diff --git a/.github/workflows/python-app.yml b/.github/workflows/python-app.yml deleted file mode 100644 index 1168bd9..0000000 --- a/.github/workflows/python-app.yml +++ /dev/null @@ -1,39 +0,0 @@ -# This workflow will install Python dependencies, run tests and lint with a single version of Python -# For more information see: https://docs.github.com/en/actions/automating-builds-and-tests/building-and-testing-python - -name: Python application - -on: - push: - branches: [ "main" ] - pull_request: - branches: [ "main" ] - -permissions: - contents: read - -jobs: - build: - - runs-on: ubuntu-latest - - steps: - - uses: actions/checkout@v4 - - name: Set up Python 3.10 - uses: actions/setup-python@v3 - with: - python-version: "3.10" - - name: Install dependencies - run: | - python -m pip install --upgrade pip - pip install flake8 pytest - if [ -f requirements.txt ]; then pip install -r requirements.txt; fi - - name: Lint with flake8 - run: | - # stop the build if there are Python syntax errors or undefined names - flake8 . --count --select=E9,F63,F7,F82 --show-source --statistics - # exit-zero treats all errors as warnings. The GitHub editor is 127 chars wide - flake8 . --count --exit-zero --max-complexity=10 --max-line-length=127 --statistics - - name: Test with pytest - run: | - pytest diff --git a/ReadMe.md b/ReadMe.md deleted file mode 100644 index 3352240..0000000 --- a/ReadMe.md +++ /dev/null @@ -1,20 +0,0 @@ -Streamlit app in development! (Stay tunned) - -# Resume - -Common scoring systems in games consider only the accumulation of points, generally weighted or based on a base score and then accumulate according to actions. This works fine when teams have the same size or scores are individually, but it doesn't work for teams, factions, play styles that have a special meaning or preference in a player base. - -An observed practice is assigned players randomly to each team, trying to balance in quantity terms. In a player preference/special meaning escenario, this can lead to frustration and socially harmful environment within a community that translates from quitting events to even leave the game, with the desire of having freedom to choose. - -Since preferences are subjective, players elections will be naturally unbalanced, creating larger and smaller categories (factions, play styles, etc.) where in a general event category A can win/loose to category B mainly because of active players quantity, but not always for players quality... - -# Libraries - -## Data generation and manipulation -- Pandas -- Numpy -- Random -- Datetime - -## Data visualization -- Plotly Go Figures diff --git a/Score_study.ipynb b/Score_study.ipynb index c8e8f3e..803cf82 100644 --- a/Score_study.ipynb +++ b/Score_study.ipynb @@ -25,15 +25,15 @@ }, { "cell_type": "code", - "execution_count": 48, + "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "CPU times: user 24 ms, sys: 0 ns, total: 24 ms\n", - "Wall time: 18.3 ms\n" + "CPU times: user 3.21 s, sys: 0 ns, total: 3.21 s\n", + "Wall time: 2.1 s\n" ] } ], @@ -60,10 +60,20 @@ "warnings.simplefilter(\"ignore\", UserWarning)\n", "#import the_module_that_warns\n", "\n", + "# visualisation category config\n", "medal_order = {'medal' : ['gold', 'silver', 'bronze', 'not played']}\n", "medal_colors = ['rgb(255, 222, 94)', 'rgb(169, 180, 195)', 'rgb(194, 144, 80)', 'rgb(0,0,0)']" ] }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "theme_colors = ['rgb(240,205,204)', 'rgb(173,172,194)', 'rgb(251,230,197)', 'rgb(160,185,205)', 'rgb(37,71,112)']" + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -80,7 +90,7 @@ }, { "cell_type": "code", - "execution_count": 49, + "execution_count": 3, "metadata": {}, "outputs": [], "source": [ @@ -113,7 +123,7 @@ }, { "cell_type": "code", - "execution_count": 50, + "execution_count": 4, "metadata": {}, "outputs": [], "source": [ @@ -137,7 +147,7 @@ " 'player_id' : [f\"{player_id[player]}\" for i in range(2)],\n", " 'event_date' : [date for i in range(2)],\n", " 'event_game' : ['A', 'B'],\n", - " 'score' : [randint(0,3) for i in range(2)]\n", + " 'score' : [int(randint(0,3)) for i in range(2)]\n", " }\n", " ) \n", " ])\n", @@ -156,7 +166,7 @@ }, { "cell_type": "code", - "execution_count": 51, + "execution_count": 5, "metadata": {}, "outputs": [], "source": [ @@ -182,8 +192,10 @@ " else:\n", " medal.append('not played')\n", "\n", - " team['medal'] = pd.Categorical(medal, categories=['not played', 'bronze', 'silver', 'gold'], ordered=False)\n", - "\n", + " # EN EVALUACION\n", + " #team['medal'] = pd.Categorical(medal, categories=['not played', 'bronze', 'silver', 'gold'], ordered=False)\n", + " team['medal'] = pd.Series(medal)\n", + " \n", " return team" ] }, @@ -203,14 +215,14 @@ }, { "cell_type": "code", - "execution_count": 52, + "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Users in events: 611 users\n" + "Users in events: 50 users\n" ] } ], @@ -219,7 +231,7 @@ "# the player_base must be defined by the user to test escenarios\n", "\n", "#------------------------------- n players in player base\n", - "n_player_base = 611 #6114 #100\n", + "n_player_base = 50 #611 #6114 #100\n", "#------------------------------- max player ids: 99999\n", "player_ids = [i for i in range(10000,100000)]\n", "shuffle(player_ids)\n", @@ -227,9 +239,9 @@ "player_ids = player_ids[:n_player_base]\n", "\n", "# amount of players by team (add streamlit checkbox)\n", - "input_a = 184 #1842 #27\n", - "input_b = 236 #2357 #12\n", - "input_c = 81 #810 #27\n", + "input_a = 18 #30 #184 #1842\n", + "input_b = 24 #38 #236 #2357\n", + "input_c = 6 #13 #81 #810\n", "# input_d = len(player_base) - (input_a + input_b + input_c) # replaced by d_pl\n", "\n", "print(f\"Users in events: {len(player_ids)} users\")" @@ -237,7 +249,7 @@ }, { "cell_type": "code", - "execution_count": 53, + "execution_count": 7, "metadata": {}, "outputs": [], "source": [ @@ -254,16 +266,16 @@ }, { "cell_type": "code", - "execution_count": 54, + "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "(427, 191, 110)" + "(32, 8, 2)" ] }, - "execution_count": 54, + "execution_count": 8, "metadata": {}, "output_type": "execute_result" } @@ -288,7 +300,7 @@ }, { "cell_type": "code", - "execution_count": 55, + "execution_count": 9, "metadata": {}, "outputs": [], "source": [ @@ -296,23 +308,23 @@ "# checbox: if cb_b == false, cb_c remains hidden\n", "cb_b = True\n", "cb_c = True\n", - "cb_d = False" + "cb_d = True" ] }, { "cell_type": "code", - "execution_count": 56, + "execution_count": 10, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Team A: 184\n", - "Team B: 236\n", - "Team C: 81\n", - "Team D: 0\n", - "Total users: 501\n" + "Team A: 18\n", + "Team B: 24\n", + "Team C: 6\n", + "Team D: 2\n", + "Total users: 50\n" ] } ], @@ -351,16 +363,16 @@ }, { "cell_type": "code", - "execution_count": 57, + "execution_count": 11, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "(184, 236, 81, 0)" + "(18, 24, 6, 2)" ] }, - "execution_count": 57, + "execution_count": 11, "metadata": {}, "output_type": "execute_result" } @@ -368,9 +380,9 @@ "source": [ "# users in each team\n", "team_a_players = player_ids[:input_a]\n", - "team_b_players = player_ids[input_a:len(team_a_players)+team_b]\n", - "team_c_players = player_ids[len(team_b_players):len(team_b_players)+team_c]\n", - "team_d_players = player_ids[len(team_c_players):len(team_c_players)+team_d]\n", + "team_b_players = player_ids[input_a:(input_a+team_b)]\n", + "team_c_players = player_ids[(input_a+team_b):(input_a+team_b+team_c)]\n", + "team_d_players = player_ids[(input_a+team_b+team_c):(input_a+team_b+team_c+team_d)]\n", "\n", "# verify team lengths (from inputs and checkboxes)\n", "len(team_a_players), len(team_b_players), len(team_c_players), len(team_d_players)" @@ -385,7 +397,7 @@ }, { "cell_type": "code", - "execution_count": 58, + "execution_count": 12, "metadata": {}, "outputs": [ { @@ -420,47 +432,47 @@ " \n", " \n", " 0\n", - " 49099\n", + " 10711\n", " 2024-08-15\n", " A\n", - " 3\n", - " gold\n", + " 1\n", + " bronze\n", " ThunderCats\n", " \n", " \n", " 1\n", - " 49099\n", + " 10711\n", " 2024-08-15\n", " B\n", - " 0\n", - " not played\n", + " 1\n", + " bronze\n", " ThunderCats\n", " \n", " \n", " 2\n", - " 71855\n", + " 11417\n", " 2024-08-15\n", " A\n", - " 0\n", - " not played\n", + " 2\n", + " silver\n", " ThunderCats\n", " \n", " \n", " 3\n", - " 71855\n", + " 11417\n", " 2024-08-15\n", " B\n", - " 3\n", - " gold\n", + " 1\n", + " bronze\n", " ThunderCats\n", " \n", " \n", " 4\n", - " 12218\n", + " 88890\n", " 2024-08-15\n", " A\n", - " 3\n", - " gold\n", + " 2\n", + " silver\n", " ThunderCats\n", " \n", " \n", @@ -473,8 +485,8 @@ " ...\n", " \n", " \n", - " 997\n", - " 10599\n", + " 95\n", + " 59077\n", " 2024-08-15\n", " B\n", " 2\n", @@ -482,70 +494,70 @@ " Power Birds\n", " \n", " \n", - " 998\n", - " 53895\n", + " 96\n", + " 85870\n", " 2024-08-15\n", " A\n", " 0\n", " not played\n", - " Power Birds\n", + " Go Magikarp\n", " \n", " \n", - " 999\n", - " 53895\n", + " 97\n", + " 85870\n", " 2024-08-15\n", " B\n", " 1\n", " bronze\n", - " Power Birds\n", + " Go Magikarp\n", " \n", " \n", - " 1000\n", - " 44262\n", + " 98\n", + " 77310\n", " 2024-08-15\n", " A\n", - " 0\n", - " not played\n", - " Power Birds\n", + " 1\n", + " bronze\n", + " Go Magikarp\n", " \n", " \n", - " 1001\n", - " 44262\n", + " 99\n", + " 77310\n", " 2024-08-15\n", " B\n", - " 3\n", - " gold\n", - " Power Birds\n", + " 1\n", + " bronze\n", + " Go Magikarp\n", " \n", " \n", "\n", - "

1002 rows × 6 columns

\n", + "

100 rows × 6 columns

\n", "" ], "text/plain": [ - " player_id event_date event_game score medal team\n", - "0 49099 2024-08-15 A 3 gold ThunderCats\n", - "1 49099 2024-08-15 B 0 not played ThunderCats\n", - "2 71855 2024-08-15 A 0 not played ThunderCats\n", - "3 71855 2024-08-15 B 3 gold ThunderCats\n", - "4 12218 2024-08-15 A 3 gold ThunderCats\n", - "... ... ... ... ... ... ...\n", - "997 10599 2024-08-15 B 2 silver Power Birds\n", - "998 53895 2024-08-15 A 0 not played Power Birds\n", - "999 53895 2024-08-15 B 1 bronze Power Birds\n", - "1000 44262 2024-08-15 A 0 not played Power Birds\n", - "1001 44262 2024-08-15 B 3 gold Power Birds\n", + " player_id event_date event_game score medal team\n", + "0 10711 2024-08-15 A 1 bronze ThunderCats\n", + "1 10711 2024-08-15 B 1 bronze ThunderCats\n", + "2 11417 2024-08-15 A 2 silver ThunderCats\n", + "3 11417 2024-08-15 B 1 bronze ThunderCats\n", + "4 88890 2024-08-15 A 2 silver ThunderCats\n", + ".. ... ... ... ... ... ...\n", + "95 59077 2024-08-15 B 2 silver Power Birds\n", + "96 85870 2024-08-15 A 0 not played Go Magikarp\n", + "97 85870 2024-08-15 B 1 bronze Go Magikarp\n", + "98 77310 2024-08-15 A 1 bronze Go Magikarp\n", + "99 77310 2024-08-15 B 1 bronze Go Magikarp\n", "\n", - "[1002 rows x 6 columns]" + "[100 rows x 6 columns]" ] }, - "execution_count": 58, + "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "# build DataFrame (no date input yet)\n", + "# build DataFrame\n", "\n", "#------------------------------------------ team A\n", "#team_a_players = player_base[:input_a]\n", @@ -593,6 +605,36 @@ "df_eventplayers#.head(3)" ] }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "RangeIndex: 100 entries, 0 to 99\n", + "Data columns (total 6 columns):\n", + " # Column Non-Null Count Dtype \n", + "--- ------ -------------- ----- \n", + " 0 player_id 100 non-null object\n", + " 1 event_date 100 non-null object\n", + " 2 event_game 100 non-null object\n", + " 3 score 100 non-null int64 \n", + " 4 medal 100 non-null object\n", + " 5 team 100 non-null object\n", + "dtypes: int64(1), object(5)\n", + "memory usage: 4.8+ KB\n" + ] + } + ], + "source": [ + "# check players df dtypes\n", + "df_eventplayers.info()" + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -604,7 +646,7 @@ }, { "cell_type": "code", - "execution_count": 59, + "execution_count": 14, "metadata": {}, "outputs": [ { @@ -644,29 +686,29 @@ " A\n", " ThunderCats\n", " bronze\n", - " 38\n", - " 38\n", - " 184\n", + " 6.0\n", + " 6.0\n", + " 18\n", " \n", " \n", " 1\n", " 2024-08-15\n", " A\n", " ThunderCats\n", - " silver\n", - " 47\n", - " 94\n", - " 184\n", + " gold\n", + " 3.0\n", + " 9.0\n", + " 18\n", " \n", " \n", " 2\n", " 2024-08-15\n", " A\n", " ThunderCats\n", - " gold\n", - " 51\n", - " 153\n", - " 184\n", + " silver\n", + " 9.0\n", + " 18.0\n", + " 18\n", " \n", " \n", " 3\n", @@ -674,9 +716,9 @@ " A\n", " Dog Patrol\n", " bronze\n", - " 59\n", - " 59\n", - " 236\n", + " 7.0\n", + " 7.0\n", + " 24\n", " \n", " \n", "\n", @@ -684,19 +726,19 @@ ], "text/plain": [ " event_date event_game team medal medal_frequence acc_w_score \\\n", - "0 2024-08-15 A ThunderCats bronze 38 38 \n", - "1 2024-08-15 A ThunderCats silver 47 94 \n", - "2 2024-08-15 A ThunderCats gold 51 153 \n", - "3 2024-08-15 A Dog Patrol bronze 59 59 \n", + "0 2024-08-15 A ThunderCats bronze 6.0 6.0 \n", + "1 2024-08-15 A ThunderCats gold 3.0 9.0 \n", + "2 2024-08-15 A ThunderCats silver 9.0 18.0 \n", + "3 2024-08-15 A Dog Patrol bronze 7.0 7.0 \n", "\n", " total_players \n", - "0 184 \n", - "1 184 \n", - "2 184 \n", - "3 236 " + "0 18 \n", + "1 18 \n", + "2 18 \n", + "3 24 " ] }, - "execution_count": 59, + "execution_count": 14, "metadata": {}, "output_type": "execute_result" } @@ -749,6 +791,37 @@ "df_eventteams_scores.head(4)" ] }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "RangeIndex: 24 entries, 0 to 23\n", + "Data columns (total 7 columns):\n", + " # Column Non-Null Count Dtype \n", + "--- ------ -------------- ----- \n", + " 0 event_date 20 non-null object \n", + " 1 event_game 20 non-null object \n", + " 2 team 20 non-null category\n", + " 3 medal 20 non-null category\n", + " 4 medal_frequence 20 non-null float64 \n", + " 5 acc_w_score 20 non-null float64 \n", + " 6 total_players 24 non-null int64 \n", + "dtypes: category(2), float64(2), int64(1), object(2)\n", + "memory usage: 1.4+ KB\n" + ] + } + ], + "source": [ + "# check first team df dtypes\n", + "df_eventteams_scores.info()" + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -782,7 +855,7 @@ }, { "cell_type": "code", - "execution_count": 60, + "execution_count": 16, "metadata": {}, "outputs": [ { @@ -790,11 +863,11 @@ "output_type": "stream", "text": [ "Team A, event A medals\n", - " N of players: 184\n", - " Not played: 48\n", - " Bronzes: 38\n", - " Silvers: 47\n", - " Golds: 51\n" + " N of players: 18\n", + " Not played: 0\n", + " Bronzes: 6\n", + " Silvers: 9\n", + " Golds: 3\n" ] } ], @@ -826,7 +899,7 @@ }, { "cell_type": "code", - "execution_count": 61, + "execution_count": 17, "metadata": {}, "outputs": [], "source": [ @@ -843,7 +916,7 @@ }, { "cell_type": "code", - "execution_count": 62, + "execution_count": 18, "metadata": {}, "outputs": [], "source": [ @@ -895,19 +968,20 @@ }, { "cell_type": "code", - "execution_count": 63, + "execution_count": 19, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Event A participation: 81.34%\n", - "Event B participation: 80.36%\n", + "Event A participation: 82.0%\n", + "Event B participation: 84.0%\n", "---------------------------------------------\n", - "Team ThunderCats participation: 51.09%\n", - "Team Dog Patrol participation: 56.36%\n", - "Team Power Birds participation: 49.38%\n" + "Team ThunderCats participation: 77.78%\n", + "Team Dog Patrol participation: 54.17%\n", + "Team Power Birds participation: 83.33%\n", + "Team Go Magikarp participation: 50.0%\n" ] } ], @@ -926,7 +1000,7 @@ }, { "cell_type": "code", - "execution_count": 64, + "execution_count": 20, "metadata": {}, "outputs": [], "source": [ @@ -959,7 +1033,7 @@ }, { "cell_type": "code", - "execution_count": 65, + "execution_count": 21, "metadata": {}, "outputs": [ { @@ -967,9 +1041,10 @@ "output_type": "stream", "text": [ "Teams Event competitor ratios\n", - " \tTeam ThunderCats \t - Event A: 73.91%\t Event B: 77.17%\n", - "\tTeam Dog Patrol \t - Event A: 80.51%\t Event B: 75.85%\n", - "\tTeam Power Birds \t - Event A: 75.31%\t Event B: 74.07%\n" + " \tTeam ThunderCats \t - Event A: 100.0%\t Event B: 77.78%\n", + "\tTeam Dog Patrol \t - Event A: 70.83%\t Event B: 83.33%\n", + "\tTeam Power Birds \t - Event A: 83.33%\t Event B: 100.0%\n", + "\tTeam Go Magikarp \t - Event A: 50.0%\t Event B: 100.0%\n" ] }, { @@ -1010,32 +1085,32 @@ " A\n", " ThunderCats\n", " bronze\n", - " 38\n", - " 38\n", - " 184\n", - " 73.91\n", + " 6.0\n", + " 6.0\n", + " 18\n", + " 100.00\n", " \n", " \n", " 1\n", " 2024-08-15\n", " A\n", " ThunderCats\n", - " silver\n", - " 47\n", - " 94\n", - " 184\n", - " 73.91\n", + " gold\n", + " 3.0\n", + " 9.0\n", + " 18\n", + " 100.00\n", " \n", " \n", " 2\n", " 2024-08-15\n", " A\n", " ThunderCats\n", - " gold\n", - " 51\n", - " 153\n", - " 184\n", - " 73.91\n", + " silver\n", + " 9.0\n", + " 18.0\n", + " 18\n", + " 100.00\n", " \n", " \n", " 3\n", @@ -1043,10 +1118,10 @@ " A\n", " Dog Patrol\n", " bronze\n", - " 59\n", - " 59\n", - " 236\n", - " 80.51\n", + " 7.0\n", + " 7.0\n", + " 24\n", + " 70.83\n", " \n", " \n", "\n", @@ -1054,19 +1129,19 @@ ], "text/plain": [ " event_date event_game team medal medal_frequence acc_w_score \\\n", - "0 2024-08-15 A ThunderCats bronze 38 38 \n", - "1 2024-08-15 A ThunderCats silver 47 94 \n", - "2 2024-08-15 A ThunderCats gold 51 153 \n", - "3 2024-08-15 A Dog Patrol bronze 59 59 \n", + "0 2024-08-15 A ThunderCats bronze 6.0 6.0 \n", + "1 2024-08-15 A ThunderCats gold 3.0 9.0 \n", + "2 2024-08-15 A ThunderCats silver 9.0 18.0 \n", + "3 2024-08-15 A Dog Patrol bronze 7.0 7.0 \n", "\n", " total_players player_ratio \n", - "0 184 73.91 \n", - "1 184 73.91 \n", - "2 184 73.91 \n", - "3 236 80.51 " + "0 18 100.00 \n", + "1 18 100.00 \n", + "2 18 100.00 \n", + "3 24 70.83 " ] }, - "execution_count": 65, + "execution_count": 21, "metadata": {}, "output_type": "execute_result" } @@ -1114,7 +1189,7 @@ }, { "cell_type": "code", - "execution_count": 66, + "execution_count": 22, "metadata": {}, "outputs": [], "source": [ @@ -1184,7 +1259,7 @@ }, { "cell_type": "code", - "execution_count": 67, + "execution_count": 23, "metadata": {}, "outputs": [ { @@ -1226,35 +1301,35 @@ " A\n", " ThunderCats\n", " bronze\n", - " 38\n", - " 38\n", - " 184\n", - " 73.91\n", - " 0.2794\n", + " 6.0\n", + " 6.0\n", + " 18\n", + " 100.00\n", + " 0.3333\n", " \n", " \n", " 1\n", " 2024-08-15\n", " A\n", " ThunderCats\n", - " silver\n", - " 47\n", - " 94\n", - " 184\n", - " 73.91\n", - " 0.3456\n", + " gold\n", + " 3.0\n", + " 9.0\n", + " 18\n", + " 100.00\n", + " 0.1667\n", " \n", " \n", " 2\n", " 2024-08-15\n", " A\n", " ThunderCats\n", - " gold\n", - " 51\n", - " 153\n", - " 184\n", - " 73.91\n", - " 0.3750\n", + " silver\n", + " 9.0\n", + " 18.0\n", + " 18\n", + " 100.00\n", + " 0.5000\n", " \n", " \n", " 3\n", @@ -1262,11 +1337,11 @@ " A\n", " Dog Patrol\n", " bronze\n", - " 59\n", - " 59\n", - " 236\n", - " 80.51\n", - " 0.3105\n", + " 7.0\n", + " 7.0\n", + " 24\n", + " 70.83\n", + " 0.4118\n", " \n", " \n", "\n", @@ -1274,19 +1349,19 @@ ], "text/plain": [ " event_date event_game team medal medal_frequence acc_w_score \\\n", - "0 2024-08-15 A ThunderCats bronze 38 38 \n", - "1 2024-08-15 A ThunderCats silver 47 94 \n", - "2 2024-08-15 A ThunderCats gold 51 153 \n", - "3 2024-08-15 A Dog Patrol bronze 59 59 \n", + "0 2024-08-15 A ThunderCats bronze 6.0 6.0 \n", + "1 2024-08-15 A ThunderCats gold 3.0 9.0 \n", + "2 2024-08-15 A ThunderCats silver 9.0 18.0 \n", + "3 