrfDt6NJlXalkREAEREIF8IyBBmm9nTPsrAiIgAgkQ4BgXxow5fuBSe+RI7Pd8++9R7PdmzMqkk2y6gtm4TciKzkVf7cFDZhs2lW2J8z2bN3PsA4wrofPsQojWrdt846zOikGnWs71nDHbD8pZy6+n4rKp+r19e8dWrUkuU8msc/kRMTPneMZ5onuQaU1k5M/QgY4thmBMd1CIvvaWZ+9O8gJRyky/QgREQAREoPAISJAW3jnVEYmACBQ5AY5yWYvM4mtvRY1zIvM9Vq62YKxJuo6D5bV0i60s+NzOXb6VlsvSUXTy8YrRtEms3Lfi4+n6vVEjs/olsdEtiW6j0clmA/s56Mt1rBlG6jDoADz2Dc+mTK9Z8XXqaHYyZpVOn1XzsrG11/2/S5cj44zsNDP9LKFWiIAIiIAIFBYB9ZAW1vnU0YiACBQxAbqTMos0CeYwzOQxunb27borXHvp1cwJiFSfgtXrPBs6KEHr11psnAKT/aGVjT05dNi3pk3gPIsRLvHRLcyY7tp9ooDlPFeK0srWU4vdqvElHdo5tmffiftR1QvDEK9Xj3bxGrMQ7lOcjzLdXXt8o+BbttK3zVuqemXZ44Nxg2MFymgzHczcch4tzZTOx+xSB5j5pRABERABEch/Avl/6zz/z4GOQAREQATqTKC01LctKCV9AnMl42KUK2W5Y4sWTspKXjlbswTCJh6ndncwPzL+W3q+70TPI4+vS+f0rJ/Z5C6nONa/j2N0mj33zLI/jVvQn1kaMetDp1/0k7ZoYdYRZbKr4f5bMdZt8O0UzATlMly2B9ikM7gfybjrtmtjxuz5qxB2r7zu2d8fi9rseb51wHpGYg5oTUEHXorgCTDHylYswGiYfyNbyjLueFl6tvZF2xUBERABEUgNAWVIU8NRaxEBERCBrBGgYJq70GwK+hwrRhTPvTsxahefH4JpTzShkR4V11H+966nuDYKszUfeiTWpHoBslVjXo/atjT3qK5aa9arhwt32xOPsfz+1ebnnbvMPpzpBaWskSgcaJExhKIMBA9Fz/h3ojA9CtnwIa41PAnLolx1w8YTt7R1u2/bd/h2502hoOdx1ZoTReuJr6r9Ix07VH7Oq1ojy13ZBxsP/k4DJn7FZpFWL6BZ/k2TqWwHDaaee9kLbhwMwCzUkjTPec328Wr7IiACIlDoBCRIC/0M6/hEQAQKlgDLc5k5fPM9D8Y2VR8mn6ORzbWXu/bi2LoJOgqSfz11zDGp6k2m/JnVEKIjUWKarpgDQyN+MZglpXCLZ+DWrjdkEyPWBH2jB2B6RJEfj/fLZQv9Y72YJ6NPk2KPpjzj340vmdrv9TGWhn2sK1YluF5kbC8cEbL69Rxr1xZGURXLczECprpgvyqNnB55IvPnvqr9+mCaZ+txY2D0xaEga68S3qpI6XEREAERyG0CEqS5fX60dyIgAiJQKQEKnu3oWXz1Tc8OHqx0keMeZOnup24L2WA4pLJMs6ZgeeZIZD9btXTs8GFk0pZ7Nm2Gby0xIuXMYa6NRcln+Wjc2IJxKBS83DdGS6xjxFnsX40G/X6cJ9oXpa8s+eUcT+4Tl20NATgcz83GuBX2KEaged54+/j1r1ln1ghmOo2wnf3ogUxlsAz55mtDcM9F9yfQcCbp1BnHb58zO/cmuN1EnGrruv/B/NEE9ye+rUlTPOt5qosxNsjggvuyFV4wj3T7jvgSVX8f2M+F+Iu5B1e9VOaf4fviyReidhnG9vC9Gk5fq3HmD05bFAEREIEiIZC+281FAlCHKQIiIAKZJkARt3CJH5QtJiJGuX8+9NU7k6JGUVhSr+Y95gX+GvRJMiP26pso9T2mz8K4jdkCpj4Vg2NEXDx8arey5/piDArLYSnmKDQ5M/MVlPc+hT7XBsjwnXZsnmU9CNSunR07c6gb9GYur8I0Zx2yswP7pP7PFjOb02f5mDXqG42JXoaAXpzGGZsV2dXm947tLdjXhF+Lc8Bs4rsTPfvH4xF7D5lduuXeeE3IunYpO2eVrS+Ecz4IzrzTUNaci7F3r9mzL3m26CPc4CiXvc7FfdU+iYAIiIAInEhAGdITmegRERABEchpAhQTS2oxB3IN+jCXrvDtmstce/6V6sVFGH15Dso8IxH2RTpBb2RNUBZCxHEWJ/eNWcdePUL24rhYieeAvm4gaJj9dJHFWon+SmYiKawZ+w9YbFkIp6qCrxkA46F0RLr7PVO9zxT38xbWnOmOb7cp5ox2PyY8N26OZaiZpabY9D2up2qug5AdpVDfhNflckyY5Nu2bZ5dNDLmwpvL+6p9EwEREAERKCOQ+lvNZevWTyIgAiIgAikiwAzlQfQvPvtytFIxWg9ZzyGDICogIquL91Amyx7HMwZXLUD4+veQTe3X27UvfCps12BsTFs4tNYUNANqh/EpLN/t0sm1vfuZccQuQZw2Rg9iv96OXTTCDb56woE2XtrL9QYZ2GrEKJehGy4dg4s9QhD0LE/9CDcXEokOyKbedn0ocAfmTYDrrwoF4184Bob9sPFxNlWta1B/lHmjnDofYhFuijw3JmqHUGYez+rnw35rH0VABESgmAkoQ1rMZ1/HLgIikBcEIhANzFCNQ79oZf2JzZqZXXUp5kuidHHeQgdZzeoPi72bl8MIZgFcd3nhXlmwN+/RpyJBeS6F5BWjQvbPJ7jiqgXhETjtroB5Es1vWkI4xrOfLIk9jOcmooeRfZq1jf0wGtqN+Z99ezkoz0xMjNV2W7n8uvbtLOhnLW+uVN3+nnOGaxMml2XVmzQxG3WBa+dhvA1vUFQXvU+LGWctW1HdUrn1HA2bnsBomCtGuda6FfpKdaWTWydIeyMCIiACFQgoQ1oBiH4VAREQgVwicPSob6tQWvkMeuQqE6PdUIZ5y3UhY9/lK29EaxSjPLZ1680WL/XsytGVO8Awo9kPpbF0LWUP6BJkPuk4m4iLKfv4mFnlPM5l5TJ4dPllj2h8hin7WHse6yFNhjfLdtM93zOZ/cnGspwFugvCPNHgzYEtmNsZD/ZcToNpU+dOVd9ciC87ZKD78Y2F+GP58J3VBM+N8YIbJCwTV4iACIiACOQuAQnS3D032jMREIEiJ8CRLvMXmb3+ViVZLJTmDh/qYD6mG4wXIapQqGaBEUc6cYpvJ9WHu+2wyl/DXs3P3x22O26Kldgyu8lMZ01BJ1aWSrInk2NP4sERHXR2/fSdIbsbbr+f/UQI40dqXl/89fHvNFqiA3AxB8X+OnBONDgflS65LPWNR8OGDkbbVL8Omh1xTEwirszx9eba9/HveDZrrpfQjZpc23ftjwiIgAgUCwHHRxTLweo4RUAERCBfCEQh6t5HmeWCRSf+E83s4qUouWzR3LFx46O2Bw637M1shN7QZOaMduwQK/X993OesRy2YnA7HKNxCNmmVAUNjRqehH7YgxSuyQtS7sdn7w4Fx53rJjupYlZxPV/+bMgefTIaGEFVfO6E33HjomkTx25A3yhvcNBptxRGVTSZ4nuH2fKq4vqrHNu63bEPplZyQ6SqF+Xo44PRX30WMvQq383RE6TdEgERKGoCypAW9enXwYuACOQqgfHvRisVo83glnrLda65+Nf7mZeiQUktewlZgknn1aboD0w0NkCcLFhsdsUllf8pKEWGM5VilPvloXyS4re2YpTrWI0S5t6nVb7PfL6Qo13bmLkVXYlrCjro3nNHOMhY/+vpqM1Z4Acl08x6jnmtejHK7bRq6RaEGCWn2XN9exOfKd2Cr+ldo+dFQAREIPMEivMveuY5a4siIAIiUCMBXizTkOglzMFcXoWJTH2U2dYrcWwSslY0EYoH+wT5WpoHJRMspWVf5znD8+fPwWqUA3eEsU8xRnuUOXNeaiLRGBlz9v5yRixvWjDb/ua7nr3zvmcbN1W/htMxNzbfRuFUf0SGPuvYZ4vVBxKmNdHS8yIgAiKQOQL5cwWSOSbakgiIgAhknEAgRiEensFYl+rKKLdsNftwlmfnneUaxSmDYz0uvTA25zMQqSjTjD8XW6L6/74z0bOBGO3B7Gs+xBqMf2nWjP2N+bC3qd1H9o9u2JSYIOVSR44ktmz5veT7gGZZ7BsutFi/wezpF6O4ceNb8mQKjYaORwREQARyg4AEaW6cB+2FCIhAEROgGD2Anko6p46A0Kwp6GTLi+lPwhzoZpTvXn1ZyKagZHcWyhIpRK+Be+6Is2teT3w77MWci3LOyy5O/DXx12bjO+eXboQoG9ivdj2o2djnVG2zHebBcrROTUEDo1vhvsyxJ8Mwc5ajXhINzh1dv8E/LgOf6GvzYbkdO8yef8WzgwcgSmtGmQ+HpH0UAREQgbwmIFOjvD592nkREIF8JxCIUfQDPj82CtdTs5uucYO+zbFv1JCdQha0betYlnALZnsyM9qiOUyKIE5p3LIdc0tnz/OqzbZWZHf7ja6tRV/pB3mQGWNJaY9usdEeFY+jUH9vCXfh664I2T8eQyo9geD7gJnO0zBep8spjm3f4dtSjOJZssy3w1XMn+UNjc/eFQqyiNsh3Ao5KNJvuIpmYLERR4V8rDo2ERABEchlAvlxOzyXCWrfREAERKCWBChG92P0xtMwJ+JsSB8a9OVXPWvc2Gx0TdlKn7MlzdbCJZVi9NRujt18bSiYL/rwvyM2HWW9l14Qsl49E88isnR3UF/HKHxyPVav96wF+maLKTqgf3Tv3sRTeuwp5izYceM9+ztE7PzFfiBM6cZcVQxC1nnLNh/itaolCudxfuaeedGzvbgRpExp4ZxXHYkIiED+EZAgzb9zpj0WAREoAAK8AN4LMfrMSygdPFh2QJzdSVHappXZxecnJrg4j/Ti8117A4Y102dhxRCrLMN9/Z0oxnYkLmAocGfM8WwURsrkeuzeBQMnZPl6ds/1PU3d/tFFeRPOUSIxeKBjtyHjfd2VrvFnGvks/sgP3lvVic1ByDzPxHugWOIgRho9xxtC+1S+WyznXMcpAiKQewRy/6oj95hpj0RABESgTgSCzCjKdF8YAzGKC+KKQYH60mseslmunX9Ozf9M74A44wgYus+WD66ncyfH+vVGae8xA6Tyz1f284czcWEOPTIyge1W9vpMPkYX2J6n1swnk/uUzm21h7PwytU1i8XTBzh2en836Atev9FHabNjd94UsoYNq9+7AciOH8D7ctWa6pcrtGf5GeT83gP4vChTWmhnV8cjAiKQDwSK5y95PpwN7aMIiEDBE+AFLy+AX0DPaHWzJFlO+DJmRZ7W0+zsGkayrFjp2+7dx6M7Y4hjd0CEdEcPIct2b4HBTU2CJL4Glu5SnLRpHX8kN7+vWodMMvpoiyHY7xiGUVFN41rIoid6RpkdZ0Z0xmzfnn3ZszXrfDv3zOr/5A8e6Nq8RTUL3mR4l8AJ2XFjN0r4fmqVo+Xg7N9+/pUoqhWUKU3m/GpZERABEUgFger/OqViC1qHCIiACIjAxwSOwiH2ZcwZpeCsKegG+goypafD9XTY6YkLr359HBt6uhtcYDPz8wIcRTkqZfiQxP7J37bdbNpMzy5BD2oux3r0zzZoYHnR81pXjh3aObanmv5Rui2PwuifLp2doKf4UAXTovVwJa5ODPboDmMf7CRnlaYyPnd3yDq1j713e5/mBgZLqVx/KtfFz+QL4zzjZ1QhAiIgAiKQOQKJXZ1kbn+0JREQAREoWAJRmKO+8nrUduxM/BA3o2eQrznrDDfhMScUsBM+8GzzlrLtcIwHXXgTDWbWjpb6dv6I3P4zsQ5Cuy+ETqEHRd3W7VXflHgXWe0DGGNywbkQpXDUPRvvl04dQAVuzAwaGW2FG3NVwT7TJctTmx3lth5+PJrw3NSq9i2Tj7PS4KVxUeNnVSECIiACIpAZAjCFV4iACIiACKSbAEt1x42PBmZDyW5rPUaxjMVrrxwVgkj0bMnS6rNY4bAD995y4gKipG8vF6681b+u4n5R5Nx+Q8iWLrNa7XfF9aXj95WYyTkIPZOZCvbi1kMZKoNjVULHtDCzajzH7L8thbstHW5TKWo6tDebWM04HhoVcazL5A+j1q4ty3Zdu/SiWIabjNhLzJLUyoLCtUljx6Zhlm1tghzOhxDuCiHMNCtdet+e4AXji+gWzZsjuyqUlI++xA3Gz5Tve77mCtemTvcC4dypo9l5KDFu2tSxXbt8e3eSZ8zct0bZ7/DBrs2e79lgGDBFcEhvvF27/a7qWCncx7wRtesxYkchAiIgAiKQfgISpOlnrC2IgAgUOQEP18tvvsc+vtqDWL0mto6LR7p25GjUVq2uel2Ll3o2DBft+w94QWZs2GD0j55k9taEmCDtCAGye48FBjZVr8WMJcOTp/t20YiQ/fvZysVMda/PxHMsRb6gjllcisym6NE8GaY/FGbNmjnWEKXAzCo2bBgzhCrBX0sX4jMQm8gcmwPnWiDhuWWEoF1c6mJ8sdeTv3tY7ChG8hyBWD102LeDMAzahy+ObmFJ7W5834MyUS5TXfDcnYz9SNRsiJnxzVs8CFg/KJelON2526/yfLN3dBVEa21jyCAH3MyefCEaMOqJ8l+KVEbL5mU/xx6J/Xcb3J8HoLQ8LkgpornsNohqitDLLw7h/eohu+pZfyx3Dvqo6T5dr8SsK8qS69Vzg5mqh2tgV36byfzMcvDX344GZes8nwoREAEREIH0EZAgTR9brVkEREAEIGB8+2Cqb0uX1/6CP46R6wiHYvNFmTHdgMxpZTF9tgdX3ZDdej2upCGQOIvytbe8YEzKIJTznneWG2Tb5i2seZ9mYQRIN7j9XoSxMu9AIORa0El4JzJoAzE/M5HjobFOcwjOtjBDao3ROs2axATnARhNHcK69u5DJg6iiGz5ncJp9x7faHpTnQlVZVwo0ho3wjaausG2WmC7FL40YmoK4duokR8IzcNHuA0eB4Qksti7IR63IBvIbCsj6B/dF/s5qf9i/A+z6+s3Vn3eOHOW2deHHq16mZq2GRefzBDvB6fZ82p+Xy1Glv/MoW5wo4QmX31Qds0bKb7nWH+4Qq9FiTlF9EkQ46vX+nYGbrDEM9M8Dy+irJbjjdIZy1agR7m+F3xe4seYzu1p3SIgAiJQrAQkSIv1zOu4RUAE0k6gFJm0+YsMXzVfoCe6M4vgnBou8YIM0kswR6pspiQv6idO9mwShDBFAi/cQ/jXnqY3nGU5aZoHAeCgtNOxt9/3LIry0uriHZRLcmzIR8vNNmyobsnsPLdytVn3ricK0pOR4WyPY6Sg48iUVi1iY00oMDdsRlnpRN9WrvJtHcRPOmIvRCS/mOWrLuiE3LULez8tMP1p0cK1kyHEdkBoM9vJDC5FajqCZa/rkA2Mi9/abGPeAmTRRzr2mU+EUJrrB+NmFizBMVcjGHkjYS2y23SA5o0Emio9/UKMUxPcJGjVwpCZL+sN5jxdZqwZQVa6mnXHlkrNf/ejL5ditBRZ7hJkZxUiIAIiIAKpJyBBmnqmWqMIiIAIBKWdK9eYfQDxl+qgAKhX4ts1l7vBSI99VWTPKEwZjZClu/JS9NtBeD6FsspDyEjNX+jZdVeGAgffmXOqFzu7kLmbNNWzC88N2ePPIDOVY7EG418G9g0FGbRTOjoW+2LJrQNRFxM+497wkLnD3NcK7rO5cCgrMU915ZrjuTKzOgizRNn726uHE5TC3nUrxCNuCLBMeQPmix49Wre9p8DrDUH42NPHbzvZtTJjOQZu0Cwt7ow+Us7OpZjetLn6NfHmypnDnCD7zEw0xTuD788VKCGePO3E92VHbCNTwdFH550d64Ftj5sa3buyHDu9WdlMHZu2IwIiIAK5RECCNJfOhvZFBESgIAiwd5BlpOPfSb0YjQOagbJcmhfdcJULkekFoz7iz5X/zl7Gm64Jof/QR5luFNml2AU1v1MAULQhlVX+JZX+PGe+j949Hz11rr2FfthcCZbAtm/nBqWdn/+ka9t3oi8RJZ5PgslMlBvna7BEmDcBpsJo6C+/LrEvfqvUBvVzg3E+Zw91rCVuMGxElpfl2CxvrTiHNpHjHojy7Q0YB8M+1roE556uh0Bm6e1HcOrleKF4b2116121Fjc5RoTtrGEYMzSr7D24YpVno9FDunhpFIZGWANMuU7t6gbbqG59qXzu7DMc69fbDYzI1q6zIIvL0TptUfKN9mGFCIiACIhACglIkKYQplYlAiIgAiRw6JBvLyNjlO6YCsOhEojSm69D5rKKLBeNd14YG597WnYlzTEfXeC8+sTziWfH6Lp7161w3V2BrCMu0rMVzZqZndrNMZrnNGkEUQVh9gLmrb43CdnfHMyA1oVTDxwnbxywZHQGBDa/GMygjjg7ZDyPHAm0B2XIK1B+vBxf7EetKXijggJ3DEYK1TU4Tuji80O2bx9EJd5iK1d7cHSuea3M4LNvlMJvJURoPJgF/nCWZzddHYKBF4ylkBWlARRFbyaCpe3t2qCE+KUojqlsi8yy347Sde6PQgREQAREIHUEHB+RutVpTSIgAiIgAs++HD1uBmi6iVwE5922uIB+8rmaxQV7Sdmbx15SGiNt2wYHV5RuXgLTorG44K5pVAnNg05H3+G/nqp5W6k8bvZRUpz16eVgnqqDclDfpmBECHtgCzmuvTyEsl3Hfvp/1Tf6jkSZLJ1oeZNhF8Qp+5aXr6y6rJdC9jS47z79YmrOo+v6gSMxey6r6x1N6lwhM0p3YYrxupYnJ7LdEozzuepSJ7jJ88xLlb+v6AbMigNlSRMhqmVEQAREIDECEqSJcdJSIiACIlAjAc5EZBaxpjmhNa6oFgtcdhFnNpo982LlF9JcJXsGr7zMDS7w6brLXr14jICg4UgNzo+sKdi7ysxVquc/VrZdmhEN6OsGZj+btvj24Uw/ENKVLVuIj33/G2FbsNgLejQTPb7Rl4TsPIjTtm1YQuvbQhgMbdx0/KvvudO1KR/6wSzQ458pzt+Ydb8Kn409yC6/8nr1n4E+vTh3NQThWpysdNQiIAIikGoCEqSpJqr1iYAIFCWBCMa7LFpqNgGOtNkKXlDXx/zM51+ufB84QoMZzukoh4z3ksb31UGG67orQkFWrSZX4MYYZ3I3Sndffav6eajxddfmez+M/hgIU5+TkBmdCwOmV99E1jmBMtDabCuXX/PX35TYf/1vJOhJTnY/20GQ8j3Rv3fIDuMGwrwFHsSpb73hsDxssIMy78rfJ8luJ9+X79TB7IpRIVuGjDJvKCUS55/nBk7VEqWJ0NIyIiACIlA9AQnS6vnoWREQARGokQANXDiW4tkqyvxqXEEKF7juytiojJfGVX1hzcxZF7ihxssO498bnoSSWIgV9pzW5JBKwTgMsyEffTI1JZ9EQMHcr49jHEXC3r23IQ7eei91608h5ipXxdLixjCK2r7zxG4YGjB1bO/Y4SPsszzx+Yor7YZxMF/7Qti+/n3UrNYxLkSZ9oXnhTCDFZxx02Iyyp1nzq55H+q42Zx/OcfOjIJR1zSYR01PkseN17jBWKH45yfnD1Y7KAIiIAI5SkCCNEdPjHZLBEQgfwiwfPUJ9G/uhzNqtsOBHuWF8mGY+4ytovSQGbKL0Xc6c64XjILhPsfdBPidzq10ea0pmH1jzynLf+sSDRtaIG4HQIyugUPumDeiKZ3dWpd9S/a15Nq/j2u/+2us55NiJYRzQjMoiv0NKJ2l8P7VHyLGEu/q4lKUYZ81zLUf/6L6/tHq1lHxuYEof77tRtdatXRsLpyT5yBrmgvv24r7mYnfeUNlCHpp3/vAs6UobU42WAJ/580oda9XZhaW7Dq0vAiIgAiIAM3UZWqk94EIiIAI1JoABdk4lJOuWVvrVaT8hTRnuQmidOdu9HlWIRZpglMPy9VlhAvNkDgb8+0JsfEjyR4I56MyGzoI40eWLPPR/xqxdRuTXUtuLc8RKF//j7BxLA9nfP4L7sc0YTrvTNd+mYAILX803/xyOJg3+lSKjIfKr5uzWm+BOzNF8tyFEKaY0RqfA1p+uUL9+QKU3HbtzM+uFxh71fY4u3e1YEQNXYsVIiACIiACtSMQ+hGidi/Vq0RABESguAkww8W+vPmLcouDh/1iSegZ6BNs3cqxVZWUh67d4Nnp6NEsgZHRlm2x/XdxUU33VZZ3Dh7oWgOUdnJOZTDLo5JDpPvpgYMWjB1hti3RoNPvmUNd9O1BNGPO5O//FrE3381NQdS1s2MjMV7lDMzW7NoZ40kwz7X8jM3WyDTS4fjAAQsev/TCkFHsLfzIt0dQzsyMKB2NKbr3YxmW7MaW9wNjqOqY3XlzKBg9Utc5oZVtg+KTLsUcr8L3AV2WS0qcYLZpPFte2evy/jEkM6/CDNeWLQwOw95xY11qc2y7cNOnfn0nyDgzE64QAREQARFInoAypMkz0ytEQAREIChx3Ya+UV7U5mo0Qc/ijZjlSHE6AWWJFYOlozdc5drzr3gQRz4u1ENBb+kH07zgNeed5QYiqrLXll8XhSWKfmE8VLMoHTLICcQoZ0pyBmoivZTlt5WpnynUv/TpsLVpZTZrng/h7Vs3iNPxEM4rwJOifRREHMUbb0wwQ/bjX0aC8SSfvjMUCO2XXsUTCJbtXgm2nJtKMcsZoswu/+hnkSpFKYXrd78Wtq9+r+79o4kwo2j+BARwZ/QWU6jOW1DzuUxkvbm0DDPyV0KMcoTMi5hbm8q4+Tq4Grcu68tO5bq1LhEQAREodAISpIV+hnV8IiACaSFAIfL4s1HbjQxJLgczQRSdC5fAyObDEy/C6a7re07gvDoUYvEtjH1htuwFXLCzHPkznwjZPx6PVjsHksKWrrsUriy9rSxo0EOBS0OfZ16K2DyUieZyfPauUFDS/ODD0Y/7a8vvL2dRsgd3FTKmLvT4f38nHIzMeX+KF/R9ctbrA7+tvPeTAvUPPy+xb/+w1A6h17eyOP/cWNbyvgcqX0dlr0nFYwP7uXYzjq1efR/vF99W4/gKIdq2hpMubgpsRMb/jXdO/BzU9Rg5cokZbWVJ60pSrxcBEShGApqiVYxnXccsAiJQJwKl0AiTIDxyXYzyIHfsNBsDc6MbrgpBVDo2Y87xAoNilMHszlKYGW3BaJUpM3z0xbn2DlxumdGryUWU80xpDHP28FgvaLDCY//hiJhzMBOTGT8KAY5vyfWoj97aYafDTAgZz6rKV58bEw3caq+/MoSMr2NHkcjs39ex96eYLV7qGbOkNGs6iJJmBstiaThF8TocpdQs9a5KjHL5/nAxZiY20zEPI3b4dTlmmXK27eaevn2AGxl792Z6T1K3vW5dLTieucj6fjA19WKUe8r5pe+878HJ2LWwrqyIRCECIiACCRNgnZVCBERABEQgQQIUaCw3XbA482IhwV08YTGKzFdejwa9npxDWlns3OUH5jt8buUq3zZt8e2260NBxvMIspo1xUfIjG7eYnb16LI/K6cPcILMKUXZ1/6rNGfFaHyWJI2eaCTUooUTiAqWZFcVDZEV/iGyoowf/ypif/tXFCZGbiA42fM5GyZB12OuK52D6byLPLSdj/UPBpNJKIl+CMtXFz26u8G82OqWSedzr2HGLMfN0G2Zmb9BMJ/KxxiI3t3RF4VsIm4gpUuMxrksWYqM8lrcxKn6bRNfVN9FQAREQATKEdB9vHIw9KMIiIAI1ESA2VEa8ORbrId77djxUbtyFDKlpVFbsvT4I1gEEx4a7wyAYJ2PctqpmMtIE54Fi3mslYvY49dg9i4yqnfDdZeZQrq3BqWpMCyavyjzV+h33BRCptIPhGHF/Sz/exi9n799oMRmzvECQT4RGbT9+2P7S3fcLdsq3/e+vdzAyOjFcTFh2QjZUM737IoeTBofPfmCh/5d10ZAhE6f5Ruzc3MXJFZ+y5Es9dDDunBJ5dsuv//p/vlP/4gEY2xuu961Ht3cIBO+Y0e6t5qa9TMzz/fhOLzv165PzTprWstb7/t2Tyff6msUTE2o9LwIiIAIfExALrsfo9APIiACIlA9AYrRtydEbdv26pfL1Wd3o6xwN7J37G/cgYxo+ZJjlqauwgzQEejz7ASX2OUrfdsauO8mJkZ5zOw5dVwnWMesub799sHosXVknshpp7p2SieMNClnzkNH3K9+IWy33xgyPk+xzZ7Wfr1j5kR/+BtccZH9punNIJTYhuE6+1El8yk7Y73Mgl4OcX8Q5cqnYdTLzRihQtGzHWJt42Y/WO9smCFNn+0HvydDgH2cNFB6GyWguRBbkSlm+TbfF7yhYX7MjTcX9q2qfeAMV+7v869k9vNKh2s6GHfuRKOrxD87VR2HHhcBERCBYiAgQVoMZ1nHKAIiUGcCLNVdDcH24czsZ63qcjA70VPKUS0XjgjZ5q3+cWMvKMQWLvFQkgzn2NLkLqbp6MtxGm3Qi/pHZEXfnZR9MTXqAjcwaSIvisZP3hYKnH3HvBa1XpgRStE5Ez21LZrT9dYJfo6zZZnydSi5ZZYyPnaF/Z/sq7wOfaNjXvOCcTkDkQ1uhNc+8ZwXbItitK5x6YWx7GvFft+6rreur6cR1WKUZrMEmfNWN+FYEynnrut2k3l9vfpm117hGo22nnreq9aMK5n1JrMsRxnx5kezpk5Qwp3Ma7WsCIiACBQjAZXsFuNZ1zGLgAgkTSASRZYoRzJWSe98hRcsRnluSQmMa2Bc9DKEVfmMrweTI5oUJRO9URbJrCuzkX9+ODNjSirbP5rJ3IpM5ZnDXIsgm90EhkptMIeVGT6OaZmEctwtEOG90OvJjDAFaf16UVsE0XnxyBBKjMscdafN9IJ5ot/D6JU5MCA6DDfcvr2cICP60KOxMl2W+c6cU9me1O0xiuXnx2Rf0Fd2FMyc/9f/RuwLnwoHvaV0ZV5aSRa5stem+7HmuLHAmyI74Xw97o3s8uMNmS6nwHUXCWWFCIiACIhA9QQkSKvno2dFQAREwFiqO3la7mWD6nJqOGeSZj5Xjw7Zs3CM3VdLF9UL4CratYvZw/+OGkVcpoIOtqXI6PLcxINOwr16OHY/TIYoQr/xpbD1hVvt1kk+Rrg4dtnFjnGcCstwP5zl2WPPRIM5oKvX+cZeUs7iXLehLMNJJ1320rIP8Qi2RbdZzk2tynk3vh91+U5X4qaNnWD/6rKedL/2r49E7Kyhrt2K8ue2rf3ANCjd26xu/Z06YqwL5uEuWxHrZa5u2Uw8x8wxzas46oj9wAoREAEREIGqCUiQVs1Gz4iACIhAID62IquWDWOedONnuSozpTegBPWpFyDOEnDTje8TS3RZvnr0iG/33h/9eLxJ/Pl0fGcJZKOTzc4Y4gZlo2hXDUx2nnkplrE8A+NUKDIpRhmLPvKsL8Tke5MM/Z14DL2Pf0A5cTyYUe3Z3bFlyPotXoZlkQEtL0i5HB2V+ZWp6AnjoL37Mre9uhzXVNyAmI4s8fe+HrZbYHo0HmZf5fuS67LuZF7bC+f4EpQRT8PNg1wqc14IJ+7eGJvTvm3M4CuZY9KyIiACIlBMBPLTx72YzpCOVQREIOsEcsVcJh0gpk73A1fYm69L/M9Bty6O3XKta2uRWfzxr9IrRnujfLULnGsZHJnyXZTQNkUW8Vv3laJ0tNTOPRPmNchsBoFv7PWNB52D46NYJnwQDcTnVZe51qGdY0MxZ/Teb4Rt8MDYcb/6ppcTo3xY/rxxc/wIcv87jax+8uuIrcCooJuvDcFIKrP7zJsTI8+OieFcEqNxCpzPqxABERABEaieQOJXINWvR8+KgAiIQMERKEU7JC9y46Y2BXeAxw5o4mTPNm4yux2jUmqKwYNQ+orM6Njxfo2zNCtb1xc+FTKKrqqC5kOc8RmP/n3cYH4nf6fArF/P7N/PRQMXW56XeQs9GwZxyVi33mxA37I/axzZQpMbClo6DP/iDxE7BeL1c3eH7Kxhjo153bN4dpWGVRs2ZT8zyfLguehZzbdgyfYr4HnlpZmbWXrBCAdZbbMXx0ZRqpv9c1fZOeOInJlwnGZPs0IEREAERKByAnLZrZyLHhUBERABO3TYt7G4yC6GWIXZmcwcUtxVNf9yJPov+8AQiGWv7MGsKRpADPbrQ8OjkN16fQgjYPyP3Uc5I5TCs1kzJ3BCjWc2v/jpsO3bb8eJw0uOueXSHXgEsmFrkJndDrdgBuc9Dkcv48QpnJvq2y0wNeLYDfZi3n0LanKhU/j7CvR+8jtvMExA1oqzQTdvyS0RQ7HN/ef4mXwMZkkpDClKm+O8UuSnIxzcc6B5UcvmLlyTvWAebDq2k6p1suR7IOb71sMYIYUIiIAIiMCJBPDXWiECIiACIlCRADMaE5A5LKYY/w4zXI7deI17gsvrVaNdOxkCkmWydJytKnqgJ7NvLzfox+yO0l6KvukQgY88GTWK3oYn+Tb6EhczT1276+aQHS314W5rdt8DkcA4iFlQ9nJ+OCu2BQocmvy0hlvuNvSGxp53bcmymGhbvNSzT98ZCsQthfRTL0aNZbk0IWLGjhlUzhrNhyA7iuZ0mialm8NSnC++R+77VoldAdH46vjUfoYaNYIY5fnFe/DJ5/NEuEOXv48bJpecHwqMxNJ9DrR+ERABEcg3AmW1Tfm259pfERABEUgTAQqC7TvRW7kqTRvI4dWOQyku+wKvuzL256EEDqE3oV+U8f37I9WKUS4zGqNkmPl89c2ozZjt2UcQKK+8Hg16DJkFpYBk2Sxnbf4Ybrjf/Z9I0MPKrBpjEZ6nII0HXXRpOhR/bBEyq/GfuQzLdpmBOqVj7DXvYdzGd34UCQQus7j5IkZ5LL16uB8bMvH3fA3Os73vgVLz8D664SqM1kGmPBXRrg0zyBjrgjmfL45LrdBNxf5Vt47lKyy4OZPPNxuqOz49JwIiIAJ1ISBBWhd6eq0IiEBBEoh62R9jkU2wL7/qGR1oKUppdrQD5bE0rkkk/ohyUzr2zlvo2xx8lRePfP3+A+j1hIB8Z6Jnu3bHSjo5H5QOuQzOuWzUyAnKh4MH8J99+8vWQ0HbuZNjJzWIP2t2P/aNo1zyPfphRM2CxfkltKpj/vPfR2wHxOPNuKFBV+a6RPduhsx9CDc0zJjJz8fg+1yCNB/PnPZZBEQg3QQkSNNNWOsXARHIKwK8YGRmdPOWvNrtlO4sGbyLTGOH9hCJ+Pn//pKYGK24ExSPbVBq26J5TGzGn19M91vMC40HyzzZc9iqpROYv7w9wQscW+mwe88dsX5E9rcy9qGk9Vs/LEV/b/zVxzvrlj2afz8xy8te2EKK3z8UQXm1H2RKW7ao3ZGx//LSC0JBCf0UzILN19gOgyOyiPdL5+txaL9FQAREINUEJEhTTVTrEwERyGsCFGMcaF/M0bIlsqNXhDC/0zMXfyX+A864tQmKR5bTVsySBvNBkQ2MB0s8l6/Ccsfcd8egxJdZ0WsvD9k2XMT/+k8R++FPy0Qx+ywLLdg/StOmTB/byQ3TT/Ifj0cDp9nrMO+W761k4pwzYbQ1mK7OUVuwCB/OPI/JENTsmVaIgAiIgAiUEZAgLWOhn0RABIqcAHsnZ8/zc961M52niX16FKNTpnuBacxv/hzFmBbXPnV77UQp3XQrCtLyRkXxY1m4xAsypPyd43Y4RoQln2PfiAY9rbxRUMjBcTc7d2X2IOlY/IsflRjFcLrj8WeiNm2Gh/cW3HETFKWXoR+ZxljPwKhq/YZ072Fm1n/okNmsuZ6VRjJ7rjNzdNqKCIiACNSOgARp7bjpVSIgAgVIIIrE6HQY8RRrsKTyystCxixO3MF0E1xyf/tgxM4Y4tptGN2SbFBo9oGgLZ8VolERM6I9upUJodfe8uwFzJMs1ujfm87BmREp7A+++9aQ3XJtyMa/5xlnwzY6Of3kOT922oxY5ru6nlKaIN1wNfpO4aj7+DMc55P+fcvkFqbPxnn2y977mdy2tiUCIiACuUhAgjQXz4r2SQREIOMEOOZl5hxkLpCdK8ZoiNJNznaciewNTYnKB+d+so/0wpEuymiT+7NBh9yT4LrbCc665YOzTJmFVcQIdO3sBDcC0s2Dvbrf/WrYTsXNAJpBvfxq1KZO9+22G5K/2VCbfaUoZYbwemThG0NwVowWzS2YWXsEo3qefbkw3x/8N2YG/q3hvzkKERABERABs+SuLERMBERABAqUALOjM+dmJkOVawgpRjmeYwHmeD6KeaGVBcts/wCDmquQQeXIlkSD/aEsv92773i2fFwRI0DXYIqTDZuOZ5RqPr1gJPXDb4eDkUYP/CZiW7bFtvfya1Hr38c9ztk41dsuv75Hn0I/KDLn10CUNijnlnxKp5gj79r1vo0bX5hiNM6B/9ZEouk93/Ft6bsIiIAI5DqBxK8qcv1ItH8iIAIiUEsCEfRzcWamX9jXwFXSuRKZ0TUQARSO1cWCxb49+M8IxGvIzjsr8T8fH870gnmh1a27mJ9jD+fuvekVJ7yJ8P++GLbX3oraXx+J2pFyNwQohles9o19rJkKvtfWb/CN7z1GHxhaXTM6hJJ5PzDTytR+ZGs7/LdmxhyDKM3WHmi7IiACIpA7BBK/osidfdaeiIAIiEBKCdDMaFaRZkdpHHMAPXqcH5pIkBMzXHfcGLIhgzInYBLZt3xdhv2jnL+aruDM1kvOd+1V9OmOf7fyuy7Nm5rt3pOuPah8vRwJcxiluVePdoMbHG+8w3Le9HGofC+y9+hsmhuVuzGQvT3RlkVABEQguwQkSLPLX1sXARHIMgFmKGbMKZ6L4PK4R57r2skNHfvp/yXXzMbez6dfimJGaNh6YVaoom4E2M85DVnkdAVntv7pH1G7EOeb5cEV46xhrrVt49hq9ApnOlg63LKFY8uRoV2+MtNbz/72Zs6j427290N7IAIiIALZJCBBmk362rYIiED2CeAafPb8zF+IZ/vAB/ZzrAvEyQO/rZ2L04QPPHsFI1m+9OnwCYZF2T62fNo+hWAIfkIfLU/ve5DGVI88FbGvfj5kgwfEXI/r1zO7YpRrn7wtZP9ECe3uPendh6rOy733l1qn9o4NHlR8lyTzFvh24i2CqkjpcREQAREoTAIwf1eIgAiIQHESCJx1kaEott7RLp3NzjrDtd//NWJ0M61tjH/HswYQNd/8cth+/IuI7cqSoKnt/ufC63oiO7o3zf2j8eOcC/ETRX36nTeF7EufCRmNvDZs9O2hR6O4KZO+DG18+1V9P4jZnI88GbEvfyZsu3c7tmpNdoRxVfuXzseD2cdgP3iga+HMGB2n83C0bhEQARGoFQHHR9TqlXqRCIiACOQ5Af7r97d/weClDqIsFdPXOAAAQABJREFU3xA0Q6/grZgn+jxmfr49ITUi5GbMs2TZ53f/p1SjLJJ8Q3z+kzEVQlGYqXCQkmNfaYMGju3c5Vs93FS4clTIzhwWy9ZOnOwH2e9MXx1cfnEILs6uPfUiXJn3ZopG9rdDp+HP3sWstXKl2T8b2gMREIFsECi++phsUNY2RUAEco4AL7YXLfWLSozyJFxyQWzWaKrEKNf57MuxDNsD96nohjySCTrbzsxwDzPf+8xKUoyybPebXwrboP6OvTTOswcfjlq/Po6NhtlVpuO1t/k+8gMDpkxvO5vbO4we30UfmWX6BkA2j1nbFgEREIHyBDL/F6f81vWzCIiACGSJgIfk4Nwslilm47BHnuNaNOLYPx5PfTbu8Wei9tEy3376Q4nSRM8tnW1pKjUTbqvZiksvClmTxmY//13Eps7wbCXMhV5E9vwCGCBlI/7+WCTIstNwq5hi7gLP+G+SQgREQASKkUBx/YtfjGdYxywCIlApgc1bfNuxs9KnCvLBnsjE9cS8y988WDsTo0SgUOiuw2zJ+78vUZoIrx7dXdu7L7tdM73wvhjzumd04o1HKd4i2dyr3/w5Yt27mPXGbNJiCf5btAn/JilEQAREoBgJSJAW41nXMYtAkRPgmAWOWyiWaIwMGOdQsm907770HvWfMV5kxy6z//6ORGlNpPtAcG3YlF0Rsnmbb6d0LBN+rVs69uk7Q/b+5Ox9Pg4cNHvmRc8uGuFaU2SRiyVmzPHs6NHsvh+KhbWOUwREILcISJDm1vnQ3oiACGSAwOFDvq1Zm4EN5cgmRkGMzpzrG0e1ZCJ++yDce4+a3fsNidLqeDMDOCfLI4fGjfds2OmO/ednQ/bFe0L2kx+EbTF6q197ywuMjzi3tEH96o4iPc9NQfnw7Hm+XQhRWiyxbr3ZoSIyWCuW86rjFAERqJmAXHZrZqQlREAECohAJOLb5A/RP4qerWKIwQNRqnuqa5z1yOBoCQ9JmHT3q3G2JgUpS0F/+QekpBXHEWh4ktlvHyixL/y/9JVQH7fBan5p2sTsnOEuhKdj8xZ5tmKVH8wnvfLSUNDPSeOjx5+N2qSpmf/M3H9vONifWbihUgwxoK9j553t4HNalrUuhuPWMYqACBQ3geK59Vjc51lHLwIicIxAKOzY4mWZv7DOxglo1zYmNP4Bo5h43HhNyL771TBGTMQfSc93zlekEG0GsfO1L2jAYkXK7B/dl+X+0fg+7cGIFWZEXxwXDcTfTXiPXDwyZH/DKJr/d2+psafz2stda9c2zW+a+A6V+/7Pf0ftbMzMbdmy3IMF/OMSGIOF3MxzLmCkOjQREIE8ICBBmgcnSbsoAiKQGgIcq8BS0n69iuOC79wzXZuIrNbKNbHsEo2NOnVwrKQkMyMmmB39BURpR2zzP1AOqigj0KuHY1u2lv2eKz/F+40f/GfE5hxzfl26IlbCe/sNoeC9k8l9XQHXX5aajzi7OC5XaCjFDLVGwGTyXaZtiYAIZJtAcfwLn23K2r4IiEBOECgt9W3mbN9693Tss3eHgrLEtm1yYtdSvhMs1XWRaXns6diIF5Zd3nFjyB59KvpxuW4YLZ533pReocjs26/+EAVz1z51e3q3lXKIaVxhv96OzV+cW5l6Zs0b1EO5KN4X23eUlchSpA493Q3Gw5zcMI1Qqlj1v5+LWgn26fQBxXEjie8LClOFCIiACBQLAQnSYjnTOk4REAE7UurYLMx8fPJ5z8a+Hg0MRG64KmR33hyy4UML52K3WTOzs9ET+ORzZaW6LMN8d5JnR474tv9A7M1w3RUh27q9THik6y3CbfzqjxE7Y7BrtyHLVuzB/lpmqrPpZFvxHDCbfvXokG2DEJ270Dd+LigCu3dx7IffCtvOXb498NuI7d5T8ZWZ+f2ZF6N2DvaRM1MLPdZvMAnSQj/JOj4REIHjCEiQHodDv4iACBQqAfY0zl9YlpHajHLJd9/37K+PRG0WRsDQTfTznwrhotzFz/lN4Rz03M1d4NvCj2Jik26ubVrHBFCzpo7t2uPbqV0d6wax8daEMibpPOr1G337NXoRLzzPtWshhIs5OA+W43cOHsodCmvW+egbdY3vj788HLFdu80euC9s3/xyOOgv5YzZbGbt5i2CUIYj8XlnFcdlyyJ8dmnAphABERCBYiAQ+hGiGA5UxygCIlDcBHw0ZU34wEeG8HgO7NXavsOMF4CrcVHeqJHZWWeErC/6TBs1wpzIzfnVz9UVInNAX9f+95dl2dFunV17Z6Jnh9HT2bWzgyyTE4iPvz+GLDEeo0ikON2IY6VwT1dQ5CxHf9w9KN09jPPA/sBiDGavm+C9NXFKZm4GJMKYAvko+qs/gWqBUrwHuuF90ryZY3/CXFmODKopXOjEdPc9Tp/tGTP9LAPPVqa2Jg6pen7fAT/4HJOrQgREQAQKnQAKchQiIAIiUPgEtm234EK2uiPdAWE6aYqPryhGpTjGPr/PfzIE8xnf5mMcxvKV1b06N547Z7hjb1fIevJCPh4UGWcPc23s+Gjg8vr1/wjbwiWeHUXP2q3Xh+xfx3pOaXwUgaZNtchYghmXf3goYl/6DEbCIENI06VcDfZUtkVmuV0bZpgtEGhtWllwo4Ljc07C6BYuw2JvSjYKfjLbh5Lo7ShT3o4yV77vtm7zA7EfZ9m/j2uLwCHXgjcttmG/h6BflDdnHn4iesINnIr7zPfJJ28LBeeSvZ7pDmb0zz/XsVXHjLrSvb1srX8PSqNZJs3KBoUIiIAIFDoBCdJCP8M6PhEQAWR+/CADmgyKZXAW5RdnNPbp5cLlM4QeNt/WrjWbNtMLMovJrC8Tyw493YGAcGzM62XZ0Yrb3bkTmeC1vr2HftLhQ1yjg+ob78RE4de+ELZGJ8PYpoFj16B0eSb6bVn6m+pgjyKzs/fcGULZKoymEsjApXofKltfqxaOndrNsdPggEvjqzatnEBkHjyMvtv9vKHh245dBtdizw4cNDtwrBc3vq6GMPyh6Q/LXlu2MKzLtcbIuJNng/oQqWDP9xTLpZ/IgHiL71cy3+cvxs2XxYkJy1YtHfvyZ0LBTYt6MM3ieJYp09N7g2HsG1E7c2iJDegHUyi8jwo55qNM+fxzMTsYo6oUIiACIlDIBCRIC/ns6thEQAQCAiUljq2AiKhNsDxwKi6yp05HGSPKWlnK++m7kDXdEuvRXHysT7M2607la5ipGjLQtb9B6FUXMcERE6w90Ms4+cMYFwomiicaHl0xyrXT+7s25rXaMatu+/HnmLWtj23ec0cY4i5inL+YjeiLLPiQAa4NhMA5+WT0dkJ0rt/k23iIdAryuAFUXfeNfM8c6togOMWyd/Rb/xmGyPVtxhzfFsBV9aPl2Tn+2h5XrHogjBsWXuDk3Bri/ds4psVLvbSX03Je6j23u8js++ZV/3av7eHlxOuWrfTtIvT1KkRABESg0Ak46KvKr7+ChX5GdHwiIAIpJ7Bhk2cvvJK6f+pORhaRGTRelNMxdR1cMWdAYGWzr+0c9CU2b0Yn1MSv0Nu1dexm9ORRlF5ygRsYHC2BoPjuV8P2KEp3LznfNZrZsAw1XUEjHZoc/RLzStdtSN05qm5/u5ziBOY4zBCzZ3YDBCj7OT+clT4BXtn+cLbmkEGudWxneB85wfZ5LjLFobJ9qukxlijzhgUdmpllL1+m+zmMUqI50vh308/xu18LBZ+3qdMz856pigvLttvjc7Syin7oTh1iJdwswa1NXH+VGzgy1+a1eo0IiIAI5AsBmRrly5nSfoqACNSKAJ1BWRLKXr5UBde5abMF5azsE2SfIY2BaCjEGY5b4OCbyaBApkj4CxyDaRyUaDD7x3mTPbu7gYhglvKuW0I26UNk7VAuOBPZOy/N2oK9gBQ5d90SRim0H5TIJrr/yS7HktJP3RGyyy4MWRQi+/lXPPsX5rKyzJSiNNOxdr1v02Z49uZ7XpCVHQpxesWoUDDzkwZDdCbOpTipgdkX4EQ9ZGDIXn4tGpSxz0PZLN9HNN8h183ot6ZxVbpjIz5/7HlmLy5ZZStao6f4wvNCVZa2n39u7KZHbf/9YcqADuC88aUQAREQgUIloJLdQj2zOi4REIGAAAViVdmLVCBavx7CYb2HbJFZL2RN+yNrOgzzNjdC4LDkc+u2VGyl+nUMHeQYS4drc5wrIQhXrollVSk42Bf44czKs6zsp2UJc6rj1TdZvuvYD74Ztu/9uDSl40V4/kch+3vx+SGIa5TIzvbt/l+lMeVbSziLUH66aElsv265LgQ3WdduuNq1N9727G2MJ8qFGHVBKChr/vEvS4P3AZ15v/2VcDDbl6KpWVP7uAQ83fvLGxmLIUYHobT8gxw2xqorBx7nqAvquha9XgREQARym4BKdnP7/GjvREAE6kiAGZtnX8rsBX17lGDSCKlXDwi43Y4tW+nZdAihdESTxnA5xRiV7/9vqW2tYxaYWZivfC6M8TiezZ5/PDP2QP7P98JwxUVWD6ZOdGNNddx+A7JvENff/u/UCMaRKIm96doQzIdixk3v4bjyKbj/F6NsuhF6W2nm8y5KZLMZ8Sxd+dFAFKJn4AbM4SO+vT/Zs30wf8pUtG1tdv+9JfbIk9HAdKou222Mz9GFI1zr0M4J3KdpWsXZpyuR7XXxuTgX7tWn9XADAyeWtU9BZtv3HONnnUKdmXYGTcHY99mhPdaDHuESGBJNRyk4+11rG7dc51pbOD0rREAERKBQCahkt1DPrI5LBEQg6H2cPc+3LRnIUpbHTUdWZja4bV68n4bM6Tlnxi5S6SrLzFKq4kyMcOF4iLcm1P6CN74vLA+cPc8LLsArZkLvuCmE0TdwGUaZKcd8cLkjKJVkqebVo0MpMeVZAIfXjriQvw3ClOM9ahuDYVL0lc+HrM9pcByGMRP7YDnGJN9iDVizT5OzYkdd6MJx1bXdKMnmTZZsBN8f/CoffJ8wU0n3YJayf+XzSEljmUyUQFM09oJIbNXS8L4sv1dJ/uz4dsNVoUBM08xqGUQo3zs7d1pQ6j98qGOndHSCsnZWIZyO9xeF5qYtMSOwU7u6H5fsXnulG4zKGY8ybDJhGT9L+GtbsssjoYNxx/b8rEmUJnlmtbgIiECeEJB9W56cKO2mCIhAbQhAQFXSh8fxKBw58hm45Y7ERT57MNMRFKPMjDzzomcvwRmUQpQ9gp9AnyZNiOoadKnt39exF8bWXrxV3AeKTIrO8kHzphbNYxfkPB725HKWJuOqS5E+On7x8i9N+mdmu1ZhLM1P7oWwSTKYLeYYEvaJzoJg/s6PIpZvWdHKDpmGSz/4ScTYr3k3bgZ88dMha4nzkSvBzClFE8Xqy69G7eZrXRvQJzP79+zLURvUz7V6+CzUNugQzJE/rAxgD/YujPbhTaV49EW1A0cVUVhu3GRwRYZghdt2xaAw5sxaZrI503hnhfVUXD7R33kzxfdP3F6ir9dyIiACIpDrBOp+RZTrR6j9EwERKFoCzCztxkVh+eD8wqGn01E2CiEXhYmOb59CyWtvZEQSCQpAjkdJNpgheR8XvA/BeIhurm3bmP3HPSG7DhmVbl2TXVtseWZqViMTy7mi6Qr2lZLPq2/GShJLoBOHDHQgjrzAbIU8xo6PPZeqffgrGG3Z5tuPvpu4KL0AplI/++8Sa4oZoF/7r1J7fkzqRHqqjquu63n+lah94wel1qSRg1LVcEpuatR1n7p2duzn/x223/+sJLjRsnGzb3/8e9TuxnuG2fN0B119V+L9378OArgxSqJ37faDzGbF/XVcPyjD3VIuK80MNc9BxWjSBFlVrOcQxvqkMiiQjxxJ5Rq1LhEQARHILQIZ+HORWwesvREBESgOAszWrEDpXcUYBifTSTBBWYcSP17ozV0QWyaeFeyA0rirR8cMZYYNhrtlOU3EWZ/s66MrbF1iKWZOvois5lMvUnjRpdMNymCZrWXWM6HAPgyEGHwJGal0xu03hgIX2OuvDNmNV4fs2xgJM3OOF7jh3n1ryB5FRpOsr4TLL7OoqYrfPxTFfFILjI6qWyd5ff6TIbv6MteeeiFqD/wmNf2n1W0z28/9/PcRe/L5aHA+Possf31kJ7MVN6NH9/0pvn0dNwHodsseZBp6hVFe2gbu05mIsa97NhjzXWsbvPnRpLEDAX3ivxfsEz0MMdi8Wdn6+T7nLNmKsXMnxGtDLIcS4FQHzcf4OVOIgAiIQCESkCAtxLOqYxIBEUA/m2/rNh4PomFDmI4gu7muXEkqMzzbMPrkIMRPG5ikcL4ix21wrmg3PEeH1njQwGXP3qp7QNu1jZmaxJev6Tv7Aadg7uTDj3s2cZpnTRv79plPQPih5LGmjC3noHLuKfv30hUsxWQ2iHMlf/fXSNCH+fgzURsHV9yrL4+VxbJXkAKdZYX3oFR2UP+yC/e67hdnkzK+AxFcWfTs7tiPYbTEsTvfvC8SmOpUtlwhPvY+yni/eV+psdz0vm+Hg/dqNo6TYo3ZRX5/5qVo8Nn5X2Rv9+zjqKWy9yZL1BO+2ZLkgSxY7AXlsSwtr00cwNiavdjfkeeGrDX+DWC2lTN648EKBH4eWZbMYzjtVKfSqgR+HinK+56GfzMgSlu2sJTdpFm1xkup+3T82PRdBERABHKBgEyNcuEsaB9EQARSToAGIDTGKZ9VoHAahnJdirh4huOMIRjRgjJD9oadj0zlNvR+fTDND8ZaMCtBQcrevQi0EUt9t+Iie/2Gynf3KmTp9kHY0gwl2WDv2tLlEJiYBcqy2MEDXTjOuriodWw7Mi8VZy3SfZXjQNhvma4gu2UrY+uPIBG7CZxoYtPllNjc1UfhLHoJ9uNaiNPDKI9+ESXQn74z5tKbqn2aCjfTS3AOON6DP8djBDLVX/oMRo7AOIrZ1GINZvs743zcCdOpzTDZ4Xs5k0Ehd9fN4UAQ0tTosovcILP9h4ciwXuCNyk4p3P4EMfmzI/NLE3H/vHmyVkw+Kqtmy0/17zJw6/SCLOlvBljtgOfZd6UocnRuRDVp+NzyZtXNJtijzjL98ubGpEB3XqHYDkadPEzVFdTI/LirFcamNW1OiMd7LVOERABEagrgcpvO9d1rXq9CIiACGSZwFaU4XkVdApFHS8kr0P56fxFXjBsvisu5pkNZXDkwxvvlL0ofvFXD6W6HGvBbOrYN2LLcrwD543SSIcXrEvhqEnxuHZdmWiqDQKaqXBW5ozZUQgNs34wVGEPJy9qFy/zbD7EMTOxJ2Fu5zsT67at2uwfX7Npi29/QZ8nS0XPPsO1n/5fJLiQ/yocVuOC6AufCtnfH4sGF+213Q5fdxQX+L9AiSpnlH4JZj5/fjhq11zu2qUYtcGy1WwxqMsxpfq1jzwBIyi4v955c8ja470xBiWsmYoluLnzs99FArOlXj2c4CYJM6UUa5xpy5sXnTo49sBvI8H7Jl37xZszV1+G48cYlk2bk98KP18f9x0ju3n3rWFkfmMcKUD5XMOTYv5d5XtEua34yBdulYJ46YrYZ4MiMlVBnqzkaIOMuEIEREAECo2ABGmhnVEdjwiIQHAxvHp9JSBwoTl/kSHjGMWFO/pDkVWh8dF2ZEUZIWRFmAmNB2cJshRxL+YJcnm6yVJ8NmjgBPMt+TMzlOwvuwVlthRjqTQfWbsOjrcQuA1gLMTMDXtGOfORvZXLIUCyFRT2R4/6QQkjL5RZOrsOWWPuJ8UIs0sU93wuFcEL+1/8IWr3fiOMLycQ/iwhjmdvU7GNfF/HBMwAXbvBN94UOBkmPRTrmQr2YPIGz6SpKEGfHhNxLJ/9/CfDqDbw7NW3PLsLztIUpcwgpisWLIkik+lCkCYvyIP+bdxgOYSxTO3bYZQSypC3VhgXFa+qqGn/eYzpOM7Va81aw8k3fqOspv3Q8yIgAiKQLwRUspsvZ0r7KQIikDCBSMS3D1HeWTFDMfriUNBDypmFm5ARYVkdZwVyniCDZiXMgrJnrDEyn6MvimVSN6AXlWLwAIxMVq5m6a4Dl02MuHgNpkRYD50+O2FOIV/HMr9UB0Uy18s5oLz4H4pSXgq+czHblGJ40UfZEacUnByBQTYs1X1hnAc+MfHOcsUZc/xgPz+BzB33sbSc2E+WEW8cMNt2ajfX7nug9ONzlux6Cnl59jBydAmNqDh+hKXmmYrlq1DKfmzE0gUw5/rk7WFjvzH7j9lnHMbNnx0wEWNpd7qC27nlOvY2wwAoSU26/yB6obFj/KzRDG16UDWRW9lIH/W/PfD+5400hQiIgAgUEgEJ0kI6mzoWERCBYwQ4C/DEi3FedPbq4drIc1yj2y4zIJOnl7lX8oKamVD2RQ7AnM2P4IY7hX2LmAHI18yH+GKv53kQgvw5nkEJo6SXTrnvI0uVygxpZaeTxkolyOR8738iQR8sM6Y34yKcsxj3IZNLgZzJoMBgppJ9uXFhTHYstWUJ58Xnh+zZl2E6A24s4WTmyEtSLPB4aPbUE2Yy3/hB5IR+2kweb65vi72+b73nYRZoKBDw7NvMZPBGzje+FLZf/TES3KyIb3sV+rFPwU0bzvSMO1rHn0vVd1YODD09FAhLjllKJliGy88zb/ywTxp5yGRenpFl96GcnyXyypBmBLc2IgIikEECKtnNIGxtSgREIDMEaFBSWdD0Zdz4mBpykWWorMf0bRghvT0Bl6Musyy8KEU2tIlZU8wYXLc+9tqTTnJQ6lu2jc640KaraOxCtrItp+6x3r0cmwzTJQq7iXBa5RdFKkXy5+4KB72uHGXzGLJTmYzyIqMLssxDBzn2+jue0SmX7qSf5FxK4KQoZTlpPJuWyD7eAcMemsp864d1SLEmsqECWua+ByL2wA/CQbY0k+W7dKzdjxsj29HvWD54k4fZy3T3/E6dEQ0qB2prblR+n3PxZzoXZ2qcTi4ev/ZJBESgMAmg00chAiIgAoVDwMN18Hr00tUUFcVoxeVjYjT2KLMnY16PftwXxhEnw1C2yxEy8f5OZoDSHU0hjFuiRPf1t48XmxSDT0Dk/ed3S4NsJHtfH/xVif0Q40CYUclUcCTGbTeEgjEsP/tdNMjU0WWUpkw0Y2EZ5B//FgnmZya6T1dgvulwOCHfe7/EaKLM4svd/+tIMJ/zyksz9x5g9vv1tz37/N3hIJPHmxGclXrpha796+lo8N74r6+Hg5L4+H6m8ju3TXMx3kQqxFi5pnYVBoXIQsckAiJQOARUsls451JHIgIiAAJHMX905tyqZ4XWBhIvsvfuK3vlahgNtWweK/3lrNJTkKGcjHmidMhNZwxAr2YU+8JRH1UF++hoJDMT/Zs0X7r8khBGcYSCLCr7ZSuOj6lqPbV5vBWEAMsJnxsT/XisDtdz7ehQ4MTLkTtnDHWD/j6eIzoVN2rEbHNsa+yJXVfuZgKzvpwL+7u/RGBEVZs9Ku7XsGeXPb2fuCUcGHfFHZDTTYXjkmbO9YL+ZpbvhkKO/ebPEVuO0u5pM71gjmdjnHfuWzqiT0/XToLBVrw3PB3byNY6XVRuqI80W/S1XREQgXQRcNAkn56/COnaY61XBERABKohQPF4AL2iDVFWS4G4aw9Mi+B+uwpZzR3H3HSreXnST4XQ+DConwMjFWwYvabpDJrVcCzNuxhdk0wMHuDa+TCaYdkrTZFofMMxGZmKr30BhkeYUUqxyREgzKR274Iy47Mw0xHZ5y3H3IrZY0gjHAaf/z5cdZ94TqNd6nqeyJlZ6p/8JmKZyOTH9/eL94QCIyPeoODnMh40OGKva7piBI738ktce/rFchtN18YyvN4S9KtzpJL6SDMMXpsTARFIKwEJ0rTi1cpFQAQyTYDGPo884QXGP+3aWOA2yhLWtigZ5d23fch0bt8FR1CII7pppmM8QzqOuXlzs5uvCdmXv4Pm0VpGi2YwRRkOcQqDpnr1HGSsPHvuFc82Y65oOoNGN5++IxyYLnEECE8ETYp+/adIMFbnsoti2eYf/zLysSnUz34YDsyS/vF4GpVLOg86x9Z9zx0hZNYc+wF6SzN1G5rjf8oLUSKhk/VNV7vWv68Lx10/mJlaXca/thj/8POwPfuSl5G+7truY21f9+k73WC0T21fr9eJgAiIQK4RkCDNtTOi/REBEagTAZYBxo2LKq6IfWUch8GRKe3boR8TF8ccDbN3L8e1+LYavZgbMeIlF2MwTIK43w8gy5WK4JzIkWe7cCWl27AflByPPWb4lIr1V7YOOhgzQ3vFqFCQFWVPKTM930RZ5ytvRANXY77uy58JWWvcQPjRz1NzrJXtSzE+du83w8HNh2yJfJ7T730tHIxHYqY/jOoCjgR68oVoMNIolefkv/5fyDiuiQZfhRbXXOFYl06Z6wsuNH46HhEQgdwjIJfd3Dsn2iMREIFaEmAZYHXurXsxzoHicynGuQQBMcQsKg13OnYwuwy9Zw3qO7aXpb7IorIfk/1wzKpmO1jCOgnuuqkKupAuXBJFpiVqZw9z7QKMrbkUvaacqfryq1HjXMlUx6ZjmVhyHTzAsdnzLcjW8neO2GGcgwxuz1Nd+/r3a58JTvV+F8r6fgKTo1/9OBy40LLPONNBwyvO6v3j38uytCw/D0YqLUptJnzWPLOzhjkFKUjXb0DfOv69YgZaIQIiIAKFQECCtBDOoo5BBEQgIBDFNe0OCMmEA4tyFAxLVuct5KvYe2rWFlnU9m0tmHtJgUQjoL0oBeZsw7UY/bJydcJbSMmCIfTctUN2ceLk1GcMOabjLYy64VeP7o6NQNb0W/8ZRqmjbzNgjPTsy6kVCgQyG/22zZq69pXPheGIasZSXUZzOAjfdQvnlqZ+m8EG9J+gRPZOjNHhDYnd6K/OZPTE++tn/1cmRrltlvRWdLweiJ5sOkfv3lP7vXt7QhQl7iXGnst8KctP9Gi3bvMsEgkF45QSfY2WEwEREIFcJiBBmstnR/smAiKQFAGapeysoxsrTXZo/LJqDTcdu2CnaKJIZcksnWAvv+SYYRJEG7N+q7E8xWq6gnM9eVxxN9p0bYcuqMtXRgNjoXjW9I+/KAmyzq++GYVoT52AeXeiZ7PgxNqksfOx8+8dN7rGkTrpnlWZLn75sN73J3t2xmDOBHXtoUczK/z5WemK93Lc7bcvZurSRfnBf8ZuSLB8+5rLQ8aZpX/6R6ROgjmCVW7FZ5IO2CvTkO3P5rnescvgXJzNPdC2RUAERCC1BCRIU8tTaxMBEcgigaOo8qSgTHXsgBjcsdO3RcgqMcLIurRtHetH7QjDpNP7ueagfG7fPg/LOYGAW4Fe1iNHUrMnneE+uwwGRJkKZpTen+IFX51xQU+XVs6VPHzED0ogHzvmhFvX/dmDEmpmYhmD+jvWCyXTX/2eSnXryrWm19NM6rc/KUHZtI+y6cy9r55+MWpfh+MyhWjb1k7guMz5uYs+QmVCQ7PP3RW2Vi0tcANOhdHWshUeSlsLT5ByLnIpxltxnI5CBERABAqBgEyNCuEs6hhEQAQCAszAPPdy5i6wy2Onk2ys1Bf9qDRMwkzOg4di81C3bEOpL2aXrl1f/hWJ/3z3bSF77JmIzZmfugxl4lsvW/JMzBBlr2nXU5wgM/zme55NmZ4a3g/8IBzMj33+lcxm7cqOrrh+uvnakJ2OPt577099GXh1JNmvfcYQByWnFszK3Y4bPRwF9OXPhoKxQA/DVflwim7kDMSNouCz81ThvaeY4ea/NwoREAERKAQCypAWwlnUMYiACAQEtkL4ZStofLRvH0peV5SJxjbIojIT1LG92UUjQ3ZSAwtcfQPDJM5GRalvTX1yJ59sQV9rtsUouU6b6QVfdCpm6fIt14WMwmbRR549hewX577WJi4e6QZZZ4nR2tCr3WvYpzt8SNguHOEay6czFVu30wW77DPCmxx33RoyloS/hpFAqRxJM2+hh89cKMi+HjyYqSPMzHa2YqZyWxiyKURABESgEAhIkBbCWdQxiIAIWCkyLtt2lF3o1ojEwbJ+ejMMFMgcqTJ/EfcmavUhSNux1Leta93gmjscF+M0YqLz73aUBa/DbFS62/rl9EF79K3yuVwKjsiheOTX4IGxuaa//nFJMNLlvQ88e+f9cgeQwI5fdVnIxrxWeFmsBA49q4twJuzVYJ9JQRo/YDrE8obGWXB4fvDhSGCyFH8uld9Zbt8BhmDpcI1O5X4mu64tqAbpe5qjXtJkwWl5ERCBnCQgQZqTp0U7JQIikCwBunUyQ5lINELW8a5bw/b4s9FgpMuoC11bASHIGabpjCOHDWNV+FUm2Jo1i/Wi0jBpOEoZL7vItX3INLK3kiXIjU6m42jZ8uncv9qsm465/GqBma7nnOHYaOz/NaNDMEfy7LkxXjDftbr1kv0R9KZy/Ec+xCUXcDSQYX6qE8xQpREPb2uwh9jFD3SufTtJQZ6t46YQvRgZ0lE4JpZfZzI4g5Sfw/t/FcENl/R97jgGqh0+W4UmSPnvQxSnTOZGmXzXalsiIALpIiBBmi6yWq8IiEBGCYQgCHbDJKd8nIQRLr16OFYfAmI7Stw4A5EZyQPo7WTJ4v4DvBB2glmki5em76K4/D5V/Hn3buz3bt+WHNs+LzBpmMT+MPaidkUm9bGnMysWKu5jIr/vxLidsSjFHDves369nWC25P33hoMM8eQPveDxytZz+cWhYO5pZc/l4mNXjgoFNy5KI8hk4y3To5sTuLnuwjk8qYFj/fs4eSNIyXf8u8iSjs68IOUopb8/lv6s+ILFsePLxfdSXfaJ/9bxBohCBERABAqBAC7hFCIgAiJQGASO62FESe6NV7vWGiYqdLvtB6Fw7RWxf/LojNunl4vSWKa3fGuM0SN0fM2FoGDeuJmzOmMCj/s0OUXGQZk6Ps64fPBhOKp+vzTIfJ51hmu//1mJfeNLYTsVAi4enPFKUTcBo0jyJbi/jzwZsb/8M2p/fSQaiNM3Ieoorl4YGw2ypvlyLNxPuinTnXr4kMK8HJizwLOWyN4zg11IwZ5YZucVIiACIlAIBJQhLYSzqGMQARHAjM7jM5z1Shxr3syBgUrUdiELSVOgFs1joFq3dKwRxkwwGjfCxSq+M1vao7trA/o69uLYMoHUqJEFJZrMsGY6OP/0AC486Ugaj0/dHgpG2zDzw3EZuRz7D1hQCspy0J7dHRtxtmvf/s9wUI48fTZ64DD+Y+qMMta5fCzxfYt6voXDfMeUsS/BGCAG+yJZRplvMXOOD9Mt1z6clYc7XwNsCjeWwLdpZbZlaw0L59nTdPHmv18KERABEch3AgV2zzDfT4f2XwREoLYEKrrVsiRw5hzPbrk+FFxsU4zuxEB5RtMmzIjGBEVTjGvZC4dcZks3bPLhiOtYvXqx5fhf9td17Ry76KM45YX7jde4dhb6JcsvV/aK1P3Est3y/XXsu6NrL02DONKC7rT5EstW+vbwv6P2FcwZHYey3jOH0n3YCUqn8+UYuJ979pi1QN9vPBo2jJXp8ne+T47L0scXyvHvzOzyfRV/n+f47ia9eztRTs0e50IL/rulEAEREIFCIJA/VzOFQFvHIAIikDYCzIJUjMkfolf0pWgwRJ7jSdqjJ5PRBCI0XqIbiNNjZkgcOM9ewPZtY8t1OYXLOjYb2VUGxem+/b5NgJMsBe8dN6Hhk269iCsujWVXB/TjSBTHWiC7WdfgzMZNGA8TDxofbcDvFKnsyzylY+wimxlfznLMhyhFeSjLRGfN9WHuVHZs+bDv3MeFyEpfe0UoYM8y12ZNzWio9cdflNjdGF/CY8vH4M0YllAXYmzEsXEucKFF/N+wQjsuHY8IiEDxESjMvz7Fdx51xCJQ1AQoCOIZzziIQf0do4Mts6ITp/joy/StDbJAjPIitGkTjl2Jv8ps/UYLMneO6wezNj+Y5lkUJbMdMEuU5XG8cD8Et9xZcJY9DHfYZsi2MppjWxyB0gRZVEZJChoimInjrNJ4UICe2tWx228I2e03Qvyg93L0xRi7cq5rQ7Bt/sy4/JLY98bYl3RnceP7luz3syF+Xns7/8Tba5iXeeSob/d9KxyYAT31QtT+9XTUfvH7iN3300iQlU+WRS4s//aEKLLWhXlJsBbjlFoeK9fPBdap2gc6OrOnWSECIiAC+U4gBZdM+Y7g/7N3FXBOXN33TjxZxd2luEOhhXpL3fVrqbt7v9q/8tWNuiv1FipUqEJbSqGlSJHi7rDAejz5n/uSLCvZJdlNdpPZe/llJ3nz5s17Z7LLnLn3nivzFwQEgXRHgHMsS5CvWN6Q6kfsFWX1VxYK4hITi38OQtwkWMVDynU1I7YRhHMwyGzvnihHAi/oSoSasu3TPeQd5Xb2sGYgBzUTBDU3R4O6b4By4El9H2VkEum1YELNysARYy/oB5P8yIUDKYY314d1nYo1Mhliu/pieGxhPNcpqDF58TgTMaHmfNNDDzTSV9/5FUFtjVBgrnnaUDezPbtp6ppwuZh0MxcEsl543U8mo1/hH5n/+o17rlOkLZ22HAUwDt+nXj00WroivddSGfcVq4J07BGVW9P/M0eF+P2RnOb0X4+sQBAQBBovAkJIG++1l5ULArpBANSKChFKW94WLg6CiPmUwmYpyBuLm7BZrZrylnLoLZd8yYaHdNlKtUv92IS6hWNRG5OVd7/+HnfoYWOxmrxd8LaWU4SN1ADMQB4hC9qE5pCY0EAuVWPDXFeX85ByyO6X3wbhmY3MikWPQuvm2phmCDmx+VCShAWDmMy2RAmZ0TkGWrsuQJ06aCrsmEn2EVgjK8MOQIjxTqzLirxZ9iRFBJSYwN8AVVwOGV6F+qy/IxTVG+K9e05ey3fDBhlUjdVaHp4Sh/HDAL0Z1+zs38cAQqqvxfHDAvU7iuc1AR0tjX/3AwF9erX19rsl6xEEBIGaEZC/ZDXjI3sFAUEgTRDg0i6VjYWKWB03QkZ5P/dTKrrBEHn7DmGjfCMeMRfCcdlLymRuR16kFaR1RYB6w3vUru2eNvZgsveVw37ZW6HKyOzZXad3LKDEocHl7ZlXfBXIKO/jeZ4J4aaLxhnp+6mhu22eE4dfske0OXLnukPhduGSIB031qCOZ7LLubF2G9FI9GP12369DcrrGzlfe4QH/4vyLW9/yN5AomPHhryv55xurHMY8AB4oDncWCy1EOC85EH9E/NAJbVWBhVtkDcOq9eTsQK3lH7R0xWVtQgCjRcB8ZA23msvKxcEdIOAERXio4kaxbJAVk2tbJO/rUqWuGQEly85YD8DSsZoxN7RbTuCityWV+2tPFZtP3MIMJdNKW+cK1vZWLGWw4aL4fGNeO22g0gvWxlQn9kr+v3U0IFFGI/DirkczpZtoZDTHBz76oSqrk8OD+ayM317hcrnrFoTIu3LVwaVoBOT2cqEmefG/flGuXyocfk5h0rupF+5l/Jr0Ot7LsFz9mlG9RCjvLqzHtZbXIzvMb7rO3fuefiU7uvisH2OzBATBAQBQSDdERBCmu5XUOYvCAgCihxG85AmGhoWGOKXGeGt7EdipV02FlRauiL0PlE/WZCoslBTdWOzuEl5m/TVnrjEiZP9tGR5aD/nbJ4JQaR18Kr6wFGDSCJl1dto1gGEdA6UcFnIqQVqOM6cDQEnKMpyiO9fc4luu85ETFLZQ/PuJ35FRJkQ94endQY8bdVZz+5MtCvOt7q+0l7/CHDOda+eGv0+S1/XqBC/o/w7pSfjv3mRtAE9rUvWIggIAo0PASGkje+ay4oFAd0hEM1zmMxFesNENHKOzVuIuLREIi0XXsydKO9SV1uMsNuILUBe7YpVfuoBUSH2onLY7sJ/o5NHFj565yO/KmmyZatGI4cZQGxD4c3sHeUaiCywxIR0HMJ42VvK8x2OUigTQYjZM8v5iJyTO39RoExAqXuXkFJxZE6yTS0EWOCraycmpKk1r7rOZufuAITN2J245/ehrmOmwvGc8831icUEAUFAEEhnBCTYI52vnsxdEBAEFAJcfkVvZrcFod6b+FUxcWRiunVbUCkQ//xbdELK5WLOQfjmMYcb6MRjjMhBDdU9ZXVezi9l7yjnqnLIYBuILX36pZ+mTg8QExq+SeaanLPnQn0YXlXOYY1YNxDSRchnFUtNBBbj2nQBIdWb5RdoECrT26oQpeGV3yX9XVVZkSDQ+BCQ52qN75rLigUB3SFgQA7pcUeGyrR4EMbGdSJZidYJouoGAVMqu8i3YjLmqyZENdVA4VDZ7XnRyWJ9zPW+x3zkQGmbZk0gQDTTp3J0ueTNxs0BGjKQt6EbYSafkRBcFneKhA9z6ZATjoKw0veBCoq6reB5/QtEVSw1EZi3MEDj8DCBPd+I6NaN7UQocoZdf0Sb0wYcdt1cJlmIICAINFIEhJA20gsvyxYE9IQAl3DZDI+fzaKRDeGkTSA6xEqyFny2mENbkwn1+oyauslmzx6/OOfRD0LFW3554W3gnEo3v8LElgkte2BZQISJLavwFnMJmSTfrHPJl10ox9KQxurEpeGyMjyPz78GSLB5C0D0w15pDpdm8aXzzjJSFkrFrITntFULTfVtBoXfS88z0v+eAMgw9qTyAwMWPRJLTQRYHIy/5+3aaGUPHVJzpvHNiusDs9dfb+ZJkwdsesNd1iMICAKJRUAIaWLxlNEEAUGgARDgnM4585gh7p0lmpigKpKK2pu8ZeKK+p18s8rtkfqfXNeTlW4VsTUbsB+Elvvhr6YRL0VqFZkNha76/Jqq/xkitkxu2VOLkDomtkxosXW5sAWhLU9uq4PLivOFaqVW16Ph2iNe0MgM3kFpGFbuZYEV9qo1a0J0+okm2gFF02VQ5Y1Yc6j2OoGBWGojwPUtWzTXFyHNw3fRrkMPaXWiZKn9DZPZCQKCgCBQEQEhpBXxkE+CgCCQhggw2YvVOGSXX+Vrk1YlsnsnTYrAgsRa8WLVXUVuyzyye4htBryGTUHQlLdW7dfIDOJrxl9fzr9UnloQ2zKPLXtq8ZmJ8G6EGaaL7c7fM9ed8OwuXxXyipafP3tOxTtaHpHUfF8ML2kT5P7qyVg9mH9X9Wb80EtMEBAEBIF0R0AIabpfQZm/ICAIUBBho4MHaFCQDVap3ZkseDh3i1+4dy9ne0hZqLH85/LvQ3sN8CgyOeUb5TKvLZNWfD7iYEMoNLjc6On+tnkzhCGnEclOd7xrO/+CoiAeougr35IjE9jYi88Pf/RiodB5fV0rvVwbWYcgIAjEjoAQ0tixkp6CgCCQogiwl8AOYY/mCDNs1ZJo9bqAyhflfFImdwUFIR9oDlQ2d+0OLYL3sXALh7yxMI/BEKQAc8Zg/d3cBXBj7OZX+GY5NDN4cuAd5TnpzZrkhsrF6G1delsPl/RhgSq9GUce8N8DDpnXiwUC9ff3Si+YyToEAUEg9RAQQpp610RmJAgIAnEiwETSiPDXTKjCssjHCNTCXL02SKNHhrac2Dh0EGpiolZoz+5Es2YHUcrEoEqXcL3Nb38KUK8eBuSMcokSA32GOpod2muo00nE4kK/zfTDC1t/N35806zHcg6s2Lthkyjsxvn1rvfuHH7dvYv+qsL5/cgD19ldj56UkOv9iy4nFAQEgZRBQH//46QMtDIRQUAQqC8E3BDK4dIvK1YHaTlEdJpCYIfzM1eBlP6zKKjUXRehjibXWMyGUBEbe0pnzw2CIAWVCA/vK4BnaNbfASVA1KuHppR22VvZplX9kdEIZvV/xsiZk7flcEnJIU0evokamRVpM5H7rDfTSH+/VSJqpLdvqaxHEGicCOjsWWHjvIiyakGgsSMQxI0mE1D2LLZqQVRUwgSViEuSsLEqbJMcjbZuR1huJQddpN5iu7ZEGfCw/jUHx4I45UGYZ/GyIC1ZjlIw9Rw+yyq+gXoMHQ6hlPyfHCbNgjliqY0Alzbia6U38+N3n3O19WQ+eH2RfKCnJclaBAFBoBEiIIS0EV50WbIgoDcEgohbW7UmSD26hogph+Q6QC4DKimUVKguE9KRwzSauwB3pVqQtu8IiQyxx45zUIchpJfLrOw/UlN1NrlMxNCBGorO45h/AiC19YeaCWRaT8IriUaOHyJw6KV6sTCUSSv7zF7YSDtv93wOlaUxYT+3MelX+yKfgbkRdWrVPm7DZ34wwVtu4wccZVveB498ZD/v05PlIn80B78vt1yjr1sEJqMcxq+n2p1cmkpMEBAEBIF0R0DDjVzorizdVyLzFwQEgUaLwF8Ivf0TobZ6sebNiI45wki3/89bgVyZmHiBHJUnY0ysVBuTJ7VvD6kqI1/hfYpwhYmVIl5MrHhfuK1G0oX7XiOEn4yGABlA6Pk9b8HLQM4i7+Gr5s9oL9viovB7ftlyMyiIQq0+SJ5qqjHs28F7/hjqyG3hA8J9uF3TMEn1ObyPpZX5gQO2wfBWub9VO7fx/j2v0GcoSKm20DbIrJ+VpcLbCp+5ze8j1RZ+z/2CaON29YLyVOgz+urIDG07kalHH/L8OkVHq4Ka9eEnkm/5IgpycWCdmCG3KZn6DdXJamQZgoAg0FgR0Nfjz8Z6FWXdgkAjR8CO8MIeXUPkinmLkb1XvGXuwoQLWyZezGeU5wv7+T33ibz4OEWuuF0LqDE0teXPEcLFYzDZChGxyJb5E4+DTejF71U/buH3fD6QJ7UNnVsRMt7HJ2XjCUX2Y5JMhF54BJOuQrgwDkiVIlhh8hUhWXtIGJMp7oMtEzAmVOo9EyreF/6MbRmhcjPJ4n0REobPZYQr9J7HCJE2JnqhccqIXtmYkfPy/tB7nkcQ7wMX30iuL94j/4Y1ZceH1hIaKzTH0Hwrz1195phLtQ5sxZKGgHm/Q8nUvTe5Pn0zaedoiIGtY08m38K/KZC3rSFOn5RzWsaMTcq4MqggIAgIAvWJgBDS+kRbziUICAJJQaB/H416N89T5K2MrDERY8LGJEYRN5CeMDHSmNRwG7x1ETKnvF+K7ETaIsdhq7xqlUlgqF9QjR0iiapf2bnC/Zk8qrbQOHuIJB8fPq7Sfi0jg+zjrqH8C45MCl4NNWiQkxNBuv0rFjfUFOS8MSCgZeVQ0Is4dr0ZwgmCXv14R9Xl4SdhYoKAICAIpDkCQkjT/ALK9AUBQQC1ROf+QZ4fv9QXFGHHqZ4WFSwuJEMzFIoVS2kEDE2aEV8rvZkOf6WQQA0lNzFBQBAQBNIcAXm0luYXUKYvCAgCQIDjcfVkrLLEiaI6s0DBLiGkaXBNDc1bU7CoHlW86gsTVjXi3y09mQ7/Tujp8shaBAFBIDYEhJDGhpP0EgQEgRRGQGOFHh1Z0A3RHx16PoI7t5PWFHV5xFIaAUPzVhTYtSOl51iryRkQsuv31urQVD1Is6BQspggIAgIAmmOgBDSNL+AMn1BQBBAWqLebsqQU6rEgxyZurq8ARBSQ3aurtakx8VwyG5g+2Z9LY1Vy9i8+iKkqn5RaGXyUxAQBASBtEVACGnaXjqZuCAgCJQhYLWXvdXNG5Sm4JIOerLAzh2kOTL0tCR9rsVmByHdoqu1Gdp20FW5l8jF0SySQxrBQraCgCCQvggIIU3fayczFwQEgTACmsOhOyxYkdbQTF/hrf5Na0FI9eX11d0XDwviiAP/+tVqaVsDGt1XZKVVvj23C9CGTjsztu1IgZLitJv33ias6fFh3N4WLfsFAUFAdwjs+R9Gd0uTBQkCgkBjQUCX+ZbOEjK0aKurSxjYtI60zCwiKwrHiqUkAhq88po9gwLbNqn5RYjoL55QnnYBCOojxennldM4VLxUh4QU3mwxQUAQEATSHQEhpOl+BWX+goAgQEGz/oQ9WOXU0Lqd7q6uH6TUcoC+6qvq6SJZRh5Mga0bQ7V3sbDVfgMdY/PR0rCHdA0+tzdW7yMtxa5dIK2pZoYmzSmoQ0JKesufT7UvjsxHEBAE6gUBIaT1ArOcRBAQBJKJgGbVHyENFOaTQYeKtP5li8jUZ1Ayvw4ydh0QMA0YTr5lC8tGWA0i2sMYoHYgoetBRlf5NeqKz2yz4DV9pdRM37uhXhs+4m+vkaaFvanhppTYqJDdwt0pMZeETkJySBMKpwwmCAgCDYOAENKGwV3OKggIAglEQDOhvqBBZ3/OmJA2a5lAlFJjKN+yBWTs2DU1JiOzqIIAXxvfv/NUO5PMAvzIMQRpqNlPc7wGYoLKhHQtyOmvIJ5n2X3kQ79PnGYqDmr0EbZzQUonuWKro8vHRryv6qRJ+qHKDRXqr7aq+tuXJMxkWEFAEBAE6gsBnd3B1Rdsch5BQBBIJQSCPq/Ke0ulOdV1LgF4czifT2/mWzwPubFt9LYs3axHy2lKvkVz1Xq2IfS2Ncgo22BzgOaBaLLIUWt4S793G+k4hPJma0HaD2R1PTynmXjfAv1vyPDQMPSvbN/Ck7oB/fgVsXUguD+iPdnGitWBgl3JPk29jq/KXaFElJggIAgIAumOgBDSdL+CMn9BQBBQ+W56KycSZA9pZrburm5gx1YK5u8ky5gjdLe2dF+QedQhFCwuJK4Xy+aBx3M/i1+9Z7LJNwyZ4JJMJzPwIyRzRLQRBNOBz0xdC/GjOUhpp3BYrzoYP7aDyE6G1/R3j4nehhf1q7AHlXNUIyHAkb7J2Gr4XQoW6CtkV8tpQkEf+5jFBAFBQBBIbwSS/1gyvfGR2QsCgkCaIKA7QrprB+769VkixTtvJlkOPY48039Ik29X45im9dgzyPvnr2WL7QhS2THCOtE6zu5FCC/TUaLh8IpOBKkcCk/oL/CW3pzpIVbgbRn2qKpO5X5wqO9BILdnYgz26d2JUjLsYV0NMnsA2plW3Ys2BN9Td1OATrN5yYRTJeqpuZaRBUKqMw8pK+wGQx7sclDLW0FAEBAE0g6BRP2tT7uFy4QFAUFAPwhoyB/lG049WdDrpaDLScauvfS0LLUW7x9Tydi2k+7Wle4LMrbpQPywoDrrBqI4BESUbR+8vybDS20MAbory6O8olkgo6ywyyViWG23vClPKI5hKwWp9YX3rwFR7QLiy0/HH8hy0z148ftf4UnNx1gPlisxwyHEhWFCzOPUZOX7GXv1V79LQY+npkPSbh97SEmT27i0u3AyYUFAEKiCgPwlqwKJNAgCgkC6IRCEqJG6OUu3ie9lvuzRMfbovZde6bdbqbgajWQaPDL9Jq/TGZuGjFIr8/3zV8wr5PzRgfCQcjgvGztT7wE55W3l8Cv2hBaBjzLJ/NhpohFhryh7Rm3whH4Ob+v98JA+CQI6G+JJBgQANwXBzUN/Ht2FH7yPiewOtH2B/q9D4ZdDgaPZvUUW5Ynlfcb2XSmQty1at7Ru44dwmpl9ymKCgCAgCKQ3AkJI0/v6yewFAUEACGiapktF2sDWTWTs1keX15jDdW2nXqDLtaXjomwnn0eeX7+r89SZnI4B2bRU4ol5AQM54d18ASSS81BPQbgul5HpEK5pOhXCRnfBO3oTQn87oa2LKURyWVSJPaPvIu/0eBzDJJXfDwERPhmfny4JEU8Pun+I9mfwmdV/7ThH5AbHuE9/5MXqj5CqslD42ycmCAgCgkC6IxD5e53u65D5CwKCQCNHwJDbTHcIBLZtJlP7zrpbFy/I8+sUhO121OXa0nFRxvZdyDPjx6RMnb2cLRDaeywI5J0gnGcgj5RvPtjDerQ1JMrTB6HAz4FMvgHC+g88pJy/ytYVYb5fwhvKIbijQXRXIcSXVXrZo8o5rH4Q0d0Y/w2QUbZTkXsaKU2jGvDD1KkbBbZtinzUzVaVstHNamQhgoAg0JgREELamK++rF0Q0BMC2Tl6Wo1aCxNSQ/NWulsXL8i/ZjkFNm8g+7nX6HJ96bQo++W3EYuC2c+7lsz7H5bwqTeDV5NLwVQ2VuPtEc4rvcLhhcfTqzyn5+B9JOS3G7yls+HxvARtbFwTtR+OuQ7jnQtiewHas0BsF/SR69QAAEAASURBVKMkzWn43A792YvKRDZiXM83sH1L5KNutobsXN2sRRYiCAgCjRsBIaSN+/rL6gUB3SCgOfQlasQXJrBjM2kg2lwbUo/m/vELModzF/W4vnRZk3ngSCp97n8U2LQWpPQaynn9a7KdeQkZWiamXiwHlXJZmL0Zh+/mgkyyGm/EfgcZvQziSexNZWNyWwJv6dfwji71sXiSpsKDWVApQmJDpWRC/Q1NW0LwLBMe0s2RIXWz1ZuQm24ujCxEEBAE4kZACGnckMkBgoAgkIoIaCh/wLUGdWW4p2YxFvOQ/XS1rMhiPL98C6aSQZYDj4o0ybaeEbAccixpJiNK8HxPpS8/SoWXnkDOD14m8/AxlP3MR5Rx22NkGtQw4lMcnpsBIsolZiLGvPZaeEc7wwO6DqG7tjBRbQVC+hbCfbm+6TIc1z4c8msavC/5t2zQXXkUVcZGSr5EvhayFQQEgTRHQAhpml9Amb4gIAiEEAj6fboUNvKvW0XmAcN1e5ndn00g28nnpu36ri2w0Zm77VQMT106mu20C8k1+cMKU/dM/ZqKbjqXCq46FbHVPsq49v8o+7lPyHrsmfVaXonLzFwUDtWtMEF84LDdE5CT2iccmsshvP0hdMQhwAfDwxopn2rqPYgCWzZWPjztPxtyETXhC+Xfpv1iZAGCgCDQ6BEQQtrovwICgCCgEwRQRkRror/QVv/GtWTs0iNpF2kGQiLvQ7kNbyjCMWnnqW5g93eTSLPDS3r4idV1Sdl2Dg11YXbdQYJmAsd0M8Zcs1jJ/VVFQhpZR3DXDip54g4quPBock/9iqxjT1LhvI6r7iJjz36Rbimx5ccBw+BJ7YVrwaJJETP17EP+9asjH3Wz1VognBqebTFBQBAQBPSAgBBSPVxFWYMgIAgg7NBMhhatdYdEYNtG0iDKkmjjIMh3EOL4UqmF+Pb97bBKaaLPE8t4ri/eJdsp58XSNaX6TAcJ3R8kiMuccK5jupnttAvINfGtmKbt/vxdKrzmDCq663IIbbWkzDufoqzH3iLLwcdw3aWYxmiIToYmLeAh3dAQp07qOY2t2qi/eUk9iQwuCAgCgkA9ISCEtJ6AltMIAoJA8hEwtmqX/JPU8xmCBfkUdDpVTl+iTp2PMhn3wyv6N5RJH0Ltx7sy3bQA77ncRkOY+9tPKVhaQvYLrm+I09fqnKzhyt7l/UFGR4KUct4ilzdJF1NYu93knjIxrin7Vy2h4vuupYLzjiDfojlkO+Niynn7e6XQa0ixEkXmfQ+iQGkxBYsL41pjOnQ2tO6QDtOUOQoCgoAgEBMCDXP3EdPUpJMgIAgIAvEhoDXTZ4mUwJqlxDfXibDlIE63gYw6IAbzaLZL1Xu0gUdd5PCgBqQlEaeo1RiuD18l86hDanVsQxy0GOSd0eJwXS5F0heklAlquphl9OHkfPuZOk3XOeF5Krz8JCp99j4y9R5A2Y++SZn3PEvmEQfWadxEHWweOooCa1cmariUGkfLaZJS85HJCAKCgCBQFwSEkNYFPTlWEBAEUgoBzWxBPcXMlJpTIibjW72MTD371nmo790muhdk9HCrj27N9FQoxTEAgjAFyCPdDOXShjDv7N/Iv+Qfyry7biSpvub+OzzKFpD6dxHqzC8vRI04hDcdjEmjb9Fc8s6ZkZDp8jhF/72Y8s8+BKWKtpLj0lso+5UvEIZ9PvK6myfkHLUZxNRrEPnWLq/NoSl9jPobh9xfMUFAEBAE9IKAEFK9XElZhyAgCFDQ70V+m/68pIH1q1ATsi1RHW5COaT0deSMXgU10lOhTlqZdoKLkhukylp5Rz1+r5zvPAuxnL5kOfS4ejxr/KdiAag/QT4HgcRbKahe/Ux+2gSRow0NROhjXYXlsOOVIFHpm0/Fekhc/UpffIgKLj6WXJ+8Qeb9D6Oclz+njJseJFO/oXGNU+fOqD1qaNWW/KuW1XmoVBtA/Y3z7RFuSrX5yXwEAUFAEIgXASGk8SIm/QUBQSB1ETBC2Ki1DvNIPR6lFGo9CmU4amn7ILT0aHhG2YvH+Y+VbSq8pxzG2xThpw1lAai6Ol99TOUlNtQcYjnvPJ+RcvG/57lQcz3d7it7DULY7u8eUyxDNFgf+38uJ+eb4ylYsDupc/D8/BUV3XgOFVxxEpEB9URveoCyn/6ArEeeQmS1JfXcPLj14GPJv3GtKluT9JPV8wmUeBtE3MQEAUFAENALAkJI9XIlZR2CgCBAGkq/GDp00SUS/hWLyFLHPNJzwzUdnyuxUGmYdzI5/dltpLfgPb06w1vFc1rfYHqm/0C+BX9T1uNv1/epYz4fk/r9zFVrQO6X4mq7WePfU9gyWYzYfIQeu5P4DCK4K49KHr+dCi44ijy/TlG1THPf/JYcl91Gxq77RKaR8K153wPJv3xRwsdNhQENHbuqv3WpMBeZgyAgCAgCiUBAC8ISMZCMIQgIAoJAKiAQKCogJ8IG9WYGlH6xnX2FUjety9o8+Iv/IsSLFkCUp70xSLuhDOvBgGfB23cQCFVKGDxo2U+9S76lC6n0uftTYkrpPgnH9ferPOTC6/9D5HGr5axAGPc7yH+1wzN+ER5WtK4n77ixWy+yn3MlGbv1psDGNeT6diJ5f/8hoRDnvPsTcQh4cPfOhI6bCoPZr76LDBlZqTAVmYMgIAgIAglBILVjixKyRBlEEBAEGhMChsws0uwOlEop1dWyAzu3o3xFgar76Jn2Ta3XZkGO6PXII12PfMftIKP8RHIwQk05dZRFj5ioZoGYHIfw3nYgrA1ibhe8aneoOpe+pQvI8+MXDTINvZyU80YtIw+i4nuvKSOj7CF/A15xFrdiKaZn8f5uvK8P869aqkrH8Lns516tyKnjohvI/dNk8uAV2LapTtOwHHYCQpJ36ZKM8t82zWqvEz5ysCAgCAgCqYaAhOym2hWR+QgCgkCdEAh6PWRoo88afb7F88hy0FF1widycEdjgIaBiA7Hi0V67ob67iSXiboi15Rvd+8rttK2Bqyr6V+7gkqfuY/sZ11Gxu59ItOWbZwIMHb2cVdR6QsPwOP8T9nRr8NLnokHD/yAQsOrpIGudah0zIlU+vwDZIbwUTbCijPvfIrMQ/Yrm2u8byxjUCN1yYJ4D0uL/gautRxIkUiGtEBMJikICALpgIB4SNPhKskcBQFBIGYENLOVDO06kR+lUvRmPuTEOUYdkvBlcf1RDuV9HnVJmaAocxJ9DYLKoZwNZZ4ZP5LWrIUSxCm8+nRdCtQkE1sNYZ2Z/32M3F9+QJybG7FfkQPLAlbH2/z0Gjyjxbj2nF+MTYPlEHPpmEgZGseVdxC/gl4vub+bSJ6pX1MQofixGuemen75NtbuadXP2LEbcXkrMUFAEBAE9ISAeEj1dDVlLYKAIKDcPaYuPXWJBOfDBfK2kfWYMxK6vj9AUK6FoFEZGcXonE9YiDIwDW3uyR+Q94+fKfuZDxt6Kml3/izk4Xr+/IVcn71TYe5cwZIVgjvDS34Dwrc5VLcAHtKHii3EglebGrh0TVnpmE/fIMuBR1HOG99QBufA9hpQYR3RPlhPPIcC27dQsDA/2u60bzN26RFyaaf9SmQBgoAgIAjsQUAI6R4s5J0gIAjoBAGuP6hX8y78mywHjE3o8thbFlHd5YF3gpxMhneUQ3pTwZzvvkDe+bMo+7lP5GY8xguS/dJn5Js3i5yvPVHliJEQryr/8CEP15u9pv8FMb3Y4UHodmqUFGHPqCodc9mJRGYzZdz2KGWNf584J5agqB3NVLju4rnRdumiTWvZRhfrkEUIAoKAIFAeASGk5dGQ94KAIKALBDjUz9iA5V9WFpbS6qLookp+CJv/smUX+WopcM55pMZO3ZAn2z5h1+oU1NJ8CWG7v4CUTIDq6k2FVhoIMjomVVR3sVLn60+Sb9Ecyn5xEmnZuQlbu94G0rJyKOe1ycBqLpW+/EhMy+PSL4da/UrciFWX+QEFl4J5D9+FVLDg7vKlY74jG7yguRN+Ivslt+D3vGvZFPlBFIfr8/dEj2ZEuRfyNVwIvR4xlTUJAoJAaiBgvBeWGlORWQgCgoAgkDgEgkX5FNiwJnEDxjHSpLVbaUupmwY2za5ylDcQpJv/WkondGpFFkMtngkGAmTIaUImiNV4//y1yvi1aegBISMbSMivUNllT+npIKjH23yoT2qipxHC+QG8patQIqS/OUDWBozi5RxDQ9uO5LjwevLBC6bHkh61uX6RY0y9B1LW/S+S53eUPHnt8UjzXrfNoab8udNEXJN2IryjpyOcd4HPSBn4TnQ2BWk1rn1ThHCngvmhuuz+9lPy/vMnWfY/jGynXkCW4WOUqrblkGPx5MJJ3EePZuo1kFQ6glaLvxt6BETWJAgIArpBQP6q6eZSykIEAUEggoBmMqkah5HPetuyB8g0YHhCl3UwvKH3ZrnpdoRt7gvv6OsQu/kERHQsyr88mOVBrUqix5Bj2NDGRMv1zaeUedd4sh59WkNPJ2XObx17MmXe8yy5p0wk59vPxDWvbBDPS8I5xDfh+nN92j/hLd8HDyrG44HEZDyYSDWLlI4pOPdwpajL5WOsow8nLYgHNi1bp9p0EzIfY8++RIboocoJOYEMIggIAoJAAyGQev/LNBAQclpBQBDQFwJGLo9QR/tzRz69u3Iz5bk81Ds3kwo8XnpwWE+yI39tq9NNLy1ZT8sLSqiFzULn9WhHQ5vnRD3j33kF9PaKTWqcHtkZUfvE0+iH5zfgLCHrkadAhXRSPIfG1HcpPGK/ekz0AAgqC9+wXQ3xmztRGuZvhHc2dG6p+4t3KZifByXWO8nYuSeVvvhgTOvSayfHVXdB/GcsuX/8kmynnE9e5I76Vy2Ja7lMSkeEc4Y3Q9RoK0J3uS4tlwXiG4Vl+E7MwrU/D97TVDPnu89TAHVHLUeejMKmDrKffSX5t2xUece68ZbigZCxdd3/pqXatZP5CAKCgCDACIiHVL4HgoAgoEsEgsi1MnaGImUtbX2xk8YvWktj2zWnl/fvS8d1bIm8UCch4havID00fxW1cVjp2VF96Fjse3zhGhWmW/l0HLr7BPYd1KYpPY++J3ZqWblLrT775s4iy+EQe0mCrfMbqL0hUEZG+RTFYcXdj8KhnUk4bVxDen6ZQsX3XAXl1f6U9eibcR2rp85Zj71Npn36U9EdlykBI8+vUyD+8whpuc1qvUx+BHEKQra55A8/nPDgM5PTM2xe2gKyuh1kNdWMw3V9c2eS69O3qOTpe6C0uwniX0eqhxZm9pymed6xsWN3CvpSQ2Qs1a69zEcQEATSHwEhpOl/DWUFgoAgEAUBrtVn7NEnyp7YmqZBeKgXvKJMRHMtZuqL9xFbDtGijSCa53Vvp7yjR4C0dsty0C9bd0W6lG2nbtlJ7BU9tXNrag5Par8mWWX76vLGt+AvMjRrSeZBI+syTIVjv0CI7kYQjkHwim0IGGg1iCnbWmxvg9AR5xGy1zRV/uPwLfmHCm8cR+wxzn71S1I5hBVWpN8PliNOhHjRVxTYsp4Kbzib/Cv/VYtlIaPAhrWq/mhtV88hu6MRws3EdB68ojtAQK+Bh/w3eM2/BDHltrcQ0p0qZkYOqQEEnFWFleGBkWfqN+R8FTVYf/lGiYA5LruNrCeNI2OaloTiv2UalIbFBAFBQBDQIwKpcl+hR2xlTYKAINCQCGgamXog56qWluf2UK+c6OG1HMLbPsNGdtOefK4e6LsdYbyVjUN7+zTZQ2Yr76/LZ+/s6WQ9+dy6DFHh2CJ4QbnkRysQz1sz3PRiiZmeRA7h3UUWOgK5pDeBlNhSzTkGT3jp8/8j14evkv3CGyjz3ucrrEmPHzLvf4Hs515LzvdeoJLx/0fk91VYZvH/rkOZFAtl3Fy3UGa+Qbgz002nwVvK5HQRvKX8jW+O74cLWydHC2Db0GY9/j8qPDfaPPz/zifX+y9T6UsPE7ldyDs+lewX30TmYfuTZuWKrOlhpp79pORRelwqmaUgIAjUAgEhpLUATQ4RBASB9EBAs9nJ0LxVrSbLXs1NpXzbXdWyzSbaBqJZvnTLphIX5cCTWtk6ZthV7mjl9kR89s39g4zde8MD1D0Rw4F4eGkdPKQfo9xHE/zv0B2iNv96DSCnHjoBpCSVzTPtGyq85nQK5O+knNe/Ivu4q1J5urWam/386yjn7e8oWJiP+pxnk+fX76odp+gmeAOhxMxiP3Ux9payFcBL2pTFjxDGy6VhSvFixeWHIHS1PuxJr8t5anssh+Wb4D30zf69xiGCxYVKnbf0hYfgSf2DTP2Gkv2ae1QetqFthxqPbeidWk5T0pAbKyYICAKCgF4RkLIver2ysi5BQBAAAkF18x7YtC5uNBwmgxI0yoRiL0ahL9ZvpxUI1T1Fhd6aacrGPMoCMe2abaf1xS76cPUWOqNra2ppt9LcnYVkMmiq7IsZ28/XbcP7LGIi+/u23fTnjgI1Tq3KvpRfid+vvDymYaPJ+1v15KT8ITW9N4FgjLIE6HcorH6L0Ez2lN4E9dWOKP1RkzFVnYAQTvacZTfkY06Xk7yzfqFA3nayjj2JrEedSkGPm/xrltc0/ZTfx6HIGbc9SizU5XzlEXJNeoeCJcV7nbd35jRyXHar8gz6V8YnclR5cFZZ3gjiuRBe0mEI5z0cdUs/R4h3pJ3DeAehLFB9mwOkMrBxDflXLI751AEIHvnm/6mEn4xd9iHLqENUHi7h9ymwfUvM49RXR1OfgSofXoOYmpggIAgIAnpEgMXzxAQBQUAQ0CcCRhOZeg8i71+/xb2+DvBsntG1DX2zcQfqhWp0QGt4KTAKvzejfugNfTvT+MVr6WMQ0XyPT5HRaPmh3bId1CXLTtfPWqJCfIe3iK7EG/cEwwdwbU5WmzW07USBzfET78rnZbXV6+ARjdV2wVPGYb152M4FKXkk20UOBqoBzfvHz8Qv6xEnkf3MS8iGkE7X5xOIhZDSySyHHke2k8+DdywDYj1vqJIu8cw/sHM7lb7wIGXccD9I+jby/l2zF3FvYx8LL/m/IKT5uNaFeK3B+5tRJoatsv98Dr4LveBh51qmyTJj155k7juYOG+2NhbYtplYsZnNvP+hZB55sMpD9i6YTT68grt21GbYhB9j7j8M+aMNX3Ip4QuTAQUBQUAQCCOgBWGChiAgCAgCekWA/8Q5n7ufgs7SOi1xJbyjjy5YTa+NRi5X2FhtdwfySVn0yGqs2TW4y+0lG/o4yuWdRsap69aCGpRce7X4fuQO1qMxOXkKIZu9QTyuBIl9D6G+XvyPciW8qiljeChhPfYMsh13FgW9HvJM/4FcH7ycMtOLNhHb2ZeTZfQRqPNhAgn9lNyfh0hTtL6xtNmQZ2w79QIquvOyhHmLP8S1ZoKaFYVwshgWix7Zse909OHQ72RY5p1PIYk1QO4fPk/Y8FxGyLLvAWRo35l8G1YroST/ipBgVMJOEsdAms1BjmvuRk2Emv++xDGkdBUEBAFBIOUQEEKacpdEJiQICAIJRQAkxP3Tl/B4/B3XsH6QzdtmL6Pu8HAaIJA0a3s+ndOtLR3StvblNOKaQBydtaxsclxxOxX931XkX7YwjiNr3/VrhGsyAT0ddSlPDueXukBGLy2w0VPZbhW+W/vRk3MklwGxolaloXUH8q9bSe6vPyL2MKeCmQYMJ9sZF5OxbUdSnrspE5EjmjiPruOqO8kET1vRrReoMPZkrZm/A7ejXu3t8Jyyt/2xYqvyuOcgnDuRZuo1kDLvex5iRQ9RsKgwkUOHxoKX33LwsWSEmJCGf975s8i3EF7TGEKlEzkZ04BhZOXyTqaq+emJPI+MJQgIAoJAQyIghLQh0ZdzCwKCQL0gENi4lpzvvxT3uf7akU9bnR6ywjvROzeDOmba4x6jvg7gWovGlm3hBbs0qadkwvFyqYUWQOyIBW86GQOqXiWflMM2L8230a0gIxyumarGpT8s+x9G5jFj4WFD3uDWTQjn/TahBDCWtVvGHKFqyRrbQFQH+YGe339U8/CvXhbL4XH3ybznOZVzXHRH8r4jLyB8OxvkczPEsQ5FnukkPLi4Bd5zzk8uxXendYKIadaDr5GhVRsiiP1wrqx35tS48Yj1AGOfQWQZsh/C4juSb+mCkNcU3tP6MPs5V5KhXaf6OJWcQxAQBASBBkNACGmDQS8nFgQEgXpDIBig0uf+V+ew3Xqbb21OBELDXjDOp+Mb9GTZvfB+MSnl3EEHPGD343NHkNIREEP6yW2kTQjXfBx5pClXHqYaQEy9B5J534NQBmQ06rq2oEDBbtT0XKLyLb1z/oD3Lb+aI+Nr1lAnk+tlcj6gsXN34s/BogLlofX++Qv5Fs+Lb8Ba9s4a/x4F1q9BuRiEgSbYWAxrMcK4L4MSL+cUPwdyyvVLWeyKa9kW4BnFwAQIH3Gup/quv/CA8iibDzwKdUibkmfGT+TDNUuWaRlZZDnoSNQy3YeCpSUgpjPJy5EXlcruJOr8mtVGjuvulXIviQJUxhEEBIGURUAIacpeGpmYICAIJAqBoMdD3l++Ie+8WYkaMiXHMQ0eSaa+Q6johrOTNj8u8dHGECBzWLiIvV5cJoaJCHtM/4MQ3pYJ8oIlbRFRBja270JZT72rappySRDTPv3hgWuHhxglKveUSkspUFxAQYgD+bdupODunSAlxRRkpWOLVan5apnZpGVkgiR1IkOb9qQ5MlW5DiYWLEzk37KB/MsXkW/JfHjaFiI0d1OUmSS/KfuVL8iLXFrney8m9GSzQEin43UBCCmT0PtU6K6bZkLgaAcI6qnh0O66njR7/Pvk/Xcu+ebu+X029uoPtdzDiFBb1DvjR4TXzqnTadz+AD34zyq6f0iPqOOYh45CCPQI9RBDiSD9MxsKvZuj9q1to3nQCLIceryE69YWQDlOEBAE0gYBIaRpc6lkooKAIFAXBDgs0/nOs3UZIi2OtV94A3JmJ0MIZ0KDzLc4qBHnl56Imqbp4iVloOznXQvPV08qvrdi3U4O0+SQWt5yTVv2oqq6kEw+zZzXF2bmENcJuiCcBW9ZoCAfYcAbVPmZAMgrE9HalB5K1gVkop31yBvk/PAV8iRQEIjnux3E8yM8oOBapf3NfhqF16sI8b4zy02/wYPeDES1Ll5SK1SHLYedQK43nowKj2ngvmQeMUY9KPAiBJofANTGvt2wg4q8rJ6NsOAazNCqLZlRNoZrAQfztpJn7kzyL/mnhiNi32VDuK5RwnVjB0x6CgKCQNoiIIQ0bS+dTFwQEATiQgBEofSVx1SYZFzHpVlnFmGxom5lwSXHNcjMOZz3NRAQDtm8K9Nd5kltkMnEcdKsJ1AW5tdvyf3VR3Eclb5dOew149r/o+In7oCncWZSFsI5xQ/CS3oZwnb9+F68hO9FV4R378ZDixvQVhvd2JzXvyH3j5+rsOqaJm0eeRBxxAALHiliunZFTd0r7GNBsyv+WExDmmUTl206vG3zCvur+8ClY0x9BpNms0ME6c9Q6RiEgNfGtCbNyHHxTVDXldqjtcFPjhEEBIH0QsB4Lyy9piyzFQQEAUGgFgggjzTochILHOnZgqg9aezQhUxDRqEWZ/KEXspjuBThupwv+BdCM7tBzOhwiNks8BlpA8J7+yUgZ7D8uZL13n7WZaj1+SYF83cm6xQpNa76PQDZYY+6D0rDwYJdCZ/fVggbtYBHtBtI6PgSq8onHW3xU198R5bjO7M5YKBWCPPmMPBteIDBYb41WcYtD1HA6yZfDN9rXp8PdVe1ps3JMgaCX517UIDDrJG3uzebvm03RJg0OqlzK/p9Wz5td7mpZ07G3g6jwIY1IPd/IHR3C+ofDyTrQceoHNeg26lCvPc6QLkO5qH7Q8yoM2lS7qUcKvJWEBAE9IpAbR5Q6hULWZcgIAjoGQHUdGSPSWMw99SvIdIzBjluw5O+XA84xLMgo31NCM8E2XgUZT4WQoH3BOQL/oZ8wnQw9ipznUf/muXpMN2EzZEJuHfWL5Rx26PE+a+JtrYgmyPxneDvwVirryy3+F2E9M7Bw4uVPo1eR73SN/Bi4lqTmQfti4cs+5H3569r6lZln/eXKRA0e4ACeNBgO+1Csp5wtgq9rtIx3BCkIE1et51O69KaWtut8I42o00lbrX3nRWbVN3h6o6NtPvhjXV9/DqVPHWnesBhOeIksl9+G5lGHKC8p5F+NW1Z/IprC4sJAoKAINAYEBAPaWO4yrJGQUAQKEMggHy+YC3D6MoGSfU3bhcR6q9axp5Enu8mJXW2TuRQTnSZlepud1OQBiNn8Gl4wzbCO5YBknEACEnEtsILlhlOuYy0pcLWfsr5SryIhX4am3n/+hUqwweSZfRY8kyLj+zFilVXfC86gJyybcL3YgU8opdC+KgvvOc/u010pM2vPOs1jZdx+5PweE7HQ4PYQ2/Lj+dftRTKydPJ1L0PWRDSzqq8SoSIf1fK2Zy8Qtrm8tAR7UJhul+u306ds+yUbTbRWyCkW5xu+nj1FhXOm4G2vRk/5GBPbbCkhCz9h6r8VwPCcYPFEMSqxlurIhyQC6tBOVtMEBAEBIHGgIAQ0sZwlWWNgoAgoBBQN3hQ4fSjlqDeLbB5PZmhuMuhil6EZCbLLCCYqxF+uRAhukNBPoMgqBy660Se4E0ZXpUn+AEIK7ex2A17yowpRkpt464iz2/fk3/VkmTBlNLjeqZ9S7YT/kNGKAtzCZpk2jK/Ed8RUnVqWZWXRbAORog3e005xLs7wnkrh245Lr0VXs2WdX+4gtxQpXK8aA6ZeiGkduyJSpU3uGUjiuhyxiuRJxCk1UVOmrezUL2WF5bSRT3bKxJ6KHJJWeTooDbNqMDjo6cWraX5O4toQFOUg9lLaC0LHvkWzCYfckuNnbqRZb9DyNRvSKgObiV1XssBY8nYup2Ue1FXRH4IAoJAY0BARI0aw1WWNQoCgkAFBEqfvU/fNUnDq2UFUNu511DJwzeRD2UpkmVuMIxJIJ1/gnSWoNYkE9OLUf6FS8Psglf05kIrcvKIHobSKquspprlvPMDFd15qe7zi/eGe/arX8JL+i25oL6bLOOr/ypCdNk2g4DeCeErfljBZWFY8Gi6x0RXQ/AoYkaIBGX+3zPkevsZCuzYGmlOyJZ/PywHw1sKJVvvrKnIuZ5GhFxztn/zi6kQpHNo82xyogTM3XNW0FP79sLDFE2F7T7yz2q6uX8XKvH5FVm9c1C3uOfEpWOMCKs3NmtJXvx+euejjE3hbnJcfx/IaGVaHvfwcoAgIAgIAmmDgBDStLlUMlFBQBBIBAJBhLJyaKZ39vREDJfyYyi1UeRIFl53VlLnyoG5N4F4HgNv1+HwgrL9C8/pU8UWGgGCyl7UY5FXyqI2qWSmgSMo47p7qeDCo1NpWg0yFyZmWQ++ivqkL5AHpYOSaYvwfcjFQwqmfyxm9Ci+J9eBiBbCY9oZxDRiWc99DK/mYpDFnyNNCd8aO/dUwkcsgOSd8TNCe3+vcI45eQXKI3oI8knZpmzcoYhpJKz39r+X0cPD9qGlILF/7igg7tfWYVV9KgxUzQdDyzbECr3Gjt1DXlF4WzWzpZre0iwICAKCgP4QkEdw+rumsiJBQBCoAQG+0TNDgbaxGIvWBD1uclwHr0sSjbPdnsh2l5HR75Eb+DBIxtnIFeR8wZszPTQN3q89VCOJk4ljaA6P9P07P44j9NuVa6WWvv4EOS66kbieZzKtH0Jz24N4foWatRuQV3oaPOrf4DtTnoxmXH8/aV5vUskor9G/djk5332B3N9/CSGwYWS/4nYyDdgjCDa0eY4imRE8drm91Mwa8vJuKOEcVDBr2KS121Q48vcgrA/Dg+pFbdpYjFV53Z+/R6XP3Ivcb6+Q0VhAkz6CgCCgKwSEkOrqcspiBAFBICYE7BkqtzKmvjro5J4ykSwjDyLbSeOSupqIxMsCqOx+4DTRPSChB4c9ouwFuxvhmWsRplkCL1iqmAne42Tm2KbKOmOdB9fsdH35PmXc/KAqHxTrcbXtd6nDQ4vhLZ0GMrofBLEixqG05uGjyfXtJ5GmpG/9S+eT862nyYeHOOaRB5IddUA5r7ayHdexJX29YQe9v2ozPffvOrq6T0daV+wkFwjo+T3a0cX7dKAA8lU5nHd5YQn9tnUX6rDuPVTd2KUnkTlEdCufUz4LAoKAIKBnBISQ6vnqytoEAUEgKgKa1UamfQ+Kuk+PjZaDEI4KxU4ueUEg48k2Vt7tAw8YC9SUt5/dRvq/IistAQFJFdNym8FDOi9VppMS83B99Joi6aocjCO53xfOMz4ZodzXIFyXa9iyaRmZZD/ncgrs3EH2s68kY/fe9YqLd95Mcr76BPkWzUWO6THIw76ajF1BFsPGirs39eusapPeijzSdg4bfbZuG53cqZXqUez1UR6UenMtZuqcaVfE9P55K+k7eE5r8ppyqSbNYo2cRraCgCAgCDQaBFLnrqDRQC4LFQQEgVRAwNS+s1LuTIW5JGsOhhatEH55E2lWO5U+/wD5li2krHueTdbpysYdjJqk6+EJnRGuQ+qFc+hlCNl8BOGjQdg3Ed5TrkPZ0Mb5tUFnCQW2bW7oqaTc+UufvocCu3ehRulj9T43FjHyr/iXnO88i1zv38h6zBlkOfDIep+Hd9Y0cr78CAU2rCbr0aeT9YyLyYg8W7ZMkNLhCOVtbrMo76cVeZ+Dm4VquX67MY+OaB8qG8Pqu/u2yEVOqQ2e0t1KICnaQrRmLZBD2iWUQxqtg7QJAoKAIKBjBETUSMcXV5YmCAgCNSCA8Drvwr/rXkqihlM05C7zyIPJMuoQ8qDOpHfGT2VTsZ19BflXL1UEtawxCW9YNZWDFPmp5xPIJWWV3RvhBWuK0N3l8JA+gLYHsjzUsZyATRKmUeOQGTc9gPxaD5U+d3+N/RrzzuxnPiQfyGHp8/+rFxgyrrmHDN32IRdyOiNmgNiQ9YRzcK1c5J4yiYK7dkR21WrL4bQGqOXGa5axJ5O51wDyrV9FHNocTfWXPaA3/rmUnhjRi4pRSobzSjeXupX3lMvDFMJ7+uzideRGv57ZDhrXHeVdYNYjTyFjv6FSezTeiyL9BQFBQBcISB1SXVxGWYQgIAjEjQBuSI0o++Cb8wdqEHrjPjyVD7CddiGZEObonvw++RbOqTBVP26m2ePEdRe5JmOyLAP3+0xGby6y0UBzgK5HPim3sXHplyFo69SAZJTnYT/nSvL8+AX516/mj2JREHB/N4kcF99MGkJ3fYvnRumRuCYmZZajTiHXp28SuUrLBg46S1G/cxbqd3Yl6+EnUqAwn4IQAorXfCCijyxYrfI+Z2zLp5bwbrLnMmJMJrmsS3XGdWq9c2eQsVtvshxyDBmaNCMWJCI3CxuFjI8f3boJlYB4XjNzCY1u1ZQuRU5pK7tV5ZXe8fcKVbf0yt4daT0EkbY63dSlWa4Kp9f2Uss0cg7ZCgKCgCCgNwSEkOrtisp6BAFBIGYEgn6UJ8FNKIfk6cGMnbuT7cxLKFiQT66PX4UnKa/qsnDzHMjbSraTz0VY5KLQDXXVXglp4fzAwRCqOQilYMrnh5TCdToN+aSsqroBob2ca8oe1Po2+9mXIyz0OQqWIz/1PYd0OJ9vwWxyXHoLvle7oUi7IilTNvUfShlX303urz6gwOb1Uc/B5V+ChQVkPfBoMiDE1b9ySdR+1TUuLyihifBYvjGmP/XKzVCeSs4H7ZxlV4c8sXANbYE3s2+TzOqGUH8v/Ah99yPv2ARvqfWIE0iz2SmwdWPZgy2r0UAZGHe/VrmqDMy0LTupfYaNdnu8IKFO6tckiz5cvYW2gYx2z86gLkegFmqbDig92vBh7NUvXPYIAoKAIJA8BISQJg9bGVkQEARSHAG+ATS0bq/y1CgGFcxUXo7lkKOV98jz+0/knfaNunGubr7B3SCqfj/ZThxHnl+mECEUMlmWU56J4iQbUeLjv/Ca5iGkd5QlQEsRvvsDysEcAtJan5yUhZ6M3XqRa9LbyVq6bsYNFuyi4O6d5Lj8NuQh80OMBOfcgtBl3fMceWdO3asXlj2S3vkzyTxiDFR4D0D+7yYKFhXEhLUNRJHzO7tmOZSXkkNo5+8qokHI/WRFXP7cEcSRyeRs1B51+wPUJFzepfIJgniww+WC/KuWItR2CDymxynhMC6dE/lbksV5pi1yqHduJsLXgxjXSOyZHde9LY2B55T39wA5zT3lPBEzqgywfBYEBIFGhYAQ0kZ1uWWxgoAgUBkBLYBSE3gFNq6tvCs9PmsGsp19GWkt25L707fg9Vwc07zZC6XlNgUpPYfc302M6Zi6dmIN1TtVCK+f7kQIbw94RsegLMwP8JRmg422N3LWaf2Y7axLKbB2pZR8iRFu/7qVSHS0kx2Ks96/fouZBMYyfNbj7yivqGf6D7F0Vw9bfAv+JmPTZmRFXid53dV6VXlAJoNL8kuoHchmp0wbPbV4rfJM9srJoIHNssgXCKq8T/ZW8ovzPO+Zu5IGgqCWD+mNNrlgcSH5F81RHlLToH3JcgDEl4KIuti0x8trNxkV+XRg29JuoZeXbKA8N77/OQ5qt99BKEHVU3JHo4ErbYKAINBoEKj07LrRrFsWKggIAoJACAGzhcxpWgLG1GsQ2a+4nQIQeXG9/mQobDCO6+r5+SsK5O+kzAdeiuOo2nddDW+oB4dfZK+Ys9sGRLSgUm1S9qAm04ydupN33qxknkJ3Y7vef4l8//xFmbc9qsJUE7HArP+9RMGSInJ//1ncw7l//hr5pm+Rech+ZEUIumZzRB1jTZGTHkc47i63l4ZCGfeinu3ppSUhwqjBL89hvKyaywSU7a3lG6k/wnaHoW+s5l+znFwTnifPT1+Sqd8wclxxB5kHjqhyeB94S29EyZiOKAfT1Gohy5jD4R21VOknDYKAICAINCYEhJA2pqstaxUEBIHoCKBGp3n46Oj7UrTVCvEXy7Gnk/e3KeSZMqnWs+ScPYMjizL/+3itx4j1QJsWpBIQT0M5rvkvSCqXgOFc04h96TLRjYVWyk8iKTXkNJX6oxHA49iWPHkXBYoKUQ7m0TiOit4141YQ2+xccn/+bvQOMbT61y6n0lceUx5G+8U3ol5orypHcYjuiZ1a0h1/L6epyOfcADEhS/hLuBHvv0QN0St6dVTKuwt3F6m8z4shROSvRRg/h/E63xwPL/I0POg6kOwXYU69B1aYU6RkTO7IAxDma6qwTz4IAoKAINAYEZCQ3cZ41WXNgoAgUAEBDYTU0KYjbiJ/qdCeih+0rByynYUQXXsmhIteowBUc+tqnAdnPuAIqJj2COXT1nXAao7PxiNQ9pL+hvqkVpDSz1CX9AOnmS5BOZi+CN91IWL3mVILzQZBvRMlYdhzmgyzHnUqGZE77J78QTKG1/2Ynqlfke2U88nYpSe+L9Nrtd6Ma+4mY8++5Hr/ZZXPXKtByh3ERJCQE245FLmcFijarqv4e9ErJ5P6wwO6orCUihCSe3WfTsShtI8uXK3qhB7cpimxyu7/5q+iUzu3Vvmkb63YBLVcP8J8Q6JH5U6317eBLRsRDv4Hfk8dxPVuTSClHN7LubgRs516gaoRHPksW0FAEBAEGisCQkgb65WXdQsCgkAFBDTkkaEqPXJJ11RoT6UP5qGjyHr82SpP1P3l+xVKY9Rpnl6Pqk3K+XjGlm1Q2gKlcJJkI+AJ3RQw0K9Q2bWDoF6Z4YV3NECbIXZ0X7FVEdW7QUZboTRMssz+n8shzrMQpUT+TNYpdD+ue8pEKO/eCkJlU+I+8SyYy8iYEJHg+hBK0KUl8RxaY1/OA2flXQtq8Jr6DCQ/54W7nGXH5FrMSkGXQ3GZjE7dvFN5Q28d0JVM8Jh+smYr7XR56AqUZNFQvmUSPndFrdDOtSCkkZMGNqwh39+/k6F5K7Lsf5gi8SwSZeozmEwduyshpEhf2QoCgoAg0FgRkJDdxnrlZd2CgCBQEQHkcbEnI1VD6Fh8yDx6LLmnfEoeVtFNsAXzd5Hzg1fIPOpgciDMMFnGpWDORg7pI9luuhGe0a6oRfoXPKK3F1lpXxDT2yF2lInQ3mSaoX0nlQuZzHM0hrGLH7mFrMedRZYDIeQTozkuuJ7M+x2iBLiCqCeaaAvkbSPnW0+r8jCOC28gY9/B1Z5iG8jnZb06EKvvbioNh+6CjBrCtUjXFTupSzkyyjmo/KqNeaZ+TaXP/Q/zyicrPKPmUYfAkyu5o7XBUo4RBAQB/SEghFR/11RWJAgIArVEgEN3WWQklczQuh05Lr4JCqc2cr7+BLyj/yZtelwOxvXJm2QecwTZL7guaeeJDMyquxyy+2KJma6Bp/QsENWk/6eEEiOcP+pFHUmxuiHAod7Od54lx5V3kKnvkL0O5rgQZBTldlyfT6DAjq177V+XDu6vPyL3j1+Q9eBjyHoklHij2Fld25QJF7HI0dj2zVVJGO6aB7LqRggvK/Oy/bOrEEq8S2jKxh3qc21/sGfZO38Wao6WS6Su7WBynCAgCAgCOkEg6f/36wQnWYYgIAg0BgQgMMK1DbWMrJRYrXn/Q5EvejnI03zki74ONdLipM+LiQIrl1oOPDqpnlJeyDx4Rv/2GujhLDcNKydqlMxFWo88lfzrVxOhjqRY3RFgz5/7m08o45aHVE3f6kZUZBQlUVwfvoISLRuq65bQdi4NU/ra4wiXbaPEhQxt2kcdPwDxotGtmtBZXduW7WfvKOeOMm38cPUWemrRWrqqdyc6u1uozxanm3aidEu8pmVkkoVVvU3meA+V/oKAICAI6BYBLQjT7epkYYKAICAIxIsAapL6Fs5Bbc7aK9fGe8po/a2nX0jG5q1xs/8x+SsJtETrn+g2znlj0RXOsyx54YFED182nhf/A3EYb31ZJsqM+JaA4CM8WYxoEhSNR+FhQNtKAlJFUEP+Bw8LeNsHglOdEFpdk2Xc8jAZ23WiwlvPJ/JUJGpKwGjACHJPejvpntHq5mg97HgyoTyMB6VivHN+r65bWftnKAWzJL+YXP7Qum/o1xllWsy0DUSUS8iU+PzqxbVMr+vbmTKQkxqLWY8+Daq7g0gzibpuLHhJH0FAEGgcCIiHtHFcZ1mlICAIxIoAlDpN/YaSodUeb0mshyain7FrT3Jc/l948NzKu9MQZJTXoXLx4M0yQhwm49ZHErG0qGPUJxnlCRjbdCD2nImFEFgG1eOFPiMVg3jye7ZZUEG+ocBKC0BIWWxqPrZ7s5LHb6egsxQ1Sh+r0DXzv48hj3OIEjBKdphuhRNX+uD+aTK5JqJm6fD9yYp8bM0WCsWt1K3s42bklM7dWajUdu8b0l2R0YgKr9VgoOdH9aEJBwxQ7ZGapmUHV/OG/6awmJGQ0WoAkmZBQBBotAiIh7TRXnpZuCAgCFSLAAJH/JvWoSTFS9V2ScYOy6HHwouzP3kRBumdMyMZp4h7TA3CK+wpDaBkRfE9V8d9fCodoDVtQTkvTqL8sw4iCtbs8Uulecczl7V+A20BiWSi3xlezeY1qBUXgoQ+VGShjVA9zoaQVH94Sq9weOnqAhtdjO2gWoRRZz//iYowKH3lUcq8/0XSMrPI/dkERVbjWUcy+9pOv4g0RAB4vpsIdenlUU/l9Ptpa6mHumTtKfnyy5ZdNGntVurXJIvWFpfS5ahdyrVKH/5nNb02up8ahz2qLJIUzWxQdza27wwx73oMCYg2EWkTBAQBQSDFEBBCmmIXRKYjCAgCqYFA0OOGoi1uWJcuSP6EzGayn3EJhIvsKkQ3sHVj8s8Z5xmsJ41TubVFd15KlMBSHXFOo07dbWdeQmaEjhbdAax1Zivh3Xy11EweZD22MgRUqK0DJPMuqBazLYSX80/k7G4CYW0KkspKx6xm/DlqwU6DR/TlnD05tQ8WW8gJstoPobpsHUFs97X4KaagVISi5rw6mQIFu1VJFzcEjCgFM4NY5ZZVtb0oyeKd/oNa595+TFi5iXwoD3Vhz/a0vKCEXlm6gYwQJ2qCcjK3D+xKywtL6BGQ05f370sWeFHLmxF1SK1HnkIaaqSKCQKCgCAgCFREoOJfzIr75JMgIAgIAo0WAb5xtB56fNLXz+qkGZfdRv6dKFfxxpOUimSUQXB//i4Ftm2inPEfIOxwUNJxScYJzINGpoznOZHr2xqApxMk8libj57OdqnSOQ9BKOpaKBezzQYRfa3UovJETw8rGb8O8mqBo+5Em5fycfxOvCLGisf7g4A6kd9bgtd7UEL+CrmmsZhpnwFE8C5yPql6mJOCZJTX4Z05VUVAmHr0I65Lq+U23evyuB7pMhDRIP71RO7oYyP2oVEtc+nULq2Up5RDdz3wkP539jJ6AnmmG0r2kHxW+xUyuleIpYMgIAg0UgSM98Ia6dpl2YKAICAI1IiABi+HZrWSf+3KGvvVdqf16NPJst/BxPlt3j+m1naYejvOv3oZzhUk+7irKeAqTWoJmmQsiokHe+wCO7cnY/gGG3MyvJwOPF4+0+6rMAdrmGNy2O5RIKs94PFkD+kqvOaApB6PNu4zBzmkzdCnQ1jYiNu472DUhR2CF9MqNzym/fG+JrOecDbyn2/Hd/kn8i1fTNZjTqMAFI2DhbtrOqzB9rFqtW/eTDJ06UE2PHwK5MOrm7e12vm0RwmYv/MK6Letu6ml3aryR/vmZlIzq4Umr99Oq4uc9BK8o/tDsZfJKCtGMok1jxlLxo7diMtKiQkCgoAgIAhURSC2R55Vj5MWQUAQEAT0jwBKM5hHHEg+lF0JbN+SsPUa4I2xnnQOBaHUWfrGeOL6n+li3jl/4MZ9l/IqGTv3JOeLD6bF1A3I3dNQy9W3bGHKzbcUzGUH8jj3pmTLE2fK6UH/PPT/El7L/eDJZII5wOSvdl1MMDmk90V4RduBeLL3kwWM+LjeIJ6sorsQn3kstjx4Sydi7Dbouw3vV2Hf1Rmh0N/qTuK4/n6yDB1Frq8+KHtQwV5H64lnk/O9F/Ed31ndoQ3e7pn8IQUGDifrYceRv0MXcv/wedQ5GZH7+d8BXelb1CJ98d91ZEGu6GPD90H5Fy99jNIw9wzuTib0yTab6Nzu7dQYWvOWZBl1sOSNRkVUGgUBQUAQCCEgOaTyTRAEBAFBoAYEgoEABTauUSqhNXSLeZd52Gji+qKs9OqZ9k3Mx6VaRy0nl2wngFQjn7ToniurlPpItfnaz7uGjF33SUlhprnwVr7rNNH4bHcF2NgfuR2EMAuEMgP5nmyvgVQyYdwKQnqgxYf6rQH6NEwe/4Nw3OqMhYrOwP4xYdL5dIlFEeCT4CXdjfFuKrTSaOxjUaQrQT5nIK+UvaLtkT/KBLZa357ZQlkPv4baPRblfQ4WFVaYgvX4/5DWrAW5JryAUN6KHtwKHVPhg81OttMuVDVCPcgf31v4PNcvNYCAPjB/lfKWXtm7Y5VV2M66lAztuxBHW4gJAoKAICAIREdA/kJGx0VaBQFBQBBQCPCNpLF1ezINHFFnRGwnnUvm/Q4l97efpjUZZSCCBfnknPC8CsfMefEzMh8wts74JHMAU/9hELBJDeXiyuvsGQ6l5dIrEeO80HuKrPRwsZWuRAmW+SCtbNx3OTyW92S66WSQSRYc6opXdaVZ2JvKxl7YzPDwLHC0CK9ImZcm8ITelQVFWYx9KnJKW+HzKRibCe4BNZBRy0FHU87Ln1Nw1w4QTnwXKpFRPq978gekuV1kQ6mVlDeXk1zvvkBBPIDiBxjmofvVOGUmo6WIcmA7r0fII1r+ABMEtAyt2wkZLQ+KvBcEBAFBIAoC4iGNAoo0CQKCgCBQGYGgx0POlx6iIG5a4zVD245kO/Z0hLrmQ0X3I+LcNT2Zqe9gso49mbx//UYlz9ybkkvLees7Kr7/WvKvWZ4y82Oy+BeIZhGI6ER4SK+EmNBQlFphMvoAyOhNUMjtArLJ4bbPwqP5BASLdqHvjfB2TmjipEjODYsSXY626+HZHBn2gPIi3Rj/ERDaq9C+GGO8gjFYeTcXhPNClHUpxVjDalHahcfOuP5e1PQ8QIW3+hbN5aYazXbRDcgnXUOeH7+osV+q7DR2603Ww08g/5aN5JnyKbHqdjym2R1kh1gZh4mLCQKCgCAgCNSMgIga1YyP7BUEBAFBQCHAziUttzn548xBNI85IkTW5s5E3cNJkPesORcvHeEO7NhKvsXzyDJ8DFmOPo38q5Yor1mqrMXYE2U4DjqKnG89nSpTogKQyNuKbCpEtililYpQroVDlgYgBHe6x0Tsd+sJMjoTobMzQFo3obZoN3gwu5uC9B32c94nCxGx2fDlZC/ny1DSLcY47GnlEi/P43NLtHMobg8cx8JGo/D+ZIgfcXvbsIiRGiTGH6Z9+lPmvc+pEkCuT99UokWxHOpfvoishxxDZDQhBH5tLIc0aB/O6+aSMOZBw8ky+nDi73gQudOxmvXIk8nQoo14R2MFTPoJAoJAo0ZACGmjvvyyeEFAEIgZAVbcRd5kADeqwRhVWu2oe2no2J08X75PvkVzYj5VWnZEWKZv4RzSHJnkOO9aMjRtQd65f6TEUuynnE/kdJJn+vf1Op8SEEPO93wFxPAnt0mRRQ65ZZsEZVymk3cjVJZJqBmkksuzHGz102rkcf7gDnlOW4A0ct7nufBotgkTyBXwdvKx+4TH4vG6gnD2xThrcCzngbL39BQQT84R5bHZeJsF1hv+GGqM46fjklvIfuH1uK7hhyvxRAvgQQwLg1mPOAk1SndBzXZbHGduuK78oIWgtG3hElCoscqqwXszIyIGWAxNQ31hMUFAEBAEBIG9IxCJ+Nl7T+khCAgCgkAjR0DVJkVxe+e6lTWG7hq7h8P9Nm0g98QnII1avdiM3iD1zppG/tVLEe54ImU98yE5X38SRPXvBl2msfdgeKcnxj0Hzrv0gb5lhwWF9jYACxBx+CyTzqUgjU+gNiiHxx5l9RF7QZ8vMVN/7OO8z7XweHYHwYz8J8zk8pUSg1LRZeVbtktAQjPD5+aW3+EtZW8n912C8StbL7TzK9FmHjyK7FfcDgGrYpU3HNi2uVan8K9bRZ5fppD12DPJXVRA/jTwlPJCvb//RP6V/6KMzZlkhECRe8onKoc6Ggjqb8RhJ6LmqCXabmkTBAQBQUAQiIJA1f/RonSSJkFAEBAEBIEwAlATtRx1WrVwWJB3ZoNHjvMp3ZPfb1RkNAIKe8Kc779E/iXzKfOOJynjlociuxpka2jaHCHFe89z5MkxnWMP4w4QywlOM30DBdvqjMWFON8zYv/i8/s4ho1zPzl09mKQykPh9RyMXE0WCPoOnk82Vs4tH7zdGsQ1A6/VGIMJK6vn3ldkoZ/Rn+fAKrh/gpCycZ7oMfB81oc5bn6IMm59mAzZuep61paMRubqRd1PH0JhrVBo1nKaRJpTfhvYupmcbzxFQWcpOS68kYy9B0ads+W4M5UnNepOaRQEBAFBQBCIioAQ0qiwSKMgIAgIAtER4OL2pi49yNRvSMUOEC+xj7uKjB26kvOdZ4nrdTZ2887+nUpfeYQMTZpTzhvfQGl1XL1DotSRUW6kOm+cC15QVp3l0in/g0fz/Hyb8mxy7U32NrKnk209SCqXQtkIz2bEfkAY7vQwSeS2fUAkV6IfU0Wu/dkZn3eVI6wcUhsZbwgI6lSQTT4/2xaMG8D7yP5rIETEntXlGI+FjC4CsWWRI7bmIK6cQ5pMs518HuW8/hUZQBpLX3ucXJ9PQB7u0aSBmNbVuNyRD0q2Vv4+GEIku65j1tfx7i/fg0L2t6hZeoKKAih/XtOgEWREiL6G0F4xQUAQEAQEgdgREJXd2LGSnoKAICAI7EEg4KfSN8Yr8R7TgGFkOfAo8i9fTO7vP9vTR96VIWCND8ZrAAA0c0lEQVTs2ossLGqDvEPnR6+R989fyvYl843j6rtJs9up5PE7qpzmSRDQOcjbZI+kE6G57QwBFSbLAkFsTBJvhvDQaSiFwuSzG/r9A4L6aJZb5XP+iLZZILN3h4kiH3MxCO1t+NwDhPEd1AxlcSJWtGVjNd2LsP+tXBcIa5DuhZIue2I7YVwmvAfC88lk83AQ0YYy86iDyXbGJch/tJDn9x/UdzoyF/VAAbnUrs/eiTTVaWv7z+XK4+gG2a1P+2P7burfJIuyzFWJ41anm7Y7kdfbNKvGKWmODLKeegHxAyou40R+P9nOv059rvFA2SkICAKCgCBQBQERNaoCiTQIAoKAILB3BIIgMMa2HeAR6QYBkwNQzuJL8s6ctvcDG2kPVi31QQxHs9lUSLMFNR79a1dQcPfOpCLCXmvPz1+rc1U+EXswz0KtzSNtfqVwy97I8qGwLAA0BZ5T9uHdl+1W+ZsekMqZILGsVmsBqfwU4kQnIHw24jeN1PbkPE8X+rIH9XCE7LKx13SG10TtkTvaDi/OB83CGK1xAvaAcskXVtJtCDN260WZNz+IhwbH4TrNUCQruHNHhan4li4g68HHqFxSVp2Nx37evJM+Xr2VxrTeE6bLucWW/Q+DABbUq+uxHM/dc1bSsBY51NRaVXTorx0F9N2mPDqoTdOal+f1ku+fv5SSrgV55YaWbZX3WENtUjFBQBAQBASB+BCQkN348JLegoAgIAgoBPjG09CiLZl6DSTnm+NV2ROBZu8IeP+aTs4XUc8VuXhZj7xBGf/3DBnbdd77gbXsoeU2I9+/UEqNYlz2hEkiGxNIzt/k2qDljdtZpCjiSxsOErkAXlHuxsSS/xPl4yLGHs4IKeWQ33UguZGwXO5zgd1DHUCE2Sw4N+eXjoVHlIlpQ5ihQ1fKvOdZynroNQrsyiPny4/UGG7unvETFGePi1m0xwnP4fhFa+m9VZvpmA4tqizR9ckb+B3qj4c6Y6rsS4cGrqvq/+dPMrRuLyVe0uGCyRwFAUEgJRGI/B+bkpOTSQkCgoAgkMoIqFwxn0+VOPEn2dOXyjjEO7egx00abuA9038gQ0YmZY1/D2Vx5qrcW/+6lfEOV21/874HgfiWUCxCPBy2awYp5JIr5ZVqmZAywTwufBb2qnJALdcFZUJ6FAgl55+eBi8p1/5ciL4cmsvGCrvXIRe0vM9sIPJIU8GMXXqS/ZwrkQs9lLzzZlHpCw9QsKR4r1Njr6AZD2Eshx0PL2rNysWri0rpiYVryI6w1vH79qJcS1WPZLAoX41jPfEclIPJj7nOry8YpPdWbqapW3YqfHtkZ1Bzm5ku79VRreGPbbvpg9VbaJfbS71zM+gKtDe3VVW+9WOcD0CWf4IHlx8JtESfzCihvNUBY+zeh4x9hkjeaHUASbsgIAgIAjEgsOexbgydpYsgIAgIAoJAJQQgYGI97izSMrMr7ai/j06fn/jGmm1lYSkxEUhlMw0YDiKahRDnqeRGqHMpe0zdTsp6/G3KfOBlMg9PjLfMMvowRXRjwYL/M4yUaynfv7ywEbdzvx4gokt9ITGeE5Ff6gDjfBX5ol5cggeRXzoe4b0R2w8e1YgXNtLWkFszQqUZ46yHX1MK0KUvPYxw8y9iIqOReTs/m0DG7n3J2LVnpKnKdsrGHXTH38tpRItccpiN9Py/66kU39NoxuG63t++Jxt+j4xtO0XrUqXts7XbaG5eAV3ftzM9vW9vam230FbkfrKtKXLSc/+uo5M7t8K+XpQDIvzogtVVxuCGr9Zvpz+25yvCyqS5V05G1H7RGlUe6bFnxOwtjjaGtAkCgoAgIAiE/m8VHAQBQUAQEATqgADXHrSdfG4dRqjboeN+W0CLdhepQabBYzQD3qFUNvPwAxQZpTCJDqImpeenyVT69D3Km+m45v8oe/z7ZD26+vI6sayPhZR8c2NXO65MPvkcXeEhLYXHs3x5F1bIjVSWZbLJXtDHQELPRx6oHZ8jtUNjmWN99eGHJtnPfUyOa0MYl77wILl/ABEF9nGb103ev6fDS3pClUNLQDqZ/E0CYbx3cHc6v0c7un9IdzIAl3dWbKrSP9LgnTODvPNnQnn37JiUfH/enEfHdWxJQ5plUxPkgnbNckSGIv4d6AvRokPaNKOWdiud270trcCDmnXFzrI+kTffI1/0eIwzsmUuNbNaKowT6VPd1nrSuUr8qbr90i4ICAKCgCAQGwISshsbTtJLEBAEBIHqEUA+qdaiDVkOP1F5m6rvmJw9b47pTw5TepTPMA8fjTqNRvJGIYpBt4u8f/ysXqbBI8k69mQlgORDSKlz0tsU2LIhLgANuU3Juzh6/mi0gbhsC9f8ZF8z+JMy/k9yf3g5C6CGy7VC2Y6tpxqg6mR1+GFo3prs/7mUTAP2pYCrROWG+hbMrsOIew71/jGVTAhXtRx0FHl+mVK2g0N0d7o8KkQ3omKL3w7qB4I4feuusn7R3nh++gqRBjmoUXo2ud57gdSFiNIxiB15Li/1QihuNNuO8/fM2UNQOVS4JTyoeWjvlGkvO4THYUXdPrmZZW2xvuE8WhYyIqgOiwkCgoAgIAjUDQH5S1o3/ORoQUAQEAQUApxPauo/lFTdyyRg4vYHEPa4js7/bSFeC+iB+auowBMqD/IkSMDW0j1hopHTP4722QhrLG/3zVupwnq57Z9dRXTjn0vorGnz6Za/lpaF+nLY70P/rKLFu4vVlklGosw0ZBR5Z/y81+EUCZ3wPLknfwDxqNaU9fT7COl9B7VMz9nrsdyBa2YG8ndBxTcvpv7ciUu1MKJ55WqHcvtV8IByLmm6mPWkcZT1xATKfnEiGZq1RI7mx+R66xlKFBmN4MDlTsxD9ydDmw6RJrqubydyBZCPW46ocR7nZITGDm2eU9avujfuL94j1KODp7T668wEt3u2gzaVVP3O87i5FhNtLHGVnYKFlXaCwGajvbzxOB0ybIqolm/f23sOOTcNGCGhunsDSvYLAoKAIBAjAhX/Osd4kHQTBAQBQUAQqIoA1260ogREYPuWuL15VUer2PLZum20Dd6cp5DnFsAN+wzUUnTjRhvuRoQiusgNElDZumbZ6fuNeTQ8TASWFpTQeoQtdkH75lKXEpy5pk9H5b3i0MUJEInhMEsXxp2TV0hOX4BGo0xHFnIAE2Fm5HQSRKB8i+bEPJx/41riF00xk6nPYDKPGUvWU86nAErGuKd/Tx6EnUYz88iDybcwPm+gDW7Rt1EjNDGrjTar5LWxx45JuAliRX58/1h8yP3Fu0rNOFlnDeRtIy/OwwJHrnfh0YSxN3IEvm93z1lO5yJclx+avIvvVRd4Jk9BTifbkvxi5d1kQhjNnO+9SPaLb1Z1az1Tv4nWhQYjVHfS2q1kNxmQP02qVEskSoCJLz+8YVLa1mGlHzftVGG9nct5RyODcr3RaVt2YT4hL+ncnYWRXVG3rKbLZV6kvEtUeKRREBAEBIFaISCEtFawyUGCgCAgCFSDAMiiDR4q55tPUdC1x0tTTe+Ym71MOHH/zrl4TZHrdkLH0M19TQMcjBy6j6A0mu/xKqIwDUqih7RtRkaEGP+Am/SBuBlvDw8R7x/WPJs+XbOVOAeQrRkUS+8f2h2njE4aajpvdfvM/UeQe9pX1e2uuT1c95GJlta0BZl69iPr/7d3JuBtVVceP+9p95p4jWMnceI4cfZ9ZQsQQkmBMJ0OZafAQIEybWlhOl3ptNN22k6hM10YoGUoHaAtLW2hQ4GwJYSQANnI7mxO7DiJnTheEtta35xzHTmytViyZVlS/uf7hKT37rvvvt+TiY7OOf9z9Y2sFPtZ8nIqr/v9VeR85Y9EZ5RiTeXjqeN//hp5zhB7U8YZ5bpl2/JrybroYjJxhNJ7qpW8rFTc/tb/kdGSuBpiqf113PElsiy4iNzrVymit00oUwq4j+48pBRrP8mOqHzuJOH5yeo6pWj7g3kTVXQyxC1Qm5x/eJLsrAJstLZwveqaoGFSP3q0w0n/vatWOZ2VHDFt5JRcMfkBRupHP79uJwsadX3NeWDa2B5RW/+Ey0oL6FucNXD7O1vJxlHdiRFEjUTESGrF4Yz66eEZBEAABOJDgDNjzqhKxGc+zAICIAAC5zwBgyOMxtE6kkhPvEzq337BX/A3cQRH0gw/PqqIlpXlK4dR0ni/MauCKljY5YndtWQ36XTz+FJ16u9yau/UvCxaXlZIt/GX7h/Pr6JiFnr5IQvP1HC0NL9XK4y7JpapqNbP+VyPLp4Sr+WraJc+sryrNjBus7KPnjuczJXcemPCNDKNGsvR6Xry7tlBlvOWUsvty8lgRy1dTKK+ZlbJFWfcxJE6X/1BVSMrKrUGpycPlZnKJ5D92tup/YkfcYr0iZDLEOdRUr/lG4d8PjM56n7nxFFU2OvzF3iwqWISp2hzPelLvyVv9bbAXUGvnzojmCQiSn6TNPcW/rGlkOtHI/2wIgrV8vclbWHkx5pw5rjlPtKLpW40ZX62CHcp2A4CIAACSUUAEdKkuh1YDAiAQDoQ0LjvojaiVNXBSU1cPEy+LH+T02klmilO6RO761igxd6dahjuHEtL8+m5fUeo8IyCqDijYtIKY0GhjW4N+ALvn6PF1aXY638fj2fLlNnU+X/Px2OqHnNINND9ISu08kOz2UgfM171yRTPJ/fRF8h7ooF80lZk+0ZySe0q9yVNBZM2QtKixcw1mma+Jq2gWCniqhYp768mpzihLAKVDOatqSbPzs1ku2wFdf7+yaAlieqz/JhyKUdJb2bFW6kvlWj81zmt9+f8o4c5jBPo3beTXKtfUW2VOp99lNPg67rnXt/YrFJxJSX3JP9NbON65x9y1DXQbOz4ispuXyZOqP/vItxY21XXqXsAZzQcIWwHARAAgf4TgEPaf3Y4EgRAAATCEzCxyFFFFRkXsQrpqrMqpOEPiLxnDX+pn8ZKpVKjd+GIPPo9f6HXw3yRD5xpLqcvSurkM+yUXjeupHvXwqJcjljVqFRKibhKXer6xhaSmrp4m9TVehuOknf/rnhP3WM+w+nkSNp2Mk+arlR83R+s5ohWmYqcihiS1CXS6TaOovJaaveSZ/8ejqZuI+++wV1Xj0WGeGMaN5FTXpeQqaiE9JGjSR9eoFqfeI8fJR/Xz7o/WEPi9Bkdydtf1slRTMfdX2Zhr7lcu/th91VuaWpVabXSL3Re4VlRo38YO4ImsUpuOGfUP4Fcu5abz5FSToPnOlV/xHsS13xKX1OpUa3gdN3PcLQ1yzI4X2msHG03saKw1IjDQAAEQAAE4k9gcP7vHf91YkYQAAEQSD0CZhbimXue+hItfRYHYrUs0CJCLZLiKLV48/nL/YQI9W7+c0n0R2pJV3LfRnFC/TYjL4c+NW4EffXDav4ib6KTrIRawtGmuDukJguZJk4l5wtP+08d1bO05BARJxGqyYnR0TAVlXKtqtRSNpNXHgHpnrpy+kax8zeSbJdeSfo/3E6aI4OM9lPkk/TeVh4volSN/Dh6uOu5+QT5JBU1RodQag714lKldKsN49pdPrfUv+pFI0jPzSMtM4sf2eTjeXV+ls+IZ9cW1YtVhLH8fVqjApYEg9xrXicbCxx59+7odp7l8/TTRZPUDymBSzzCKbwfscrzuoZmWlw8PGLrFdfrfyE9J1cpLPvT4OUzIZ/rwTbz7MVkWbiEtcMsg30qzA8CIAAC5ywB1JCes7ceFw4CIJAwAj4vdf7lGRW9G8g5PRzFbGbHUQSHItXExXIOcfykLYeD04z9KqWxHN/XWNtV16sv884/Re+QSpuOb2/aRzVt7eTyGXTNmKLumti+zicplZkPfJfaf/IQGa7QbUGC5mBnQ8/rikoqRzE7VzmOymFkp1IiY5qd+1cyI3J7yPC4iURkystNYowz6sYcEe9K5+SfC8w8ntsAiRmdHfzgyGZ7Ozu8zZx226pSb31NjcphNlpPqnVm3P8d6nj0+11jgxaYOhtsn7yNiK/Z+dffhl20KD8/UV2rBIQqczI59fY43TtpNJ3Hjmkks9/8WfIxL9dfno00LG77TFybbOeeqCT3FgYCIAACIDBoBPB/2UFDi4lBAARA4AwBdpJEebfzuSfIe2hfv7FIeqPUksbTxLHN5/rSwTAtO4fkS33ns4/FNP2LBxv4Oi30vbkz6L+2H1RtaWQC6Y0qNYijMtk5DGOSMirRzaidUZmHHUwVkeSoZJfGcJjJebNmtxNZuC6R5Y419dwlcGM4O3ivxK7ZuLbTcLHia4hWPF0Dgv9rcCqxXlDU1eImeHfKbHG+8GvK+OzX1H0Xcanetu1kGz3GwltfnTGOlZ27IvYS7X94Ww1HSodF/KFFWstk3Pkg0cXLyfXWy72njut7E7fPsf/dLXzDw4scxfWEmAwEQAAEzmEC+jl87bh0EAABEEggAY3snB4qfQzPFbMuu0aly/pYcTgW+4idlitYFVj6oO5pbVftaeT4E51utS3SXGaux/Tur440ZED7pJWP0daiopvSh1NUfeUh4kqSIqwe0u4nBmdUFiS1kSJclPLG1+1m0SXb0hWqTVHv65Genyu4ZYvfGZX90qNUVG6ln2hf1vnHp8gydS6ZZy/qa2i/90sdr43bu8AZ7TdCHAgCIAACMRGAQxoTLgwGARAAgQEQ4DRO+7V3kDZ88GvfBrDKuByqFxaTedwkcr33ZszzSX1gA9ePipCTpHGKeJP0Rz3GdYdj2HmJZBrXaXoP7o00JCn3GScauba0JCnXFuuipB+pOO3WS64OOlSi/L39zj/UHFU1pH0JHMlkkurc+eoLZLv4SiU0FHSCAW7QOHXb/slPk4Y03QGSxOEgAAIgED0BOKTRs8JIEAABEBgwAalFdNx4D2nD8gY8VzJPYL3kKvJseZ/E0YrVrhlTTI9zWucf2VGZyaI4UuMqqbtLSwtIWnmEM82ewWJBwzkten+4IUm73ctRZBFaSheTGlLL9LlK4Tjwmq4YVUirjjbR3+oaaW3DSXpo4x56k6OmUkMqJpHSOhbwimQiUuVa8xrZrr6eMw7O9h2NdEw0++Rv0nHD3ZyWnYHoaDTAMAYEQAAE4kQg/L/scToBpgEBEAABEAggwBEiLSOLHNfdpZ4D9qTNS72snEyjK2KOjkrrGVH7ncjqwQ9xz1Wpl/36hj1017vblBLw9QFta0LBMk+dzb0qazmM1lclaKijh3abr75GCSkN7Srid3ZfcxO5t6wnq6TuBlg5R7jv5xYwq4+epGf2HlHKzj+eX0Vl3Hrofe4t+oX1O+n1elY07sMkCuvZtlH1+pW/p4GaljuMHJy9QI5MOKMDhYnjQQAEQCBGAlDZjREYhoMACIBAPAgY7HwR1x2q3orcciSdzM4RYO/hg+R+OzbhmU0nWulHWw/QLxZP7m4T4vT6RD+ILHrfv59Kja6XHVL3mpUpiTPji6y0+4vvstJu5AhhKl2c4/b7uZXNR+Re+0bYZbu57vTpvfX0JjuiV3F96fvcD3dCbgbdyb1FpW1RJLP9PafXstBU5zP/HWlYxH1aVg7Zb/iMasVDUXzOIk6GnSAAAiAAAjET6Ptf+JinxAEgAAIgAAJ9EdAkUsrppQ5uZSHRmXQx0/hJZCoeSZ51b8d8SRIZG8m9UH/DzonfJEX3KNeOSnuavkxEgXwpWD/qvy5R2tXy00DYyH9B/Oxc+WeynreUFYRHBGw9+1Lu7Ve4F+6u5lP08IIquo6j4D+YN4EOnuqkPx08dnZgmFdOFjmSek/VXijMmEib1d8gnNFIiLAPBEAABAadABzSQUeME4AACIBAGAJ+p/R6rlvLTY+aUgs7Hy4RtZHemzFYK/f3FKfkW5yqu6WpjapbTqujRczomxv3kpv7kUYyqR2VvqHe2gORhiX1PqNNWr+kl0Pq4/vh2b6JrMuCBY68nCXwEN/bKcOz6PvzJlKxg9vpsEk0XNK2a9o6orpfHU//jPSSMrJe9LGoxvsHyd+cXVLn5W8PkVE/FjyDAAiAQMIJwCFNOHKcEARAAAQCCEhKYnYuOW66h/TC0FGkgNFJ/VJqOPWc4eRe91bM61zFwjaiqJvFCru3cK9RETWSqKhsX1Q4jKx9OAymSTPJqD8U83mT6QDjJCvtFqaH0m4gV+fLvyc9exhZZi0M3KzScX80fyLdVllGgQq7Inr0BkfLr6+InoXzT0+ziNJ8Ms9a0OMc4d4oAaMb71YiWHBGw1HCdhAAARBIDAE4pInhjLOAAAiAQFgCGjtbWmY217HxF+Q4qoaGPeEg7bDOv4idUW7z4o1dVKiDj7mstKsdzoUj8pQD+kZ9kxK4WXpme6Rlm8rHk2ffrkhDkn6f99hh0jndOR3Nueo1slxyJUm9ZqBJix+/Sb3wz3ceol/trqMvTS2n0gy7Ut2VtjB9ma/xGHWu/BPZLl1BpoqqiMMlmuq49Z+61tJHjWrEibATBEAABEAgLgTgkMYFIyYBARAAgQESkPRdaQlz071KoXaAsyX8cMucRUQ2B7k/WNOvc187toRGZZ7tMSqCNk9V16ko6bhsbsPRh+n5RdzuZV8fo5J7t4+FoPT8wuReZD9X5921mbwH9rDqbnDqrkx5uL2THvxgN9Vzy5dHFlbRzPwux3WYzULrG5rpXe5J25d5d23ldjAryb7iRu7pGtqxN42p6ErT5c8qwRntCyn2gwAIgEBCCMAhTQhmnAQEQAAEoiTAAi326+4kSUFNJbPMOZ/bvLzeryW3uDxU3XqaGljgxm9jsx10NfcjXV7Wt4OmF3LdpdXGLV/q/Ien5LPvWD1pFitptq5aypS8iAiLdr7wazKVjiFT1fSgUaKme37xMPr2nErKt1m790sq7wPTxtJTew4rcavuHWFeSLq4Z8cmbgdzI2mOnj9kmCZM7XJG+bMCZzQMQGwGARAAgSEgYPoW2xCcF6cEARAAARAIR4C/hJtZrZZcLvKlQF2kZeHFqvbR9fLz4a4o7PZTLGb09Q3VtI5bffyh5hit4UiYhwWMSlhtdzZHySpyejoVoSayzDmPiAVyRDwn1c08fR4LM9WQ0daS6pcSev18n6wXXk7uje9xv1hf9xipHZ4yPJt2sLDVBm7/c4hVdus4WnqEf6Ro9/i43pToxUMNdHFJXp+tYLx7d5J5XBWZp8wiz9YN6hyWeeeTbdnfQbyomzhegAAIgEDyEECENHnuBVYCAiAAAmcJcKTUcsEysi654uy2JH1lnrmAXO/2LzoqrV7E6fzZosn09IXT6RPlxaoP5R3vbKW/1jZEdcWm0RXk2Z/a9aP+CzVOtbLSbpH/7YCeRcVWanP9trbhJLXxDwBDae4P15DRdJxsS68MuQz5QeK3+4/QrhZ2TI+3KlGrl2sb6SA7pzautT7a4Qp5XO+Nnc8/qaLN1o9fS1b5O7rgciKzufcwvAcBEAABEEgCAvi/cxLcBCwBBEAABEIR0Di10DJrMWmsUOp86blQQ4Z8mzjMRsdp8u7c3K+1SDuXqtwsdaz0HL2IBY3kIf0pfexQRWN6XiH3H03t+lH/dRonj8dNbXnD8Rb6z+0H6ZklM9T0j++qo2/MqqDsACEh/3kT+dz50rPkuP2LZNq1jbw1e3qc+vYJZdz+5zTNKcilhayuPBDr+M3PKfOB7xG53dxL5mwa8EDmxLEgAAIgAALxJ4AIafyZYkYQAAEQiB8Bq5VME6awKujnghRK43eS/s9knjKb3O++0a8JJB1TWnwcONVOEs0LtBHck3Ikq6z2ZXrJKDI4xdnX2LcSa19zJcN+37EjcVPancUpz4+eNyUZLqvHGoy2VvJsei+kwJG093lw+lj6JSvtNnT2jIZu4lTe5zh6+kpdI0l/2kimZWSR48Z7yPCwM8p/QzAQAAEQAIHkJQCHNHnvDVYGAiAAAoqAZrYoJ8Xx6c+TadS4pKFiW3YNSUTPu3dHv9aUYTKp3qOSmnnnmm30m731dKT9rLBRNJOaJ03nmssD0QxNiTHewzWstBtbyu6Btg76Gtfh3vj2FvrMu9vp2X316lprOc31vzhC2tvE0Xvg/V090nlrTnXQNzfuUVFp+XHgd+z4yT25adUWemR7TffYva3t9L0t+2j7yVPq+T+29o+9a/Wr7Cx6uJ70Y72Xp9q93FQxkh7lFjBiLq41/bfN++gHH+0nF7eG2dlymr7CirytYdKP9ZFjOAL7Bf6bKVVpu0EnwAYQAAEQAIGkIgCHNKluBxYDAiAAAmEIcBRQy8ziXqWfIfP0uWEGJXazqKX2t3ZUVpprNdP140roMY7ifW7yGDrGEdPPrdtB39iwhzy9IqbhrkwvLed2IulRPyrX6DtaR5rVzg9Wgo3SHt52QAlAPXH+VPoyRxfNHGUU62TnTZzS3lZkt7LjSfQet1Px2xtcyzs60046f85EPOijpjb6+swKemTBJGpjFeQ1R7varnRyTar8gCB1npJWu5iVcftrrldfIMv8C0P23l3C4kWfnzJGTS19STs4IjqNRY/KWX35/inl6tzPHwiOikvE3nHTPSQRUuIfPGAgAAIgAALJTwA1pMl/j7BCEAABEOhBwLp0BZk4+uNc+Zce2xP5xsZiMd7Dh8g7gNrN/W3tSklVUnOn52Wr3pMiuiPRN2n3EY3pwwt4DfujGZoyY4zTbaSxsJFRXxvVmiWCyP4lWbkGV3q2RtO39bLSfHqrvokuKclX6dKrOXX627Mr1fn+ximx8kOBRdfIzXPPL8yl9ayCfFlpgdqfb7dwe5bxxD+RRLW+cIN8R2rJs20jp+6uoM7//UXQsGFWi9omQkf/Pm8CyfuvfVhNlSyCNWlYpnKcAw+SHqfmqXPQ0iUQCl6DAAiAQAoQgEOaAjcJSwQBEACBQALSq9I0bS7Zi0aS88VnuEVIa+DuQX+tZWRwXetU6vzdL/t9rier61T9qIOjWCecLpWmeR9HScezs7GwKLqomz6mgsjrUWnD/V5IEh7oOy1Ku8Xc8ic6h/SuiaPosd21JBHDycOylDM5ITcz4pVdyMJR0ttT0ncPcbpuIUdNx2Q5lHPayEq2rx0+QW8eaeqeIzdACEl6hg7UGfVP7HzlD5Rx14MkbVncH6zxb+7xnGE2qcitiDHdO2k0PbythtN4DRa/Gq7GaZnZZLvqepJ6Yg31oj3Y4Q0IgAAIpAIBOKSpcJewRhAAARDoRUCcUvkC7vjHB9gpfZa8+xKXtmpd9vfqfP3tkSp1iOsam+nH86uogB0hJ6eWPsEO1Xc276WfcvuXnADnp9dl93hrYac4nepH/RdnNJ2ISWlXUmcfK8hR0WZxJKXW8pcXTPVPF/I5k528BRz5fJudzoPskPqjn+JsZnMq9R2sdis/DiTCnG//jWxX30Ce6h1ktJx1gv3nvrysgJ7hutgvTR1LVexwL+IfLA5zrfE1Y4rJNL6KbFde31UreiZV2X8cnkEABEAABFKDAGpIU+M+YZUgAAIgEERA4+ii1BrarrmJLEuWB+0fjA2SImtmJ8C99s1+Ty89JitzMpUzKpNIuxeJjoqyrtQuRmta6RjyDlH/0Ug9PaVlTSzX0ft6fQ317JCO7L055HsRIHrt8HFVEzoq06Fa5kgNqdSI9mVLRxbQSj52S1MrXVDcFW2UYxZwu5Xn9td3CxlJ/aakzQ6Weau5/QsLY9mWXhXyFCtGF3ENqY9/sNjHNbEdqlet1Bw7Ll7OkdEbSLOxGjOc0ZDssBEEQAAEUoEAHNJUuEtYIwiAAAhEICAqvNY5i7k1zH2kDcuLMHLgu6Tez7N9E/mOBwvKRDu71IxK/WgDO26BJhWJErmL1kxSP3poaOpHpadn77Yk/nXv4BrYFw4e87+N+dlbf4i0GJR2X6k7Tjev+og+v26nUqa9Y0IpSaSzL5uWl6VSYeezAyppsX77dGUpSSr1He9so3vWbqdbV2+lXaxsO5jm/PP/kl5UyjWgs4NOY2FnUwSW5nMkWNJ25UcRxy33kXnWopjEn4ImxgYQAAEQAIGkIICU3aS4DVgECIAACAyQgGoNU0YZnMLrev1Fcm9eN8AJgw+XFGHT2Epqf+wHwTtj2DIrP1sJ73xh/S66mqNfEhmVqGmb20tTh7M6ahRmGj+JjM52MlrPKsVGcVhKDPEdPki6w0FkYVEfN/fRjGDieD68oEqp0DpZgMgvBCSHSD2pKBj77akLp/lfqmepAw3c798pPwo8MG2sEjRqYYXdYTZLt8jUVFa6fXTx2Tn9x8Tj2b3uLbJechV593DqrrOnOrBc5/JRheyELiTrpVeTJhHRKJzueKwLc4AACIAACAwuATikg8sXs4MACIBA4gjIF3SObFkv+Tjp5ePJ+dffEXkiOzSxLM7GKZLuDWu4zq//6Zu/YjGjYVyj+MC0cnqHW4ms5oekg4qgzkOzKljZNbrEHXMl148e3BvL8oPGSoT20V21tLP5lBL1yWPH64qywm5RpbW8rme5vUmT061UXe+pGt2dZhw4maTNSu/P17l1imTKSluVrCjrYAPnCXxtnD7F/UhZ2IjbwERjDnYiHXQ2yhnNMX2NkXshNb6JMvem90ifOJUdzqvI+fLzPU6rOTLIesUnyVzOSsD8GYeBAAiAAAikD4Ho/uVPn+vFlYAACIBA+hNgwSPz+MmUce9XWA23Z1SsvxdvGjuBRZRGk/u9t/s7hTqumlM/q3KzlEqrKL1KKubPWMjoQY7IFXGkNFrTS8rIc2BPtMODxvnYifw+i/+IgNJ/sLjSP08fRxINlLYzYgfaOuinOw6qesWfcAQyl1uOiFhQKHuJ+3au5Z6e4rA+wmOr+lC4DTVH722+U11Ku723p/t7Sd01V04mU0VV96WKorPj7i9zdH4iR40T5yB3LwAvQAAEQAAEBpUAHNJBxYvJQQAEQGCICIjgkSOTpF+obcWNA661s16wjFzvryKj/VS/L0jauwznKGQOR0gHalJH6BtQD9QOVpftpH+cWEZlmXYaxQ/pr+m3t46coCmcnip9OsVRvmX8SNrD6sCiSNvbXmVhIEk9lnY1+TZrVH1Ae8/R+73R3BST0m7v41P2fWcHuTasVVFSJdh15afI/vFP8efXTpp54J+blOWChYMACIBAGhOAQ5rGNxeXBgIgAALSl9HMaZCOf/oGmWcu6BcQU9VMJSTj4Rq/gdivue/lOo4kvlBzVLUo6e9csh4f144OxDk+rnqf2pRITqh1iGDRhNyzbU+kNrPIYaXjvD3QDE7SbeC+nVKvGU/zNR4hvTg6pd14njcZ5nKvWakioY57v0rmqhlE6C2aDLcFawABEACBQSMAh3TQ0GJiEAABEEgSAprO0SVW4r3kSrJffxdpeQUxLcyyaAm52Bk1+hDY6WvS+6eW07/NqSQfD/wiCxr9ywe7Vd1lh9fb16E99psrq8hbU91jW6xvKrnH5jF2JD2cuhvKpM617vRZYR1Z44lOd1B0V4SBJLra21ENNWcs27yHD6ka0liOSYexeuEIst94t4roq3YuqBdNh9uKawABEACBiATgkEbEg50gAAIgkD4ENK6/M40ap5R4JQU3GjPPWKBSf93rV0UzPOIYcd5EpfX+KeX0P6z4uqQkj16pa6SXDjVGPK73Tr24lB3S/tePynySWjuCI56/3F1LezkV91VunbI7oLXJHG4xsoV7oopTKvWmKw+fUOnG5Sy+1Num52XTW0ea6DT365THxhOtvYfE/N5Xu5+5c4SWf0g4V8xy4cfIftsXyFRaPuAU83OFGa4TBEAABNKBAAoy0uEu4hpAAARAIFoCZ1plmOddQObp81SLGM/urWGPtsw7n4WM3gi7P9odb7PD9mfuzekw6zQ7P5euHF1IH2NFW3mISm3UxkLCqn40Dv1H75s8hp7iNOKfbK8hcSrLuD+q1dT1O+08dkilflR6e+aeqXmVViihVICXlRbQtzbtpdvf2Uo2VqadGAdRI+EhKcl6QREr7R6OGk8qDjRPmUWWJctJt7MDjlYuqXgLsWYQAAEQGBABzWAb0Aw4GARAAARAIGUJGG6Xcnhcb7xIvmP1Pa7DsuAikghpx+M/7LE91jerjjbRr3bX0a2VpUrJdsOJFjrS7qR/nzshJmVdOa840Za551PHk4/EuoyI4yUKes/aHaodTWVOZvdYp9fHa3ZTIUdTJcIbzsSplrRdaZMiPTPjYfZb7yPPh2vJs31jPKZLujlMpWPIwq2E9MISREST7u5gQSAAAiCQOAKIkCaONc4EAiAAAklHoCuNt5zsN99H3p2bybX6VTLaWtQ6LbMWkvOd1/q1Zmmh4o8sipDR3VWjaHHxcDXXJ8qL6Rnu2/k4O6nS9iUWk3Yg3gO7Yzkk7NgnOF1XUmxlnTubT6ta0EBnVA60ccQ0mnY04oQWx9C2JuyiAnb4mk+SVlgcsCU9XmrZOWS9aDm3JJqiapsRFU2P+4qrAAEQAIH+EoBD2l9yOA4EQAAE0oYAx/5YPEZSJ81TZqv2LprPR4bTSd7tm/p1ldKzs5V7ei4dma/iitLHM9BmcIqs1GXGaiJ649q8PtbDQo6/jFNtdzafIrfPoOvG5dCs/OyQ44Zqo9FQT6bRFeQeqgXE+7z8GbMsXkrWRRdzPjInZ3F6MwwEQAAEQAAE4JDiMwACIAACINBFgNV4xaxzzlNiOq63/9a1vR///dfZ42l9Yws7ncfpIxYHEud0xZhirh/NUSmtJ5xuGs9KtzGZza7qR71xqB+V84pAUSiRopjWNIiDfUdquVXPwkE8Q+KmtixYws7oJUQm/tohKc1xSmtO3BXgTCAAAiAAAoNFAA7pYJHFvCAAAiCQqgTOKLtazltKloVLyP3uSnJ/+G5MVyPiP+dziq48pKfnm/Un6PFdtUrA6MIRefTh8Rb68vRxsc05dRbXu9YReT0xHZeqg70H95GeldPlxKXoNVtYPMuy+FK+BhNJejgMBEAABEAABHoTgEPamwjegwAIgAAIKAKahdNs+WG54HIS59T93lvkfn91zHSKWOjnunEl9KlxI1S0VFJ1pc+n9O+MxUxjq8izLz71o7Gcd8jGclprt9JuL8GpIVtTlCe2zGdHdBEc0ShxYRgIgAAInNME4JCe07cfFw8CIAACfRPQrDY1yHr+ZexkXELuD94hz+Z17Cyd7vvggBGiUjsjL0c92NUK2BPdS72gmOLRDzW6syXHKN+pNm79UhykgJwcq+u5Ci0ji8QRlTRjTVJzzfiK0ZMQ3oEACIAACIQigH8tQlHBNhAAARAAgWACnHKpcdDUyk6pOKeeLevJ9cEaMpoag8f2sSVSC5VQh4oyq8bpq97a/aF2p+02o+UkO6Qjkvr69KISMs9aRJYZ84l83q4U46ReMRYHAiAAAiCQTATgkCbT3cBaQAAEQCAVCJyJfJmnzyfTtLnkqz3AUdPV5N1fPWirN0/m+lEW+TnXzHf8COkjRyflZZvGTSQzC2CZR3MtsG7qEiqSyCgMBEAABEAABGIggH85YoCFoSAAAiAAAgEEWLhII51MY8aTXjKKjI528mx6jzwffUBGZ0fAwIG/1MsrybN/18AnSrEZfPWHyDJ1XtKsWuqKzTMWkmXOYqKMTPKncyfNArEQEAABEACBlCMAhzTlbhkWDAIgAAJJRoBbeGjckkUeFqkzXbKcvLu2kGfDWvIePhiXxer5ReR+57W4zJVKk3gPHiAtd5hSqSUvp8MOkZnKxnJa7gIyT5rJKse8DtSHDtGdwGlBAARAIP0IwCFNv3uKKwIBEACBISPgb+1hqppBpopJZDg7yLORo6Y7NpPR2tyvdel5BaTZHSTRwnPOvG4yTrWSns/CRg31Cb18bXg+mfk+WmYuYP52MiwsbiX9Q+GMJvQ+4GQgAAIgkO4E4JCm+x3G9YEACIDAEBDQxHFhdV5J6bSev0xFTn0NR1U6r3f3Ryq9N9plmSbPJF+cIq3RnjOZxomasV5QlBCHVHNkkHniNJL6YK2wWDmgSjGXgfAdhYEACIAACIBA3AnAIY07UkwIAiAAAiDQg4DJpJwZU0mZcqy0ZdeQt66GPFs/JG/1No6idvYY3vuNeVQFefZs7735nHnvY6VdjSOkg2VaZjaZKqeQeTJHtTk11/B6SDOznDIMBEAABEAABBJAAA5pAiDjFCAAAiAAAl0EulN6R40lvXgk0eWfIINTUd3bNpD3QDUZJ08EoZLooPeNl4K2nysbjMYjZCouJXccL1jqUs0TOBLK0We5D4bb3S1QBGc0jqAxFQiAAAiAQJ8E4JD2iQgDQAAEQAAEBoOAX6FVY4VeayH32rz4SjJOt5F37w4VORVBJC0rmwxuKZLo+snBuN7+zunldjemKbP6e3jXcdyOxcQ/ApgqqrgudBqRPYPLQfUusSQe4b8XAzsJjgYBEAABEACB2AnAIY2dGY4AARAAARCIMwF/VE7LHU767MVknjpHOUnijJHbxVG8UvIdOxzns6bGdN6D+0nPGc5eIzuQhi/qRZtGV5A+poLM4yeRXsRRUE6NVo6n1PfCQAAEQAAEQCBJCMAhTZIbgWWAAAiAAAicIXCmjYy8M40czTWNXrLfcLeK5kl6r6dmD/m4BtV39DAZ7afSH5vbqa5TCRs1Hg15vaKCq48sJ710NJnGTVQpvgYfp5mtRNwvVkza8sBAAARAAARAINkIwCFNtjuC9YAACIAACPQgoLEoEsmDTaX3jijlaJ+LVXwtnOJ7miOndeSrPaDawvgajpDhcvY4Ph3eiOOtcS9WYodUopxS96kzB9PYiRz9LCHKyCRiJprtTGsWYWWFA5oO9x7XAAIgAALpTkAz2NL9InF9IAACIAACaU6AlWENj6erR6bbQ76mBvJxuq/vWD0ZzSfIxz1QDVarTSXTMrJYlbiYtGF5ZJl7AQsPOUnn3qAS6ZRrVQJRSL9NpVuKtYIACIAACIQgAIc0BBRsAgEQAAEQSBMCHtam9XnJ0Lj1jEkno621yzltaiTfyePka24i6uwkX1szUcdpjrxydJXHD7ZJJFPjulDN7iAtO5dfDyM9r5AfBUTZ/Jpbsajfi2X90jZH2rDA+Rzs24L5QQAEQAAEhoAAHNIhgI5TggAIgAAIJAEBSRDidieGj4WCpM6SH5IerFJ+Oe1XnFPDxT1SJfoqjqqzg6OUnCrMEVj1THx8d5IRCwWxw6tzOq1xZh6ysZKtOJySRssOpebIILJYuyKbXBdriLOp9IW0LofzTK1nEpDBEkAABEAABEAgYQTgkCYMNU4EAiAAAiAAAiAAAiAAAiAAAiAQSKBLei9wC16DAAiAAAiAAAiAAAiAAAiAAAiAQAIIwCFNAGScAgRAAARAAARAAARAAARAAARAIJgAHNJgJtgCAiAAAiAAAiAAAiAAAiAAAiCQAAJwSBMAGacAARAAARAAARAAARAAARAAARAIJgCHNJgJtoAACIAACIAACIAACIAACIAACCSAABzSBEDGKUAABEAABEAABEAABEAABEAABIIJwCENZoItIAACIAACIAACIAACIAACIAACCSAAhzQBkHEKEAABEAABEAABEAABEAABEACBYAJwSIOZYAsIgAAIgAAIgAAIgAAIgAAIgEACCMAhTQBknAIEQAAEQAAEQAAEQAAEQAAEQCCYABzSYCbYAgIgAAIgAAIgAAIgAAIgAAIgkAACcEgTABmnAAEQAAEQAAEQAAEQAAEQAAEQCCYAhzSYCbaAAAiAAAiAAAiAAAiAAAiAAAgkgAAc0gRAxilAAARAAARAAARAAARAAARAAASCCcAhDWaCLSAAAiAAAiAAAiAAAiAAAiAAAgkgAIc0AZBxChAAARAAARAAARAAARAAARAAgWACcEiDmWALCIAACIAACIAACIAACIAACIBAAgjAIU0AZJwCBEAABEAABEAABEAABEAABEAgmAAc0mAm2AICIAACIAACIAACIAACIAACIJAAAv8PnMQ1DZ95nw0AAAAASUVORK5CYII=", "text/html": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "px.sunburst(\n", - " df_sunburst_test,\n", - " path = ['event_game', 'team_played', 'medal'],\n", - " values = 'score'\n", - ").update_layout(margin = dict(t=20, l=0, r=0, b=20))" - ] - }, - { - "cell_type": "code", - "execution_count": 41, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(['A', 'B'], ['', ''], ['', ''])" - ] - }, - "execution_count": 41, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "#----- first ids are in lv 1 (inner circle)\n", - "aux_id = [id for id in df_sunburst_test['event_game'].unique()]\n", - "aux_parent = ['' for id in range(len(aux_id))]\n", - "aux_label = ['' for parent in range(len(aux_parent))]\n", - "\n", - "aux_id, aux_parent, aux_label" - ] - }, - { - "cell_type": "code", - "execution_count": 53, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "aux_id: 10, aux_parent: 10, aux_label: 34\n" - ] - }, - { - "data": { - "text/plain": [ - "(['', '', 'A', 'A', 'A', 'A', 'B', 'B', 'B', 'B'],\n", - " ['',\n", - " '',\n", - " 'ThunderCats',\n", - " 'Dog Patrol',\n", - " 'Power Birds',\n", - " 'Not played',\n", - " 'ThunderCats',\n", - " 'Dog Patrol',\n", - " 'Power Birds',\n", - " 'Not played',\n", - " 'Bronze',\n", - " '',\n", - " 'Silver',\n", - " 'Gold',\n", - " 'Bronze',\n", - " '',\n", - " 'Silver',\n", - " 'Gold',\n", - " 'Bronze',\n", - " '',\n", - " 'Silver',\n", - " 'Gold',\n", - " 'Bronze',\n", - " '',\n", - " 'Silver',\n", - " 'Gold',\n", - " 'Bronze',\n", - " '',\n", - " 'Silver',\n", - " 'Gold',\n", - " 'Bronze',\n", - " '',\n", - " 'Silver',\n", - " 'Gold'])" - ] - }, - "execution_count": 53, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# aux id is result of parent + '-' + label\n", - "# ids are unique, parents are levels, labels are leafs (children)\n", - "\n", - "\n", - "#----- build lv 0 (inner circle with 'event_game')\n", - "aux_id = [id for id in df_sunburst_test['event_game'].unique()]\n", - "aux_parent = ['' for id in range(len(aux_id))]\n", - "aux_label = ['' for parent in range(len(aux_parent))]\n", - "\n", - "# saves len representing lv 1 sunburst for next lvs\n", - "aux_len = len(df_sunburst_test['event_game'].unique())\n", - "\n", - "#----- build lv 1: (middle circle with 'team')\n", - "for i in range(aux_len):\n", - " # first extend aux_label with 'team'\n", - " aux_label.extend([l for l in df_sunburst_test['team'].unique()])\n", - " aux_label.append('Not played')\n", - "# extend aux_parent with lv 0 ids\n", - "for i in range(aux_len):\n", - " for p in range((len(aux_label)-aux_len)//2):\n", - " aux_parent.extend([parent for parent in aux_id[i]])\n", - "# extend aux_id with parent+label\n", - "for p,l in zip(aux_parent[aux_len:],aux_label[aux_len:]):\n", - " aux_id.append(f\"{p}-{l}\")\n", - "\n", - "#----- build lv 2: (outer circle with 'medals')\n", - "# labels: all leafs OK\n", - "for l in range(2*len(df_sunburst_test['team'].unique())):\n", - " aux_label.extend([m.capitalize() for m in df_sunburst_test['medal'].unique()])\n", - "aux_idx = aux_len + len(aux_label[aux_len:len(aux_parent)]) // 2\n", - "\n", - "# parent: all parents (start with a sub_aux parent list)\n", - "#aux_parent_lv = []\n", - "## aux_idx for this section\n", - "#aux_idx = aux_len + len(aux_label[aux_len:len(aux_parent)]) // 2\n", - "\n", - "#for il in range(aux_len, aux_idx-1): # for each team, except not played\n", - "# aux_parent_lv.extend([f\"{aux_label[il]}-{l}\" for l in aux_label[(aux_len + len(aux_label[aux_len:len(aux_parent)])) : (aux_idx*2+aux_len)-1]])\n", - "# # adds not played before extending with next team\n", - "# aux_parent_lv.append('Not played')\n", - "\n", - "## extend aux_parent_lv by the remaining events\n", - "#for e in range(aux_len-1):\n", - "# aux_parent_lv.extend(aux_parent_lv)\n", - "\n", - "#aux_parent.extend(aux_parent_lv)\n", - "\n", - "#del aux_parent_lv, aux_idx\n", - "\n", - "# CHECKPOINT -------------------------------------------------------------------\n", - "# falta aux_id para terminar\n", - " \n", - "\n", - "# SHOW LENGTHS AND PREVIEW\n", - "print(f\"aux_id: {len(aux_id)}, aux_parent: {len(aux_parent)}, aux_label: {len(aux_label)}\")\n", - "#aux_id\n", - "aux_parent,aux_label" - ] - }, - { - "cell_type": "code", - "execution_count": 58, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "['',\n", - " '',\n", - " 'ThunderCats',\n", - " 'Dog Patrol',\n", - " 'Power Birds',\n", - " 'Not played',\n", - " 'ThunderCats',\n", - " 'Dog Patrol',\n", - " 'Power Birds',\n", - " 'Not played',\n", - " 'Bronze',\n", - " '',\n", - " 'Silver',\n", - " 'Gold',\n", - " 'Bronze',\n", - " '',\n", - " 'Silver',\n", - " 'Gold',\n", - " 'Bronze',\n", - " '',\n", - " 'Silver',\n", - " 'Gold',\n", - " 'Bronze',\n", - " '',\n", - " 'Silver',\n", - " 'Gold',\n", - " 'Bronze',\n", - " '',\n", - " 'Silver',\n", - " 'Gold',\n", - " 'Bronze',\n", - " '',\n", - " 'Silver',\n", - " 'Gold']" - ] - }, - "execution_count": 58, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "aux_label" - ] - }, - { - "cell_type": "code", - "execution_count": 54, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(34,\n", - " 24,\n", - " ['ThunderCats-Bronze',\n", - " 'ThunderCats-',\n", - " 'ThunderCats-Silver',\n", - " 'Not played',\n", - " 'Dog Patrol-Bronze',\n", - " 'Dog Patrol-',\n", - " 'Dog Patrol-Silver',\n", - " 'Not played',\n", - " 'Power Birds-Bronze',\n", - " 'Power Birds-',\n", - " 'Power Birds-Silver',\n", - " 'Not played',\n", - " 'ThunderCats-Bronze',\n", - " 'ThunderCats-',\n", - " 'ThunderCats-Silver',\n", - " 'Not played',\n", - " 'Dog Patrol-Bronze',\n", - " 'Dog Patrol-',\n", - " 'Dog Patrol-Silver',\n", - " 'Not played',\n", - " 'Power Birds-Bronze',\n", - " 'Power Birds-',\n", - " 'Power Birds-Silver',\n", - " 'Not played'])" - ] - }, - "execution_count": 54, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "aux_parent_lv = []\n", - "# necesito crear los parents lv 2 (leafs)\n", - "aux_idx = aux_len + len(aux_label[aux_len:len(aux_parent)]) // 2\n", - "\n", - "for il in range(aux_len, aux_idx-1): # for each team, except not played\n", - " aux_parent_lv.extend([f\"{aux_label[il]}-{l}\" for l in aux_label[(aux_len + len(aux_label[aux_len:len(aux_parent)])) : (aux_idx*2+aux_len)-1]])\n", - " # adds not played before extending with next team\n", - " aux_parent_lv.append('Not played')\n", - "\n", - "# extend aux_parent by the remaining events\n", - "for e in range(aux_len-1):\n", - " aux_parent_lv.extend(aux_parent_lv)\n", - "\n", - "len(aux_label),len(aux_parent_lv), aux_parent_lv" - ] - }, - { - "cell_type": "code", - "execution_count": 45, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(32,\n", - " ['A-ThunderCats',\n", - " 'A-Dog Patrol',\n", - " 'A-Power Birds',\n", - " 'A-Not played',\n", - " 'B-ThunderCats',\n", - " 'B-Dog Patrol',\n", - " 'B-Power Birds',\n", - " 'B-Not played',\n", - " 'ThunderCats-Bronze-Bronze',\n", - " 'ThunderCats--',\n", - " 'ThunderCats-Silver-Silver',\n", - " 'Not played-Gold',\n", - " 'Dog Patrol-Bronze-Bronze',\n", - " 'Dog Patrol--',\n", - " 'Dog Patrol-Silver-Silver',\n", - " 'Not played-Gold',\n", - " 'Power Birds-Bronze-Bronze',\n", - " 'Power Birds--',\n", - " 'Power Birds-Silver-Silver',\n", - " 'Not played-Gold',\n", - " 'ThunderCats-Bronze-Bronze',\n", - " 'ThunderCats--',\n", - " 'ThunderCats-Silver-Silver',\n", - " 'Not played-Gold',\n", - " 'Dog Patrol-Bronze-Bronze',\n", - " 'Dog Patrol--',\n", - " 'Dog Patrol-Silver-Silver',\n", - " 'Not played-Gold',\n", - " 'Power Birds-Bronze-Bronze',\n", - " 'Power Birds--',\n", - " 'Power Birds-Silver-Silver',\n", - " 'Not played-Gold'])" + "sliderdefaults": { + "bgcolor": "#C8D4E3", + "bordercolor": "rgb(17,17,17)", + "borderwidth": 1, + "tickwidth": 0 + }, + "ternary": { + "aaxis": { + "gridcolor": "#506784", + "linecolor": "#506784", + "ticks": "" + }, + "baxis": { + "gridcolor": "#506784", + "linecolor": "#506784", + "ticks": "" + }, + "bgcolor": "rgb(17,17,17)", + "caxis": { + "gridcolor": "#506784", + "linecolor": "#506784", + "ticks": "" + } + }, + "title": { + "x": 0.05 + }, + "updatemenudefaults": { + "bgcolor": "#506784", + "borderwidth": 0 + }, + "xaxis": { + "automargin": true, + "gridcolor": "#283442", + "linecolor": "#506784", + "ticks": "", + "title": { + "standoff": 15 + }, + "zerolinecolor": "#283442", + "zerolinewidth": 2 + }, + "yaxis": { + "automargin": true, + "gridcolor": "#283442", + "linecolor": "#506784", + "ticks": "", + "title": { + "standoff": 15 + }, + "zerolinecolor": "#283442", + "zerolinewidth": 2 + } + } + }, + "title": { + "text": "Players participation during A and B events" + }, + "width": 900 + } + }, + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6QAAAJYCAYAAAB1mCsLAAAAAXNSR0IArs4c6QAAAERlWElmTU0AKgAAAAgAAYdpAAQAAAABAAAAGgAAAAAAA6ABAAMAAAABAAEAAKACAAQAAAABAAADpKADAAQAAAABAAACWAAAAAAL7lmzAABAAElEQVR4AeydCaBNVRfHl2iQeSwzZZaSoShDRYQyzxVSESlDZokoM5nJUDILGTOGzGSexzIPGUKlgeJb/617v/uee89w33vedf3X9+nde84+++zzO++dddbea4iTLFmyG0IhARIgARIgARIgARIgARIgARIggdtM4J7bfD6ejgRIgARIgARIgARIgARIgARIgAQMARqk/EUgARIgARIgARIgARIgARIgARKIFQI0SGMFO09KAiRAAiRAAiRAAiRAAiRAAiRAg5S/AyRAAiRAAiRAAiRAAiRAAiRAArFCgAZprGDnSUmABEiABEiABEiABEiABEiABGiQ8neABEiABEiABEiABEiABEiABEggVgjQII0V7DwpCZAACZAACZAACZAACZAACZAADVL+DpAACZAACZAACZAACZAACZAACcQKARqksYKdJyUBEiABEiABEiABEiABEiABEqBByt8BEiABEiABEiABEiABEiABEiCBWCFAgzRWsPOkJEACJEACJEACJEACJEACJEACNEj5O0ACJEACJEACJEACJEACJEACJBArBGiQxgp2npQESIAESIAESIAESIAESIAESIAGKX8HSIAESIAESIAESIAESIAESIAEYoUADdJYwc6TkgAJkAAJkAAJkAAJkAAJkAAJ0CDl7wAJkAAJkAAJkAAJkAAJkAAJkECsEKBBGivYeVISIAESIAESIAESIAESIAESIAEapPwdIAESIAESIAESIAESIAESIAESiBUCNEhjBTtPSgIkQAIkQAIkQAIkQAIkQAIkQIOUvwMkQAIkQAIkQAIkQAIkQAIkQAKxQoAGaaxg50lJgARIgARIgARIgARIgARIgARokPJ3gARIgARIgARIgARIgARIgARIIFYI0CCNFew8KQmQAAmQAAmQAAmQAAmQAAmQAA1S/g6QAAmQAAmQAAmQAAmQAAmQAAnECgEapLGCnSclARIgARIgARIgARIgARIgARKgQcrfARIgARIgARIgARIgARIgARIggVghQIM0VrDzpCRAAiRAAiRAAiRAAiRAAiRAAjRI+TtAAiRAAiRAAiRAAiRAAiRAAiQQKwRokMYKdp6UBEiABEiABEiABEiABEiABEiABil/B0iABEiABEiABEiABEiABEiABGKFAA3SWMHOk5IACZAACZAACZAACZAACZAACdAg5e8ACZAACZAACZAACZAACZAACZBArBCgQRor2HlSEiABEiABEiABEiABEiABEiABGqT8HSABEiABEiABEiABEiABEiABEogVAjRIYwU7T0oCJEACJEACJEACJEACJEACJECDlL8DJEACJEACJEACJEACJEACJEACsUIgXqycNRpPWurF0pIoUWLT4/Xr/8r58+flpx9/lNOnT0U4y+p1G2XxooXStUunCNv5JfoJxIt3r9R/o4EcP35MFi1c4PgETz9dRPI+/rjMnjVTzp076/i46GoY2+cPdB3vNGkqDRs1kWLPPiVXfv89UDPX24O9T65P5PCAF0uXkYQJE8nuXTvlwIH9Do+6vc3c3AvfZ9ONGzfk77//litXfpft27bJ5cuXbu/AeTYSIAESIAESIAESCFECd7xB2r5DJ8maLXsEvNevX5fvliyWNq2ay8WLF82+ZMmS68tuggjt+CVqBF59ra606/ChvFT6BTl54oS3s/vvv086de4q3y9f6sogLaUGScNGjWXTxh9i1CBds26TLNexfdihrXfM+HC7zh/hpA6+PBj/QUmRIoXEiRPHQWvnTYK9T87P4LxlmjRpZeTosXLPPffIihXLpe6rtZwffBtburkX/p5NGOo//1yTIYMGymf9+9zGkcfsqQL9TcXsWdk7CZAACZAACZBAOBC44w1S3IS9e3ZL1SoV5J4490jiJImlSJFn1SD6WCZNmS5ly5QMh/sUktdw3333SeLESYwR4TvAP/74Q4o985T8+eefvpttPw8dPEDGf/WlnDlz2rZtVBokSpxIHnzwwVu6uF3nv+XEsbQh2PsUE8OtWLmKMbixoo6VxVSpUsfopERMXIO/Pvfs3iVVKr1srg0r0ilTpZJmzVtK85atZOPGDbJ61Up/h91x2wL9Td1xF8IBkwAJkAAJkAAJ3HYCYRFD+u+//xpXxt9++9Ws1E2fNlW+mTFdcud5TDJkzBgQarMWH8icbxfJxi07ZMfu/fLdslXSum17rwswDuzTb4D06fuZ3z7atu8og4d+HmFf4cLPyMTJ02Tbzn2yYdM2GTZilDz8cJoIbb4YO0EavPm2xI8fX95u+I6MGDnGrCiiEVaIatd5TWbNXWD6WLlmg4wa85WULPVihD78fXn5lYoyYdLXkilTZunarbt8v2qdbNm+x4wRhqOvOLl2tA801oqVqkjdem+YLj8bMMScF+cu8syzAvdErJBWUiPDV2DAtmrdTmbPWyhbtu027Ft+0EZSpExpmhV5pqh079lH+SfyHuY5P65/8tQZsmvvQVmwaKm8UqGit43ng5Nr+mrCZEmYIKEUK17CO2bcY4i/82N78uTJpd9ngwRu39t37TP3N3+BgtjlFQ97rPRh1XjZ96vNWL/8aoKkTZvW287uQ0K99h69+sq6H7aY43HN+fLnj3AYDBuwrlGrToTt+NK7b39p065DhO0ehpF/3/zdJ7fXgd+rXn36y/qNW2XnngPmHn340cdmfDifU6lStbqsW7tGVw4/k7hx497yu2PVT44cOWXMl+PN7zvGAHbjJk6RZ54testhHhZwzx4/caoZ84rV6+X1uvVvaevkXtxyUKQN8NbAxAyM/19/vazhBIfUe2ORaeVmxdvuudK3/0BzHyKd3nzFM23o8JERVtjt+sOBTllZ/U1F5Xnm71q4jQRIgARIgARIIPwIhMUKqb/bcu3qVbP5Xn15DyRlypSVv/76SxbO/1Yu68ti9uw55N2mzSRXrjzSoP5r5rDTp04JDJ0vxoySvXv3eLuCEQX30i/GjPZuq1a9phoEn8nJkyfkyy9GScaMmaT8yxWk0FNPy3PFn/HG/z1btJiuLCaWuvUbSJYsj8ilSxfl1MmTph8YaO81ayHLli4x/9KlSy9FixaX5i1aydLvlnjP5e9D+gwZjKE1d/4i+e3X32TTph/UGH5YKlSsJJkyZ5YK5ct4D3Ny7WgcaKw/bFjvXQHFRMCVK1dM39euXTM/YQxcvHjBfMZ/YJzMnDNfsqt79bffzlPjY7XkyZPXXOupUydlyuSJkj59ejP+++6733sczl+wUCFd0UxgXHnhil2sWAljZOMl35eJk2u6fOmyXFeD+erfVw13nOi3334z5/N3/mTJksm3C78zRvLXU6cYo6JsuZdl2oxZ8vab9fUefXfz2P/Yz/l2ofm+bu1aSaq/By+UfFGNgVFSuWJ5s93qPw888IDM0YmIzPo7sWTxQjl29Kj5/NzzL0Q47J574hhOO3duj7AdXwoUKCQnlaevBLqHaBP5Pnl+h5xcR4KECZXNEoER/u28OXLixHHJli2H1NPfa0w+xI3n7PGCiSMYlS2Hvyc7dmyXgwcOCAzUUSNH+F5GwM+Zs2SRJ/MXkDWrV2nc8lH9XXtQSpd+SSaowQnPia1bNnuPBYsnnsgnSZMl1e1blPMiw+CT7r3k6NEjsnLF96at03vh7djhh/vvv1+q16xtzrVh/TpHRzl5rvz88xlp+l5z+XzEMGP0ejpGfP3bDRvLVP37wgQExEl/aOeUldXfVFSeZxgDhQRIgARIgARIIPwJOHtjvMM4wPgp9/Ir8ssvv8iRI4cDjr56tUpeI9HTqOOHnaXhO03MqhiOnzJlojGaatV5VTp36uhpJtVr1NKVnHgycfxXZhtWirAytGjhfGnyztvel7/x48bKbDUy6tVrIMOGDvIen19foIcOGSTj1EUVCXyw6gWpW/8Ns1L0Rr2bBjG2YR9W9JzKsKGDZdTnwwUrx5AOHT+SRo3flaLFintdBJ1cu+d8/saKODis/OV5LK981KmDHD92zNPc78/GTd5TQz+31Hu9jokt9TSCcfDAA9YraadPn5bGjd7yvmhjxXnJshXS5N33IxikTq7p/abvyHPP75cNG9ZJy+bveYYR8GcTnaDA+cqp67dnQmLEsCFmBfsjXQWGAfPPP/94j/966mQZ0L+veAxzrPgi1haTE8eOHfW28/fhrbcbyaNZs6mhW88k4PK0wUs9JkWiIv7uoVV/Tq7jvfebm+uqXbOqrF2z2tud2/HC+MTkwoL580wfM6Z/bVaZc+bMJfv27fX2G+gD7kGh/Hm9v+9oN3hgf10p3SpVqlSLYJBiHyZQ6tWtI7t27sBXY1CvWb9JKmtbj0EaXfcCkwvwmIDguZQ1Wzbz91y6VAm5+t+kmdkZ4D9OnyvTdLIEBmmVqtWkb++e3t7K63MQRvCUKZPMNqf9eTpwwsrqbyo6nmeesfAnCZAACZAACZBAeBIIC5dduNYVL/GclHmprLz5VkPj0pkhQ0b5tFsXgctcIPFkLEU8Yb4n8xu3WKyMQPAiCcHK5Yrvl5mXVbzYeaRW7Vdl1coVXoMXGUKxmoYVCs9KBNpu37ZVsHqB7LG+Mk3divv17eWNk4OBBxc+uPcl1wQ2nszBOAb7li+7uRLn20egzzOmfR3h5RyruxBfF0Yn1+7p399YPfuc/oQBDyMQiY58Zfv2bWa777bInzdv2ug1RrEPMabzdZW1QMFCZiXO097NNXmOsfuJ1eWVmmTHY4yiPVbVv/pyjGR55FFd5X0sQhdjvxjjNUaxw2OopdPVXzuBQbRFV/OQDTq6xe09dHId5cq/YiZPPNcYzJiNe666f8MYhVEKmfnNdPN3C0PVieBvxjP5And1/J5jdQ+ZbD1/x779rFXXYI8xiu3IyH34px/F9x7FxL1Alt0jR47IvffeK9O/mSMvlbVfNXf6XMHEG/6+qlatEcE1t2q1GiZrMTIXQ5z2Zxrrf5yw8rSN/DO6nmeR++V3EiABEiABEiCB8CIQFiukmTNnMfFgnlsD1zu43Pq6c3r2+f6Eq2Dnj7sZN0e8JEI8K1vxfNwNJ00cL8+/UMq8QM6e9Y0ULvKMcbXt8WlXb3dwvYUg7iqyJNFES2nSpouw2fMC7bsRhuyUSRNNwhPEn8IQgoHyzYxpcv7cOd+mrj7DgMNqDFwrPeL02tHe31g9/Tj5CUM+ja6mLl7svASMXb9H9cUeL7xYvfSsPLq5Jrv+sR/jfuihh9Udde4tzVFaCAJXaBjVgeS3X381u+6//+ZER6B2MMwy6e/x1P9WsgK1C3Z7VO9h5OvA30v69BlcTZT4G3tRdb9OlTq1LFzwrWBiCfK7lkb54Yf1gkRHPXt8YjmphPZg1+KD1sYV1fM7/q+uWsfReOwfDx1CE1v5Vd22PfcoOu/FkcM/yau1IxrWSZIkFcRd9h8w2PCDoRpI3DxXvp4y2cQ64/mEeFy4XyNcoPNH//fscNNfoDH5sgrUBttj6nlmdU7uIwESIAESIAESuPMIhIVBikQhzd9/V65q/OIxNUY98YxWtwOukTNmzjUrlG1atZBtW7eYGDjE6yGJkK8gThCrnHVefU1rZH6jP183qyqIZ/QIskxCPunaWQ24/7twevZfuuis7iBKQWClA+6oxUs8L4hXRPwo6qcizjJYgUHiWbl1c+3Bns/3OKxAe1ZLfLdH5fP1GzdXvm/Izbi4mLgmuFhi3H///dctQ/3rr5sZhOP7ydbr29gzTt9t/j4n0ERLMPJ+/y+e1V+b2NwW+TruU2Mdhpudu7XdmKtWu2msRf6b8xyH1U67TLQ9NQlUNV2Bnzxpglld/fHQQVPuab7G/jqVG/CkUAMWEtP3Aiu3Y0aNkCHDRhpXfN/nSOTxunmuzP92rnysycywKgqDFKu8mIia9c0Mb7du+vMeFOmDL6tIu275GlPPs1tOxA0kQAIkQAIkQAJ3LIGwMEjh6me1SuXv7rxQspQp/YHYRI87m7922IYYQaw+NNWYuXz5njRG4mDNBuq76nTk8M1Y1W3qogsDOSoCF0j8Q4ZKuB52+7SnWQFCXJ+VC3Kgc6LUBIwruCVC3Fx7oD59t6PcjpWgFiwyjGJFLboEfeFl21P/1O01ga2dXLp0yRiInlU33/aeFW+72FnfY6w+gw9cT1M/9JBVM7Pv+vWbRnhUjUHbE1k0gHs0xgxX92AFSZFKa2Ix1B1dsXxZhG4wEdBOawzDbdfKIIVRXLb8y8YbokO71hH6CPaLm3sR7DlwryEpU6ay7MLNcwXPwXlzZwsyJXfq2E7dd6ubOsAwgD3ipj/PMU5/Bvqbiu7nmdPxsB0JkAAJkAAJkMCdQcD+rfzOuA7Xo8zwn3GEDLe+kiLFzRIkvtvwGcmNsMI4/PMxaijGMa61vm02bvzB7EcMqz/xZ9REbofMpL7tYHwiThWZQOGamkzLjwQjtTXeFbJas5BC3F67OcjPf2BoQjxlW/w08W7aqivQJUuVlhQaH+sreImFW6wbgWsnyr6s1Uy9HgPdzTVh3IHuc+RxIFMxjN0ECRJE2IXzwwBADdzokr1790gJXRX3uI97+o3MFzHFSLj1yCOPeJqYn0mTJpVEmr35dglW4bJnz2Hc1z3nxFgLFnrK89XyZ1mNocREyeCBn8mY0SMj/Bs96nON3V5u3OTRJpAgWzXirSP/HcPdGgZvsOL0XgTTP4xtrGJC4JlhJW6fK3D5TqjXjdJDiHGeqs8tX3Hbn++xVp/9/U3F1PPMahzcRwIkQAIkQAIkcOcRCIsV0mCwoyh9vTfeNHUvJ00Yp13EMYZHDS3J4E9OHD8uq1atMAYDSlycPftzhGZIkvL11Eny2uv1TOwh4j7hfokstCj9clpLcbRW12ArgTGxfOVaUzIGhugZzS6bUzPTIiEQ+r9w/rzV4d59qI+6eNECs+KGFdaGjZqYpDGe8hdur93bcaQPu3fvNEZ4i5atZejggXK/JoQ6efK4HDp4MFJLkR6fdDXlU6ZOmyV9evcwcZ8wZhqoAT9ZY3St3JGRsKr+G2/J/v17JXXqh6Txu+8ZI6Rn90+853FzTTu1tAgSyiAx1YED+41BjKQ6/qRfn16mXuoXY8dLr57dzaogVu1wT4cMGmBcQ/0dF8y2L8eMNOVsvvxqomZf/kINi0RSsVJlzQpc8pbuNqxfa1YXUaYIvxtImtXgzYZmcsBJZtpbOgxiw8AB/aXEcy9oXdkFpuQKDMCCBZ8S49LpoD9wREKhTTqZ40/mzpklpV4srcnKysmsmf93O/VtC0MILrpIsIR7iXubI0cuqd/gTVOP17OC7nuMk89u7oVVf8mTpzBZltEGRjK+45py5c4jY78cbZtF2O1zZcvmTYYH/l7wzEIpHF9x25/vsVaf/f1NIQ44Op5nVuflPhIgARIgARIggTufwF1rkM6dM1sKFXra1AJ9Tl+qIev1Jb9/v97SqnU7v3d20YL5xiAdP26s3/0d2rVVt9jDajA1NUakpxEMBMS32ckfWstz6XeLNVNwIxND6mmPDLsd2rfxfLX9mUGTmXw+6kvj8ouEKTD2EIPqkWCu3XOs70/Ui0TClHr13pCp02eaXSh5488gxYpTnZrV5ONPusvI0V96u4ExslMNKitBTVkwxSox5LAmiqldo2qE1Uk319RbDUusUiHeDlmVcR2BDFLUxUSpmr79B8jM2d+a82OFcpAaYwMH9DPfo+s/uIasWbObMkMo84MVeYwLSbUQt+wrn37ysTzyaFZp066D2QzDrEf3rtJIJx9ul8DVHfVVUdIna9asGoN9QuA2i9Im7zRuKvh9DiTwBCjyzLNmVdQT2xy57ZIlizR+92+ponGmgQxSHPP+e03k85FfCEo2QeByO2LYUJMUyWwI4j9u7oVV92nTpTOTXmiD1XyUeEJ92aZNGqp77RyrQ7373D5XpqprP0o9ff31ZPM75O3ovw9u+4t8vL/v/v6mXilfOlqeZ/7Ox20kQAIkQAIkQALhQyCOliq5GZAWPtfk6kqw4oZslKdPnTKrNVYHj584VdLpC+YLzxW1amb2pUqV2rinnjh5wnWiGsTFISstXBGxwoMXbCfyTpOm0l7j7go+mVfdSa8IxgAjAQaUP3Fz7f6O992WIWNGc50wjOwE15UmTRo5patjdkl89h86KqhL+WGHtmYlE/G8eKkPJG6uCSt6KdVF+6TeI99aov76hgGLUkJwFz508ICjGpL++nGyDeN6VN0tD2tcMupABhL8nmT5z20XWX897suB2t+u7YOGDJfHtb7sc8WK3K5TGjfnbLriDonO++P0XtyuC43Kc8XfGKO7P39/U8E+z/yNl9tIgARIgARIgATCj8Bdu0LquZVwvY3sfuvZ5/szR46cptZpF58SCr77I3+G0WRlOEVu7/sdyZLgbhcVQabhK1cOW3bh9NotO/lvp5vkPjCyrAwtf+eDsQX3Tjtxc01IzIN/TgSreJ7yMk7aR6UNxoSVWTvB74m/1Wi746Jrf+LESXSV8xlZv26dqfkJw+PF0i8Z99khgwdE12kc9YNyTXt273LU1k0jp/fCTZ9RaRuV54q/80Z3f/7+pqLjeeZv7NxGAiRAAiRAAiQQHgTueoPU6W186+1GJiZzxvRpTg9hOxIIawJJkiZR9+ux5hoxwYCsv0jIhPq/nw8fGtbXzosjARIgARIgARIgARKIHgI0SB1y3KzJQhYvXujYfdZht9HaDImQkPn1999/i9Z+Y7MzxL7+GMUyOrE5/nA+N9zca1arLNlz5pQkSZLI+XPnTJIeT/KscL52XhsJkAAJkAAJkAAJkED0ELjrY0ijByN7IQESIAESIAESIAESIAESIAEScEvgHrcHsD0JkAAJkAAJkAAJkAAJkAAJkAAJRAcBGqTRQZF9kAAJkAAJkAAJkAAJkAAJkAAJuCZAg9Q1Mh5AAiRAAiRAAiRAAiRAAiRAAiQQHQRokEYHRfZBAiRAAiRAAiRAAiRAAiRAAiTgmgANUtfIeAAJkAAJkAAJkAAJkAAJkAAJkEB0EKBBGh0U2QcJkAAJkAAJkAAJkAAJkAAJkIBrAjRIXSPjASRAAiRAAiRAAiRAAiRAAiRAAtFBgAZpdFBkHyRAAiRAAiRAAiRAAiRAAiRAAq4J0CB1jYwHkAAJkAAJkAAJkAAJkAAJkAAJRAcBGqTRQZF9kAAJkAAJkAAJkAAJkAAJkAAJuCZAg9Q1Mh5AAiRAAiRAAiRAAiRAAiRAAiQQHQRokEYHRfZBAiRAAiRAAiRAAiRAAiRAAiTgmgANUtfIeAAJkAAJkAAJkAAJkAAJkAAJkEB0EKBBGh0U2QcJkAAJkAAJkAAJkAAJkAAJkIBrAjRIXSPjASRAAiRAAiRAAiRAAiRAAiRAAtFBgAZpdFBkHyRAAiRAAiRAAiRAAiRAAiRAAq4J0CB1jYwHkAAJkAAJkAAJkAAJkAAJkAAJRAcBGqTRQZF9kAAJkAAJkAAJkAAJkAAJkAAJuCZAg9Q1Mh5AAiRAAiRAAiRAAiRAAiRAAiQQHQRokEYHRfZBAiRAAiRAAiRAAiRAAiRAAiTgmgANUtfIeAAJkAAJkAAJkAAJkAAJkAAJkEB0EKBBGh0U2QcJkAAJkAAJkAAJkAAJkAAJkIBrAjRIXSPjASRAAiRAAiRAAiRAAiRAAiRAAtFBgAZpdFBkHyRAAiRAAiRAAiRAAiRAAiRAAq4J0CB1jYwHkAAJkAAJkAAJkAAJkAAJkAAJRAcBGqTRQZF9kAAJkAAJkAAJkAAJkAAJkAAJuCZAg9Q1Mh5AAiRAAiRAAiRAAiRAAiRAAiQQHQRokEYHRfZBAiRAAiRAAiRAAiRAAiRAAiTgmgANUtfIeAAJBE+gwZtvy9ETPwf8l79AweA7j+KRZV4qK126fhLFXm49/NXX6prr3XfwiCRIkODWBtxCAiRAAiQQEgTuFh310EMPR9DDh4+dlt17D8nCxcvk9br1Q+JecBAkcDcRiHc3XSyvlQRChcAn3brI5cuXbxnO0aNHbtl2uzY8/kQ+qV69lnT56MNoPWWlylUF15UpU2YpXaaszPxmerT2z85IgARIgASil8DdoqO+njpZvluyWOLGjSvJkiWTGrXqyCfde8nvv/9OXRW9v1LsjQQsCdAgtcTDnSQQMwTmzp4lZ86cjpnOQ6jXtOnSSaGnnpbWHzSXd99rJpWqVKWSD6H7w6GQAAmQgD8Cd4uO2r9vryxaON+L4Nt5c2Tbzn1Gb3Hy1IuFH0ggxgnQZTfGEfMEJOCOQIkSz8vXM2ZJtuzZbzmwTbsO8tnAId7t9913n7Rt31G+W7ZK9h44LAuXLDczvN4G+qFu/QYy+otxkiNHThk15iujbNdv3CrNWnzgbVazdh2pUrW6xH/wQXNunH/y1Bne/fgwYdLXMnL02Ajb7L5UqFhZ/vnnH1X4C2Te3NlSrGhxSZEihd1h3E8CJEACJBCiBMJJR0VGjJXRf//9Ry6cPx95F7+TAAnEIAEapDEIl12TQCACKVKmlFSpUt/yL168e2XLls3y+OP5pFbt1yIcnjhxEnnr7Xfkp59+NNvvuecemfL1N8aQXLRovjR//13BbG/PXn312Fe9x2bMmEleeKGkfDP7W/ntt19l2NBBpl3LD9pInsfymnZHDx+RY8eOqiL+V1at+P7mv5UrvH3gA1Y68+cvEGGb3Re4667U/n799bLMmzNb4saLJ+VfqWh3GPeTAAmQAAnEIoG7RUf5Ik6SJKm0adtBzqsxOn3aVN9d/EwCJBDDBOiyG8OA2T0J+CMwf+F3/jZL5YrlZcvmTTJ3zixjaPbs3k2uXbtm2laqXEXiaZzL1MmTzPdqNWpJgYKF5KUXn5e9e/eYbXA9SqpxMI3ffU+mTJ7oPcdff/8t5cqUNLGc2Dh65AjZuHmHlHqxtOzetVPWr18rmzb+II/lySuDBw3wHuf74bP+feTvv/7y3WT5OXv2HJIrV24ZOWKYabdPjeUfDx2Uymqkjhv7heWx3EkCJEACJBB7BO4GHQW6HT7sLO06dBJM8CKOFIJJ25MnT5rP/A8JkMDtIUCD9PZw5llIIAKBFs2ayi+//BJhG74cOnjQbJs4YZzUqFnbJAFCTAsE35csWSRnz/5svpco8ZycOH5csqsrLv555PKlS4JV0XvvvddrzP71559eYxTtrl+/blZaCxV62nOY7c8Rw/7vKmzbWBtUVAP66tWrsnjxQm/zeXPnGFfhDBkzyvFjx7zb+YEESIAESCB0CNwNOgq0ESe6bOnNCWKEwKTPkEHq1WsgZcu9LOXLvihX1IWXQgIkEPMEaJDGPGOegQRuIbB2zWrLpEbbtm4xq56I7YRBipXGvI8/Ib17dff2BaMzYaKEUr/BW95tng/btm2V+PEfVIP01ky+njZ/6WonjNaYkkqVqspvv/4qbdt19J4iTZq05nNFjS0dMnigdzs/kAAJkAAJhA6Bu0FHgfbePbuNjvUl/93iRSYfQ+nSLzEJny8YfiaBGCRAgzQG4bJrEogKgUm6Svpxt+6CTLUwTBHjuconrvPChfPyj8Z8Vq5QLujT3LhxI+KxceJE/B7kN7gSY6Z5184dunqbI0IvWBmuqG67NEgjYOEXEiABErijCNzJOsoKNMJL/tVkfE8XLkKD1AoU95FANBJgUqNohMmuSCA6Ccz8Zob8rbGfr75WVypVriaTJ04QXwNy544d8pgmJcqS5ZFbTgvXI7fy5x9/SPwHHhAkVvInT2pCoye0VqkTqVSpiqnjVrXyK1KzWuUI/0YMHyImvjR3HiddsQ0JkAAJkEAIEriTdZQVTiTwQwK+A/v3WTXjPhIggWgkwBXSaITJrkjAKYGXX6kgly/f6k67bOkSuXDhgukGGXHnzp4pjRs3lRv6v6lTbyYz8pxj5OfDzcrp2PGTpFePT2XHjm2SOvVDJhtu5SrVTLIjT1snPzErDCX87nvva4mWOZI2bdoIK7LI6AsX3IL5b2bmDdRnvP8y6S5etEDgFhxZcE3tNYkEjFa4S1FIgARIgARCi0A46yhf0jly5pKXypY3SY0SJkpkyqPVqFnLJOD7+uspvk35mQRIIAYJ0CCNQbjsmgQCEejUuavfXciy6zFI0WDixPGmrihqeEauiwaDtVrlCtKl66cyZNjn3gyBly9fCsrNaOl3SwRGbt26bwhKwsCYzJE1k99xWm0sWqyEqTU6a+Y3fpudOnVKfvhhvVSoVFl69vgkwqqv3wO4kQRIgARI4LYSCGcd5QsSyQLxD4IapGdOn5JJE8YLPHl+/+0336b8TAIkEIME4iRLlixSEFkMno1dkwAJxAgBJCfKoEmO/rhyRX7++UyUjDykvk+fPoNJugSXYQoJkAAJkAAJRIUAdVRU6PFYEgh/AjRIw/8e8wpJgARIgARIgARIgARIgARIICQJMKlRSN4WDooESIAESIAESIAESIAESIAEwp8ADdLwv8e8QhIgARIgARIgARIgARIgARIISQI0SEPytnBQJEACJEACJEACJEACJEACJBD+BGiQhv895hWSAAmQAAmQAAmQAAmQAAmQQEgSoEEakreFgyIBEiABEiABEiABEiABEiCB8CdAgzT87zGvkARIgARIgARIgARIgARIgARCkgAN0pC8LRwUCZAACZAACZAACZAACZAACYQ/ARqk4X+PeYUkQAIkQAIkQAIkQAIkQAIkEJIEaJCG5G3hoEiABEiABEiABEiABEiABEgg/AnQIA3/e8wrJAESIAESIAESIAESIAESIIGQJECDNCRvCwdFAiRAAiRAAiRAAiRAAiRAAuFPgAZp+N9jXiEJkAAJkAAJkAAJkAAJkAAJhCQBGqQheVs4KBIgARIgARIgARIgARIgARIIfwI0SMP/HvMKSYAESIAESIAESIAESIAESCAkCdAgDcnbwkGRAAmQAAmQAAmQAAmQAAmQQPgToEEa/veYV0gCJEACJEACJEACJEACJEACIUmABmlI3hYOigRIgARIgARIgARIgARIgATCnwAN0vC/x7xCEiABEiABEiABEiABEiABEghJAjRIQ/K2cFAkQAIkQAIkQAIkQAIkQAIkEP4EaJCG/z3mFZIACZAACZAACZAACZAACZBASBKgQRqSt4WDIgESIAESIAESIAESIAESIIHwJ0CDNPzvMa+QBEiABEiABEiABEiABEiABEKSAA3SkLwtHBQJkAAJkAAJkAAJkAAJkAAJhD8BGqThf495hSRAAiRAAiRAAiRAAiRAAiQQkgRokIbkbeGgSIAESIAESIAESIAESIAESCD8CdAgDf97zCskARIgARIgARIgARIgARIggZAkQIM0JG8LB0UCJEACJEACJEACJEACJEAC4U+ABmn432NeIQmQAAmQAAmQAAmQAAmQAAmEJAEapCF5WzgoEiABEiABEiABEiABEiABEgh/AjRIw/8e8wpJgARIgARIgARIgARIgARIICQJ0CANydvCQZEACZAACZAACZAACZAACZBA+BOgQRr+95hXSAIkQAIkQAIkQAIkQAIkQAIhSYAGaUjeFg6KBEiABEiABEiABEiABEiABMKfAA3S8L/HvEISIAESIAESIAESIAESIAESCEkCNEhD8rZwUCRAAiRAAiRAAiRAAiRAAiQQ/gRokIb/PeYVkgAJkAAJkAAJkAAJkAAJkEBIEqBBGpK3hYMiARIgARIgARIgARIgARIggfAnQIM0/O8xr5AESIAESIAESIAESIAESIAEQpIADdKQvC0cFAmQAAmQAAmQAAmQAAmQAAmEPwEapOF/j3mFJEACJEACJEACJEACJEACJBCSBGiQhuRt4aBIgARIgARIgARIgARIgARIIPwJ0CAN/3vMKyQBEiABEiABEiABEiABEiCBkCRAgzQkbwsHRQIkQAIkQAIkQAIkQAIkQALhT4AGafjfY14hCZAACZAACZAACZAACZAACYQkARqkIXlbOCgSIAESIAESIAESIAESIAESCH8CNEjD/x7zCkmABEiABEiABEiABEiABEggJAnQIA3J28JBkQAJkAAJkAAJkAAJkAAJkED4E6BBGv73mFdIAiRAAiRAAiRAAiRAAiRAAiFJgAZpSN4WDooESIAESIAESIAESIAESIAEwp8ADdLwv8e8QhIgARIgARIgARIgARIgARIISQI0SEPytnBQJEACJEACJEACJEACJEACJBD+BGiQhv895hWSAAmQAAmQAAmQAAmQAAmQQEgSoEEakreFgyIBEiABEiABEiABEiABEiCB8CdAgzT87zGvkARIgARIgARIgARIgARIgARCkgAN0pC8LRwUCZAACZAACZAACZAACZAACYQ/ARqk4X+PeYUkQAIkQAIkQAIkQAIkQAIkEJIEaJCG5G3hoEiABEiABEiABEiABEiABEgg/AnQIA3/e8wrJAESIAESIAESIAESIAESIIGQJECDNCRvCwdFAiRAAiRAAiRAAiRAAiRAAuFPgAZp+N9jXiEJkAAJkAAJkAAJkAAJkAAJhCQBGqQheVs4KBIgARIgARIgARIgARIgARIIfwI0SMP/HvMKSYAESIAESIAESIAESIAESCAkCdAgDcnbwkGRAAmQAAmQAAmQAAmQAAmQQPgToEEa/veYV0gCJEACJEACJEACJEACJEACIUmABmlI3hYOigRIgARIgARIgARIgARIgATCnwAN0vC/x7xCEiABEiABEiABEiABEiABEghJAjRIQ/K2cFAkQAIkQAIkQAIkQAIkQAIkEP4EaJCG/z3mFZIACZAACZAACZAACZAACZBASBKgQRqSt4WDIgESIAESIAESIAESIAESIIHwJ0CDNPzvMa+QBEiABEiABEiABEiABEiABEKSAA3SkLwtHBQJkAAJkAAJkAAJkAAJkAAJhD8BGqThf495hSRAAiRAAiRAAiRAAiRAAiQQkgRokIbkbeGgSIAESIAESIAESIAESIAESCD8CdAgDf97zCskARIgARIgARIgARIgARIggZAkQIM0JG8LB0UCJEACJEACJEACJEACJEAC4U+ABmn432NeIQmQAAmQAAmQAAmQAAmQAAmEJAEapCF5WzgoEiABEiABEiABEiABEiABEgh/AjRIw/8e8wpJgARIgARIgARIgARIgARIICQJ0CANydvCQZEACZAACZAACZAACZAACZBA+BOgQRr+95hXSAIkQAIkQAIkQAIkQAIkQAIhSYAGaUjeFg6KBEiABEiABEiABEiABEiABMKfAA3S8L/HvEISIAESIAESIAESIAESIAESCEkCNEhD8rZwUCRAAiRAAiRAAiRAAiRAAiQQ/gRokIb/PeYVkgAJkAAJkAAJkAAJkAAJkEBIEqBBGpK3hYMiARIgARIgARIgARIgARIggfAnQIM0/O8xr5AESIAESIAESIAESIAESIAEQpJAvJAcFQdFAiRAAiRAAiRAAiTgmMAD990nD6VMKZnSppXjZ87I4RMnHB/LhiRAAiQQmwRokMYmfZ6bBEiABEiABEiABKJA4KEUKeRhNUQb164lZYoWNT19PHQoDdIoMOWhJEACt5dAnGTJkt24vafk2UiABEiABEiABEiABIIlEDduXEmbKpUUyZdP3q1TRzKmTROhq58vXJBX3mks5y5ejLCdX0iABEggFAlwhTQU7wrHRAIkQAIkQAIkQAKRCMR/4AFJmTSp1K9SWRpUqRJp7/+/YtU0U7p0NEj/j4SfSIAEQpgADdIQvjkcGgmQAAmQAAmQAAkkSpBAUiVPLi3r15PyJUo4AlLh+edly549cv36dUft2YgESIAEYosAXXZjizzPSwIkQAIkQAIkQAI2BFLoiuiA9u2kaIECNi1v3V389bpy/PTpW3dwCwmQAAmEEAGWfQmhm8Gh3D4C99xzj8lEmCxx4tt3Up6JBEiABEiABBwQwIooDNF4GiuaNFGioIxRnCZbpkwOzsYmJEACJBC7BGiQxi5/nj0WCGR4+GF5u1o1+X7cV1Kx5AsSJ06cWBgFT0kCJEACJEACEQkgRjRjmjQyqGNH2TR9mjEoUb6l35djIzZ0+O2NypUl/v33O2zNZiRAAiQQOwRokMYOd541FgggyUOlUiVl0ehR0q7h22YEnRo3lsya+IFCAiRAAiRAArFFACuhmdOllS7vvisrxo+T554qZIZSqVQpQUbdhatWBTW0ogXyGwM3qIN5EAmQAAncJgJx48eP3+U2nYunIYFYIZBE3Z3yZs8uwzp/JHXKl5d74/0/lxdWR0/+fFa27t0bK2PjSUmABEiABO5uAukfekjqVaokI7p0kTzZskaAUSBPHlm4eo0cPHpUbly/IYXzPRFhv5Mvuw4ekt2HDjlpyjYkQAIkECsEuEIaK9h50ttBAIYn3HMHdmgv0wZ8JlkzZvR72g6NGsoj6dP73ceNJEACJEACJBATBFIkTSKlihSR2cOGSvN6dQOeolrp0iaWdP7KlQHbWO1oXLuWJEuSxKoJ95EACZBArBKgQRqr+HnymCKQLnVqgRJeOWG8lCh00/XJ6lxlihUVJDqikAAJkAAJkEBMErjv3nuNe+6wjzrLqG5dJbmNsfiG1hzNnjmz/Hj8uAyaMMH10DKlTSuZ9R+FBEiABEKVAN/AQ/XOcFxBEUj44IMCF6dZQ4dIi3r1HPfRukEDeSQDV0kdA2NDEiABEiAB1wTS6mTpu3XqyPKvvpKnHs/r+PiaZV8y4Sbzln/v+BjfhmWKFmUCP18g/EwCJBBSBBhDGlK3g4OJCgHEg169dk3WTp4kD8aP77qri5d/lY07d8qNGzdcH8sDSIAESIAESMCKAMq4zNbJ0pJFCls187vv8Rw5ZMnatXLg8BGT5OipvM6NWXSYN3s2+WbJEvntyhW//XMjCZAACcQmAa6QxiZ9njtaCCROmFBQsw2CONHr168H1W+zuq/LowHiTIPqkAeRAAmQAAnc9QQypHlYUmuW918uX5beo8cEzaM2kvKpu++cZctd93H/ffcFzKPgujMeQAIkQALRTIArpNEMlN3dXgJIWvTBG/VlaKdOZvZ4/+HD8uOx41KuRPGgBoLZ4x927JDrXCUNih8PIgESIAESuEngAa3/mfORR2R8r15qDGaQNVu2yokzZyR31qxBlWJ5LFs2WbpunexTPXffvfGk4GOPuUKdQD2HFq9ZI/8GOWnr6mRsTAIkQAIuCNAgdQGLTUOHAAp9w4VpSv9+UlBjRiEPp0qlCn+LHDl1SrJlzhRU5txC6gaFTIYXLl0KnYvlSEiABEiABO4oAmlUHzWoUkUGaJZ35DbIkSWL7Nx/QHYcOCCHjh4TrHYGI8gev2rTJjl97ry8VuEVV13AA2jOsmVmpdbVgWxMAiRAAjFMgAZpDANm99FP4KGUKaVB1arSr20bwQy0R7Jo6ZZ9Px2W7fv3y4EjR+S1V9wpa08/f/79t6zbvj1o119PP/xJAiRAAiRwdxFAtvZ0Wld0dLduUv65EhEuvkzRZ2XBqtVyUPXTzxd+kZKF3ceS5n70UVm6fr3qup+M/kMSPzeyZc8egScRhQRIgARCiQAN0lC6GxyLJQEkLcqYJo2pK1q5VCm/bZFJcLEmfoCyPq6uUaWffdZvO6uNBfLkloWrVsn5ixetmnEfCZAACZAACXgJIJ8BjMzpAwdIquTJvNs9H2CsJk2USFarJ88x9eSBR87DOsHqVuAhtGLjRjl17pzridfM6dLJXM3U+/fVq25Py/YkQAIkEGMEaJDGGFp2HJ0EHnzgASmSL58pII60+VaSJmUqo/APnzgh+XLllPQ6W+1W/vnnX1mzbRtXSd2CY3sSIAESuAsJpE2dSpq++qp0aNTQ8urhurtDXXfhyXPwyFGpWbasZXt/O9HHsg0bZK9OvCIuNH/u3P6a+d2WMlkyWbBylZy9cMHvfm4kARIggdggQIM0NqjznK4IpE6eXF6vWFF6t/rA0XEe191t+/YZ16RgYnVgyC5avVrO/fKLo3OyEQmQAAmQwN1JIL0m1xv5cVd58ZlnHAG46bq7yoSWXPnzTylaoICj43wbIbP8cjVKT/78s7zqMjzljMafbtDkfRQSIAESCBUCNEhD5U5wHH4JIF1+rw8+kFrl3M0ie113f/xRExRdlueffspv/3YbV2/ewoyEdpC4nwRIgATuQgIopfL043ll3ojh6qKb3DGBuP+57q5S/QJPnhJPFZLkSZI4Ph4Ns2XKJN//sFH2qI6DcZovVy7HxyMOdebSpXLljz8cH8OGJEACJBCTBFiHNCbpsu8oEYCCnzFwoBQr6H72GCduWb+eJE2cWJNIrJLdhw65Hkudl1+W7Jkzuz6OB5AACZAACYQ3AWS7hffOxD59grrQCi+8IM88mU+z5Z6TD1XPBSMNa1QXxJNOW7jI1eFJNI71EU0CSCEBEiCBUCHAFdJQuRMch5cAZp2R/AEZdLNnymxKuHh3uvgAhYsYm6179pokR8HE6sSLF1dWb9os//z7r4szsykJkAAJkEC4EoivOQ2QFAirlDXKvhT0ZZZ5tqgsWK2uu4ePaB9x5CldbXUjj2TIICs2bZTdBw8JjMwncuZ0fDh07NJ161lz2zExNiQBEohJAjRIY5Iu+3ZNAFkKixXILxk0my5WNXcdOmiSGSERQzDyksm6u0b2/viTvkBc0xnpJ111k0cLmC9Zu05T9N8ZCSCQ/AkMkckRq8NJ9DNcwcw2/Y4EGHiRwr6HUqQwLzFw9/K0T6T18h7QPuLGjSvX/vlHbty44YoXG5MACZBAOBNASZfr169Lan1+onwKXGZfef65oC45btx7zDN4lU56/njsmLxUrJhxv3XTGTyJUAbm+OkzAq8ep5LrkUdk5nffyaXffnN6SJTbwQiGvoHxnEx1UDLVTdBRifSf+a7boHv+1QlglHeD7sJ+tMNx0GPQYZi0jqOjgY6ikAAJhAeBOMmSJeMbZ3jcyzv+KmB0opB449q1zLVUa9ZcNu/eLY/nyC5T+vUTzEoHI5gFbtOvr9x3772mn0xp07rqBkq742cDBPVJY1vu1WuAkr5ff/6rL0VJEycyLyJwH+vW7H3BtaVImtQYm/7GeursWSnX6B0pmj+/DOn0ob8m8uvvv5vC6afPnpM6rVubNmCHcgEwZrFajDa/Xbni93huJAESIIFwJICJ0ukDPjPGKEJBOg8eYp6DyHHQ+d13g77kxh9/rKXGVpvwlHE9e7rup06r1kZXftSkiSY4cm6UNuna1WTcdX1CiwNuGpwJ5Z44N72cjpw8KVevXTNHTFL35jSajdgzSeqvm6bdPjFZ8ud/PkICZdTHBPGFS5dU952WjgMGGsMU+SYu/fqbID73bz3fxcuXvef1dx5uIwESCC0C8UJrOBzN3UoAtdjavv2WVCpZ0otgVLeuUrNFS5Miv7FmMBzbo7t3n5sPJYsUluIFC8rspcukXb/+MlmNUzeCmqfjZs+WbXv3uTksym3hspxKjXQYntkzZ5KCj+XV9P65BKu2mCn2SOk331L35vukrM6u2wlquWJmGT8DCfrGPxigH7xRX/p9OVYGdGgfoX/M5m/Zu1fWbtlqVrFRJueyGql4CaCQAAmQQDgRwPMS7rFzhg6RB3WFDoLnLRISjZgy1eiWbBpeUufl8kFd9sAOHaS8ThRu3r1Hvpo1S+pVquSqn6av1pF31ZCbMv9bVwbpW9WqCVZnfw8yuRFWNbHaiQnLx7Jlk2fzPyl5s2c3rsyeC4Dh3kT1N3RJEY2ZtRMnOgrePfiH5ExDJ02Sv/6+KvOGD/d2jQlThOts3LlLftBswke15itWtc+rEftXCEwsewfKDyRAAl4CNEi9KMLnA1yK4NJy+PhxuROWvzHePq1bGddc37sAZYftTbp2k7Vbt0rrPn3Nd982Tj9/1q6didPZqkbU51OnSqOaNZ0eatq9WbWqtO3bT/746y9Xx7lpDFek5Lq6CYUJV6SCj+WRUTqDbSd4QXKaLdEYojBKLQxS3/MdPnFSEqobb+QEGI9mzCj4V71MGW9zuIyVa9TIKH6sduM6zl28SLdfLyF+IAESuNMIwIW0QJ48MrV/v1uG3qR2bWPszPpuqTGMbk4cPnZLO7sNMOhQw/SjwYPlq5mzzMQsDD2nglAUTFRu3LlTpnw7X2qVL+foUNQvzairvnA7thPoDEyQwlMJ5dDgfjtn2DBJ/7B1nW/oDugQ6BIn4lZH/fnX35JA+/cVTKg+/fjj5p+ose6Rtz/6SDbt2i3wKEIyqAs6gepUd3r64E8SIIGYIcAsuzHDNdZ6hbtM41q1ZMmY0VKmWFF9UN+czY21AdmcOL0ao8NUSRTJ53/mFEkaWjdoYFbsUBd0+JQpNj0G3t1Cs+7C6Jswd56cV0PJjbz83HOSU2NuolOg0OGSlEVXIuGqPKlvH1k5fpyu5hYwxhzuoxNJlOBBx+7E98AY1U6dGqS/qMLG71Qg1ynf8cFlCi7DaLtCr2OWriZ83LSpeSnInC6tIL6VQgIkQAJ3CgEYLghv8GeMeq4BZcmKaR1RZMuF+yhcSYORiiU1667qwcPq4tqqt/vMvc1ef80YfhPnzXN1+sL5ngjYHs9sPLth3OFZPnPIYPl+3FfmGY9nvZ0xio6hD6BDoEucCHQTdBR0lRNBKA10oBPBBAImSqFjoaMmq86F7oUOxjihkykkQAKxQ4B/fbHDPUbOisc3lAtiSPBgHd65szR/va550MbICaPYKYqJwy0XMaJWUqlUSeMKBZebsTp7/N26dVbNA+4rVaSIcd1FIfEPevUO2C7Qjrc1xT4M2qhIPJ1thxLHjHuPli1k4aiRsuyrsdKpSWPlkMN0jRqqiNNcqK5OTgTxOFi5xQuRnRhlD4XvTNeb+CjMiOOFwk7gsnvh8iVv/GqaVKnk9YoVZIquLCz/6iv5snt3k/wDLzKJE9r3Z3c+7icBEiCBmCIAL6MXChd2FCoy+pNu8qTWAT1w5IhxTw12TAM7dpCs6nmyQd1Mv1myxFU3hfLmNW6zB48ela8XLnR8bMPq1cU3aaAnXAOTsHhm49mNZzie5Z6JyYdSpjCGN1xj7QS6AzrEac4B6CaPnrLrGzoPug860IksWLlK/lHvIySPgsC9GLoXOhi6GDoZuhkT5dDVFBIggdtHgAbp7WMd42dKr643IzU5gq+8Vb2ajO7WTYtm5wyp2T8YZZh1drrq2LJ+fXnxmWfkF5197v75SBO743udTj9/1r6dILvgpl27ZJLLmWRk7M2lMStuBcoVs71QzL3VBXnVhAkyfeAAqfHSS34NPcySo77dLk3l70QQ6/mrZkqEoW0nGAvE89Ou/R9//ul4ZXP9tm3qynUxYIF2lDQY1LGjmWGforG8yKIIVzUKCZAACYQSgQfUGMXzfkSXzo6HNazzRyZ2cpMm4kOyoGAEz8N31cUUj2nEpl675i6LbIt6dc0q6YQ5cx2fHs/hLOpWi3PjMxIILlcDbfCHHQOWoXkyV27jtrth+w5H58FKK3SJE/HoJs9Pq2NOqM6DUQwd6ER2HTxoElL588iCfoZOhm5eNXGC0dXYhnE4GYuT87MNCZBAYAI0SAOzuaP2YIawe4vmfsec61FN766xKRWef96kUPfb6DZuTKeuMZP69vXOtjo9NYxJKBIkkmjZs1fQtUHhuouEQaOmTXesJD1jfKdWTaPwPd+tfiIGCKvAiNNBdkb8Q4IkO0E8DGJ1EKfjRJDY4bqWZ9l/+Ihtc49yvekUZdvcuAI7dYdavGaticspV9w+uRJ+J19+rgSzINrfArYgARK4jQSwMlpGV9CQyM2NIMkOdDAS9H3