2024-08-15 A Dog Patrol bronze 7.0 7.0 \n", "\n", " total_players player_ratio medal_relative \n", - "0 184 73.91 0.2794 \n", - "1 184 73.91 0.3456 \n", - "2 184 73.91 0.3750 \n", - "3 236 80.51 0.3105 " + "0 18 100.00 0.3333 \n", + "1 18 100.00 0.1667 \n", + "2 18 100.00 0.5000 \n", + "3 24 70.83 0.4118 " ] }, - "execution_count": 67, + "execution_count": 23, "metadata": {}, "output_type": "execute_result" } @@ -1322,7 +1397,7 @@ }, { "cell_type": "code", - "execution_count": 68, + "execution_count": 24, "metadata": {}, "outputs": [ { @@ -1331,8 +1406,8 @@ "text": [ "Teams Performance ratios during each event\n", "Event A\n", - " \tTeam ThunderCats\t - Gold: 37.5%\t Silver: 34.56%\n", - " \tTeam Dog Patrol \t - Gold: 30.53%\t Silver: 38.42%\n" + " \tTeam ThunderCats\t - Gold: 16.669999999999998%\t Silver: 50.0%\n", + " \tTeam Dog Patrol \t - Gold: 35.29%\t Silver: 23.53%\n" ] } ], @@ -1356,7 +1431,7 @@ }, { "cell_type": "code", - "execution_count": 69, + "execution_count": 25, "metadata": { "scrolled": true }, @@ -1401,38 +1476,38 @@ " A\n", " ThunderCats\n", " bronze\n", - " 38\n", - " 38\n", - " 184\n", - " 73.91\n", - " 27\n", - " 27.94\n", + " 6.0\n", + " 6.0\n", + " 18\n", + " 100.00\n", + " 33\n", + " 33.33\n", " \n", " \n", " 1\n", " 2024-08-15\n", " A\n", " ThunderCats\n", - " silver\n", - " 47\n", - " 94\n", - " 184\n", - " 73.91\n", - " 34\n", - " 69.12\n", + " gold\n", + " 3.0\n", + " 9.0\n", + " 18\n", + " 100.00\n", + " 16\n", + " 50.01\n", " \n", " \n", " 2\n", " 2024-08-15\n", " A\n", " ThunderCats\n", - " gold\n", - " 51\n", - " 153\n", - " 184\n", - " 73.91\n", - " 37\n", - " 112.50\n", + " silver\n", + " 9.0\n", + " 18.0\n", + " 18\n", + " 100.00\n", + " 50\n", + " 100.00\n", " \n", " \n", " 3\n", @@ -1440,12 +1515,12 @@ " A\n", " Dog Patrol\n", " bronze\n", - " 59\n", - " 59\n", - " 236\n", - " 80.51\n", - " 31\n", - " 31.05\n", + " 7.0\n", + " 7.0\n", + " 24\n", + " 70.83\n", + " 41\n", + " 41.18\n", " \n", " \n", "\n", @@ -1453,19 +1528,19 @@ ], "text/plain": [ " event_date event_game team medal medal_frequence acc_w_score \\\n", - "0 2024-08-15 A ThunderCats bronze 38 38 \n", - "1 2024-08-15 A ThunderCats silver 47 94 \n", - "2 2024-08-15 A ThunderCats gold 51 153 \n", - "3 2024-08-15 A Dog Patrol bronze 59 59 \n", + "0 2024-08-15 A ThunderCats bronze 6.0 6.0 \n", + "1 2024-08-15 A ThunderCats gold 3.0 9.0 \n", + "2 2024-08-15 A ThunderCats silver 9.0 18.0 \n", + "3 2024-08-15 A Dog Patrol bronze 7.0 7.0 \n", "\n", " total_players player_ratio medal_relative performance_score \n", - "0 184 73.91 27 27.94 \n", - "1 184 73.91 34 69.12 \n", - "2 184 73.91 37 112.50 \n", - "3 236 80.51 31 31.05 " + "0 18 100.00 33 33.33 \n", + "1 18 100.00 16 50.01 \n", + "2 18 100.00 50 100.00 \n", + "3 24 70.83 41 41.18 " ] }, - "execution_count": 69, + "execution_count": 25, "metadata": {}, "output_type": "execute_result" } @@ -1494,7 +1569,7 @@ }, { "cell_type": "code", - "execution_count": 70, + "execution_count": 26, "metadata": { "scrolled": true }, @@ -1541,44 +1616,44 @@ " A\n", " ThunderCats\n", " bronze\n", - " 38\n", - " 38\n", - " 184\n", - " 73.91\n", - " 27\n", - " 27.94\n", - " 285\n", - " 209.56\n", + " 6.0\n", + " 6.0\n", + " 18\n", + " 100.00\n", + " 33\n", + " 33.33\n", + " 33.0\n", + " 183.34\n", " \n", " \n", " 1\n", " 2024-08-15\n", " A\n", " ThunderCats\n", - " silver\n", - " 47\n", - " 94\n", - " 184\n", - " 73.91\n", - " 34\n", - " 69.12\n", - " 285\n", - " 209.56\n", + " gold\n", + " 3.0\n", + " 9.0\n", + " 18\n", + " 100.00\n", + " 16\n", + " 50.01\n", + " 33.0\n", + " 183.34\n", " \n", " \n", " 2\n", " 2024-08-15\n", " A\n", " ThunderCats\n", - " gold\n", - " 51\n", - " 153\n", - " 184\n", - " 73.91\n", - " 37\n", - " 112.50\n", - " 285\n", - " 209.56\n", + " silver\n", + " 9.0\n", + " 18.0\n", + " 18\n", + " 100.00\n", + " 50\n", + " 100.00\n", + " 33.0\n", + " 183.34\n", " \n", " \n", " 3\n", @@ -1586,14 +1661,14 @@ " A\n", " Dog Patrol\n", " bronze\n", - " 59\n", - " 59\n", - " 236\n", - " 80.51\n", - " 31\n", - " 31.05\n", - " 379\n", - " 199.48\n", + " 7.0\n", + " 7.0\n", + " 24\n", + " 70.83\n", + " 41\n", + " 41.18\n", + " 33.0\n", + " 194.11\n", " \n", " \n", "\n", @@ -1601,25 +1676,25 @@ ], "text/plain": [ " event_date event_game team medal medal_frequence acc_w_score \\\n", - "0 2024-08-15 A ThunderCats bronze 38 38 \n", - "1 2024-08-15 A ThunderCats silver 47 94 \n", - "2 2024-08-15 A ThunderCats gold 51 153 \n", - "3 2024-08-15 A Dog Patrol bronze 59 59 \n", + "0 2024-08-15 A ThunderCats bronze 6.0 6.0 \n", + "1 2024-08-15 A ThunderCats gold 3.0 9.0 \n", + "2 2024-08-15 A ThunderCats silver 9.0 18.0 \n", + "3 2024-08-15 A Dog Patrol bronze 7.0 7.0 \n", "\n", " total_players player_ratio medal_relative performance_score \\\n", - "0 184 73.91 27 27.94 \n", - "1 184 73.91 34 69.12 \n", - "2 184 73.91 37 112.50 \n", - "3 236 80.51 31 31.05 \n", + "0 18 100.00 33 33.33 \n", + "1 18 100.00 16 50.01 \n", + "2 18 100.00 50 100.00 \n", + "3 24 70.83 41 41.18 \n", "\n", " acc_w_score_total performance_score_total \n", - "0 285 209.56 \n", - "1 285 209.56 \n", - "2 285 209.56 \n", - "3 379 199.48 " + "0 33.0 183.34 \n", + "1 33.0 183.34 \n", + "2 33.0 183.34 \n", + "3 33.0 194.11 " ] }, - "execution_count": 70, + "execution_count": 26, "metadata": {}, "output_type": "execute_result" } @@ -1662,7 +1737,7 @@ }, { "cell_type": "code", - "execution_count": 71, + "execution_count": 27, "metadata": {}, "outputs": [], "source": [ @@ -1705,7 +1780,59 @@ }, { "cell_type": "code", - "execution_count": 72, + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": 42, + "metadata": {}, + "outputs": [], + "source": [ + "def event_winners(score_type = 'accumulative', df = df_eventteams_scores):\n", + "\n", + " \"\"\"\n", + " Shows the winners sorted by total score > medal score > competitor ratio (or player ratio).\n", + "\n", + " **Parameters**\n", + " score_type: choose 'performance' or 'accumulative' ('accumulative' by default)\n", + " df: main DataFrame\n", + " \"\"\"\n", + "\n", + " if score_type == 'accumulative':\n", + " score_cols = ['acc_w_score_total', 'acc_w_score']\n", + " if score_type == 'performance':\n", + " score_cols = 'performance_score_total', 'performance_score'\n", + "\n", + " events = list(df['event_game'].unique())\n", + " # sort df with no consideration of bronze score (the lowest)\n", + " observed_winners = df[df['event_game']==events[0]][df['medal']!='bronze'].copy()\\\n", + " .sort_values(by = [score_cols[0], score_cols[1], 'player_ratio'],\n", + " ascending = [False, False, False])\\\n", + " [['event_game','team','medal',score_cols[0], score_cols[1],'player_ratio']]\n", + "\n", + " # uses teams in the sorted df instead of the main team list\n", + " loc_index = [i*2 for i in range(len(observed_winners['team'].unique()))]\n", + " observed_winners = observed_winners.reset_index(drop=True).iloc[loc_index,:]\n", + "\n", + " if len(events)>1:\n", + " for e in range(1,len(events)):\n", + " observed_winners = pd.concat([observed_winners,df[df['event_game']==events[e]][df['medal']!='bronze']\\\n", + " .sort_values(by = [score_cols[0], score_cols[1], 'player_ratio'],\n", + " ascending = [False, False, False])\\\n", + " [['event_game','team','medal',score_cols[0], score_cols[1],'player_ratio']]\\\n", + " .reset_index(drop=True).iloc[loc_index,:]])\n", + " # clear memory\n", + " del loc_index\n", + "\n", + " return observed_winners" + ] + }, + { + "cell_type": "code", + "execution_count": 43, "metadata": {}, "outputs": [ { @@ -1741,72 +1868,80 @@ " \n", " 0\n", " A\n", - " Dog Patrol\n", - " gold\n", - " 379\n", - " 174\n", - " 80.51\n", + " ThunderCats\n", + " silver\n", + " 33.0\n", + " 18.0\n", + " 100.00\n", " \n", " \n", " 2\n", " A\n", " ThunderCats\n", " gold\n", - " 285\n", - " 153\n", - " 73.91\n", + " 33.0\n", + " 9.0\n", + " 100.00\n", " \n", " \n", " 4\n", " A\n", " Power Birds\n", " gold\n", - " 119\n", - " 57\n", - " 75.31\n", + " 10.0\n", + " 6.0\n", + " 83.33\n", " \n", " \n", " 0\n", " B\n", " Dog Patrol\n", " gold\n", - " 344\n", - " 156\n", - " 75.85\n", + " 36.0\n", + " 15.0\n", + " 83.33\n", " \n", " \n", " 2\n", " B\n", " ThunderCats\n", - " gold\n", - " 287\n", - " 132\n", - " 77.17\n", + " silver\n", + " 20.0\n", + " 8.0\n", + " 77.78\n", " \n", " \n", " 4\n", " B\n", " Power Birds\n", " gold\n", - " 126\n", - " 69\n", - " 74.07\n", + " 12.0\n", + " 6.0\n", + " 100.00\n", " \n", " \n", "\n", "" ], "text/plain": [ - " event_game team medal acc_w_score_total acc_w_score player_ratio\n", - "0 A Dog Patrol gold 379 174 80.51\n", - "2 A ThunderCats gold 285 153 73.91\n", - "4 A Power Birds gold 119 57 75.31\n", - "0 B Dog Patrol gold 344 156 75.85\n", - "2 B ThunderCats gold 287 132 77.17\n", - "4 B Power Birds gold 126 69 74.07" + " event_game team medal acc_w_score_total acc_w_score \\\n", + "0 A ThunderCats silver 33.0 18.0 \n", + "2 A ThunderCats gold 33.0 9.0 \n", + "4 A Power Birds gold 10.0 6.0 \n", + "0 B Dog Patrol gold 36.0 15.0 \n", + "2 B ThunderCats silver 20.0 8.0 \n", + "4 B Power Birds gold 12.0 6.0 \n", + "\n", + " player_ratio \n", + "0 100.00 \n", + "2 100.00 \n", + "4 83.33 \n", + "0 83.33 \n", + "2 77.78 \n", + "4 100.00 " ] }, - "execution_count": 72, + "execution_count": 43, "metadata": {}, "output_type": "execute_result" } @@ -1817,7 +1952,7 @@ }, { "cell_type": "code", - "execution_count": 73, + "execution_count": 44, "metadata": {}, "outputs": [ { @@ -1853,80 +1988,80 @@ " \n", " 0\n", " A\n", - " ThunderCats\n", + " Power Birds\n", " gold\n", - " 209.56\n", - " 112.50\n", - " 73.91\n", + " 200.00\n", + " 120.00\n", + " 83.33\n", " \n", " \n", " 2\n", " A\n", " Dog Patrol\n", " gold\n", - " 199.48\n", - " 91.59\n", - " 80.51\n", + " 194.11\n", + " 105.87\n", + " 70.83\n", " \n", " \n", " 4\n", " A\n", - " Power Birds\n", - " gold\n", - " 195.10\n", - " 93.45\n", - " 75.31\n", + " ThunderCats\n", + " silver\n", + " 183.34\n", + " 100.00\n", + " 100.00\n", " \n", " \n", " 0\n", " B\n", " Power Birds\n", " gold\n", - " 209.98\n", - " 114.99\n", - " 74.07\n", + " 199.98\n", + " 99.99\n", + " 100.00\n", " \n", " \n", " 2\n", " B\n", - " ThunderCats\n", + " Dog Patrol\n", " gold\n", - " 202.12\n", - " 92.97\n", - " 77.17\n", + " 180.00\n", + " 75.00\n", + " 83.33\n", " \n", " \n", " 4\n", " B\n", - " Dog Patrol\n", - " gold\n", - " 192.18\n", - " 87.15\n", - " 75.85\n", + " ThunderCats\n", + " silver\n", + " 142.85\n", + " 57.14\n", + " 77.78\n", " \n", " \n", "\n", "" ], "text/plain": [ - " event_game team medal performance_score_total performance_score \\\n", - "0 A ThunderCats gold 209.56 112.50 \n", - "2 A Dog Patrol gold 199.48 91.59 \n", - "4 A Power Birds gold 195.10 93.45 \n", - "0 B Power Birds gold 209.98 114.99 \n", - "2 B ThunderCats gold 202.12 92.97 \n", - "4 B Dog Patrol gold 192.18 87.15 \n", + " event_game team medal performance_score_total performance_score \\\n", + "0 A Power Birds gold 200.00 120.00 \n", + "2 A Dog Patrol gold 194.11 105.87 \n", + "4 A ThunderCats silver 183.34 100.00 \n", + "0 B Power Birds gold 199.98 99.99 \n", + "2 B Dog Patrol gold 180.00 75.00 \n", + "4 B ThunderCats silver 142.85 57.14 \n", "\n", " player_ratio \n", - "0 73.91 \n", - "2 80.51 \n", - "4 75.31 \n", - "0 74.07 \n", - "2 77.17 \n", - "4 75.85 " + "0 83.33 \n", + "2 70.83 \n", + "4 100.00 \n", + "0 100.00 \n", + "2 83.33 \n", + "4 77.78 " ] }, - "execution_count": 73, + "execution_count": 44, "metadata": {}, "output_type": "execute_result" } @@ -1937,7 +2072,7 @@ }, { "cell_type": "code", - "execution_count": 74, + "execution_count": 45, "metadata": {}, "outputs": [ { @@ -1946,18 +2081,25 @@ "text": [ "Winners by methods\n", "Event A\t\tAcc_w method\t\tPerformance method\n", - " gold\tDog Patrol\t\tThunderCats\n", + " gold\tThunderCats\t\tPower Birds\n", " silver\tThunderCats\t\tDog Patrol\n", - " bronze\tPower Birds\t\tPower Birds\n", + " bronze\tPower Birds\t\tThunderCats\n", "Event B\n", " gold\tDog Patrol\t\tPower Birds\n", - " silver\tThunderCats\t\tThunderCats\n", - " bronze\tPower Birds\t\tDog Patrol\n" + " silver\tThunderCats\t\tDog Patrol\n", + " bronze\tPower Birds\t\tThunderCats\n" ] } ], "source": [ "# da winners! (from 3 teams or more)\n", + "# there are some low chances were in accumulative method can be found a position discrepancy\n", + "# case from random generated data:\n", + "# Accumulated - gold: team_A, silver: team_A, bronze: team_C\n", + "# Performance - gold: team_C, silver: team_B, bronze: team_A\n", + "\n", + "# Accumulated method has shown more problems in defining clear winner positions than Performance method\n", + "# in the continuous iterations (random data generation)\n", "\n", "print(\n", " f\"\"\"Winners by methods\n", @@ -1982,7 +2124,7 @@ }, { "cell_type": "code", - "execution_count": 75, + "execution_count": 46, "metadata": { "scrolled": true }, @@ -2029,44 +2171,44 @@ " A\n", " ThunderCats\n", " bronze\n", - " 38\n", - " 38\n", - " 184\n", - " 73.91\n", - " 27\n", - " 27.94\n", - " 285\n", - " 209.56\n", + " 6.0\n", + " 6.0\n", + " 18\n", + " 100.00\n", + " 33\n", + " 33.33\n", + " 33.0\n", + " 183.34\n", " \n", " \n", " 1\n", " 2024-08-15\n", " A\n", " ThunderCats\n", - " silver\n", - " 47\n", - " 94\n", - " 184\n", - " 73.91\n", - " 34\n", - " 69.12\n", - " 285\n", - " 209.56\n", + " gold\n", + " 3.0\n", + " 9.0\n", + " 18\n", + " 100.00\n", + " 16\n", + " 50.01\n", + " 33.0\n", + " 183.34\n", " \n", " \n", " 2\n", " 2024-08-15\n", " A\n", " ThunderCats\n", - " gold\n", - " 51\n", - " 153\n", - " 184\n", - " 73.91\n", - " 37\n", - " 112.50\n", - " 285\n", - " 209.56\n", + " silver\n", + " 9.0\n", + " 18.0\n", + " 18\n", + " 100.00\n", + " 50\n", + " 100.00\n", + " 33.0\n", + " 183.34\n", " \n", " \n", " 3\n", @@ -2074,44 +2216,44 @@ " A\n", " Dog Patrol\n", " bronze\n", - " 59\n", - " 59\n", - " 236\n", - " 80.51\n", - " 31\n", - " 31.05\n", - " 379\n", - " 199.48\n", + " 7.0\n", + " 7.0\n", + " 24\n", + " 70.83\n", + " 41\n", + " 41.18\n", + " 33.0\n", + " 194.11\n", " \n", " \n", " 4\n", " 2024-08-15\n", " A\n", " Dog Patrol\n", - " silver\n", - " 73\n", - " 146\n", - " 236\n", - " 80.51\n", - " 38\n", - " 76.84\n", - " 379\n", - " 199.48\n", + " gold\n", + " 6.0\n", + " 18.0\n", + " 24\n", + " 70.83\n", + " 35\n", + " 105.87\n", + " 33.0\n", + " 194.11\n", " \n", " \n", " 5\n", " 2024-08-15\n", " A\n", " Dog Patrol\n", - " gold\n", - " 58\n", - " 174\n", - " 236\n", - " 80.51\n", - " 30\n", - " 91.59\n", - " 379\n", - " 199.48\n", + " silver\n", + " 4.0\n", + " 8.0\n", + " 24\n", + " 70.83\n", + " 23\n", + " 47.06\n", + " 33.0\n", + " 194.11\n", " \n", " \n", " 6\n", @@ -2119,74 +2261,74 @@ " A\n", " Power Birds\n", " bronze\n", - " 22\n", - " 22\n", - " 81\n", - " 75.31\n", - " 36\n", - " 36.07\n", - " 119\n", - " 195.10\n", + " 2.0\n", + " 2.0\n", + " 6\n", + " 83.33\n", + " 40\n", + " 40.00\n", + " 10.0\n", + " 200.00\n", " \n", " \n", " 7\n", " 2024-08-15\n", " A\n", " Power Birds\n", - " silver\n", - " 20\n", + " gold\n", + " 2.0\n", + " 6.0\n", + " 6\n", + " 83.33\n", " 40\n", - " 81\n", - " 75.31\n", - " 32\n", - " 65.58\n", - " 119\n", - " 195.10\n", + " 120.00\n", + " 10.0\n", + " 200.00\n", " \n", " \n", " 8\n", " 2024-08-15\n", " A\n", " Power Birds\n", - " gold\n", - " 19\n", - " 57\n", - " 81\n", - " 75.31\n", - " 31\n", - " 93.45\n", - " 119\n", - " 195.10\n", + " silver\n", + " 1.0\n", + " 2.0\n", + " 6\n", + " 83.33\n", + " 20\n", + " 40.00\n", + " 10.0\n", + " 200.00\n", " \n", " \n", " 9\n", " 2024-08-15\n", - " B\n", - " ThunderCats\n", + " A\n", + " Go Magikarp\n", " bronze\n", - " 41\n", - " 41\n", - " 184\n", - " 77.17\n", - " 28\n", - " 28.87\n", - " 287\n", - " 202.12\n", + " 1.0\n", + " 1.0\n", + " 2\n", + " 50.00\n", + " 100\n", + " 100.00\n", + " 1.0\n", + " 100.00\n", " \n", " \n", " 10\n", " 2024-08-15\n", " B\n", " ThunderCats\n", - " silver\n", - " 57\n", - " 114\n", - " 184\n", - " 77.17\n", - " 40\n", - " 80.28\n", - " 287\n", - " 202.12\n", + " bronze\n", + " 9.0\n", + " 9.0\n", + " 2\n", + " 77.78\n", + " 64\n", + " 64.29\n", + " 20.0\n", + " 142.85\n", " \n", " \n", " 11\n", @@ -2194,44 +2336,44 @@ " B\n", " ThunderCats\n", " gold\n", - " 44\n", - " 132\n", - " 184\n", - " 77.17\n", - " 30\n", - " 92.97\n", - " 287\n", - " 202.12\n", + " 1.0\n", + " 3.0\n", + " 2\n", + " 77.78\n", + " 7\n", + " 21.42\n", + " 20.0\n", + " 142.85\n", " \n", " \n", " 12\n", " 2024-08-15\n", " B\n", - " Dog Patrol\n", - " bronze\n", - " 66\n", - " 66\n", - " 236\n", - " 75.85\n", - " 36\n", - " 36.87\n", - " 344\n", - " 192.18\n", + " ThunderCats\n", + " silver\n", + " 4.0\n", + " 8.0\n", + " 18\n", + " 77.78\n", + " 28\n", + " 57.14\n", + " 20.0\n", + " 142.85\n", " \n", " \n", " 13\n", " 2024-08-15\n", " B\n", " Dog Patrol\n", - " silver\n", - " 61\n", - " 122\n", - " 236\n", - " 75.85\n", - " 34\n", - " 68.16\n", - " 344\n", - " 192.18\n", + " bronze\n", + " 9.0\n", + " 9.0\n", + " 18\n", + " 83.33\n", + " 45\n", + " 45.00\n", + " 36.0\n", + " 180.00\n", " \n", " \n", " 14\n", @@ -2239,44 +2381,44 @@ " B\n", " Dog Patrol\n", " gold\n", - " 52\n", - " 156\n", - " 236\n", - " 75.85\n", - " 29\n", - " 87.15\n", - " 344\n", - " 192.18\n", + " 5.0\n", + " 15.0\n", + " 18\n", + " 83.33\n", + " 25\n", + " 75.00\n", + " 36.0\n", + " 180.00\n", " \n", " \n", " 15\n", " 2024-08-15\n", " B\n", - " Power Birds\n", - " bronze\n", - " 17\n", - " 17\n", - " 81\n", - " 74.07\n", - " 28\n", - " 28.33\n", - " 126\n", - " 209.98\n", + " Dog Patrol\n", + " silver\n", + " 6.0\n", + " 12.0\n", + " 24\n", + " 83.33\n", + " 30\n", + " 60.00\n", + " 36.0\n", + " 180.00\n", " \n", " \n", " 16\n", " 2024-08-15\n", " B\n", " Power Birds\n", - " silver\n", - " 20\n", - " 40\n", - " 81\n", - " 74.07\n", + " bronze\n", + " 2.0\n", + " 2.0\n", + " 24\n", + " 100.00\n", " 33\n", - " 66.66\n", - " 126\n", - " 209.98\n", + " 33.33\n", + " 12.0\n", + " 199.98\n", " \n", " \n", " 17\n", @@ -2284,14 +2426,44 @@ " B\n", " Power Birds\n", " gold\n", - " 23\n", - " 69\n", - " 81\n", - " 74.07\n", - " 38\n", - " 114.99\n", - " 126\n", - " 209.98\n", + " 2.0\n", + " 6.0\n", + " 24\n", + " 100.00\n", + " 33\n", + " 99.99\n", + " 12.0\n", + " 199.98\n", + " \n", + " \n", + " 18\n", + " 2024-08-15\n", + " B\n", + " Power Birds\n", + " silver\n", + " 2.0\n", + " 4.0\n", + " 6\n", + " 100.00\n", + " 33\n", + " 66.66\n", + " 12.0\n", + " 199.98\n", + " \n", + " \n", + " 19\n", + " 2024-08-15\n", + " B\n", + " Go Magikarp\n", + " bronze\n", + " 2.0\n", + " 2.0\n", + " 6\n", + " 100.00\n", + " 100\n", + " 100.00\n", + " 2.0\n", + " 100.00\n", " \n", " \n", "\n", @@ -2299,67 +2471,73 @@ ], "text/plain": [ " event_date event_game team medal medal_frequence acc_w_score \\\n", - "0 2024-08-15 A ThunderCats bronze 38 38 \n", - "1 2024-08-15 A ThunderCats silver 47 94 \n", - "2 2024-08-15 A ThunderCats gold 51 153 \n", - "3 2024-08-15 A Dog Patrol bronze 59 59 \n", - "4 2024-08-15 A Dog Patrol silver 73 146 \n", - "5 2024-08-15 A Dog Patrol gold 58 174 \n", - "6 2024-08-15 A Power Birds bronze 22 22 \n", - "7 2024-08-15 A Power Birds silver 20 40 \n", - "8 2024-08-15 A Power Birds gold 19 57 \n", - "9 2024-08-15 B ThunderCats bronze 41 41 \n", - "10 2024-08-15 B ThunderCats silver 57 114 \n", - "11 2024-08-15 B ThunderCats gold 44 132 \n", - "12 2024-08-15 B Dog Patrol bronze 66 66 \n", - "13 2024-08-15 B Dog Patrol silver 61 122 \n", - "14 2024-08-15 B Dog Patrol gold 52 156 \n", - "15 2024-08-15 B Power Birds bronze 17 17 \n", - "16 