/w0YzcermeE9bJPYrku9JwUpnC5cZd/PpKi1W/Q7qSu2MxYs9Xdr+rPDC80af4pmMZ7Od4BmPVc9Fa9bYNTX7/xHvJwAAQABJREFU3YSVQDd59JRd5we07A48p6ADnQh0KnSrE08n6GrobMTYQodDl7uJ63UyHrYhARL4PwEapP9nccd+gntuqWeKmFgXq4uAQde+UUPJmDaNVbMY3ZdBH+qTdWUUP4ORcb16GoW7ff9+adS5SzBdiMd1F5n3mvdwl2K/pLpw5c4aWPlBkcKt6fmnn5KvevTQ1dDxZsY1R5YsJkX9Fp09dyIZ1a0VGQGRMt9OMDuMmdxDx47aNfXG5TiZ8b2sq66Iz0mW2Jk71JFTJ83Kbm5NruFEkAGRQgIkQAKhQgCrhNAPA1RXBiMFH3tMmusqJRLmwCCcvmhRMN3IQDWG4bq7RpP5LXZo9HlOhGy20AfjZs/xbLL9+arWL4WbqtNnMjyF4MVz+OQJ277RADrkz7//EugUO/HoJicxpAePHjPX6mSF9Jjqe+jUTA5XU6GrUVYGutusmqouh05/7qlCRsff9DWyuxruJwEScEqABqlTUiHcDooEiRWcSM2yZWVCr17GFed2x0hgRhXGc7DGqOf6hqtrFBItrN68Wdr3/8yz2dVPj+vu+u3bZe7y5a6OfbdOnVtiIJH8AjOob1WrKis06cMXn34qT+S8GROKzhF/g1VMxMA6EbwU/aauSKihaifIUowshqfPnbdr6p159ih9qwNOnz9vygHgupzIhYuXjDuUk7Y7Dxwwyt5JW7YhARIggdtBIKl6tQSqz+z0/Mg8XlPrkv6lNZsHjBsv2/ftc3qotx1WaaFnrmsuAfThRlB+BfkIEM+K7L9OBPogW+bM5pmMZ7MTSa0rwuc1RMOJQIf8fuUPOaM6xU4wFs8/u7Znzp8zug860E6Wbdhg3HtLP/uMXVOzH7oaq6/Q3R6BTkdcLXR8A9X1uC7ofgoJkEDUCdAgjTrDWO0hhZYJQVyiG4EbytT+/aX6S2UcJwNw07+/tkiU8KcmH/hXFazbGd/I/UH5dHu/mc66Jtai3ivlixkzIjdx9B0z2VAmgydMdNTe0wg1TXM/enMVELFGUEofNn7HrIZ20LIn8fwoKGRqzKTc9x7+ydON5U9kAUylCn/d9m2W7bATxihidKJ79hkzykiJj5hbO9m6Z4+cVXcoq9Vj3z6g7C/++qvvJn4mARIggVghgIlSPEeRff21Nm2iPIY2b74pL+qk4s9qgLXTSdPLv9kn/4l8UiTzK6LlXPZpPc1Wvd0l4Wv9pmam11XSsVrT1KnUr1TRZKB1OmkKwxcusNscGNxwA76iMaRHT522HY5nZdTJpCm4Qvfh3tnJGq2ZjVXdZ1UXOxHoaiTgg+6OLNDxH75zU+d/2LixuvY+LHgXoJAACQRPgAZp8Oxi/Ug8sOEaipTswUj3Fi2kW7P35VEt+B2TgmyrcD8q/MQTcvLsWekyZKgpJB6Vc6IA983kD3Fk5LRpWtx7k+vukCSpmBqXh44dk/d1RdONvPfaayaeJJEa2nDLrVuxou3hiO+BC9ASjbW0k6RqbKfUyYbTZ+0z56IvKOUrf/5h16135tmJsscMO1zPsmbKaNvvwtVrTL3R8iVK2LZFAyd17xx1xEYkQAIkEAUCeBbCuIIefThVSq15vU1qtvzATJ5GoVsTg1pYcx7AoHynS5eguoLrLvTzio0bZZ0mjXMqcDNFyTTEWM5Z5swDqKiWrkGoiNNnc7kSxZEdz9EEM/Q/dBR0ip3gfnj+2bWFzkO/TuSUvnsgmzBWwe0EOhp1taGz7aSurqCuHD9e8C4AfYnVbQoJkIB7AjRI3TMLmSMQq9indesojadc8eLy9YDPTB21mHiQwq2no64azhg0UCb36yslChWUsxcuSI+RI00B76gM/vUKFaSSJh7ALOnHWqAbGffcCmKFsAK4St1/l2/4wfHhzzyZzxQiv6Yp5JGx14nAnRcrxVPmz3fS3Lg2o3bbJQdxNwl1NhwFwu3EY4jGucc+AgaFzBOr8kYSKjvZfeigJvNIYZI/2LXFyxUMcwoJkAAJxDYBJK2ZrTWTUbqlR4uW5rn7g5ZdqaGfsaoXFRmjfSLJ0MadO+W9T9xNeuK80MlN6tSWq1evSc9Ro10Npe3bb+nzO6F8OfMbx8ehdA08Y/CMthO0xYrjjv32Lr7QIdB9RxzEnHp0k0dXWY0DOg+6z07gPQRdinvtRKCjUZoMOtuJIPYW7wJPavKjWuXK0pXXCTS2IYFIBGiQRgJyp3zFw72TuolGhyBDL5IF1VOXnVTJk0VHl6YPrPK9WbWqlNfMfR5B/EUplG9Rd83+Wt/sixnOlaWnD9+fnd9tokkGntLMuyel2afdfXc5/gzX3Xvi3CN9vvjC8TFo2Lzu66a90xgfpNbPlDadHDp+zNHsO1a/z6kL2ZotW2zHlTxJYpOAyK4h3KH0/97kRlbtocAx+5zMQY23sxd+0dnn5FbdefdN/vbbKL/oeTvjBxIgARIIkgBcMpGwxiPFdcIUk5RYldyiYQh1WrUy9TY9+93+RJIkrHIiTAYxjG51DM6HbK9FdAJ0t5Ys6TRosOMh4BpgNCL7+rcrVjg6rlHNGnK/rvLhGe1EYJD+rBPMdgIdghwSFy5dtmtqdDGmSz2uu1YH/KVJ96D77GQtSpKpLi1ZpLBdU6OboaOhq6GznchAXSGFvK+eU12aNjVeU60avGFcee2nfp2cgW1IIPwJ0CC9Q+/x4zrrWkbrpEWntG/YUPq3bau1QbNEuVson+plSkvDGtVv6Qu13crryiwKZQ+bPFmGTJx0Sxs3G5DkqJBmN9y6d680/Kizm0NN25uuuwVUcR+WNlqOxqmgEHledfXac+iQIIbSiZR+9lk5pW64UxcstG0OQxsxwkvW2rv4wtUK8Z4oFG4lN2edURfV/k8f98eJOxRm1C9o9sLsmTNZndq7D5kRKSRAAiQQmwTgYTSy68fGjdN3HFjlGq46CnoQq39127ZzVOPZtw/fzzBqMHGaSOMcp85fEFS4ysAOHSSz9rNEM+46WZH0nB86HS6qY6Y7y7OAbLVIGOj0GZ1DGSHu1onHC3QJdIqdGENUrTi7FVLouj80LwV0n53ABTeFGsXI/2An0M3Q0dDVTmTL7j3mHcC4fT/xuPeQhjVqyHc6yV1da5vCU4xCAiRgTcD+rdT6eO6NBQJI6uO2RprTYSKOBDVLkeXViTHir9+4miACiQCQ4CeQIMstZn6RiXCMJiUKZubYt2+svCJuZqXGknYePMR3l6PPA9q3l5x6/LL1Gxy74KJj1DSF4vzsq3GOzvPqKy9LWo2pnfe9fVxPKp19RhzpMQeJIHI/8qhR9idt3JYxVszYetyirAaNQuaoiWony9TV+Xc1hp3Ej36zZImjlxe7c3I/CZAACQRLIHWK5NL1vfd0Ei2z3y6yZcpkMqU/niO7ials0PFDk2vAb2MHGzG52KhmTVPrs9+XXxoDxsFh3iZw3X23dm1jgHXV8BSn4qmhicnWBatWOTqszLNFzTMaz2o7QcgPkhV+78DFF7oEOsVObuqmm3GkVm2h637VTPTQfXaC8mmIH8U/O4Fuho6GrnYiA8aNM+8AHo8p32OwQt6r1QcyuW8fE6cc7DuVb5/8TALhSoAG6R12Z5EVFqVbsHIWU/KAuuyM6tZVGteuZYp8uz1PVlXmmHm2ExQRf00f+jc0tfqEOXPFjaKN3Hf8B+43rlFwIZqzbJlMmDs3chPb783UBfeGlmbpNnyEbVtPA7hEIUZot66S7tDaqHYChfSoJniAizFcYu0k7UOpHbmMPaLuWViVtksaYWad1Sh1skKKGqROEkCs1Vp5D6VMaZJW2V0PyhAg1oZCAiRAArFBAOEuCCWxc99EMr4Jmt0WtUUPajKed7TutdOSKP6u640qlaXiC8+bzLSt1RPHiXHm20/lF0vJM5okCXqm9+gxvrssP3fQ2uMInxk9bbplO8/OuiZ0J7mjkjFIBAWdu3qzfVgJdAl0ip1AN5lJU9VTVgJX5PvUUIfus5Pzly5qXKd9aRjoZOhm6GgnxiNK+kD34x2gQJ48AYeBMc4dPkzaN3w7ymXvAp6EO0jgDidAg/QOu4Fw/XjvtVdvy6ibvvqqcV3Cw9bOfcYzIJRA+WbQQM9X25/t3n5b3XprCGqiTlu4SNp/FlxdUZwIs90dNRU7UrIPmzRZNmzfYXt+3wZw0SmmK8Rwwe061PksNAqRg0+/L8f6dhfwc+3y5UyJlvFz5gRs49lRvEBBE6ODpBhWkk4NVxRDt3O1MjGk2pFdfM5lnXnGywPc2uzk1LmzkkpnnlE6wUowm31YZ6opJEACJBAbBKAbEKIBneNE8Eyd2r+fPKMeP3h2va95Cn7YYf0stur3Y12VLaGrpft+OiwN1cB1K/CMgovq7GVL5afjxx0djmd4wcfyyD4tY+Kk5JonszquF89sK8EzH548dp456APjgIstdIuVeHST52egtoeOHTWlbaD7rGTzrt06CXBREyo+ZdXM7INOvqT5LaCjnUj/sV8Z3Q9PKSfymiZiTPBgfIkb92aZISfHsA0J3C0ErN8g7xYKd9B14mFZT91LUarkdkg+TR0/Z9hQgWsOlLOVPKyrZP3btZUH48e3anbLPmQRbFGvnlnhm7N0meuaa74dlin6rDSoUsW4kHYaNMhk9PXdb/cZCh8FwpEEYq+m63ciMNif0ELkuzTpBBJP2AleiPBSseKHjXZNzSw+uNu5W2HWH6vE9jGkN//k7Vx2z2h8DmJS4cZsJYgJ+kUTVWRJn86qmdmHzIWnbFyKbTthAxIgARIIkkDuRx+Vvm3cZaaH0TWhdy95Xg3JE2fOGP30/Q/OM7JHHipyKMBA3LB9u7To0TPybsvv8F5qop5Lv135Qz4c6HziFxO1yRInkZFfT7Ps37OzTvmXzUquk4zwWP07rzkEfreJD4UuQRvoFisxugmhJTZ5Dk6fO6/vGg+Y7L1W/S1as9qsdiJJoJ1AJ2fSOFroaDuBvt916KA8rrof+t+JYDX1l8u/SvZMmfW47JJew68oJEACNwnQIL2DfhNgmCAN/cqNm+T1Nm2lff/+8q+6u94OGdLpQ2n1xhsB3V5QhLuxxrgguVAw8lqFV7TQdCNT23Pe9ytc1wX1PSdcjV8qVkyOaLKdpp984rvL0WfEgvzz77/SaeAgR+3RqJUWIseLS58vvnR0zGPZsprx2a0YYlYZcaSYUbeTBx+Ib1ZerdpB2WM1185lF3GrV69dCxhj5TkHavbBzamsTljYyXfr1sl1dYmmkAAJhB+BhBojmMDlZOTtpIB4SsTyBSsoC1NaJzzP/vKLdBwwUOavXBlsVzLy449NfWc8E51mafecrMqLL0oRdd3dsmevDNekgE4EbrVPaRI+1ERdque0E0zsZlBvJ4zPTsoVL2ZWFdfbeCTBgwnP/2M2Jb+8Lrs2pclQygU6z052HTxkVnHhgm0l0MVH9Z0ButmJ9FVdj7G2eqO+k+amDfJbXFO9ipI8E/v0kUWjR5lQF4TbUEjgbidAg/QO+Q3A6mOerFlN4hjEj545f95kai3XsJGMn23v+hkdl4nYkrGaPAixEkhc5BF8LqlJkFAgOipS4YUXpHuLFiYmZdHqNdK4y8dBd9dbEwkgsdJmzYDX5OOurvrxuO4iXgguOU4EtUyxmoxZUycrq29WrWbiZL5wkP0QivScvgTZCV4I7ermeVyv77FR9vuPHDF12OzcoeACBoP52SeftBweVhacJGey7IQ7SYAEQpYAEgHVLl9ensiZQ5DMJZTkIQ116de2jWvvncjXMLRTJ3lZy5jBU6nb8OEyY/HiyE0cfU+i8ZSoIY7Yzkma72CBS+MWpWQQHjNFs/b+rO8CTuRDLROHEm8jpn7tpLlJwnP05CmzKmx1AIxj6IBFqgusBLoEnjx2eQ48usmjqwL1CV0HnWcnmECw02PoA7r4+o3rGl9cza5L2fvjj0bXQ+fn1vcyJ4JkVninQIKrEoUKmUPgTYb67E3r1BH8jlJI4G4m8H+r4m6mcAdc+7NqXOHBhZXKsT26m1k1BN3j4d5j5Eip2aKlq+ywwV4ygv1Rtw0Zcj0Jb6BUG1StEmyXEY577qlCJoMwMgljdvatDztF2O/myxeffmJcaZare9WnIz53c6ggC7C51kWLHGeFbfPWmzdXScfYJ5zI9egjWucsral1ZzewwqrwoVR/tHHTToZapBqjYyUeJW/nDoUC5gniP2ibrt5kL9TZd7iSWclXs2Y7qldn1Qf3kQAJhCYBrMB9qknqOqqXy6whQwS1nVEHM06IDPeiGpBIThQd0rdNG6lS+kUNafhTeo/5IugJYZQJafvWWwKfkV6apAiJk5yKx3UX19W2Xz9Hh8EYffqJJ4wxtVwzo9sJSrb9rVnw8ey2EowlpdYv/+mEdUwr8l88qGElh0+csOrO66rr0VWBGkPXQedZCeJsL2hZGrw/2QnqzmZJl16gm+0E9x0eUa3VM8qJYOUVWYvxN4GwpsiCsKURXbow4VFkMPx+VxGgQXoH3G4YZ120jplHoMhgnCJLbe6sj8pVzVr6gya9eUdXFN9TF1UoqZiWPhqH85GOCXXLUIOyUefOMtrBap+TceXXOnBwaUJsCozJeu3aOznMbxtkCwY/zGRPW2hf+9PTCZRhs9dfNwq5bb/+ns2WP7FCkD93LlMnzm4WGB1hlhSKyq6GKdyn4mrSp6Xr11ueHy5pdiukJqkRXHZtVkhRwNxJLDDufSY9r53g95NCAiQQngTyabZxeIl4pHGtWrJg1EipVqaMycDt2R4bP5Gk518NwajWrLkcV0+N6JBu778vr2uCGoQ1DJowQT53uOoY+dxYba1bsaLRoS179Tb9RW4T6LvHdXfjrt3iJEEe+umkq6QpNAHd8ClTAnXr3Z5L420zaU1SJ8/uzGnTyXlNHGQn8dXFFrrFSjy6yS6p0V+adA86z0pgeMNNGGXsrAQ6GL8bnpVLq7YHNLsvPKHy6+98oLJBkY9v3/8znSz+WzBpHUjy5copKyeMN95GD2j2YAoJ3G0EaJCG+B3HLFzlUiUloZ+EQnBx/XbECJPkAA9mGAeIv6yimfxQGyumBaukMIzhsoMsdgP1nE27fRItp82aKaOM69lDkIRi1ebNUqdVa/NS4bZzuDfDfRezuIjV2bp3r+MuYAiiLiuOGTXNWTIIzHjDeMSMt53ABRqrzF/OnGnZFCupqZIllQ022R3xQgiD1C5pBE5mF0OKZEUJbeLBtu3dZ5JZ2BUQh/K2ixuyBMCdJEACIUsAiVkwORpZUKKsd+tWJm4Tni9J1F3zdgviILNlzmQmJTfv3i2vtW4j09XrJToEq2Pv1ES23huaLOhrrUXtLLwj8rmRNf+lYkUFtULf7vRR5N2W35GEL02qlDL2m5mmDrVlY90Jl1mUjoHLKXJR2AkMNHjB4BluJYitPa8rkXalz6BToFusxMSQ6qSplSB5HzL2+k6C+Gu/bvs24wprZ7hCByNHB3SynfQaPdqELFkZl759fK6/G9v0HQIs4a5rJxP69Jaa5cpqEirr1V+7frifBO40AjRIQ/yOQaF+8MYblqNsWb++zP98hLzy/POm8PMRjftA2ZOK7zZ1lObdsnObnYhtnaSJIhA7hOLdSPRQSc8LhRdVQW3LKeqOhFXH9ZqRsPYHrVzXbsMYsOKK0iwoY4KZSjcryAPUdRcZZMdrnVRkk7WTLOnTS0GNsUV9sh9t0vJD4WAVeO+PP9l1a1YZ7AxN1H9FkquTZ89a9ofVX88sdKCGqJGHOCcrWbh6tTFaixawdof6Ul+WEHNFIQESCD8ChfM9YVkXG8/ELzX3QP927QSrQLcrvhSTkR+/11RmDx0q43r1NEl9Tumz8RMN32jVO/jkRr53sFHNmgL9C+Mbrq3dP//cd7fjz4gnxXN03bZtrsaG1d/GtWrLOTUGP9AVVifSqUlj854w1EFCpDc0Yz0S7uAZbiVwiYW+sCsrgzZ29VftdBPGcerns/KXuhND51nJ6bPn1GC3TmaE46GD4U5rZwQibAZxoPnz5HZW/1Tvy8S584wnGcKAnEqzunXl/vu5SuqUF9uFBwEapCF8H1EzDTNlTiSBBvcP6tjBrCo+82Q+LRh9r5mtbNOnrzTo+KFxDXXST7BtoPh7ftBSsmqM6XYt3I2Z3rE2K39OzoWaXdM1vX1hjX3ZpDPcr2r8DrK6upWqpUtL7XLlTDyomyRHHtddlEBp2auXo9O20+LXeEHpOXKUbXuMC7O9S9autWyL+Ce8dFy4eClgO6xUYAYaM+12YhdDCuMdMT9WsksVc+oUyW0N1z0/HrLqhvtIgATuUAJ45sCYciIvFH5aZg4eLK0avGH0hF2MoJM+A7VBXevyJUrI808/bZrAy2TqZ/2lapnSZnVr1tKlUr15C4GBGlXBZCyMPDx7kWTITTkW33N/8emnJpEQjLphDoxFz7FVNZ61iE4KYNIW12UnyD2BetuYNF69eYtlcxhoj2ZIL3bPcKx+p1Qvnm379lv2B52ClU0rsdNNOHb/kcOmlItV2RR4jOHf0088bnU6o3uhg6GL7aTHqFHGAwr1050IJj5Q6qZVgwZOmnvbNNaQpTPnnCWr8h7EDyRwhxOgQRrCNzCtzuwhFseNIO4D6cR7tfxA8mTLalw4l2/YYFYXPxo02E1XrtsiTmPGoIHqllJILqjRiAy1KCQeHYJV2OfU5WXngYMmphQzn24FLlYYI1y33vvkU8eHlyla1Mxeb9q1S1845tseh1VtlL+Bmw7cnaykYskXzAzu5G+t+y2rZWyQLn711sAvEJh9xmz2oaPHrE5pEo1YzUKjGDric3JkyWzZDxItIdOjlazctEnddaMnbsvqPNxHAiRwewnAoMSz0a28Xb26KXdR46WXBB42MSEZNIQFk6SRpWfLltJVQ1oyq4GK5zlCQZBsJqoC47eHTsgicdCs75ZKa50IDkaGftTJTPJ9NXOWo5IrnnMM0NrkSCw1fPIUU7LMsz3QT2TcTaWxpEMnTQrUxLu9mhpqJ878LHiWW0mGh9PY1v2GTkFYCXRMILHSTZ5jDqqOQ4ZdKy8erDbD+LX7HYXuxSoqdLGVoCzMjv0HTHIsOxdg9DN53rdmEr24vrdgMsapIOxp085dTpuzHQmEDQEapCF6K7HC9noUyqiU12QJ8zQtfdNXXzXZXDEDOHHePCn7dkNHRlWwWBCHAfest6pVNcbRt99/L5X1BcBJkh+7c37R/VMtWF3E9NXgww9ts/X562+griI/9XhekyCozxdf+GvidxsUPpQQCovDWLOT9o0ayr1a+qD75yPtmpqsfoeOHZXrFjVlkTAJySiWrd9g2R8KhZ/Se20pcNnV+mmBBL8rWCHNoYXMAwkSQGCl+oX/ViACtZuk7kp2LlqBjuV2EiCB0CWA1SkYNsEIciPAowarlljF9GRsD6avyMdgFe7zj7tE3uz9Dt04pX8/M8mIZ1234SOkTd/gDEhvp/oBq443YzpTaS6H76V59x6+ux19hmH0afPmZhUOmeEPn7Ce0PR0iolI1N/G9bTs0dOzOeBPuE0jnnH3oUPGTThgQ91RWeueplJjF89yKylZuLDJBn/i558DNoNOuXrtqo7zfMA2TmNIoeusBFn6YaTDFTeQQOfCDddJZt0eqsux8t5ePaDsBIbw6OnTJaNO2CLsx6n01twTWEC4XfXlnY6L7UjgdhAI/FZ6O87OcwQk8LAqpreqVQu43+mOZnVflwUjPzezfyl09nafunN2GzbcrJgizjGmBHGvcCHOqSnUkfzmTXUbdpoJ0GpMwzWbb7kSxY0LcqPOXdSVyH2s6nh1vYUb0hSdGZ29dJnV6bz7sBrwvrJEMW4nLxp4sXj68cdNQqTjNoXA36hcWRM9/KF1ZRd4z+fvA+qU2fWV8MEEZoz+jvdsQ7oIq1loJCDC9Vq5Qy3/zzC2y0p4UA1tCgmQQHgRwPOhZJHCUb4oTPKhPNfADh3kSc0VgDwEURFM5FbSlS5M4FlJSp3cgx5Ahtt71ciYueQ7Uzotqm6SqEs5Qo1h5B1YsGqVNOna1WoYfvdBbyDDO3RNix49LCcqfTuAyynieVdt2eJodRUlehByMXjCRN9u/H7OqQnzDhy1fpYXK1hAkB32e82MH0igU3CPrfSYlW7y9As20HVWgrrXyENhJdC5l7Qv6GArgU7cvn+fmcxOmzq1VVOzr4VOCmDC1i7/h29HM7/7Tr7WSgB2Ls2+x/AzCYQTARqkIXg3MQtXNwqro5EvCbOnWOGb0Lu3qceF2WnEmyDOs7kqPLusd5H7c/odinWOJpSAywwSCfXVFUmcL6rymSbHQOZhzAbDvQUuuG4EL1PDPvrIZNXDmDBL7EReguuuJm9Yq65A365YYXsIVkmhfD+1SXTxpCZdgpvvnGXLLfvEy87ZCxcsXbIQ82NX+kWtTcsVUqxmJ9DZZ5TLCSSr9aXnoZQpzMx5oDZ4yTtOd91AeLidBO5YAukeSq0rRQ2jbfzFCxWUbwYNMmUxYEziGR2MwFhwMy4YZX3btjExrShvUrtVK8eTlIHGhxW5seolhFU35AZwmzkX/SJ3RHV1aT6oRqCbWtwDVc9j4nnAV+MCDc+7He8BCGGB/tuwY4d3u78Pb2qd8V80HhPP9ECCVdQUGke6ysK1Fzol/v0PmBjQQP1Yee94joGOs0pAhDI/5y9dlAKqW60EOhfxxdDBVoLV6nvj3SsdHPzOz1v+vXm/KqGhS04nbZDFGCFOiHmlkMDdSoAGaQjeeSjV6FgdjXxp2bNkVqO0lyahaCV5s2eTizoziBVCZON1EksSuT8n31ECZUSXzvK+zvhiRnOuPqyrvt/MuMk4OT5QG7g1vVbhFbmos5BINmSXnCFyP4gx6vr+e1rD9ZrG+/TRIud/RG7i9zsy5WGWd9D4CX73+26Eu1BhTaiwefce28y3SEoB1yGrbLTldWX4iroCbbSo6Zn+4Yfkd5trwateHIs6pHATS2Qz+4xkIOlSBzZYwQEzvte0Ri6FBEggvAjAMyImsuU20Kyui8eMNlnbnWRH9aWKVU/EYLqV4gXVGB48yBgPP+uE38c6idrOYe3pQOeC2/BETWiTP1duU0u7fvsOgZoG3A7XULjBIhayrWabdyKYfH5H804gpMJJHCuS88DzZtD48ZbdF8iTR9LppCme6VYC3XhSM+BaCepbW7kiQzfZTUf8qXoQui6QbNLarL/+fsV4UwVqA12LHA/QvVZyUl2Q4U2GCXa7RH/oZ/DEiaobU5tFAKt+Pfvw7tGmbz+N02WuBQ8T/rw7CdAgDbH7jlnLKpo1LyblJU2QM2fYMHULes2kIz984oQxsCq/977GLwR2t4nKmBrWqC6j1H3p8ezZNRPfPnmjQ0eZpEH/URHU/GykdeCu/PGnlnPpb5upNvK58CKClPlIId9Q3X+dCO7P+8oNNdeaOYgR6tCokc4I3y+fapySlSC9ftx4cWXc7DkBm+XOmtXMClul1s+Z5WYt0oCd/LcD1xFIMBOOrM2BBAoU7khw0QokWHXH7xWFBEggvAjgZRulTmJSPm3eTKYN+MwYZEnV68NOsKKKWNQ8+owMRmDIje7WTfVBTePVMmPxYqn1wQe2SXqszoUM8YiRRZ3uNepRghqobmXQhx21xEgeWbByldbCnu7o8GqaSRjGE2IR4QllJ/Bg2n3oR5PkyaotJlcRgmHlUVVMdSqMeisvnQRqkELHBBKjm2xWyJHHwaoG6SLNVIzMv3A1DiTQtf/oSip0r5V8orXekQ+ig3o82UkzXRmHF5Obvw+8e0RHmTy7sXE/CYQ6gcBvpaE+8jAdH2b93GbWDRYFEh4tHDVSkxaUMtnqkBW2pdZrg4sRZgWjW3JnfVRmDhms9VKfk8uaZa+3Fphu2dNZKZVAY8FsMB7+V3UlrvPgIer26iwm1NNf/cqVTHztVr12xH04ERj0qLu2cuNGWaH/rARZF/FCslEzOp45HziRA7JNZkmXzsymW/WHVdf9h48EbIKkEf8oi0DnQrINvLyd/+ViwD5+VWMyccLA8TlwWf5bM/4+b1HkG5kL7eqhBhwAd5AACYQsgcdz5jDZZGN6gHDvHP1JNxmiCewKaN1HxCcGEoQ89G71QaDdjre/99prMqzzR+pu+6j8sGOnGqWtTIIixx34aThedSoSCMEluKZmv7+qz043MkYZINZ2jCbJsdM3nn6RXAmJonqOGu3ZFPAnanRjlXTAOOtVUnht/fvvdbHKCA+dcI/qF6zqBhLoFuiYQOLRTdBV/gS6DQyzZ87ib7fZtu+nn2zrjy7XWNdsmTJaZnrGubZqDoxnVIejrq2VfP/DRlmlZXSQVbeUJl90IghhsnOXdtIP25BAOBCIGz9+/C7hcCHhcg1lixXXmMtnb9vlIF4VM6SYXT6irpqIy8TDHDOMMErtktYEM1AYdMkSJZadGjeB1PsrN202yQKczIT7O19eXXVFiRzENa7cuEkSJnjQ1HPz19bfNlw70rkjGQNmTO3qlqEP3KO5y5cbxVvn5Zf9devd9pTOVk9ftEgTSv1kauN5d0T6ACU7X2fCEauaNHGiSHtvft2r9wbxJvUqVfK7H3VnMUONenhwAcLPSZpdGf+QVGrdtu1mBhezuF8vWGgSKc3UMgULVq2U79W4XrBypcYtHTEuVXCJ9pdkZNikyZp44U9pUru23zFgYy99EaJBGhAPd5DAHUkASXCQjyDYZ3UwFw1jrEbZsjpJltDUDYV3hq/Am6PtW28KPEiiQ+AqjNqiiN/c89OPGhO5WY6eOuU4HtDfGCq88LyZSIShhvIpKOPl79nq71jUI8eK53x9Nq/avFlXjZ82LPy19WxDcidkoZ2jOurM+XPGIPbs8/cTOR4Wr1krT+XNG9CQQwb979auk5+OHzfxrf76wT1CGR2UdSn97K3vMdiOFcer1/4xddLh7fO1JhaaqN5S0E8T5sw13BFLCV03VfXX9EWLTX3VJWvXaLjKLumqSRkxIYpxVC5Vyt8wZPiUqeadAl5Q/uToyVMmCy4mpPH+EEjaqistVnMxSfGAejpZCfJZwB0ZYVFOBHG+uLa/r1510pxtSCDsCdAgDaFb/HCqlDKk04em4PPtHhZW8rBSmlVnDKF88cDGiumi1Wv0QXyf5NYZ4+iUxzSGFYp158FD5jxL1603iXTyZMsW1GmyZ86sM6aZjUGKpArx4sWVJ3PlctwXVm2/3/iDGqUbBfGldlkascqYXGdMsSIL11SrGVHM7KOsC15sKmkyJrgs+ZPH9NphJCIZQ6ByKnBPXrh6tazdulUN7wSmDM1QLaI+TOvJYYYbShpZ+vBvx/798qN+Rxp+zPSe07qhUPQwfPECck7djmGYIh4UsTT7fjpsXprgkoXYz7FaC2+8ujVNX7zITBrgRXDd1m2yZc8eLYKePGDdNkxkjJw2zdJty9/1cxsJkEBoE4ALZMMaNWJlkE9oUrfXK1TQcIFL5tnlcR1Nri69bd9629SljM6BIZs7ntU7DxwwcfswJjFBC6MjGPFkh1+nbrQrVNcgPtQqNML3HNDP0EuYMFyzZatJeuS7399nGOh4VmOiFl46VvGPMHhn68TkDr3WKvoeEEhgPCF7MOquwvj0JyhNBn3zy6XL6gp8UPNTTDY5KoZOnCTQVdBNuHfw9IHOge6BDoIugk6CboL+ga6CzkJf0GHQZdBpOB7jgJ4ZM2OGqfeJ3BQIBYJ01XAkTMZiUiFbZv/ZlvuN/dKcs2+bNgETaOHcSDSEe15Or9dKEOOL96VOTRrLoxkzWjU1+zC5MGjCBNuM+LYdsQEJhBEBGqQhdDM9M6aFHntMy3LEjjc1MgTiQR4vbjyzwoVZ4jVqhKxVJZjjkSymrld0IUNR6+ovldFV2bM6E/2TMXoOaWIffzOrTs6JbHn5NVseVvpWbt6krqv/mhlfJ8eiDZQOVj2xUlq0QH5bFx0YrchQCDeqghrnk0ZjqwJJ4SeeMLOhe3XGvVzx4n6bwcjFCuZ+VdKvvhJx1RUuzrOXLjUGK5QtCpUjwQTOD4WNmWco6es3bvjtO5iNcP1FLBBeDGDowlhHTBLiZ1G/DbXksGIS2ZVpiCZ1gPFNIQESCC8CqI+YU/UAnrWxJfBogUGEsh5Ianden094wT999py6S/pfEQt2rMhsjlU2GGpbNDndknXrNLN4MtsJy0Dng26D4bV++w4T4wk947QG6yPp0xvjaZFOSCJRHlZd7QRG74zFS4z7cQ3N2mslv/9xRSegV2sivicCurFi0hS5H5A4D/GivrJfS8r9j73rgG+q/KJX9i5lU6DsvffeMh2IiAqCExcK7j3BvQdu/eNWQFRQ2XtP2RvK3pTuXcD/OV+aEkqbJmmSJun9/MWkyXvf+955Iffde88995upvxvVewr0sW6WtNj9CNjShtCW0Ka4a9DW0ebR9tEGkjlE+30Kr1nCQ5x5vGohlS+je7838VvjODIQndV4Gk7mWTjVn0OU0Z6AF1X+2TqH15JlUNkNqtgz80o2mg5FQBG4iIA6pBexyPVXVI5j3QqVbzfv2g3aaZ0so5CeXmzbpk2EVFQaeSuNl42mGdGk0SclyF2D0vOsneU5r9my2dRh0CjSYXV2sBazG8R2FkOcaSnoTXHo79mpZUuHpqHRadO4iUxH1pNO5g39+pkG5fZ27gvq7l+4XsuRsbx54MAsN+XcB48dNU7dEDQap4hGZoORcNJ42oI69R8MLiO0b3z1lXyAZ0amGSkmrZiP3BhcE29KqVBIQ/wrbk4mI6vLzGkJUOdq4qbpXRh70oZ1KAKKQGAhQKeCNMs5K5YbpgUdttwY/K25pmdPadGgoRwkowcP/h7NXrbcZDXtCd44u94ypYPkJlCGD6OF1Y60ACTbWfUCw8eV0bN9O0lITDLtwxauXm2CplQIdmQw4Mpg5ALsRzVbOpz2BsV4isHW0KZlZwvbIBDO7ZiFzIoKy6Ap2Tl0qhi45vpf//IreQt6EF9NmWK0EmgbaCNoK3JjWO0jbSVx+mHadNNSbf+Ro2BRVQdb6bCpg3367lEm65zZGulAv/ftd9ILvXb7ZUI9tt1n9PhXDP2abfWyG2Qn3Yma6H2HDme3qX6uCOQ5BNQh9ZFLzh5ejIAy8sgM1C5EG9nPatmGf5GVLGtEDby91PzI0jKieyV+lA+AVsPMHGkxpIwmJ6dAaKKx25ZEuu3VPbrLdlB4STNirQprVlyhCrM/Getimemk8BDxdLQWltFvUqdJAVq1eVOWhtl64hRwKBNU2mQvT5+NsBuht2RJ50BRb78M6NbVOsUlz2zk/euMGehzuhg03F8NFjSOvto+hTcdpF+Rtvw3erpR8OIknFFfXe8lYOsfioAi4BACLIEoXLCQsCUZf49OhZ81gcO/Fi00NX/s95hdjZ1DB3JyIwYymfkrE1TKOGpk9JCdsWLjBiju1kVpgWOOniOHpS2k+A9tIG0Ds5x0LrMKLtqbs1PLFkL7yiwiy1Wa1a8Hu1Pe3i7pn/WCE7oJQjuLoaLLY2cXFKDy8AY460ugr8C+mPbqf5NSkk22mUHcrCi+L3/yibGpP0yfbmwVM6C0AbnlgKYDk8ULK/2X140lKKRLs6coW95QQyOzwbY//J6zZR1reLMar3z+uawBa+h59LOt4wBVl90F2JJGhyKgCFyOgDqkl2Pi9XeYbeQPGntrkg4VER0jlDVnPQVpSYxIU3CAP6zN69f3+vro4DFiWh9OIyPRYYePwCBvNg5fCJQQKTrhjsFI7vXIHsbEx8k2UKRIvSVVtE+nTk5Pz9qf63pfaai7pJoePXUSxrijQ/OQimsVGOK5Zkch5vakCy1YvUa6t2lrmoNndiAaNvaHW7hmtQzt1/+SGzhmxh9H37pX0R6GDnQsMrukxfrbYAZFnVF/u2q6XkXAPgJVoWK7fupvYI30hSOV39AvSZU8jTo7CsIxs0Z2C4OqWTky9o+Qs08pTEMRtmj01qaY2o59YcZuktHDTCadP3eMhrVrSf+uXQyFl4J8c1euhJNaziFnJOPxW0E5mCwgihwxk0f7Wq1ypYybZfo3s8O0N3w0ql0n2/3oxJJ5s3bLFhnSt2+mc/JNZmD/QmCRzhv1DmzHBNQ8Pvfhh6DCRhiqLH/r/W3QptK20oGmRgKDF7x/oaKzdTDD++63E4XsJ+KW1SBF+e1v/icd4byPGZE9VfdxZFDn4zr7o13PCgN9XxFwJwLqkLoTTRfnYjNpFtdz0KBTVIBOEH84kxGxpINC2ix/PP9evMhko2g4rDWnLh7W6d1IxyQttXChgoa+tBNGn84eW6aQYkoalTsGa3ZYr7pxx05EujeaKDIjylmJKGR1TDr6jJ6TYsR1MouXnXNpnYvKuHRG5+GG4wq8STqTvcF5p6HGkxHvoXZqdSgf/xsUd3eEheHGpqt8DzrR42+9bRT/6KzSEdahCCgCioAvIXBlx07mt5M2h7/FLOegPYiCA5iI4Cnr9UiJZC0naZxFCheR+jVreP0UyIRhXeDhEydMxpRsmxlLlkoqflfpALpj0M7dAKcuPDLKCB4twvlSlIetXZwdjevWkaoVK8kSsHlYEhNaOURqVavq0DR9cE3YGoX9RkkrtWd/WTJSrEhh2Ci2RfvPrj0j5fWfxUtMTST3exZO6PMffWyc5kgEy92pU+DQiXpoI9pa0nr/QM9Z1p6ev3DeCCE+jZ7mrB398uWX7Wp5jB43XvIhw0pVXVKZ7Y3PIOZExXsmGnQoAopA5gioQ5o5Ll59tx8irhmzgBQ6oJPD9h5FixQ1WUNG9Vi8z+glo5jr0NesFkSISPf15iBVdySi0RS1oRO1GTUnFENg3WCX1q3dshSKZgxBNJ5O77+4qWCWmK1Q7DW6zurA1/ftYwQpSOGlsl9WdNmM+xP/NaBlkaJMOg5vwLIaFKFi/SdbqLAWmPTczAa3I3WKio1sxUKVXqoK5k61TWYr1PcUAUVAEbiIAGmvHz7z9GUBQSqYDsFva492bU3GiQIzzJhS/XQhnKSZcATJ8qGCa3Y37BePlvNXZMdc3aOH6V16EGrxZNlQaZa//8yGsWepOwbpurS/ViVbZh97te9wCfPFkeNQ2Z7MKAoA0SlliY4jznxROJhkTDE7zSzrjQPsixaRurt++zY4sGshCtUDCr+ZqwVTzfh3OGl8fDllstF2oLJtoA7aXtpg2mUKQFGQiX1os6qjJQ4f/vCDCXI/e+892Qpc8Zq+9+230F2IDVQI9bwUAbcgoA6pW2B0fZLyMPbvP/XUZcbedkY2BWdmshloSfzhZJSNGVNm8CgDvxAGhkY4u1YltnPm9DVvMOhE9+3cCWI9bBNzTFbDILNXWIlixWFQa+b0EEY46dpevQzFZQOysIy8s5aVIkjOjkG9exkaF29Ktu7dY25YHJmDtCVG/dn+huqO9hQRDXUXVGNmVUnryiyjy15rrI9lRoGUNx2KgCKgCPgyAmw3Mnr4sCyXSJVtsj2GXTUQaqSFjA4CqbPHYaNYisAgnRHpQ6uvzH4Ts5w4hx+w3pUq7nSoWWqyHcFN1mtuAPOGWV6WiOR00CGljdi6Z68JELN/d0iF8sZRdWZuYkw7T2eRDkwp6Cc40gKNmgPlgi3tx6i8a081luvpDYd5yuzZWOsWlLRcSsnl53EIej8Kxg5b3bDNV3JK3mLs0CYz4091XgpCNcukRIpZ1fGffmb6lY8ZMYKwZTnY0ubRN99CBl0VdbMEST9QBNIQUIc0l78KrF144JbhDq0iFFlDGhFK3rN+IyktIn0E9CT2/pq1bKmRwSd91lsRadbAcE0Na9WGs3jUqPAyWkvRB0ZkM7YEcehEM2zECDuzsht2bE8TrNhoMrH2KEoZpjB/Ejf2MqPRp4Q/nV1HBpUM2eybdT4MDNjDllnVP+bNNxF5Zg+sg73j7n7hRROB5c2aDkVAEVAEfB0B1r0/ededwp6W2Q0KxLRr1tSorzLDFxkbY27uSWdlvd0/oEUug/J5hXLeFeljq5IR11xjHGVSeVliwiDjGdRCslVHTgdpzHRKmSGmXaFDSSaTo0J61uNTMKkrFOIXrV2DOVabgGwLB3ppM/jLDCbPiS1P7FGHScFlZnUaWobRfrL21jpYD/nYO2+bmuC8rgNAx5SiUaR716xaRXjvZR33g6pL2vIPb70pFDXMalDk6fZnnjGKxFlto+8rAorARQTUIb2Ihddf5YcBf+LOOxyKhNoujuqzzBLeOuhaCS5ZStijkj+glIOn4hvrRBjhbIqINLf1xqhRpYpx1hh1ZlSQEXEKPuw9eMgYyJyKSlSGAiFl5km5Xbd1m5H3p7qtI9Qm2/PvB6GCk6Aas+6GPT/t0XKs+zH7TOeaohCsac0ssmzd1lB3S4G6CweWrxvgZuFe1KJQEIKNtnUoAoqAIuAvCJDe+vYTjzu9XGYO+dvap1NHBE+phZAiJ+As0TZYRPpWeF2kj9oE/O1mAJcZ05Uom2BGM6hECaHKe04HlWlJoaXYEduGrdu21bRlocPq6KACLutBF69bK/MgZMi6RgaYsxssEaGtnQ0mD7Orto5mxn1py2hDGWClwBG1KUa98IJh9miN46VoMUvM+tKNO3dIXzDCfgDDiWypp9AyhiJU9sadzz0Poa8t9jbRzxQBRcAGAXVIbcDw9ksjZvSURczI1WM3b1Df9EhjBpF0XtJNWNe5c/9+0zaGmTm2MaFKojcGxZZuHTQIrT/CDY13LepcZy9bZgyrI9He7NY4sHs3UK2Kmn5n8+HwHj5xPNtebBnnJPU2LiHRGGTeOPDGyV7Wk/uT/lWqeAnQz+Yb8Y4rcaOV1WBtFZUnWYNDA7YdvetUWS8rtPR9RUAR8FUE6OiwHtPVQQeLrJGRCJ4Wx+92bEK8sVPMVBqRPtzsUwyJ9ssZx83V9bBNylVoL0Yn7wCOuweZW7KLWNNPZ5I6ADkZZDyRurwjbF+6/gDfs6c/kPF4xRAAHQT2DrPJdN7JhiLFOLvBYCvPYwYypWwFQ5uV1aDyMDUMfvr7b5mEVl10vHRkjgCzoSxLmjRzJnrd7jD6EA+NHJn5xmnvsm0Mr53afbsw6YeKwCUIqEN6CRze/YMGcDAUdd0xaPSu7dXTRIBTUPdBx5S0IQo68IeRdY0X/rtgN3LqjnVY52AGt3+XriYizkbUFAxgT1BSX+iI52S0aNjAUJvYz4sO5cqNm4TRb2YyHR2MZtMJJS4LQLHiTRdVee0NKiJGQH3v78WL0Zssv5HIz2x79i+bPGu2oQcn4GZChyKgCCgC/oYA2TXjxoyx69g4ek78raXKLUsemoC5E0U6b1KyUcPdDJE+CvOw3rROqHdE+si4uaFfP6mEGkyWcWxGX89Zy5abnqq0XdkFKO2dN/elPSHdmUJHbNlmelTDRjk6aIu4PjqYc6HLEA6bQhuX3aBWwgzYJ2Z+B3Zj8DbzOlmLOu9ao0URKKq52WGT0895T0VqNMuU6NBnhe3/pv5uHH1ur0MRUAQcR0AdUsexcuuWjNSOG/Og23p4WhfHH0nWkLAnG2tSouNijbobxYBY2/n3osVyCFlFZjJZT+LJQQELGsgmcOTolG7bu88I+lCVl5H3rH7QHVkTa1NvGjDAOLy8kWFUuHyZYKeEnRiVDypZAsZ7uXHa+3XpIkULF7Z7eKoIUxTpL9CiG6AnHdWAbcefqB+9f/x40KcO2r6trxUBRUAR8CsEKJjzHPpju3vwN3MQqLNku/AGn3Re1pnuPXTI0jYG5RTMppJp4unRCGqqt6C+lM7D/qNHZDVKXmag5Qnr/5hlzMmgfWFmkywhloiQyktmjTN2l+wdijCRvsuSHHt9MblWOsOsQyU7h1oJFHXKOMa8+pp8MWmSqanN+Jn+nT0C/K7+ATVeZtMz1lYz6//GV18ZFkD2M+kWioAiYIuAOqS2aHjxdRXQaV4cPdqjR2RGjz0xO6L3JZs9sx3JQdTOUKaebWNoICk5TxVCTw5mRek8Un2XjikdSLaJYa8vR6hI9tZGOliFsmUMPYpz0miTkuvooOAFM7azli4zdam92reTEtnU3TLyTIn+vxctNHQ0a53uI2++Kew3xvY8OhQBRUAR8GcEyLjp5cRvqbPnyt/N3h07GDovqb0xcfFyFtRRsnrYNoYK8hHRUaZtjLNzO7t9l1at0P+7D+pLTxobtQg0XrJvalapKlUqZk19ze44bMnGrPC+w4eMZgHtTLXKlYSaC46Oa3r2NH2r54HJQ2z6dO5kd1cGgutWryG/QU2Xvbwp5sfB+t0bH31UVkM7QbOidiHM9kMGUvgdpZBjfwSyOeiojn3tddP2KNsJdANFQBG4DAF1SC+DxDtv0AAyQuyNwUg3KUSkALGmgT+m/PHchTpTKvOxFQpvDthr05ODVFvWErE3HR1TZmwXrFyF/qKlnMpsZlwje4axfoYONh1FUnjZG8/RDGyd6tWhElzLOKXMtHZu2UqCsSZ7g+IYFDlidpUR7E9/+QXNzddpzYg90PQzRUAR8AsEmP0ZP3aMW1TSHTlhlq+wjyZbn0TFxpq6STpfq9EHetqCBajJ323KTazBP0fmdHabImDH0CZ3QAB336HDpvaf+gebd++SzrDX/NzVwbY4tCkUUpoNp5RlHc707B6AIOiBo0eFTintNuezN+j00v5RHf5MRKRs3LVTnvngQ3WW7IHm5GfMou/af8BkoqnczJZuvDY6FAFFwDUE1CF1Dbcc7UW59TcefcRQanM0kZM7UzSCRvCWa642VGFmTSlmQKoU6yhnLV8m0bFxEHxo4uTMzm3O+gtmGUmR2gVRCdZxstaGPb+ycwSzOhJvVG7o1xey92cN7eof0K5YH1TbQSebfeDaNGliHHTW4LRp0hgU4DJZHc4o6HZu1VK+++NP41wz+qxDEVAEFIFAQIC/fY/feYfXT4VaCMwIstQjJfUcem4nGZG+bXv3GpG+5f9uENZ/elKkj6UutCUhyIzuQemFKQmBPYmErezogLhQVqCRjXMlMsJrQOFlL+p/oYHAXt7sd+nI4LbsX82aVDro1sxnVvtSaXdnGMQNlyxBG7J/RfUMskIqZ++fwjU5iZ67FD7SoQgoAq4joA6p69i5vCfV754cdZfL+7tjR/Yuo9FlrzRrRJpZS4ooTEdEmvWezevXM73K3HG8jHPQgWQf0Ob16svugwcMtYh0JjqppIm5KipBui4VDVchS0qn9AQMhb2+bLbrqoAbEeJBqthfUH+kQefNT1Zj+YYNpvaU+OlQBBQBRSBQEGCNZ0+UL+TWsGghtDX9QyuWLYdAaawR9mEA07SNgdAP2T722pvkdO0NwJq55eqrJeVcKtR4D5o6UAZPy5YOcplNREEc1nWytGQF7AcZOTVQ0mLb59LeummfEuGkz4YAExlBdN7tDarC7wgLU+aOPZDc8JkKGLkBRJ0izyOgDmkufAXYjJsZQl8YrB/lWobD8Oa7Ip8ROjiKtjEUHqIAEvtuMmrNmldPDFKLbkR9KQ01m6dTFGAWaFJ0SJvBIXZl1EYPPEbYKdG+AA3G6WTTyXWEclUa6yA9imugY87+dKHInmYcrBV99YsvDbUs42f6tyKgCCgC/ooAWSqvPfJwjluguOv82TeTTlzHFs2NY8oa/T3oubkEJR//wEaRnUIBIWfEgpxZGxXZGbw9jPpSUjJpG9hfsmWjhkJ74cqgki9ZOcvR2oXnEBUTC1pwS4emoiAgVd5nLlkK+7why77Ywx9/AuU46xyaUzdSBBQBRSC3EVCH1MtXgOq6Lz/wgHHyvHxou4fLnz8/ameawzG9ytRzRsZEmzoX9tCcg2jsfFB6r8B/FEryxGAN0chrrzVCRzT6cxGJpnPKBuv2spRZrYX05Ouu7G0cRku/u8WmfYuwUAoAAEAASURBVEGtalWz2iX9fV6jIX37mEg8a3CoCsl1WMc7/5son/3yKyhlqda39FkRUAQUgYBAoALouo/efrvPnQu1ENhDlM4hyvcQPI2XwxDpW4dMIUX61oEKWye0ukdE+mhPBnTrKtR+MIwetIn5G8dkXWfvDh1cwqoutAuY4eS62aaFAdR+EOlju5jsRsuGDSU4qJQJGi9au8Y4pbasomtHP4D5tmc3jX6uCCgCioDPIKAOqZcvRVmIRbDOkYbVVwfrLqk4yJqVmLg4oxrL7CUFg0iDJd2IEens+na6cn6kiVGAKQz04a179pgo8FbUD1GN15EMZ8ZjdkZ0m7Qu1h5RHIP1HqQ9ZTfooFOheDGk8ymhz7oi0pxfQ1b0m6lT5dz589lNoZ8rAoqAIuB3CMSjd/IglFOULuVa9s/TJ2y0EOAYkk5LqitLJk5HRMgW2AuWW9BBo6I7FeTdPVhbO6RvX8OaIRWWwU7axPz58rlEH2bwk7aWGVKq+nKumlWrmOxpdmtny5rQkMrGMZ6DulLWlJLGfM39o2UHAsk6FAFFQBHwJwSuCA4ORqxRhzcRoGMVUqE8jFqIUfW7Bg6YK86WN9f8xaTJhqpE5cO4hAQjKsEa04dvu83leprs1k9a1LsTv0U9616TJWXGc+yIEdntlunndCAfGP+KoVoxGzvh+eeE8viOjFEvvCDb9uxFLdE5Qxmj0dehCCgCikCgIsA+z2SmMAg3DG1LWkPkzZcHA6afgrXCIObhEyekMISCyGphVvOB4cM9tvQPf/hBps23BDpZYvLM3XdLC2QvXRmk77IMhEKDNw8c4HCWmr1Tn/3gAwgCBklSSjKc0TBXDq/7KAKKgCKQqwioQ+pF+BlFZa0kBRrOpzk1+fAeDT97nbHdiFH381C9pjtOla1aJv7+O+o9D8rJ8HDTFoB1lncNuR495Tq64xCXzfHLPzPkh+nTDT2KLV7G3DLc5WN9OXmyfD9tumlz88w9dzsseNTmhqGGwnzZ4vQNRUARUAQCBIEgBOlokyKhwG4dxYsWNeUONZC5u65Xb+Pk2dJDrdv5wnNySop8gd94agcweEqxmerIIrZq1Fgev+MOqVS+nNuXyTZqdAhXbtho+nuy7zdV9Kmm7+zg+hk4XQ+6bVuovn/6wvNSCHTh7Mbjb79j2rexnYwORUARUAT8EQGl7HrxqlFdtwfoonfCeWPGjrTQJBggGpFjp06bdiWsS/lnyWIT6aXqK6mivjRYT3ndlVfKVd26GyovW8eQHkQpeir/MXtKOq87Bym3I669xtwkMQJOWhPrhlo1bAQH37Esp3U9bO1CUYil/643VNzwyCjp2qa19eNMn6fMmm1qfM4rTTdTfPRNRUARCAwEyB4ZPWyYhe4K7hQdT/7Gh8NG0cGjyizr6uehbQnfpz1wtN+zNxAqQC0E/L4PuwpaCDWqm2zjSZTIUJH2H7TzoghQiAkAV3Tbcli6wr6g3dq2MYq2a5CxnL5gocTEx0n7Zs2cOg7XT/X5c+fPGd0GCguyhKYqhAXtjR+n/2VEAe1to58pAoqAIuDLCGiG1ItXh4I6C7799pIjUs12yqxZpgn3yTPhps+YlUPN1ig0nqQeUWTHUxnISxbkwh/fT5tmDHAYblji4ZBWrxKC6G5TeeyO2+328nThUHImMlJe+OgjCEFsk6JFCqOvW0d5+cEHXZlKHnr9DaNySIf3U9Byixcretk8VOi958WXjKN92Yf6hiKgCCgCAYJAPjifrzz0kBG2s55SKoTbZi5dZpy5QxAQYhstBh056KwyYFoZ5ScMDt4EmimFenxtUIV3wk8/y+Zdu+QgzoEONOtLb4RGwM2gI7t7UIX3c6iw7z10WOqDPTRm5AiXhI+43uc/+tjcE1AF/6FbR2a61MfeetsECTL9UN9UBBQBRcBPEFCH1IsXiiqy48eOyfKIzJRSLXDhmtVGOIjGnxQeDkraM8NarVIl6QslPrY1ocPqS2Mtaj6/nPKbkcY/fvq0VIIqYqM6tU0NT6tGjdy6VEa834baLbOzFHa4ffBgc4Ph7EFIBybFizcpz957j3Rr0yZ9iuPIWg8eM8YIZqS/qS8UAUVAEQhABPh7PX/ixEwDc9bTZT3/pJmzTF3/yfAzcJYioHhrCaGyXQzLT+iUspUXheh8aXCdX//2m3Gwme1NAp2XPav5m//wbbcKqcnuHJ/8/DNYOPMMA4rMnFdg+9lCzdnx4CuvmtZlbVDHy8CprQovFd+/mDTJUIWdnVe3VwQUAUXAlxBQh9RLV4P1JJPef0/YU83RsQwiB1PnzJV9hw8Js6cUO+BgZJo3D3RQSQm6cUB/Q51ydF5Pb0fH+qMff5Q1m7eYHnFFIeJUBzcppFEx0+vOMRnZ5e/+/FOOoEdcM9DNWBfqbLP0Q8eOyxPvvGOi51zfU6NGmSX2H3U3JP4PunO5OpcioAgoAj6JAIOdS3/60eG1sc6UAdQFaAl29NRJOX76YgCV6rEU7qsO4T6qplNV3lN9Qh1esM2GVMed+IdFC4GB36o4d9qNh5GFpCaCuwYDys+gvpQq7wUL5DfK9a4weqih8BWCvXT6X3pgtNDBnQlF4UfffCs9aO2uNes8ioAioAjkBgLqkHoJdWeNfcZlUTmQ7UeoqEfDfxJG1Np6pAxayZA21YCKiHD63F3DmXEtzvw9GdH0qVg327iwnUAtRKR7oW/bWNCYKN/vrvHal1+aGtZkRL07t24lr4J65mzE++n33kd2eo00Qa/VuPgEU6fqrvXpPIqAIqAI+DICg6EN8P7TT7m8xJUbN8qU2bNlH6iqFLyzCuxQK4GZU9ZBdmnd2gQlGVD1hUEmz8c//SQb0AOU1F4qr9MhvX3wdYaJ5K417oP9G//pZ8ISHTrqd15/vWkr5sz8zOo+8c67cP5PGcGkBNhT4qxDEVAEFIFAQEAdUi9dRYpFTPv0E7ccjeI6rFOh4AGNKCO8sfHxZu5iaYqINatAEbG37ygibt61Wz5DXQ17tx2DQWVEugUweeT22wxtyh3AMIP8/IcfyVo0Gi8NNWP2i7t/2M1OTU3hi/GffS7hqFW1UtGcmkA3VgQUAUXAzxCgMM/nL70EnYIOblk5e1X/Pm+urNq4SY7B6bMNoFYoW8Y4qE3r1pObrxroFGvILYvLYhJmISlGRC2EFNTO1oZ2A3t73nfzTVns4fzbFIUilXf/kaMIfNaV5+671zw7M9Mdzz4HDYWtJsDrzH66rSKgCCgCvoyAOqReujoPjRxp6lQ8cTg6eRRG2rJ7j3FOT509a5ypAqAIhZSvAOevovRq30EG97lSmE3NzUHHmQaZlKkDR49KCdTB1q9ZQ0bdcIPDLViyW//GnTvlra+/kZ3795seqczGdoe6sSODaxo8ZqxpzePI9rqNIqAIKAL+jgBrG+f+7xuPKOayb/Oc5Svg7C2QAwig0jmNSQugMiPJjGHtaqGm5VmPdu1yHcq1W7aaWlPaDwZ7a0BJmH1YH0PbGHep3n/+6yT5bc4ciY6LlW6t25g2MY72ImfQ9ed//sl1nHQBioAioAi4EwF1SN2JZhZzUXxo8gfvS8NatbLYwn1vR8fFyT+LFhl5/iMnT8oJ0HvZi42jYrmyxkFt2aihaXbOus7cHIxG/zpjBmpkD5s11gmtJoPQ545tcdwxWH/LOiHW37LmZtyYB01k3t7cA++51ziy9rbRzxQBRUARCCQE6JAu//knr5zSLjh6bKW1CSqyJ0A5PYUH2Sgs4TDCfZUrSf8uXeXanj0gsOR8L093nQRZMp/8/Ispk2GgksFc9sEeDdYN7UlOx7lz5+SZ9z9AC7J/TXnJ0P795P6b7TN6VqDX6V3PP691ozkFX/dXBBQBn0NAHVIvXJLQypVlyY8/eOFIlx+CwkKTZ8+SvQchjATDTyPLQUor606piHjTgIG5qoi4+8ABI8tPBUfSedk2pn2z5vIY6LxlSpe+/KScfOdNZEtnLl0i589fkAHoF/f8/fdlOsOLEyYI+7npUAQUAUUgLyFA1fYPn3nG66dMxgzLJJhBNQHUM6clMSlZ8uXLZ4T7qkC4r0OL5jK0X3+pBkc1twYd6Klz5yB4egR25HyaknB/l5TdM54Dy25e/uQTw3CqgVIbKv7aqr3bbt/r9tvBLDpm+5a+VgQUAUUgIBBQh9QLl7E+xIZmf/2VF45k/xDMlrKp+fINGyCMdNrQkVIRpSVViJFpNjm/GmqIVEXMDUVEKhKyznTBqtWGzhsEp5mqxA+OuEVYg5uTERUTi55ulvrSCmXKyF1DhhgKs3VOOsVDIIQUn5BofUufFQFFQBEIeATo/H324ovSr0vnXD9X1kZSOX33gYOXBFDLITBphPvAMqJwX8uGDXNlrRQl+gJ02+0ok2Fml21jerRrKyzJobJwTgYF9T6GOv3h4ycMRfjVsWPBaroo/kTRPWKjQxFQBBSBQERAHVIvXNWRg9B/FP0sfW3MXbFCps1HXQ/oSKRORcfGSn5GptMUEbu2aS03QBjI1ih66xwYMafIxN5Dh4zABDO5I665Gv1Xe+doCVtwQ/HGV1+beUmhfvbee0HDqiXXPTjGNE7P0eS6syKgCCgCfoYA6yIXfMv+o7lHj80MMjJ6/pw3X5b9ux7MmYsBVLZQYwC1ZtUqQmXgfl26ZLa7R9+LQWkMg6dWLYRyZYKlWb36JrtZJzQ0R8dmr1T2eqWKLtvlPH/ffei3HSZDH35YEpKScjS37qwIKAKKgK8ioA6ph68M1Qsnvvaqkbv38KFyND0dP9KSNu7cYTKnJ8PPCsUoyiObSMl+9mgbDkXERk70Uc3RgtJ2pgjGxz/8aOTyKTBB9eArO3WUMSNGoK9bAZcP8ef8+fLN1KkSHhEpvLlIhqqiquq6DKfuqAgoAn6KAJkxi3/43udXPx/9Tumg7j96BDbKEkClDaBzStX2K6EQTGX50ujV6c3BXqxWLQTaEDKi7rx+MBSLO7q8DM7z9Pvvy9J1603vUar+Uv1XhyKgCCgCgYqAOqQevrI0lou+/y5XKLCunhojszOWLDGtZQ6fgDASHEG+R3Emng/l8CnA4E1FRBroLyZPRq/RZUYyvywoXM0bNJBHUWfKGypXx/VQ1KXIhlX4ydV5dD9FQBFQBPwRgRYNG8ifqJ/3p0EhvN/Q8/Rf9A+lfWI2lTbCKtzXBqq4Nw0YILVgq7w1WPZBESRqIZyOOGuUg6+BMNPdQ4e6vIQj6D8+5KGH5UxEhMtz6I6KgCKgCPgDAuqQevgq5aagkbtObcOOHaAQzZTd+w8Yw38axpE1pnROeX79u3aRa3v1MkqB7jqmvXmWrFsnE3//Q/YcPCisgSXl9p6hNwopxs6OlyZ8YqjBzu6n2ysCioAiEAgIPDB8mDx+551+eyqksc5cslRmLV0qh+HAHU8LoAYjU