2024-08-15 B Power Birds silver 20 40 \n", - "17 2024-08-15 B Power Birds gold 23 69 \n", + "0 2024-08-15 A ThunderCats bronze 6.0 6.0 \n", + "1 2024-08-15 A ThunderCats gold 3.0 9.0 \n", + "2 2024-08-15 A ThunderCats silver 9.0 18.0 \n", + "3 2024-08-15 A Dog Patrol bronze 7.0 7.0 \n", + "4 2024-08-15 A Dog Patrol gold 6.0 18.0 \n", + "5 2024-08-15 A Dog Patrol silver 4.0 8.0 \n", + "6 2024-08-15 A Power Birds bronze 2.0 2.0 \n", + "7 2024-08-15 A Power Birds gold 2.0 6.0 \n", + "8 2024-08-15 A Power Birds silver 1.0 2.0 \n", + "9 2024-08-15 A Go Magikarp bronze 1.0 1.0 \n", + "10 2024-08-15 B ThunderCats bronze 9.0 9.0 \n", + "11 2024-08-15 B ThunderCats gold 1.0 3.0 \n", + "12 2024-08-15 B ThunderCats silver 4.0 8.0 \n", + "13 2024-08-15 B Dog Patrol bronze 9.0 9.0 \n", + "14 2024-08-15 B Dog Patrol gold 5.0 15.0 \n", + "15 2024-08-15 B Dog Patrol silver 6.0 12.0 \n", + "16 2024-08-15 B Power Birds bronze 2.0 2.0 \n", + "17 2024-08-15 B Power Birds gold 2.0 6.0 \n", + "18 2024-08-15 B Power Birds silver 2.0 4.0 \n", + "19 2024-08-15 B Go Magikarp bronze 2.0 2.0 \n", "\n", " total_players player_ratio medal_relative performance_score \\\n", - "0 184 73.91 27 27.94 \n", - "1 184 73.91 34 69.12 \n", - "2 184 73.91 37 112.50 \n", - "3 236 80.51 31 31.05 \n", - "4 236 80.51 38 76.84 \n", - "5 236 80.51 30 91.59 \n", - "6 81 75.31 36 36.07 \n", - "7 81 75.31 32 65.58 \n", - "8 81 75.31 31 93.45 \n", - "9 184 77.17 28 28.87 \n", - "10 184 77.17 40 80.28 \n", - "11 184 77.17 30 92.97 \n", - "12 236 75.85 36 36.87 \n", - "13 236 75.85 34 68.16 \n", - "14 236 75.85 29 87.15 \n", - "15 81 74.07 28 28.33 \n", - "16 81 74.07 33 66.66 \n", - "17 81 74.07 38 114.99 \n", + "0 18 100.00 33 33.33 \n", + "1 18 100.00 16 50.01 \n", + "2 18 100.00 50 100.00 \n", + "3 24 70.83 41 41.18 \n", + "4 24 70.83 35 105.87 \n", + "5 24 70.83 23 47.06 \n", + "6 6 83.33 40 40.00 \n", + "7 6 83.33 40 120.00 \n", + "8 6 83.33 20 40.00 \n", + "9 2 50.00 100 100.00 \n", + "10 2 77.78 64 64.29 \n", + "11 2 77.78 7 21.42 \n", + "12 18 77.78 28 57.14 \n", + "13 18 83.33 45 45.00 \n", + "14 18 83.33 25 75.00 \n", + "15 24 83.33 30 60.00 \n", + "16 24 100.00 33 33.33 \n", + "17 24 100.00 33 99.99 \n", + "18 6 100.00 33 66.66 \n", + "19 6 100.00 100 100.00 \n", "\n", " acc_w_score_total performance_score_total \n", - "0 285 209.56 \n", - "1 285 209.56 \n", - "2 285 209.56 \n", - "3 379 199.48 \n", - "4 379 199.48 \n", - "5 379 199.48 \n", - "6 119 195.10 \n", - "7 119 195.10 \n", - "8 119 195.10 \n", - "9 287 202.12 \n", - "10 287 202.12 \n", - "11 287 202.12 \n", - "12 344 192.18 \n", - "13 344 192.18 \n", - "14 344 192.18 \n", - "15 126 209.98 \n", - "16 126 209.98 \n", - "17 126 209.98 " + "0 33.0 183.34 \n", + "1 33.0 183.34 \n", + "2 33.0 183.34 \n", + "3 33.0 194.11 \n", + "4 33.0 194.11 \n", + "5 33.0 194.11 \n", + "6 10.0 200.00 \n", + "7 10.0 200.00 \n", + "8 10.0 200.00 \n", + "9 1.0 100.00 \n", + "10 20.0 142.85 \n", + "11 20.0 142.85 \n", + "12 20.0 142.85 \n", + "13 36.0 180.00 \n", + "14 36.0 180.00 \n", + "15 36.0 180.00 \n", + "16 12.0 199.98 \n", + "17 12.0 199.98 \n", + "18 12.0 199.98 \n", + "19 2.0 100.00 " ] }, - "execution_count": 75, + "execution_count": 46, "metadata": {}, "output_type": "execute_result" } @@ -2378,13 +2556,13 @@ }, { "cell_type": "code", - "execution_count": 76, + "execution_count": 47, "metadata": {}, "outputs": [], "source": [ "# create an aux list o lists to flexibilize the code (indirect function)\n", "\n", - "def marker_size(df, score_type):\n", + "def marker_size(df, score_type, score_columns, scale):\n", "\n", " \"\"\"\n", " Returns a list of lists to give marker size according to total scores. Use solely in score_figure function\n", @@ -2434,13 +2612,13 @@ }, { "cell_type": "code", - "execution_count": 77, + "execution_count": 48, "metadata": {}, "outputs": [], "source": [ "# creates a function to plot score data for each team\n", "\n", - "def score_figure(df, score_type, scale=1, scatter_opacity=1, width = 900, height = 400):\n", + "def score_figure(df_data, score_type, legend=True, scale=1, scatter_opacity=1, width = 900, height = 400, theme_colors=theme_colors):\n", "\n", " \"\"\"\n", " Creates an interactive figure with subplots for each event and team. Can work for a single event\n", @@ -2456,6 +2634,11 @@ " scatter_opacity: set a float from 0 to 1, changes scatter bubbles opacity (1 by default)\n", " \"\"\"\n", "\n", + " # set categorical medal before anything and sort values to have correct color per medal\n", + " df = df_data.copy()\n", + " df['medal'] = pd.Categorical(df['medal'], ordered=True, categories=['bronze', 'silver', 'gold'])\n", + " df.sort_values(by=['team','medal'], ascending=[False,True], inplace=True)\n", + " \n", " # score_type selector\n", " if score_type == 'accumulative':\n", " score_columns = ['medal_frequence', 'acc_w_score', 'acc_w_score_total']\n", @@ -2473,8 +2656,14 @@ " column_titles= team_names,\n", " print_grid=False,\n", " specs = [[{\"secondary_y\" : True} for t in range(len(team_names))] for e in range(len(events))])\n", + " # other config: color theme\n", + " color_map = theme_colors[:len(team_names)]\n", + " #---------------------------------------- legend config\n", + " sp_legendgroup = [legend]\n", + " sp_legendgroup.extend([False for e in range(len(events[1:]))])\n", + "\n", " #---------------------------------------- build graphs\n", - " l_marker_size = marker_size(df = df_eventteams_scores, score_type = score_type)\n", + " l_marker_size = marker_size(df = df, score_type = score_type, score_columns = score_columns, scale = scale)\n", " for e in range(len(events)):\n", " for i in range(len(team_names)):\n", " #----------------------- traces: bar accumulative score values per medal\n", @@ -2482,15 +2671,20 @@ " go.Bar(\n", " x = df[df['event_game']== events[e]][df['team']==team_names[i]]['medal'].map(lambda x : x.capitalize()),\n", " y = df[df['event_game']== events[e]][df['team']==team_names[i]][score_columns[0]].values,\n", - " name = 'Event '+ events[e] +'',\n", + " name = ''+team_names[i]+' medals',\n", " marker_color = [medal_colors[2], medal_colors[1],medal_colors[0], medal_colors[3]],\n", + " marker_line_color = color_map[i],\n", + " marker_line_width = 2,\n", " opacity = 0.8,\n", " text = df[df['event_game']== events[e]][df['team']==team_names[i]][score_columns[0]].values,\n", " textposition = 'inside',\n", " textangle = 0,\n", " textfont_color = 'black',\n", - " customdata = df[df['event_game']== events[e]][df['team']==team_names[i]][['medal_frequence','medal']],\n", - " hovertemplate = '
Total medals: %{customdata[0]} %{customdata[1]}',\n", + " legendgroup = team_names[i]+' bar',\n", + " showlegend = sp_legendgroup[e],\n", + " customdata = df[df['event_game']== events[e]][df['team']==team_names[i]][['medal_frequence','medal', score_columns[1]]],\n", + " hovertemplate = '
Total medals: %{customdata[0]} %{customdata[1]}
'+\n", + " 'Medal score: %{customdata[2]} points',\n", " ), row = e+1, col = i+1, secondary_y = False)\n", "\n", " #----------------------- traces: scatter accumulative total score values\n", @@ -2498,19 +2692,21 @@ " go.Scatter(\n", " x = df[df['event_game']== events[e]][df['team']==team_names[i]]['medal'].map(lambda x : x.capitalize()),\n", " y = df[df['event_game']== events[e]][df['team']==team_names[0]][score_columns[1]],\n", - " name = 'Team metrics',\n", + " name = ''+team_names[i]+ ' metrics',\n", " mode = 'markers',\n", " marker_size = l_marker_size[e][i],\n", - " marker_color = [medal_colors[2], medal_colors[1],medal_colors[0]],\n", - " marker_line_color = 'white',\n", + " marker_color = color_map[i],\n", + " marker_line_color = [medal_colors[2], medal_colors[1],medal_colors[0]],\n", + " marker_line_width = 2,\n", " opacity = scatter_opacity,\n", + " legendgroup = team_names[i]+' scatter', # 'Scatter scores'\n", + " showlegend = sp_legendgroup[e], # change to scatter\n", " customdata = df[df['event_game']== events[e]][df['team']==team_names[i]][['medal_relative','player_ratio', 'total_players', score_columns[2]]],\n", " hovertemplate = '
Medal distribution: %{customdata[0]}%
'+\n", " 'Participation: %{customdata[1]}%
'+\n", " 'Team players: %{customdata[2]}
'+\n", " '
Team Score: %{customdata[3]}'\n", " ), row = e+1, col = i+1, secondary_y = True)\n", - "\n", " #---------------------------------------- fix category orders for 0 values\n", " score_fig.update_xaxes(\n", " categoryorder = 'array',\n", @@ -2525,7 +2721,8 @@ " score_fig.update_layout(\n", " title = f\"Event {score_type.capitalize()} scores, by teams, date {df['event_date'].unique()[0]}\",\n", " barmode = 'group',\n", - " showlegend = False,\n", + " legend_font_size = 8,\n", + " legend_tracegroupgap = 0,\n", " hovermode = 'x unified',\n", " hoverlabel_align = 'right',\n", " barcornerradius = \"50%\",\n", @@ -2538,9 +2735,38 @@ }, { "cell_type": "code", - "execution_count": 78, + "execution_count": 49, "metadata": {}, "outputs": [ + { + "data": { + "text/html": [ + " \n", + " " + ] + }, + "metadata": {}, + "output_type": "display_data" + }, { "data": { "application/vnd.plotly.v1+json": { @@ -2551,33 +2777,42 @@ { "customdata": [ [ - 38, - "bronze" + 6, + "bronze", + 6 ], [ - 47, - "silver" + 9, + "silver", + 18 ], [ - 51, - "gold" + 3, + "gold", + 9 ] ], - "hovertemplate": "
Total medals: %{customdata[0]} %{customdata[1]}", + "hovertemplate": "
Total medals: %{customdata[0]} %{customdata[1]}
Medal score: %{customdata[2]} points", + "legendgroup": "ThunderCats bar", "marker": { "color": [ "rgb(194, 144, 80)", "rgb(169, 180, 195)", "rgb(255, 222, 94)", "rgb(0, 0, 0)" - ] + ], + "line": { + "color": "rgb(240,205,204)", + "width": 2 + } }, - "name": "Event A", + "name": "ThunderCats medals", "opacity": 0.8, + "showlegend": true, "text": [ - 38, - 47, - 51 + 6, + 9, + 3 ], "textangle": 0, "textfont": { @@ -2592,52 +2827,55 @@ ], "xaxis": "x", "y": [ - 38, - 47, - 51 + 6, + 9, + 3 ], "yaxis": "y" }, { "customdata": [ [ - 27, - 73.91, - 184, - 285 + 33, + 100, + 18, + 33 ], [ - 34, - 73.91, - 184, - 285 + 50, + 100, + 18, + 33 ], [ - 37, - 73.91, - 184, - 285 + 16, + 100, + 18, + 33 ] ], "hovertemplate": "
Medal distribution: %{customdata[0]}%
Participation: %{customdata[1]}%
Team players: %{customdata[2]}

Team Score: %{customdata[3]}", + "legendgroup": "ThunderCats scatter", "marker": { - "color": [ - "rgb(194, 144, 80)", - "rgb(169, 180, 195)", - "rgb(255, 222, 94)" - ], + "color": "rgb(240,205,204)", "line": { - "color": "white" + "color": [ + "rgb(194, 144, 80)", + "rgb(169, 180, 195)", + "rgb(255, 222, 94)" + ], + "width": 2 }, "size": [ - 40.714285714285715, - 40.714285714285715, - 40.714285714285715 + 4.714285714285714, + 4.714285714285714, + 4.714285714285714 ] }, "mode": "markers", - "name": "Team metrics", - "opacity": 0.5, + "name": "ThunderCats metrics", + "opacity": 0.7, + "showlegend": true, "type": "scatter", "x": [ "Bronze", @@ -2646,42 +2884,51 @@ ], "xaxis": "x", "y": [ - 38, - 94, - 153 + 6, + 18, + 9 ], "yaxis": "y2" }, { "customdata": [ [ - 59, - "bronze" + 2, + "bronze", + 2 ], [ - 73, - "silver" + 1, + "silver", + 2 ], [ - 58, - "gold" + 2, + "gold", + 6 ] ], - "hovertemplate": "
Total medals: %{customdata[0]} %{customdata[1]}", + "hovertemplate": "
Total medals: %{customdata[0]} %{customdata[1]}
Medal score: %{customdata[2]} points", + "legendgroup": "Power Birds bar", "marker": { "color": [ "rgb(194, 144, 80)", "rgb(169, 180, 195)", "rgb(255, 222, 94)", "rgb(0, 0, 0)" - ] + ], + "line": { + "color": "rgb(173,172,194)", + "width": 2 + } }, - "name": "Event A", + "name": "Power Birds medals", "opacity": 0.8, + "showlegend": true, "text": [ - 59, - 73, - 58 + 2, + 1, + 2 ], "textangle": 0, "textfont": { @@ -2696,52 +2943,55 @@ ], "xaxis": "x2", "y": [ - 59, - 73, - 58 + 2, + 1, + 2 ], "yaxis": "y3" }, { "customdata": [ [ - 31, - 80.51, - 236, - 379 + 40, + 83.33, + 6, + 10 ], [ - 38, - 80.51, - 236, - 379 + 20, + 83.33, + 6, + 10 ], [ - 30, - 80.51, - 236, - 379 + 40, + 83.33, + 6, + 10 ] ], "hovertemplate": "
Medal distribution: %{customdata[0]}%
Participation: %{customdata[1]}%
Team players: %{customdata[2]}

Team Score: %{customdata[3]}", + "legendgroup": "Power Birds scatter", "marker": { - "color": [ - "rgb(194, 144, 80)", - "rgb(169, 180, 195)", - "rgb(255, 222, 94)" - ], + "color": "rgb(173,172,194)", "line": { - "color": "white" + "color": [ + "rgb(194, 144, 80)", + "rgb(169, 180, 195)", + "rgb(255, 222, 94)" + ], + "width": 2 }, "size": [ - 54.142857142857146, - 54.142857142857146, - 54.142857142857146 + 1.4285714285714286, + 1.4285714285714286, + 1.4285714285714286 ] }, "mode": "markers", - "name": "Team metrics", - "opacity": 0.5, + "name": "Power Birds metrics", + "opacity": 0.7, + "showlegend": true, "type": "scatter", "x": [ "Bronze", @@ -2750,42 +3000,39 @@ ], "xaxis": "x2", "y": [ - 38, - 94, - 153 + 6, + 18, + 9 ], "yaxis": "y4" }, { "customdata": [ [ - 22, - "bronze" - ], - [ - 20, - "silver" - ], - [ - 19, - "gold" + 1, + "bronze", + 1 ] ], - "hovertemplate": "
Total medals: %{customdata[0]} %{customdata[1]}", + "hovertemplate": "
Total medals: %{customdata[0]} %{customdata[1]}
Medal score: %{customdata[2]} points", + "legendgroup": "Go Magikarp bar", "marker": { "color": [ "rgb(194, 144, 80)", "rgb(169, 180, 195)", "rgb(255, 222, 94)", "rgb(0, 0, 0)" - ] + ], + "line": { + "color": "rgb(251,230,197)", + "width": 2 + } }, - "name": "Event A", + "name": "Go Magikarp medals", "opacity": 0.8, + "showlegend": true, "text": [ - 22, - 20, - 19 + 1 ], "textangle": 0, "textfont": { @@ -2794,102 +3041,96 @@ "textposition": "inside", "type": "bar", "x": [ - "Bronze", - "Silver", - "Gold" + "Bronze" ], "xaxis": "x3", "y": [ - 22, - 20, - 19 + 1 ], "yaxis": "y5" }, { "customdata": [ [ - 36, - 75.31, - 81, - 119 - ], - [ - 32, - 75.31, - 81, - 119 - ], - [ - 31, - 75.31, - 81, - 119 + 100, + 50, + 2, + 1 ] ], "hovertemplate": "
Medal distribution: %{customdata[0]}%
Participation: %{customdata[1]}%
Team players: %{customdata[2]}

Team Score: %{customdata[3]}", + "legendgroup": "Go Magikarp scatter", "marker": { - "color": [ - "rgb(194, 144, 80)", - "rgb(169, 180, 195)", - "rgb(255, 222, 94)" - ], + "color": "rgb(251,230,197)", "line": { - "color": "white" + "color": [ + "rgb(194, 144, 80)", + "rgb(169, 180, 195)", + "rgb(255, 222, 94)" + ], + "width": 2 }, "size": [ - 17, - 17, - 17 + 0.14285714285714285, + 4.714285714285714, + 4.714285714285714 ] }, "mode": "markers", - "name": "Team metrics", - "opacity": 0.5, + "name": "Go Magikarp metrics", + "opacity": 0.7, + "showlegend": true, "type": "scatter", "x": [ - "Bronze", - "Silver", - "Gold" + "Bronze" ], "xaxis": "x3", "y": [ - 38, - 94, - 153 + 6, + 18, + 9 ], "yaxis": "y6" }, { "customdata": [ [ - 41, - "bronze" + 7, + "bronze", + 7 ], [ - 57, - "silver" + 4, + "silver", + 8 ], [ - 44, - "gold" + 6, + "gold", + 18 ] ], - "hovertemplate": "
Total medals: %{customdata[0]} %{customdata[1]}", + "hovertemplate": "
Total medals: %{customdata[0]} %{customdata[1]}
Medal score: %{customdata[2]} points", + "legendgroup": "Dog Patrol bar", "marker": { "color": [ "rgb(194, 144, 80)", "rgb(169, 180, 195)", "rgb(255, 222, 94)", "rgb(0, 0, 0)" - ] + ], + "line": { + "color": "rgb(160,185,205)", + "width": 2 + } }, - "name": "Event B", + "name": "Dog Patrol medals", "opacity": 0.8, + "showlegend": true, "text": [ - 41, - 57, - 44 + 7, + 4, + 6 ], "textangle": 0, "textfont": { @@ -2904,52 +3145,53 @@ ], "xaxis": "x4", "y": [ - 41, - 57, - 44 + 7, + 4, + 6 ], "yaxis": "y7" }, { "customdata": [ [ - 28, - 77.17, - 184, - 287 + 41, + 70.83, + 24, + 33 ], [ - 40, - 77.17, - 184, - 287 + 23, + 70.83, + 24, + 33 ], [ - 30, - 77.17, - 184, - 287 + 35, + 70.83, + 24, + 33 ] ], "hovertemplate": "
Medal distribution: %{customdata[0]}%
Participation: %{customdata[1]}%
Team players: %{customdata[2]}

Team Score: %{customdata[3]}", + "legendgroup": "Dog Patrol scatter", "marker": { - "color": [ - "rgb(194, 144, 80)", - "rgb(169, 180, 195)", - "rgb(255, 222, 94)" - ], + "color": "rgb(160,185,205)", "line": { - "color": "white" + "color": [ + "rgb(194, 144, 80)", + "rgb(169, 180, 195)", + "rgb(255, 222, 94)" + ], + "width": 2 }, "size": [ - 41, - 41, - 41 + 4.714285714285714 ] }, "mode": "markers", - "name": "Team metrics", - "opacity": 0.5, + "name": "Dog Patrol metrics", + "opacity": 0.7, + "showlegend": true, "type": "scatter", "x": [ "Bronze", @@ -2958,42 +3200,51 @@ ], "xaxis": "x4", "y": [ - 41, - 114, - 132 + 6, + 18, + 9 ], "yaxis": "y8" }, { "customdata": [ [ - 66, - "bronze" + 9, + "bronze", + 9 ], [ - 61, - "silver" + 4, + "silver", + 8 ], [ - 52, - "gold" + 1, + "gold", + 3 ] ], - "hovertemplate": "
Total medals: %{customdata[0]} %{customdata[1]}", + "hovertemplate": "
Total medals: %{customdata[0]} %{customdata[1]}
Medal score: %{customdata[2]} points", + "legendgroup": "ThunderCats bar", "marker": { "color": [ "rgb(194, 144, 80)", "rgb(169, 180, 195)", "rgb(255, 222, 94)", "rgb(0, 0, 0)" - ] + ], + "line": { + "color": "rgb(240,205,204)", + "width": 2 + } }, - "name": "Event B", + "name": "ThunderCats medals", "opacity": 0.8, + "showlegend": false, "text": [ - 66, - 61, - 52 + 9, + 4, + 1 ], "textangle": 0, "textfont": { @@ -3008,52 +3259,55 @@ ], "xaxis": "x5", "y": [ - 66, - 61, - 52 + 9, + 4, + 1 ], "yaxis": "y9" }, { "customdata": [ [ - 36, - 75.85, - 236, - 344 + 64, + 77.78, + 2, + 20 ], [ - 34, - 75.85, - 236, - 344 + 28, + 77.78, + 18, + 20 ], [ - 29, - 75.85, - 236, - 344 + 7, + 77.78, + 2, + 20 ] ], "hovertemplate": "
Medal distribution: %{customdata[0]}%
Participation: %{customdata[1]}%
Team players: %{customdata[2]}

Team Score: %{customdata[3]}", + "legendgroup": "ThunderCats scatter", "marker": { - "color": [ - "rgb(194, 144, 80)", - "rgb(169, 180, 195)", - "rgb(255, 222, 94)" - ], + "color": "rgb(240,205,204)", "line": { - "color": "white" + "color": [ + "rgb(194, 144, 80)", + "rgb(169, 180, 195)", + "rgb(255, 222, 94)" + ], + "width": 2 }, "size": [ - 49.142857142857146, - 49.142857142857146, - 49.142857142857146 + 2.857142857142857, + 2.857142857142857, + 2.857142857142857 ] }, "mode": "markers", - "name": "Team metrics", - "opacity": 0.5, + "name": "ThunderCats metrics", + "opacity": 0.7, + "showlegend": false, "type": "scatter", "x": [ "Bronze", @@ -3062,42 +3316,51 @@ ], "xaxis": "x5", "y": [ - 41, - 114, - 132 + 9, + 8, + 3 ], "yaxis": "y10" }, { "customdata": [ [ - 17, - "bronze" + 2, + "bronze", + 2 ], [ - 20, - "silver" + 2, + "silver", + 4 ], [ - 23, - "gold" + 2, + "gold", + 6 ] ], - "hovertemplate": "
Total medals: %{customdata[0]} %{customdata[1]}", + "hovertemplate": "
Total medals: %{customdata[0]} %{customdata[1]}
Medal score: %{customdata[2]} points", + "legendgroup": "Power Birds bar", "marker": { "color": [ "rgb(194, 144, 80)", "rgb(169, 180, 195)", "rgb(255, 222, 94)", "rgb(0, 0, 0)" - ] + ], + "line": { + "color": "rgb(173,172,194)", + "width": 2 + } }, - "name": "Event B", + "name": "Power Birds medals", "opacity": 0.8, + "showlegend": false, "text": [ - 17, - 20, - 23 + 2, + 2, + 2 ], "textangle": 0, "textfont": { @@ -3112,65 +3375,268 @@ ], "xaxis": "x6", "y": [ - 17, - 20, - 23 + 2, + 2, + 2 ], "yaxis": "y11" }, { "customdata": [ [ - 28, - 74.07, - 81, - 126 + 33, + 100, + 24, + 12 ], [ 33, - 74.07, - 81, - 126 + 100, + 6, + 12 ], [ - 38, - 74.07, - 81, - 126 + 33, + 100, + 24, + 12 ] ], "hovertemplate": "
Medal distribution: %{customdata[0]}%
Participation: %{customdata[1]}%