1oZNqpejepy88CBEMpr5pVzTIIWwheTJhktBAoWkRLdtmkTBE9vN4wjZxfRfeSt5ryc3U+3VwQUAUXAnxBQh9TDV4uGaMoHH3j4KN6bnpHaaegnt3jtOqOIy+g05etZZ8rWAR2bN5cbB/Q3FCpPr4rCTB/+8INs2LFTTqP3ai0ITLCm6LbB1zl0aAodUbUwMibGoe11I0VAEVAEAgkBBha/f/MN6YDf7UAZ7EM9GTWYO/eHmZZfDKAWg+AQA6hk01zTq6dc1b27FMif3+OnTJ2GH6DcvvfQQbkC/zWpW1dGIwDQqlEjh45N+/YRSlZ0KAKKgCIQ6AioQ+rhK3zvjTfK0/fc7eGj5N70i9euld/nzjX1Lez3SeeubOkg1J1WkAYQDbrl6qukhRcUEb/9809hLQ8j0lRk7NiihaHz2qsneuytt43qcO6hp0dWBBQBRSD3EAhB66+ZX30lQSVK5N4iPHjkM2hzNt0EUNfK0ZOnDL33PLQRQqCLwABqdyjkDunTx6XMpTPLpnDghJ9+hhbCLjkbFW3axgxD1vb6vn3sTtN5+C1GEd/uRvqhIqAIKAIBgIA6pB68iFdccYWZfdonE4xzlhutVDx4epdNTWfwt9lzZC2k+01dD7Kn1pYylMcf3OdKNDz3rCLimi1b5MvJU9A24IARZaIY09iRI0xk2nbBrIntcssIzY7agqKvFQFFIE8hQMG6dk2bmuBdaA5q8f0FNJZ7/D5nruyDQNBJ2CcGUCuAUksHtVmD+kInkYFUT40LqHP9esoU0IuXySHQiyuBWdSrfXuI9N1ibKXtcd/79jvUpP5s+5a+VgQUAUUgYBFQh9QLl5Z0oeCgIBOFphgPnbNOLVtKs/r1jIKtF5bg9UNQFXAmanpmLF4ih44fNw4qa2to+KtRERFKudeBXlsavUY9McIRGf8IPd3WbtkqfE0p/hHXXiPX9OxpDqc93TyBus6pCCgC/oYAA6est2TfZ/4eVyhbRprWrScdWjQXtsYqVrSov52SQ+tlAHUqnNO1W7cgCwlhJDiobCnDulPaixsh3Ne1TRuH5nJlo6Xr16drIbDdWkvQeB++9VYIMVU103UdMRJZ3ZOuTK37KAKKgCLgdwioQ+rBS0bjVrhQIYmIjr6spQibkZdJc1JJK61UrqyhtlJ4gRHanLQ08eApuTz11j17TF3Ptn37LMJIqPk0kWlQxto0bmJEJ6yG2OWDZLEjBZl440HHuALa2BQqVNDcgLDuVIcioAgoAnkVASqns71XPBgjGQfZLVYbVQZlGKGVQxBIbSHN69eXahCzC6TBAOosKLj/s3ixHDpmCaBSMM8q3Deweze5pkcPKYrgsrsHtRAYPKV4IHUNGqBtzBbYS7Yj06EIKAKKQF5BQB1SD15pZkLvuXGo6Yu2ZvMWYR0JnVMammg+QBf6L8PxGY0uAwe1FCLVrIXkHJ2RTW2KbCrpPYEwSJP6a+FCo0J49NRJ4xwWxc0PjX+9GjXkZvQ79YQi4qZdu+RzNDNft227ROI66FAEFAFFIC8j0LpxY3npgdGmfcqmXTuNCFBUbKzExscbW5WUnHwJPMymWp1UZlTZZoVlER2bt0AgtaZHHLZLFuClPxhAZV9utnA5gZYyFPOrDPsbgrpT2mO2PaO9cvf4fto0mQ7buGNfmCSDUaRDEVAEFIG8goA6pB680v1QL/nFyy9leoT9cE637t5j6EJH0OvzoqMaC4c1/pJ9mE0ti2wqnVRSquiYtmrUUNoxm4poagE0B/fnsWLDRtNTjr3l2E8uPiHBCE5Ur1IF7WR6ytVQRMzvRkXEXrffYYID/oyZrl0RUAQUgZwgwOzo1I8+NEHAjPPQId178BCCd1tl6x701QSbxNZRZUbRdjCgSEeVNorPNVCP2jEtm1oVJRr+PCKjEUBdtAgB1FVy9BSEkZDRLFEc1F4I9zWuU1uGXXUVym/qu+0UX/x4gvz8zz8mc+22SXUiRUARUAR8HAF1SD14gR6743Z58JZbHD4CqVN7Dx0WRqrXb9tm1PWYTaSDGoXnjLSq4sim2tam1g6tZmpTm0Janm1Y/HGwZmbq3HmyatMmc/68ESLNljc13dtCEbFfXykfHOzyqbGmdNjjj6uxdxlB3VERUAQCAQFm+Jb+9KOwftHRQWbJbvR/XgvxuJ1h+4UtVcj4iWFGNSpKzp0/nz5VejY1LZDKfpwUDmKLGQZSSQn2x2ECqHPmyL5Dh0wAlVlkKvay5GRIn75GHyEn53XrU0/Lsn//zckUuq8ioAgoAn6HgDqkHrpkNPITX39NurlBFIHUnb0wfhu27xD2WDsRfsbUmmRGq+Jxy4DqSxl/S20qsqmNGxklRd4EuDPT6CHo0qelgz57+XLI9i807VwoOsH6zyoVKkrzBg1kOFrK1Mc5OTPuev55Wbh6jTO76LaKgCKgCAQcAuzJufiH791yXgwc7tx/wDiqe+CwhkdFWhxVBFPJ/uFvuXWwDtNK+2Vtag0wYYzIH6i/dOz8aTCA+vs8BFA3WgKobDNDx5s1tn07dZJBvXtJKSda6jDz3PHmYQYzf8JB16oIKAKKQE4RUIc0pwhmsT/VdP/54nOP1n3Ggdq6F8Z/HbKprHk5hZuCaNT/WKLV0WJLq6LAkkVJsQT6hAYLs6mshWGjbooL+cPYtX+/TJ41Szbv2m0i03TIeQNjFBEH9HfI+W93402mHsgfzlfXqAgoAoqApxCoXa2azP92oqemN/MeA8WV9ZBsx8UylbPIopqMKrKqZP/8hzYoHPlYm5oWSGVtKstSmttkUwtBHNDXB/ubzkEAlfoIB48eM7WnpDKT3dMWrXVugo2i821vTPzjD3nls8/tbaKfKQKKgCIQkAioQ+qhy8oI6dIff/DQ7PanpaHfc+CgrNlKWlWYccCiY+OMUAVvCKy0qvz5WZta2kRw6axWQkuW1sim0ngym8raVV8ddEapiDhn+Qo5gig1RScYBGDUf2C3bqb2NCMlbAqc2afee99XT0nXpQgoAoqA1xDo1aG9/O/VV712PNsDseUKBYPoqB4+fsKioRAP6i/sFGtVrSO9ZVpJBFJhqywt01oYISVPiApZj+uO550IoP4GYaRNu3cZsaiEpCSpigAqWT3DINzXpkmTyw5z7egHTHD5sg/0DUVAEVAEAhwBdUg9dIHZa5P1Ob40SKvadeCAuQlgZvVMpCVaHYto9VkbWtXFbCqUfoNLIwNZ3cj9M5taHvWcvjjWbd0qk2bOEtLFmClGwN04p6SC3di/v1FEvOnRxwylzBfXr2tSBBQBRcCbCNw1ZIg8f/993jxktseikNLm3buFv+fHIB7E4Crtk1VQiRNc3jKtHFqmNTDK7A1qomVaQd8T+WNWeMaSJekBVNbbWnuSD+rdW65CWxkynjoOGwZRv8tb8GQLnG6gCCgCioCfI6AOqYcuYC3QoRZ4mA7lrqUbWhUyqYZWdSRzWhVrT2lALbWpJaEwaOkf2qZpE5NNpYCFrwwq9f6Juh4KQxw7ddqIQXG97EPKzKoORUARUATyOgIfPPO0XAdnyNdHauo5aCgchH7CLvTq3C4nzoQbkT+WpkTGREtCYpI5BWvLNFJ+rc5e51ZomYZAKtk/vjQorjdltjWAGmGEpQrAxpLto0MRUAQUgbyIgDqkHrrqVBL89b13PTS7d6a10qpoPA+dOA4VxWjj0LFO1UqrYusAiieVJqUKtal1q1c3tamN69ZBdtV1NVx3nuF8yPU/8sabJgLtznl1LkVAEVAE/BEBljP8/vFH0qh2bX9cvllzQmKi7IHY37/bt8sW6gqkaSgYsT9kIJMgBmhapiGQSmEhtkyrXL6ctGwIkb9mlrIUX2iZdgJifdPmLzCtXhgc1qEIKAKKQF5EQB1SD131oaCJvv34Yx6aPXenJa1qy57d6KG6VY4jA2lpTXORVsVILyPUvAlgbWrlCsimol6mTWNkU9E8PTfGg6iVmrF4SW4cWo+pCCgCioBPIcDSi5lffuEzQUN3gsOAKUs3KPa3fe8+05qG79FRZWlKKpRsL2mZhrIUCjxZRP7qoWVa7oj8tb/pJvR7jXAnFDqXIqAIKAJ+g4A6pB66VM/ee4/cPXSoh2b3vWlp5NmaxkKr2gFaFVvToP4HNwEReGY0u1RaNpWUKmZP69VgbWpLNBevYxxYT55V79vvMCqPnjyGzq0IKAKKgD8gQOXXZT6mceBp3MLRkmU3NBQYSN2FFjX8Oxq1ncZRRUaVir8Xy1IQSIXSr7VlWv1atZzq1+rsubBu9voxYy9pj+PsHLq9IqAIKAL+jIA6pB66ej++9aZ0ad3aQ7P7z7SX0KpgdE+GW1rTGEcV0epz585JWUSoLbWpQRKCWh+q/FLt19keo1mhwpuOzsOGm1rSrLbR9xUBRUARyCsIuLMHqb9jxuApW4pRQ2Hf4cNyNk3sz7RPg41i6xbTNzWtNpVtxhhItbRMc4/I38uffCLfT5vu71Dq+hUBRUARcBkB35Ojc/lUfGdH0oHYU02HCIUmWjRoYB62eLAG1fRQ3Qpa1T4LrSoSxv8walVnLl0qhdF3LjgItaklkE0tEyz1a9SUji1bSOPadYBtkO1U2b5euXGjOqPZoqQbKAKKQF5B4Pz583nlVLM9Twre8dGzfftLtj184gR6qO4zjurBY9BQiI4ywnjs+f3dtGlpTirKUkoim4r9WzdpLG1RmsJsKvuqOjM27tzpzOa6rSKgCCgCAYeAOqQeuKRG7S/IOafJA8vw6SkpMMFMKB+2I51WtWWroVedAa2Kfeq2oRaITcMtmdRSpjaVfegoTtGqUSPQf2vYTnPJ69nLll3yt/6hCCgCikBeRqB4sWJ5+fQdOvdQ9BLno3/XrpdsH3b4iGzdu8e0pqEqbmR0jGzatUuWrF8vqWT8wPZby1LqVA9Nq02ta7del8whHYqAIqAI5GUE1CH1wNUvVLCgVEL9iQ7nEWBtKR+dW7W6ZOfj6ElnoVVtlbAjFlrVZjQcZ2uXFKgp8gYgGDcC5bFvfQgndWrRwihI8j2KMOlQBBQBRUARsCDAwJ4O1xCoHVpN+LBtmcOMMzUUWAu6fhta08Bese83KcBTZs2WggUKmIwqFelZltIG2VQK/TVANvXoyVNwaqNdW4zupQgoAopAgCCgNaQeuJBan+MBULOYkr1Fd+wLg1DFFrHQqqKFTcjjExMgUiEmk3rqbDje0/6jWUCobysCikAeQ+Canj3l4+eezWNn7f3TTUpOtoj97dgJwb+d0FBAD9U0xd/EpCRTmsLWNNruxfvXRo+oCCgCvoWAOqQeuB50SEdce42MuuEGD8yuUzqCACPT2/bslXcnTjSy/6RS6VAEFAFFQBEQaVi7Ftq+fKlQ5BICFPVjRpXZ1C8nT0Z9qmZIc+lS6GEVAUXARxBQh9QDF4KiRqSdkqZTsGABKVSgoBQqVBDR0MJGsY+fly4FsZ7SwVKhbBk8yppMHvt2Wh/s5akj5wis3LhJRjz5pJH0z/lsOoMioAgoAv6PAGv4Wc5gbBTsFMtMKCRXpHAhKVqkiJRAjWnZoNJGUK4i7BP7lpLma7VP/FyHexC46dHHZC0UfnUoAoqAIpCXEdAaUg9c/Xj03OTD0XEFFPl4M0B5+UJ4tt4kWJ8vuVkoXEQoSFEWSrN0ejO7WSiJfp86LAhsQU0P+8vpUAQUAUVAEbAgQNooH46O/KCV0lGlw1oQAVZrsJWvC9k6tEUKS7EiRY3zynZe5YPLQE+hrKmftDqzfKa902FB4CyE+3QoAoqAIpDXEVCH1APfgGAIF/Tv2kXiEhIkMSlZkiG6k5yaKql8gDrK3pupEEHg8zk8UxCB73M77uMsvfTizQIcWmRkC+S3ZGYvu1mAw0sF4FIlipsG4Ix606E1PdZsot9FsF2gjF0H9gfKqeh5KAKKgCLgNgSG9O0jCahjTEqGfYLtSbHaqPO0UbBP6c8WW5UCGxWfmIRtY+TChQtOrcOSfS1sHFFroNXq1FoZREXIIIJDa2EQUaCutGEPVShT1ojWBcFuWZ1a1l0GyqDN16EIKAKKQF5HQB1SD3wDqMD3+iOPODxzIoQP4mGUaJj4iEbkmu1PzqKuhOp7UTGxwibdFEEwzi1vHs7RwaVDa7l5MI5umnMbn5IoKTGpuNFIdsi5tb1ZYLS7AKnGfNjQjXmzQEeVNwt0uJmdtTq0QSUvUrlI68rvQ3TjE6fPOHwddENFQBFQBAIdAf4+//T2W9KheXOHTpUME6ttop2KxSMiKlrCoyJN7SPbntBmkRWUmAwbBQeXzi0dWGsA1mqnGIBlYDYB29KWJeGRnXPLnp5F0rKzhQsWgn3KfzFLa5udRfaW2VlDN0YfcPavZsCVpTEMwtKZpX3ypZY31iC0QxdCN1IEFAFFIIARUIfUAxe3ZDHnKLOk6vJBJy+ng07oxZuHRImOszi3FE2IwI1DVGyMUZylc5uUkoyWKbhxMJlba/YWNwxwchk5Px9vydzyc2sEPeP6Lr9ZSHNm05zaS+jGrE0qSrpxxpsFOrSWGwZ3042doaVlPDf9WxFQBBSBQEOAv8l0zhwdLCnh77I7fputzq0lAJsIWxVvnNqzUVEW5zbG4tzShjFQS+fWll1kDbySXURbZ9hGZBfRRuHv85lkbhlcJd2YgVeeO/UZGGy9jEHE7Cwc2lIIsBp9BzCIKoBuzACsNTMbBBxYVuOucSYi0thWd82n8ygCioAi4K8IqEPqgSuXmxlCZjH5cKdzG5+AGwe0UYmOjZOziIqfRXQ8MiYtc4sWK4yKX0L7SouMW51j25uIjM4tbw6sNwu8YcjyZgHnZKUbZ3qzUNzi1GakG/N4OhQBRUARUAQsCPA3thR+L3NjeMS5RbbVGoQloyjduTUB2FjzGW3RpQFYMovOSSwytNbSGatzS5vBzC1LaTholxgwLoyHPQaRhW5czDiw5ZGdJdXYiEHZMIjo2DKIax0x8XGZOtHWz/VZEVAEFIG8goA6pB640u6IJHtgWU5P6W7n1urY8uaBvUJ543DRubVkbi01TcjcplpoX7wx4PbM2pq6JtxEkPbFmwdSwqyCRYx821KMTTQcghuRiLjrUAQUAUVAEbAgwIxhIAx3O7ekHFsdW2ZwaTvCIy2Z2yi8JtuGGd2LuhC0UefMPiyrMQ5tmm0y1GTaqjQbxSC1sVE2FOPCsFnhsIFWGxYI10TPQRFQBBQBVxEIDMvk6tl7aL9AElxwF0RW55bKizkddFKtNbd8Zn2txbmNQs2thZbMbC6bjfOGQIcioAgoAoqABQHaJ9Zh6riIAJ1b1p66q52NrWPL13RY6XxGRMNGpdGSY+MT5ER4+MVF6CtFQBFQBPIwAuqQeuDiU/VWh+cQKAIKFR+sRc1uNL9ucHab6OeKgCKgCOQZBOh8FUNNpQ7PIeCoczvhp5/k/e++99xCdGZFQBFQBPwEAfWcPHChSBfV4RsIWOuAfGM1ugpFQBFQBHIXATqkOnwDgWiUruhQBBQBRUAREFGH1APfAtaK6PANBP6T/3xjIboKRUARUAR8AAH1R33gIqQtIbuWN76zUl2JIqAIKAKeRUAdUs/iq7MrAoqAIqAIKAKKgCKgCCgCioAioAhkgYA6pFkAk5O3k6EQq8M3ELhClJ7mG1dCV6EIKAK+gMB/Shrxhctg1qACiD5zKXQhioAikMsIqEPqgQuQkqK9Lz0Aq0tT5mZPWJcWrDspAoqAIuBBBLTNiAfBdXLqIPQl1aEIKAKKgCIgoiq7HvgWnL9wwQOz6pRWBNjk3Cqrz+fYtLYvEVHREhETbST22eeUbV9U1MiKmj4rAoqAIiCm72UCem6WUmfIY1+HONikWNgm2ie2JmMPU7Ymo41i2xdLT9MEWb15s8fWoBMrAoqAIuBPCKhD6oGrpUIFl4Nq60TSgaTDyKbjZ9mXDb1Do2Gw+X5icpIkJadIMnqNppxLlVQ0Hmcv0fRG4+f593nzd0pqqmU7PGvU/3LM9R3nEChdtoKUDCot5/F9O4/vmfX5HL5fqSnJkoLvpv7bdg5T3dr3EOB3+Nx5DZraXhnaD9sgJx3KCDiOZyMjYaMY5KSNipN4OPK0UcY+gQmVQtuER2raM+0U7RL/5jP/vuKK/JK/QAH0fi0g+fPjGQ/r3xeu0Fsw2+ugr7NGoFjxklI+pKrFLuHeiN+7C+Z+CN9BlImlIFBPO6VDEfBXBPTX0ANXjo5VIAyrE8nzobGmQQ6PgoFGpJdOZFRsDJzIBDiQFieSBthqjI2RTnce05xIGmn8kCbT4cS2OhQBn0EA0qOjnnxFqlSvnb4k3qQmxsdZHglxkhCPoElUhERHRkhsdITE4/ufjBtUOqq8IUjFwzixaTcLVqdWbxbSIdUXPoAAnaVAGJc4kbBRzEhGwHk8aw100omMiZWEpCQ4kcnpwcvUNIeRzqI12Gl9poNJZzMZ21uZToXQxq1gwcJ4FLQ4lFbH0jiZBS2fwVkoUbiIFClSVEqWDJJSpUpL6aBgKYVH8WIlpGjR4lKsmOVhi/2RIwdk3PiHbd/S14pApggUL1lKHn5lwiWf0QE1NioBwXzYqvi4GImJDMcDNiomyryXkgQbhe1ohxhc5XfdEmxNxfN5PBhwpUObZAKxlxxA/1AEvIiAOqQeADs3aaI0vIzuWqO9pAaFI8prS2fl51YDTePLGxTr41y6E8ksJN5HhpJOpokIqxPpgW+LTukLCFBcpChuGG0H+zUWK1HSPGzfd/Q1bwAS+W8Nzqy5WYADG82bBTi1cWAGJMLBTcZNACPb51L5sLlZwE0Cf0f0ZsFRtHU7RxGgIxaDm1eRio7u4rbt0p1IBDJjcRNNO8UA56V01hjjRDIgarU7tEO0UVb7lMp/G2m2yhoI5fZWJ9LRBZcFK6JMmXJSomAhKWR1KEuUMg5lEJzJ0qXLSHE4m1Znko6lO/u48jcnX778YF6cd3TJul0eRSB/gcvbCRYshEAJHqWCy7qEShId2TT7RBsVC7sUHXXWBF7j4NBaA65Wh/Y8bRT+3VkCr3jmv0G8Z2UQ8d+3DkXAVQTUIXUVOTv70dA6MxIRwbU6kMw4MvNoorysOUmrieTnmWYibaO8fG3jRCbR2VQn0plLodvmUQQK4oa0FG4+3TkKYM6SpfkIdmna5MQEc7OQgBsF3izQiY2OxM0CsrO8ceDnjGrzZoDZWd4YWGnG1me9WXAJ+oDeiQ4cSyYcHbzJtLJkaIf4+ixqIc+CLcOMpIUtEyu0Y9ZA5yVMGeNIWmzTeVCFmaGxBjlpo3KTBt+yRXu5+eZRjkLh9u2CSgWbzGtysjqkbgc3wCZkcNTdowgCInwEl3M+OHUB95u2ziwZRGQPxcChjYuOtDCImJ01AVfaJzzwb59B1nT7xN8GvG/dxt3np/P5FwLqkHrgeoUdPiLPfvCBcTITkyxRXraCSY/yphnoVBNpoqE+b6K/hiqUlrH0wLJ0SkVAEcgCgSJFiwkdSF8ahbEmPljb6uz4778Lxom1OrO8WSCNK8Y4tLhZALWL0e/UFDq0erPgLL7+vD0z78Mee1yG9O1jk4lMK7dgtoNZD1Onb3222CiTicR3JbedSHdiXwA03NwcpAGT5kumhA5FwB4CweWctwP25svpZ/ny55fioKfz4cq4SDdOC7gi+WICrmAQMeBKZ5d048sCrub+2ZZurPoOruDvi/uoQ+qBq0IVvV9nzPTAzDqlIqAIeAIBOn6BNK64Ih+oxqXMw5XzYtTa6szyxiDe3CyQbhxpot/M2PImOpUPRr7TsrMmAn4+LQKOGwcrlSs3s2CunH9e2Of3ufPywmnaPcdoZHJye9Ah9YV15DYOenz7CFQOrWl/Az/71C10Y9ihhDTKMUthrAFXsomSk8ggsgg9WfQdbEtirHRjqxhUCtBTunFuf4XUIc3tK6DHVwQUgVxHoCTqxXRcRIDZYlKYXaUxJ5FuTKpxxpsFRr/h3GakG5PGZRXbiI+NloS42IuL0VeKgIcQCA8/5aGZHZ+2VMnScurUccd30C3zIAJXSGjt+nnwvLM+5XS6sQu18KQbm4Brmn1KAGOI2VmLQxsF+wMGkTU7mwmDKBaBLH6uw70IqEPqXjx1NkVAEfBDBE4ePSSL/p4iNes3kUpVq5u6Gj88DZ9ZMinQfASL8zSzd566Vx1Sn7mSgb2QeFDZc2MkImBz/PgR2bdvh5zxAac4NzDQYzqOQP4C+eXXz9+Rq26+U6rWrCcVq4Q6vrNueRkCpBuXKBVkHpd9mM0bi2dMlRVz/1KHNBucXPlYHVJXUNN9fB4B9nyj/H4xSO5HRJwR3gDoUASyQqBQkSKydPafsvDvyVAtLGIUdykiEVSmvNSo20Cq121kHFXSjHR4FoFKuNk6fijMswfR2RUBIJCC7Icnxzlk/o8fPyxhYbslbP9uiYTKdjyYA7EQLqSybhH87hQsqLdhnrwGgTA3RfcKg9o9/ccvBTLPpu64SPESUgL3OOUqVZHaDZtKlRp1pFzFkEA4XZ8+hx5X3SAr5v3l02v018XpL6G/XjlddzoCdDqL48eZ8vxBQaWlatUa0qB+M6lWraaUgFMxbtxDcuTowfTt9YUiYIsAm9Q/+OJ7UqZ8JTl+eL8c2LVN9u/eJlFnz8ixg3tl95b1Rt6+KPsJFi8uxVGbSaGhmg2aGBoVM6ps3aDDPQiwNY4ORcArCLixTQUdzwMH9sqevTtMEDQOtD86n4lQ3WdLmeJQMy0Oe1SlSnWpW6eh1EGQqypeh589Lc89d59p8+SVc9aD+B0CtE1PvP0VlGuj5RiCdXu3bZITsFWkjp7G92790rlGlK8o7oPYSqgESlAqhlSDo9pMKlevJcEuCOP5HUheXHButnb04ml6/VDqkHodcj2gqwjkz8+sJ4Ra4BiUhFNQpmx5qQ+KZe3aDaRypapZThsSEqoOaZbo6AdUCaTB5wgJrWUenftemw5MLIR8jsIx3bNto5wCtZc3AeGnT8jmNUuF38miJXgTgIBI2jyMVletVRc3BEqrSgfRiRcJTrQkcWJa3VQRuAwB9lekQ1jOiRv20/i3fwhOwe492+TMmZMSh2xnQiJ6qsIB5WBglAFS9jBt3KiFNGjYXKrjd4WMncwGj10C9kyFjTJDR98jAgx6ctDG1GvSyjzMG2n/O4mA+8E9OyRs5xaJDD8tZ/EdPYKs/LLZ02CfShonlc4qtRIqI1BvHFU8u9qSzPbYee11dES4EfHLa+ftjfNVh9QbKOsxnEaAjcithp0NyqtVrQnD3kxC8SNKh9SZ0bx5O1mzdqkzu+i2eQiBoOByds+WRrthi3bmYd2QvRkZod6PbOoBZlNBC2dGle+tWTQLmVRmUy2OKmtVyoNWVQvf36qgVZWtWNk6jT5nggDVEXUoAt5AIA41pHQwM3NII5CpP4J/z7vx7/vEyaOg2UJsC9lOZj2T8B2lE0lbRBZOpcpVpC4ynnXrNpYqLgSi6LyqQ+qNK+6fx2jarovdhVcCK4yPDr0Gpm/HbOrRg/ss2dQjByQWgnLHDx+Qvds3ycK/JqN+sjS0EorBTpWUUsFljG2q1aCpmccTPU/TF+bnL+KAK9vR6HA/AuqQuh9TndEJBPKjuNxa60nDzhuD+vWbSh1Qmiq6qR6iSZOWUgi1f4yG61AEMiJQo27DjG9l+/cVqOMJqV7bPLr0G5S+PVX6jpK2h2wqqVTsp3YKz/t3bZVlc6YbEQVSquisWmhVoVK7UTOTlS2NjL8OEQpO6FAEvIEA2xF9990Euf22Mch4bpVjYEBEx0BlE+qbdD6Z9SwMuq3V+axYIQSU21BpiKxnKP79k6njjlETQjXMuupQBDIiQN2C+k1bZ3w727+ZTeV+GfdlNvXA7u0SBpsUhWxqPDL8EQjKbF23wjB+GEAtUrQ4WoZRQ6GcKUupUa+xydKyjjWvD0tLGXVIPfE9UIfUE6jqnJkiYM16MqrMWs/QarWkYSMYdjwX9WAfSB6PEWhGwnUoArYIsF9nm259bN/K0etSwWWlER+tOqTPw5teZk7Ddm6Vg3u3I5MabmTlSa3auXGNLJ451USrrY6qoVWB4lcb0Wr2nstrLWkunL+Qjp2+UAQ8jQCVdj/8aBwO819acLS4ea5evY7Uw414PWQ9Q1CP58nRqWMvWbJktpB5oUMRsEUgqExZE8C0fS8nr63Z1I69r0qfJg6tuI6ZbOpGOcFsKspSyPihuNyGFQuNoFJxlEux1Qo1FIIQPK0JRkB1BHNJJ85foGD6XIH+gjoTOjyDgDqknsFVZ01DgGq3RRFtG3L9rca4V6iQO3RFChypQ6pfy4wIkI7r6f5u+fLlMwqIVEHsNmBw+hIo3nN0vzWbekTicBMQExkB5/WAJVoNI89otcVRzUCrqlZDioFqFWiDN0JsYq5DEfAWAlQw7d69nzRq1FJqwAklU8fbo1ateiYLS1qwDkXAFoEq+E56etDO1G+GbCoetuPEEWZTIfKHbGokaq0TkE09hXZFzK6uXzovzUEtiWdqKJSS4HIVTSC1Wu16hvprO1egvKaOhA7PIKAOqWdw1VnTEGCz+0GDhkuXLlfmGiabNq+VnSj216EIZESAAZP503+VNvh+epsyy9rVoNblpHHrjunLOn/+nHFIKU5xcO9OiUZtakJcrISfOo6/d8jm1UvRlqYQjH9p46gaWhUysqF1Gkgg0KrokCeBKqlDEfAWAkVBQ7xx6J3eOtxlx2Gt6urVi1FWUuiyz/QNRWDPtg2y7d+V0qR1J6+DURmBTz46XXl1+rHjQGk3talbNwrpv7HREbBRcUZIac/WDUZDgXaJAVNmVFmrSt0ECilVrVnX6CmkT+aHLygYpcMzCFwRHBysHBHPYKuzpiHQpk1nue/eJ72GR2TUWVm1apHsQPH+WdzQR0AVjTf6OhSBjAiUqVBJLpw/j56AFyQIjh3pTO179jfGM+O2ufk3RZMs2dQNcuYEBFZQm5oIqiHrf5LTBBZY31MMUWpmVIuBVlWaPVTrNUIfVf+hVf27fIH89MkbuQm1HjuPIVAc2Z2nn35TKlf2LC3XFtY9e7bL8hXz5dixQxIFh7R0KUtt3qGjJ20309d5HAH+lpeFlgbps4WLFjUZSNaEtumGACp+331pkOprRP5MNvWMsU2JqMWmA0sbS90FZlEt7dOgoQBHtUJaa5oqNWqbc/Ol88lqLW88egf0IY5k9bG+nwME1CHNAXi6q2MIlIVQ0Vtvfu3Yxi5utRfZo2XL5soxCMhEQlgmBj+COhQBewgURt3yy5/+CkNfDJnHJUJn6DScPRpQE9WFs9q0bRdp0bG7MaL25sqNz86fSzWqicymHjLZ1HCJhwhLIlRAWRP033+WWkxGqRmxtrSmIa2qglBNkVRlOuC+NKb9+LksmfG7Ly1J15IHEBg+/F7p1fOiQqm7T5kCSevWL5eNG1ebVjGJCbFSqXxpqVU9RIZc3UOu7ddF4uITpVnPWyU+Icndh9f5/BQBZhUffOl908plzeLZUMzdALYMMnSoNaZeAbOX7XsO8LkAqhVuk01NE/k7CfovSzISEEgl9Tcp0aKmzpIWCjBZVelZRkO7xHMPgYYCz9OXxqtjRyAbrIEjT1wTdUg9garOeQkC5VBX8OYbX13yXk7/SMSP2bp1y2QDDHx4+CmTBVUV3Zyimrf2r4a6rUdf/+yyk2bNzKoFM4yzF3nmlBQqUsREo0Pr1Jf2PQZAWbfWZfv40htRqPU5HLYH8v4bTTaVzilvAuLxnJJ88WbXOKmgVTEKzxoiRuJzm1b19dvPy44Nq30JTl1LHkCgWbM2MnbMC2490yOgMy5fPl8OHthjep0WyHdBQiqVk4Z1q8vIof2lfatGlx2v9w0PydadYZe9r2/kTQRuvvcx43Dann1KcrJsWLnQlG+wlCMeAdSSEG1kL+2mbTtLy4493CqCZHtsd7022dSdW2U/W6bBXpHpYwmkIpsKthIHOzAURxY1XUMB51gFyta10OebvVSZbc2N8erYkYaenBvHDvRjqkMa6FfYB86PLVeeeOI1qVmjbo5WcxQGftnyeXIAEbdI0Jyi0FdLVQlzBGme3vm6W0dL94HX28Ug/OQxWY2+ovthPM+eOSmpaB1UGlL45SpVldZdepkMKiO8vj7OQSiIPejCdmyWQ2G7UJtKpd/Y9JsA67+jzGhV5StXNa1pKK5RpnxFj56q0qE8Cq9OngUC5RE0fSOHQVPeSG/YuErWrlkqp1BnFgGafXCpYlKlcnnp2Kax3DKkn9QMtS/q99m3f8jL707MYpX6dl5CgE7m+C+mZHvKuzavE2ZPTx0DOwwBVDJiTLuWWgig9hpgnLhsJ/GBDdhO5QiCN3vRMs1Sm4r2S7BRZP0kp2VTucwCBSH2Bw0FK/OHGdRQBJdrNmhiMqtFPNixgXbz3afvMywqH4As4JagDmnAXVLfPKG+fQc5LRzBm+QNG1bJ6jVLoJB7HAb+rCQmquCJb15h/1oVKUIvfzbJGDdHV856GNJ6t61bCef0BJy6s4hMB0swKOl10eu2bdc+wppUfxqRYBeYbCpuAuh8k2KVAMovm6rbZlOvgNNdwpZWhbZNhlaV1kPVXbSq1x661Qg4+ROGulb/RyAYN7XjXp4gbE3mzCA7ZyX0Cnahbo4OaFxslFSuWEZCq1aSgb06GDpuqZKOz5mckipNu4+UqJg4Z5ah2wYgAmwddveTrzp1ZscP7Qe75x/8pu82NN9zqakQ62MAtYq06tRTmrXr6nd9nqk6z7KU+dN+kWiUY2U12K/V9FA1JSrUUChn2tLUTOuhWgBq2jkduzavl6/fejY9i5vT+XT/SxFQh/RSPPQvDyFQJSRUxo2bkO3sZ0HfWAE6yq5dWwwNl5nQ8yiI16EIuBMBytvf9+xbOZpy2/qVsg7S96dPHDGRaRpERqbZl61dj35Sr0mrHM2fWzszC2zNph5mNhU3AYxUW2m/1mwq13cpraqElEJUPwS0KlJ/Wd9Ex9/RwQwT63PYn1WHIuBNBNiPeNRdD0v79t2zPezOnZtlxYoFchz/7imYd4WckyqVykudmlXkpkG9pV/P9tnOYW+DoXe/IEtWbrS3iX4W4AgwAPjAC+/mqDY0Br/ba5fOld1woiKQOY2B2CMDhwyg1kYgsW23vlIOZRr+Ml5/+DY5g6Cps+Oi2F9aaxqcP7Op1aFMT1vNf/uOjnl//Cwzp3zr6Oa6nZMIaNsXJwHTzV1DIBk3uVkNtmSh4uAJ3tjjR1R7sWWFlL7vDgRogMojYpzT0aRNJ+GD48j+3bJy/gzTXJzS91vWLkNkuoKhuLKtC6PTzjhnOV1bTvanY01jzYftiABlmZF3UqpYu8TaVCr98pk3P9axZe1yKZDWQ9WWVlWtZj2IKYFWBUe1SNHLs0aknCVqyxcrjPrsRQQoAEYmTmYOaRwog2vx73kz2oeFI2DKTGjpUsVNPWi3dh3l1hv7S4vGOStHsT3V2hA6WrZ6E7Iw2gDBFpe89JqOIoN6ORl0Pq8cNMw8zqP93qZVi2UDHmTCLPr7N1k57x8TQK1YJVTade+LHqRtcnI4j+5LqqxVBMnZA1GFno9IOZW+69olc4zIX7ESJSxif9RQqFDZiP1Vg9hfBZSpZDaOHtyb2dv6npsQ0Aypm4DUaewjUBC8/7FjX5SGDZpJPG5i16DOhv1BmRFllDkVNW7eGqyTs83yeOu4ehzfQKAgqDtVatSRVp17Sdf+17l9UczwrUVNzx44bqTE0piyHogUIvZhoyoiBZUCYZDWe/zwftm3fTOc8j1wTC21qVbab8Z/Z4ZWhayp1VFl71c6vuyh+uf3n6IJ+/ZAgEXPwQ8RKA9RmDde/9Ks/OChfbJ82Tw5hO+2CZLGRIKKW1aqhlSQbh1ayLDBV5raUHef5v9+/lt+n7FEtkDYKAX0XR15EwEGL2vVbyK9rxt2WWDQHYjsRUu8NQtnmVrNyLNnoI2QZAmgopa6Yct2xjaWDAp2x6HcMsfGlYvkxwlvpCvHu2XSLCZhy7RixeGo4kEKsNFQaNjc1LIu+nuKEQrMYld9O4cIqEOaQwB1d8cRIL0vNLR2uiCR43u6Z8sihQuBVlUVDcgLyuFjpxDt1tYw7kHWv2Zh+5NqtesJa1NofNirs9+QkaYdirvPhA7bxpWLZTOyL5Trp7NaoEABGP/yoEtVkZadepi6Hgo1BNJg83BrNvUszpu1dRYVxWgjDJXxXEmrojiUZkgzIqN/ewuBEmiNVAK/B/weUq9A/gMVF4JENapVMm1ZrhvQTYoWKez25Rw7eUbe/exXWbNhh8TGJUiDOqGyffdBCY9Q++R2sP1gQiut9ty5FAT4IlD/GYIMZj/p0MszbYlOoRfuajinB/fskEgkCMh24RpYflIltJYRRqpep2GuIvfrF+8gyDsn19ZgEfsLMokTW4GlXFtQgB5YHdKn94qeAABAAElEQVQAvbB6WhcRKFO6lNSrXU3uGHaVDMZNBccjL3wsP/8x9+JG+ipPIEBp/Bcm/GTOlT1H5/z2vRxED1vWL1Kkp/vAIdKgueeoS7u2rJe1i9IUEWH8adyC0OCcvUFrN2wqbXHj4Q46sS9eTNKmLNnUTXJ0/16JRk2TRekXSoqQ/c+YTfXFc9A1BTYCJYoXldAqFWEvQmX49X2kR6eWHjvhxagT/eL7abJt134pVrSwtGxaX558YLjUrmEpJ2jR+3Y5fjLcY8fXiX0TATJo2O6Fg5nB5XP/Mgq6zFiy9rP/kFulBETlPDEoard+2QLZgXZ6rDuNQgC1YKFCJoBKSmvzDt2keftuUqhwEU8cPss5VX09S2gC6gN1SAPqcurJ2CLA6HazhrXlsftvlmaN6th+hObjidK81+0SE6uqvZcAE+B/9Bl8iwy86Y5LzjI1JUXm/vGT6X9Jem3ZijC8MLo9r7kRggdXXLKtO/+gc7Z6wUxkEnchMn3GRKbZW40OasUq1SA60U8atmjrzkP65FysR5015TvZD6XSKOCgQxHILQSYDV07+xuPHv5TtHb5a85yOXDouITARvXr0U4eve9mKQzmju147cPv5aOvf7N9S18HOAL8/X9hws9CxojtOIJWd3N//9GURVADISS0pvS69qYc15naHiPjawYIN6O0isryrDslu8e0PQO7pzRsFJlFFO+rWKV6xl3d/verD6H3J5g2OgIbAXVIA/v65rmzK1Agv9QKDZHO7ZvJ02NGSHBQySwxGP30ezL170VZfq4fBBYCFBl66dNf7J4UVXNXLZghp44eMlHoUAgc9L1+hKkjsbtjDj+MQU/d9Tj2zk1rJQJ1p3TMSB0ktbdMuUqmrqd1596mzUwOD+WTu5PO+/aT95gm6T65QF1UnkAgpFI5WTrtU3GmVYsjwBw8csLQcv/dslsiomKkXq1qEEMaIEOv6Wl392Y9b5OTpy8KhtndWD/0ewTadusjw0c/leV5JEBgi8E71oDGom8n2TSt0A+7W//BWe7jrg8O7N4mqxbONKUutE/MploDqBQBat2ld7rIn7uOyXmOHQqTCS8/ckkvUnfOr3P5DgLqkPrOtdCV5AABUq3qwsjTwI+65RqHZoqKjpN2A0YJn3UEPgL9brhV+uPhyCCNd/6fv8hRRKapdUl5+C7opdu0bWdHds/RNhfQ5mjT6iWyYcVCo2bLyDRrUdlSJQgOqqWuZ6DUqJu7dT05OskMO+/bsVm+fP1pOXdOhVwyQKN/ehEBMiLGPXmX3Here8TO5ixaI99AqGj7noNSEMFSMnYeQTa0VVPHRM3e+uRnee/zX72IgB4qtxAojvrlZz/8zugaOLKGZbOngV7LtmNHJQg1nzXqNpL+Q28zQUxH9s/JNmy/sgalJxZWy2kTQM1vtBEqmPKTek1bCQOoLEXJ6fj7569kIcSEdAQ+AuqQBv41DugzrFAuWBrWrSEP3Hm9S/U+T73yuXw7aUZAY6QnJ0bS/fmPf3QailhkLhmRDgOdlGIPbDDONi69r73Z1NY4PaELO7Ap+GpGpo8cNBlE1luS0sXsqbWup0WH7l6v63HhVLLcZcakiabxeZYb6AeKgJcQYGBzxd+fu3y01NRz8vH/psqsBask7OBxo87buW1Tw9gpWybI6Xnb9hslh46edHo/3cG/EOjSb5AMuWOM04veDV0CtnE5fjhM8uUvYPo/dx94g0e1EGwXydZfG1Yskq3oyx1xxiLcdy411SKMFIy+3NWqS/se/V2mF78D5gzLW3QEPgLqkAb+NQ64M2QUu3rVStKqWT15ZsxIqY66H1fHwOGPG1GJpGTvtZ1xda26n+sIMLs4dvxHxoFzdZbF//wmGyAycer4YWQry0o1tHBhTWpl1PN4a5w+fkRWL5qF9ijbIDhxRqLRZkXkCqOIGAwHtUb9xsb4s7ecP40Pnx8jh/bt9Kcl61oDFIFKFcrKsumfSlCpEk6d4Z6wI/LeF7/Kpm175QwU3GvXqArGTg+5Z+Qgp+ax3ZiO6DUjn1Lari0oAfi6EHo/h1SvJQ+9MsHlszuLWvyZCJ4e3rfL0GnLV64GEaKuJnjq8qQu7LgNjqk1c0tRJCqnWwOoFBVk724GUItB1dqR8erYEXL2tAZkHMHK37dRh9Tfr2AeWj9FH9i2pX/P9vL46GHCNjKujt/+WiifQ+GQ9TxxkNqPjU9UlU9XwfTx/SqEVBO2VWFmkQq6N93zKMSK8rm86u0bVsuSmb+bWhoGR+j8dex9lend5vKkLuwYj3oiCk5s/3eVRMBgU7KfDdCLFS9pqL2s62mDmqQmyOj6+njtoVsNPdnX16nryxsIPHzPjfIsvpOODAoUkWWza99hhIZEGtWrIaPvuF56dWntyO6ZbkPV70dfmiDzl64XsoCSETDde+Boptvqm/6NAG0I7RPbkbFfdY+rbpA2Xa90+aRY8jEHAkjb/l2JnpnHDJOGWggsVyHDx5uDgn2rINx3HHWgrDulVgJtb+my5Yx4Xyj6cVMYiX3BMxsMvH6BUg6WrOgIfATUIQ38a+z3Z1g6qITUhwz/7TcPlCFX9cjR+WzcukfGv/et7EY0u3H9GvLyE3fhuab0vfER2bR9b47m1p19DwHK048d96ExeNN//EI2rlpsorUdIK1PFd2cjFPHDsvsqT/IERjdmKhIoQNYHw7vlWhmzpsLb48ta5cjMj3fNO6OgnOahJYylroetpWpKA2atZbWXftAIbGct5dm93jJSQny+iN3GEq03Q31Q0XASwiQgbNuTtZquwmJSfLhV1Nk3tJ1EnbgmHEaWzerL0+PHSk1QyvnaJVU4f1p6hxJSUmVq/p0kvFPjpKtO8NMppTH1RFYCITWaSCPvPqJcdqm//QlnvcbzYJrbrlbQms3yNHJMmC5ct7fchIifXR6K0ILoWu/67yihZBx4RFnTsq6JXONIBN1EWijGHhhppSqvey32rJjT6ytE+yWRXF60hfvyprFszNOpX8HKALqkAbohQ2E0wqpWE6aNrK0bWnRuG6OTikyKlaeGP+prFy3FTU95eTeWwfJjdf2Sp9zB0QnSN9Vg58OSUC8oON5U1pPN54Q27pM/d/HcmDPdkPf7TtkhDRu1SFH58rorWkbs3GNnDkOgQk2FK9RW3oPGoYbivo5mtvVnQ/t3SkroRZ8ArU3NPxUZORgLzuur3K1mmi0PkBqNWjq6iHctt/WdcgwfTBe/sPNiQ5FwBcQoMru5K/GC51M28Geoe9/MVm27Ngnp85ESK3qIdK/Vwd5/P5hUrBgAdtNnX49d8laCBhNkiPHTkub5vXlrRdHS2XQh63jkRfRO/t37Z1txSMQngsXLSYPjfvokrIP0l0Xz/jdZBNr4/f5hrseMmq2OTnfw2G7jY06dnCf6f1cIaSq0UK48rrhUiDN+cvJ/M7uy57UDA5vWbMMdNwTpt9pSkryxQAqFPHLI8C7Z+sG87mz8+v2/omAOqT+ed0CdtX58+dDhDlEurRrJs8g2hxc2rE6A3uAjHt3ovw9d4XZZEDvDvLKU3dnuvkzr30h//vln0w/0zf9DwEatGc/+C7The/avB7Zze9Nf7VqterL4NsfMBnOTDd24s21S+aY3qInjx1C25b8hs7brntfYbPz3Bo0+GsXz5F9OzaZXnJRZ8NBT79gRJBMW5kKlaRZ2y6ITveQIsWKe32ZP33yhqEee/3AekBFwA4Cvbq0kklfjjdbsMTjR2QtWSd6HpTIenVC5Q4wdm64uqedGRz7KOzgMXn2jS9l09a9xsF98sFbpGfnVpnu3GHgPbIf/Ut1BAYCVG4fcmfmQkZk9LAPKO0I+2IzY5rTER8bLTMnfwtbsNmUSJQBc6ZqrbpobTbSiCHldH5X99+5aZ2sWzpHTh87Ynpys70NB1ufMYuqI28goA5p3rjOPn+WxYsVsbRtgYG/e+S1blnvr3/Ok69+/MtEstu0aChvPHevVKlU3u7cPa8fI9t3H7C7jX7o+wgUKFhI7n7qVanXJPMbO+sZLJg+yVCCGLGtD0rrjXc/4paI8YHd241q7LGDYRIfF22ivXUaNTciSMxS5tZIBo2Xwkyk99JRJXXqXGoK6nogjARFRNb2kEJGBzoktJZXlvnKmFugznjKK8fSgygCjiJQtXJ5YTsx/tug01gmuJRp2/L46OHSoknOGDtcQwqUSB976RNZuPxf0/d02OA+MnbUDXaXt3TVJrnlgfGmptTuhvqhzyNAEaMn3vrK7jqjIs7I7xMnyIFd24wuQPcB15uaS7s7Ofjhkpl/mEDgaYj0FYSoErUQOvW5Wlp1usgcc3Aqt27GLO7qhbOg2rvCMJrcOrlO5tMIqEPq05cn8BdXDjL4jerVNG1bsooKO4vC+s275JX3v5MdcCwp4f8Y6FS9uzomMLEPwhH9bn5UYiF0pMN/Eeh05dUydNTDDp1AKqhCk796X3Zv+VeKFi8hzGiSyuSOwVYxM6d8a24ozkAFkbUyvBHpefVQl2Xw3bEu6xw7N64VZnWp3ktRpMR4S0/eosiUMntKEQw2PG/WrkuOhKCsx8v4TLrzm4/dBcdYHdKM2OjfuY8AMzSsCWXblucevs0tjB2e1UeoP500fYGxM906NJf3xo2RokUKO3TCT4z7VL6fMsuhbXUj30SAwnMPvzrBBCodWSEZPXOgV0CFdwYKrx42SmrUa+TIrtluw+wkFeRPHDkA3YF4s6YGzdoia3qLkFKcW+O9p++To3BOdeQdBNQhzTvX2ufOtBBqblirs2PZz25Z29mIaEud6PptUrZ0KblxUG956O6hTs09bdZSef7Nr41s/3///efUvrqxbyBAiXnWRt7z9OtOLejogb1CmtTRA/uMUe4zeBgEFro4NYe9jRf+PVk2rlxsnD/W7VSoUs00D2f/OV8YjEyvQt3pkf17hZF5OtMc+aBmTUeaTc7rNmkpbaHcS/l+dwwqBH/7wTijDuyO+XQORcCdCFQLqSD/zpvotilnzl8lH349xdBumzasJeOeGCXNoJPgzBh+/8vQQtimegfOgOZj27IN2XW3jTZlEs4sjYweBhAT4mIR0GwKuu9YowvgzBxZbRt+8lh62xgKEFEIj+q3fQYPl2pQw/X2UOaMtxHP/eOpQ5r71yBPr6A+anGWTf8sxxi8+PY3QmOfDGXCru2by9sQhCDdyplB0Yh5S9aZG4TYuERZs2G7M7vrtj6AAAV76JBSYbZM+Yoy7L4nhG1fnBlU9VsKOhMzhhQluu7W+6F6WMOZKexuyz5tS2f9YSLSifGMSFdBtLsxItIjjNNnd2cvfUjxp3VL55qsMem0lOy/cOG8OXqJUqWNMFIlKDay4TmdVFfHz5++aZSBXd1f91MEPIkAg6ZvPn+/jLihX44OsxstYV5462v5d8tuoZPL3qTDr+/j1Jxk74x9/kM5ceqsyabGJySa105NohvnOgK1GzYzNooB0EYt218iuufI4sgq+e2bD81vM6m2ZK8MGnmfI7s6tA1bh1E9fvuGVUaxnfa0Qkio+a1v37O/Q3PkdCMGRik+aLU5OZ1P9/cPBNQh9Y/rFLCrZEuXX78Yd5maoaMnTHn8b37+W44cPy3NG9eRFx+9w+n6noOHT8iY5z6Uw8dOQaSiu7yAOTi6XfeA7Np7yNGl6Ha5jADrRkc88DSagXeT/ehf9ud3n5reo73Q3sWVLOQf336COpaVcuH8OanXtJWhALONjLsGpfgprHQECoh0+kiRpfpt94HXo561jbsOk+N5zqHWbdPqxUYV8exJ1J3CUbf2hStYqBDWXcE4/43R77RV515SvEQph4/5Cpqes4eqDkXAVxGoXg0tYGZn3QLG3roTEpPliXGfyBLUfhYsUACKvO2hZeC880CxvQn/myoscXn9mXulXatGRqhv9NPvop401d4S9DMfQqBStRry1DuW79I/v3xjgn5sd8LAqbM9QunQ/oU2MVTQLVuhsnTpf5107DXQrWdLxd+V8/8xbWNSk5NN8LROoxbS74aRUP4NcuuxbCf7+KWHhDoMOvIWAvmLFi36ct46ZT1bX0IgCQ2/2VB8xJC+Ti1rzYYdMvqpd2XStPkSHFTS1Im+9sw9UslGJt+RCX9ALc5jL38C1dH/5E3cKNx208Uf9D7d2wkpvPEJ2vvNESxzcxsKj9Dx7Np/sFkG6aWM5rKxNo3qkbA90qJDd6eW2LBlOxN9JpWV8vPs8ZmAGkuKE7ljMNPINfEmgsqdzEIe2b9btq5bYR6s52SdEM8tNwcpuyHVa6fTi2vUawgn/TyovPkkNSXFrPvsqRPCWqR/ly2QjXBej+FmqWRwWQglXWxbkfEc2H906aw/hUJLOhQBX0UgNfWcsC9pw7rVnVriu5//Kk+98pls33VAWqF9zP8+fEauv8q53yAe8O7H3oSdWyCt0Qrmt69fkWpVKpp1sDd3UlKKrIUt1OISpy5NrmxcEjTdB198N71HNYOcIaE1Zdv6VUZYjwFVZ6ixpfDb2hZ6B6VKl5VD+3aiHGSR+Q0uj7p/0m3dMfi7T4G7Oo2bo4wjHIHTk7Jn2wYTnNy7baMJRtLWunOcRwB4/p+/SmKCRc/AnXPrXL6NgGZIffv65InVUb1w6jevSpMG2at6ng6PlCfHfwY67Q4pWrSw9O3e1lCqXAHqviffkSUrNyKzWle+ef/pTCm+y9dskdvGvqoiR64A7MV9WNc4fPRTmR6RYhCM8tKADx31kEvNxrdvWC1zf/8RNNuDpmk5nd8WaJPi7rF60SxZA4VBto1JSUoyzcKrQ/W2D+i8vNHwtcEs7+qFM4V9T5k5jWbdaVrtdREIYjDrW7YiGp536iEt0LrA2vCc57FqwT+gnn1kgkG+dl66HkXAFoEa1SrL2tlf276V5evps5fJJxN/Ny1iGtSpjmDpzdK3R7sst8/qg41b90AT4TMJPxslI4b2M71OM9v2wWfelyloS6PDdxEg7fXOx8dlqvqeAoX37z4cj2DkHjBxWsvIMc+6dCJ/gBG0Dcq0FOmrWb+JqS+1FxB05SBxMVEyY9JE2b9rq2mZRtGjiiiJad3lSpdYSJmtgUHKaT9+rn2pMwMnwN9ThzTAL7C/nF57UpB+fNvucp974yuZvXC1xMUnSpsWDQx1iXQqZwebmzMreuJkuAxGxHrcE3fZneKXP+bJU69+rlL7dlHKvQ8Zab7/OfvfnbAdW+TPHz6TuOgo6dz3GtN+xZUVz/39J1mHjGtcdKRxbK8dgVZCNZwTJXHkuDT486f9KscOhRlxITrTlVHHSupxkzadHJnC69vwZoVZ5B0b10gkKMh0UFmPxEG10iAjjFQeglPNUJNUVdbA+Q7budXr69QDKgLOIkA9go9fe0Su7pP1vz3alZffmSgbtu6W8mWD5cZrexln1NljcfsPvpwsE0HTrVAuWF4F86djmyZ2pxk66nlDC7a7kX6YKwjkB1V7yB1jpGPvq+we/6+fv5L1qNsPLlfJBE6r1nS+tRDVyk2bGNBdixQrJo1bd5Lr0WPbE2PxjKlpbWPQm/dcqqEc14QWQv+htxmNAVeP+dbjo0ARPujq7rqfHyOgDqkfX7xAWnpw6ZLyy+cvZ1pL+v3kWTLx1xmy//BxaVyvxv/Zuwr4KJLmW7gmIQR3d3d3h8M53N3d3d3d3Tn0cLfDnWDBIXgguHNfvc4tXxJ2Znp2F4h0/X/8s5np7pmpvS81Vf3qPerQrLroxbHl+VG5Rs+pc+RI3CvagIrzDquMpSlQR1SqZcaqMb/OA4C9tug1QrABGl0VvZALuRJ9kzXdEqdMSw069iPApMwaCJNWzR5HHu5nKWSIkAxnykTVGrfnF4BIZpcyHA9yIQiZA3r8jGGxYcOFEyRN6NcsUr46hbHh/g0v6oABgMBD1P30oT309NF9oXcKrVeLRXJyFoLnFpkZy3H1U3kgoHogQbyYdHL73B9u7xVLhHUbNJWApvnG/93ny5GBxg5oQ06RI/4w1ujAR25hadxpBB0/c5lycZEWyJ2wYcMYTWMOhPGCkO/5i1eGY9WAX+sBEO0NmLZC6qJoe0BfKORXUHwsWr6G1Dz/g1AUBKIHBc3oseJxEbY85S3+h/9hDvkd1/KRjblNKEriecGFAGkzFIvNGBLqCX3bfWd4NzNXjQ38HlA9pIH/OwwST4BemAuXb1K9P0t9fx5Q27dk0gb0z0SKGJ4a1ChD00d2oWSJ430fY+ZDg3ZDac2mvZSWocHLZw5k/dNEUtPrshD5M5aUCRs2tGDxVXIwUm776YNASe/ECSl2LGNzL46RFAl6IUG6A0KeSwzBPXVoN0VjhttoDCk1Y6HDhKGMDD8F7T4kYtBLc5r7d7D7ag/jrLV7AOw1ffa8ojc2NDN+vvZ+To8974prnuVr3rp2SSSoTi6u1qb/tmPoewUzceY8hSlfiQpCc/Xbv9/ETum3b9+YbOolffn86bfdn7qw8oBZD3z69IVixohK6VP/HxExYtJi6jVsJp11Z8ZUjicTh7Sn5sygG04iifR/fbSPNOo4nO7cf8xcBqVFUhuK/2YZGeIkiqzxYkUntL+grUXZ7/dACEaFOP/3d/nG5fMi9hjdFdoysucvRtcvnaOzR/aL3tAMOfKLv5tGc32fjx47HuVibgL8HQb50bmjB0R/adQYsZgAyTyqzPfa/j/jWuhlTc/IndeMHHrt/ULAjwEfvnDiEH1491YUgP3Ps/b71lULRGyzdk4dC/oeUAlp0P+OA80Tvnv/QZBHRGGSIrAHTluwjl69fkuF82ahhZP6UNH8WW16lqOn3Kle2yHkwbT5VcoVEklt+HByO2OAQl25fof6d2lEU4d3otdv3xF6e1RSatNX4bBJEAfvyMLi2Th4Q0YFSakba2PKSLwk5x3NeJzMXr1wiiFSO0UQtYXVFtqcOQqVFGyDCPrQ1AQhEfqFcH+ONmir5ilWTvSwIjFFNRkMi+ePH6JLZ4/zbmkYUZl29HUdsR6IL5BY4/4z8M/DOzep/w05wrFqjV/mgS9fvjLr+l1qWqc8rfl7H7XjXcnNLDUGeC76RCEPEydmNJvuZ8CYeTRqylKxqzp2YBuqVUlOEmbbnmPUqf9kisdSMquY8KhutVK0fe8xoaNt042oSQ7xAJLRgqUrU4veI1nDOZpg073Mf6PBdWBkKHgirmG38dLpY4KsKDr3adqSSEJiJgcni88eP6D73KOKJPfWNXcCtDaCgxE9QL2ApA87sSC9e/PqhWDnvcZx9jQXfxGr0N4SMZKTpgsAN1aoGU33BPkTCrIb5L/iwPWA6JmB9ttz79eUiWVcenWoTzkyp7b5IYZzBXvZ2h0UxdmJevNaoN2XsU+sZ1qVk1HPh09pWK/mVLLw/+eNnLKEJs1eQ5//64+TWU+NcZwHwETYadj/tWv/5R23GcN60JOH96j0nw1FAJa5GsgfFkwYTDe5ep2AiYPqtettF5U9tOFAfgRIbwK+x3K1mgodU5l7sWXMw3u3aNvqRYKZ98WzJwRNOiTkqTJmo6IVajr8hcOWe9SaM6RdXfJ68lDrtDquPBAgPRCadyxdnCMJpAwguWj5GNO/jc336sUQ2xZdR3GR04NyZUtLc8b2oPDh5YqlKzfspiHjFxLYdlfNHuRnF634nx3pHO/aKvv1HgASp3DZavz3v8n3i6NYiWTLlbWxW3KSKtsqAjjsxiWzBONsjgIlqGzNxt/XNPvh7o0rtHHpbCEzhuQxTeZcVLVxO7PLmBp/fP92Jq/bTI+Z/O4975Q6M9MwpG8KMBs+2k58GwrLiycP+y4p5vuc+hw8PKB2SIPH9xxonhISK+F497JX+7o0sm8rihs7uk33Dv23um0G0987DguI1VLuT02fWm7XCn04VRr3ZpiuN40b1JZ3Zv1qQqJHKEyYUHTi7BVC1VzZr/MAdjfbDZro54KAJaHyDGmW04d3Uwh+IUiU3LiIESpUaJYyKUKQH7l6/hSdOryHIVYcMOOZk3ew3EzaLLkoHZNIIFGEtujZY/uF3Ax6TNH76WgDTDczM/3mYlr+L0wq8e7NK3rieU8wIJ49sk/8jMr6dOjpCUj25ME93iHdKNggA9J9qXtRHjDyAHpEw3DBNHum1KK/s3qFokZTNM9v2n5ISJc9eOwlILrjB7Wj0KGNIbpYcPaSjTSSd1QBH0Yy6l8aqh7vlP5z8iLdY21tZb/OA9jdLFmlLhdGG/i5KAqFsRMmETuFZ/hvc/rs+TgmhPczxtovgMNit/QGQ3gBfwX0N03mnKL4aG283jHEgRwFS1Jklyj04PYNunLuBOtL72c226+UMJlxvNRbW+sc2moQn5KyVBpQPa8Y0vvgzk26ePoInT92UJADghEYO8orZo4lL97JVRZ8PaAS0uD73QfYJ3fjPphR/Vrb1IeDh9p14IQghrhz/xFVKlOQZo3pRhHCyyUEd+49opotBxDgw1OHd9ZkN8yZJS0lTRRXMBuCiELZz/UAXrgQxJv1GKZ5oaz5itINZqeFHttH7hOV1QtNkQ56cEn+6wUFCY8nJ5Z+q7eaF/V3ImJkJ/ECET12fPLkoI9eIPTvvHrxTFD6+xvukF/xEoRdUfRqOkVxFb2sgPPi+oAQu585SlAyxctBQLBtLMMD1mNlygOByQNIFtOnSkoDuzXmgmk9oX9t6/0DZjt13lqK4hKZd1hbU52qJaWXGjNtOU2bv5aZ5lPT0mn9NOfVqFiU3K/eouu3PTXHqBOO8wBI7ao36yT+Dltb1Y2Lg0DinPlnH3MO7KGUGbIS4oWRYTc1GxdcAYG9ev6k0AB1cY1GMeMmMJpq9Xx8Zu8FyRESxId3b9FF3r29dOY4ubrFMM2nYPUCVg5C/gvxGcn1uzevBSwXXAiIj6e4iHxo+wYBUVaa1FacF4wOqYQ0GH3ZgeVR0Td67cZdkUyavWcQTIAyPzwnoIO6NaFWDStJL3Hh8g1q2GGY6G2bPbY7ZUqXXHcuoMUgXIrAEKv3Hz7qjlUnbfcAdjLDR4jE/ZGJKEOOfLoLZWESnTsMTTrHld+Xz70odSY5FmUQG4FM4pbHJUF4hOoxElq9fhe9G8HLAvolv7HI9wMO+mBPRHKI5PFnJoaAM4PMAizCr/iFA31IgEtdOXdS+OTJg7sUP3EKChveuDqv93z2nFu7YIrqE7LHgWruL/dAwnixqGGNsqK4mSJJfJuvjyJpPUbu7D9ylnJkSU0rZw0yRdLXd+RsWrxmG+XLmZHmT+xleB8795+gB4+fCSTPt2//Go5XA2zzQCQnFyY9DEvFKtWmSJGdNRdBYoa+TvRynmZETkJG8shqhabKmJ01PxPQNUbzYGfzObc8pGFUjq2GuejrR3zwvH2dLjAXAeTGEiZPw3Evsq3L6s4DvwJky/KXqsi7vGGZ3O4VPX/6SBAhqWRU13XB4qRKSIPF1xz4HvK59yvKmDa5IDmSuXuw4NZuNVBQ32fg3lNUjo0SSt/rHj5+nomUxhHIjhYwgRL6cvTsKzftV23Sl7Cbu2PVBDp47Bw9euKlN0Wds8EDCPSV6rciBPIL3GOCgIakS89ArABYEAIs4KGyup2hQocRVVywAl6/dJZfGPYKWJUtenCW+0ueNjNXhYsLEfGH924K4iPAg2MwFCsKV6R/lkXlXiVUowHpPbxjo4D0ggHxzvUr4mUGlWmQbbhGi/mzbsHquo/u3aZ/dm1WcF2r3lEHA5oH3FxdqFiBbLR4aj8qXkCuuKX1DEvWbKfO/aeIVhCQD00c0kHAf7XG+z/eoe9EWr/1IBVjcr+ZjPoxsoWrttLSv3ZQ9YrFqFblEnT89CVVODVymg3nEyRNSZ2Z0wA7jWc4yRTstgxB1TKgWIBoOceQVSSlKLRi91TGAP0VSKDL54TeMwiD0MYSIaJtCSQKrlgPBdQHd2+yvJg739d+ETeRsPqHgsvco+wYQHVRtEWrzccPH1RMkHVcEB6nEtIg/OUG5kd7zzIwR0+7UzOm0DeydVv2cy/OWHrw6BlVLFNA9PZEjCC/A7Rl9xHqMnAqQ7Ai05Kp/Ql6c0ZWtXEfevHyNY/vR9HcolBdhlzd5uq3x417Ql/RaL46b+wByIa07DNKaJmBBfeOx2XRIxo3YVLDAA6q/Me8G3jxxD9Ciw0yLbIGKBVeEgTcll8aAGvKkDO/7PQfxoFsKFPugtzXmob7S28LEqILfF9IDlEtR5L9swwwsuP7tvnZkUTCjUQdJBLuJ4/QZ9ZnxUvVrzAB1+U+KGXKAwHZAyhMZsmQksYPbMsom8rSLR9az9Sy2xihpY0CJrgR6v9ZWmuo1ePNu46mnfuOU5liuWnysE5Wx/g+CE3U3sNnUU7WMkVvKvgTyhbPTQePniOvFy99D1WfbfRAyJA+MmLNew4XJEWIUUf3buWi4z9CBkVv2Yi8i4q2kPPcFwr4LoqTstwF2FnMzgRHr18+p+ushY3d1nAsD2YP8gaJbu6iZVlH95vYMYWUGVBG0O5OlCKN3qPYfQ6suvCZUi6w25WBfgGVkAb6rzDoPsDrN+85yXzqh+HW/9O26z2BZizaQJEjRRDSLG0bV/U/RPf35et2Uv9Rcyg20/WvYG1SsPwaWdPOI1kz9QbrxLWlDGmSfh9ell8W4seNQafOX6W3795/P64+mPMAWAqxy9m63xg/8CckddA2A2EPGPoiGMCK0mfLK+BASLxuMxQXcF5Zi8Z6cFl5hxHzAN9F9RtJG1gCbTXsRuYsXErAjx/dv80EFRdYsuUgy7c8ERVzW9fVm7dl5XzB/GttzOdPn8jb6ylXqE+JvlvsKuOlBknszzIF1/1ZnlXrOsID2BECJLd9sz9pzIA2Qk7FnnUvXmFtbYboHmGCISSHK2cNNETf+L9efZYsQyJZqWxBoU3q/7z/3+8/eEKIUfFixxB625bzriyn1qhmWbp28x7duOXJyYeC8Fp8Y/YnCOUqN2zth7wIMioxObE7smezkDhBDNMzaExjzEUuCiKmhY8YkcygcVJnysFIm/hihxHtIIDegmfBHkObipCJefJASLZcYakaMP26RHUjaKT+DFs8aRi9e/v6Zyyt1gxkHlAJaSD7woLT7aJi9pBhsBkZgpsgrt9dS/Ti1GbyIfTiZGZo7+KpfSlrxlSm3DNj4XrWfltGSRLGoTVzhpCzk/GL+KCx8wk7qm0bVaWqf/yY4KRNmZj+LF9EJKWQjFFmzgNOnPBVadiWylRvaHUiYEQnD+3inc/D34W/rQ787yCYb9FHiaQUMFzAWGUN/Z4WEoZbVy8KMglIzKA/0x5LyMQWIJXw9nrCu7j3BJkS4MVgGjSCI5u9LpgLjXTd8ExvXr30EVA/dkDcT2TnKA4nuIAPsYOAqrsy5YGA5oGY0aNS+ZL5RF9nVt4dtdemMvFQ3xGzyPvVG6pTpQRNYR3rsGHDmFq2erN+dPLcFarN84f0aCY1t1rTvozS+ZeWzRhA1pBCeEbolp46h8LpB6k11aD/ewB60G36j+U4kO7/B//7BC6CECFC0qkDu+jN65eCuOiHQb4OAD0DyOwlJp4D+R3MTHwREN78RYV02WUunELrFPEFCbOtBhIlJMpJ+Pkeed6h+9xfCtmam1xABSmTXo+s2WuePLiLi6F7hG6p2blqfNDzgEpIg953GqSeCGy3qC77hu6iN6ZTv8n05Jk3VSyVn+ZN6CV2SM08+IjJS2jagnWUNmUiWjd/mNSLwrK1O2nK/L+odJFc1Kdjfc3L4SVg7+Ez5Pn0lZD7+PRRER5pOuu/E6F4VzRq9FgC+lSpXktB/mNtDqjywYgLfTP0nsgkmOjX+fjxvUhKLzObIHZaQ4UObW15q8cwH2QSIHy4yNCiezeuUcZcBezqr8FODHpbQeEP+CykYkA8hH9uMWOzL/wWYKzemMHBfZvXiB1YM1AoaKiCZRg7woA7f3j/VpBcOKKXaP2iaYL51+C21WnlgV/qAadIESl39nSCsAiJn73/rX/lAk8jJsdbzvEC7Rwj+7SkhrwzacZAkleN20LAktuk9h+sx11PanqN5v3pLku9TBraQez0ak1KFD82LV+3i7y57USZnAciO7swEU94RpEkEZBZrVmAuD55eF/06oNF12jXE6R9kGPBbiQQM9DrTJEus9byPxxHUpu9IEN4vV/4oG64qEjMqy4jffbDYr4OgLchZ6FSzATsTI85MQVaCIXTR7wTmzpzDj+6t76mmfo4b1x/UQw1NUkNDrIeUAlpkP1qg86DvXrzjq543KEKnHw2YyjSgpVbxG5m304NqANDq8wamHgXM8FElvQpxM6ozAvIMSaE6DZoKmVMk5zAwKtnG7cfojnLNlPh8jWpVqvu4iUcTHJmEgO99YPaOWit1WjeRQiJH92zRVR7s7A+qJa5RovBfZfh6eTB3fSQoa8ZJGBKIBf6l3cN3Fn/zP3UUQH5NdO7iXuEZin6Pq9dPCUCc0zWK7U3ccRLDij9kYSCBv/ezWuiWo7gj0o52IVttSVTGArFFPu2GHYxXz5/Rh7cowTijfs3PURfLV5ObLUtK+YpaJatzlPzHO6BUKFCUrpUiQlxpF+nhkxQ52L3NVA8bdBuKO9qXqVcWdOKNpDUyROZWveZlzf/PexPN+88oDaNqlCH5tWl5rfpOY6OnnKnbq1riV5TvUlNOo0QO696Y9Q5Hw+ghQRFyXYDJ4q4c/rQHvF3X6/nE8VG9HdCcxStHkbkcXgHQVLp4X6GyfsOizaONFlymvoKUNxEqwmQQJdOH+WdTQ8Cd4LM+43ehXD/kBRDPHjKiTYKs9jN/cTSatZ2ifXW8n0Ou64nD+ykr1+++D6sPgdjD6iENBh/+YHp0R89eU7zl2+hs+4elJkTyUWT+zBtvvlm+7a9xhNIkHJnS0fLGdIkY0+evaCG/JLhFtWFNiwcoTvlC7PvgsAinGtsrnC3Z6FzH+ZWVE3v3/JQ1UBf3gODboHSlahxl0EE6BEgsti5PHVot6jKxkuczNdovx8BbfXmAAlx7c+fPkppjgJqFTp0WJHwgbE3OVehzcCPQCaBHVlQ1YNgCdcGHBbr2GsgUQLjIIL804eePtVohiVDKBy9QmZN7I4yYQbguPYYiih4Xs87NwQrJBiC0SuF78uMYUf7FBcQ/mXSDGXKA7/bA/G5BaRu1VI0d3xPSpU8oUNuZ/ikxTRs4mJ68/Yds9oWp2kjOlM4JkcyY7fuPqS63HP68LEXdW5Zk5rXMyb1w/qjpy2jNZv2UpVyhaijQQILpA9QRp8+Kei80XeDpLN26+5Usko9EctBTAdY7BWW8QIJkF6yh6IqNEfP8Y5lRibZA/GQkSG+oLUBhVNIdJntCQVbbpa8DOHlpPHa+dMCagtyQBRx7TXwNiDRBqIHxVMUZi+dPibgwWbjAe5l1oheTMz0wt7bUvODkAdUQhqEvsyg/CgfOXiGYd3PCiXzsyxLb3KKbPzH3b8/UBXevvcYFcqbRSS0/s9r/V65UW9Bl7+I5WCiMDGEnrXgZPTijYfUqPMgP6Q76C1BlRG9HYC/GPX16V0jsJ/DziQIh1r1HcWQVb86akg0sSuHnhqQKyCh1zIkancAI+LEy4UlTGInSKw19Ptx6L5BYw1EDehDTZhMXgfOsgi0TaNzQgaK/Mtnj4kXiLRZcgu4sWWMrT9Tps8qdmKfPfakZ5yY4sUCiS8SQzNMuEumDBeJpK33YW3exw/vRYLsztX38wzdQm8u+pWwg2BkS6eOFLqoRuPUeeWBn+kB1yhOVCRvVlo8pY9ovXDEtaCbXb/9UFq3eT/FZFK84b1bCJit2bXPX7pBiFEvXr6i3h3qE6RhZGwtF1jHTlvOO7LpmIG3o+6UN2/fU9ve45VEma6XiFncYzGPQSOq1bLbD730SVNnFFJaQLPosbcjWYUky8mDO0ULRG7Wh5YxJLICKYNdzlvXRYuJzDzLmLDhwgkI8OFdm8Tfa/SWQuMThEX2GhAySJpjxIknElPPO9cJbTA3WIYmHutbA/EjY0jSgbxRu6My3go+Y1RCGny+60D9pCAe6tW+HleNa9j0HHVaDWICpDNUolAOIQsju0jNFv3pOjMSog/IiDRp047DNHvJ35SjSDkhOG3tGkgq0Pv4nlnlIju7cr/IG2vDguQxaKU5uUQRSXnrfmM1EzgEcTAVIuEzYsbNzMy5gDidP35YwIeQmBoZenogRo7qLlh7UUGW1YGzrI2KcJa8hQWE98al8yIpBnW/LZViy5qWn2EZjoznis//rYj+0vu3BNEQ2H5R6Ta61z2bVvH9HP5pu5F4iXj1wouus3zLmX/2Ch/guUGEZM0AVz+wdZ3Y/bV2Xh1THvjZHgjHZEKZ06WgMf3bULum1ayS/dhyDyhwtmBJFiSTFohu2lRJTC91iHWw2/QcTx9Yj3Fw96Zip1NmkbMXPajzgClCr3vV7MGGU5DwHj9z2XBccB0QlRPREPx/KIxWZC4DawZ2d/TaA7aKv8Vo3dAyJHBuzI1wgpPS6wzHzZpPjlQP+tGQG0PhFO0baBcxa4e2bxAtEkhG7964Koq3IPkDEsleixk3oUD0IBY8fXRf8CogDuOeU2XMTuCE0LPZI3uLgqbeGHUu+HlAJaTB7zsPVE8cOnQoypE5De+K9qE8DLO1xao27k3HOAiXK56Xpo3sIr1EO64kg26/ZYNKQlhcb+LXr1+pRfcxFMYpGtXmvlEt+/r1C+1Yu0ToT7YdMF7s1uGF3dZeP63rBKTj2BVOnz0vNe85gskQctKRXZuZHCKcYOyzdp+ANn3lHkbAnSJxxTUeS5HoGQIgEiMQ8WRmwiIQHxlZ7PiJud8mDl3iHU4w8CLRQ5A1Y4JMgvs/37z0FtqioO9/8eyxICoys47WWFTpcxUpLYixnj16ICDfgIrd5kQdO71asjdLp46gt29eaS3ruOO8a4v/bvESgl1cVOLhEyT4vm0dkxmhuKBMeeB3eCBZ4niiF3PC4PZSGtOy99hz6AyaOHu1QM/UqFiMZozuSuHDh5Od/n0cWNu7DZomUBDQKC1TNPf3c3ofXni/JkjChOaX/yXT+jGxnz5qSEF1rXsTO5koqJWsWo/qtu0lCOYe3btDuYuV1STuwW4jCO7QwoBWCz3oLtb+xu8H6CcF1BWxUMaw+4pk7zInpUhmoT0qa3PH9OMk9Mr34XjvQP+nOyOPQB7oKAkXtKtkz1+cEJ/QXnL72iUBUUYSjBYZa3Z833YxBvekTHnAtwdUQurbG+pzgPIA4FXlS+SjRVP6kouEJIv/mwdTYaUGvVgz9KbQcMMLiayNn7mSlv21k0oxo+7Aro0Np6Fv9PzV+1SvfR+xA6g1YdPSWQS9xyZdB4mXdyQW+UtWpGS8K/j8mU9i+uVL4O/tAYwTGmnoEW3SbQhl4B4aJCvQ8bzGwfUWQ1ERyLUMZAk+rLMnBPxID7oLPbeY8RIwBGgvXWWWWmh9yhheFOIwzPcSQ45AsIDeSCNGRGvrgnEQyS0q2dj9BuQ4RfosTEik/4JobS1rxxKlSCt8hWTX68kjAedCEv3k4T2R/Pp+Gdq0bLboceK3W2tL/bRj6H19zveGl6dznJx6P39K8RnCBQmBjUtmKjKjn+Z5tbCWB6ApXbZYHkEslJMJhhxlDx4/o3qcCCKRjB3DjYb2ai7d6+n/Hlas30X9R88j7OAiPhXKK9+P/ifLu4DfYPzgdpQmhX67AnSxwZ/wiGXUlPl4AH+fwe1Qq1U3Kl+nuWg/wBkkm/u2/CVYa0FmpGVAO/2z629RKNSD7mI+kjMko0hisauYNE0GrWX9HEfyCnmwy1yIRJzKnKeQIUP8znVLGSa8i6y9R6B4ihj1khEuKOQ6whDXsaMLXz59cF88541L5wR5YCQnZy70JvBzmQXjB6neUT8eUb9YPKASUosn1M8A5YHECWJTj7Z1mDGwtk339ZSZCqs26cMC4PepRqViAnIruxCgtyMmL6ZM6ZLT/Im9DKdh/MwlmyhTnqJcxSyuOR7kO+sXTRd07Nm4qujbwNYK6vdCZauIYAJ21c+fP9pNSuP7Gr/iMxJOGFhw+01dJnaC/V83Fu9EHt65iavPoUQQ83/e8jsSsaN7t4hEzwi6C+gU6PPPHN0nCIcAeZUxzEMfJPpgsFsKuBaua9YQdDNxUAY0CqQUgMyiVzVOwqRml7I6PmTIkILgImWGrCLoP2NpFkGsxDIBeMFBYQM9nn/Nn0zvbWTWtXphkweBFHjt/ZwLDqzbyt/F5uVzORl989PgwyZvTw0PBh6IFDEC5cqSlqaP6kL1q5fmvwshHfbUqzbuoQ59JzLr+20B0V0+YyBlSGPb/8ZnLtpAo/lvJPSvgdzJaYKkDzuj59yvU6cWNYT0mdEDKqiuj4dAmufiGo0iOTlRP9YgBwLFP1M6Eqz73B96g1sScB5xxZoB+QPmWRQHwRHhP/HyPwfJJVh0LzJhUVRG5MRiIjsZA8wWxHJo2UDhFORCWgzx6M3ctmaRLuIKxUNP1hbF86XkwqkM2ZLMfYJJOGfh0lzYjSikwx7cvck7yCcF629cRjmhXQfoMDyDIreT8WjwG6MS0uD3nQfoJ0bvQY7MqYW2aP6ctjXhgy6/dsuB5PnwKTWoUYb6d2kk/czQfWvfZwKhur6W9UmNXma+fv1GLRmqGyKCKzXs2F/3OhsWzRAyJY26DNSElSJIAH7aqPMAKlG5tkhIP3JfEYJIQIS4IFFC32bS1BmoAleZ/2zWSfRzoq9GS7rFmfs3PS6eFtDTPMX/0PQZqqvvGHoKAh0nhu4iqOkZEkvAnwHdxW4iArmMRYkanZIxUYVgT+Qd1g8f3jEZhfxOheUagAoDVoX+SgR8rGcGomVZR+8nXoIgD4B+VRAfQRMOhBKooGP3HRXwgGIg7kKCql4+Aso3ErTvA3+L0qRIJDQ7B3ZrTNHdrPc02+oF7DDO5sLjp89fqHqFoqxb2p0iRDAP0cX1R01dStNZBzu6mwvNHtedMqSWT2oB79229yhVLlOQurcxLtguX8esuiuDL6su/i5DtgvF4jptejFreXY6wXIjiBda/fiIZwe2ruWE00tobmr9N4NdRiSBHrzrmFcnllnmZ8pVSPSeIinDTqylgGs5r/UTO7WfWc8cCR4SYMQnsNT7NrDygjwOSbKRfWP2da8nD0WPKpjmZQgBjda0nAdRIFBfiMEvnj4WDO24ZzCt32EYMWK6MuUBax5QCak1r6hjv8UDYLD9o3geWjK1nyGbrdYNguShMRM3eL14SS3qV6CuJnZYwUBYq+UAfon+JhJiJKVG1rL7aDpz+S7VbNFVl1odPRWALibgP9Zgj9WyjYtn0rdvX5nhryGFZwgpmGTzlSgv/rnFis1see8Z7uLNiXIo0Zeitc7POo6XvpBcMUaFFzu6fzbpKPRDkXwCAgtDr8qNK+cpf6mKmr01YOk7vPNvTlb+ZTiTdm8welQQvK9eOGUI3cW1kYQCOotkENVwwIhkDIkegj56NNEXBMgpdN1ssTR8D+j/hGYpoEuobCfm+9Ai/bHlGnESJhEvQEj6EPgf3rulGAttcaSaEyQ8EDd2dKpVqTgtZDmwtCn14atmH/jajXsCorv70EmKEzOaIB1qxbwCtlqfEbNYdmUbxYsTnRZM7EPJk/j83ZRZb8bC9TR3+d+UJ3t6mi7Bh/D23QdqE8ygupDnwq5mEm77KF65DtVo1pkKlatKKTNkE20ZUdyi02mWFgPKBBBYa4Yk9h6jXW5wa0lOjnN6REBA/Bzdu1UUITPmzG9tue/H0MqCeAd+BGiFZs1XVJPc7/uk/z6A7I+4E+Max0IkeAmSpqIoXAyGAR0zqX8HkQD+N1zqB3ZeUQR/wjEbki6ONDDpIx6DmA/9pYipwVldwJG+DaprqYQ0qH6zgey5EsaPRd05eezRrq7Nd37gyFkRfNEv056ZFCEqbsaqNO5DDx49pSE9mwqdUqO5fwOqu3gjpc6ShyuCFXSHr10wReyWYedTC26D5GzzinmULF2mH5IhBFn05CFQAvaTMFkaqsAsgFgLiVdo/gdDMot17DX0JeJaoHEHFAeQUMjWJE2dnoPfO3LlHTrosyGR829ITA/t2MAafBE0pUqwq3oNu6ScPOYtXt7/En5+j5soKR3ft00keEbQXUxEcgzGP8BwcS8xuDouYxEjO4mgfIUTUuzgQg9UloDC//rQr8uUqyDdZejXneuXRVINiDKq8o40VOgz5S4odtXxUqJMeSC4eSBWjKi0fcU4+qNkPoc/+pylm6jHkOl0/bangAEvmz6A2XqT23yd9n0m0uqNeylZoniCiCheHHl9yJ37T9CQ8QsocYI49NfcoVL34APVvSQ1NrANQnKHoq2La1TBV5Ca/xaWrFZfaH1jFw4kRZAoQez0bw+4gIe/y/k4bvvuwfc9LjEnjge3rfdB2zBMVstAiIekC/EGO7FG0F0UJgEbPntsv9jxzFlIjvMA10cyGyZMOFE0RaEWRHyAC4/q0oSTvodat6h7HK1EKGiitzRxyrQ/7LzqTjY4iV1c7EzDj9iVBbmTMuUBLQ+ohFTLM+r4L/EAILHZMqWiueN6UqE85mGSlptEH2e3wdO4kf8LdWtThxrVLGs5JfWzQbuhdPLcFWpWp7yA+RpNwh9XaI5+C+NEzXoM0x3+jiVe/l42R7DK6gWfo3u2iABVnWGvoIu3Zsf2bhOQnA6DJ4tkKx0Hylysb1agdGUqWqEGs9y5i34TEPQIaCcHPsCC8C8SB8LIDINFAAIVPSrF+IeABtZZJJ3oa3n/7q2oxPZnbbvilWqL3VkkeTgPcoably+IXVAtiBLkXdyZvOHhvduk97zRYsUVjLtfmFFXj+QBEF9Af1BRdoriagjdhd9AKgQoFV4S0Hcpq4+GfhokkkiW8e8BM8hmylXA2ldheAzFAuyGe3s9ZSZa9NOcFlV0rO9IO899pBe4Yv41CJBhOdIvaq3g44EkCeNS+tTm5Vb0PNS08whavHq7eJGuWq4wzRnfgyJFNGbw1lqzWZdRtGn7IUrH97li5kCKZgJSfJ25EFr3GEcRwoelxZP7ir5TretYji9ft4uhulvoE2t4BzRDkRMIFBQbEYOcOD4hUXPif4hdaE+JHjuuaAdxY34FxAq0bAAx4/3siUgysQPaffQcEfsQA7HDhwIkklDEUvSCahH3oEh5kGVR0OcPiRdrhr/fdxnlcotjarYCSGy14dm49mlutbnOhHZacdH3NVCw/PTxPV1guTLwDshyHmANFDUjchwHksed+1H3sszXC/aJPYYiNtbwQRaF0Swk23oNtCHZe4+2XlvNCzweUAlp4PmugtydujhHprIM0V02rT9FjWI9AZN56CVrttOgsfOZJCcE9evUkEDBb8ZA34+EtnTRXDSMGRNlrEW30XTK/TZVadTWkEIdRDOAxDTgHlM95tWN3AOIIFikfHXNW9i1fpkgIdCC/YJt9tzR/dRp+HSh4YlAB2gtAjZYbfMy/Pcfll3BT+xw5i5aViSNgA5lyJGPhb7zc8/mAbGrCIICa4aK8lmmsMdYLekRyIEggQT7HqrY1gwvIoDiiko134+egcn2/IlDQo8TSS52hfUM9wVqe8iRoO8GVVotcgr/66Cino314sCWC3gUXhi0+mH9z7X2O0go8AJmITxyZ7/ESZBEvIhZG2/22PxxAxVroVmnqfFBxgPo6bzicYeacjHREXbq3FWq324IHWDJL0CBB3VrQm0am0Pb+L+Pem0G0/a9x4WW9WrWC3WKLM/A/ZETypotBtCr129oNOuoZkybzP/yP/z+7j1DdXuOC7CsurG58Nms+zARcxB78DcdsQicAmCHRe99z3HzRcxC7EIMQyxDEou/xUd2/001WnYVetI/PDwfQKxAL3+OQiWtnRYFX4zBVtPAawAAQABJREFUzqZWLMXExExwd2j7esFNYARpxU4p+iTBom8E3cXaydJkIsjLQGv0JVpEJDkPMBdSaCC1g58Au3WUAVKLBByERDLPIHNd9OuC9VcVTGW8FbzHOI5+Lnj7UT29SQ8kiBuTeneoR9NGdDY50+/wqfPW0rCJiyhsmNA0vFcLaUFxyyqAZK3etFfs0sr05GDe3zv/oX2Hz4idN/R46tmbV96cRJ3lqmbq7/0e1sZ7P39Gj5mgJo3BeujDQDKjZdCERL+LpbdEa5werBcJpF6vB6rUmI9qqpbl4ZcLQFT3bV6jNUQcB6wKLw5bVs3XHYeTf9RqKtgDF0/W35G2LITqeKGyVQWUafaoPpbDUj/hwzb9x1FS3hHGc84Y1l1qntYgJOZt+o2lJEyW8eDODZo/fqBgHNQaL3t8xYwx4mVJdrwapzwQFD1w5/4j6sBwWHtt7IwV1KjjMAK5XW7Wvd6wcCSVtxMKDHmWXQdOUu7s6Wj9guG8y6m902bt/sFrcJefr1WDylQ4bxZrQ344Bhky7KoGVNMqUuJ+EVvwf1qGdg/wGDy8e1trCMVhxM8rZvvWM8TaZ9yWgdirZbgWYLIoTiKW6xneBRBzsHOJHk8Zq9O2p0AeYXd1P0vNmLH3jLwC2aGjDbEfPa4T+rQRfbT2rr+dWX/BoaFMecDIAyohNfKQOu9QD4AUJ1vGVIRenAbVy9i1NhLRiXNWCUHwsQPbih1OMwvuPXxaCJvH5z6exax1KmPfvv1LY6cvp3DObkJE22gOiIxQGaxYt4XuUDD6oScGPS1ahqrl+zdvKIOOsDYgpnrQIp+1Odwz5FjLAJ3S60fELq4Lw2ih+allgL5it/Y6k/roGWBXgGJdYCZdIwMrYZosOZko6LyoRBuNx/lC5apRBhYYB5R50aQhMlP8jGnZZ7SgxkdRYfKAjqJ/1s8AE78AeoykFFDqL58/0e4NK2jO6L42v1TcZyZfVNf1igsmbk8NVR4ItB7A/wZ2HTzJmtM3bHoGaFbXaT2IJs9ZQx8/fhYoGySPMaP/2CMvewFwGZSv150OHTtPBbkdZc2cIZr9ilprNmeY74mzl6lcibxM0ldRa5if49A2PXz8vJ9jAe2XyE7aDMgiNmnno+JREIMQD7UsHcfId7xzCLZzLUOs/frti2DT1RqD4xXqthQMt4jlRla3bS/RVrJ19QKjod/PN+48UCBo9mxcqVvk/T6BP0wf2o3JiC78tJ5MMKODlG8eo28Qp2y1RZOGkhcz3ytTHpDxgEpIZbykxjjEAy6st1axdH7asmwMpUga3641uw+eTnOX/U1uri40ZXhH0/2nt+89EmQVYVmQfPKwjhQxglxvECRebt5/SiW4t9LIsPN3nZOnBNzz4cp9MHqG3hNATLV6RzH3LENxAUVNzEmclr3gP/4gIzIyPSkO9Nd85P4WPQM86blB3wpgspBhuXXVXW8pKlmlrhDq3rRstu44nASbcVRmsEWQlK0O12jemZIxQ6H7qaNCGsXwIv4GNOsxnKFiOQREatqQbmJH198QU79WZ9bHSg1aExJUEFNM6NuWmXi1k3utxRcqgXEt16jjwdADT569oMYdR5h+chQmS9fsTDv2HRcJ6PDeLWgcFzjtscdPn1PlRr3pFPMSFC+YnZbPGGB6ObShbNt3jPLlyEDjB7WTmg+o7iROql+9Cdg7UiD/0TK92GSZg9YXxDotA7IlbPjwImZqjUGsjRmHi6Yce/UMsQ7QXcRyxHQjw7vBc+Y8WDJ5uNFQcR7F25otugi23bXzpwgNT72J04Z0Feztv0IGztvrCe1ct5TmjR0giqh69+X/3E1mKPa4eAZb3v5Pqd+VB6x6QCWkVt2iDjraA9iFBIPujFFd7V4avTGoAoOCf9aYbqxbmsbUmpB1adJpuAjavdvXo3SptCGwvhfeDKjuP6eFfpgMCQF6QhE0KtRp4XuZHz6DafbZoweGfYq3r12iyCwujZ1ULUM/CarHRqa3qxYrXiJO9j4KdkGtdVIwUdCbly90A3RW7sPEbqsRFAmab9gldT8pJ5hd+j8mRdmAj2do2nUIgUjiGLP1gvDCrDXuOliQZgBuO3NEL9F7ZHYN3+Oz5i1KrfuNESRR6ANaNn0kbVg8w/cQ3c/4b+sFvywoUx5QHvi/BzyZJX3gmHn/P2Dwqf/ouQR9UUi75MqaliG1I6hSGdtIzCyXusGMvDWa9xew39JFcwspGss52Z9L/9pBy9bupFTJEtJS5liQtYAO1bU8B3pItcwIsot5iHF6vZOIkSj4YZdPz9CP6vXkkWB71xtXvm5zkZDh766R4d0AEi1Xzp8QBUej8TgfL3FyKv1nA/rA0NZFE4eI9wZr8yYP6CAQQtB3/lUGtNQF7red0LcdE/1xgilpS6eOMIQ5Sy6lhgUTD6iENJh80b/rMUE0lDVDSkFx37hWObtvo3HH4bR+20FBfT9/Yi9mVpQXFLdcvHqzftxf40l1qpakymULWg7r/kSQHMNQ3TARXFhcu6fuWJwEoxz0vRIkTUluMWPrjj+wdR3vjDox8ZB1EiHLZAhegxFXzxDQsJauccESLMFahvv98umTqPJqjQG5xGeGnV5hwiA9i83JrR60yjK3BOvFvfL2kkrKQBKUMkMW8rh0lk7s32FZQvdnCIaK43uLGMmJtv+1WHw3uhOsnGzQsR+TcOQXDMPzxvY3fNmxsoSfQ1GiRqe2A8ZT9vzFGdb9VUjlzBja3ZCg6BH3Gp9iHb2vzCitTHlAeeD/HvjMBEdr/t5HV2/c/f9BK5+eenlTtSZ9aB6jbDDnzwpFaOOikRQ7ppuV0fKHzrAOdr22Q+jGHU8qXyIfzRnXQ37yfyOPnnKn0dOWsRZ3ZC7gdpGG+a7csDvAQ3XxiNjd1IuJIjYZbKohxiHW6ZlbjNi6BVPMRcwFqy9isJ5hLbDMI6bLsMUi1kTiHVgZbgTLdcEOnLNwKVHsnDW8l+Ww+Ak00MiuTQTaCNJuv8MAf0aSuXn5XMPLg9sA7PLKlAfMeEAlpGa8pcaa8oAzMwlWKJmfti4fS6mTJzI119pgkDts2X1UVI2XTOtHyRJrw36szcexFl1H05FTF6kEw6iwOyprqDzfuPtYCGzLQGI3cSUVmlvlaxuz9mLXDdplIUJo/88RbIAgaUAypmeoZoK9Vs8EZYQOjAaJEkh9QJCkZVFZNgZSMuhh1LM8Jf4Q933y4E69YaKijF1SyLSAZdHI6rTuKZ5z14bl0tBdwMTKcy8vvpfVsyfYFDDRIwQxdQTbJUyuBAILe60Gw7Uq1W/JRFQ+rMNTBnYSLMZa6yIZloGOac1Xx5UHgrIHAJdt0FZbp3MDFzQr1O9B+1m3OjajbIb0bEYTBre32yXQwUbPJ7SsK5cpSNNGmifse/jEizr3n8w7ZF8Fuy80R2Xs3fuPNGn26gAP1cWzAKKKv3Va5oPe0c9IEeM+Gegug7X2NaN4Hnne0bqUiLmIvYjBRla+Du+ScmxCbDcyvCMUKudDqLdkihx0F2uWq9nEhyfhynlazP2XMCTAo7o2ZUbe27+dLwBxZz/zXcwa0ZN3qF+K+/P//xAT8V6gV/T2P0f9rjwAD2i/ASv/KA/Y4YF4sWMIPdCZDKl1hFVu1It2HzxFmZjyHhpu8ZiO36yBBGnb3qOUPVNqmjVWnjV1864jDNU9I0Sjcxc13uWFQPXNqxcpPu+OQktNz04d3i2SG1De69l5Jv0Jx0EOUCAtg9QK2Owglm1keqRG6FMFJApi2XrmHMWNnjPcSc9Sps9KUbl/9rjETmbxSrU4eX1B6xdN11tSnAMkq1iFmiLZNRPwoduav1Qlesm7sQsmDDK8jrUB6GPNytXsNxyQV84ay8njfmvDTB3LxrukrfqOEf3BgG+vmTeZ1x73wxqQEHr+5OEPx9UB5QHlgf974I7nI4Kcl3/r1G+y4A64dfcB5cyShtbNH0bV/ijsf5jp3yEb1qHvRPJ68ZKqVyhmc4LbqP0wQkLdtE4FKlEoh/R9tOw+mjwCMKuu7wcJy3qeWnJhGKcXmyzrIMZh1xAxT8tSMBt8qNBh6PzRg1pDxHHEXhQYEYv1DBwPYMtHbEeMNzK8K4Ch98q5E0ICzWi85Xz99n1Fz+pF5hfo2bACTRnYkWHFxtezzP/ZP6FjfvnsCb6vTkJex//1Vs+daIjy8T9H/a48AA+ohFT9d+BQD0CjMnP6FLRoSh9qVre83WuDqbBs7a4MRbrAvaKpaTUzFUaL6mJ6XcCZFq3eRgnjxaaFk3pLzxdQXYZPhQgbiWq2lEuuQc4DWA1kSowMkFNUe400zm5cPif6MdGTqWUvnj0WQVqvP8cy16cKbfntx58ghHhpQOAQP2kKEXjevdHXQUN/DHZ43xqMS8HJK4TSr3GFVYawCPp1YN4FJf+JA3LQXTxpsYo1KT2zMN6/5UGzR8r/t+DbS9Uatxfarh/fv+cEehrr4m32fdqmzyDPaDdwAie7RbkS/o3hyNsFs++zxw/Eeqg6g9jqV/YP2fQgapLywG/2wBeGwG/YfkgQFeFWbt19KBhvV2xgPURuV0ASumnxKKEzau+tot+z17CZ9Prte6r/Z2ka0UefM0DrekAAnWeW4DLFclO7JlW1hv1w3Aeqe+GH4wH1QJhw4XRvDbFJB8Aj5sZmWZcPvEOKmKdlTi6ujOJxFQmk1hgcR+xFDJZp/yhfu5lolZAh4MPaeGcIHyESbV4p39eMedAsR9IOxBMIkgKioXUESKM18yZ9vz2QH6mC6Xd3qA8mPaASUpMOU8O1PQCxb2i2bV8xTpooSHs1YlHv5wyt6kknmakwb470opodOVIEvSlWz4E2f/ikxRSR9d/GD25HLs6RrY6zdhCsuh63HwjBbgQ4I0PiBYmR+IlTCBiu3niQMjzxvEdxEhr3waKCG4UTFj1DgAgdJqygkNcbh3NGTIbYIYXOmZ6hnxIV6msXTusNo4KlKzO86gMd2LJWdxxOIlkEzGrdwmmGYzGgVqvu5Mzfy671zLrLlVtZq8UvCthtvnrhFC2fPlp2mp9xFRjClb9URYZxfaGtqxYQaPsdYbi3CgwtjuIWg8BUCA3Ucb1aE3ZH37z0dsQl1BrKA0HeA8+4TxSJYonqHal6s76E3sy4saILKOykoR0d8vzT5q+joRMW0qfPn6l53QrUr3NDm9Zt32eCgBCDUdfMvUGuRkB1X7+16bq/Y5IR6Z5PbNKH7KJ4Bwk5xDw9AzQY3AtGhhgsiqYck/UsRpz4gjUfMR7jjQzvDHmK/8G8A55kBsmz/a9FTKL02TBOG13/Z5+HNitIAqcO7kKD29URjMVGxe6ffU9q/cDrAZWQBt7vLkDdOQJ9l1Y1abYJKKzeA3jcvEcQFL945aaQdFk7bxiFDh1ab4rVc09ZCqBD30n04eMn6tq6NmXh3VtZ28JQ3f0M1QVMp8gff0pN+3v5HNE7Ua5WE8Pxh7avp/fv31KB0pV0xwKug91K7Abq2YM7NxlqG15Ue/XGofz8L+up6hmEy7H7p2cgbEIf6QUDEXD0hkZj6DJgPkYGYXG8HICK//27N0bDBSFFAU54vZ8/ET2dhhN8DWjcZTCh0n7++EHasXaJrzPyH0sx46/lv43dnJBuXmFM+CCzeo6CJakVa6BCbuAFV8gfe942hEfLrKvGKA8EJw/c9XxMV6/fpXueT0Srxl/zhgqNUUf4AEXOibNXiaXaN6km4p8t646fuZL+Zgb3NMkT0ZKp/Uwt0YK5DQILVNfyYIgteiZik354EjEOiS1inp4lYQZ3FDjRBqFniMEoriImG9kfHNuBUkGslzHEh0RMiAToLjgSjGw6y7ogydPq0TSa/6vPg1wP8foNt9vIxOxffX/qeoHHAyohDTzfVYC9U0BoF07uTS3r6ydWsg9w6vxVwVR4/fZ9KpY/G/fSDZKd+sO4eu2G0P0HT7ivpyjVrFTsh/NaB1DlA9Ph15DhOTHupDXMz/GH924Lrcp4SZKLRMfPSSu/XOYA5caamomS68vWXGQ5FEChwWyrZ0hcw3B/jp4JOBQPMNohhXD5R+7RMTLI0FggpXpjkUw/e+xJnhLkEUUr1BAvETK9pLhm3hLlKUnK9P9Bd3fq3YafcyBuqt26u4BCH9q+QZdIyM9Ef78UKV+dSlSpI4igDu3YSGvm/h/C5G+oqV+ht9pu0ETeCQjFEGb53V9TF1GDlQeCuAewixiKe843Lx1NCeLGdMjToj91ztJNFCZMaFHobNWwsk3rbmRYMdaBnvbUEZ3FerILrdq4J1Cw6vp/HsQWPUNsMiLew3wkpEa9lWmZ2AgkdhdOHtK7pIjB0WLFIcRkI4MsGoqxdzwuM8/CbaPh4jzeIcKEDU9/r9BOYu+yRM2gNrWFtMpnZrkPbGYGoRTYnk3d76/xgEpIf42fg/RVXrx8TTMXbXDIM0KkHEyF97iyXbJQTiEXY+vCtVsNpDMXPKgoJ7UDuzY2tQyguldv3qfsBYoTApWMYXcMzHJlaxhfC6x+gPEYJaO47rWLpwnQH8CF9AwVVSMGYAuc5ptBkw4YadHHacTmGj1WPHrN7L9GjIf5S1bkl62wtHeTz46C3nMg8cYu6Y1L56SrxDWadxY0+7vXLyeQLsgaXi7EbnYIok3L5oi+Utm5vsflK1GByvH3Hj58RNHPumzaKN+nbf4MyG4kJ2eb56uJygPKA0RuUZ3p+JlLDnFF297jafm6XRQpYnjq26kBNaxRxqZ1gf4ZNHY+Ef/t6c9Q3xRJ9f+++74Ikmzszr4KRFBdy/0bEf1ZYpMlVlnm+f+JWGe0iwgGXWfXqKJY6X++/98Ri7GTKsO4ixiPWC+LiME7BN4l0KID6RT/tnvDCgJ7ul5PrP856nflgaDmAZWQBrVv9Dc8z9ev3wR5xLzl9hG7rN96gDoyvPYJw2zLFMtD0Bm11cB4CGZcECHNm9DT1DJbdvtAdeMnSUFlqsv1BEGjCxVOEPjElegJ3bf5L975CkEFyxiTVyBIARprZNBlM+7P8cFCGTEZghjp/ds39FyHNAL3kyFHPt7N9DYM+Oj5icYshSASkrGivOv45tVLKcZdrOcSNRrlKlqG7/cRLWY5FjOWMWcBylvsD0G6hH7Sdwa9s1prZy9YgiqyfAsSyDNH9tHCCYO1hkodR0Fg2fRRhuRSUoupQcoDwdgDDx97UZue4+jde2PUh56bmnYaQeu3HCBXFyca2rO5QN7ojdc6h0QS9/Pc+xU1qlGWyhbPozXU6nHIkHlwwTQwmhHpniU2GSWkiHVGWqTwjxPHThlNTEssRmw2sjgJk1B8RkIh5iP2yxjeJUAEePns8e/tKyAtmsYQXbSMGJEIylxDjVEeCMweUAlpYP72AtC9v+QAi4otiCNssYUrt1KfEbPJ+9UbQYw0yw65mElzVhNo+JOwhpvZZBT3PnrqMvpMYahyw7bSj7Jl5XyGwf7Lu6ONpOYgMXOLGcdQFgaBFPqjcTnRNTIQB0EwXNcYDgUzCvYQLgdM+NG9O7rLJU+XiSI7udA57sM0MjDbPn/6iC6c0IdPYR3orSLo3+AdQjy/jEEGJiFXucG6e/KAPHQXa5esWo8gCQPNunlj+stczuoYJLfVmnQgF67K4znnjOpjdZzMwamDOkvJC8ispcYoDwR3D9y+94gqNbC9yFmn9SDazMXKmNGj0pgBremPEnltdmndNoPpGvMklCqSizq3rGlqHUB1Dx0/b2pOQBkcjjVIEff0TMQmIHj+i1VaYxHrEPOMLE6CJIIMDnqeeoadW+xkyhZNy1RvJFpfEPtlDe8UkKL5e/lskYiO6tqEPC6ekWKVl72GGqc8EFg9oBLSwPrNBcD7RhW6ba/x9PadcZDwfftIIEdMXiyq15XLFqQpwzv5Pm3q8+Zd/wj4MBh/R/dvzRIx+v0q/hdH5fmyx13e5XKheEzGI2N3b1wl/IuXOJnYITWac5FJgNBPmTpTDqOhQmAaQTcDJ3N6BjKBjx/f805hdL1hPokoB3ujHlKwE4J84uE9fdKIcAxRjeziwvBj42o99N6cXKLSP7vkdtILl/uTIVmvaMPiGbrP5Psk5FhAs79rgznoLtao06anII66eeUizR83wPeypj7jewXdv2v0WPz9HafpQ7sJeJeZRbAz6nn7hpkpaqzygPKAgQcAk0WMMmOAZlZr0od2HThJ8ePEYBbcDqINxMwavsc27DCMjp12pzzZ09M07hs1YyDnmzh7daCE6uI5w3NCitiiZz49pMZFU6wDFIkRkU7GnPl5zFtyP31E77LiHP52ez15QIjRRgY0FP5Z4r/ReJzHOwXeLR7du033+J0hoEq6yDyLGqM84GgPqITU0R4N5uvduf+IytXpKu2FweMW0OS5f7F0xldBOjRuoPyupP+LXLp2m/qPmivW6ti8OuXKmtb/EN3ft+4+yjDf05w8fGX9r3d0mAlqZAySH6jqlq7WQGa40KyMFNmZ8jEZj5GBmQ9w3cQp0+kOBRPrBw66seIl0B1n2Rm1/NQaDA009OgYVZUx39Utpugj/fr1i9Zy4jggVuhNfcy7kDIECNhRjZMgMd3iBFHmPnAR9NlmzVdEEC2Zhe5ifqPOA8XOLGBVf82bjEM2WVJmd6zXrrfYAYcsztRBncRLkcxi6LO9eOIfZnLU96fMWmqM8oDywP898JkZQbftOUpT5xnDMjHr1Zu3LD3Wgw4cOUtJEsahGaO7ikTy/yua+wQZmt2c2KZJkZgWT+lrbjKPbtF1NEN175meF1AmgHQPsUXPLLHJ8lNrbMx4CRmy+1awkGuNwfEkqdIzYsWNrp47pTdMnENMjhjJSVpXuvSfDUXsxzuAjIH07iO31qDIIQM3lllTjVEeCCoeUAlpUPkmA9BzXLl+h1lyjfvnugycQvNXbKaQDA2tX72M6Mmx9THesCh5KyYiQv9p5XIFhUC52bVGT1tKXi9eiWnPnzyijUtn0dieLXX1xm6xHtm9m9fE7miCZKkML4mK7mPPuyyDEk9USo0m4D7AZGtk0ET7/PmTIbsvgjy6SI1kX3C9sCxgDip8I0uRIQv3vzxnEiJjGBmIHQDBPbTNmF4f1y1Utpro7dy4ZKbRbXw/X65mE0qQJKUPdPegOegukuaaLbqIIsDpw3vowFZj7dTvF/b3AT3ISHBjxU/EeqIXxU6pUS+T+6kjtG/LX4ZVf3+XUr8qDygPSHoA7SXTF64XvAd6Ux4+fkZVG/fh3cxLlDJZAtH+kTmdvGyY/7XBprtm016KEc2VJg/rSBFYF9uMrQ7EUF3LcyKmGJmP7AtQPIhU2oZeVMRTGT1QxNAXXo+1F/vvDHYvEZsRo7G2kYFtF8govAPgXUDLnjCCaFyvVrSJ3ynQtqJMeUB54EcPqIT0R5+oI3Z6ACRHB46c82EQ1FgLyePqjXspXLiw1LxeBerTsb7GSLnDdZhR97LHHSqcNwsN79VCbpKvUWDVdb9629cREgEJ/SQQfV4xc4wQqvYzgH/ZvmYR//9/qRT3IMrY4Z2bBMFC5tyFDIdDPw3/ojMZkJF5sh5bhIiRyTWagazBf0HeCLKL64ULJ0caAVZc6J+eO3bA6DZ597IoS93E5v7Kw4ZjMQBwK+yS3va4ZKqfslKDVnz/4WmXYN39JHUtyyDoppZmAoqQoUPRHtYWxW6prQaWx2bdhwqiK0C0Zo/srSnm/uj+bbEra8RsbOu9qHnKA8oDPh5A4RLSLUDVWLNrN+5xYWoAnb3oQelSJeHdzH6UKllCa0OljoE9HlBbaGn37lCf0qZMLDXPMghQ3QmBGKpreQ7EFCOzQHY5I9UdiliHthLEPiOLxn2rIN+T4SNAbEbhELFaxqBFjXcAn3cBvzO+fP4siOnAB4CkVSbJ9buC+k15IPh4QCWkwee7/qVPCjbDpWt30NT5P+4wNWw/jKC/hj5PCIp3alHDrntr1GE4HeUqdraMqVgPtY/ptbYyhGvf4TOaFVkkCMf2bqMRnRvRznVLv68PWZJ7Nz0ICUyiFHLwYCRiUZhxNleR0t/X0fpw5dxJwTSbLlterSHfj0MLFElhFDej/hwO8tglNQj2WBjBXiaARuVeScjSIKGSsVgMtXr6yFP8kxkP9kPs1GLHWtbi8w5pOob8orfVFuhu1rxFKVfhMgJWtW7BVKkeWa17w4tTi94jmZUxJT24e1P0pyLB9m0oPMwd3Y+r+PrEG77nqM/KA8oDtnvgHutTN2w/lJ56eftZ5NS5q9SAjyNZzZQuOS2fMYASxo/lZ4yZX27feyiS3zdv31HdaiWpUpkCZqaLsS26BW6oruWBEVOMzBKbLD+1xiPWoSdVRgc7XdY8gthIpriI2IwYLVs0hVwM3gHwLoB3Aouh9QLvDCf27zCUT7PMUT+VB4KzB1RCGpy//Z/87C+8X9MMhkZt2Hbw+5VqtuhP2/YepaiuztStdS1qUb/i93O2fOg9fBaTTZygpIni0Oxx3W1ZQrDqer14aTgXItzb/1pMg9vWobULptB2pmqHlaxS13AuBiA5QvCMyX2OIUOGMpwDEganKK4EJlsjgx4b+nOMzAewi5xUv/qMdSI7RxEJqZHWG8Y6R3HjoCvHhpu3eHmhFYrdRxnLlLuggCLfuX5ZCp5lWbNqo3aCdMLD/QydPLjLclj6JxiT02TJKcTXkdSi2m2rwZet+43hwkUa8QxLJg8n9AdbbFL/9lIvVpbx6qfygPKA/R64dfehH84D7GQi+bt+6z5ly5SKVs8eLFh1bb3Sl69fqWnnkQRuhRKFclDPdnKxwvf1VjPM99Ax43YI33MC6ufIzi6GtyZiE4qmorlEfzhinkx8SpE+C8coV7p85pj+gnwWsRkxGrFahqwPC4KlHYZ3Arwb4B1h84p5InaIE+r/KQ8oDxh6QCWkhi5SA+zxwOOnzwXRUJnaXahSw56059BpEeD7dmpI9f403iXUuzZ0T1dv2kNRWBNueO8WFCdmNL3hVs/5QHVvWT1n7eBXJsVAD8jRPVvo9rVLAoIF0gQZ27d5DX1gbU/oZcqY1+OHnBS6CJIFo/EgNAIJkZEh2CMVlYHsggYfWqQyhELQVwMc6tbVi0a3QHg5AITqjsdlw7GWAQXKVOJ7eU2bls22HJL6Wa5WUwoTJixDd5dxQmkOuosL1GvXR5BiAG41Z7T53XffN4n+1LYDxhMIj7z4v6GVs8YLWZjxvVuzIPtD30PVZ+UB5YFf5AHsYJas3pEg69Kp32S66/mYcmdLR2vnDSMXZ30CHqNbrMWw33Pu15lgLx3NHN3NaPgP5z8CqjtrVaBl1fX/QCC1MzILZFemaIqYh9hnZJCIicSx1Is5GWQMMRqxDzFbxpIw6SDg2HcY+YJ3A7wjKFI6Gc+pMcoD//eASkj/7wv16Sd54AGTQ0DE+/DxCxQvdnQmL2pG1f4obNfV9v9zhgM177BxdtW2cRUqkMt4F9H/BbftOaYL1fU/3vfvnz99Ert8oJwfwlXvQ9s3+D5t9TMSsKjcP5leAoILiCpgnFHcYlhdy/9BQGuR8BjZ9+qzxA4pyHiwLggejCxDjnxiyLlj/98N15sDunzQ6189b8x8iHWy5CnC5ECJhRD5w3vyBYTkaTNRqozZxa6kLdBdXLtR5wHcx5pEkCTZugbWgaH63qb/OEqRLjO9fP6Ublw+/5/uHcoEypQHlAd+tQfwp/D8pRt05ORFevjkGeXPlZE2LBxB4ZnfwB5DsRM7m2lSJLKplQTXDipQXYsfY8VLZPmo+dNMjELMk2krwcUQS99wH+m7Nz7EhZo3wCcQo8F1IFM0RezHjijeBT59/MjvBeYLn3r3os4pDwQXD6iENLh807/5OV++ekOJ4semMf3bUNlieey6G8Cfug+ZToAE/1EyHzWtYyyfYu2Co6aCVdcYqmttruUYgg+gvOsXTxdBCZqZ1iqjkP4ABChOQjkyi2sXT4sdxxTpslgupfkT9PEIyqCrN7T/ElGZ6nO0GHFEkvvgzg3DZRMkTSWYaT1vXzcciwEFylTmnctwdHD7eqnxYk6pikI6ZfPyudJzMLBWq24+CSULkJ86tMvUXAyOwH79s1kn1niNRmDBNXt9axds2XuU6LvFdwcJAGXKA8oDv88DX/l/g+A9KJw3K62ZM8TuGxk2cbGQl4kV040mDGlPzsyXYNbAyHswiEB18ezhuN8TyBgj+x6bJIqmiHmIfTISKsnSZOSY6sWtEieNbkGcR6x+xrEdsdu/IcZvYOZ3JKKI/dgRVYmofy+p35UHzHlAJaTm/KVG2+iBpIniCkHxwvmMEyy9S+DFoUmnkYTen4K5M9PYAW30hmueA8uv+1X5nTbNhf47YYHyAuIztH09mjWiFwtmX/k+7dCODRQiZEgqUKrS92N6H0CoANZc9DAamdAg5cTGxc0YsoxgL0C7EsEe64WPEEnAS43uAecjM7HRSyaAkrG4CZOSW8zYQiBcbHNLTMqarxj3kiYSQuRgPzZj6PHB7uTOdbZBdxOypA+YlMOEDUtH926h4/u2m7n8D2MXThhM7xiCrEx5QHng93sgDMMtSxTMIQiM7L2blRt20+LVW3mHNRz1aFOHMqVNbnrJj58+BymoLhwAAiKZGCVI9xClpGJUdJGMIgYaWbqsuZmoL7IoKhqNxXnE6hAsSYfYbTHEdDClI8bv+3uNDzSX23iUKQ8oD9jvAZWQ2u9DtYKBB1ImTUAzRnXlPho5Jlq95Wo27889OR6UOX0KWjKtn95QzXPb9x6jvTqsupoTJU+g5xJsfjOH9xQVVBDWPLx7S0CAZNl4nzELrRNrp8lUlMFY+577aGLGTWh4hyLIM0RNJtij+hyGX6revjaGOOHCkKd5zX2k6LeUsWQMp33+7DHT6/8tM1yMyVeiAr+AvKUtK+dLz8HA9My4mzx9ZgE/thV2m6NgScpeoISAZW1bs5BuSvTLWrvJJVOGi5cie0iSrK2rjikPKA+Y90DYsGGodNFcNsNqfV/x5NkrNGLyEnr/4SPVrFSM/qxQxPdp6c8tuo6mazfvSY8PDANBQCSD4jETo2KxrBZ6SBEDjSwaxyfEVBlWXqyFWA3YLmI3Yjh2QxHTLzExkg+vAgdSZcoDygMO84BKSB3mSrWQNQ+kYb21ueN7Usa0yaydNnUMu5qHjp9nRt24TBDR1dRc34NHTrEfqut7Pa3P6AMFlAfkR4D14p8M2+vHD+9F/6hzlKhaS/s5DkhtyBAhBROtnxNWfvFJRFF9tnLSyiEImcuQRmAq+kgBnzp//JCVlX48lL9kRXLmXdXTh/f8eFLjSPaCJQh9SEh6wbprxuq07sFzE5KHgO7uNjP1+9jydZpT6kw5yPv5M2bgHC+9I2xZYAmz9Z4/fpA+20CwZFlD/VQeUB5wjAcihA9H5bntY864HnYvCPmYDv0m0cPHXlSsQHbq17mhTWuu+XsfQ3XP2TQ3IE9CLJExn9gkt0MaizWqsYsp01aCayOmgpvh44d3hreCWG2J24jhiOWI6cqUB5QHfo4HVEL6c/yqVmUPZEiTjBaxLmiKpPHt9sfwSYtpK5MQubm60ODuTSlhPNt04Vp1H+tQqK7MgyEJxD8kdstnjOZKa21RcYW2KXY2/dt197NCtwzEPzKG6nCESJEpavSYhsN97gXD5DJSCJnLkkaAQMjZ1Y2Jh+QSRejIuXFPEaj1X3KCJ2uQjfnIEOVtqxbKThHjQoUOQ0XK1xCfoSdr6w5lg479KHHKtKy7eocWjB8ofQ/zxzHjJifrqtdI2mVqoPLAT/NApIjhWRO0IE0b0dkh12jQbihdu3GXcmRObXOC+wlQ3Zkrgwyrrm/HIpbImU/B1Kd4qj8jKms8o8dfZocUK8XlmAp5Mo+LZ39YGLEYMdmyG4pYjZhtid8/TFAHlAeUBxzqAZWQOtSdajGLB7JmSEnLpvenBHGNkyTLHK2fqzbuoUWrt1GoUCGpRb0KXH3OpjVU97gPVPe0FFxVdyE7Tn5jXbrn3O9y66o7y36Mo1Fdm9KwjvVp/aJp36GuYKoNGSo0ZcxZQOpKb169ZPKh8MwiGN14vCg/y1WfsRiEzH1II35MnP1fDKQV0NuU7SPFfOyqvnnlTXv/Xu1/Oc3fcxYuRTF5p/Me95HevHJBc5y1E9kLFKckLLsC5mBbobtYt2HH/sz6m0iwMM4Z1cfapfwcA9TL/fRRm6Rn/CykflEeUB6w2wNOTDJUo2IxmjC4nd1rYYG6LBlz8twVSpUsIS2Y1NvmNZsHQaiuxRmIJTLmk4hywdRnq1R3CmIeYh9ioIxlzJmfY2uo7yieuzeuitiLGDy6W1MRkxGbsRuKWK1MeUB54Nd5QCWkv87XweZKObOk5T/sgyhGNFe7nxlBHrujr16/Fey8rRtVsXnNXwXVlb1B6K15ez3hHUJP2r9lLU0d3IWGtK/LUignmTwnHGtnLpdaCj2VGC9jlh1Smeoz1oMOKqrEMlqkGO/K1PqvvV/Qw3u38auh5S5Shly5yn390o8Va73JeYqVE7Cr7X8t1htm9RxYd6Gx6sFMxqcO2QbdReJdrXEHZt6NLqRrVswca/VaODhlYCfB1AjiK2XKA8oDv9cD0BZtUL200K52xJ10ZJjuXpYhgw722IFtKGoUZ5uW/SuIQnUtzkAskTGzMQqxDzFQxnavX0FheTxiLOTapnHMRexFDEaMk9HnlrmOGqM8oDxg3gOhzU9RM5QHrHsAvRx5c6SnFTMG8h/9MNYHmTiKnpyOfSeR58OnVDR/VprI9Pm2Wqsevx6qa/ZeAUPFP4tdvXBKwHtDcH9otFhxKCnv7CVJlZ6lY5IIBl7LuE/ccwqBcBkzU33GehAyB6X+kwf3pXpUU2TIQhdOHqaL/A+MuEYWlnXkYsSJR7e4Rwd9OolSpDGaIs7nLlqW/tn1N3neui56QpOzrqesgVgjf8lKtHnFXGbdXUoZcxVgUXPz/70mSZWOileqxQRL8+j8sQOCgKpYxZrfbwO9wON7txYaqLIFgO+T1QflAeUBh3sAyWKTOn9Ql5b//9+pPReZPHcNbdpxmCJHjECdW9ag7JlS27QcoLrjgyhU1+KQaLHiWT7q/zSJ4kHsQwz0bdAERWy47XGJUTQXub3itmC5R7H086ePvoeqz8oDygMBxAMqIQ0gX0Rgv42QLGlSMHcmsTPqqGdBT85V7snJlC45LZ5iG6Mu7mXHvuPMqvt7obq2+ASBE/BeGMgVrp4/JRKnSFxpDh0mDEOKvlEkJ2cBkQ3FsgUgE4KUCnbvXLiX05qdY0IdtI8yaNfaaXEMwfwtQ6Be8O6thc0WpBGAOxlZmkw5abvzIvESYDTWch7MtdfdzxEkcxqkkP+esbu6buE0kVSaSUhx3fylKgoILSrliycNo4ad+ltux9RP7NSil/Toni10cNs6kcDDT69Y/mZS/w7iezO1oBqsPKA88FM8EC2qC7VpXJVaNajkkPW37j5CMxdtoE+fP1NNhv/WqVrS5nWbdwt6rLr+nbF11XzuvU8jUDSIYZA1s2YiNnF4QqwqWLqytSEi5qHV49mjByJOAX0ytmdLwQgfklt7wA8AGO/XL5+tzlcHlQeUBwKeB0K4urpqv5kGvPtVdxQAPRA6dCgqwoLitsqwWHukuq0H0479xylR/Fi0dFp/SpZYsrpqZbEiVdrRxSs3rZwJeodQLcY/JKzQ3aQQRKH45zeGB2MHG4EbLIPQFxU9PVyN/sbariFChuChIfjzV/rCY5AMY7cW52CZ8xSmeu3keqNGdmnM1w1B3UfPkXbw8E4N6V++Vq8J5oiKxvRoQdCgq9u2F6XKlF36ehjo7fWUJg/oSO9ZD7Rq4/aUJW8RU/N9D543tj/vCv/DxFKxmKjqjdDcsxQTfI9Tn5UHlAd+vQfQPtKlVU2G6pZxyMWveNyhum0G0z3Px1SKJWMWTJT722jt4ms376fug6fRS25LCeqGwjW4BgCzDc1FVMQoJKD/fvuXP3MHGccNtIgAguvEDOwotAJdAhb5rxybUEcVMYoTTnAbyBLuBXW/qudTHggKHggVIUKEAUHhQdQz/B4PhA3DguKFctKiKX0cdgOd+k2mzbv/YUZdZxrasxmhJ9VWa81Q3f1HzPUn2nqtgDDv69cv/5EQvROJ0fu3bwRVveUngj2STARyUNi/42QMCZQ4Lz6/5d7M94J8xzfM1NklKmtwFpd6xAsnDpPX4wes/ZmPIkWW66fCDinYeaOy7hsgybIG4gn300dYz/QJQSfUjPkQNr3n3dmz9ODuTcpdtIxPEm9mkf/GImEHxBrrAGItS7Jhw6XUFOUB5QETHogVw436dmpAtauUMDFLe+i7dx+oVuuB5HHzPmVnRt1VswdrDzY48/nzF2rBu6MPHsmzjBssGaBPI6Z8YckrxBiw2or4wzEKMQifEZMQmxCjEKvwuyV24SfGoYUEYxDrlCkPKA8EHQ8oUqOg813+8icJHy4slSmWh+ZP7OWwa0+Z+xdt3HGIwnEPaqNa5ahM0dw2rw2o7p5ACNW1+YF/4sT3kqQRuIX4SVKIhMz91BHpO8pXojzv6oal4/u2Sc/BwHwlK1CsuAnpwe3rdNHE9SwXKV6pNiVIntpu1l2sB5guKvqqam/xrvqpPPB7PRA3dnQa1qsZ/VnedvSD/yeozcmo+5VblCJJfJo3wb7Y17zrKJaKuef/Eup35QHlAeWBYOcBlZAGu6/cMQ8cMUJ4Kl8qH80a080xC/IqW3cfpRmL1tO79x+odJFc1Kl5dbvWHjF5CXk9f2nXGmqyjwf8k0bo+QVSLoANe/DOo6yhB9SNd0efsCapWfHxHIVK0SeGGO/dtEr2cn7GVWO4LuQDrl04Taf/2ePnnOwv04Z05b6m5wISLTtHjVMeUB74eR6A5NjYAW2oXPG8DrtIk04j6OhJd4rNjLqj+rWyi0keUN2DR8857N7UQsoDygPKA4HZAyohDczf3m+698iRIlDlsgVpyrBODruDy9yT0497Dp88e0H5cmSgKcPtWxtQXfertxx2f8F9oU8fPnBf6ScpNyRImoqco0Qlb4bRmrF4LFr+8vkzpuH/y8w0KlC6EsWMm4BAvHSO2W7NGuZmyVNEJLU7/lpiKqn05J3ZwW3rCKZfQNGUKQ8oD/x+DyROEJsmD+tIRfJlddjN9Bs1h3buP0FOTpGoQ9NqlCd7epvXBlR33MwVwaJv1GYnqYnKA8oDwcoDKiENVl+3/Q/rzMG4ZqViNG5gW/sX+2+Ft+/eExLIO/ceUYbUSWnhZPv6UfHSEBhZdR3m0J+w0IcP71inzYfxV2b5yExI8ZpZEGX1S7FmwbJVBGvw5bPHZS7hZ0z2AiVFwmw2mbUs8kftpgJq/NjzLi2ePNRyWPfnwW3rac7ofkJEXXegOqk8oDzwyzwAAryZjNzJnS2dw665cOVWWrl+N5PD/UuVSheghjXL2rW2gura5T41WXlAeSAIekAlpEHwS/1Zj+Tq4iRYCof2bO7QS9RhRl2w4CaMF4smDe1AEcKHs2v9EZMX0zMF1bXLh/4ng2Di2SNP/4c1f48eKy699n5OZpLLOAmSCNjuMyZEAjmQGSvEyazPLulNOn3YNthtxXqtxM4uoLtn/tmre/mFEwfT1lULmKnX3C6w7qLqpPKA8oBdHkiVLKHgNMiUNrld6/iefPDYORo3YwV5v3pDhfJkppF9W/o+bfrzui0KqmvaaWqC8oDyQJD3gEpIg/xX7JgHdHN1oeb1KlCfjvUds+B/q/j05Fyk6G5RqHeHepQmZWK71m/dcywntwqqa5cTrUwGO6InQ2JlDX2kIUOFoivnTshOEePQSwo2xT0bV5qah8HZ8hejzwybxc6lLZYwWSpKly2PYIDcDuiuFRZHwIIB0T139KBgfLTlOmqO8oDygOM9kC5VEloytR+lTJrAYYvff/CEug2aRg+feFGWDClYD7uvXWt/hl4mJ7fBQeLFLkepycoDygPBzgMqIQ12X7n5B4aGW3vumenUoob5yToz+o6cLXpyIkQIR3WrlaKKDIWyxwRU99BpoVtmzzpqrnUPPHkgzwaZLG0msdtoVoszX8mK5OLqRvdveVi/CZ2jhf/4k2LG4V5S3l09cWCHzkjtU9WadKC4iZIx6+4dWjxpmJ+BO9Yuodkj+wiI7r+s66pMeUB5IGB4IFO65LRi5kBKEC+mQ2+oMZMY3bjtyTrYcWnOuB52r928y2jFqmu3F9UCygPKA0HRAyohDYrfqgOfKVaMqNS1dS1qUb+iA1clWrBiC63auId3tL6wjmkO6sG7Tvaagura60H9+a9feusP8HU2PIufR3aOwvIv3vT65QtfZ/Q/RokajaLFikNeTx4S9EzNWtZ8RVnn7jMd3rHR7NTv48vVbCLu/Rrrip45sk8QLY3t2ZJ2rV9O3s+ffh+nPigPKA/8fg9kz5SK1swZYhfjrbWnqNG8P525cI2gYzq8dwuKGyu6tWHSx9ZtOUAHj8kzj0svrAYqDygPKA8EAQ+ohDQIfIk/6xHixIrGguINqf6fpR16iQNHz9L4WSvphfdrQTwxY1RXu9dv3XOc0IazeyG1gKYHIEpuxlyjxRDanFfPnTQzjdJnz89Mt1/pn52bTM3D4KIVanAvaXzeJb1FR/dsMT0fE1Kkz0KpMmYTAuzrFk6jyQM6ih3bzywto0x5QHkgYHggRIgQIn6smz+cQLbnSGvD8QSSLC7Okal1w8pUMHdmu5b/wn/PBFT31Vu71lGTlQeUB5QHgqoHVEIaVL9ZO58rfpwYNLRHM6r2R2E7V/I7/a7nY+oxZAY9fOxFablfdP5E+4TFsfquA8yqe+iUYED0ezX1myM9YEaLFNdNkS6LgE+7nz5q6jZyFy1DrtFj0OMHd6WlZnxfIDNLuHz98pn+2b3Z92FTn0OGDMWMvy6CmAm7tcqUB5QHAo4HQoYMQflzZaQNC0dQ2LBhHHpjo6cuoy27jxAS3nLF8wjuBHsv4MOqe9feZdR85QHlAeWBIOsBlZAG2a/W9gdLFD82je7fmspyMHakffv2jZp2HknXb90niJaPH9TOIZXt4ZOWKFZdR35RGmt9ZC1SfIeyljpzToa+ugj4rewcjAsbLjzFiB2fXng9pYPb15mZKsYWr1SLYsSJT494l9QW6O72vxaTh/sZATc2fXE1QXlAeeCneiBUqJBUOG9WAdN19IXWbt5P81dspjdv31OB3BlFjLL3Guu3HqADvNuqTHlAeUB5QHlA2wMqIdX2TbA8kzRRXJo4pINDBcUtjqzVcqDoyYkW1YW6talNIKKw1wCtcmfJGGU/3wMfP7w3pUXqFiOW6MVE7ymYc81YjoIlKHSo0HT++CEz076PzZy7sGDJPbp36/djRh9uXD5PQzvUp13rlpnSTzVaV51XHlAecIwHQocORcUL5qDlMwY4ZkFfq5y96EFDJiwUxc3M6VLQsun2X+PLV4bqTmdWXZaMUaY8oDygPKA8oO0BlZBq+ybYnQkTOjS9fvOO+3LSOvzZLT05ESOEpxoVi9Gf5YvYfY1dB07SHgXVtduPsgugh9TrsTn4qjMz5r564UXXLp6WvYwYlzlPYYrKCe2zRw8IuqRmrUSVOhQdu6T3b9OBrWt1p7959ZLmju5LC8YPElqrXxjuq0x5QHkg4HkAWthjB7Rx+I2Bz6Bd7wkEmZckCePQrLHdHHKN5l1G0dUbdx2yllpEeUB5QHkgKHtAJaRB+ds1+WzQSAMkc/5y23vvrF1y5JSloicHaxcvmI36dW5obZjpY8MnLVZQXdNes33Cv/z9mdEixZXiJ0nB/019pQs27HTGjp+I3r5+SbuZ3dYWy5SzAO+SfqXj+7UlYLatWUjje7eii6eOKIiuLU5Wc5QHfqEHnnp5U6kanQg/HWn12g6mK9fvUMzoUWlIj6aUMF4su5dfv/Wggura7UW1gPKA8kBw8YBKSIPLNy35nM+ev6Qx05cLWRbJKbrD1vy9lxat2ip6cnJmTUuzx9qv5YYLKqiurtt/2slH9++YWjtD9nwUNnx4emrDLmfeEhUoXPgIdOf6ZVPXtAwuVa0+96LGE7ukezetshwWP48xlBfw3J0MzzWrlepnIfWL8oDywC/1wD3exSzJSenbdx8cct36bYfQ8TOXBZ9Bs7rlqViB7Havi0LYWI6jCqprtyvVAsoDygPBxAMqIQ0mX7SZx0T1GUnpfNYKtcdOn79KwycuFtXs1MkT0dzxjklGdx9UUF17vhd75r72fm5qeoJkqcjZJSq9YS1Ss7IpydNmIreYsQVMGJqgtliGHPnpG78cnjy0S0y/fPY4DWlfl9YumCrguTinTHlAeSBweQDQ2iJV2tLL1/bJqHQdNFW0faA3tXTRXNS2cVWHOKKZguo6xI9qEeUB5YHg4wGVkAaf79rUkz559oJAfz/PRvgudlo79ptEqGbHix1DsPa6ubqYugetwcM4ycX6yn69B8ySE+EOnVxc6SX3kXq4mxeFj584BX1i/c8DW82z7eLaZao3pOhil/QO9W1WlRZPGioS3E8fHbO7gmsoUx5QHvj1Hrh19yEVqtTGZvjujIXraf2WA/Tx02fKlyMDTR7a0SEPsWGbguo6xJFqEeUB5YFg5QGVkAarr9vcwz57zjul05bRpDlrzE3k0Q3bD6XLHnfIzdWZOrWoTjkypza9hrUJbXoxq+5VxaprzTe/4tiHD+9MXyZarLisC/qFzh3db3puwTJVWA/UmWG35qDClgtd5Z3Vd29fi13SN6+Y7fedfTsqlnXVT+UB5YHf74H/tXcncDpVfQDH/5aZIfuSJLyUV4UWrWQJKWtEets3rxaKCi9KSXnLvlMpEUUqFG2WIpWtQnhTlGzZd8aMMWO853/qYYx7H88znjPxzO98PszMec49997vPc9zn/895567cfN2aXBnB9ELqOGkmXO+l+GjJ9ke1ksrlDMz6j4fzuK+ZQ8fTjXnTIbq+gLxAgIIIOAjQEDqA0P2nwLaE6kn7l5D3wmZRO/J+d7ck5M7V5zc2ri23NOiXsjLBiv45TeLZJb5l5p6JFgxXnMocMg8izTcdOk11SV7jhyybfMf4S4q55YuK0WKlbD3eX47Y0rIy/84f470bP+gjDEz58abx86QEEAgOgXWb9xqg9LVazeGtIP6HOyuPV+Xrdt3iz5z+7U+HSWH+XyKRGKobiQUqQMBBLKiAAFpVjzqYe6zTok/ctzH9iR+skU7dB8ms+aaR3xkE/ssU52xMFLp5cFjGaobKcwM1nMoKVH27Noe1tLlKl4m+QsWkf17dttZnMNa2BQuX6myHDmSKkvmzj7ponM+myw92t1jnlPYV7Zt2kCP6EnFKIDAmS+gt4bc/nA3Wbh4RdCd0eG5j/ynr6zdsFmKFS0kz3d8UMqVLRl0mVBf/HOobvi3JYRaP+UQQACBaBYgII3moxvBfdtnJo8YN2mGtOncz7fW4aMny9Tp30pS0iG5+vIKMnrwM75lw32h7TMDGaobLpqD8gkH4mXXti1h1Zwrdx7Jm7+A7NuzU1avWBrWslq4er2mUqBQUdm+ZaO9FzV9BTvNDL4TRvSzgejUd0bY7eMe0fRK/I1AdAtoT+mjnfrK9K++893Ru1p3l+U/r5a8ec6SB+5oKI3qXudbNpwX9JFmOhEgs+qGo0ZZBBBA4JgAAekxC347iUBC4kETcM4VPamnT9NmLZQRZpIIPSFfWK60ebxLZB4sruuZ9e0i0Zl1GaqbXj3z/9ZZaTetC/8e3kJFi5lZdg/Jjxm4j7RA4aJStHgJ2W9m6p01ZcLRnV5mnm06sOtjMrT7U7Jw9jQbiOozT0kIIJA1BfSe0o5mlM77U748AUCH0877frnojLr1a18jHVvfeUKZjGbYoZQhFE8AACVfSURBVLq/rc/o4iyHAAIIZHmBHLlz5+6e5RUACFngsLkSvHbDFtsTevstN0hMTE5ZaU7ETzw7SP4wXwZKFC8qA15oKxXKlw25zpMVfKh9b1ljhliRTg8BDS4rXlElrI05sH+f6CNXYmLj5Npa9cNaVgsfTEyQlcv+nKBoxZIFMn3iWPn+6+mye8c2STqYGHZ9LIAAAtEpcCAh0Qzd/Vn27U+QGlUuszv5Yv/RMvGTr8yM3Tqj7mUyZuizEdt5HRX0+jtT7cigiFVKRQgggEAWE8iZxfaX3Y2AgA5P+uW3dVLt5tZyycUXyKYt20Wn4C9UMJ99jptOoR+ppEN1/8esupHijEg9e3ftCLueiytfI3knFTT3kYb3HFNd0T6zzA/fzJTYuDjZbiZG0n8kBBBAwE9g5+69Zt6DqfbclGJGdXw1d4noCJ9KF50v417p5rdY2Pl6LuxrZqJnqG7YdCyAAAIIHCdAQHocB3+EI6DDoxITk2TXnn2SKy5WmtarIf++q3E4VQQtO+vbxWaoLrPqBkX6G17Ux6iEm4oUO9feR7pr+1ZZs+onKVu+YtAqtEd1waxPTS/oF6YHNEH27AxvIqWglfMiAghEvUD8gUT58POvJbc5N+2LT5DSJc+RYT3bS5z5O1KJobqRkqQeBBDI6gIEpFm9BZzi/mswqik2Nkb6dGtzirUdv/jLg8eYWXV5ZMfxKn//Xzp8NiMpf6Ei9nmi+jxSr4B007rVssDcC/rTovnmuaXJnhMYZWS9LIMAAllTIDk5RfRfIAitUL5MxCB0qO6c+cyqGzFQKkIAgSwtQECapQ9/ZHf+qeeGyMAe7SJSqR2q+0v4k+dEZOVUElQgI88i1QpLnV9eVi1fLBvXrrb1B+4rXfTtl7Jj60ZJ2L9fMtL7GnRjeREBBLK8gM78rpPizTAz8N5U65pT9jhy5AhDdU9ZkQoQQACBYwLZChUqdOTYn/yGQMYFYnLmlPLlSsn0CQMkNiYmwxXNNs8xfazLAHpHMyzodsF8BQpJpz5vSN4CBcNaUb8uj9png8bExkrus/JKiukF3bd7p3nGKB9BYUFSGAEEMiRwdpGCcu9t9aRL23sztHxgoVbte9mJ/QJ/8xMBBBBA4NQE6CE9NT+WTiOQnJIiP/2yRqo1bi1DXnpSql5VKc2rof/60iCG6oaulfkltRdz144tQQPSxIR42bB6laxYslDW/rpC4vftleSkg5KSfMg8/iVJEuLDvw818/eUNSKAQDQJbN+5R0aMnWrPU28Pz9jkRh/PmCtfM1Q3mpoF+4IAAqeBAD2kp8FBiMZNOOfswnbG3YfvbRLW7rXrOlDenzqLZ46GpZb5havd1ERatGwnGnhu/WO9naho/W+/mHtE15qezxRJMc8c1eeGHj6ckvkbxxoRQACBIALZsmWTkiWKydvm8S8VLgz9EWU6muP6Wx4zs8zzzNEgvLyEAAIIhC1AQBo2GQuEKpDnrNyml7SijH+1e0iL2KG6T5uhuuYqNun0FihQqKjkNBNZJSf92dupw29JCCCAwJkkcJ55bnanx++RO5vVDWmzH+rQW6ZM+yakshRCAAEEEAhdgIA0dCtKZkBAr0SXPu8cGTXoafvM0mBV1L3tCVm24s8Jb4KV4zUEEEAAAQQiIVAgfx6pXe1Keb1fp6DV6VDdDs8PlT374oOW40UEEEAAgfAFcuTOnbt7+IuxBAKhC+hDw2d+9b0kHkzyva+0XddBoj2kzG8TuislEUAAAQROTSApKVlW/b5exk/+QqpcWVGKFyt8QoU6VFd7R/8wz94mIYAAAghEXoCANPKm1OghoA8pX7RspUybvVAa1L5Wzjor19FSX81bIsNGTZIDCQeP5vELAggggAACmSGgF0L3xR+QmXO+l/iERKl29SXHrfbhjn1k7nfLjsvjDwQQQACByAkQkEbOkppOIpCScli2bNtpp8svWCCvVLrofLtEq/a9Zc36TSdZmpcRQAABBBBwJ6AXThebC6effTlfbqhxpeTPm0c+mTlXXh87RQ6aZ5mSEEAAAQTcCHAPqRtXaj2JQP58eeSayhfLxi07ZKWZsTA1NfUkS/AyAggggAACmSNQ6rxiUqxoITlw4KCZVXdd5qyUtSCAAAJZVICANIse+NNlt+PMTK1Jh5ih9XQ5HmwHAggggMCfArlzxdm5D/BAAAEEEHArkN1t9dSOQHABgtHgPryKAAIIIPD3COhEfCQEEEAAAfcCBKTujVkDAggggAACCCCAAAIIIICAhwABqQcKWQgggAACCCCAAAIIIIAAAu4FCEjdG7MGBBBAAAEEEEAAAQQQQAABDwECUg8UshBAAAEEEEAAAQQQQAABBNwLEJC6N2YNCCCAAAIIIIAAAggggAACHgIEpB4oZCGAAAIIIIAAAggggAACCLgXICB1b8waEEAAAQQQQAABBBBAAAEEPAQISD1QyEIAAQQQQAABBBBAAAEEEHAvQEDq3pg1IIAAAggggAACCCCAAAIIeAgQkHqgkIUAAggggAACCCCAAAIIIOBegIDUvTFrQAABBBBAAAEEEEAAAQQQ8BAgIPVAIQsBBBBAAAEEEEAAAQQQQMC9AAGpe2PWgAACCCCAAAIIIIAAAggg4CFAQOqBQhYCCCCAAAIIIIAAAggggIB7AQJS98asAQEEEEAAAQQQQAABBBBAwEOAgNQDhSwEEEAAAQQQQAABBBBAAAH3AgSk7o1ZAwIIIIAAAggggAACCCCAgIcAAakHClkIIIAAAggggAACCCCAAALuBQhI3RuzBgQQQAABBBBAAAEEEEAAAQ8BAlIPFLIQQAABBBBAAAEEEEAAAQTcCxCQujdmDQgggAACCCCAAAIIIIAAAh4CBKQeKGQhgAACCCCAAAIIIIAAAgi4FyAgdW/MGhBAAAEEEEAAAQQQQAABBDwECEg9UMhCAAEEEEAAAQQQQAABBBBwL0BA6t6YNSCAAAIIIIAAAggggAACCHgIEJB6oJCFAAIIIIAAAggggAACCCDgXoCA1L0xa0AAAQQQQAABBBBAAAEEEPAQICD1QCELAQQQQAABBBBAAAEEEEDAvQABqXtj1oAAAggggAACCCCAAAIIIOAhQEDqgUIWAggggAACCCCAAAIIIICAewECUvfGrAEBBBBAAAEEEEAAAQQQQMBDgIDUA4UsBBBAAAEEEEAAAQQQQAAB9wIEpO6NWQMCCCCAAAIIIIAAAggggICHAAGpBwpZCCCAAAIIIIAAAggggAAC7gUISN0bswYEEEAAAQQQQAABBBBAAAEPAQJSDxSyEEAAAQQQQAABBBBAAAEE3AsQkLo3Zg0IIIAAAggggAACCCCAAAIeAgSkHihkIYAAAggggAACCCCAAAIIuBcgIHVvzBoQQAABBBBAAAEEEEAAAQQ8BAhIPVDIQgABBBBAAAEEEEAAAQQQcC9AQOremDUggAACCCCAAAIIIIAAAgh4CBCQeqCQhQACCCCAAAIIIIAAAggg4F6AgNS9MWtAAAEEEEAAAQQQQAABBBDwECAg9UAhCwEEEEAAAQQQQAABBBBAwL0AAal7Y9aAAAIIIIAAAggggAACCCDgIUBA6oFCFgIIIIAAAggggAACCCCAgHsBAlL3xqwBAQQQQAABBBBAAAEEEEDAQ4CA1AOFLAQQQAABBBBAAAEEEEAAAfcCBKTujVkDAggggAACCCCAAAIIIICAhwABqQcKWQgggAACCCCAAAIIIIAAAu4FCEjdG7MGBBBAAAEEEEAAAQQQQAABDwECUg8UshBAAAEEEEAAAQQQQAABBNwLEJC6N2YNCCCAAAIIIIAAAggggAACHgIEpB4oZCGAAAIIIIAAAggggAACCLgXICB1b8waEEAAAQQQQAABBBBAAAEEPAQISD1QyEIAAQQQQAABBBBAAAEEEHAvQEDq3pg1IIAAAggggAACCCCAAAIIeAgQkHqgkIUAAggggAACCCCAAAIIIOBegIDUvTFrQAABBBBAAAEEEEAAAQQQ8BAgIPVAIQsBBBBAAAEEEEAAAQQQQMC9AAGpe2PWgAACCCCAAAIIIIAAAggg4CFAQOqBQhYCCCCAAAIIIIAAAggggIB7AQJS98asAQEEEEAAAQQQQAABBBBAwEOAgNQDhSwEEEAAAQQQQAABBBBAAAH3AgSk7o1ZAwIIIIAAAggggAACCCCAgIcAAakHClkIIIAAAggggAACCCCAAALuBQhI3RuzBgQQQAABBBBAAAEEEEAAAQ8BAlIPFLIQQAABBBBAAAEEEEAAAQTcCxCQujdmDQgggAACCCCAAAIIIIAAAh4CBKQeKGQhgAACCCCAAAIIIIAAAgi4FyAgdW/MGhBAAAEEEEAAAQQQQAABBDwECEg9UMhCAAEEEEAAAQQQQAABBBBwL0BA6t6YNSCAAAIIIIAAAggggAACCHgIEJB6oJCFAAIIIIAAAggggAACCCDgXoCA1L0xa0AAAQQQQAABBBBAAAEEEPAQICD1QCELAQQQQAABBBBAAAEEEEDAvQABqXtj1oAAAggggAACCCCAAAIIIOAhQEDqgUIWAggggAACCCCAAAIIIICAewECUvfGrAEBBBBAAAEEEEAAAQQQQMBDgIDUA4UsBBBAAAEEEEAAAQQQQAAB9wIEpO6NWQMCCCCAAAIIIIAAAggggICHAAGpBwpZCCCAAAIIIIAAAggggAAC7gUISN0bswYEEEAAAQQQQAABBBBAAAEPAQJSDxSyEEAAAQQQQAABBBBAAAEE3AsQkLo3Zg0IIIAAAggggAACCCCAAAIeAgSkHihkIYAAAggggAACCCCAAAIIuBcgIHVvzBoQQAABBBBAAAEEEEAAAQQ8BAhIPVDIQgABBBBAAAEEEEAAAQQQcC9AQOremDUggAACCCCAAAIIIIAAAgh4COT0yCMrEwRicuaU7NlDux6QmpoqySkpmbBVrCKzBHLkyCHZsmUz/0JvA4cP0wYy6/icbuvJbtpKTGxMyJuVfChZUo8cCbk8Bc9sgezZc0h285kSaoqNjZOEA/tDLU45BBBAAAEEnAoQkDrl9a98bO9eUuWyy/wLpHllwdKlcmeHjmly+PVMF9AvkJ079ZQyZcqFtCuLFs2TV1/rHVJZCkWfgAajGxZPDnnHSl3RXJKSDoVcnoJntkD1ek2l2f1tQtqJpIOJ0qtDSwLSkLQohAACCCCQGQKhdc9kxpawDgQQQAABBBBAAAEEEEAAgSwlQA9plB/uGjWv99zDRT98LwkJCZ6vRTLz4goVpWjRonLw4EHZtnWrrFu3NmLVn312Mbno4otFhzRv37ZNVq1aGbTuwBBpLR9OypM3rzz08KMyaEC/cBY7LcoWPftsufjiCidsy4EDB2Txoh9OyHeVkTdfPrn88spyzjnFZdOmjfL9d99JSkpyyKvTdqRDnFf89L+jy5Qvf6GcddZZ8uOPS47mhfqLLnf1NVVkzlezJC4uTtq2e0r69e0V6uJRW07biraZ9Gnd2rWyfv269NkR/zvc93TEN+CvCgPbccQMe05KSpJVK1fK3r177KvnX1BOYmNi5Jdffj7p6rs+111e6tH9pOXOlAJ/5/kkWNs8r2RJyZUrt8ye9UXEKTN6DAsXLiyXV75C8uXLLz+v+Omk56ec5jaeFG7Nifjxo0IEEDgzBAhIz4zjlOGtvPHGenbZCy+6SAoUKCjfLVxg//755xWZEpC279BJjhxJlc2bN0mhQkWk+LnFZUDfPrJgwbwM71NgwWrVa0ibx9vJ3G+/kSJFiphg5xx5uFXLo18cA+UCP+++5z7RL5oD+vcJZIX0M1euXNKocZMzMiDVADDQBm6q30B+XLLYXhjYtm1rpgWkdW6oawM+/QK/du0aqXzFldLxP13kjn81l+Tk0IJSbUdXXnW11Ln+OtmzZ48NIkePGSfbd2yXW25uENJxTFsotwlIq153nQ1IY2JjpcktzQhIDdAll10ulSpWklgTpDe9pbl88N67lm3WrC8zJSAN9z2d9phG8vfAdnzz9RyJNe2jatVq0qVzB/nh+++kdOl/SJ48eUIKSG9t8a+oCkgDnyV/x/kkWNssW7as6EUvFwFpRo5hk6a3iJ5v9MJb0qEkadCwkSwzt968MnyIZzMtVKiQTPrwY6lTq7rn62QigAAC0S5AQBrlR7jbc8/YPbzr7nvln+UvlBeef/boHjdsdLMJDDqL9pZNnvSBjB410vZCfT5jlgleC9irtaNGvm7z9WrvkGGvyfbt26R2nbqiX9Smff6pXf6QCSq6dX1aFi6cf7TutL+88/YY+XrOVzbr3HNLyNRPp8nNDevJli2b5V933CVPPNHeTvA08o3X5E2zPk36JaBTl2ds74T2rA4ZPOBoHbbAX//9uGTR0X0aOnyE6BX8nTt3SN/+gyS7mTBoz57d0qVTB9EA/IknO0gOcxVa93vggL72i2ZJc2W9xHklpYL5Et60cX3f7Um7zjPp95/+t1y6mX+ayv2zvIx8Y4T9Uh3YB9dtQHsuhr3yutSsfq3s2L49sNrjfvq1geMKmT+mT/tMWpme6n59esntd94tc+bMtsdNy2nvqVe71de82tKypT9KuXLl9eXjkvaWajvStqgTT6VvR8uWLZVmzVtI2nbz4H132X3csWOH1Kpd2wb6bR59KFMu+By38RH44/0J4+V9U49evNILCYHPD626VOnS0m/AYDm76Nkyf/48GdCvt3mv7ZTOT3e1JqmHU2XZsh/lyXaP2RERg4YMt+9xDWwTzGfMC92fk0cefcx8DpWXt0a96fvl3Os9PXPGNHm5V1/7/t61a5d06vCkWddSGfHGKPv+37Rpk/Ts3U8+mjzJfg61feIpWWp6zvVzx6uN6+dZn36D5NtvvpZmt7aQl3u8cMLnl25Hjxe6WVVdd8mSpex7p0CB/NZHX9B91CCoxW132H0f2L+f/PflXlKvfkPZbEYCaOCq6cILL5Le/QaKrnevuaDS7vHWsmbN7/a1M+m/QHvwOp94tQ89Vl7vy4ycT4K1zbJlW0mFChXlwymf2lEYw4cNlnHvjJUSJUrI012fl7aPPWKZ773vAdm3b59M+WiyPXY6WqNp0+ayzZzXuj7dyY7AyJkzxvMYag9mt+dflJq1atuRPsOGDDIB58ITPg+eeuJx+U/nZ6Ru7Rr2/JX2+Pp9Tmn50v8oI1/M+kaWLP5BnjHbop89evFOk67rg/cnpK2K3xFAAIGoEuAe0qg6nKHvjJ50H23zuPzrtmbSonkT+wVKT946RK3NI62k6jVXSIN6N8gjrR8THbKaI0dOueTSS2X8uLflqsqV7Im+dp0bpEnjBvKi+aL5QMt/h7Ry7SnVoaKXmeGb2vPY2tR/x+3NpVnTRjbI0C8qZcqUlY6dush9d98h11evYoZ4bjJf7PIGrV+3UbdPe+B06G7DenXluipXSp/ePaV9x062J27woP7y9pjRUrdODfn0k6lSsGBBaX7rbfLlFzOkc8enfLcn6IrP4Bczow1UrnylaFDsF4z6tQEvVr1o0qBBIylW7BwTANwu7//Ve6dl/dqtX1vSCxP/KFPmuNXokO4hw16VeXO/tSMJvNqRLpC+3eh7Q4cUjx71htS47lq7LTWvr31c3dHwh17QeWXoENuLs9YEU/re0TRh/DipVuUqqVb1Ktm/f7/c3OQWm68B3L69++x7eIIJdF948SXp/nxXqVWjqrnwc6ft5bYFff5L+56ue2M90YBAPw96/vdFEwT/eWFtmxmqf8WVV9u6atWuIw0bN7a11apVxw6z9WvjesxqXl9LYmJy2ve+1/Dba6tcJwMHD5Mxb4+3w831M0NTgYKFpHCRIvZ33ccb6taT/iY4f3f8O3LPvffb9lm3dnW5rcUtcsj0jmnSgGPEq8OlZrVr5aknH5dDydE34ZRX+/B7X0bqfGJx//qvoDkurc256+ZGN8nDj7axF6n0+GugHEh63Aqa3khNeuz0QkmdWtVkzOg3bY+m5vsdwxo1a9mZjOvWrinPPdNFOpljqin950GlSpXMSJQlJwSjWtbPo2/vl2W9uZ1Fz03/Meeixjc3PdreG9avK7//vloXJyGAAAJRK0APadQe2uA7dl21arbAww+3tj9jzD1RtWrfYAPOMmb4U7sn29uhadpToj0i2ou6ZcsWe0VYF9Aex4Vm2O3+/ftk+bJl9gu5rSiE/+Lj4yWvCSB1WJwOgduwfr1das7sWXYbdEZRHYa7cuUvNl/X4Zfq1LlRPpz6me2x0l6X/y1fZr5kxpgA2QTVZpjdueeea78E+C0/efJE+WLmDPvyDXVv9Nwe7YmLxpQZbUDv1dQeiUCa/NEnor2mmjS48GsDGnymT8mHDtkv/eMnTJSJE9+TpIMHjyvi1W6vrVo15Lb0Qo+XbRDz1uiRtt59e/f6tqO07UaHgesQ6CWLF9nlPp46RaqY9eoIgmhJGgzq+2mX6RHVY6ZDDHVkwRuvv2Z38emu3aRSpUtEj8HaNWuO7vY006t9yBy35aY3c+WVV8mvq1bZ1zb+8YdcUO6fx90THFjI6z3d8t8PmVEcEyUxMdH2jL/4Uk87RHPhgvm2F0k/n8a+Ndr0hja2X+R1+KaOwNCgU1P6z7mZM6bbHsrA9ttC6f77ffVv8t67482oihxS0wQjb7z5ljxw393pSple0oH9RMtq0h5y7ZnTnmNNyckp9ufq336VBx5saUdl6H3LOuw8mlKw9uH1vozk+STgOG/et/aY69/x5sJIifPOC7zk+/Ozzz61gaNeJG3Z6mFbzu8Y1m/Q0F746NT5aVvuAnMvsQajmtJ+HlxqLrYmJR3/2WQL/fWfl0fg/uRAOe09v+rqa6TVQ4/Y9q5zPpAQQACBaBYgII3moxtk3woXLiIrzT19n//1pVl/btq40XyRvs5e+dWrtKtMQPjue5M8a0k9fPhofqq5RzQwYdDRTJ9fdMjSpeY+teFDB9te0v0mOA2k+APxdqiwDvM6YH4PJekw4Zf++4JsNcHy4b+2qVv3HnbRZ7t21kvSMnLU2KNV6fr9Uv78BcRre/zKn+n5mdEGVpsv6tVr1JTcuXPbYOL225rZnouFPyy1P8M11x567Zl7e+xbUrrUsZ4Pv3Z7MPFgSG1J7wvU++J0cixtI9qTEawdBTv2OmmWXsiJphRnRjMkm169wOeF7luimRRN3/fvTfzQjJLoZoYVDrTDo3VymfTpSOrxz0Q9nHrY9zPD6z2tnvHxx56bqZOk5Tkrj7koNl80WNWh1iNNcHxBuXLSpGkzc7/ej3YT/Np4+u3z+ltvTwjc664XyJYs+9kGwV5lA3nadnbs2BH48+jPXj3/a3qOm5re1Jvk2W7dzf3Tt4oGqdGS/NqH3/sy/X5n9HySvp7A3ynmXBA4JwX7zD9WPsXc4vHnucHvGGpb0l7ydaYnU5O+F7wmBtTRA/ff/6Atk/6/UD30Xv9/P3if/ax7a8x4cyvLCBn15hvpq+NvBBBAIGoEskfNnrAjYQl8YYap6hVe7VHUnh0dVqkn4rJlz7f3h2mPhp7QA1eAw6rcp7D2lj3/Qg8bCOsQJO0pqGoCYB1WpeuqXr2mGT47U+bO/UZq1LjeDrWys11edLFPjWKDDQ2kA8GoFtR9+OjDSTbALmYm9QkkHS6s98b6Jb/t8St/pudnRhvQL1a//bpKHmz5kOXSSYy0xyyQwjXXL4A6hO1AmgsZWpdfuw21LW3YsF5ub9HMzNh8RJ5+5jm7eX7tKLDtXj/1vtOb6tXPtAmjvLbBRZ5667BWDUL180L/aW9l/vz5RYPNzz/7xPb6FTf3iJ9q0otR6d/TOqz++r+GQet96IfMzLdbt26x97Tr58o/zP13Olx/xvTP5cn2HW2gqtvh18bD3caKpvf3iLnQoEM8gyW9t7a66UHWVMTMLh5nJkTSpDPzTp3ykTzRto1MM71yFStWtPnR8p9f+/B7X2bWfmsveQHTRvX8ouc3vfB0suR3DDUY1WH+gfavFyy8ZsXV3la9FUFvKwgknVxOh+H6eezfH2+HA+s2atLtXPnLL/Ye5g5PtbMXigN18RMBBBCIRgF6SKPxqIawTzqkaeIH78krr42UuFxx9gSokzroF0sd7qpDK7WnR2cjPdXUq3d/OZBwQHKYLwVffTVb9ASrSXtCPzKTS0z8cKr9sqcTjAQeLfGaud/qVbNtOtwz5XCKHRoc6na8PXa0vfdLe7vS9qrMnzfXTmykQz61hy198tse/WIZjSkz2oBeKND7unqYiV5ubXGbvR/4nOLFzX2a39jhjImJ/m0gHHO/dqv3robSlrRHVP91eKqtjHv3A7nP9HD4tSOv7dIvkDpLZvHi58oK84iHCe+O8yp2Rue9MmyIPNb2SfuonZKlStkJg/SRJrNnfynTZs62Exmp4czp0yK+n3p8dUj1+5M+spOV9e93bKbsJeaix65dfw6R1UmM9B5j7WXV5NfG9TEuJ0v1zf3Kl5t7oHVytMTEBNGJqvQzMVj65OMpMmDQUGlkgo+dpqc0m/nM06T3V5Yxw5l1JIcGHdM+/yxYNWfka17tY/jQQRE/n4SDoxe/vjAXOT/9fKY9dvq3ToYVLPkdQ51Yq4u5WKUjbvRCbT4T6DYyF8fSJw1S9TOvV5/+tvdeJ/3TWeD79+3te37VR2DpxVj9DFm+fKm9oDV23ARzMe9XG9yGOzN8+m3ibwQQQOB0F8hm7gU6fizV6b7FUbJ975rZGKtcdllIe7Ng6VK5s0PHkMpmpJDeD7bX3C+X9suWfrHWHgj9guk6aQ9pjhzZj5sEQu8D1d407XEaPXactDLDl9L2rJ1sm/QKtQ4T3b179wlFdfhf+nt20hby2p60r0fi95iYWOncqaeUKVMupOoWLZpnAvTeIZXNSKHMaAN6THXYm/YspG1rur2RMvdqt6fSloK1o4Cz9uK/8+775svpjfbijvYWRTrFxcXKhsWTQ6621BXNzfvpWE90yAuGUFAnG0ox7019Pmcg6WRk2nutQ2ldJl13Rn292rirbVUPvcCVNgVm3D1wkl7WtMuE+nvNBmZiuPvbhFQ86WCi9OrQUvbs3B5S+XALebUPr/dluPWeSnn9zNeed68eTb96vY6hltX7ZfPkyRv0HBKoU89BefPms595gTz96eehbUTftxqg6np0BEL6dpS2Hn5HAAEEokWAgPRvOpIx5mQTuMflZJugX96TzVXXrJQ+/nS6DUY3b95sJh2abieziab910Bbe0qymd6XUJK2gcOmp5gUvoDrthQISOvVrRX+xoW4hN7fppN9hZqSDyVLaiZcTAp1eyjnViB79hx2yGeoa4mNjTPDj4/dkxvqcpRDAAEEEEDAhQABqQtV6oyIgPZOue5xiciGUslpL+C6LenFpfS9vqc9ChuIAAIIIIAAAgicBgIEpKfBQWATEEAAAQQQQAABBBBAAIGsKBDaeMGsKMM+I4AAAggggAACCCCAAAIIOBUgIHXKS+UIIIAAAggggAACCCCAAAJ+AgSkfjLkI4AAAggggAACCCCAAAIIOBUgIHXKS+UIIIAAAggggAACCCCAAAJ+AgSkfjLkI4AAAggggAACCCCAAAIIOBUgIHXKS+UIIIAAAggggAACCCCAAAJ+AgSkfjLkI4AAAggggAACCCCAAAIIOBUgIHXKS+UIIIAAAggggAACCCCAAAJ+AgSkfjLkI4AAAggggAACCCCAAAIIOBUgIHXKS+UIIIAAAggggAACCCCAAAJ+AgSkfjLkI4AAAggggAACCCCAAAIIOBUgIHXKS+UIIIAAAggggAACCCCAAAJ+AgSkfjLkI4AAAggggAACCCCAAAIIOBUgIHXKS+UIIIAAAggggAACCCCAAAJ+AgSkfjLkI4AAAggggAACCCCAAAIIOBUgIHXKS+UIIIAAAggggAACCCCAAAJ+AgSkfjLkI4AAAggggAACCCCAAAIIOBUgIHXKS+UIIIAAAggggAACCCCAAAJ+AgSkfjLkI4AAAggggAACCCCAAAIIOBUgIHXKS+UIIIAAAggggAACCCCAAAJ+AgSkfjLkI4AAAggggAACCCCAAAIIOBUgIHXKS+UIIIAAAggggAACCCCAAAJ+AgSkfjLkI4AAAggggAACCCCAAAIIOBUgIHXKS+UIIIAAAggggAACCCCAAAJ+AgSkfjLkI4AAAggggAACCCCAAAIIOBUgIHXKS+UIIIAAAggggAACCCCAAAJ+AgSkfjLkI4AAAggggAACCCCAAAIIOBUgIHXKS+UIIIAAAggggAACCCCAAAJ+AgSkfjLkI4AAAggggAACCCCAAAIIOBUgIHXKS+UIIIAAAggggAACCCCAAAJ+AgSkfjLkI4AAAggggAACCCCAAAIIOBUgIHXKS+UIIIAAAggggAACCCCAAAJ+AgSkfjLkI4AAAggggAACCCCAAAIIOBUgIHXKS+UIIIAAAggggAACCCCAAAJ+AgSkfjLkI4AAAggggAACCCCAAAIIOBUgIHXKS+UIIIAAAggggAACCCCAAAJ+AgSkfjLkI4AAAggggAACCCCAAAIIOBUgIHXKS+UIIIAAAggggAACCCCAAAJ+AgSkfjLkI4AAAggggAACCCCAAAIIOBUgIHXKS+UIIIAAAggggAACCCCAAAJ+AgSkfjLkI4AAAggggAACCCCAAAIIOBUgIHXKS+UIIIAAAggggAACCCCAAAJ+AgSkfjLkI4AAAggggAACCCCAAAIIOBUgIHXKS+UIIIAAAggggAACCCCAAAJ+Av8HWh5JfrN47HAAAAAASUVORK5CYII=", + "text/html": [ + "
" ] }, - "execution_count": 45, "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "test = []\n", - "for p,l in zip(aux_parent[aux_len:],aux_label[aux_len:]):\n", - " test.append(f\"{p}-{l}\")\n", - "\n", - "len(test), test" - ] - }, - { - "cell_type": "code", - "execution_count": 46, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "['A-ThunderCats', 'A-ThunderCats', 'A-ThunderCats', 'A-ThunderCats']\n", - "['A-Dog Patrol', 'A-Dog Patrol', 'A-Dog Patrol', 'A-Dog Patrol']\n", - "['A-Power Birds', 'A-Power Birds', 'A-Power Birds', 'A-Power Birds']\n", - "['A-Not played', 'A-Not played', 'A-Not played', 'A-Not played']\n", - "['B-ThunderCats', 'B-ThunderCats', 'B-ThunderCats', 'B-ThunderCats']\n", - "['B-Dog Patrol', 'B-Dog Patrol', 'B-Dog Patrol', 'B-Dog Patrol']\n", - "['B-Power Birds', 'B-Power Birds', 'B-Power Birds', 'B-Power Birds']\n", - "['B-Not played', 'B-Not played', 'B-Not played', 'B-Not played']\n" - ] - }, - { - "ename": "IndexError", - "evalue": "list index out of range", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mIndexError\u001b[0m Traceback (most recent call last)", - "Cell \u001b[0;32mIn[46], line 2\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m l \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mrange\u001b[39m(aux_len,\u001b[38;5;28mlen\u001b[39m(aux_label)):\n\u001b[0;32m----> 2\u001b[0m \u001b[38;5;28mprint\u001b[39m(\u001b[43m[\u001b[49m\u001b[43maux_id\u001b[49m\u001b[43m[\u001b[49m\u001b[43ml\u001b[49m\u001b[43m]\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mfor\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mi\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;129;43;01min\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;28;43mrange\u001b[39;49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mlen\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43mdf_sunburst_test\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mmedal\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m]\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43munique\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[43m)\u001b[49m\u001b[43m)\u001b[49m\u001b[43m]\u001b[49m)\n\u001b[1;32m 3\u001b[0m \u001b[38;5;66;03m# solve aux_label with medals\u001b[39;00m\n\u001b[1;32m 4\u001b[0m \u001b[38;5;66;03m#for l in aux_label[aux_len:]:\u001b[39;00m\n\u001b[1;32m 5\u001b[0m \u001b[38;5;66;03m# print([l for l in df_sunburst_test['medal'].unique()])\u001b[39;00m\n", - "Cell \u001b[0;32mIn[46], line 2\u001b[0m, in \u001b[0;36m\u001b[0;34m(.0)\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m l \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mrange\u001b[39m(aux_len,\u001b[38;5;28mlen\u001b[39m(aux_label)):\n\u001b[0;32m----> 2\u001b[0m \u001b[38;5;28mprint\u001b[39m([\u001b[43maux_id\u001b[49m\u001b[43m[\u001b[49m\u001b[43ml\u001b[49m\u001b[43m]\u001b[49m \u001b[38;5;28;01mfor\u001b[39;00m i \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mrange\u001b[39m(\u001b[38;5;28mlen\u001b[39m(df_sunburst_test[\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mmedal\u001b[39m\u001b[38;5;124m'\u001b[39m]\u001b[38;5;241m.\u001b[39munique()))])\n\u001b[1;32m 3\u001b[0m \u001b[38;5;66;03m# solve aux_label with medals\u001b[39;00m\n\u001b[1;32m 4\u001b[0m \u001b[38;5;66;03m#for l in aux_label[aux_len:]:\u001b[39;00m\n\u001b[1;32m 5\u001b[0m \u001b[38;5;66;03m# print([l for l in df_sunburst_test['medal'].unique()])\u001b[39;00m\n", - "\u001b[0;31mIndexError\u001b[0m: list index out of range" - ] + "output_type": "display_data" } ], - "source": [ - "for l in range(aux_len,len(aux_label)):\n", - " print([aux_id[l] for i in range(len(df_sunburst_test['medal'].unique()))])\n", - "# solve aux_label with medals\n", - "#for l in aux_label[aux_len:]:\n", - "# print([l for l in df_sunburst_test['medal'].unique()])" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "print(aux_len)\n", - "for l in aux_label[len(df_sunburst_test['medal'].unique()):aux_len]:\n", - " print(l)\n", - " print([f\"{l}-{m}\" if m!='' else f\"{l}\" for m in df_sunburst_test['medal'].unique()])" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# referencia\n", - "px.sunburst(\n", - " df_sunburst_test,\n", - " path = ['event_game', 'team', 'medal'], #, 'medal'\n", - " values = 'score'\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# se acerca, hay que reconstruir el df\n", - "aux_list = []\n", - "\n", - "for i in range(len(df_eventplayers['medal'])):\n", - " if df_eventplayers['medal'].at[i] != 'not played':\n", - " aux_list.append(df_eventplayers['team'].at[i])\n", - " else:\n", - " aux_list.append(df_eventplayers['team'].at[i]+' - not played')\n", - "\n", - "aux_list" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "df_sunburst_test2 = pd.DataFrame({\n", - " 'event_game': list(df_eventplayers['event_game']),\n", - " 'team' : list(df_eventplayers['team']), #aux_list,\n", - " 'medal' : list(df_eventplayers['medal']),\n", - " 'score' : list(df_eventplayers['score'])\n", - "})\n", - "\n", - "df_sunburst_test2['score'].replace(0, 1, inplace=True)\n", - "df_sunburst_test2['medal'].replace('not played', None, inplace=True)\n", - "\n", - "df_sunburst_test2.info()\n", - "df_sunburst_test2" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Participation by players" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "df_eventplayers.head(3)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# crea barpolar en subplots, con jugadores individuales\n", - "\n", - "def players_score_figure(df_data, sorted=True, ascending=True,hole=0.50, h=400, w=900, theme_colors=theme_colors):\n", - "\n", - " \"\"\"\n", - " Creates figure with barpolar subplots to represent individual players scores in each event in a given date.\n", - "\n", - " **Parameters**\n", - " df_data: dataframe containing desagregate players, teams (factions, color, etc.), scores and score description\n", - " (medal, cups, etc.)\n", - " sorted: sorts players by scores (default: True).\n", - " ascending: way player scores are sorted, only takes effect if sorted is set to True (default: True).\n", - " hole: set empty center from 0 to 1 (default: 0.5)\n", - " h: figure height (default: 400)\n", - " w: figure width (defautl: 900)\n", - " theme_colors: set colors in HEX code (default: color_theme palette in app, max. 5 colors)\n", - " \"\"\"\n", - "\n", - " # copy to keep integrity\n", - " df=df_data.copy()\n", - " # sort values before building the figure (if ascending=True)\n", - " df.sort_values(['team', 'score'], ascending=ascending, inplace=sorted)\n", - "\n", - " # team list\n", - " team_names = [i for i in df['team'].unique()]\n", - " # event list\n", - " events = [i for i in df['event_game'].unique()]\n", - " # other config: color theme\n", - " color_map = dict(zip(team_names, theme_colors[:len(team_names)]))\n", - " \n", - " #---------------------------------------- create Figure\n", - " fig_polar = make_subplots(\n", - " rows = 1, cols = len(events),\n", - " column_titles = [f\"Event: {e}\" for e in events],\n", - " specs = [[{'type':'polar'}]*len(df['event_game'].unique())]\n", - " )\n", - " #----------------------- config unified legend\n", - " sp_legendgroup = [True]\n", - " sp_legendgroup.extend([False for e in range(len(events[1:]))])\n", - " sp_legendgroup\n", - " \n", - " #----------------------- traces: bar polar by event and team\n", - " for e in range(len(events)):\n", - " for t in range(len(team_names)):\n", - " fig_polar.add_trace(go.Barpolar(\n", - " name = \"Team \"+ team_names[t],\n", - " r = list(df[df['event_game']==events[e]][df['team']==team_names[t]]['score']),\n", - " theta = list(df[df['event_game']==events[e]][df['team']==team_names[t]]['player_id']),\n", - " marker_color = theme_colors[t],\n", - " legendgroup = team_names[t],\n", - " showlegend = sp_legendgroup[e],\n", - " customdata = df[df['event_game']==events[e]][df['team']==team_names[t]][['event_date', 'medal']],\n", - " hovertemplate = \"\" \"Team \"+ team_names[t] +\"\"\n", - " \"Player %{theta}
\"+\n", - " \"
Date: %{customdata[0]}
\"+\n", - " \"Medal: %{customdata[1]}
\"+\n", - " \"Score: %{r} points\"\n", - " ),row=1, col=e+1)\n", - "\n", - " #----------------------- bar polar config\n", - " fig_polar.update_polars(\n", - " patch = dict(hole = hole,\n", - " radialaxis = dict(showticklabels=False,\n", - " visible = False),\n", - " angularaxis= dict(showticklabels=False,\n", - " visible = False,\n", - " categoryorder = 'array',\n", - " categoryarray = team_names)))\n", - "\n", - " #----------------------- figure layout\n", - " fig_polar.update_layout(\n", - " legend = dict(font_size = 10,\n", - " orientation = 'h',\n", - " yanchor = 'bottom'\n", - " ),\n", - " hoverlabel = dict(bordercolor = 'white',\n", - " font_size = 8,\n", - " font_color = 'black',\n", - " ),\n", - " template = 'plotly_dark',\n", - " height = h, width = w,\n", - " title = f\"Players participation during {', '.join(events[:-1])} and {events[-1]} events\"\n", - " )\n", - " \n", - " return fig_polar" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], "source": [ "players_score_figure(df_eventplayers, sorted=True, ascending=True, hole=0.4, h=600)" ]