Team players: %{customdata[2]}

Team Score: %{customdata[3]}", + "legendgroup": "Power Birds scatter", + "marker": { + "color": "rgb(173,172,194)", + "line": { + "color": [ + "rgb(194, 144, 80)", + "rgb(169, 180, 195)", + "rgb(255, 222, 94)" + ], + "width": 2 + }, + "size": [ + 1.7142857142857142, + 1.7142857142857142, + 1.7142857142857142 + ] + }, + "mode": "markers", + "name": "Power Birds metrics", + "opacity": 0.7, + "showlegend": false, + "type": "scatter", + "x": [ + "Bronze", + "Silver", + "Gold" + ], + "xaxis": "x6", + "y": [ + 9, + 8, + 3 + ], + "yaxis": "y12" + }, + { + "customdata": [ + [ + 2, + "bronze", + 2 + ] + ], + "hovertemplate": "
Total medals: %{customdata[0]} %{customdata[1]}
Medal score: %{customdata[2]} points", + "legendgroup": "Go Magikarp bar", "marker": { "color": [ "rgb(194, 144, 80)", "rgb(169, 180, 195)", - "rgb(255, 222, 94)" + "rgb(255, 222, 94)", + "rgb(0, 0, 0)" ], "line": { - "color": "white" + "color": "rgb(251,230,197)", + "width": 2 + } + }, + "name": "Go Magikarp medals", + "opacity": 0.8, + "showlegend": false, + "text": [ + 2 + ], + "textangle": 0, + "textfont": { + "color": "black" + }, + "textposition": "inside", + "type": "bar", + "x": [ + "Bronze" + ], + "xaxis": "x7", + "y": [ + 2 + ], + "yaxis": "y13" + }, + { + "customdata": [ + [ + 100, + 100, + 6, + 2 + ] + ], + "hovertemplate": "
Medal distribution: %{customdata[0]}%
Participation: %{customdata[1]}%
Team players: %{customdata[2]}

Team Score: %{customdata[3]}", + "legendgroup": "Go Magikarp scatter", + "marker": { + "color": "rgb(251,230,197)", + "line": { + "color": [ + "rgb(194, 144, 80)", + "rgb(169, 180, 195)", + "rgb(255, 222, 94)" + ], + "width": 2 }, "size": [ + 0.2857142857142857, + 5.142857142857143, + 5.142857142857143 + ] + }, + "mode": "markers", + "name": "Go Magikarp metrics", + "opacity": 0.7, + "showlegend": false, + "type": "scatter", + "x": [ + "Bronze" + ], + "xaxis": "x7", + "y": [ + 9, + 8, + 3 + ], + "yaxis": "y14" + }, + { + "customdata": [ + [ + 9, + "bronze", + 9 + ], + [ + 6, + "silver", + 12 + ], + [ + 5, + "gold", + 15 + ] + ], + "hovertemplate": "
Total medals: %{customdata[0]} %{customdata[1]}
Medal score: %{customdata[2]} points", + "legendgroup": "Dog Patrol bar", + "marker": { + "color": [ + "rgb(194, 144, 80)", + "rgb(169, 180, 195)", + "rgb(255, 222, 94)", + "rgb(0, 0, 0)" + ], + "line": { + "color": "rgb(160,185,205)", + "width": 2 + } + }, + "name": "Dog Patrol medals", + "opacity": 0.8, + "showlegend": false, + "text": [ + 9, + 6, + 5 + ], + "textangle": 0, + "textfont": { + "color": "black" + }, + "textposition": "inside", + "type": "bar", + "x": [ + "Bronze", + "Silver", + "Gold" + ], + "xaxis": "x8", + "y": [ + 9, + 6, + 5 + ], + "yaxis": "y15" + }, + { + "customdata": [ + [ + 45, + 83.33, 18, + 36 + ], + [ + 30, + 83.33, + 24, + 36 + ], + [ + 25, + 83.33, 18, - 18 + 36 + ] + ], + "hovertemplate": "
Medal distribution: %{customdata[0]}%
Participation: %{customdata[1]}%
Team players: %{customdata[2]}

Team Score: %{customdata[3]}", + "legendgroup": "Dog Patrol scatter", + "marker": { + "color": "rgb(160,185,205)", + "line": { + "color": [ + "rgb(194, 144, 80)", + "rgb(169, 180, 195)", + "rgb(255, 222, 94)" + ], + "width": 2 + }, + "size": [ + 5.142857142857143 ] }, "mode": "markers", - "name": "Team metrics", - "opacity": 0.5, + "name": "Dog Patrol metrics", + "opacity": 0.7, + "showlegend": false, "type": "scatter", "x": [ "Bronze", "Silver", "Gold" ], - "xaxis": "x6", + "xaxis": "x8", "y": [ - 41, - 114, - 132 + 9, + 8, + 3 ], - "yaxis": "y12" + "yaxis": "y16" } ], "layout": { @@ -3181,7 +3647,7 @@ }, "showarrow": false, "text": "ThunderCats", - "x": 0.11222222222222222, + "x": 0.07999999999999999, "xanchor": "center", "xref": "paper", "y": 1, @@ -3193,8 +3659,8 @@ "size": 16 }, "showarrow": false, - "text": "Dog Patrol", - "x": 0.47, + "text": "Power Birds", + "x": 0.33999999999999997, "xanchor": "center", "xref": "paper", "y": 1, @@ -3206,8 +3672,21 @@ "size": 16 }, "showarrow": false, - "text": "Power Birds", - "x": 0.8277777777777777, + "text": "Go Magikarp", + "x": 0.6, + "xanchor": "center", + "xref": "paper", + "y": 1, + "yanchor": "bottom", + "yref": "paper" + }, + { + "font": { + "size": 16 + }, + "showarrow": false, + "text": "Dog Patrol", + "x": 0.86, "xanchor": "center", "xref": "paper", "y": 1, @@ -3222,7 +3701,12 @@ "align": "right" }, "hovermode": "x unified", - "showlegend": false, + "legend": { + "font": { + "size": 8 + }, + "tracegroupgap": 0 + }, "template": { "data": { "bar": [ @@ -4063,12 +4547,12 @@ "categoryorder": "array", "domain": [ 0, - 0.22444444444444445 + 0.15999999999999998 ], - "matches": "x4", + "matches": "x5", "range": [ - 2.3091836619272232, - 5.690816338072777 + 2.5, + 5.5 ], "showspikes": false, "showticklabels": false, @@ -4084,13 +4568,13 @@ ], "categoryorder": "array", "domain": [ - 0.35777777777777775, - 0.5822222222222222 + 0.26, + 0.42 ], - "matches": "x5", + "matches": "x6", "range": [ - 1.969608944618113, - 6.030391055381887 + 2.5, + 5.5 ], "showspikes": false, "showticklabels": false, @@ -4106,13 +4590,13 @@ ], "categoryorder": "array", "domain": [ - 0.7155555555555555, - 0.94 + 0.52, + 0.6799999999999999 ], - "matches": "x6", + "matches": "x7", "range": [ 2.5, - 5.5 + 3.5 ], "showspikes": false, "showticklabels": false, @@ -4128,12 +4612,13 @@ ], "categoryorder": "array", "domain": [ - 0, - 0.22444444444444445 + 0.78, + 0.94 ], + "matches": "x8", "range": [ - 2.3091836619272232, - 5.690816338072777 + 2.5, + 5.5 ], "showspikes": false, "showticklabels": false, @@ -4149,12 +4634,12 @@ ], "categoryorder": "array", "domain": [ - 0.35777777777777775, - 0.5822222222222222 + 0, + 0.15999999999999998 ], "range": [ - 1.969608944618113, - 6.030391055381887 + 2.5, + 5.5 ], "showspikes": false, "showticklabels": false, @@ -4170,7 +4655,49 @@ ], "categoryorder": "array", "domain": [ - 0.7155555555555555, + 0.26, + 0.42 + ], + "range": [ + 2.5, + 5.5 + ], + "showspikes": false, + "showticklabels": false, + "type": "category" + }, + "xaxis7": { + "anchor": "y13", + "autorange": true, + "categoryarray": [ + "gold", + "silver", + "bronze" + ], + "categoryorder": "array", + "domain": [ + 0.52, + 0.6799999999999999 + ], + "range": [ + 2.5, + 3.5 + ], + "showspikes": false, + "showticklabels": false, + "type": "category" + }, + "xaxis8": { + "anchor": "y15", + "autorange": true, + "categoryarray": [ + "gold", + "silver", + "bronze" + ], + "categoryorder": "array", + "domain": [ + 0.78, 0.94 ], "range": [ @@ -4190,7 +4717,7 @@ ], "range": [ 0, - 76.84210526315789 + 9.473684210526315 ], "type": "linear" }, @@ -4199,8 +4726,8 @@ "autorange": true, "overlaying": "y9", "range": [ - -100.73514618044638, - 273.73514618044635 + 2.410748560460653, + 9.589251439539348 ], "side": "right", "type": "linear" @@ -4212,10 +4739,10 @@ 0, 0.425 ], - "matches": "y7", + "matches": "y9", "range": [ 0, - 69.47368421052632 + 9.473684210526315 ], "showticklabels": false, "type": "linear" @@ -4225,8 +4752,60 @@ "autorange": true, "overlaying": "y11", "range": [ - 17.49351175993512, - 155.50648824006487 + 2.410748560460653, + 9.589251439539348 + ], + "side": "right", + "type": "linear" + }, + "yaxis13": { + "anchor": "x7", + "autorange": true, + "domain": [ + 0, + 0.425 + ], + "matches": "y9", + "range": [ + 0, + 9.473684210526315 + ], + "showticklabels": false, + "type": "linear" + }, + "yaxis14": { + "anchor": "x7", + "autorange": true, + "overlaying": "y13", + "range": [ + 8, + 10 + ], + "side": "right", + "type": "linear" + }, + "yaxis15": { + "anchor": "x8", + "autorange": true, + "domain": [ + 0, + 0.425 + ], + "matches": "y9", + "range": [ + 0, + 9.473684210526315 + ], + "showticklabels": false, + "type": "linear" + }, + "yaxis16": { + "anchor": "x8", + "autorange": true, + "overlaying": "y15", + "range": [ + 2.409128402529557, + 9.607368710475667 ], "side": "right", "type": "linear" @@ -4236,8 +4815,8 @@ "autorange": true, "overlaying": "y", "range": [ - -66.15700171821298, - 257.157001718213 + 4.821497120921306, + 19.178502879078696 ], "side": "right", "type": "linear" @@ -4252,7 +4831,7 @@ "matches": "y", "range": [ 0, - 76.84210526315789 + 9.473684210526315 ], "showticklabels": false, "type": "linear" @@ -4262,8 +4841,8 @@ "autorange": true, "overlaying": "y3", "range": [ - -230.8985255854293, - 421.8985255854293 + 4.821497120921306, + 19.178502879078696 ], "side": "right", "type": "linear" @@ -4278,7 +4857,7 @@ "matches": "y", "range": [ 0, - 76.84210526315789 + 9.473684210526315 ], "showticklabels": false, "type": "linear" @@ -4288,8 +4867,8 @@ "autorange": true, "overlaying": "y5", "range": [ - 10.027027027027035, - 180.97297297297297 + 5, + 7 ], "side": "right", "type": "linear" @@ -4298,13 +4877,15 @@ "anchor": "x4", "autorange": true, "domain": [ - 0, - 0.425 + 0.575, + 1 ], + "matches": "y", "range": [ 0, - 69.47368421052632 + 9.473684210526315 ], + "showticklabels": false, "type": "linear" }, "yaxis8": { @@ -4312,8 +4893,8 @@ "autorange": true, "overlaying": "y7", "range": [ - -42.80851063829786, - 215.80851063829786 + 4.821497120921306, + 19.178502879078696 ], "side": "right", "type": "linear" @@ -4325,21 +4906,19 @@ 0, 0.425 ], - "matches": "y7", "range": [ 0, - 69.47368421052632 + 9.473684210526315 ], - "showticklabels": false, "type": "linear" } } }, - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6QAAAGQCAYAAAC5y61PAAAAAXNSR0IArs4c6QAAAERlWElmTU0AKgAAAAgAAYdpAAQAAAABAAAAGgAAAAAAA6ABAAMAAAABAAEAAKACAAQAAAABAAADpKADAAQAAAABAAABkAAAAABUH4gHAABAAElEQVR4AeydBXwUxxfHX9yNhEAguAR3d/cCBVooULSu/7ZAC/WWFloqVKgXa9GWFtcCRYq7u4cACfEQ4v/3Juzl7rjk7uIkv/ch3Mrszux3b/fmzZOx8fHxSSMICIAACIAACIAACIAACIAACIAACOQzAdt8rg/VgQAIgAAIgAAIgAAIgAAIgAAIgIAiAIUUXwQQAAEQAAEQAAEQAAEQAAEQAIECIQCFtECwo1IQAAEQAAEQAAEQAAEQAAEQAAEopPgOgAAIgAAIgAAIgAAIgAAIgAAIFAgBKKQFgh2VggAIgAAIgAAIgAAIgAAIgAAIQCHFdwAEQAAEQAAEQAAEQAAEQAAEQKBACEAhLRDsqBQEQAAEQAAEQAAEQAAEQAAEQAAKKb4DIAACIAACIAACIAACIAACIAACBUIACmmBYEelIAACIAACIAACIAACIAACIAACUEjxHQABEAABEAABEAABEAABEAABECgQAlBICwQ7KgUBEAABEAABEAABEAABEAABEIBCiu8ACIAACIAACIAACIAACIAACIBAgRCAQlog2FEpCIAACIAACIAACIAACIAACIAAFFJ8B0AABEAABEAABEAABEAABEAABAqEABTSAsGOSkEABEAABEAABEAABEAABEAABKCQ4jsAAiAAAiAAAiAAAiAAAiAAAiBQIASgkBYIdlQKAiAAAiAAAiAAAiAAAiAAAiAAhRTfARAAARAAARAAARAAARAAARAAgQIhAIW0QLCjUhAAARAAARAAARAAARAAARAAASik+A6AAAiAAAiAAAiAAAiAAAiAAAgUCAEopAWCHZWCAAiAAAiAAAiAAAiAAAiAAAhAIcV3AARAAARAAARAAARAAARAAARAoEAIQCEtEOyoFARAAARAAARAAARAAARAAARAAAopvgMgAAIgAAIgAAIgAAIgAAIgAAIFQgAKaYFgR6UgAAIgAAIgAAIgAAIgAAIgAAJQSPEdAAEQAAEQAAEQAAEQAAEQAAEQKBACUEgLBDsqBQEQAAEQAAEQAAEQAAEQAAEQgEKK7wAIgAAIgAAIgAAIgAAIgAAIgECBEIBCWiDYUSkIgAAIgAAIgAAIgAAIgAAIgAAUUnwHQAAEQAAEQAAEQAAEQAAEQAAECoQAFNICwY5KQQAEQAAEQAAEQAAEQAAEQAAEoJDiOwACIAACIAACIAACIAACIAACIFAgBKCQFgh2VAoCIAACIAACIAACIAACIAACIACFFN8BEAABEAABEAABEAABEAABEACBAiEAhbRAsKNSEAABEAABEAABEAABEAABEAABKKT4DoAACIAACIAACIAACIAACIAACBQIAfsCqTUXK+3StRt5eHhmesadO/6jGzdCMt3/IOzo2q07ubt70PFjR+nMmdMPQpNztY3DHx9Jr457nXp260Q3b97IlXPb2zvQqNFj6OrVK7Ru7ZpcOSdOYj2BkaPH0sv/e426dm5Ht8PCrD8BjsgxgWeee4Geevo5atu6GcXFxub4fLl5gvLlK1C79h2oXLny5OjkRJcuXaQVy/6m8PDw+6pxcHCgTp27Ur369enu3bt06OAB2rZ1i8lybdu1p5o1a1PpgAC6fTuM9u/ba7Ks8cG169Sl6tWDaP36tVazsrR9Uqf8pg0Y9AhVrVqNkpOT6fSpk7T07yXquozbZOl6v/4P09mzZ+nE8WMmD+nV+yFyYsam5BTXf/LEcVO7sA0EQAAEQAAEckzggVdIJ056m6pWq54piLGjHy9whXTY8BH0xqS3qAcrVMHXrmXaVlM7AgLK0E+/zCZbW1vasmUzjRg2xFSxIr3NxcWFfH19FQNrLzQz9k5OjvT2ux/Qv5s3QiG1FmoultfdW5u8d9b4b+c+2sz3+61Jr+fiFTz4p3J1cVXPl42NjdUXk9nzZfWJTBzQo2dv+vHnmWpPWGgo2drZUYkSJWjChIn03LNP0ZZ/N+mOEgXu519nU8tWreny5Usk1zRu/Bu0cME8mvTGeEpJSdGVXblmA9WoUZOSkpIoJOQ6BQaWU++WTRs30FNPjFbbdYX1FkQZXfznUh4cdKeO7VrRBSuUd2va16JFK/rxl5nk4OBIO/7bTp5enjRy5GgelJtAjw8dTKdPn9JrlWWL9es3oOlff0effTo1U4V08sefqO+BqTN++810KKSmwGAbCIAACIBArhB44BVSoSCjt0MHDzQJJDo62uT2/Nzo6OhInp5e2VKo+j08gKSjKFY8sQaXLOlPoaG38rP5D3RdmbG/c+cOtW3VjOLj4x/o60PjLSfg4elBrq6ulh+AkmYJZPZ8mT3QggIh14PptVdeos2b/mEr5m31HqxZqzYrhX/Tt9/9QA3r1WbrYZI607gJr1ONmrWoX58edOjQQbWtZ68+9N0PP9PBA/uVYqpVuYiV1AO87eiRw0pRFWVx/IQ3SKz1o8c+ST/98J1WVPcZWK4czZk7X1lTRSG1Vixtn3huiDJ68+ZN6v9QT5L3lIhYilev+4c+++Ireqh3d4url4HQbt16UMWKlSz6/RHWr/7vxfvOj/fkfUiwAQRAAARAIBcJ5L1ZIhcbm9mpknmkWzospv5kFFxGzX+fv5iaN2953ykqV6mq9nXu0lW3z9nZmd58+z3asGkrnTh9gVav/YeGPDZMt19bmDn7dxrDHRg572/zFtHRE2doy/Zd9PiIUVoR6td/AI3g0W2RL6d/q+qStkibLJEBAx8hcTv+9usvyY4tBP1ZQc1MGjVuQr/MnEs7du2n7Tv3smV1FnXo2FlXXDqPYjVYtnItHTh0nJavWkevvjaBfP38VJlHhwxV7ZNOkb7IiL20uWq1arrNfR7qp7aVKVtWWRq3/rebdu87RB9N+ZTkeLFkTP30c9WOQ0dP0ZdffUtueh05KSPnlDqN5dPPvqAJb0wy3mywHhRUg36d9Rv9u22n4r5zzwGaO28htWrdRlcuK/ZpaWmq3fo8pbP3ybQvdMfrL4x/fSLN+P4n1SnWtguXeQv+ILk+uXbp/JYuHaDtzvKzQoWKbLGYQcLt4JGTtILvhdQhlmB9MXdPhfPnX36tOB8+dkq1R44xFu27KhbJJ596hn746Vd1/Vo5S77zYqV/bOhwWrpijbpmafvPv84h/WdHO5+1n94+3vThR1PV83Pg8An6+tvvDVzxp30+naZ99qXJ074+8U36ZsaPJvdpG+f8voDc3dxJXDXleyd/ck59seR+vvzKa+q52XvgCB05fpr+2bRN3TdRavRF4926TVtauPgv9R3986/l1KZtO1VM3CMXL1lKx0+dV++ZTp276B+ulIe8YO3u4UFTPvmM5Hk5dvIsLVi0hBo0amRQt6xYcp1ZPV/aCS1hqpU1/jx8+BD9+cci9V6XffLMirvpqpUr1ABfWX73iMh75dHBQ2kDu9FqyqhsX7N6JR07eoTGPPGUrOpk5q8/K3dezWoaExNN3834Ru2vxQqvsXh7e9Pc3xbQtm1baO7sdIutcZms1q1pnzyf8l26dPGCThmVc1+5cpnOnD6t3Jazqst439SPJ1OnDm2oDbtjWyKJiUnKHVpcovX/oJBaQg9lQAAEQAAEskugSCik5i7+2NGj1LRZcxrGsYjG8sijg6kVK4dHDh9Wu6RjLgrbmLFP0IXz51gRnK5cxURReeqZ5wwOl87m8y+8TPMX/UHSkdiwfp2KwRHXJ4l7EpFYJu3HXDo+kZER6k8UZXNSq3YdEsVLOmVHeDT/7JkzJAqqKRn0yGCSDm+lSpVo1aoV7Oq1jerWrc8K1uequLRPFNDnnn+Rrly+TIsXL6CoyEh68eVXqGvX9BF3OVY67La2hq57fiVLqu36nW6xGEjZ5SvWUq/efejA/n109coVknjPn3+dRev++Zfat+9I+/buURyl3aPZAqGJ1CHHS53G0rhxU6pTt57xZoP1inxcw0aN2cpxhH6bO5vWrllNVSrz4AIPDMh2EXPsRXmtVj3D3VviU2XgQQYp9EWu+8mnnqVwHvSQTrGI8J6/6E8qX6ECzZr5M23ftlXFr61Yvc5A8dY/j7bs71+K/l6+mlq0bKWsP/N+m8Odv9v07HMvUv0GDbViqo6s7qmPjw+t4sGS7j160vp1a7kdv5Dcqz9Y0TFWcOS7KkrQmvWb6K133lcDIvK9F7H0Oy+DFzLIEMFtnfnrT2qgRDrw/3tlnK7N2V1Y8vcK6szxf4fZuiXxcqLsyACDJiHXr6vBi5psBdMXGUx56ulnzbrlR0VGUSrfu8SERN0zGBMTozuVpfeze/eeJANga1evorlzZtGFC+fUO+Crbwytatq7YQ4rMiIb/9mgQgt+/GmmGtj4Zsb3lJqSSv9sWEf+/v687Wc1kKM1KC9Yy31ezoMJg3kQ6Agrewvm/U6x7HbasuX9g2OWXKe558tSpto1W/opz0gKx1Vq8eTl2OVWLN/HOMbeWI6yQlqNQzpkMC8r0Z674GDDkAqJqZSBr9CwUJow7pWsTpHpPmvaJ78Re/fupi5duqnBTs2NukyZMuqdKN+7vBYZuDTHK6/bgPODAAiAAAgULwJFwmU3qEZN2rZjj8k798aE1+i/7dvUaLm4cImFIPZeR1QsPv0fHkibNm3UucE+yZ1bUQJ7dO2oXIHlpN/N+JrEwvLiS/+jObN+pYSEBF1d0oEYOWKoGomXjQEBZei/Xfvo4QGDaOuWf9nVdjVJZ0Lij955e5JS2nQHm1kQJU5ctmSkX2TJn4tVLGoNvl5xU9ZERvDfee8D1ZGRGFOtfdKZGswKlogoO9KZH/n4UBU3qR0rsUXOzi7aqtWfC+b/Tl9N/1wl3pCDxeojiUU+mzaVvvv2a+USJ50qUTjatG1P337zldV1mDpA2DZtVNcgNuybr75gy89BGsDsxU3PWvZ/LFpIL7z4P1b6B6lYK63e3n3Sk30sXDhfbRL3a1Hq5PzPPfOkTkkVxXgZd/hHjhyjvjPa8caffR7qqyyhjw7sT7t379TtFuU4OSlZrVtyT5/jwRCxyPbq3plOnjyhjvvhu2+VBfMdjo8VRpIQRZNGrKjP4HsiipS4fWuWcEu/8yNGjVZK6OiRw7VTqnPIwEJORSxUP//4ve5+iquhfGdl0EDi6BYunKcGT4YMHUbvvv2mrrpHHh3CnWd7EqU+K3nphWfYW+C04m3skmjN/XxkUP/7ktm8+da7arBKrNX6yXbk3TB86KO6eyPXIhbJ6vx+6dmtsy5BmQxeiYdFY7Zsa9+HvGD9xJNPUxVOkvPk2JFqAEPjJcqvWET1xZLrzOr5soapfr3mlsVLQ95jq3nQTRRiERmEEdHe62rl3n+SpEne8z58byQONTPp26+/2rXs7790ReS4b2b8oLw9+vftnWlsqe6ATBasbZ+8U37+ZTa9+/5kkhjdRYsW0FD2TJCBya/5HZeXIoNbZy9cpdTUVPWOWLliufLO0f9e52X9ODcIgAAIgEDxJFAkLKTx8XeUK5e4cxn/xdyLIV3EyoRYCES50EQsVGXKlKXFi9IVDdku1gNJHqSv8Mn2dWyBk06WuFrqyw52pxW3ME0kScbFC+epbGCgtilbn8o9l61EooxqcUR///Wn6igYW0m7sdXGy8ubpn/xmU4ZlUpFMdVczKTjLp1dSeKjL+IWp3WC9bdbuizKjb7SI9kqRebOnqVTLsSqKNsbN2nKiToM3YEtrce4nFidNZc7uSfS2RerVFRUJFWsVNm4uEXrksFTWAwc+KiBa+7AQY+qDMeS5VhEsh6LdfJHjjXTLKayXax7YrWpWy9r665mMa9Y2dA6LBbwi+yqJ2LJPZVO9Fb+rmrKqBwnnXQZNKlUuQrVZgu7vvzBHdrPP/tEN/iixd9Z8p2XQQVpdwlfXwNXWjmHxJ3lVJb8sVh3P+Vcc2alu0bKfRW5HhxMksRGBnr0M4GKRVsyqcq9y65Ycz9FwRERi1yDho2Uu7K8V0SMv3fybtC/N+ItIPLf9q06ZVTWte0tW6dbKvOKtbCT2EmxppsTa67T1LmsYWrqeFPbhPm37JotVl1xRdVEnkURTUHVtutv08ro79OWZVBSQhDkXaafxfw9VgibNmtBo0YMU+8Vrbypz+49eimLpoRwaH+al4dWt6XtE8X6OsfPSoxrGGcAnvTmO+yJUVFZtbV3nrRBPC20urRP/XARU+3Matv6dWvom6++pMkfvKs+xeNlLLs7z5wzz+CZy+oc2AcCIAACIAAC2SFQJCyk4oL69JNjsrz+XTt3qCk+RLlYtCBdARXFLvTWLdq0Mb1DLcpS2bKBbL3yI4lj0xcHh3RUAazA6nda9Mtoy9HcoXBySu+katus/RRrYkl25Vu7ZpWy6srxsXGxtGfPLpJER1OnTFbKqWyvVDldAcssLb904APYSrt+fd5Pb6Ipz3Z2hmMdsl1cwVw4+2VSUpQ0O0ciCvsrr41Xbq1ilRYRNz4btmqcP3cu2+devHCBismUwYqdrFCIa7K4e7/7ToZVrtI9hVfiBI3Fy8uTWZc13mywvoHdNMeHTaRPp33JbsxP0E7+boo1U1+xs+SelipVWsXTGZycVy6cP682VahYkWTAQRP9zqy2zZrv/ML58+h/r45T8bKiCIty89eSP7K0PGn1WPspAzuJiYnK40A7dv6836hjpy4k2VeXLf1LuTzLvZjy0QdakWx9WnM/xY3+3fc/ZGtmxuCK5n5vb5/161SuR+6Bna2h+6j2zMigkogMcuQ2a3leKnBiGxmYs0Rycp1yfmuYWtIeseb/8PNMNeXKk0+MUpl0teOio9Ndr+X9Yiza4EV0lOnkdhLTK7Hju3btoA/ff0d3uLi8D2Gr5NAhgwzq0hXgARp9EUXQ2FNg8ofvqcFKa9snMcfSbs1KLSEEH3EYiISN1KxVS+chUK58eWVF1W9HXFycCmHQ32bpsngT6csXn39KmvW/M7sQi1UaAgIgAAIgAAJ5QSDrHlRe1FhA55RO3mJ2fRL3NFEyZM5DceH9fe5snYXPzc1NuXeJxWXVymUmW3rqnmukyZ33NqaxuxOfKKsiZvcN5DnoRCRpjCkRy5HELYq4ubqpT83yplb0/hPLgmZ10ducJ4vq2k2cOTWNmeSiTOXELIPY6isuw2I5Pn/uLEVERKgEVDmpRjpd73/4McnAhSikYlUSRWLpX0t0p5VsrSJiSUhJSdZt1xYiIyK1RZOf4jrYrm0Ldg9+WSlXmnVDrMhjRg3nGMdIs/dUYoLlniYkpLst6ld092565mAXvu/mxJrv/JdfTFMW5Oeef4ljpDuq50fiRz94722DLKbm6rR0v1jexW1SExk4Egv00GHDlUI6dNjjatqOfzas14pk69PS+ynuruJ6Lu7OEk8o81xeu3aVXYE7ZfqcGjcoLZPnQN/SLsfkNms3N3flnWDKrdW4jblxnZYyNa7b1LoMmkhCsTZt2tErL7+g4nH1y8k8oiLyTBiLK7/TRSThnbHIoJO8XyXOdOzoEeo518rI4IAohXK/TcnmLf+pwYXKFdIHw8a/9j8yft60eXWtaZ+EdkhSsrfffEPnGi65DIY99gjNX/gnx7gPV9ZhedeLx0bH9ulWda2Nmb1/tf3Wfi5i7yHJnVC7Th0opNbCQ3kQAAEQAAGLCRQbhVSISAzOK6+OV4mBLl+6pOaTk/gcTUQREJdPcXVdtvRvbXOufdpaONeiZGUUl01xHd6yeZNB/aKEvMFzr4p1V1NINXfFQJ48XhQzYxFFLTo6Ss23Z7xPf13ihkQkplSUsLyU1NT05EDZiV8Va09PTqQkiWJkjkFLxFL2Yq1auWKZcuGTTuFA5ixT7sj3QpNLF9PdQyWjp3QWsyOiGIjbofzJVD6S+fbpZ59XiYfEEmjunsp3Vc6hWYf126BZaMXlzpxY+52XeE75E0VRXKQlM65YqmWwR/v+mKvTkv0SQysDKZoLsxwjCqpYsF/gWO4GnNhGBpS+4ezTpiy/mdWhr+BqZSy9n2I1kzY9+/QTShnQjs+rz9xkLc+/KDH+pUqZbW52rtP4+bKUqbnGiDu0zEUqlswXn3+GBwqX33eIWNNFqgcF3bdPtoliqLmnawXad+ikspBLcqdRI4fplD9tvww2THz9/mRd0o7effqSWA9v3bypFVcDI7oVowVr2te0aXN19NWrVw3OIs/Wzp3/qWRkorSKm7e4AGf3/WNw8ixWtPuqxbZnURS7QAAEQAAEQCDbBDLMD9k+xYNzoMShiRInytzARx7VZYDVv4Ldu3apGEFxhzIWiQXS4sWM92W1LgqhiDa9SlZlZV9PdkmU0X6J5/n1l58M/n75+Ufa8u9mZVnTLAIHufMkMnjwY+pT/z9NYZEy4nZlPK2IdNDF9VNE5r4TqXzPBVit8H/lWNHNbZEOoiTKMK5LFBEPT88sq/Pk/ZL5VjIW64tYNPSnlpF91rKXY8StUeYalMQ6Eou5iBPq6Mte7gyKRUviq0yJxtzUPtkmMa8ysKCJWNy+ZsVKOp3iKiliyT3dt2+PyqYrVk59eahvPxV3nJkLt35ZWbbkOy/ukPrXJW0VTwLJLC2JlSRpjCaSnGnEqDFsOeysbbL6s//Dg9Qxe/h51BdJbiTsv//xV1aKbZRrq/7+rJbluyDu+MZi6f2UbKkixt87U+c0rsOa9bxifZK9OyTztXEct/F7yZrrzOz5spRpVlzESinTKjXn6ZXGjh5pUhmV40XhFAVNrk1L1CXb5V3XoEEjWr16pazqRGJGZ87m6bH+20Yjhg+5TxmVgjIQIgNDxn+STVxkxbKlyjtDrZj5z5r2Xb58SZ3t4QED7ztrB1aiRfJCCZXES6YGa3r06q3qPHz4oPrEfyAAAiAAAiCQFwSKhIVUfkyfee4Fk3zWrFppEAMkCYy+/e4nFeMkblbG8tGH79H6jVt48vWl7Db3mUqSJNMyiBuVzCcq2Xev8xQU1sjx40dVJ1qsszM4y6wTj/oHB1+lc2fvt2bKeUVhllF1LdmJcV0rli+lLl278XQfvWjp30tURllxNZVsqSmpKcqiJ/FsMiF69569qH2bFjRl8gdqipBFfyylaZ9OUfPaVa8epOboW8Adr4U8WfyeXTtVO9+fPEVlVhRrUO8+/dS0IsZtyI313Ry3JZZgmTpHEkNJMqAxY59SirtxUin9+qQTLJZgmcZE4nkl+UdQUE0aNWasUvaCr13TFbeWvRwonU45/yiO77zGlgrJ0qwv0lb5HskUN6IESxylWCvFciHWkxBOSDI+iyki5D5JwhNJPiRud5L5echjQ1WHUEs6JVmCzd3Tz6d9oqbymTn7N/pk6sfKCi7fHWmDTFekKQv6bTe1bMl3PoEt5pu37lBT3IgieiMkhGpwtlNJliU8NPdEOf/jj4+ikaPHkqnny1T9su35F1/i611JEgMn7ugyX67E1Upsn77I/ZD5IEX5EGvZrVsZVir9cqaW5Xsi8aeSCEm+NzIQI0nDLL2fMh2HXNfHU6fR/N/nchU2akDgURMDQabqt3SbDMjkBetZPFWPzNc6i5PUzJ0zkwddPHh6nYfvGziw5joze74sZZoVE4nVbdK0mXLJl+mVZJBDX65dvaKL/5/H90PmOv7si+k0h+cKlcE6iXe2Z28K/bjZ8uUrqPl/5fsq3+NHTNy7VewhYcrFV79ua5ctbZ8kvJLEfGL9f/mVc8qrx4HjZ/vyfZLfoN/mzjbI5GyuHZKRWBKR+d2ba7pCxQrKs0EGdcQCr8nDrKSLC/wC/h2QgSyZHknmF5bMzPI7tHmTYTI87Th8ggAIgAAIgEBuECgSCqlYaCayG6spOXf2jIFCKu6XYuFwcHBUrpnGx4irZN/e3en9yR/TJzznojZqLB1lmTMwKtp0cgzj8+ivS/ZUSYozkhXaRX+muwJLan9TCqlYoVq2aq2sosZxZdo5JSmOuBUP4DhTUUhFxr36Miu5wWy1e5rnGn1JbRM3U+kIiYh1ZOjgQeq6fvplltom/0lnQ2KoREQJnPbJFHpt/Ov0y8y5SjmVuL2PP/pAZXpUhXLxv48mv6/m/JzwxiR1VlGgpnz8AT399HNma3npxedI5nSUpBsi4pL4w3czVMIn/YOtYa9/nLhyS3bLxTxfq6n7MOmN1zmb8kV69vkXlFKmHSsMJa41KxEFtzUrXdO/nqErJh3gtya9zt+xjHhIc/dU5qaVaXykE/73slXqXGJ5/nr6F2oqHt3JzSxY8p1P5WQ8G/9Zb/D9ktNKIqZJEycY1CBujWL9lsRDlkqdOvVo9JgndcVlSpFxr94/YCQFJOO1KKTSObdGPmWlXSzTEiMsng7y3RCFVMSS+7li+TISl0pl/b1nrRKFWdw3RYHOLbnD75q8YC3tr1q1upo+RxLwyPdarl+sgKKMaGLNdWb1fFnCVKvT1KcM9ohIHLf8GcumjRt0CqkMCkkW9NcnvqkrK9/B0aMeVwNW2rGOTo7qOyCDmDKtiik5xINBua2QWto+CZUYO2YEvf/BxyrfgQxipseKJ6ippL78fJqpJme67TX+XkrGY00GDxnGmeSHqdUKgRnu2/Leku+D9j6VAuIFIb8vkuzJ1DtQOyc+QQAEQAAEQCCnBGzYDTU9mC+nZyqCx0uHSEbmJa5QLELWxKplhkNcgcWaZqn1KrPzZLZdFGhxsRVLaQhbck21WdxdAwIC6DpbYaUtxiJus+JWepFjJUXRy0uReFAto6xkh5VOkKUirofVqgep4jLwYC7uNa/YSwyoL1shrgVfM8kzs+uRDrRMDxQbG6Pulf70OfrHmLun0mGVey6WVks46J/beNncd17ul2Rslu+QWKKNvx9iddyz/7DqPH8y5SPj02e5LhyFx2UeFMrq+ZA5O8uWLUudOrTJ8nyZ7RS3bj9fPx7AuaZLaKZf1tz9lOk2JDGaPF9afKD+8bm1nFes5fqrVK6inm+ZKzUzsfY6s3q+zDHNrA3WbhdmVapUVQN2mvurtefIy/LWtE/mtZWphCRWVKYSyyxpXW62V95jpXlQVBRQcQ02NVVNbtaHc4EACIAACICAEIBCiu8BCIBArhEQl2GZRqNNyyZWu7Zb0oigoBrKpf499jiYNfMXSw4psmXymnWRBYcLAwEQAAEQAAEQKFQEbAtVa9AYEACBB5qAuOtuWL82T5RRASMxbWIpWvLnHw80p9xofF6zzo024hwgAAIgAAIgAAIgYI4ALKTmCGE/CICAxQTEbTiJ4+AkxjkvRBISybyOkt23uEtesy7ufHH9IAACIAACIAAC+UMACmn+cEYtIAACIAACIAACIAACIAACIAACRgTgsmsEBKsgAAIgAAIgAAIgAAIgAAIgAAL5QwAKaf5wRi0gAAIgAAIgAAIgAAIgAAIgAAJGBKCQGgHBKgiAAAiAAAiAAAiAAAiAAAiAQP4QgEKaP5xRCwiAAAiAAAiAAAiAAAiAAAiAgBEBKKRGQLAKAiAAAiAAAiAAAiAAAiAAAiCQPwSgkOYPZ9QCAiAAAiAAAiAAAiAAAiAAAiBgRAAKqREQrIIACIAACIAACIAACIAACIAACOQPASik+cMZtYAACIAACIAACIAACIAACIAACBgRgEJqBASrIAACIAACIAACIAACIAACIAAC+UMACmn+cEYtIAACIAACIAACIAACIAACIAACRgSgkBoBwSoIgAAIgAAIgAAIgAAIgAAIgED+EIBCmj+cUQsIgAAIgAAIgAAIgAAIgAAIgIARASikRkCwCgIgAAIgAAIgAAIgAAIgAAIgkD8EoJDmD2fUAgIgAAIgAAIgAAIgAAIgAAIgYEQACqkREKyCAAiAAAiAAAiAAAiAAAiAAAjkDwEopPnDGbWAAAiAAAiAAAiAAAiAAAiAAAgYEYBCagQEqyAAAiAAAiAAAiAAAiAAAiAAAvlDAApp/nBGLSAAAiAAAiAAAiAAAiAAAiAAAkYEoJAaAcEqCIAACIAACIAACIAACIAACIBA/hCAQpo/nFELCIAACIAACIAACIAACIAACICAEQEopEZAsAoCIAACIAACIAACIAACIAACIJA/BKCQ5g9n1AICIAACIAACIAACIAACIAACIGBEAAqpERCsggAIgAAIgAAIgAAIgAAIgAAI5A8BKKT5wxm1gAAIgAAIgAAIgAAIgAAIgAAIGBGAQmoEBKsgAAIgAAIgAAIgAAIgAAIgAAL5QwAKaf5wRi0gAAIgAAIgAAIgAAIgAAIgAAJGBKCQGgHBKgiAAAiAAAiAAAiAAAiAAAiAQP4QgEKaP5wLZS0jR4+l9u07Fpq2PfXMc9SiZas8a4+NjQ2VDQykcuXLk4ODQ57VgxODAAiAgDUERowaQx06drbmEJQFARAoIgTs7R3I29s7R/2STp270OMjRhURIriM4kgACmkRu+uXr90kc39btu9SV/3scy9Ql67dCg2Bl19+ldq2a5/r7alQoSLNnjuPTpy+QDt27aftO/bSmfNXaM7vC6h7j55W1VemTBma+unnVK16dauOQ2EQKMoExox9UvfeuXD5Ou07cJTWrt9E0z6fTo0aNymQSy9VqrSuTfJOPHnmIv27dQdNnPQ2eXp6Wd2mcePfoIGDHrX6OEsOePrp56hb9x6WFEUZEChSBPTfHZeu3qBDR0/R0hVraNAjgx/o6zR+/1y8EkLHT55T70VjxbF9hw50+Nhp6t2nb7avuUfPXvTEU89k+3gcCAIFTcC+oBuA+nOXwPhxrxiccMKEiRR2O4xm/vqzbntsTIxuuagvtGjRSimed+7coXffnkRHDh8iLy9vqle/Pj3z7Av03vsf0bq1ayzG4O1Tgh4bOpzWrFpJZ8+csfg4FASB4kBg4uvjKDo6mnz9/Khateo0YOAj9Ojgx+iF556iFcuXFQiCP/9YRP9sWE8enp7UrFlzEk+MevUb0OPDBlNycrLFbXqoX3/avWsHLflzscXHoCAIgIBlBOTdERUVRX4lS6qBn8+//Jrc3N1pzqxfLTtBIS21eNEC9f6xs7MjHx8fenTIUJr88ScUGxtLf//1p2r1+XPn6NOpH9OJ48cK6VWgWSCQ9wSgkOY943ytYfHC+Qb1PcOdr+vBwWS83aBQEV6Z+NY7lJBwlwb0600XL17QXenu3Ttp2dK/aRLvh4AACOQOgU0b/6EbN0J0J/t82lRasGgJW0q/onNnz9LJkyd0+/Jr4eSJ47Rm9UpVnbwHw2/fpqeffZ4aN25K8h6AgAAIFDwB/XfHwvm/05p1G0m8ph50hfT0qZM86L1aB3jVyuXKCtyUB8c0hfTSpYs049uvdGWwAALFkQBcdovjXde/Zo6rfHjAIOUiIy6t4mbXslVr/RI0d95CGvLYMINtMoq5eMlSat2mrW67xEH9MnMuBQXVoJ9/naNeurv2HqSXX3lNV0ZbqF49SJ332MmztP/gMZLRUAdHR2237rMCu9v+9Mss2rP/MLu0nKLf5y+mmrVq6/bLwg8//Upjn3iKAgLK0KQ331FlpL3tO3SiBg0a0nczvjFQRrWDb926Sf976XltlV586X/q+g8cPqHqWrths+q42tqmPybSlmmffanKv/nOe+r6hYH8sIj0f3gg/b18tbpucQ2eNed3xIUpMvivuBKIiIigUSOGUUxMNH005VMDDPXq1af5C/9Uz9rO3QfUO0AsCMYiz/tv8xYpdzdxBRY3YHkniadCdkTrBNaqnf4ekbh1eY537jmg6ti2Yw99+tkX6n2inf+rb75T6506ddU99y++nO6Nor33JA5s1Ogn+H01m6Z/PUM7lCy9Tt0BWACBYk4gISGBVvMgknha+PuXUjTEzf6TaV/Q9p176eiJM7Toj7+ocZOmBqR+/HkmPf/Cywbb5BjjPog83/97dZyunCP3PV6f+Cb9s2mbcu2X336xZOpLZv0M/TKWLItlNCUlmW6HhemKV65SVb1X6tStp9uWVX2urq70wYcfk7w3j586T4v+/Jtq1aqjO1ZbQJ9EI4HPB4EAFNIH4S7lYRvFnW48u/Xu3b2LZnzzFbl7eKiXvn6VTZo0o8By5fQ3kZOTEzVv3pJ8fX1128uXr0CdOnWmv5atUh3Q72Z8TTI6+OprE6h2nbq6clWrVaMVq9eTxFhM/+Iz+uLz9I6qJBqSxEOaSLk1rCCXLOmvyn0y5SPldvfX0pXqWK1cg4aNaAh3Tv/ZtFXFxKalpZGnlxdbQNJj1/5glxlLpGKlyrR3z24Sq85777ylmEi82fMvvKQOj42LpQP796nlo0cO07Yt/6o/+WGR2DLptIo15q1Jr9PPP31PtuyiM3jIY5ZUjTIgUGQJiMVUrAL1GzRQ7w25UIkr/Xv5KkpKTqK333yDvvn6S2reoqV6L7i4uOhY1Kpdh1asWkdenPBj6pTJNG3aFJIBorZt26vkZLqCVixI51Mkjt34RcqWDaSI8HD69ecfadLECTTv97n8HuuqBpRUAf5P3gvi9i/Xoj338m4TkfeeDMytWruBXvrfq+Tm5qaLUbX0OtWJ8B8IgICOgJOjE8lv+Z34OyrZz1J+X7Tv0JF+/H4GTXx9PPcxYumPP5dSq9ZtdMekpKSoAXZtg/QdpI8zesyTZG+f7hAoz/+AgY9SZESkKibvk4WL/1LhBevWrVaD1PJsT/3kM4OB+Mz6GVpdlnxKuNCE1ydRGPcZJJRAE3d+Z0h/yov7LZpkVp+0dz57nQx6dAgtWbKY3n/3Ldq/by+VLh2gHao+0ScxwIGVB4AAXHYfgJuUl00Ul7Wnxo6iu3fvqmr279/LI49/kyiD4mJnrdzlkc1e3TvT5cuX1KG//PQD7d1/RCmKx48dVdsmvfmuit3q/1BPio+PV9ukE9ijRy/1A6Q28H/vvPchhVwPpgH9++i2r161gg4cOk4jRo2maZ9M0YqqH6yhQwbRYY4R1WTG9z8pxfg2u+hZIq+9kq54amXFklKqdGnq2r0nd5inqxHNBQvmcd1jaDm7+27ZslkrSm+98z6J282kN8brts2a+YuKh9FtwAIIFFMChw8d4k6hg4rdFOVOPBnOnD5Nox4fqnu2t279l7Zu20Vjxj6lc197970PWBGMo4H8DkhKSlL0Fi2Yf9+7wlKsMuD22oQ31Htn+7Yt6jCJCTWOC70efI2+mfGjysodfO0a/f7bHHry6WfpxIlj6l1gXJ+jowP9NmeWUmalE62JpdeplccnCIAAUY0aNWnwY0NVzLbkvBg95gmqVLkKdenUjs6fS++XrFyxjGRw+q2336NePboobP9t30a9ej+kYjXFO0OSFl44f44qVKykPL+2bd1CYoWUwe8d/21Tx4hiJ5bWHl076kIKxMXWm701nn3+RVrIv/mayHHG/QxtX2afk956l97ggW1RJCWOVEQG64M5lMqcmKpPFM2GPAj/9JNjaO2aVbpT+LE1uTnnzNBEEiShT6LRwOeDQAAK6YNwl/KwjZcvXtQpo1LNuXsve7GKZkshZQVTU0blfKmpqXThwnlq2jTdrVUsoDKiuZWti5oyKuWMRUYzW3O51atWUd9+DxvsvsadRUmYoi9itdBXRmWfOydEEKuGNVKfk5205HrFpbhEiRLKsivXYE6OHT1CknZd3IBEWZV4VemYhoWGmjsU+0GgyBOIjo5S16hNbSCWw8+nfaJTRmXntatX6cCB/dS8ZUulkErnrTG/h9asZkvqPWU0O6Ckwylu9T78PEtHV1xrXx//qoqt184n7v5t2rajho0ak59fSSp3zyNEvDhEITUnUZFRSmnVLyedSUuuU/8YLINAcSUw9dPPeKA6hb2fSqnf3Qvnz9OEca8qHOJWL95HmjKqMVq+bCm9/+FHyrNLFFdRSKWP0aRpM9qwfh316NmbLZGLqVnz5kpRFYVUPKdCb92iM2dOq9O0b99BvXuqc6iR/GkSFRmpvB/kOdbeP6b6GVr5zD5lYFviY0XEOiveZiNHjqGevfpQ755dKY5deDMTU/XJe0ras1VvQNzU8eiTmKKCbYWZABTSwnx3CqBtCXcTVK2ae0tuNEGsr/JSFxG3EnHJ27lje5anLh0QoDqOdevVu89dWCyeN2/ezPJ42Xmef9Bkbj/J1JfVS1/KSidVfhAf4c6ruL8cP35Mjay6cKxGRR5dNSczf/1JWUNf4iQMr7w6njONRvHI6nz6nkdCw9kdEAICxZlArVq1lfIpz5Yof6JshobdP1hz8+YNjoVKj+0U7wR5b+zbtydH6FLZjS8hIZFOnTihsmOL9eP69eu6c/bl7LmSdElc78Vj5NTJE7z/Gom7sH4Ige4ACxcsvU4LT4diIFCkCSQlJStviO3bT5N4F61YvlSnCIpbvan3heSBEAnk/afYzVYsgjKAJAPge3bvZqtoK3qT3fBDQ29xAsN3VTiNWEN37PhPx1Jc7t093GkUW2GN5dChg9xfceV2pA+oGe+3ZF0UaQlZ0Jd/WFmWONVu3XroEhvp789qWUKLDnO7zA22o0+SFUXsK4wEoJAWxrtSCNuUUwVVc2OTgH6RMvwDkpVIJkw55ve5s+mXn3/Mqmim+87eGwFtw/Fd5qZ2acFWGVFGJ4x/hcQlUBNJ3mRSIeVRWH2J5NFUcdeVeNhGbGXp2KkLjRg5mjvfATzlxdP6RbEMAsWKgLw75HkQjwsZnJGEJSJ1WOEznkDF29tHxVfJfonrFDH2hlAbrfjvryV/ZPoOETe6DyZPpe3bttIzT43RdYDFwiJxZ9p7S6vOhgyfe227qc/bt9OTlpi7TlPHYhsIFDcCEksuMdqmRJ6l2rUz8lBoZcTjQkSmttPkv+1blUeEzLF++tQp5bEl7rsyf7jEqSuvhc8+0YqTnDtZYk/79tJty+sFUZ5TkpNVe8SCao2IJbhq1WpmD0GfxCwiFChkBJDUqJDdkMLYHAnwl9F+fdFPPKK/3dyyZNsUN1Yt4ZBWXiwmNtw51ERG/y6yq6/EQUin0Vi0xCTG2/XXl/MIq/zAycioh4en/i61LNYXLVNn3br11bbNGzcalBPLqb7ciYtTq+IOrC8aD7m29evWctKFcWrks0PHTvrFsAwCxYqAPLsfT/2UJEHHp598pK49jp8hcesX1zN9kfhOSXwkcZoi4tJ/7uwZasnuepJVUpOygYEmM3Jr+635lHNJZl/pxGpueXK8qQE4efaljZaKpddp6flQDgSKK4ETbGUs6e+vMvjrM5B3iLjf6ofGbGe33bqcwVtmD5CcEyLisSQx408+9YxKiLjjvwwPraNHjlAdTrpYiS2PxmJJP8P4GEvWJYTAjgfqzpw+ZUlxgzLSLypTtqxBYkcpYNxXQZ/EABtWHgAC9/f0H4BGo4n5S2DdujXUjRP79Os/QE2jIsk9/lhi6IJiTYt++222itWSjJQSsympySWTpmSn1HeR++D9d9Vo5g8/zVSf0nkUS8sUzn4nSQLMibjpyqhrucBytH7jvypjnmT7lWx2Mj3DmnWbSFxsReQHT2Tim2+ruuSH7uOp02jY8BFqu/ZfMMevygjliJGj1PQz0v4yZcqoaSnGcbIUWZfY0xYtWlHnLl3p4IED2qH4BIEiT0DiqPs81I+GPz5STaPw3859nGl6GL3BAzQyUKOJZNeuwqP88g6QaR1k2oNvZ/zALrqO9MN3M7Ri7HEwjROsVSeZPurDj6bS9z/+Qhs2blWuvPrvCt0BVi6EXA+hyMgI9Zx37dZdTdHyxJNPcz2/qjPp1yFWjbbt2qvppCTpm0znYk4svU5z58F+ECjOBMRLSryr3vvgI5XfQTyXZC5hicOc/uVnBmhE2ZTBZnlWV69aqdu3auUKzvPQla5evUJXr1zRbf/px+8pIiKcZv82X8WZSoynWFHl/Mu5X5JTCeK4dYlllWRLMpXM2+9+QL/OmqviYRcvXmj16SXBmnhuyNQ10peR6e1k2rwBAx8xOJdMlYU+iQESrBRyAnDZLeQ3qDA0b9nff9Ejjwymr7/9XjVH4jQ+mTL5vulhLG3r9zwvaOXKVem1ca+rP7EkfMEuNBIboS+bN/1DY0c/rrLo/c1TyWgiiQ0+44Qoloh0giUDn/yQTf74E/VDJccl83QTu3bupDmz0zueW/7dRJ9zGyTZgLzYJZGRZLCTEVZx39NErCjjXvufbs5S2T565DDO2LedY1DG8vb0uQkljkWSKnzJHWoICBQXAjJYJM+OuMiJK9y2bf/SvN/m3pdwTNxoZV7BNya9pd4Bwkc6isMee4RCQjLiOyX26qknkmgoDww14dgvSUQyoF9vNd9vVFT247q0+yHvgeeffYremPiWmkNZtp89c4Zj2H7WtUsrK8+ym5u76kxKh1embTDOzK2V1T4tvU6tPD5BAATuJyDx3UMHD1RTq23g6d1ExPVfpoKSDP36IvGi8p6QKWAkoaIm0heQ513LrqttF6+tQQ/3VX2Eb7/7UZcJNyoq0ur4Tu2c+p8y7Yz8iYhSfYPfb/N//41++P5bNbitX9aSZbm28dwHkQFzyZEhyqlkHP5nw3qqVr267hTok+hQYOEBIWDD7koZOeofkEajmflPQFxqK1WurDLySjbM3BCZw1TmCZPMvskcT5GViMtt6YDSdPPGTeV+k1XZzPbJNZQrV57sHexV4gNTWX7F7aVGzZqcgfOa2WRE4sYcz3OkSayGiFhTxNrj7OxskGk4s/ZgOwgUdwLiGlu5chWeEzTOomy2wkusI/sPHuOYz7GcgTfDApJTlmKxTeYBJ3EnzkpEkXZ3d2PFOeS+GNPMjsvOdWZ2LmwHgeJMQDyS5Bk8d+6cUjBzk4UMNJXjJEfini8J1oxjyHOzrpyeS+aCl3eWWHtFqTYl6JOYooJthZUAFNLCemfQLhAAARAo5gQkA6bEWx08eIAHo0JU7NRbb7+nMuB2aNuSxLsCAgIgAAIgAAIg8GATgMvug33/0HoQAAEQKLIE/EuVoi+mf2NwfTLH73PPPAll1IAKVkAABEAABEDgwSUAC+mDe+/QchAAARAo8gR8/fyoCic9Eld4CRe4cuWyWRf/Ig/lAb5AuZ+ScE7mpzYWycpcqhSHZrC7pMQiQ0AABEAABIoHAdvicZm4ShAAARAAgQeRgCQ02bN7F23d8q9KUmIu3vxBvMai1mbJsnz52k0S5VMTyV66dsNmWrlqPe3Zf1hlTZa4fk1kiq+DR07QgsVL6MDhE5zZvYe2C58gAAIgAAJFnAAU0iJ+g3F5IAACIAACIJBfBFq1bkMjR4+9r7p3eLqLLZs3Ucvmjahls0bUlqfW6tK1uyrnxvM6T/t8Oo0c/hhJbPCTY0fSl9O/JW0uxftOhg0gAAIgAAJFigAU0iJ1O3ExIAACIAACIFAwBCrx1F0fT/mUY3yfMGiAZC+VeZkXLVqgtksyqpUrlvPcjH3UeseOndW0P4cOHVTre/fsplu3bqq5JA1OhBUQAAEQAIEiSQBJjYrkbcVFgQAIPIgEnNy8yNY2w43xQbwGtLl4EUhKjKfkhHg1FcePv8yiNyaMU1NR6FPw8ytJMqWWTKelSTAvN23eXK2WLl3aYJ9sDA4O5qm+ymjF8QkCIAACIFCECUAhLcI3F5cGAiDwYBFwcHIlW3vHB6vRaG2xJpCamkKUkkTf/fAzzZ75C+3atUMloNKH4unpqVYTEhJ0myWpkRfPJyni5eV9X5IjKet17zjdQVgAARAAARAokgSgkBbJ24qLAgEQeBAJxIaHPIjNLpRtlknhHRydyNHRgexYyU9jxSk5OYmSEhMpKSmpULb5QW1UgwYNqVr16lR6fwC9+toEsndI71o88+wLtPTvJRR++7a6NEdHR9KUUsmaHBUVqbbLp5OTs8Hlp++PMtiGFRAAARAAgaJJAApp0byvuCoQAAEQKHYEnF1cSeIVq1SvSbXrNqaSPI+pi6u7AYeoiHCePuYiHT98gG7dvE537sRRSnKyQRmsWEcgJCSE5s6epTsoRaymLImJCZSakkJhYaFqEKBsYDm6cP6c2idZd2/cuKGW5fiygYFqWftP9oeEXNdW8QkCIAACIFCECWAe0iJ8c3FpIAACIFAcCLi4uFH5SlWofZdePNWIv1WXfP7MCdq8YRVFhIdRMiynVrHLrLBYN0+fu0yNGtQmmbZH5CeOL7108SJ9/NEH5ObmRqvXbaQpH31Ia9esIsmyu+/AUXps8EA6dPAANWvegmbNmUdNGtah+Pj4zKrBdhAAgVwm4OrqSv7+/lTSz5ezXDtTaloaezJEc5KxUJ4f+GYu14bTgUAGASikGSywBAIgAAIg8AARcGSXXH9OfNNv4HDy9PbJUctPHTtEG9evoOjIiBydBweTiiE1VkjLl6/ASubv3Ml1JQ9PD1q1cgW9OXECpbAFVaRvv/40ZepnFBp6S81fOmHcq7Rm9UrgBAEQyAcC9vb21KBBfSpfvjwnKQslR5s7RGkc2mBDlEoulJTmQWk2TnT8+Em6yANLEBDIbQJQSHObKM4HAiAAAiCQ5wRcXN2odfuu1LRlu1yt64/ff6aL58/oFKVcPTlORqVLB1BMbAzFxcbeR0M6xQFlynDG3WDwv48ONoBA3hDw9fWlVq1akH1aBNmlsJu8KKKmxNaDEm0DKeRmJO3du89UCWwDgWwTgEKabXQ4EARME7CzsyN5wXt5efFUCO7kxi4wEtcmIslU4u7cocjIaIqOjqbbnOwjNTXV9ImwFQRAwCQBD09v6vPwEKpYpbrJ/TnduHHtcjp8YDcl3IW7aE5Z4ngQAIHCS0D6KR07tCe75Mtkk5LuXm+utUl2lSk0Iol27Nhlrij2g4DFBKCQWowKBUEgawLi6lKxQjkq6V+aku5GkS27vNjb8DQHqYl8oJY0hfOI2TpScpoTx2awoursRWGhN+nCxcs8MfzVrCvAXhAAARVv+PDgUVSuQuU8pbF5w0rat3MrZ+bVnt08rQ4nBwEQAIF8J9C5U3vyco0l2+T0BGOWNiDRLohOnL5C586lJymz9DiUA4HMCEAhzYwMtoOAhQSCgoIoKKgaz8UXx3EX4ax7SgxaelyU2VPY2BHZlaBEKkFp5EwnT53J1xe8JB/x9fNTLnJpnLzAWGxtbalUqdKczOCGSUuui4sLSRIEsfRCQCCvCTjx97XHQ4OoVt1GeV2VOv/fi+bQ6RNHyNSzkdMGyBQoJUqUUN4UJXy8yZ0T+0iWYPGwSOHpaUTs7B2U62p8/B2KZTfXiPBICuNnTZ43KMo5vQM4HgSKN4GKFStSvdqVyTHltPUgbN0oyaEGLVu23PpjcQQImCAAhdQEFGwCAUsIBPI0BfXr1yEHm7tkn8pxF6lxlhyWeRmOz0iyDaCkFEc6dPgoXb+et1MefDPjR+rZq7dKIiKK559/LKJpn0zRta93n7708dRPKSIigrw5YcyEcf+j9evWqv0S6/XRlE+pR89ePG3GHTXP4BNjRmKaBh09LOQ2AZlXtGHTVtS9z8DcPnWW5/vui8kUFckDTbkg8txUqFCBAgPLsiLqx54UEeRgG0+2xAlEUuWPPSo4hYih8KAVe1WQrSvvcaPEVBdycvFRg0TBwdfp8uXLJgeLDM+BNRAAARAwJNCpY3sq4cqDySnZS+SWaFeNDh+7qN5BhmfO3TV5b0ryM2sHBs0NqOduK3G2nBKwzekJcDwIFEcCjRs3pMaN6nLuuWtkn3w258qoQEyNIYfkM+RqG0xNm9TnjHf18hTtPxvWUf26Nahls0Y0eNDD9ORTz6rJ7aVSmYZh2ufTaeTwx6hD25b05NiR9OX0bzlDpotqU6/efahR4ybUomlDdfzevbtp0lvv5ml7cfLiTcDdwzNXlNG7PI1IuMyLmSiu9Oal76Bh5OjkbL5gFiVkmpN69epR34ceolpBZcnPPYJs7+wlp9Qz7CrHrvrJ3ClMlXhVY2VUTsreFrKPy9gmXyHn1NNkE7eX/L1iqE7N8tS370N87rrKUyGL8F2BAgAAQABJREFUJmAXCIAACBgQ8Cnhx6+XKINt1qw42ERR6VLWTbNlzfmlrPRF/tm8jZo0bWZw6OsT36TL124a/M2dt1BXRgbUDx45QQsWL6EDh09Qt+49dPuwUDgJcEAbBARAwFICMlLXmrPReXvakEPiUT7sfjdXS8+VaTkerXRIjaYKZSuSu1tL2v7fzkyL5mTHsqV/6Q6/dOkinT1zmtq0acefZ6hjx84c03qFDh06qMrs3bOb5yG7SW3btVdW0p69+tCK5Ut1cwQuWjCflq1cSzIiiSRNOqxYyCUC4sYqGXWzktiYaPro7VfvK+LDlsgJb0+lu+z2+sNXU9maH0aeXt4UExNF7Tr1pM7d+9x3jP6GwPKVqBRnhr162fqpDqTdtWvXpqpVq1DK3RCyvXuYnNLECppTSSHblNvkRKzIJrpQxbK+VL16Lzpx4gSdOnUKz2BO8eJ4ECgGBJISOczI5CCYZRdvk3aXQw1KWVY4G6U+nDyFBgx6VIUzmDp80cJ5PHXU67pdmgVVG1AfKvMacx+mabPmNFvmNWYjAuY11uEqdAtQSI1uScmS/hybk6TcFPV3IVZOn0bxXHZycqJ2bVuRu3M8Z6TL4wREaSnkkHKe/HwqUudOHWjL1u15GjPmV7Ik1axVW6eAli5dmuNKrxnc6GCeiqE0z/koIp//bFiv23/t2jUSPj4cE3c7zLJMfbqDsQACZgi4e3opd92siokFdfLnPxgU2b9nBx3ev+feNhvq0qMv1a7fmMT9N/jqJfr288nUpHlr8jIzh2k3dhOeP/M77sywW62FUq5cOXbpr8uZKyPJNv4g2WY2lYKF58u0GFtPHdlTg+JuUpWKZalSpe508ODhPHf5z7Q92AECIPBAELB3YM+PTGZ4segC0lJ5TmEvi4pmp9Dbb00k+du1N31g3PgcKSmpauYC4+3mBtSNy2O9cBCAQsr3QUaxX3ltPA0dNoINXml04cJ5GjSgr7pD5mLlSlVpWDjuJFqR5wTatGhEHk6SjU4UtYp5Xp9WgZd/APXxH0479x7WNuXoM+L6WUqMz5gD0J4Tp8z47kdau2YVHTywX53biy1Id+/eNagnISGBvDw90/fzp6xrkpCQXtaLf5ygkGpU8JlbBKoF1bHoVHZ2GT9pkvRn8/pVNGjoaHWsM7ub12nQRHceW1s7cnaWpFxuum2ZLfiXKkP2MnWTeNVaII0aNuQ40VLkmHqJf1Oy7xJnQVUZRVjhdUrj+ux82OW/AV285EdHjhzJ2I+lYkfAyc2LHF08it1144ItI+Do6kn2tiUsK2yqlH0JCr9jRx5+gab2ZmtbcmI8xUez54cF0rx5C/rsi69Un2PFimV07Gj6+87cgLoFp0aRAiCQ8etdAJUXlirf//BjqsXWoReff5p2/LddKaha2/Rj5cTU/94Hk1WsnJQVuXne9MiNdjw+iwaBpk0ac6jFGYpNvlAAF3SJ0uyrUIBHKlswc0cp1S5CXGw//ewLEqX0tVde0jZTVFQkWzwN4+YkI29UVHrnWj4lS6gm0rEXkeMgIJCbBBwdnah5q/ZWn3LPji1UwrckValWw+DY22G3aA9P53L5wjka+NgoctD7HhsUNFqpUbs+7eXjshKZb7hVyxbk6Z5GjknHuaipmNCszpAL+5TLfwxVCKzAA0itadfuPSatCLlQE05RyAmkpaZQSlLGwGEhby6al88EUnjQzjbNhl9T2TOTpnKytdDQsFz9jqWmWDbN1r69e3g+90g1cC7997+XraLRI4fR9m1beQ74rAfU8xkzqrOQQLFXSMuUKUOPDR1GA/s/pHNX1E+nj1g5C79JRbiYZMUsE+BH9knHCuwqHZIvUoXydSks7DaJe2xuiFj/P//ya5LRxBHDhxjEVoSEhFBZziKsL4HsghgSkp75Vz5lXRNZFoupZOSFgEBuEnB1cydPMy61xvUl8ndRrKPDxz5nvIs7MPEUFxNDyUlJFHrrxn37M9tQt34TOrRvFyt3iSaLSOKiNm1akbNdFMeAB5ssk28b05LZWnqefDwC1aT3W7ZuM/BoyLd2oKICJSCeMPreMAXaGFRe6AhcvnCWAv0d2evLMouk8QUkJdvTpXOH6E5UqPGuPF/f+M8Gkj9N5L0+eEi6QmpuQF07Bp+Fi0Cxz7LbtFkLNadbD57+YuHiv+jXWb+pxC3abZJYuWA9BUA/Vk4rg8+iS0AsHg3q1+MOZh7HjJpFmMoxpZeoYcP6ZktaUkDc1H+d/ZvKmjti+GMUF2c4Zc2//26i8uUrUIOGjdTpmrFrjJ9fSTX6KBvWrV1N/fo9zC6P6VbUwUMe421rkEzFEvgoYxUBSy2Y2klloOXUsf3UvGVratKkKZXy96Uypf35ryT5+5WgenXr0dhnXqSXJ7xDO7dupKuXLPN6KFUmkJzueQJodWmfHh4e1L59W3JzkIRkBayMao3iT8e0a+TmGEWdOnXQZcjW241FEACBYkzg3LnzlGpfhsjGettUmn0pioyKYQtp/iujpm7ZzRs3ycPDXe0yN6Bu6nhsK3gC1n8LC77NudqCsmUD1fxGly5epM0bN1K9+vWVUvrooP506OABFTOXVawcYkhz9XYUupPVCqpK3n6OnMTIh9smfwUrKQ6+1K77ADp9zvqMn1rLJYbU0d6GOnTopDadOX9F20UXOX66Q7tWFBcbS6+Pf4XmzV+s5in19fOjca++rLOirlq5gtq170h79h+m2JhYiomNUe4yuhNhIVsEfANrkL1Tuvtztk5QBA/y93YjByfXLK/M3c2FPNxdyYUHSJLZgrl76116ePBwcnZ1p5TUNN38dQ7ONuRkY8thGbbk71+Khj0+kipVrkD+pctQbBzHLt3N2r3RzackuflXNmiLg2Te5vhyF7twtjTE8L6KBvsLw0qKnRf1HDCUduw+qGORW+2KDQ+huAjLLc25VS/OY56AxPa5epU0XxAlii2BqEQnKlemI3uA8fR1loqdO6U516bjew5QbveBE+KiKPKG+UHCQY8MptWrVqh50CUp48BBj9CC+b+rK5ABdYktlQF16ccbD6hbepkol78Eir1CKmmij3Lih4UL5inyu3fvVF/inj17qy+yuVg5xJDm7xc2P2uTGEmf+hUpLuQAJyYxTPCTn+0wqMv2JpVwqU2hFw/nyBopTocVOOlKVrJ82VJ+4a+kAHZrv84ZdmViak3ErV1iTt3ZMuTOLpU3boRou/CZAwK3r53KwdF5f6ijgy0PZtiSLWepFUlMTqXEpBRinS/PpGyz1pSUcH92W2cnfj69vZQimpCYpGKJonnEfi9n1rXh7JEpaXZ0OzzDhTwiPExlUC/JScJEQoKv0vGTp6la7cYksXZ+Pm5kQ24UweeQkX9T0xfFRYTyAMw5g2tt3aoVxd86wvVlDOwYFCgUK5coyaYilS9hR3v27C0ULUIj8p5ATNg1kj8ICGRGQPqwrVu1JF8fe3JMuczFMn7nTR7Dg1vJPDB+8OASunxZyuedSEhRm7btSGa/+PHnWSpconWLJmrGgYE8Hcyn077gMKIQkgHz5cv+otmzflWNMTegnnctxplzQqDYK6RXrlymvv3638fQ2SXdFRGxcvehKTYbJHY0JSGUg/4LiTIq5HmKh7SkCKpcuTKdO2fYMc6LGyOK59UrmXe0YzkWT/4gRZOAi6MdObESWj3Qi+pW9KaAEs5UwiMjmVV8QgrdirxL50Ni6dCFCIq5k0TR8UmSrDzXROYP1RdRRP18S7C7uCPF3UmgG6GRlHxvsETKnjt9XE3von+MLEsCjx3bNnECjiRycHDiY5KpWct2ZO/Iybpi4viP+FodeIDFVbn2hkdGUdjtCFZMMy7Gjq2h+lKrVk0q4ePEHbkz+ptzvCwKv9SqzauX4xPyCSQDb6mSNalatWp09qwV1pDcqBznAAEQKLQE/tuxkxo1akjlytUj+5QQnqqKY0o5a7eB2LrzoJYfpXEW73179uXLtFL6iRYN2sIrj/Ecox481VdJto5KP914ftGsBtSNz4X1wkHAxsfHJ+PXtnC0KV9b4e3tTf9u20Uvv/AsbdmyWSVqWbd+M734wjO0aeM/1K//w/TSy69S755d1Qj8+x9+RCVK+KmMvPnaUFSW7wS6d+tCHg6cxCclPbNsvjcgswrtvCk83o82bdqSWQlsB4EcEXB3tqegQE/q1bQMJ8bJUEAtOen246G08dANVk6T2XKa85+XFm06UsduD5FkhJYYUC9Pd4qMjqMYdrHNjiRw8gsZaJHJ0zl4yuQp7DnG2tOdp4RxcaJQVkojIqNVuTk/fUXXr6VbBXx92X2+XVuyu8tTDaRl7eprspJ7G51Y6RfLc7kAFyrt58SWCkfy9OApZhhdVGwShYUn0o2wu3TtRjwlJaZSQlIOMvfaulKaSz3asGEDRUenX1NWbcM+EACB4kNA3mnVq1elgICylJwYx54jCTxnsx3Z2HEoBM/5efHCRTrPf/phbMWHDq40rwkYDvfmdW2F8PySNnr8ay/Tl199S+Hh4VShYkX65usvlTIqzUWsXCG8afnQJFdXjkfjP7pbyJRRufaUSE5rXo2nZXHCD0M+fBeKUxViES3r50oju1QmN2e7bF16m9olSf42H75JopxGxIqDeM5ErJYBpfw4xjORrt8M57jQ7CtlkpjIyUxzxOIaHhVLd+ITyNvLk92C3Sg45JbBUXVq1yKbRPYeyJYyasMKrz3VqupBLRv5kmsmrEuXdKagShnVxrGSv33fbTpzKZaiWVm1WlLvUOrdy1SvXh3avn2H1YfjABAAgaJL4Pbt27RzZ/Yy7hZdKriy/CJQ7C2kGmjJzFimTFm6deumsoRq27VPxMppJIrHZzmexqRRvcqc2Tbv3WKzQzTRrjrtP3SGgjm2EwICuUFArKIPNS9LTYN8c+N06hx32aX3m+VnKCQie9ZMOcmjjz1OPfv0p/DIGLrDCmlBiJeHK7vyutD0Tz+iI4cPsGtbOapfN4icU09a3RwPN3uqV8ObOjT3s/pY/QM2bL9FJ85HczKmZP3NFi0n2NehffuPqPgriw5AIRAAARAAARDIQwJ2Li4u7+Xh+R+YU0sCC0lgJK5cpiQxMZFiOfMoJPcJyGCAv78/u4kE8FQj5ak8x27WrVtXxQbIHJmenp5qygK5N0kc/5UfUqVKZfL1SiWb1MIZHykuNPEJ9jyAYmi1yQ82qKPoEfBxd6RnelWjoHKeuXpx9pwAqTVbS6+G3qFItuhZ68LboEEDql2vAScpcmdXVdPv5lxtcCYnk6RJKeyy5mCbQrfDQqlmjSBytedYK6viy23YJdeZxjxSkapWcMukJss3VynvRnWre9K5S3GsqJtJRGJ0WlubFPLwKkcXL10y2pOzVZlOSt7j8p7O7LdUEpCk8e+tqf3ill26dABnzmR3wVxw987Z1eBoEAABEACB/CJQ7F128ws06jEkIBlsxcogCqiPTwlOTnLn3vQM7JHKSUTuJqWRo4sHObvZkDfH7EqSD0liknD3rgqml+xueRkD5clxajap4YaNLkRrthTP3LwKUYvQlAeVgJebAz3buxr5eZl2ZLWzd1DPooOjC9k58CTqdvZkb+/ICkWiUixS+DM5KYES42NNZsMVLk/0qEKz1l+gY5cjLU541KxZM/Lmd0NYeAyVLGudwpUX90Lcd0NvR1HLli1Jnr+kqEiLq3FgxbxaJXd6uGsZi4+xpKCbqz09PbQSLVkXTGfZjTclxbKYXVtOWuLmVloNBObWoNaAgY/Qh5OnsJvzHZL3+/59+2j8uP+xAh+mLiWQ3/e/zJzLMcBeHL/rRsuW/k3vvfOmLnt37z596eOpn1JERAR5e/vQBD52/bq1lmBAGRAAARAAgQecABTSB/wGPmjNd3NzU1keJUts3B2Z9y+Jrt7gDoslo+GcyMSRs2CW4oD7SpUqqZjfU6dOUdi9Dk9usmDPAW5TwVlkzF4Lt006fRAQyAkBN3bTHdqhooEyamNrR26efuTi4cN/JUjWkxPiKCUxnlJTWAlNYS8FtnDZyvPBc3o6uLiSnacP2Tm6kj1Pt3I3LpLuRIdTfGy4UlK19o3uVpmm/XmSQsLNu+82adKEB1x8KZyfed8Ay5QsrZ68/BRLqQfHlvs4R1B0ost9mR1N1W1na0P1a3hR93alTO3OlW0Du5elFZtC6OjpaIsti44URlUqV8o1L4vr14PpoT496ML5cyQx+KJ8Pj5iFE3/4jN1je+8+wFt2byJpnz8ISvDbrRqzQbq0rU7rVu7WiWYmvb5dBrKmTMPHTpITZs1p9lz5lGTRnUtYpwrEHESEAABEACBAiMAhbTA0Be/ioOCgpQrbmR0LIWERrCFxXqrRyK7gslfVMwd8uBOTSueA1DmoTrCc8nmZuY3B7YK8TwRhfcmpaVw5x+Pb+G9QYW/ZfZ2NtS+rj9VK+uhGuvs7kMeJUqTu3cpSmClMulOBEUFH1WKqKVXIxkZHdy8OSGYD3mXLMeW07sUHc4Zd2+nxzq/1D+IPll8gt13M48FrVGjJvn6+ill1NJ686ucAz9zzs7OrGjf5MRiXsq6J+EcWUlldq3NS2VUq/uhTgH8Xkyiy8GG0+Ro+40/bVLCqGxgM54C50CuhELs2pmRJOkOe7xs37aVOnXuohRSBx5I7NylK3Xt3EE1Iy4ujlauWE69evdRCmnHjp3p6tUrShmVAnv37Fb5HNq2aw8rqSKG/0AABECgaBOwLdqXh6srDARkNLx9+w5UsVJlCrl1WymT2VFGja9Fpn0I4TkIvdiS0r17dxW7ZFwG6yAAAqYJeLs5UpeGpcmFFdGAKg2oZLkgskm6Q7cv7KHo68coPjLYImU0lceVYuOT2X1XHB1SKDH2NsXeOke3L+6mu3wOD+8SVL52K/JiBdWJXVc71S9FYjU0JRJ/WLVqFYqOK0Rz/+o1VLLtpiSGq1jYRI5p9fLy5mkRTF+LHObp7kCP9grUO0PeLg7vV17VaVEtfK/i40I5mV/uuhFrdbfjd75YO0X8/Eqym7cDXQ++pu3mhGzXqDTfbxHJFaC/T7ZJwrbSAXnTNjk/BARAAARAoPAQgIml8NyLItkSmbS4efPmnHQjiadRiMuTaxRraWJiCknM2fHjx+ncuXM5ridFetls7VGz02fjbBIz5uRoqzqraXwSJ4f0KTQS780hKNsSOBFJkoUxX/c3wZbdJ7mNkCJFwLNkeY7TNB3LmZsXapMUR4+xC2mpyvU5TtuL4sOvUtzNM7oqbO3S3cH3nrpFh86nxwBqOwNLulHPZhXU6v4zoXTkQhh5uDhy3HcytatbhsqXSre4SoGk+Gj1Z+/sTh4+5cjLvyL1KHGetp+OoyRHw2y+4oLevn1rioq+Q06ermpqFklsY2/vRBLHWhjE28eHJ46P5Ynj0zPk2ttzEh+2CEfdm6dUv412lECDuvlyzG3O2y5TvIhya4n06VyOlm/hWF0y79LvYu9KVWo1pOgk82Uzq/tuzG2KjzGMtx/7xFMcmlGdXnj+aXWYJKYT0fdiucv5ACSeVEQUe1nXFynrde84/e1YBgEQAAEQKHoEoJAWvXtaaK5IMue2bduWwiJ4uoZ4w85GbjcynjsvyRHJFBRUg13QHOjkSeunY9BvkyRPcnWx7vFwdkqf4D6osgfHjHlSKc6omZWEhN6lwyejVDISmew+gafIsFhs7FkJz5+Mwxa3CQVzTCA+OozDMvPecaVO1bLUsUNHio8IpvCQzJ+V1NRkqs4uva3rlNZdm1gE09id/eKNGDp2IZQGtq1EHs4OdDUsljYfvEqPdqhCzvcGYLSDktgFOIr/HN19qUSpivTEQKIv5m4ijkTVilDNxo0pIvQmW0fjddsktjw1xZ+tr1Y8GxlH5/qSi6M93QljK19a+rMnzrqO7MZrw3ORxnNMfIakUcUyThRQ0pHDbTNv+/Vbd+j7305nHHZv6e0X63GMuB39u+sGnTgbSS4c6xsbl0SN6vhS6yb+95XX31Ap0Jl8XHm+Vs5sbFZsWSl0qUFxESFmi2ZWICVJKGRI9x696KX/vUrDhw6msNBQtUNLQCeDDppSKq7PUfcSQ8mnk5Ph+zJ9fyGcBzrjUrEEAiAAAiCQSwSs63HnUqU4TdEn4MOWhNatW1NoeDQnLkrIlwtOSuLJ7DkJSpUqVVVMVE4spVEc5+rD8w5SSrTZtsuk9hXLuVG31v4kWS8tlQCe9F7+erClKiY2mTb8d4suBccxr8w7sNq502ycKNKEVUbbj88Hk0BSggVKRA4vrU6dOjSwG1vFrh+nRI4TzUrEQsnqJ2e51k8sJPZ9omuhMVSeraXu/P1ntZEC/VzJhZWokNuxVLF0hpVU//wJsaGUGHeb6laoSt07taF/t+9W02358VQgvpw1+uZtycKrXxfnT2LXUpmWq6DFga2hqak8nUmioaeHJHlyZkU1Nipj0M2NB7N6tivJiquZdnNGcSdHG5r4bF2Dy7Pj+N7L12Jo6+4bNO7JWmpwLIatpNNnnaQ6PNWLl0fWFs3ubUvSvKVXeGooc++Su5TmnET2Nqk81UrOv3t9+/Wnd9+brJTRo0cO664pLCxUvZPLBpZTSY9kh2TdvXHjhiojeQDKBhq6Nsv+kJDrunNgAQRAAARAoOgSyBieLrrXiCvLZwJioWzGbrqRrBzmlzKqXaLEpkZwvTKPqVhosysREZGUnOaa5eEubBGtWsGdXni8iprOwRpl1PjEHu72NKB7GXp+WBWqUt6dxNqalSSnuVFEpOXTTmR1LuwrPgRa8ZQlVQL9qFTqBbPKqEblevgd2nI4hPacvEVhURmDS/Z27DZupDy6syIWcydry30aK2kx7B7saRNFHTq0V89pzZo1SWLCjZVRrQ2F4VMyfKcm61tB01sl01SJuHKsvCZuLnasNFrmYivHiAKq/yfbkpN5HmT+hba7ZzH3YJddB3sbir1jPtlaKV8nnrs563eI1CEiCrZkxc2pDBs+gt6Y+DYNGTyA9JVROa/MS7pp4wYaMmSoqkbyCvR5qB+tWb1Krf/77yaeAqwCNWjYSK03a95CxZ1KYiQICIAACIBA0SdguTmn6LPAFeYSAZnMnueQ545ThsUgl05t0Wkk2Uh4ZBzJ1BFr1qzJVidXppJJsw3KtD53nruxf5cAqlA25x05/UqcnGxpSJ9AunAljlZsDmE3vUw6n3YebCGFQqrPDstZE2jXtg252CVTcvhZtvSVzbrwvb2lfVxU/LNk5A2PvkvLdlykHk3LU1m2hlYu40krd16iEuecqISnM2fOTaAwLiMxppZIgEsMhVyNpi5dOrMbZxJduX7LksMKrIzEi4prrikRpdTdzZ3ucPZYkfq1vE0VM7ktid31l6y7rDiXL+NGdYN8OPacqGKgO1Xg9e9+P00dWpTiZHCJVLm8B5Xxt+ydU7uaJ23baxj/a7IBaYm5opD26NlbWTn/2bTNoJoeXTtyCMUJmvzBezRrzu9KEfXw9KBVK1fQhvVrVdm42Fh6ffwrNG/+YgoNvUW+bDEf9+rLmPLFgCRWQAAEQKDoEoBCWnTvbYFcmWTJLMmWyVCezN5SsWULgJMzu8ey45+dnb1aFiuKna09d1TjOVYyUSUHSuLP5OSsrS9anXc4BtTJkTt3bCmVKWGslaioKO60c6/Qljt/qYaubBIbOvaRiqrTaO15LS0vU0U8N7Qy/frHJbodaRijRbbuzCVRuTpaej6UK94ExDLqYp9M8WEXqKyvZQqNECtfyp3/MtjZsVX09JVIpZD6e7O7ebPydPJyBN3guUX9fdJjAN1dLLMMlinhQvvPXiNbTrDk5OLDMZNO/KybVvgyWlBwS3LtNmT0LN5rTiorpGm2aWpKGFubZFYq05P1mGutm6sdtW9eWrn6i2V59b/BdOlaHPXtEqgsplUrSDKgaDp4PJy3x9KgXhUsfu/UC/KkPUci+F2RtduuDSVx/GbOE2k9Pmxwlpd75cpl6tyxLWfUDeAQhRgSJVRfli9bSqtXraQAzvp7nTPspiBpmz4eLIMACIBAkSYAhbRI3978vziJT4uLN6802tnbcwfUkXxK+FHlqjWpBE8LYE7iuBNz+cJZ7qxc4fkNeT5SM53X6Nh4qlS5Ml25ciVb1sTLfFyV8r5kd08hlWQulTlWVCyY+SEODrb0DCul85dfoYvXxFUw3TUw2aYEXQtGbFV+3IOiUEfDhg3Jg2Ob42+dVpfj7Z51/GFW1+zmZM9JhzKUsjKs3MqfiCilB8+FUSkfyxReib0WJdTV3Z2u3QojHx9vun37Ng86ZeIVkFXD8mGfPP+ibGYmYiUV19eUpBhyYU8HS0RiQTu1ykgYVY0V0Jl/nKM+ncpysrNo2ns0jF4aWVMpoRevxtDvSy+SO99LsZSaE29PR7a62ppVSO1tk5Uibe58ubX/xo3MEyjJvb/K710ICIAACIBA8SJg2a9m8WKCq80mgUBOSiEWzqwy6trZ2ZGnpzc1a9WeuvYaQE1atLNIGZUmubl7UK16jahLz/7UvksvKhVQlhxYqc1MUjgRSizPZ1itWrXMimS5/eLFS5Rmz3GoMv0LS5lSzvmmjOo3bGjf8pz86J4Fg9ti61SapG0QEDBHoGrVqhTg76tTRqW8m5n4ZP1znrkaxQpi+kDIHba0nQmOYutohkuulmtIkufsO32LalXwYWXMsthFqcfblxN6xcRQKmdqTU3ijK9ellkW9duYX8suTmz5laDOTETeNw4OjvwOzLxMJofqNnu42bNlMFUxv3AllkqXdNFZRCuV8+AQAXe6cNXQsqg72MSCcYyviSLcXqdCzd1Um7ENBEAABECgaBGAhbRo3c8CvZrq1atnmtVRrAvilluvYTMqXSbnFkYXVzdq3roju33F0IE9/1FsTJRKnGEMIJanYihfvjwdPnxYuf4a789qXTrKN2/epABff/J0CqNRAypkVdyqfeLiJ0z4n0Uyhl2Ep88+R9GJAXTtKs8ZeS9WzaKDUahYEvDw8CCJ5759cb/B9fNXz2I5ywrotqMh5MbTjsTzXL9VOG60dsUSuuNX7LzEz3yymk+3VnkfalTdT7fPkgUXTz+KvJueiVYUUjsnd/Lkdkfzs1fY5C7HuZrLmpvMbqbePIeqpXLuYgyV8HGkEt5OMsMN/bc/lMoFuLHl2Jb8fZ1p39HbFMdJjCRh2l1W+i8Hx1LjOhn8zdUjVuhM49DvHZySksDu/4XXVdrcNWI/COQ1AckCHhQURP6lSnFc813ua7AbPP92S2I3F2cnuh0eTqdP/Z+984Bvqzr7/8/W3pb3imPH2XsPsgmBJITRQgulg7eTt2//paWU0pYWeEtbWsp66R5vN1B4WwokgYQRdkISMiEhe3pvWbL2+D/nKlIsW9awJVuOn+fzubZ077nnnPu90tV5znnGYTQ1NaW7KyOyfjlZ1AkT/mhB74S/uTD/75nHWIAS7mBFRcU0jmvIiEjtI/LmJXHRrJAmCEuj0UjmWMKkjKU3AWGqpqeBZH1T7zQSwjy3rLwCM+de0vvEAe4Rq6ZLL12DUyeO4Oih98k8zRlRo1D8rLYujKIUAidOnIg4lsibQ4cOY/zVl+PmNSJISfyRfF2jA7/82+FeVd996wzyaQ2unLjcfvyKcg9+dE0FrXhcWG3qdVKPHTddMxZPvJqHg1s39jgysLfioS2U42g+W/Ee6Py9GBj7dJ49c8YMimZ7Ar4eaUrUZMaZqFy5sAJuCrojlFFhriunKK/dZfXcUaSjBSDSnPRHjDl5aDzbHD7V77FTtFoTRecWg774pv/hEwfhhVht9AfiX6fBkLhC2tzmxN+fO0kms5RSxheAicxsb1gfnPgSOUdbO1z43ZPHKGAS+dPTPVi2oAhTxiceMEmZwL32+oWvfucgEOQmmMDwIzBp8mSMJysr4QJUUx8lSJiFolRr1Jg/fwFqa2uwd+/e4XeRGdxjHbl0bHrxZdxx+9exa+eOcE9FWqg//PGv9Mw0kfWcDs89+2/ce/dd4XHMleuvxo9/8gDa29uRk2PGt775dby0ZXP4fH6ReQTi/7pmXp/T1qOqqjF4buOLePBnP8Vf//xHqR0xM/Oj+x/AmrXrpDxtbaSQfuFzN3N+tB53QQQzcjh6z7ILH7EJU6ajqrrviLU9qurXW1F/fkERtr+5lWbKIoMQCQWwtKysXwqpSOheltsOUz6Z/bqOJtQ3DQ0uo+UVFCdveLUG+yhAiZMGl8lKQfEEmNWH4EhBvsDubd/z3/dJb+/5/l3ddyPWA52/FxGoMu6NsAowUB5dW11in9lYFyCUmr4UG20S5rk925CrdPB1+SQT1dCxAJm9+tx2Mus3kD9pW2h3RvwXprQB9O0iIDopJsDU6thlul/MojkFmD8zX4qgq6Icrt1TRwnricuXlkqbiLAbL/do93pDr/u6b6Hj4n8AiqirC93L8GsmMBIJzKI0REXFtMLWaol4TvVkIdyU7JRvvYBW4xZSALl3t2/vWYTf94PAfT+8Hx+9/uPQk1LaU+6+5wd447WtuP/H90GkkRJK62Wrr8CWzS+QgqrHzx56FDfdcB327duLeTRZ8Oe/PI65s6dx5O6eIDPofeJT5RnU6XR0xUizLL/5/R9h7Yw0FVt35XrMnjMXC+fNwqL5s7Fr1w5893v3pKMLw7pOofC5hRlLN1FrtJizYEnaldFQkwbyTb30iqtoJTty1dFFwY/ychM3cwvVJ/7n5ihw2Tw3fIFsBBRl3Q/FfN09p6B4HZKrVpXj+7dOTypHoTg3oBwFLw12r17mh9mU+IA31G60/5etvhw7d+/Hzf/x+V6HQw/0mz/1CaxYughf/PzNeOTRX1BuQxENGeDvRS9kGbVj8uRJcFvOZVSfenZGodZHNaP3e1wUYVtGuXiDUXt7njdU74U5biAr9ndPrKIKq4JkRDwfhMlud2W05/n9UUZ71tHn+2yVNNna53E+wARGIIExFBCxmJTR1g5bTGU0jIa+++20Wmoy5WAyraqyDJzA97/3HUyZWN1rAUjkul912Wo89dSTUiPChWnjhuelcYnYsXLlKpw7d1ZSRsV7sbLa1NSIpcuWi7csGUqAV0jpxohAO7/6ze/xv3/4HdbSSmh3WbtuPTY8/2x4VuWpJ5+gVdTN0qDDH4ro0f2ENL0WgxxhdlpeViolDBdpUTxOGwJeWpUM+JBNwYSk/lCqlGyFGmqNgfwMbahvaEBNTS3ayMchnSKCkbS2X1DmRbChaTPn0oxhSTqb7VW3nB5UIuDRay9vgtMRXCkV0S/dZP5nNpsl841eJ/WxQ5gn3vyRoPlcV/sxGAtnEWsyCfbGNtvuK69gH83E360oREBGfhLNe6SyN101Cr9+8iT9SAbinxujxCsvvwSxfe/u/yZTzMhANLEe6MLsJVO+FzEub8QeEqujWeQX6O5K73d+oIDlSg28vuhmuQGvk2bFdeQ3GWmCP9A2B3K+2+1Btjy+Oe5g/i4M5HpC58rlGlZIQzAusv/ZcoU0NrjILivtlyPGWzNmzSFl1AoZBSpLRmzk6z1l2nTUNjRxrIdkwJ0vG/CT1QwFuYsl+ZSVQU6f7ToykQ6JMJeet2CB9FZMJHQ/JnbWUiqp4pLSUHH+n4EEWCGlm3LPvffh6NEjePofT/RSSMUHWAzaQ1JTUyPlbDPTiltrSwtySqpDh9LyX6RGGTumEpUV5XDbKeKlvRVuay383sgvLH2Hw+J3WyhBeyOUagOdW4FJ0+dI5rQnz5yjdCH14XKpfGHKL4OVFDXp0e33orp6LMpHp5dNX/2X0YNq0bLV2PXu2/BnBT/iaqMeRaMnIqBu6uu0XvuNik5ce0Xl+f0BODuPQ2eeArhPAp4oviRU0mAIYOUl5dJqh42CkWx5qwnn6l246rJREfWHBgrZsjg5GxWUBJJWR+1th6SJE/qDj181Bs+/2YlOjzGizkTf2Frr4HWLNDJ9S7wHerzvRd8185FYBAz0PZLJVbGKxD02e8Ei+K3noDVRhOgokk1uCNnZcT53Uc5L9S65UosshQtqSn0STRTaHHiyVBIP8Z0eahGhl0SfNUb6TgaiK9Kij9kU6ERMEGaCyJVq+hxEWoxE9CtbDRdNdimNxbRFHEn4jdPWDrGxZB4BQ145VNr4KYIyr+dD2yMx3pJrc6HwqMigPXnxK3SYMW8pDh89kfzJI/wMr9uJttqjMSkYjcGHlct1wU1MBDUS/qRCxCp1zyBHoqzp/HkxK+eDQ0YgM341h+zygU9/5j9QSaYZn/3MJ6P2QnyAu3/oQ0FzxAdfKKRKMjtLl4yrroTY7O316Go8Qr5VQSUim1IPiFXQeBKg1Qd3Z5O0qfT5mDZpHCaMn4APj55ES4r9swKggCfUJ7Fya6RAQ+MmTo3XvYjjfjrvzVc3U2APL5ndXi0de3XL82im6Gg95fJ1H4mbKkbkNx03YXLQb5QG31kyJUwUQKXNEulf2rPu0HsxSzdzooyyPFwwv/N5bejqOARdzkTaT4Nod2/lPseowqrFF2bhxlWKvIIncOWqUWSGeMF0lzIano+ye2FfqO3wf2UprYwWoqv9IHGxR/RlYrUJ+07Rak2iYXrDlZJFAA3u4ymk8R7o8b4X3Zrjl0kQcHVZ6D5HrlYncTr9EBuR5Xeiq+Vsn6f5/Qb6nnabweqzZHoPZJHS5nFb4XVFTq6FWhXmr/KsAAVN8tI29P0V/bJabcjy0P3xWULd7PXf56PnoL//97BXhQPYIZ6nbmffk09+mRa1LafgsMa2+ojVBV+cfNCxzuVj6SXQ1d5AkwVt6W3kIqxdV12C9paGqHExErlcv8sCPQWBszSdSaQ4l+lGQDyz4omI7SFELNiExudqtZqihXdI+8V/VQ+Xj+Dxvp/b0on8Z0gJjHiF9Mv/9VW89NKL+NrXb5duRNWYaskc10of+H8/80/6gFukD33oLqkpdYmQ0Ae/6dT+0KGU/c/JycHcObNpZq4Np3fupdXQFJitNQcfjGpjIcaWVNLMXyulQjmQsj53TC5HZ5uVUruoMWvpR+AlP7BkZO+ubejsaCVTY2343GUrL6cqLpilOimFy4sb/0n3Qx4uE6uNURWjceLI++gUDymHFtams2g6dSjWKeFjIhjItV+eBY8rcjAn3ntcXaSUjqNVkFHIctPAP8ZqiVZF5sJkduimgAcilUNIfGRq7fN6aIsyGM9SkM/oaDqmJDPd3aSM9r7/ay/R4tU33x+w2W6oPz3/x3ugx/te9KyP3ydGwO1IPMdktBqLyCLCRoMgjyvGxItfJ00cRTt/cPdl0WfbR5MjvT/foh9Z9P2Qk5WHn5TRTDGD7aQYA6osDeQxnskBP31/aYItE0QM7rwxPgsOyFBz5hTERAjLxUdATDzGm3y8+K564FekUyvQaumkfMD9mwjzurOQZyjg79XAb0XUGlpamqUo7GXlo3DyxHGpjIi620AuakLq6+sps0NkekFxvL6+TjrOfzKTwIURcmb2L+29+s1vfonmpmZplkXMtIgoj+Ih5KXBkBDxARYf5JCI16KcCCWdDiktLSWH7JXIdlH+OVoVjaaMqhUy6DUKmLQKlORqMLpQh7I8rbQVGMlEi2bm9JQ3UN4tmE6or05aMbWc3Y3SfBOWLV0SNAMNHRzAf1rMkGR0JSn0ZFaajJw4+iFslE900tSZIrVXWIJ5OsVKYnA7fGg/RP1CaU1UZs5dRMnqaYW0e8UJnGw2KVBZHt3UzefpQmfzPrjIRCSgnQEoLqyIiryCbZSqQYhg0j2vYALNSoGTAtpZ9BlzwNqyP6oyKuqZMSkHeTnRTR0TaSdemXgP9MH+XsTrLx8PEiij54ffkZ5nU8oZX5hrilq1WBUVz2Px/c0UsVHwjGxF/wKkZco1hPuRRYGjdPnhQVx4P79gAiOcgFhNE+ms+ivR8mX2ty4+rzcBkRJs66sv48Ybb5IOiii766+6Bi++sEl6//rrWyn//GjMpCjJQuYvWCjFXnn7rTel9/wnMwmM+BXSUHqX0O2ZO28e3njjNQpk9Jy0S4SQvvVr38DvfvMrySb9hhs/QWGlX0zLjH1VZSVmzKDcgXWHyF80clAp0iuIPIBVxXppU/TIBxjqf/f/li4PjtRYUdtql3IJeihtgRAx0OtqOgJtfhVWLF+Gt9/ZFjZ76H5+Mq+Fvqeh6LYTp85K5jQ0NdTh+NFDWEVmurU1p/s8195lpVyjx7D26uv7LBPtQI45DwbyJ/A6u5K6ZwZd/EGww3qaVj5boDFUkL8JXbenGc1k0vv35w5HzSso+vevzWdw4owV1i4vHqf8g2LS4Ju3zCFfOvL3UxZRP9vhaNlHTv1d0S4nYp9mACk3IiqK8kY80B98+H+kB/q+vXt6PdAH83sRpXu8KwoBMYhSqhSwuy4EF4tSLGN2CbPheBNFAb8HygzwHw1BE4GNHA4HdPK8uMHNQudk6n8RKE0E+giZvGVqP7lfTGCwCTjJoines2mw+zQS23vokcewZOkyFBQU4re//xOtirqxeOFcWjDy4oc/uBd/+svfJUXUQGnCNm3cgJdf2ixh6rLZcOcdt+HxJ55Gc3MT8vLz8c1vfC0cnHQkshwO1zziFdJ4N0l8yJctXymlx7CR/5CVVvI+e3N0f9N4dcU6LiJjTp8+lZTRgxQ9N2gfL8oLJbQsX4vpVTlQdzP5jFVX6JiJlKr5E8Rsfi7q2xzYd6IDVgf5lXqDiqmdfIc05lFYunQxtm59PSmFLdRG6L/IS1mSR8E+khCbtRPvUeCh5avWkv9pbAXwg/17UDV2vKT0JtGEVHTajHk4tPedpCJJVpQmtgrr89hgEwGHFHqodCVYuGQV5byiFVRLC1RyJ3RqMvkJ0IppIOgXcd3aarJFpKA1lGohkE3+x9kUcCJbA7ejCa7OAwkpoqHrLy1W40xdDNPMUME+/q+78iqIHKQGQzBAgIicezeFWRcTLvEe6IP1veij67w7CoF8+tH1DNDkN0q1advlJ7P1uClSyH9Ursisn6mWNgvUxUVk7Brd71JYdgwHcSMfJ0/uGw5d5T4ygUElYLVaKfcyxVqgaOX9EXGusKZgGRiB22+7tc8Kzp49g1Url1JqnhJpXC7GLN3l+eeexQubNqKErIbqaOLNR+4hLJlNILN+6TOA1Wdv/lREL8RMjPhS6A0G6HV6Mm/qHcgm4oR+vBEpU+bOmQNLzfthZVRFZrnFZjUWTy6gQVs/Ku1xijDtFVtDuxPbD7XA7iZzOLIpdbRTNM58UlznzcW7O3b2OCvxt2J1ZvykaYmfQCWFqa6OuJ46dVQ6r6ONzJQpVc0HB3ZT2PRZkqmuOCB8QGvOnsKV194glUv2j8mcS76tyeXaKy2MHzSqez+EYmrvOCZtcpWZ8nUaaSBdBD+lVMiSqehagl+1ACmmAfqR83nJt4d8Ub3u0/Q/6Ijfvb5EXpcWBP2ZEykbrcwLmzbQA3tDtEPSvlgP9MH4XvTZMT4QlYB4jvjoMzVcxE9B12TZsc3ihDWHSMuVSWIhP9LiojzqlylqcKPhoI/6ZXn0rHVRbr6mTELLfWECGUFAuKRUVI4Boru3x+2jhnxQhdsLS/oJxBqTi3HKubNn098JbiElBFghTRCjjWbMxJYOEcqgrelEWBkVq6LzxuehfIAKR7S+CiX3I4vL8e6HrTjb3CWtltpbTiK3dCrGjRuHY8eORTst7j4H+VMaKbWK0xX0vY17AhUoKRslpdAJlc2m6KJibUHeI8ro+/veQ/X4yaRU9l8BKyfndxGIJ1EpzKNVzH6K19VOSmakyXU/q4p5Wl5u+nxIQw3He6Cn83sR6gP/T4yAVkur+lECYCV29uCX8pKftIIma2KJ8CHNRAWvsakNpUWjII8SbVf4vGe6eFCCDw8fyPRucv+YwJAQOHfuHFmsTYfd4YInycBGMlpB0GlU2HXq1JD0nRtlAsOVQOb/cg5Xsgn2e+qUKZQwxU05LhskZcxIwYrWLyhLizLavUsLJ+Vh9lgzmQEHVx/spBBPmzaNzDfJhLQfIlK+qJSxzW57VltYXEo+pzPDW9moCmhpFVrsCw3q2tua0Vhfg0lTpvc8PeH3avKrKyodnZRJstcXe+Um4cbTWFCeiSP1NF4vVx2bgFarodRQ/ZzSj111Wo56nGQWR2H748lAgovEq7u/xzsoAqfbk4WAnHy/u0k2fSczJcJut25FvPTJitHR2cUrOBFU+A0TuEBA+Il/8MFBGHTJWUqJGgx6Nc7SqlwyE+AXWuZXTGDkEmCFdAjvvVD+xo8fD0frGakXZr0KVy8qQyIBi1LR7bGlBskkWETl9ZMJqb31LKZMmdyvqo15hdCo4w8uk618/55dZAo8lYK1JP/DEGpLTYNerd5E/qe0gpSg5Bgy33jAZExuAiDBS+diw5SAij7nmZBfNFF8Xjfl1iWTCJk89s9Qpip49Y0tFIisknzCL3wPsynXsIgAmbFC/uoyTVVKU35l7LVyx5jAAAgcPvwhrJ0WmI2JjxtMBi2l3HJi7969A2iZT2UCI5NA7JHAyGQyaFddXT0GXW01UmoXsTK6bn7JoLUdaqgkV42543IhUsnY22tQWFAAs9kcOpzQf2Fqq9EayB9MBlWc4ESxKhxdNQ4rL18fUWTFZeswdcbciH3JvtFpVeT03kWD38zyRUv2Org8E4hFQKw2JpJUPFYdg33MYWunZ0bmT/5E49JFeZGbW9rglY+JOOxx9y8QSkQlaXrjyhqNAwcOIJRYPk3NcLVM4KIgsG3bNnS0t6Eg1wCNqu8JdzHpnZejp1Rwdrz99tsXxbXzRTCBwSbACulgEz/fngjUUT2mGk5LPeUMVeDyOYkpoyK3ZZfTB5uDguP0kXvd6aJE8kkEFKso1GJCOQXhyQrARf0ZW02RYJMQMRDOycmFMGPT6WL7hCVRbUqK6jRqWrHwkm+rO5gYNCW1ciVMgAmkgkAXRaMOuQ2kor7BrqOhqQVOjwI+eYXUtFwuI1NeetZkoLiyKtDS1oWjR4NB5NLVRY1Gg7w8SovDwgQuAgI7d+7EB++/Dy3ldheKqVgFNeho02ul1/mkiBpo3HP0yGG89eabUkqSi+Cy+RKYwKATGJ5T04OOKfUNVlZWosvSDEWWF3PG5ieU0uVMgw1vHqgjE7EskGWYJKtml6OYoucKqWuxY8+xZum1y+2HkdK+XDqzjEzizheWjkT/M63KRBF4HWiyNGBU9QLseu+96AWj7FWQ72gWOfK3dXRi3JgKWo10JB0IIEq1KdklfECaW4MBhpQUaRfpiUuVkr5yJUxgIATcbjdFdKZHejDD0ECqGrRzbe1NKCoYiw6rk3y8M99vOxqYM2fraBKvAgqVH27XOQQ0fcwURjt5kPZ5s0thd6rx7ruvp61FkfrrR/c/gDVr10kpttpaW/GFz91Mvqr0m8XCBIYxAeETKjZhPSbSa+l0OulqbJRqpL29Ha30WWdhAkxgYAR4hXRg/Pp9dnlZKXyONhTmqDGKVigTEbVKhnULR+PTq8fhk5eNw7gyE3Z+2BQ+9bV9tZhYYcb6RaNx3fIqeHx+HK5JPKXIsmnkB6oIwNnVgZKSxFZsReM+aif434eW1g4YaeYwE0Sv01AeMb9kriv64z/fz0zoG/eBCaSagIsU0uxhZpbuJ1MOS2sDdNq+fcRDAc5SzStV9fkoEvDpM3XIUpaiyxPM6ZuqulNRj19eCncgF9u2vyul+kpFndHqWHflesyeMxcL583CovmzsWvXDnz3e/dEK8r7mMCwJCCUT5GJYN++fdJ2/PhxVkaH5Z3kTmciAVZIh+iu5OXlQ+mzYuHE/IR7UGQmUyjjBZNYEUBDT76nQoQpr1hhkIWWTmlfDpmRdDkSD7ChUmRjTLEePjulNChNXCFVdQs41NLWTgml5dDHGGBKHU7zHwWZzpmNOjS1XJi5NJpy0twqV88Eho6AnXwaZcr+p0Yaqp53NNfAQH7efUlWt2daX2WGer8IzlRf34j2Lnp+ykqHujvh9r3Uly6PGa+9/iZE5NB0ytp167Hh+WfD7Tz15BO4Ys1ayqPNw4x0cue6mQATYAIXAwE22R2Cuyj8a1zOLuQb5QmZ6vbs4tkmG07VWWF3e3HJlGLpsBgQzZlQiNf316G1Mw9CeW3qsEOY9CYjM6tzULPXilxz4gppz/rrG5tRUV4MN/XPTYmJh0LMJj35S3XA6XQNRfPcJhPoFwFtTiGZ2PcdPCNmpUo9NGby3fPH9mHMJtPKrOzMePSLdFEurwzCxiK/sAjWrh5pa+jBlpUlR7YwRc4AkSlUUBtye/Uk16TDiRMn0djUjInVs5ClKUCW+ySVGyLzXWLmV1bB6a/HnoMHINflkZ9br26nZIfLTilwaCsuKcUrL78UrrOmpkbKM23OzUVrC0UkZmECTIAJMAEm0AeBzPiV76NzF+tu4X+gDLgwc0xy0WxDPLoooJEwRXWRwmd3eWEiX1EhRTkaiNQxdqcHr+5pQ2WxAVpl8rc4T+OFRWsKNZf0f7vDSQOzNlJqTeS/aYEwaRtMySVlVAQyaiWFlIUJDCcCGn0u5Kr+rXK6AwpoaSLJT64AsSQr20erVpkRcTpbrqD8xQZ0dbahrHo6mZa2R/iSCkU0QJNtmdJfmeiv9kKaF8FZQ77pSsrn3GxxIltlwPsf7IH3qsuh0FE+ZRcppWQJM6giz0FAWQmvs436so/6ZIKW+pUuEZGdhUJqMhrhcl2YAHRR+gshJqOJFdJ0wed6mQATYAIXCYHktZWL5MKH8jJEFEJlthc6df8GhZNG50BsJ2mV9LW9tbhp1VgaxAEbd5zBevIxFWa9cycW4pXdNdh+uBFLpgZXURO95qkVBuwMxgFK9JRe5dop4q6CTHfzc41oae8M+5n2KpjiHUIZFWbLZ2oaUlwzV8cE0k+gq6Ox36uBHmszxlcUwGGNrZD6fVp6XiQRhjuNl+2lFCkOytsp+qxUqqDRmNFm7Qq3mE0myC4nBTwipScTRPTX2XWhf6JPJqURe3YcgLWlUeqit1ABW9sRKLXF0BgoYnlWK7I8teRXkbj7RL+ulfKhBhRkESPLgaPjFNyOJnhdDupXehVij8sudddisdA9vLC6r1YHJ1YsFp4Y7Nf95JOYABNgAiOIACukQ3CzNZSKZHSB+OEe2ADFpFPSaqhXUkabLQ5J6RMrpEK0FABp4qgc7DuevKmUQSuH3DLwVc0mytFXQM6tRXkmUkqtlA4hvYPKvBwDshDA2dp6iQH/YQLDjYCT8nL2V4Ra0NnWLPmTe5ydfVYT8KkoZVR6v4t9Nt7jgN/nJsUpaGJ87shuVE9bDDk9Fx3O4D4ZZEGFNEMUaL/PA2GiGhKjXoPTJ47gxJEPQrvg9eRLCrTTWgOnrQ5aYxUpp9Pocd9Iiik9m1KtmGbR/ZQXAapSuGw1pNzvoDaCz2+vxwm7pf+fqfBFJfBCRNMtHzUqXFK8FiumIhAMCxNgAkyACTCBWAQ42kAsOmk6lkuKU1Vpbz+keM2JFVGRf1SIWBH98Gw7RenVkDkbzdJrlaSKASfqgoMlEeToXLMNeaa+o1dKFfXxJ9+cmmiRIuVKa7sFxQXmtAU6UlPCalG/h1ZaztY2SAPyPi6LdzOBi5pAXX09stXDNXhXAPWnD0L4Y4p8nllkVizSSXm8A5u4S9cN16qVkNOzd/fu3X03QYqh3XICnU17aEKObI+1c+BXjQXk4vk/kJ9fsq6R51Fd4xDQziRf/Sx0Nu6Co/NUWBntu1PpObJl8wu45pqPQK0O/ubccOMnsGXzi/RbNfDJzfT0mGtlAkyACTCBTCHAK6Tn74TIL5Utk/Xp6yLMbLVabUpCfHvdDhhUAcrVltzHoM3qoqBFtVApZPBSRF0T+TKtmGbp8YUAAEAASURBVEkmWiQiJcyqWWU4cLINH5xqJb9NoICU0XmTCpNr5HzpQgMNnlIk7ZSf1OVyo7AgT/K36rTZyf914INMmSybcq1qpJQRIkF9ZzdTvxR1nathAsOKgMiVV1mxGK6Os8Oq36HO2q3taKk7ibzCCrTavBSUzIn0eT+GWk3+v5gEExOLr7/+ekIn+31ipfK4pDAqtUVQqosg05My6elAlt9GG/0YBCgKrhSQqqcCR8pnNlnUZKkRkGnJp9aAbEUOmeN2wN3VDJfjQzpXTEcOrWzauAHLlq/Ezt37YbPaKN2WFZ+9+ZND2ylunQkwASbABIYFgRGvkJaWluIf//dvSnZcACeFxa+rq8VDDz6A17a+It3AdCT7ttkcyJYHTWuT+ZTMnZCP2ePypVQuMpqaF2a53UUEMRKb3eWDmlYYBhK3pDCXVilI4RPBk1IhItDR6bO1MOcYya80h1YzfbDZaZDWjyi4obQyIs9oW4cFx0818yx8Km4S1zHsCQg/PgcFk1HpKZK3rXVYXk9701koyJ+0sGQijp7MPMVaKKP5ZgPefffdpM1RAwEfXF110iYiHctVOZArDJApRHRlLa0IC1cOeuYKBVOETpeEHBH8Hvi9dnjdNtrqSBk9REUyww/4fCfhpYjqt992K/QGA/Q6PRoa2HUixIb/MwEmwASYQGwCI14h9Xp9+MG938err7wskfrc579IybzvDiuk3ZN9izxu9/7gh1Ky769+5ZbYZGMd9blohjt5hVRUKcxzDeej6vbVRE9Fta9yfe3PlimgUWbTSmzqFNJQW2K1VGxCMTUZ9BDpWZy0eir8S8Um7kf3qLzZNCgT5nsKSlWhpIjBKtpkBKHDYkUDpVgQ5VmYABO4QODYsROYNL4KGKYKqbgSoVhnGzqlPMvZWQMxbb3AJRWvhDKqVxmxa9cuyjs6MIVL+PF6HC3Sloq+ZUodNiu5ltDGMnIIqCnKtJImyUVu9MD51XphqS2yAPjImouFCaSLQF4+LdLYbJI1Tbra4HoHh8CIV0ibmhojcqeJPGp333sfCgoK0dzchGjJvp/buJkevNn9XpVzu+2UwF47OHe4H63I1QYyJXNI0Wr7cXpCp4QUU6VCAR2tdIpAT2aN8B0jhZNWZoWIHzaxCaXT5XZLD5z2dlpVpdVWFibABKITOHPmDCZNnAilLpdMOmNH3I1ew9DvVRhL8Pbb7yCXclhOnDyNJscUcJGP+FCKXqtGIQVoe2HTBrKkqRvKrnDbTGDICIh1+xy9kn6ns1BdYsCEcoOUci6HJso13ay22m0eWGwunGm24/C5TkqLRBGqyTJKBGJkYQKJEHjznR0YPboyoui37rgNTz35hBRA7Q9//KuUVkqn1+G5Z/+Ne+++i4J78iJFBLBh9GbEK6Q979Wy5StQV1tLvqLB6LTxkn2rdKaeVcR939ZmI5NdeqCTUuqnKIiZJgqNiczCuhAgkzKVLr7iLKfVXuF/2x/x0jSqhXw/xZao9LctKedhAvcrQH3KovyHmZL7sC8uoo/9+fx5nF0Zk0ajr2sbqfuVGr0UzGeg13/8dA2mTJyAQO3+3lXRZFpWhqw6ZtMzRqGK/BlSmUrg8svRaulCa4cNEylq9ux5i9De2QVbF/lZDoHkGPXkp6/Ajl27pX7F+t6JXKWZ8uyQ0e9MrL6mAqWPUuGIaL4smUdATmmTZAphBj5wUVD+YmGctWJ6IWZXm6EkC6pYkmuUIdeopgCOJqyYUSIVrWt14M2DLThZ34VOkbI2Q55Dsa4j6rHzq8AXzOqjluKd/SAgUnyJMUpIbv70TXjn7TdDb8MK5933/ABvvLYV9//4PlrU0GHTiy/jstVXUCC1F8Jl+cXwIhA5EhhefU95b8eNH487v3MX7rzj9vDqZ7xk3xpDXtL9KDA6KZG4lQYKeXBaMi9fptpQiJba49DrjXBAF/f65PTDJAaWmS4y8ttN5H75KKpntlBI+6lkDxYH0cdErqdnf3weV4RCyiYvPQkN3XuhPIjP6UClhdJAuaGEsWQCHO2UA7ObCGUpK6t/E0jdqknJSzFJpMi+cL3i2k3lU/DOu+9Jn+0ARaltaG5FTX0LigvzSClU0eQV+VIO0iy4MNHNMWglt4IzNY2wdjnjfudkcl/GPDuEQqoxxH+GD+RmilRFrJAOhGD6zlWotVBpk580796jbArIZVC6cd0llZSurvcEdRa51ehyCqHW55DvN+VYp0k1kRrJ7bDB3tlKeXst4erKCwy4aUUwTNkr+5vw3jELugJa6fc2XCiDXog0TwoyRZbTJF42WW6Zc/PIP9pIQclIyQ9kUSwMN+xdNrS1NpPLkZsyHWTD7abvPz3XWPpHwOPqilBIvTQeExkUuouCLGZWXbYaq1etkHZ3UW7ojRueh3CxY4W0O6nh9TrztYhB4llUVIw//eVx/PqXv8Cmjc+HW42X7Luj4WS4bKIvSpQmdLbUIKewDPb2c4meNijl5EoavNAPTJelEQ4aaHTYgsneYzWelZtPAxIx3ZnZ4nHakOj98rl1dE3BXIiZelU+tzPh64l2DSJPIJu8RCMzdPusLZHK40B68vbWZqxevZp+3B3wuC749Pm9BTThFvkDP5B2BnKuiDhu7zZg1RVPxv73tuHMkUPhar3jqmC1dkpbfp4ZRfk5sEirpc4If/PwCSl4IQKnGSjHqJJcCBrJV72TosYKcTus9J07E7MFd7l4HmbGs8MtPfM4D2jMG3YRH3SQQii2/kqeQYU1c0sxZ1yxVIXPG/k7byoYhZyiSvKDJgWUfNbdFicpmH7JAkyu0iO3dAw9exxobzhNSuoFxVRUtnKKSdr+vvU0jtZ2hlPa9bevqTxPbzBCS4G5ps2Zh8nTZlKgrsSUeuHLeOzw+9i/ZwesnRZpS2W/0lmXMME2mxRSMEvRjjC/1mpkkg+wkwJlOl3kFEzicPpoUnDwfj++eMuXcdXV1+LUqZN4+h9PoK2tTQpCKielv662RuqT+FNLr+ctWBB+zy+GHwFWSOmejaqowONP/h/+/re/4De/+kXEXUxXsu8uSzPyysdDTma7XvIpzRRRm4phbRtYsI5MuRbuR2wCbPISm89wP2qlwDL79+/HxHHV8Eimu5kdXERtrkAXDXwOHrygjPa8By2U17iz04ZcswmlxXmSCa/d7kqZf6lWraL0XiryWZWjjfInn6ONhQkMVwI6czE0xuStuEARnYs1Lnxu9ehwTIeeDApHTyblRQZrwxGK+hycsAmV8XmdNBHWCYelDpqcUpRPWoiWc4dh62gKFQn/v3nNJByuseLZHY3wKPPD+wf7hXDVUcCDisoqLF2xGlp98gmnTCoN5i6+VNpclLJq25uv4hhNrnkgLK4yb9VU5u+COtuBidU6rFlSgKnjDRQ4MrYpdku7Gzv2d+DV7a1o7qBsCR6KDi67YOUy0PvmptX1zubgQs0Tj/+Nsl84oaDn8RVr1uGmT34aV65ZDaPRKDXjcl2YIBEpwkzGxCYOBtpHPj89BEa8Qlo9dhwpo0/j0YcfxD+efLwXZbH8f+vXvoHf/eZXUlCdVCb7Fl86Te4o6YHeq+Eh2CFTqKExl6L50LYhaJ2bHEwCbPIymLSHrq0TJ07AQGk4igrHw9F0ZOg6Eqdlpb4ASkMR3nn99TglaZWSzLdE3uHW9g4agBiQZ9ZLK6VOl4eCn3mlHMehSJ/xKhMRu4VvqFKpgFBGRd2WTloFpSjeLExguBNw0MS305pcYDONMgvzxptx1XzKcU4mq9Gs4wsrJoM0TrTXHIuLqKvlLK2etsNcPk1aLbVbgvE5up84rlCJW9eU4pFnD6PVKoIeidBJgycayjE/urIaa6++HkqVWmpYWCANRMjSF8tWrMKSZSvx0qZncJwUU2FaOvQSQI5RjooSNT573WhMmzC6W5fofsdZ/KTHLdYsNkmbOPHZl+vx9Asn0WH10/Nz4JOewk0jJN0XiP70xz/grW07sXjJUuzft1cqolQqKcd9UClVq9UUnb0jdCr/H4YERrxCOnfePJSUlOKnP3tY2kL38OePPYIHH/gJme/GTvZtLOz+ZQ6dHfu/QuWW8pBaO5rJ3KUKLn0rPD3MWWLXkJ6juoJqaXVU+OuLPKkqXQ6MWk3cxqRULCkKnBC3sQEUkKt1SOR+Cb8RGQVqEv5XmSxiAiGR6+l5Dfb2RjJ5yaWIxmzy0pPNxfh+3759WLRoIYx5Y+BoTd7FIN1MRM5UffE4KapuMgM2D6WJEiumYtNSlG4Rrduk10KtNkmKqciLKVJO+GmThrfij3i2UWoKEclbzLqLtFIOyoXcZXegpaVVUmbTfb1cPxMYLAJ+P0UcFVuColfLsXpWCZZOKaAzLigG3U835JWS0qZER82B7rtjvvY4LeisO4iC8gk429lC0fN7161SZOHbH5uER545jJpWO5WJWWXKDuaYc7H2mhtQOWacVGeik1mJdkD42F6x/jrMmncJ/vnEH9HZ0SZlD0j0/FSW02nlGFuhw3e+PIEihgcV74Fe7zWXFUNsb+xoxm//cQpNLU6kI9OPeJ63tbZKE6wtLc2SX2lZ+SicPHFcQiRckBoaMi8mSyrv38Ve14hXSEX4aLH1JfGSfWsMuX2d2ud+maItHPSio/ksTEVj0XEmOOPT50lpPqDU50JFW/ORneG+iQAFUMa/PnmAFOxhENRILgX4iH89IkDH8AlqFP96en50nNZWNnnpCeUif799+7tYsvgS6PKr6Uo7M+ZqlaSMKozVpIy+TWm2mvvdL5EKSmzNaJfqUNGAWUWrnjIyKRRmhSGR0kjRkk8olZRQalmYABMgn0HKJbp8WtF5ZbRvImbyGbXWH4bQKbsoz6haQd8xee8VTa83AAd9v/RqhRSM1m1vp2CO7RQ7owLtjaf7bOC2j07E/U8dlNLE9FkoBQdk5B9eMboaN958Swpqi19FYVEJ/uu2u/DsU3/B8WMfwkOp7AZTigvU+NrNY7FgZvJjhkT6uXxBAcT22F+O4zVSTi2dcZZa41RaUTEalVVVeOvNNyQFfumy5Rg7bjx2vLtdUka3vvoybrzxJvz4Rz+Qouyuv+oa3P+j++LUyoczmcCIV0gTvTl9JfvubDqTaBXhcgUF5Ch+PuiFpekc1BoDme6S/1Tz0KxeiNVQbV4lms4cIn/WCzb5rq4O8vmIb7qmp5DbPu/gPlzDMJN4IaK3dTbFn0ETs8o+z6iMvyYRLbezqS4JAsGi4h53dgaVEjZ5SRrfsD3h7Xe2YcGC+dCXTKIJpHpaOBnYgGGgIDQ5JdDkZePFV96gNFv9D7wSrR8ul5tMuTL/mRSt77yPCQw2AWE1MGtsLlbNKorZtIjqLvxDDx2vwbaDDTTZkyVZIBSatVg2nb7P5/OQbt1Th1MNndBSSic/LXVOGJWDuRMK4OyoJ2uICTEVUtGBb143GT95+iDaben5DovfvYlTZ+LKa2+Meb3pOHjtDTdj65YN2L97u+QGlo42utcpogRPqjbgobumpzW3fKjNW0npXTQrDw/971E0tV4YT4aOJ/pfmOA+9MhjpGzqYenooCBTWsqA8Q2cPRscc//wB/dSINK/QyiiBnLdENaML7+0OdHquVwGEmCFdIA3xZGkf4ZozkcBOQL+CzPzjWcOomz8XKiNhRQEYPADCukLx5ATeQ26OiIj6nooAqYjgR8ENaV9EbmjMl3EJECi98vvK6FrStzUaSiuXSgUiV5Pz/6xyUtPIiPj/Y4dO7F8shHjZ8yErfG4tGIx2FcucqDqC8ciW6Gl/HLPpFwZHezr4faYwHAnUGxW4/olo+JehoZSu3hpolqnkeOaxVXI0SvI2iCALbvP4cMz7Zg9PhiUqKJIj6WkoCpo5dTS5cG/3jyBaspHaibrDGHCGk/EeTetqMRfXz0JqyO1YwuxMjp5+hzyF/1YvG6k7filV1xFLgMK7Nz2BqWJ6b/SFq+DalU2Vi4sxB1fHB+vaEqPz5tuxq9+MAtfuWcfGsmEtz9y9OgRzJ8zAwUFlFKIlNOamnPhdIyiPqGYrlq5FMXFJbDarBARjlmGN4HY4bSG97UNm94HaEWu6fRBaPMroaak8IMpxtJJcLsoOEHjqcFsltsaYgIir1fI5EV0RSSWFjONL76waYh7xs2nm0DdmeNoqzsJA+Uo1eWPSXdzEfULf1Fz5VzJ5Kr22Huw27sijvMbJsAEBpeASafEF9cE/SfjtazUBLMClOZpJWVUlBfmuuV5OtS2Xvgujy0zSsqoOG7SKWDWq1DbElQYfOQSk4hUl+oxY0xuQgpsIvWJMkIZrqwen5QyKsz8Le0i127fFiVdFNE81vFo/Vt66RpapZ1B1ioXXAqilevvPhWZYF++tGjQldFQf3NNSvzpp3PIV7X/EXgF+6amRkn59FMU5GjS0FDPymg0MMNwH6+QZshNE/niGk7sQ3HVdMl/0d52Lq09Ez6fxrLJcNptaKk5mta2uPLMJMAmL5l5XwajVzayhrCTdUde2VjkjZkPe1sNHB3Jm38n2leFxgQ1pX+QKTRopvQP/V3ZT7Q9LscEmEB8AmKxcvZYMymNCQ4F+wg0VEPKZoEpegBEO6VyarW6cEnO+eNRAhr11dOPLi7HobMdaLOmxnTXaDLj45/8Ql/N9dq/97138fw/H4dCpSJTZS8qqqpx/Q3/AR1FLhfS0daCv/zhF5SaxEEuAk7MmD0fV193U8JKtDAZbqD8mU2NqX32ipyii+fk4ev/kdhEQ+jCAxSNSNxiYcLdUzweuo8dbikYUrTjPcuL92oy4f79j+fgP7+3B/XNiU1ERKuH940MAgk+hUYGjKG+ShclXa89vhtFlVOhpwiqtqYTFBUy+qzQQPqq1OZAXzROygnWVkdtsIxIAmzyMiJve/iihcl389kPodabpUAjueYyOC0NtDWSuXpqBoAqfT5ZfRRBptTBQmmuLM3vh9vnF0yACQwtgRy9ElctKEu4Ez5yzemZT/ODU22Sr+fKWeW96hGLWq/tqUFVMaWeMgcVUhGzIhm5dEYx/r3tnBQxO5nzepbVG4wUwOhLPXfHfJ+TY8ZXvnEX8guLpSBEf/3Dz/HuO69j1ZqrpPM2Pfs0JkyaijVXXU+WZi78/KH7cOiDfZgybVbMersfvPEzt+DPv3+Uou8GA7J1P9bf1xUlWnzvKxOTPv2hPxyUzvnml6ZGnPvbJ47gr8+cRGmRBp1WD77/1elYMi+2v3GoAgNNdoiovvc+9iHaSKFlYQJ9EWCT3b7IDNF+L+W+qj36Hpl/eJFLpm0qQ2HKeiJ+CITvlqF4ItrqT5HZHiujKYM7jCtik5dhfPNS0HUn5QhsOLkfjeQ2EJCpkUsrpqayaZTQvgxylS6pFrIpkrWSlFB94TjkVS+EylSKzrYmnKXcxkIhZWECTCBzCMwcY06qM26HDTJVcHVQnHi6wYq9x1pwxdwKCmAUaXoq0ra8daAePvq/fHqp1I5QZuUqbVJtXjI5HzlkVjwQEaa6kyiIUW5ecuOpqrETJGVUtK2gQEhjx0/G8aOHpK4I5fzDQwcwd8ES6b2SVlGnz5qLD/bvlt4n+kests5bsJQigqdmfUiYyD74nWmJNi+Ve2tnI9Z+9hU8tel0r/O2bqM8o5vO4F+/WoH/++UK3Pu1Gbjn0f3o6ExcuZw63kSpYShdEMUbYWECfRFIzTegr9p5f78JtNQeg6azVVq50JhL4Wivhcvav7QIMiXl5jMV0wCzFNbWGjR+uJ0WXn397hufyASYwMVHwGXvpBVTsX0IfU4RNEYz9PTcUJC1hodcCrweB/xeCsBBI80sMukKiKBf5P+UlSWnQaqGBmxaZNGgykU5le2d7WhtOAOPy37xgeIrYgIXAQGh5F0+O7mYFV2WZphLqikjwHEcr+3A9kONWDN/NApyIlc9xcroG/vrYXe6sXZ+RTgtjMpQQMETm5KmN60qB68fiAy6mEwlwlT3srXXJnNK1LLHjhxEeUWVdExkXhBmvDnmvHBZ8fr0iWPh94m+mL94Bd579y1YLANbJRUK38fWlsNM/pvJyNL5RXiRtkf/SJkWxAxCN3l3XwuWzitEcWFwhXvRnEIU5Kqw92AbVi4q7lYy9stPX1uBrduacKaOfxNikxq5R1khzeB7L/ysxKbLKYQxtwQGMrN1WVvgoVxeHkcnPQxpcBhFRBRLoYQK01yR509G+URt7Y2oObyD0ro4opzBu5gAE2ACFwgIH1OxCZHJFVBSaiq5QgW5Uk0KaDYNMNXw+VykoPrIvNcOj4WeSy4HK6AXEPIrJpDRBIS5rirJFSthwWVrb8CZrhzsOnwUVy4YDbMhUvkRXkZb3jsHOU1arZlXQc+PoD+iiFuhyR2FxlMfJM1l+bRC7Dnehk5734GF+qpUrI7Omreor8MJ73/njVfQSAF0PvGZoNmv0xlUrOQULTckCnpWOhz9U7iWXbYWL5AJsFh57a+I1dHr1iRugp1IO1q1jHI8R/apuECDuqbkr/P2L4zD3Y8eotXV5O9jIn3lMsObACukw+D+iRlFsclJsdSZ8qEhkzhtfhWy6eEnItaJ1U6ZTEkhscm/I1tB6RSUtKLRBaeNggHQKoW9s2UYXCV3kQkwgUwk4PP2P71QJl4P94kJjHQCIpjR3HG5/cLQRtZbNdZiuOU5+OcbkW4/H102BgaNEjVNwYi6f9x8ONxG6Zhp+KipQbKgCO9M8IWI1KukfJr9EVNOLhYtXdWfU8PnHHx/L7a+tBGf+/JtFNDIKO1Xq4Omx8K9Sq4IDqU99KzUaJJzcwg1MnXGXLy1dQs62ltDu5L6L3LAfv5jlUmdk0jhyxaX4pa7tuPP/zqOCZVGnKq14cPjFiycWZDI6RFlhOluebGGFdIIKvwmRIAV0hCJYfBfrG4GA4OwL9YwuF3cRSbABJgAE4hCQOQVzMvPR11tLVmAR5oIiuLZ2dkoKipGY2NDRO7BUFUajQZarZZz2IaAJPlfr1ZgVnVy/qOhJvw0AT6v2IarF18NewtNeHfUhg6F/39x/aTwa7Eyqi8eT/lKvWg6cyi8P9kXVSV6tHRGtwqLVVdRSdB/NVaZWMcO7N2FDc/8Q1JGy8pHh4vqyfdTTjlNO9pbwn6m7a0tMObkhMsk+2LcxCnYtf3NZE+Tyhv1cixfkLySGK+xqRNy8Ng98/CvzWex72A7pk8Mfm5CJrzxzu95/JZPVOE7Dx6ErSty1bVnOX4/8gj0b8pp5HHiK2YCTIAJMAEmwAQGSODnv/wtPvjwOP75zPN4d9de3HHndyJqvHL91dh74BCefPpf2LP/EC6/Yk34uFAAfvqzh6XzNr74MjbRVjJAhSNc+Qh6IUx1xYpaf0X4idcd2wO5LpcCoE2FyC9MWT4jqpORWb/WXC4FSXNSvuGBKKOi4ulVZnIXiGgi7hsFWYstHMDq6M5tb2Dzhn/hi1/5Jroro6JhEYRo4uTp2LXjbakfIsru+3vfw9Tps+P2q68CcyhAkkab/Aqr4LJ2RUlf1Q54/5xp+fjxHbPx6N3zMHtqLmx2L2ZM6t+ExpRxJug0vBY24JtyEVbAn4qL8KbyJTEBJsAEmAATyEQCr7y8Bd++83YpmX1lZRVeevUNPPvvf+HY0aPQ6fX42UOP4qYbrsO+fXsxb/4C/Pkvj2Pu7Gnkm+fAuivXY/acuVg4b5b0/t4f/BDf/d49+OpXbsnES83YPqUi2qnInV53fC8MIr5FbimMpZOlGBUyiuYfEH6QpCXZKeZFPeVXFwHTBiqluRpolHLYXYmvrGl1OpSWVfS76Q8O7EU75Rp95Cffj6jja3fei+KScqy95mP4y+8fkxRRJ/mOTps5F5OTSPkSUSm9MefmQ6lSw0EKfDKSl6OkYEYDWwmO1Z7P5ycFPBvtFhd+/fcjuH4t+Q6bIgNZxTq/57GVtJL7j01s6deTy0h/zwrpSP8E8PUzASbABJgAExgkAs89+0y4pdOnT5EiegRLliyTFNKVK1fh3DkyDSRlVMiunTvQ1NSIpcuW46Utm7F23XpseP5ZSRkVx5968gk8t3GzZOLrF6FdWRIiYKaARqkSa1s9xJZuMesVUCspwE4SCqmKTMMHIp/7z6/HPD03rwC3ffs+dFJ0XJVaAxUpkwMVszkXliT9SGWyLGjU/R/Ov0qpXR76/QUzWpHq5Vu3TMWKhcEoup//9ja0trvgdPlJGa3Al24cP6DLXLeyGBtfq5dWWgdUEZ98URHo/yf4osIQ/2LYZyU+Iy7BBJjAwAio9WbKpJLex7IIhpZF+QAzQUSgNq1J32dXhH+hjHKbpptJnx3ocUBOKXC0pth+WiLq5nDqb49LTPqtSO0jguj1R/ILCjBp8pSwAlpcXEx+pTURVdWSn2nxebNc8f+Vl18KH6+pqSElQEUrS7lobeHgfWEwcV5oVel9xsRpvt+Ho/kbx6qsqLg81uGUHRNpZVIlpaMqcfpkcqlj5kwZWPurLimB2PqSh++aS+lggMK8gSvcog0R2Ej4vArTXxYmECIwPJ9Kod4Pwn/hs/Kj+x/AmrXrYLfb0dbaii987mbU19cNQuvcBBNgAiOJgFAWhQKWThFpW0QqhEyQbMpjKqN0Mn2JGIAG+5sZ4Q6yKNhOrP6K6xA5WjOFbyL97Yt9ovu9nmCgmfHjJ2D5ipVRT7N0duLpfzwRcUxOn/Vf/uq32PziJuzds1s6ZjLlwOl0RpRzkW+eyRiMbCr+i/chcbmCZU1GEyukISgJ/BepPIajyOi7lYwUlw6OQppMn+KVLS6htC3i+Rwl2Fdf586e2v9ASn3V2X1/bk5qFNHudaoG4MPcvR5+ffEQYIU0zr1kn5U4gPgwE2ACKSNg70fS+GQb93kqKX+oO9nT0lJe+KFZ25tj1u31jKecy5nRX7EaaG2JXMHr2XlPZT71NzPy7AX7296zi2l5L8wj8/Ojrx7LaGK3u4goug88+DBFKVXg9ttuDR+yWDp6mT2KiLwWi0UqI/4rlRcmbNRkJilEnMeSOAGXe2SYN+cVFCYOJUNKCj9SBX1fPJ7EniFajQwTxhgypPeJd0Oskp461z/LisRb4ZLDiUDkr8Rw6vkg9ZV9VgYJNDfDBJgAE2ACw5bA+wf2Q2zxRFgdPfTIYxDmuZ/51I1hf1BxXn19PUUzjVzVKh81KmyRJCyTxPuQiNdixbS9fXCU7lC7w/2/hnwxh6MokshFKiY9NOdzhQ6naxW+qDKaqElYIaXV7qK8vq1MMvXaSwpSv+qaqdfK/UqMACukcTjF81nRmYNO33GqiTgsVwbIxygzfLgiOtbjjVKth47CpscTBc1giwdopouM/NUSuV9+ihCYTWaTIqx7JovoYyLX0/ManNa2jFlx6tm3kf5eY8xPu/+h+NxkyvNHodLSZ9jU522XfEjJpDdTni/C5zXed05Og/1MeXYE+5vewaqHVrndDluf97D7AZlMhv/989/gIrPcz3zqExHmt6Lc669vxYMP/w9mzpqNfXv3YP6ChdKq69tvBXMzbtn8Am792jfwu9/8SjLtveHGT2DL5hej5irt3u5Ifa3UGiG+Yz1FRr/rmfIM6Nm3WO/lcZ4XEef6vfBSoKtMeXZE9C3GGx/1WaU1QKYOmqnHKCodUms9ZFUQf5wWr57BPp6XR+PLKONnH7kAOG08wTTY9yMT2ssym829s1JnQs8ypA9bX38bDz/0M2zc8JzUI2EudOzkOaxcdglOnjyBoupZGdJT7gYTSIxAe92xhAeQidXIpVJFIK98IuSqoBliqurkephAOgnYKMJqV3tDQk3oDQYcpBykPeUU/ZauoN9UIVdfcy3u/8mDaG5uQl5+Pr71zW/gxRc2SsdCeUhXX34FbFYy97ZZ8dmbP0mBkGql4/wnkoAhvzxuEK7IM/gdExhaAq4uCzoaTg5tJ7j1ISGQ2UtAQ4IkstF4Pivix5iFCQwnAj5PZvjjDSdmg9VXe2dL2ldIB+tauJ2RQUCskCYqNqsVo8uLYhZ//rln8cKmjSgpLZUUTZ+PwnueF6/XK/mcCsVWr9OjoYF/f0Nsov0X+T+FxQ8LExguBMQKKcvIJMAKaZz7Hs9nJdGZ4TjN8GEmwASYABykkLIwgZFOQCie586e7RODUGzFxhKbgJsUUrGxMAEmwAQynUBmxNLPYErCZ+Waaz4CEelPCPusZPDN4q4xASbABJgAE2ACTIAJMAEmMKwI8AppnNu1aeMGLFu+Ejt374/wWYlzGh9mAkyACTABJsAEmAATYAJMgAkwgTgEOKhRHEChw+yzEiLB/5kAE2ACTIAJMAEmwASYABNgAqkhwAppajhyLUyACTABJsAEmAATYAJMgAkwASaQJAH2IU0SGBdnAkyACTABJsAEmAATYAJMgAkwgdQQYIU0NRy5FibABJgAE2ACTIAJMAEmwASYABNIkgArpEkC4+JMgAkwASbABJgAE2ACTIAJMAEmkBoCrJCmhiPXwgSYABNgAkyACTABJsAEmAATYAJJEmCFNElgXJwJMAEmwASYABNgAkyACTABJsAEUkOAFdLUcORamAATYAJMgAkwASbABJgAE2ACTCBJAqyQJgmMizMBJsAEmAATYAJMgAkwASbABJhAagiwQpoajlwLE2ACTIAJMAEmwASYABNgAkyACSRJgBXSJIFxcSbABJgAE2ACTIAJMAEmwASYABNIDQFWSFPDkWthAkyACTABJsAEmAATYAJMgAkwgSQJsEKaJDAuzgSYABNgAkyACTABJsAEmAATYAKpIcAKaWo4ci1MgAkwASbABJgAE2ACTIAJMAEmkCQBVkiTBMbFmQATYAJMgAkwASbABJgAE2ACTCA1BFghTQ1HroUJMAEmwASYABNgAkyACTABJsAEkiTACmmSwLg4E2ACTIAJMAEmwASYABNgAkyACaSGACukqeHItTABJsAEmAATYAJMgAkwASbABJhAkgRYIU0SGBdnAkyACTABJsAEmAATYAJMgAkwgdQQYIU0NRy5FibABJgAE2ACTIAJMAEmwASYABNIkgArpEkC4+JMgAkwASbABJgAE2ACTIAJMAEmkBoCrJCmhiPXwgSYABNgAkyACTABJsAEmAATYAJJEmCFNElgXJwJMAEmwASYABNgAkyACTABJsAEUkOAFdLUcORamAATYAJMgAkwASbABJgAE2ACTCBJAqyQJgmMizMBJsAEmAATYAJMgAkwASbABJhAagiwQpoajlwLE2ACTIAJMAEmwASYABNgAkyACSRJgBXSJIFxcSbABJgAE2ACTIAJMAEmwASYABNIDQFWSFPDkWthAkyACTABJsAEmAATYAJMIIUE5HI5srKykq4xOzsbJSWlEP9ZMp8A36XMv0fcQybABJgAE2ACTIAJMAEmMKII6PR6vPLaW5g7b37Edd/5nbtwpqYxYvvr4/8Il7ly/dXYe+AQnnz6X9iz/xAuv2JN+Bi/yEwC8szsFveKCTCBwSCgVquRl5+PutpaBAKBXk2KmcWiomI0NjbA7/f3Oq7RaKDVatHa2trrGO9gAkyACTABJsAEmEB/CNz3w/vx0es/Dj0ppdHkqX88jru+c2f4UGgMI5TYnz30KG664Trs27cX8+YvwJ//8jjmzp4Gh8MRLs8vMosAr5Bm1v3g3jCBQSPw81/+Fh98eBz/fOZ5vLtrL+648zsRbceaYRQmND/92cPSeRtffBmbaBOmMSxMgAkwASbABJgAExgoge9/7zuYMrEa9fV1Uavy+fzweDzhzev1SuVWrlyFc+fOSsqo2LFr5w40NTVi6bLlUevhnZlBgFdIM+M+cC+YwKATeOXlLfj2nbejy2ZDZWUVXnr1DTz773/h2NGjiDfDuO7K9Zg9Zy4WzpslzTje+4Mf4rvfuwdf/cotg34d3CATYAJMgAn0JiBTqCCTK3of4D1MIEMJ+H1eeN3OhHq3YMFCPPjw/6C1pQUbNjyHD94/IJ1XXFxMVl81EXXUkhVYMU+aRzDJtDeskGbaHeH+MIFBIvDcs8+EWzp9+hQpokewZMkySSGNNcP40pbNWLtuPTY8/2zY/OWpJ5/Acxs3S8EDopn2hhviF0yACTABJjAoBFRaI1S6nEFpixthAqkg4HHaYGurj1vVe7t2oqOjA06nE5MnT8G/n9uEz978Sbz91pswmXKk/d0rcblcMBmN3Xfx6wwjwArpAG+IUhPdtn2A1fLpTCBtBDwuBwJ+X0T9+QUFmEQPdeFvISTeDKOYaXzl5ZfCddTU1EClUsGcmyvNVoYP8IthTyA7OwsGjQJKRTbMOiWMWgXksixp67R70G5zw+bwwuHywemJ/FwN+4vnC2ACw5iA3dIMsbEwgYuNwKuvvAyxhcTpdOCGG4MKqcXSQeMRdeiQ9F/Ey7BYLBH7+E1mEWCFdID3Q2cuGWANfDoTGFwC1tYaeEkpDYmcTLp++avfYvOLm7B3z25pd7wZRjHTKGYcQ+JyBU1sTEYTK6QhKMP8v1mvRGGOGsunFWHiKEPcq+mwefDmwSYcONmOTjuZXZF/DwsTYAJMgAkwgXQTaGxoxOjRlVIz9fX1KCsvj2iyfNSoPn1RIwrymyEjwArpANG31x0bYA18OhMYOgIiiu4DDz4MoZTeftut4Y7Em2EUM41KpTJcXq3WSK/FeSzDm4BeLcfUyhx8dHEFrYImfi05egWuXlAmbftPduC57efQSSunfn/v6M2J18olmQATYAJMYDAICCun6upqlJUWwWjKpWc3BQmix7c/4Jcmms+craFgQecGoytx27j+YzfghU0bYLfbISy8rrv+Y3jyib9L573++lbJt3TmrNnYt3cP5pOvaX5+gWTOG7diLjBkBFgh7YG+oKAQXi+ZobW3Rxzh9BYROPjNRUBARMp96JHHJPPcz3zqxrA/qLi0eDOMIuqdmHEMiXgtVkx7fm9Cx/l/5hMQeccLTWp8Yc1Y5BkvTDb0p+czxuRAbBt21GLH4VbYXcHoh/2pi89hAkyACTCB9BKYNHEipkydCq+zHvJAE9B1DDKhjZLIshQoNhuRmzMekyaOw569B9BCgYTSLWJ8smTpMohx+W9//yeKpuvG4oVzaYzuJQX043iAIv2LsYpIXff8c8/gz3/6X6lLIlDjnXfchsefeBrNzU3S8W9+42sRY5x0953rT55AltlsHvHT1zKZDLfdfgdu+uRnaDYogJMnT+D6j14t0RSD9h/d/wDWrF0nzcS0Ub7FL3zuZl76T/6zxmdkEAHxmf/jX/4OFwUE+OpX/jPC/FZ0U0TZfW/P+/iEyON1fobxTyKP16yp0kP9mms/glu/9g1cuXa1FDzgv+/7EXJz8znKbgbd42S6opBnY8poEz6zqiqZ0xIq+/7pDjzzzjlYujwJledCTIAJMAEmMHgEFi1agII8HZS+MzQGjh3hNiAvhF8xGrt378HZs2cHr5NRWjIYjKSsFkjj8Wj5RcX4vaS0VMqz7vNxfIMoCDNqFyukdDt++OOfSlG6Hnrwp9j2ztsQg/VQPqOrr7kWX6WB99VXXiENxEV6i7y8Ah54Z9THOHM6k0tBfcQDsriogCK9maSQ+36fOxxEKCtbhmyZEn56OHZ0tKO+oYnyYzVJ0eIG8yr0BgMOUg7SnnKKJmNWLLtE2i0++/f/5MHwDOO3vvkNvPjCRulYKA/p6suvgM1qg9VmlSLc1VFodZbhRUBJyuglUwokU9t09bzJ4sJvNh5DR5c7XU1wvUyACTABJpAkgXnz5qK0UAOF72TiZ2Yb4FNOwPZ3d6ChoSHx87gkE4hBYMQrpKU0e/LWtp247tqrwhFGu/P69W//gA8/PITHHn1Y2j1p0mQpvcXEcZVkX89BO7qzGsmvx44di7HVVeRXKYMs0EmblRwvumi28ULgnwg+WRQBTqaDDwb4s0002eHEiZNncOLEiYhiQ/0m3gyjUGz1Oj39KMUP0z7U18Lt9yaQRXa6s8ea8cmVlb0PpnhPTYsdv3vxuBSRN8VVx61OoaBJIIosnUmz5GLis6SkhCaw8pGXa4ZeT4GjyGxa+G2FomBLE1jZCjLcCVC+YCuaW1rJVK5VGgRm0rXEvQFcgAkwgYwjMIpcbWbNmAyl94Pk+ybLhSu7Aps2vchj4eTp8RlRCIx4H9J58xeilcxw16y7Et/+7vfR1dVFduh/wFtvviHhipfegtO+RPlUjaBdY8dWY8K4amQHbEG/Cx8pojSolDZKlwFEhh6PRNNFPhpCaW2AWm/EzOnjMG3GDBw+fAwnT52KLJrCd9HSvvRVvbAUOBfDLMdmtdIKKV0zS0oIKFRaZFGgqcGSQkMWPnVp9aA0N6rAgCvn0wBmdyPcPvHdSL0EaJJQo9FCqVKgYnQ1CotLUVxaLil74rPc0dGGxrpaNNSfQz0lThc+SR4P+bcKB9pBkjKaBK0cPQqFhUVkMt8OZZYVWQEKBhagSR3febPmUHeEQ42wNCOlVG3QIJesLqqqyqHSrEBjYwNOnzmLurqhnQzyEUOfl1e+B+njk1QzMoVKstJJ6iQuPGIIzJw1CxpZDT3/Yo1T+sJhh0LuwpRpM3DkaOqCe/p9FKHdHdtsuK8e8f7hTWDEK6RlZeXSrPlpUgBee/VVTCeF4H//9Dd8/PprJd+5eOktOO3L8P4C9Lf3JqMB06dOhF6TBYW/jgaNnVSVCEk6kCTklC9OZsTsOTNQPWEy3j94hExhSWFNsfRM+5Li6rm6ARDQGPMhBpGDIQpvJ75y9Whkk59NIuJy+2BzepFrUEXV3zq7XBBRm/WUs7QvuWRqMQ7WOlFj06RU8faTQqSUBTBv0TLMnD2fBuHRr6mguAzjJk4Ld6+9rRU7t72BUyeOw00GL9myvvsePqmfLypHV2B8dSWys1xQBJqR5TsKtToUwkFMQugSqNkODexUrhkVZXkoKVsIj0+GYyfO4Ow5GlgOgTitrXBY24agZW4yHgGV1giVbiC/SfFa4OPDlUB+Xi4M5jwoXORmo+rfZ0Qt82LC5OmoabalDIPHaYOtbWgn2VJ2MVxRUgSi/2onVcXwLixMod4/cAD/ePJx6UJ27NgOESp67dorJYU0XnoLTvsyvO9/f3pfUVGB2ZNpUOs8DLeNVnv6U0mf5wh/jKNQyUuojWDggEwJs95nl/lAygh0Ng9ekIglUwqhyvbSolzsCLgHT7fjya3k/2lzQ06r/nd9ag4KKD+pEOG18Py203jjQJ1kFFCUq8WdN86MyeMTiwtw/9MHU2K6K0yOjcYcLLl0DabPmie1GyCTV6879jWFOmjQ67Dq8nXS2y0b/omjhz+gFX8xuZQ6KS4uxvTp0+g7Tazb3oHPb0VqwjvRRJgQmQmj8opQaKwgt5MD5PNNE1tDJMIMuaioCG1tbVKws2jdEBExRRRMJwVU6yliQqOoqFha/WWXmJ50kn9vtzRDbCxMoCeBUvMUOFo/hNsrxhz9lQZ41QbwOLi//Pi87gRGvEJ69uwZiOAtPUWtCQ64OL1FTzIj+/24ceMwZcpEZLsO0apo+kxVs731ZAZsx5w5syhHqByn0mjCO7Lv6Mi8erNeSXlGy+Ne/IdnOvD7TYdw3bJqzJtQAJUilAggeOoTpKiK2fEvXTkZEytyKF9d3CqhUckwodyE3cda4xeOUUJ8L8aMnYjrbvpcRCmlQgGVSgmVUiF9d4SSky3LlhRm4Xfp8/nh9nikzekkc9Pz0RevuOp6zFm4BE/99XfoTFE+3RkzpqOqsgIy71laER3Y9UZcZPc3Pgs5BljoeguwePEiHD9+Ah98cLB7iUF5/dHrPob7fng/7A67lKN493vv4Y5vfl3KXyg6IFJD/eGPf4XJaKIo3jo89+y/ce/dd4X5X7n+avz4Jw9IqaNycsz4Fp370pbNg9J3boQJjDQCRoM+6DI0wAv3eYTFBgsTGDgBYSc0ouWdt9+ksNBlWL58pcRB/GiuWHEp3nj9Nen9ls0v4JprPkKmVUEF9YYbP4Etm9mJO5UfGgUNIEVwD6HszSKfhsWLl2DNmjVYsmQJ5s6di0mTJkE432u12lQ2m3RdInDR5EnjIE+zMhruGA005e7DtLoyGWPGjAnv5hdMYKAEqksNCVXx/PbTWDylGEunFUNNAbuEq6XkGk1nt1ldePv9etywciwmjc6RjpHel5Csn18Gnbr/86HCT3TxisvDyqhWq0FJUT7GVlVg9KhS5JpN5Eeqoix6WfB4/bQa54GDNo+P9lCka/EsKczPpfKjUDmqjFIemCUFNr+gGF+5/W6UV1RJ5scJXUyUQiJv9apLV2J0mZG+wwfSp4x2azvL10zPpgOoqsjDsmVLJKWw2+G0v6wj39yr1q/BvNnTsWj+bOk389Of+Y9wu3ff8wO88dpWLFowWzq+lPILXrb6Cum4SDP1s4cexc2f+gRWLF2EL37+Zjzy6C/IH1gTPp9fMAEmkDoCZsoIAPT/GRzqiVwRHBuH3vN/JtBfAgP/NPa35Qw5r6OjA3fc/jU88j+/kMyMRldW4uePPYKtr74i9XDTxg1YRsrqzt37I9JbZEj3h203VDRYFKavQtEUqVJ8gSxKteODnPznJJ82MqXW5xTS7LkHXgqaIZdWOAKUC7aLApLUSyuGwpx6sKS8vBzTpk2BTCijcfJ0pbRPFKlX4TmKGTOmSXlwOcR6SumOyMpEztFVM4vjXruXlLfjtR0YU2zAY898QKZdXkypzMMVc0eRsgYcq7FI/qK7jzbjX2+egFohx8pZZVTGHLduk04ODSm4XeSTmqyoaHJwKZnozlu0lBK1m5BjokjVZDpsJxPQlrZOqZ/J1KmmlVSNWomK8hK4ydS33dKJT3/hq3j6b7/DyeNHpAi3ydQnnmeXLFooBTmT+wfZFyrggSpwAmZ9KS677FK88852DNZz8t3t28KY7HY73n7rTVy66jI8+vCDEJOOqy5bjdWrVkhlRPDAjRuex7or19ME7wtYuXIVzp07G450v2vnDkqH1Yily5bzKmmYKr9gAqkj0NraAm1BAiYtcZr0evrIJBDnPD7MBHoSGPEKqQDy8ktb8NrWGSillVLxI9jdt0VEZrz9tlvB6S16fnT6916sTIgVT7Ea6nB5oDPloah0NHIpt2s8EWkPGuvO0sqHDmPHjkdjUwM+PHSI0iC0xDt1QMdFn+fOnQ2ZmyLJ+YfAPIXalLlPYP78udiy5WW4XPwDMKAbmsEna2kSRiZXprWHaooIXZIff4XUYnNIOXOF+8IVC4rhdPvwf2+cgIsi5H506Rh02P2kaChRUmDCrPElON3QiV9vPII7bpiJqhJj3GuYWl2E9854kwtuRKlbpk2fjjXrr0UerYI6nC60W51wuS94ZWbLkvtZc5Pi7aaATBbadHStBfl5tOXji//vDjz6s/tIaRZ109JwAmLOycElC+eSie4ZZHnF91SsQgy+qOGEn3xWV6+7Gtu276LgaKkLOtLzalx2mgSgracsW74irGDm5xeQ+bSCEtTXhIvV0ut5CxZI74WfbfdjYmct5TQWUe5ZmAATSD0Bi8VKz+7cAa+RypX61HeOaxyRBJL75b6IEQnFU/iT9iWc3qIvMonvnzx5MqZOnQYvrYaWj50BE0V4S0Z0lKdvzPgp0uZw0MrhkQ8odUIhamtqsH//fsrl6UimuoTLCj9O4dMJMqEdMvG1Q5alw+zZM7F9+44h6wY3nF4Cfi8pP2QdkE4xGbMTW/WT+hHAlQvIB/K8La6PliL/SauhH1lSRV0MoKJQjyUUOVfIWDJPPVFvwe6jTaikVdV4MqPSgJ3HKTBPdmI/Q4GAH5MmTsTnvvAlyQ+0udUSoYjGay+R4112B8Sm06rJpNeMO7/73/jJfd+D1d47AE/P+oTZ8LzZ05DlOomAt5noDLH4akkJ9GD+nOl4/c13aPU3teHXQlcXypkaei/+f57u0bhx4/H/vnKLtNtoDE5QdJ9MExO/wp9UiMmUEzERLPaJsiLKPQsTyAQCwvJB5K0voDGHllwGxByV+Ay3UBAxMXmS7onxVDNobGzEhPEi5Vff4964bcpyYE1xELi4bXKBi5ZAYiOBi/by+cIGg4AYjMynmXC9gaJBjp2OnARWQ+P1S6PRYfLMBaSE2iFX7oVI37OTzLxSHZFWmBWbTVpSSE/H61Laj8u8NTRInib9KNbVnY+wmfZWuYHBJOC0tae9ufySfARC+S5jtJZDZrWgiLXNHV0oCkXVpRxxLpdbOj9PL8e77daIukQOudDxGFVLh8pyVYC7E3aXSLQZX2bNnoMv/9dXaQDUBVsCCqKPJhndLic0ut4z+CK6uojQ25eIdEtiM5v0+OKXbsEff/8ryvcZ+zs3f+YyeG3HkDXYZrp9XYS0vxOBLDumThiNt9/eFrNkqg5esWYdbv36N/Cpm26QBuui3s7O4AqqUqkMW3iIuAyW88GjxH+VKtIXLXh8CCcBUwWE6xnWBEyU+3f6dJpAp/9OssRwkVl/myVocSCnqNL5hcUoLx8luRMdoIwNIq/9cJD29nZ0Ug7xXF0BWXP0LxKzG0U4ceLkcLhc7uMwIJBgCIphcCXcxYwkIIIVXX755aiomoA5iy9PiTLa/UJFcJOpcxajrHIiFi5ajIm0gpJKmTx5IpQiYX2GiCJQhynUJxYm0F8CORRhNxERi6KzxhVgy86z0qKty+PHuwcbwj6iE0ebyVzWhQ8oLYyQFosTB0+1hY/Ha0NOaXuFb3giMnv2bCxeugKtFntcZbSxrgYvPv80nvvn37F507/R1RUZDdtLq9AvPv9/pCw1xm26nQae5qJRWHnpKlRWVvZZfiblrzbqApSTOHOeFaHOimeG2ajE1ClTQrvS9l9ErP/x/Q9Iyuj7B/aH22lpaYaHIhuX0cA9JCKAYMgnvp7iApSRn353EcdFlHsWJjBUBMSE9KpVq6BQadBIFhkWqx1OmpDzUqRusQkFtZNcG5rIdz2QraBgYstQVVU1VN1Nut1Dh47Am11Gq73J51/2y4tpMhEUz+N00u3yCUwgGgFeIY1GhfelhIAwb1lOfkSFZdXIL7kwEElJ5T0qKSitgCk3n34kfGReKMPBgwNPe1BW9v/bOw/4Oq/y/v/u3trbGpa3He8VZziOs4dDWH8SAiGBllJKS4BCKTtNGC2rLW0pbYAQIAFSRsjeA5I4sROPxLEdb8uy9h5Xukv6P+eVNa58pbulV1e/48/r+47znvE9V+99n3OeMQdWCfwMUZfVTQq2igOWEq6S6mZAZl5Dct2xv3woD7r/9cA+fOEnr6C3L6jZht66ZYHWabd4yb31yiX46aMH4HZa0NTRh23nVmHlvNhV8c3KO1KUdN7556OouBTFlYvFY+7kTpCaGuqw/aXnsEpiklbOXSD2uOonblR5dtfOl3Hi6CFNOIpS7chlb58PJRWLsHp1t+ac5/DhwyPX1E5hYSGqqsrF+dibYef1dGAbPImFi1bhtKzyqpWRdKQPfPBD+MTf3oYbb3g3Dh86FFaFEkaffeYp3HjjTfjmN+6Ay+XCtuuux7e+caeW7/nnn8V3v//vWgzwPbt3iUbNJii7U+UYiYkEpoOAmkxXXv6bW7tE8Iyu7t4rWhsBiem8UmzcVSipmpqa6Wh2XHUqtd2jx05injwrrSH5mx2MTVtl0CxaNpYK7HqZf59xAWfmSQlQIJ0UDy8mSkC9pF0iqwpz5p0Dd/bUOPaw2p1Yfe5WbdVFvQAdGvdSFG9f5lVXwWrQn/qNBc0SBmZuVBXCePvL/LODQCA4KqBF67GKV/rlD65Fe494upZ4Lx4RPMem1QvysWLe+WjrEntAlxVWS3QBc+z9MEzeFqXq7xFVf4PFFXbbRAf79r6O6vmLUS3xSUfTqGru2g3nQ20P/e6+0csx7OUUFKNbBPJFixeLN/DqQDRZAABAAElEQVRgWFzglStXwBSqjfllLobqUp9l0A+Dv0bz1v388+l5ibzq6mu1Vc6nn/1zWPuvunwrDhzYj6/fcTvuvueXmiDqyfJAebB/6snHtby94nTp85/7NO697340NzchX5xKffYzt6XNL0BYA3lAAuMIqEntdevWoUVMEmIRRodv94tA2iYmDmvlXqW6q7xJ6z3t27dPvKYbUD33HFhCIkSHOiZtcshcjpCxENtffEmLTDFpZl4kgTgIUCCNAxazxkZAhXS5UGLMlc8/B66sqRFGh1umPGyuOvcSUUExaGFSasXhUSJJ9aFQbEPg1Z8DIUOoFcXFG8RhiVl7OU6kf7xn9hKwW+MUGgWVEkwnSkrrtvCMjelEeSY6b1F6uxOk5cuXa85ulLffFeuXTpBr9LRyeqTUcPMLi/Hn556AsiEtKSvHknNWSqZRoXT0jvj2PDl5aK6v1bz8KgdqSt1UqfE6xBTWGErc07fZZBAnKWZkeSwoyrciL1s2UbEdlH/tnQF5Kfajud0nNq1BbZU6JF6BE0nGUCPcrnyxdytHos/Fyeq9+QM3THZZcxp46dbNKCkplb50QwmhY9ODf3wAjz7ysMQFLxOPu6e1Vaax17lPAlNFQJn+9IutqPLiHW9SAmx3jxdLxYnjazt3xnv7tOR/4403RYBuw2oJL2cyFcNiaBdbeBGmB1X/5RlttCNkyMKAMR8NjU3iPZve/qdloDK8UgqkGT7A09G9jRvPRcXcxVMujA73VdyVYMlKCScgjkv++MAfEvIuWSAz9EFfOyZ+DR+ubRo+Ra3G398mQmmx5t1vGlrAKkkgrQSU7VZlZZXYjPbALg7McvKiqwF7ZTVCOStSqxuLl64Q9Tk/9rz+qvb3v1JUeJNNlZXzUFdbg46uXgnBtBFPPfUUFi1cALuhIaGi3eI0qrLUiY2rcjGn2BFTGbUNfdixtw2n6vvElnZy9eVIBdrQhMWLF6ZFII1UX6RzDQ0T29mq1edTM0DVMVK/eC5zCMydW40OcZ6WaFJO16rkGbZ3z564zAMSrS8V9ylPwWpTE1bl5XOQl1skIfZEEBWbezUB19TcIk4j306byn8q+sAyZjYBCqQze/x013q1YjBv0RIUzpkbU9ve2L0TB/btCctbKqsaF116NZ594iE0S6zR8emKa9+J3LzC8afDjq12FyrEkdL6DRvw8ksvhV2L5aCoqAAWo8zgx2ZSEUuRKc1jMfSI7VoBBdKUUmVheiCgvKsqJ0atoi43MDAo6mSxr+gqz7nnrFwjChJD9ygBda8IpakQSAvEjtVmtcmqSR8sIvRu2bIFVvMAEIzPJtPlMGF+lQfXXSIaGHGm8hIHykvmyOrhIB5+th7Hanvh7Yv9IWWQlVyXs1TsMwtmXJiKOFExOwkkTEBpJ/gDsf9dja9IPbeUl24tLJ0IeTMpKe2JdGhQzCQGbOv0EKBAOj3cM7bWdeIEYPma88QTncRTjDHNE3uv9ZsuGJN7SL1u6xXb5Nyoelq/xAd87OHfQoV8iSXlFZdjbvV8HD1yBMp4P56ULzHHDAPx3RNP+cnmNQ56kRtnHNdk6+T9JDAVBJRTkO7ePs2DparPGSFsS6R2qHxKIFWqoG7PaPxK5egsFUmVrUwBVOqS9i1bVI1g72H4wjVPJ60qW9Ryb36nOGCTz2SSSdR8r7+8TNR5fbj3wVr09Mb+vDUNNGNuVRUF0mQGgPdmNAFlC5psColQqkLeqVVHJhIggegEYp96jl4Wc8xyAgsXLkR51YK4hFGFTBnUqxWN0W3opU+9AI6eM+Lg/r2omjtfVPgkKHUMSRZHsHTVBixdGn+4AxVOBgPeGGqZpixi2+FyxiaYT1MLWS0JxE1AOUMrLCzSQikM36z9LQ4fTPKpnhdzKubi4FtD4UaUDemJY4fFJrF8krvivDQ6PwaLxNTMcsX24qo5DSl34m9vnp+0MDq2xQW5Ntx2y3xUlTnlWTn03Bx7PdK+aaAdZXPKIl3iORIgASFg0bxzJ4dCmQ7k5uYmVwjvJoFZRIAC6Swa7HR3dcWq1aImO9a7ZWw1NjXWY+f2F/DGrh3oaIvs1dYrsQSPHz2MZSvWxFbocC6jDfMWLIDb7R4+E9OnRVTzYnWBHlOBqc40GIDZoksL11T3lOXNIgLKmUivhFkZm0ziqCzWtGbDJrTLM+SRP/xa4pDeqznGWb1e7MnPpB0vv6B52O3r8+Kl55/U9pVab6xJCZYqZXncCPh7MDjghzPKxJASFJfM9+Cmd1TGWk3c+T4oq67zK2OcoJLJrMGQX1Pbjbsi3kACs4BASlZIJU5pR8fkHmtnAUp2kQRiJhD7L33MRTLjbCSgbCXmlFehT4JGx5MKxSOmVTzammU2sb29DU8/9oBmP1pUEj6Dv2/vLgnlsAiOKC9/keqev3gl5i/YoTkYiHQ90rkhuzWxD9NrGgyKl93k1P702jW2a3YSUKsJOTm5aGgJf4kzKje+MSalzn/5Ne9EvwicBrE9tYlTjrFp4/lbxh7GvW+zO8R7d68IoXaYBjuh1PJcLqd2bqLCyovteJeo16Y73XBtOX5y/wnh1x+1KhO6tdWblpbEvQNHrYQZSGCGErCYY3/mTNRF9djyenWsZTVRw3meBKaJQPJ/ddPUcFarLwJzq6tROS/+1dHS8kosWbYSCxafgw2bNmP+oqU4evhgWOe6OjtQW3Mcy5avDjsf64FVXlLnzq2ONfsMyWeU1RkdC8wzhCKbqR8C8+bNh7c/vgmtiVqv1PrHC6MT5U3kvMthFxvzHs3pkujKTlhXltuCD727KpEqErrnQ++qhKozWjIbemWFdGpDckVrE6+TgF4IOB0O8dad3OuxU54RKhYpEwmQQGwEkvuLi60O5poFBEpLZQXAMHFMwVgRqBWOYCDcQcebe14TQXUZ1OpEIkk5WKqsqoZVbL5iTUFxdQ6DjhUIhHUoFJv9Wqx9Zj4SmE4CKtRAb1/01b3pbONw3VarCH1ajD4xNZdVUru8fI5PVosR126N35Pu+HK8fRJ/NMYQLxap85LzCkXjJIo96UAfPG7P+Kp4TAIkIAROiadZl13MdhJMbtGgaGtrQ3d3d4Il8DYSmH0EdPzGPfsGYyb3WHmzTcTu4sSxQ6iQ+H4mcSLgk3AKx+V4/sKlIyja25rRKMHoN2y6ceRcIjvFZVWaC/ZY3Zn7ff0wG9RLp06FPoMN/cKLiQQygYCKqesTdf+Q2F3NhKSpy/uH/v5CoqlgF9XgznENL84X+/WKye066xr78F+/CNcIUcV89ZOrxDlcED/5zREt3qjFYhBnSFZcdkEpFlWPehAeV6V2eM7CLLy8qxVNreG2uGF5B/uj2r6G5ecBCcwiAm8fPIgrrrhCM0EKBOPz0q1WVrPcDrzyypBztVmELW1dNcv7YUi8pUey98+XEFbKs3p//9mTmcr0qri4RKIsNMjE4cz4bUkbxBlQMAXSGTBIM6GJ+YWlGIjDOchwn5QXzJ3b/6zZhiqBtHLuAixcMuoVd++unVi0dLkWoHn4nkQ+s/MKkJ+fH3N8rR55wDmzlafd5IU+ZY9itYoygvDxBwYQCMbuRGXCvhrlBbi9a8LLvEACyRAwW+1wZuXD7sqBwyOeIuUrGxQBbCAkDnFEe8BotmIg6Bc7TZMoElhlQknswG1O+L3d6Otph7erFf294bagk7VH2aD7koj7N1nZ6bk2+jesHnvqZUd53Q34h1SOHXYTrr2kNKaqVd4vfHxFWF4V1sXvN+CarXOweF62dm37rmY8/sLpqAKpynz1xSX49cO1IuRP8DI9GBKnaNFVe8MaxQMSmCUEurq6sGfPHixatBitnWdU82Pse7YIo0ePHo071FyMxc+6bC5xSPnIY0/hc3//Kezc8epI/8srKvDjn/4c2VnZcLld+OMDf8DtX/2SJriqTNduewe++c/fFt8k7Zpvgn/47Kfw5BOPj9zPHf0RoEAa45g4xKbA6XTSJiACL6M4JHJJ3D+vf/QlLUK2iKcuvuxaBAJ+bXVUOSwa71Hz4suuiXhfvCeVWp3LPfnKwtgym5pbkJ+dDxPiswFRanpqUwHsKyUUQ0WpAzlZVmVmpuRRLapqe6cfpxv6cKrei1r57PeLkCqCajwpOOgSlaD42hZP+cw7Owk4swqQXVAGmytX4mu2IODtFK+1xzXhMzoRA6zObJjtOSisWCTZDehub0BXS50IsuFq+OPLUrPcwRmyOqraPjg4IL0bTYPyl20RJ2MjAqnNhPyc2E0ElAA6PnnEFnSJe0gYVdeWzM/CI88NxRx1uyYXJsuLHbDLc2hCgVTKCymzBCYSIIGIBI5I/HL13lcpMXu7ukfjIkfMLCetFjM8Ljsa6uuxb9++ibLxfBwE7vz6t/Du974vYpSEr37tDrzw3LP41jfvFMdyLk1ovezyK/HE44/Ku54b3/nev+GmG94jEwu7sWHjufjZPfdi/doV6OtLfpEhji4waxwEKJCOgVVdPQ9/fPgxfPc7/4Kf/+yn2hWlKvCNb30bV119jeYxrU2M1P/yI7egvr5uzJ2ze9cq4UdU6AOvhEFIJFnkfrWlMymBVP1gxJqaRSBdtHCuCKTRkxI2lSORxdUebFyVGzXOoKPIjjLZNqyUlSdJHV0BvLKnDYdP9KC7NxhRLWV8KwYMHgls//b40zwmgYQIuLILkV1UKTGBjehvP43ueqVGGt8kiZpu8Xs7tM3bdgIWexYcWcXIPecCdDSdREfjiQm/21keD5raZs6Kv4qPPDapySbLmOfL6qWjguTYfJH21WTU7544CZvFJJNYLqxYnKtNYI3Pe/hEtza55XJOLowO37dsoQfbd7cNH/KTBEggTgJvvvkmOjs7sXr1avSJwzWfPyQTyP6w55hdNCNsNiWMOvDGG29oq6NxVsPsExD4ype/ALW9snN3WA6LaHdcetnluPzSi7Xzvb29ePihB3HNtds0gXTr1ktx6lSNJoyqDGpltampEZsv2sJVUo2YPv+L/Q1dn+1PWauyZNn/R3f9FN1d4Ubo6gu+dt16bNqwRptZuf2Or+OLX/4a/u4TH0tZ3TO9IIs4+FCrpHpOKn6gJzv2FdIh73jy52FUarsTu253u8zYKILleWvyE+5+TpYFV11UrG0vvd6KnW+2T+7ERNo0oNZuU+TBTwkhKlaistEYn6LZYFBzYDyxmXVsEnXbgvLFohIv4UzaarRV0VT1INDfBbV522vhzKtAxbLz0VYnNpHtjWdVob5nM8V+VGu8moUak5S5grKDV8khq6MrFscmkLqcJmw5twQupxnd3gAeff40TtT24h2XlY8pHWIP2o8nX6zDu66ojCishmU+c6Da8Po+mSCYQPtChcVhymwCFlGjV+r3TIkTaG7vwVPPvYgF8+dBOV4rzSoR7YKQ/AYPwibCaJe8M9bWnsarO3chGAyKiQO9VydOe0hzw98X/h4+vryCAnHcJhopdadrRy6dlv0N556rHZeUlIRdUydPnz6NEuV8k0m3BCiQytCYRJj64Y/uwk9+/L+4WlZCx6arr9mGhx58YGSZ/ze/uk9WUR/XVhL0YCStBAmbqGYZ5TMgKm+BYLyrGmN7m9i+4hDJ2Dyx0tJzl1oh7e2ZWLCMVGtNzSlxSpIPYwSB1GY1YeFcF66/LLUPuAvW5UNtf3iiDkdresSu7uzxDBkLcfJkTaQmJ3Tua/90p3bf177ypbD7J7PBoOZAGKoZeeDOLRHV2sXobT2F9sYDaetDKNCH7sZDsDiykVs8Hw53LppPhTvyUS9yMypp1glKKD1jpiAfw2EilL24mqiKJSlHRZecXzKSdWFVFn76f0ew7ZI58hszJPR29wTwiz8cxUUbirF8Uc5I3mg7hXk2KPvUiAKpeBCPNAEVrUxen1kETBab/N3Rm3IqRu1kXTPUNlEyWByiJTHRVZ6PlYDB50U0gTQra2hxwecbddymnBope1KVsrNzznJypPJmn7kv1rYw39QSiO1Xc2rbNOW1fe32O3Ho0Nu4/9f3nSWQqhmVp596cqRNykurzWZDbl4eWiWouM0V20z4SAHJ7AzI7Js88PLlJWZusQvl+Q6UyaZm5FXILGWL2NkbwOlWsU9s7sXxRi/EUSMkaoC83KRvBdPpcmurA2qVQ6/JLOpwZvGEGc941Ta2aQ6VjH3t0q1RwdBuGcCVmwuxdF76fujffVU59h7sxHOvinOYwBiu8iJptM8V+9Nn4+rL2HEJ9PeKTV8Ql11+hRj9f0e8Dxfjnp/9ZGyWqDYY1BwIw5WyA6vDrTkKSlmBEQoymMzIK1sAd04ROusOip1ou6y6jfmORbgnFaeC/d3oqNkDd/FClC/eiMaTb8lzQ9TdXOIUySovc7YIQqmsPKpnl16eLUZhp1adBiXsksUuKvdnJqvUgqlFVkiVYyejSexLE+SZJc925QwyFDJoAq6yN7/7t0excXWRJpDGOw6Dg0atTWfdZ/JoNv/xPA/PKuPMiZDfJ6G6+sMuK5W6wLjwXcMZ6BVzmET6P4P+fpksHv3tSn+NrIEEkiOg3k2iJeV0SiUVym9YKLXbxdGjxKxXSX2Oj0M9dL1Tu87/9Elg1gukN3/oVsydNw8f/tAHIo6QmlEZ/sKrDD4JB6KSmolRAqnDk7iqplZQlP8GB0KwoQ8FbiO2rizEojL3hHeIczcUiHw8v2xUSPbJiumL+1vxyoEW+AwO8YgpmVKczMqRj6hPKI+bek3K4Yhf7D/iGS/1WOzo6UdR9gIYg0M2wzajFzddV4G87PRPha5elouSIhd++3g9fAND4zZgrsDpZlFnMTulL6JOnEAKBXyaQKomWtT25a/+k6i/hI9dNBsMvWsOJIBFF7coAUF5rE1nqlq4HC7xoNtV+6b2PTCkIH5wPO3tbTomKryVKFuwDvmFjaIqHIQ7Kw8dfWdWG8cWJgKpwWjWzbPFaLLIipMbAzIxZHHIs//Mu5NBXBzZ7BZY7X2yOqq8D8cm4B8Ru9C8XJs8T4YE0ZclXEtleZaUZUZLW7+slh7FpeeXYt2KxH5nnG4bgn0RVDYtReIF2RDX83DssIzd7xevymMF0o3nbsIP//suzYHI2Hz0ijmWxtTsW+xO2MTRGBMJzBQCAV+vmHr0TtrclpZmbcJrTnkFjh09ouVVz5eGhgZtv14cS80pLw8rQ12n75cwJLo7mPUC6cf/5u/w5JOP4bZP/b02ONXz5muz8d0yA/OH3/9WM2hXszDDyW4fEgyGZ2K6W2qHL6X80y6x5xaUuvC+iyrhsA4NVbyeEdVdFy/L0ba9x9vx8Kun0dUn9g+D4TZQyTTelJMrs7AhGGQmVsXk02NSgeLbW5sQ73jteKkTl19+KcSjFdx2P26+vhIej1FWMc62t0xHv4vyTHj/NUX4+QM16PXZMSjBunduf3JEhTyROmOZgYxmgxFNcyCRdvEeyPfzdFoxrF+/Di6bBe0nd0k9EQTAtNY+WnhPy1Gxw+rDyuXLcOyRp9DWdArejshO0UIlhbrxCKtC33g7WtBiDsGYE5SJqiGnQWqFNNhvgrezCaXZLk3QH+3txHuNTT34+e8OwS6qtQOhQZnotOKGbVXa/cdrxMNxhxe/ffSYtg2XsnVTMS67MDZTARMC0qaznUX5xQ79xOF6dDQcGy426U/1O/nEU8+ham41lPO/8YleMccTSf9xn4RfUhsTCWQSAaV98ewzT+HGG2/CN79xh+Zld9t11+Nb37hT6+bzzz+L737/37F6zVrs2b0LapJM2Z2++Oc/ZRKGjOvLrBdIf/Sj/4LHPap6OSgCVVAM1oNnXOKrGRU1szKc1L5aMVWxjVTKnbNw+FLKPkNBH5yhTnzokgqU5KVuRXPt4hKo7fk3WvDyoS6EbKkxvrcZQvBLbE2HhMXx9o/q9KcMSJIFmcQWyybqHH2BwYTG63RLLxZVLMdNl7UjO45QDkk2e+T2/Hwz3nvNXNz/QhEOnuyGPa8cEdY8RvJH2+lsPBF1BjKaDUY0zYFobeD1qSewbNkyFOZlobtuP/JLXFPfgHE19nXUwd9pwAXnn6+FTBl3WdeHvRI6YCC/QATSoWaqFdJBsVNXadiWdOjK5P+ft65Q1HEL0NntFwcpEj5LnBsNJ7UqmujK6HAZyr9AxGQSDZ/W1Iam8Iv30a1bLsCatetw149/FlYtvWKG4eABCZBADAS+968/wIWbL0JhYRH+5667tRCBF2xarzmP+vodt+Pue34JJYh6sjx45OGH8NSTj2ul9koc+c9/7tO497770dzcBGUm8NnP3JbURH4MzWWWJAmM/volWdBMvX04vMtw+9dv2IAXXnhOHBn9UTulYhp98rbP4H9/9EPNSPqGG98vbqUf0wKhqwwtYgeVymQRY9CV1Tn4wCVztWJDMiM/nGzOLAlWXyBOQbLFfklUd9WKpAivasVL2WINiI2p0WiRgOd2sUEKiEpWpxag3tvVEjZjv3mJC4tKzPjhQ4fQ3Zd8LLrcPHmh6uiQWSonuiWmqN6S3WFHT3c3fMKj5eSQekc8bexrOogbLn2PqBfKyoW/JuZbd+xtwR+fOoUv/s2KsBdNVUBrez9+dO8hbaXjXHkhjZbKyudj1fx23H//k/I9TP/qbDQbDOUKfzLNgWj94fXIBNx5pTDK33KqU/mcMixfugjdtXukfKVen36V81j6EPQ2wpFbgIp5i9HhO/tvU8X3VM824xkPtrGUmc48Jnm2OuQZrPRAHJ5isX0tluewX567mkgKh8RiVsOnbE1jTcrSoSA/PeNhsopjo6xxk5qyOjpoKMCgLQdZRbE7SZqoP77eDu3ZOtF1dZ5eMSejw2skQAKRCPz9pz8Z6bR2rqbmJC7duhklJaXo7ukWp5XhGjYP/vEBPPrIwygtKxOPu6fpxG1Ckvq5EPuvpn7aPKUtUbMuF23Zih2v7xWhRuJEyhf/w7dEtjdNtmEuiWV18coiXLpm1OuiKlN5w8wuLJeZd7OEZRAnNxJGocfXI0LmxMKk2Sru3iUOYJa87BVWLkNvez06RR3Q5x1S3yrOseGfbl6B7/7uAOrFCVKyynvdEgeqsCAX7Z3SLhWUT0fJ6bCiI4LaWqxNXLogSyYJWuUlTtTkLKUwBOqj3npMVjJf2R3ZI1+fL4T7HjwhRvfyJhpDGpQ6B+DB2gXHJNapG3sPpN8wP5oNRjTNgRi6xSwRCATEw6BRbHxTmezihG3ZwioRRt9AQNzpDw4MTWalso5Ey1KTaL31BzBYOQ9u8djW2Sn20WOSEkiV1oo8VMacnb5dZdMfEkcxKrW1tSJXPAcbgrUwyESiXybjlBOZgQGzbhzJaBo/snI5NgVN4qW79qj2XRh7PtH9UDC8/Ejl0CtmJCo8RwIkkCyBhoaJ38eU9/ZTNbEvIiTbFt6fHAEKpOP4ffiWD4adUV9oNUvjlsDtbvEmO9mXP+zGOA9UUPTL15XiouWFI3e6c4qRUyKrcuLBsK/tFPy9sduCBP1eeTnyor+rAcamo7Bnl6Jk7gr0iQOKtobjcm1o5fWz71mqCaV1IpQmkwKBoJhZ9slKoB3dvcmVlUw7xt+rPF/abVZ0doXPno3PN9Fxrth0ffHjS+SlOIDutv3wFK6UFRFxtBIcMp6PdJ9a/XzwmVrcdH01/v3uA2FZlKz+m4eO43xR1XvrUHTBctAyB4OmfPS0vqXZ6X5J2vKXX3wdXT1ndAXDSk/dQTQbjGiaA6lryewqSa3ipzqtXLpRwq4cRV/7kH3qoDjIUjbfekhKu8MvAec7G48jy5WHtpams2ayldA6VTbb0ZioSUB//9CzpKEuCFd1GYwyiQCzEV6ZoQ/0iypv0DMkREcrbAquD4jpyXgHIUGJOXvowA70dZ9tW5quJtErZrrIslwSIAESyAwCExiYZEbnUtkLpfKZLmFUqXttWlIwIowqb7XFVecgp7gCfa0n0SU2X/EIo+P7rV6iVND71uOvwjDgQ8XSTfDky2rfmaSEUo+KJ5NkapNVSLcIpHpKbpcdbe2Jv+SfvzYPOVlDbAZC/eJ0RjyTmgsxaJ0bsZtDq5/Hcf3lFcgVz5nj0yPP1aIo3451y6N7zRy0VmPAmItusfVSdatUILEF1y3PHV9sQsfXXHsdXn1tD276wM143w03aftXXnW1VtZYG4zn//QyfnL3z8NsMJTmwJ49uzXNgZdfeR2bzrsA3/rmHQm1gzelj0BhYaGog+bKhNbJ9FWSgpK9nc0S79cnDsNG7flTUGxai+iTuHd9fX4MmoskzIvEgZZJOb2nkKkETc3NGBYQp6q9Y71iDtdJr5jDJPhJAiRAAiRAgVQH34F5xW5cf94crSV2CftQvniDqKj5tZh9SkU33qRW4SYKPdYrAm77yd3ILpiDgoolI0X/9TUL4RnjUGPkQhw7vbIy6hfvZx6xJdVDskksPCUgt3UkthJQmG/Dpz6yMKwrA+IZtKt5NwIho3i8XSbGYqPOYQZErVCtfm5aU4jqirPD87y6R7xztvtw9cXlYWWedWB0S9krpA5odQ2EwlU4b7t1AQolVESy6dFHHsK561dj2eJ52qb2lX30cFI2GKtWLMHNH7wRq1csxWOPPjx8SXMqoDQHzhcHA+9+5zZcednFmp3GSAbu6ILA8uXnINA1sUqTLhopjejpbIVErhQ1dmuYbbJe2jdRO5pbO6C0GFQadoQ3UV49nB8wl0rM7SNT3pSxXjFV5S6XS3NG8tijj2htURoZlZVVmldMdYJeMTUs/I8ESIAEZg0BCqTTPNQ5EhT+I1fO11rhzC5A6YI18LZKiI+W45O27MDJDtz18AGoFbnxafv+Rmw/0Dj+9MhxUOxPO2p2i2dLI4qrRQVVUqms2m1dWaw55xjJmMBOc0ubrAy6JC7p9GuD50g7mqQ9odDZjGLpWnmxA8pD71lJJP7e9rfR19ssguNSWS2tBgxW1DX2oam1X9RpA3jm5Xo8t31IrfdPOxpR19SHP+9s1ATJZ7fXa9dbRTh9+1gn9uxvG6rCKGFdpKxB+xJRra6TOg6dVbU6keW2QAnLU5GGbTAmYphOzYGp6F8m11FcXAynhAlSavt6T/1i265Cd5oQErV/fUxoxcKsS/wKqPjGfcHoGg+xlJfOPEFTOU6frkeLxM9OR7KJrbLSuPjJ3b/QvFqq/W9/9/sjVSmvmJdedjmURsUrO3dj+8svRfSKGUkjY6QQ7pAACZAACWQkgemXGjISa2ydUrLO1lXFsFuN4jk3F8Vi49l5ep+o5w6FlJmolLoWL946cUaIGZPpZGMPXnyzXoTUIJbNjR7SpbvhEDzFi7R6G0+8KQ6VivHS/ha0doWvyI2pIupuv88PJZTmZLtFOEtcVTZqRVEyZHuc4oE4JHH8ElsdVSp4775iVK05UnW+XglbIV5C7Z5K2FyrkZXfICuO4qgo2KFlNxqGHLGYzQaosd68oRj9YyYQDPICbpR6TNY88XgpK7GmHHE6VSdq2q9OvMR9piHXbi3B/iOJ9S1SX3gu8wjMrapCsFv/wugw+c6WOvEIWyLOwxwinHaNeDIfvq7XT6/EKLZZC+SPWQTpAbEn1WMyeWCwlGDfvifS1joVDk1pWUyU6BVzIjI8TwIkQAIkQIF0Gr8DWU4LNosTI7PVgSKxGe2qOxBVGO3sDWhC5+XrK/DbF46Gtb5KVH+rihfilf1N4rRkSBgKyxDhoLtxSCgtKF+EltpDuH5TOX7x7HEEgiqwQWKpVWw21Wx5rgilyuvuVCelpuuSUC8nak4nXHVejgUXrJeXzChJOYfp6zqO/u4aWJ2luPD8tRKiQsIshLqhVqKf3vEKzt+wQNpjQEmxlGcQgdVgk5duO4421mH+kgosXeZAn7dFhNu3Y3Y2c+l5hbjrN8fR0TWxp+UoTeflDCZgMplQUVmJ5sMvz5hedjSfxvySuegRzQGHw4Fe8dyt9+SU+MYdEpO6Rjw5LltSDRvCnZjpo/1G+AxVeGP3Hi102XS3aTJfDMMaGdPdRtZPAiRAAiQwtQQokE4t75HalCroleuHVuCKKkVFU0K5+HomV6XyBwbw1Gu12LyqNCVOiIYb0910BDkVKzVHR8vlpBKUk1klVeXWNTShqqJMHAK5RGiauhdLp8Om1VlzugHBBFV1VfvtEqQ+nqQEU1+vjKFsRpMNJotHQrXYUddiQ8BUhpBMOqg0OBjEoIRJCAb6cOBtmVAIHMcSiaMVb7JK+yYMeh9vYcyfcQRKSyU2W4eolIuH2pmSghLupqutUcK/5CE4YJ8RAqnDbsa+N/ejtrYWuTk5KC2aK7jjt/tP5xj5jNU4daoBJ0+eTGc1LJsESIAESIAEEiZAG9KE0SV3o8dhxrmL88WTbpVIKSF4RSCdLKlQfE/vOo1z5uaiNC/FNlbiAam36RjyyxbIaq0dm88pnKwpMV87JfZKFrNJWymN+aYkMnpcDuTneFBb1ygrAYmrHasmVJYNCZCJNEc5IQr0tyDUX4vvfy4Xg94D6GrapW3dzW/ICtBBWVE9iS9+bA7edXn8wuhwm+aIjSsTCUQiUFIiqq/9Q6rjka7r9Vxr/XFxrmaFQ1Yeldq8npOa/Orr82rCqGrna69LOKZeIwYs8kzXSQqaq9Da4ceevXt10iI2gwRIgARIgATOJkCB9GwmU3KmMNsOi8SDyyudj97m41HrbO3qR3t3P7z9Qbz+dgt2HxlaTd17tBWtnckJX6ryQH8X+jrqkFdSjYtWFMEtM//JJuV19uSpOlkVHEBRQU5aHR0p9WClqnuipg7evqEQKcm0v7wkxUJ/Mo2Z4N7iQvsEV3h6thMoLMhHsL97xmHwS0zP1joRSsXZm9V6dtgkvXRIabhku52yOvpmWJNeeXUH+gMS59U6/UKpcpDW67Pi1Vd3hrWRByRAAiRAAiSgNwIUSKdhRNS8/4ZF+cgurERv6ymERH0zWnLaLbI6mgeTSZzgnNnUPWbZR4oWEnpbTsLhyYPNmQWHLXmBdLhPdfVNEveuGyVFueIhNrWCnsNuRWlhrsTpDOG42Iz6/P7hapP6LC6YGi+2yTSyaIo87SbTRt47PQScLrdmwzw9tSdXa0v9MZgNA8j2uJMrKI13Z7kdmgpsa2u4eq5y7LPr9e2icmzDgG2BtCBFD+d4+iJ26gO2RdIGM3a99nLCXsbjqZJ5SYAESIAESCAZAqmTOpJpxSy7N8tlwaoFBciSWKAth7fH1HuX3YTVC0ZDCwSDg7JS2qwJqQ5bfPaOE1c4qK2SZheUY9EcD5o7k19pHK6rTRwd9fZ6UViQh7KiPHR7ZbVXtpDSRU4gKadFLqdNe91ToV26e1Jrp6pCq+g9USDV+whNX/v6vVPvTCyVvW0+fQxF4mits0t/nqSVJkYoGMDevXsidnlgIISetrfgzF4Aq2MFDD7RgBmYotVqU7YWOsrf1yrO1o5FbB9PkgAJkAAJkIDeCFAgnYYRMYgYlV9Uhr7ORgltkDovqcfqu7H9rQbxkDuo9epYfRcuWF6CuSWemHvZ39mA/PnnYUF5toSAaY75vlgy+vwBzb7TKcJkXk425pTka+q1fb4AfLJN5oTIKEEK7VazeO8V+zLZAsEgOjq7ZJuiF71YOsg8JKATAsFA6iaTpqNL/b0daGxoQJbLLlogqZpwS74nSiPDLl60n3n66aiFeTuPiPOyEhFMl4hNRAMMfuX1O7EJuKiVSQTXQescUZkphLfzKPx9qX12R6+fOUiABEiABEggcQIUSBNnl/CdKgC8O7cI/VEcGU1WgYpt+dFtS8OyzCv1QG3JpIGQCIfi7XfJgioYnjoi9p/JlBb5XmXjqTYVmsLjcsItarzKG6+KyRkQ1dsBiR9qtpgRCARhElgmcYxkFJutvj6fdl9ra5vE80yNam7kFipV6Imu6Oe8pq6tn+awJXoikI4/3Cns34CsQCqHQXX1DVi0dLn8PRplwipdwlxsHXPabSjIzcIfH3g6Zg/Afq94+/a1S6ziKlktlRidwXoYRDgVT3axVRo1lxGDFnGMJjFG/X0t6Gt7XTwrp26SM2r1zEACJEACJEACKSBAgTQFEOMtQnmDtTmz0VUb7hAj3nLSld/f04qiohIJK2JCvz+Urmo026YOsS1VGxMJkEDqCFis4gE2dcVNeUlGkxnu7Gw89/wLWLO+ActXrUdbRw98gekRttQzWzlO2/naa2hpmTw813hYyuu2t+MQfBY3HO5ymJ3rRDBthSHUJvGKO8dnj+3YlINBU64IooWaR+/+1jfFF0FqzRZiawhzkQAJkAAJkEDyBCiQJs8w7hKUHaXf2y73pWqWPO4mTHpDQLxzZs+RGX2zMa0C6aSN4EUSIIGECQR8M1kcFcXWUFAcoQ0JaydO1qC1vQNFhflo7+xBr9ieT2VS2htqdVQ5TWtpCXdiFE87QoEeLeSTUVR+rfYCWTGthFHMD5RQahiU8Qp55SdBND/UNvLboJzWSR61mZwYMDhhEDvRgVC/tiLqb39d24+nHcxLAiRAAiRAAnojQIF0GkYkRwKoB/v1O5sd8nuhViiYSIAEZiaBQcPMdqBuFHV+ZXM+nJStuF9U+MuKRZATdf6Orl4xJ0jvhJ6qR62KBmRV9nhNrWh0pEZleCDYh/6eU9pmNNlgtuWIWYJLzBSKRdi0inmCEkDPeOeVkFkDA34ROv1Qz+VQoAUBn5hSyDkmEiABEiABEsgUApQ6pmEklUOfAZ07HQlJ+5TdJhMJkMDMI2A26z9s0WRUlWDm9Yav8qrjoydqJXxUAeYU52lCaU8aVkuV3bpHwrqoEFVNza2iKpw+T79KndfvbZwMBa+RAAmQAAmQQMYToEB6Zohzc3NlVdCE1gnsgxwOB5xOJ8bHnUvkG6Ic9gwMBBO5dcruUSpzTCRAAjOTgM3hwowO/CICaX8ELRK1Klrf2IzObjvyc3PEKVoulFDqFYdniYaQGh5htSKqwkl53Ha0d3Tj8LEaxvAchsNPEiABEiABEkgjgVkvkJaVleHX//cHFBQUor+vD3V1p/G9734bzz075NbfbDbjG9/6Nq66+hqZsfeiTQKh/+VHbkF9fV3Cw2KXl0WDBH7Xc6LKrp5Hh20jgckJBAJ+mCwOUfEMX2Wc/C79XDVZXWhrOzVhg1QMY694sHVKTNDc7CwJIZWnCaU+f1BT9VXqvbEku9hwKkFUhXNRK6Nd3T2yCitqsTHeH0sdzEMCJEACeiZgl1j2uVkWWCxGVJY5UVHqQGmhHer8gMSK7+gOoq6xHzV1XjS2+BAMDqC10yfX9Nwrtm2mEZj1AmlQQozccftXJK7cU9rYfeQvPoovfvmrIwLpNdduw9p167FpwxoJQ9CH2+/4ulz/Gv7uEx9LeKx9/X1iA6Rv9ANB2iglPMC8kQSmmYByvpPlyJqxAqndlYP2duX4bfI0JJgq8wIjsjwuOGSFszAvSztWsYrV831o5XTI/ECZZirBU8U2tYgXcWWnqspobmlDT684FWJKmkAqtYmSbgwLIAESiEjAZjUiL9uKFUuy8f+unoP5le6I+SKdDA0M4k87WvD7x0+jud2HplZfpGw8RwJxEdC3VBRXVxLL3NTUiKefenLkZrX/1dvvRGFhEZqbm3D1Ndvw0IMPaMKoyvSbX92HPz78uPbCo2aOEklq9cJg1LeNl8E4678aiQwt7yEBXRBobGpC9twyacvMs0+0OHLQ0yMhXnyxv+Ros/ji+Eg5P2KaHgLp0Caanp6wVhLIXAIOmxE5Ioh+9IZqXHxuYUIdNYl/ka2bCrWt1xvEz353Ei/takVD89R6QE+o8bxJtwQodYwbmou2XIy606fFVnQo1lxJaVmYwFpbWwubzYbcvDzN3tSZHf8ftEzaw2R1iFCqX/wmmxMWm4Q7kBAD0ZLF5pgRXnlNFhtiGa+BgRCMZovu+6TaGEt/xo+fr7cDoeCoB9Px13k8fQTsbmXLnvxzobM3gJzSeQj1ni2QGmR1UC/PHqPYilplVXNschTMxemWXu27rWxGTWbxPJsCJmPrSHTfbLFH/ZszW/Tz7IilvYmyGL4v4PNKLNRepEObaLgOfiZGwOpwwyzvGkwpIiDPI/VMUv9UMsg/5RHbMOwVO0XVpKOYQfHYnecO4tZ3V+DyC4pSVoXHY8bf3bpYNuCf/+cwdu2X8Fa+xH/DQqKd5+tNMD5zynrFgqaDQOLfmulobZrrXLhoET7/hS/h85/7e01vXlWXnZUVNlPv8w3NAGVnZWsCqRJy4k29vT3i6n9evLdNWX6jSb1Qqc0EkyF6/wxGecGdAWEmVDtjGS+DOHRS/dH7j4xqYyz9OeuLMwPG6qw2z5ITZqtdmwxJtrvKgrJbVFCdeWXwdTeHFaen77VStTWJADc2uaTNDQdflWekQ17+BkR4VgK0PsLYKGFetWuyZDAN6uZ5ONTecL6TtT2Ra8OTW+nQJkqkPbxnlECsv3mjd3BvLIFBeRdQduYGDCArJ1d8jRTDLe9+LteQeqvXK8JXdzdamxvFv0iL9pzqFzMAvUz4DffFYvRjxXwH7rht8fCptHx+4a8XYd/hbhFMj6Dda9Oe3fFWpJ758aT8ggL0ikZNfz9XZ+Phpse8FEjPjEpxcQnuvude/Pd//SceefjBkbHq7OyE1Spx4c4ku33oZaSzs0M7091SO3wp5s/2VvUSJi9bOvW0a7J74Otpg8/bhe6eoZXiyTpnziuQFTf925wGZSY/1vEKBXJ0v4oYCvhi7s9k48dr+iFgc2ZHFXhibW1DqxeL5y3E4LgQUwajaACIkKeHpFb5rUbPSFPsWUXoDxoQMtjh8NjlGXlGW0En2iRmmYB0eCafpDOZu7TJvJFOTeOOWl12eKJruSTTxJCYoPgkrHY0baJk6uC9iRFQK01cbYqPnZqwy8rOES24Aqw/90JUL1giMYJjm9RRwtSxwwexa8dLaBZzsO6ujpHFjfhakbrcyk70/dsq8B6xEx2ePEpd6WeXtLTajnv+eTk+dede7D/aJXb8iceL/tNLr6Kqam5YJf/wuU9rpnPlFRX48U9/LotGMkHgduGPD/wBt3/1S/SMHkZrZh1QIJXxqqisxL2/+j/88hf34Ec//M+wEVTedNUXfzipfWXbFIvDjeF7xn92d4k6gjz0zKISG1S/5DpLVgml4O1q1Vmr2BwSyHwCoZDMrgdTIyzWnKrBfLEjNcsEk9876iBorMrZtBMV9bexIbBM7iIcOHhsZIJrUNnpj1GRm+72qvaExFnSZGlQHH4oxnpI6gU53ZOFatJApWjaRHrgwTaklkCWaJAtWbwY5eXlEqWgGwP+Ps2/hnJ6Y7G7IR84fOQoDh8+nNqK01CaEkSzc/OwbPkabLnsmoRqUFpL8xct0zZVwPY/P4PdO7dPm2BalGfDJ2+Zj/PXFSTUn2Ru+revrMKd/3kAL4ttqc8f36rn2HpvufkmvPTin0ZOhUJDz5uvfu0OvPDcs/jWN++UFWsXHnnsKVx2+ZV44vFHR/JyZ2YRmPUC6fwFC0UYvR//9v3v4te/uves0VNf7k/e9hn8749+qKkE3HDj++UL/1jSs17ezhbYXPk6FUjz0dr0xlkseIIESCC9BDrqj6a0gh0SjXTponnwjtHkGCgqxEAwthn/lDYmQmH+/h5RLW7Trtg8xWg8dRT7dr4QltNfVSLPSX2Er+kX++uW2pNh7Rt/4CssQNCvD/UxtTrWcvLE+Cam5TiaNlFaKmWh00Zg8eJFWLbsHPS2nETrsR2izRDul0D9xVrsWVhQVYa5VRXYsfN1qO+IHpNbtAgWL1uBK659d0qbd97mS6G2F555FG/ueQ3dZzTrUlrJBIWpldHbPrwA563JnyBH+k9/5W+X4o7/OIAXX2tBMJTYJF1Q/F0EAuHfLYusWF962eW4/NKLtU709vbi4Yce1OzYKZCmf1zTVcOsF0jXb9iAUnFc9C/f+b62DYP+jx/8K7777X8W9d2HcNGWrdjx+l6xFZCXp55ufPiWDwxnS/izu60eRXPlYd5Wk3AZ6bjR5s4XlQd5AEQISp+O+lgmCZBA+gicPHkS8+dVw55div7O+vRVlGTJBoMJjvwqbH/l1SRL4u3TRSAd2kTT1ZdMqdfqzBLnhM6Ud2f50kWonpOH/qaDyDL44C5xwWU34+1TnQhIjMo18/PQ5w+hpz8oE041cOeU4tpt78CfXt6B9g4dCaWiQeCwWfC+D/4l8vLTt4p4yZXXY9OFl+E3v7xLPIH3aBpyKR+UMQU6rUH81XtLcOH62J0X9csqZnunHyUFdqXAd1bq7g2is8uP/FwxW7DHrsXzT59agdu+uQ+HT0mhkQoeV5MyRervGdXo+ejHPo7r3vFOHD9+DPf/+j6JT90mtryFMIu5R93pUZO507K/4dxzx5XGw5lEYNYLpCqMi9omSkFRz/r7T38Sbo8HbjFkb2hIzUudT9RblD6/zVN4ltORidoyFedt2SXobB79I5+KOlkHCZBA+gjs2fsGtly0GQGveFcO6GOlcXxvHfnVOF1XJ6G2wh0wjc/HY/0SSJc2kX57PLtaptTVneYgzllcjSvPr0Ku/xjM5blhEFbPywk7HnvQb2xF2TUbce//PQJvwIggpvf1Uzkqqp43D9e/N/kFhrH9nGjfKWqlH/7Yp/DEw7/H228fkPjIE+VM7rxhMIQt6z244sLYhdEvfnc3nt3egPwcm2j/DWLbpeX4xAeHHCB19QTxF//4Euoa+yTGsx0tHf245V0L8NEbF8Tc0O/943J86HOvo6Nvcodw4wu8795fiCp4v8SMNuPKq67BTR+4GddedTmUqrhKY0ODKadGyp6UaeYSmN4nwgzipjypqS2VqbP5FPKKq3QjkFpdeeKMw4ae9oZUdpNl6ZwAvdTpfICSbJ6aUT749iFUlVfD27A/ydJSf7vVIyq5Rgd27dqe+sJZ4pQRSJc20ZR1IAMr8otjQrUlm3LdViypyMK2TfOxdO0F6KjZi6AhIGq6sZdsG2jB2tJsrPzbK/Hi9p14ZMdptPX40ecbsgmMvaTkc9rEOeXqdZtwyZXXaQsDyZcYewmXXXUdnA4Hdmx/AX3e1PsQKSu242/ev1Q03Sa3dR/b4gvW5eELf71U2mVGbX0vbvi7P+HKC4pRXekWe/gA/vJ983DJeSViH2zAgSMduPkzL2LbJSUoyg8P2TW2zLH7asH1UzdX4hv/fRAdXeHqt2Pzjd8f69Pl7p/+GH+WFfYLLtyMvXt2a1mVw9FhodRut4tK+JCz0fHl8HhmEKBAOo3j1NvRBE9usYRmqIC37dQ0tmSoalfhPLTXH5/2drABU0OAXuqmhrMeajlw4ACyRMsjO1+Fm0rtxFoy/VOTYJbs+XjmmWd14wgomf7M5nvTpU00m5lOd9/dooa7YI4H79tcBbvViNySSlH9bxQb6cQEqd6WEyhYcB7OqS7QBNz9NV343Ys1UHGTB6bIEZjFYsWa9Zuw9Yrrpg3v+Vsu0zz3vvT8k+KbJHVaKzlZFnzp40vi7tdVF80Zuae81IXqCjde3dusCaRupwWXXVA6ct0kQqnbaUaWKz7xYd2KXKxbnotnXm4aKSueHfV8aWtthUd+x1pamjW70jnlFTh29IhWjHqfaWjgYko8TPWWVx/B3fRGZQrb0yYCoKtgrmb8P4XVnlWVW4RRFealp6PxrGs8kZkEhr3UnXfuWpy3cS02b75I81KXmb1lr3bs3AkxEoCaeNJDsjpzkFW2DK+I3ahenZ3ogdNMa4PSJEqVactM63smtVetit56+Tx86FKxQRdhVCVXTiH6uxJ/6R8UddL+LpmIzxsScJZVZuErNy3H+csK4LLFbpeYKGcVz3jxspVxCaPKY3ZnezuC4xzrjG1Dr3znJ7s+Nu/w/sbzt2Dl2nM1W8jhc8l+Ll+UjaULhtRZEy2rTVRyD5/owjmLwtWv1crpD352AP/yo334yidXwS6TFfGmT4uTpeICW0y3VVZWif+Wi8XsdMigdfNFW7Bg4SK8+sp2TRh99pmncOONN2llKS+72667Ho89+khMZTOTPgnE/43SZz9mbKuUl8mWU28jp3gBOmvfxIA4FJrqZM8qgUVWKmoP7pjqqlnfNBGgl7ppAj+N1aoXqz+/+BIuXf0euAvmo6c5tR594+ma8jDuKVuKPQ89hDqxHWUiARLQBwGllllR6MRt1w/ZEI5tldlsTzoygLJltznzxhaLd19QgcXlWbJaegodvemLaZ6XX4jr3jMkxIQ1YIKD3a+9ggd/e684hrJp4Z4qq+fjvTfcCpes0qnU0daCe378n2Ln2Ceqo/1YtXYj3iHlDwtRExQ7cvrSq96B06dOaNvIyQR3csWr7sdurE7w7qHbgmLY+sXv7MFWUc9dsTjcPrjbG0Bbpw++wABO1ia2Qq5Ugs9dlYcHn6mP2k6lgvu9f/2BhHRxo7OjA06XE5//3GdQU3NSu/frd9yOu+/5pSaIerI8mgPSp558PGq5zKBfAhRIkxwbV25J3CWYrYNiqzkadqG3sxlWuwvZc5ajQ4TSqUw2TwGySpag/uguGIwmGDA6S2mVOGIuUW+Jlizy4DCJxzO9J5PVgVjGa0BsL4wSUN5k0vefh2pjLP0ZPy793cpLXQG91I0HMwuOldrTobdeQ/XWC7XVyZ6Gw+LEYmonwZy5c+AUj7pNJ94M85I4C/CziySgawIWk0ETDD9y5fyI7QwFkw9npOLiWuW3a3w6pyob2S4L7nn6OFq7fOMvJ33syc7B+2/5WFzl5OTk4hOf+RIKikoQ8Pvx8x//B1556XlcKnagKj3ywP1YvHQ5rrruvfBLfPr/+N6d2L9vD85ZsSbmem64+a/wk//+nqzCJhf7vazIjjkl8TkNGttIFT/56//xBoLiJfn221aNvaTtL52fI+dXo9cbxLUfeRobVuWfJbSedVOEE7e+p0pik7ahpX3yMT506G1sXLcKhYVFshprR23tqbBwi0owvXTrZpSUlGrRL3p7xHsx04wmoO837hmA1n1G9SSeppqtbSLwhAtwna2nYbY5kFu5Gl11+8VZQPoN/e1ZRfCULELjyX3ysO0/q01WhwcGa/hMZqR+Wgb9YQJ2pDx6OGex2hHLeAUD/ZqAPX6M9NCHsW0wyY96LP0Ze4/aD8iqPL3Ujacye44HJLB4owiDeWXzkVu1RlZKj8HX05J2AGoSzlU0X54zdtQd2Q2/eBpnIgES0AcBo6hGLq7IxkeuSLdK/+CEK4jlBU78hQjDdz12BO3i8ChVyWQyYfXaTfBkhauhRiu/esHoKrFFHOgsWLQMB/e/oQmkymnQAdn/1D/crhVjlVXUlWvWY9/e1+MSSG0ibF148RV48uHfnhVvM1r7hq+bzQbcuK18+DDuz5CsjN7+73vR3CpC9e0bYbdNLBq4xH40L8eOhqa+hATSnCyrhI6xRBVIVSeUVk9T0+RmZDQPiHu4dXvDxN863TZZXw3rkXii8aZg/qAEpj97VaK55gDySufJysVy9DQdFsEhfS9sztxycaZULi+GuyTmU2TPZOqFsbdn8lks1XeXwz4tqsbxcldCd09b9LASaoU0FCyLOEbx1pnO/GqmOZb+jG9DKOBHV9eQ50V6qRtPZ/Yct9Ud1f7288sWwOLMRV/7KQkLk/wKSCSCjpwyed5UQsVfbqvfFykLz5EACUwjAaWmG00YNYzR7Bpu6ov7GnBOVR5yPaOrni+/1YiuCKq3F64oRb7bIqtwZ7//DJdXkmvHzWK3es/TxzRnR8Pnk/l0S5iQC7dekUwR2r2H334L5ZVDarHKVjokGic5ufkj5ar9E0cPjxzHurNyzQZs//PTaBNnPYmkQokNesG6gkRu1cK8fPrrr8FmMeIHX9sAq3VUS04VeOBoB/r6QlhzTr4WRvTFHaDF4QAAFQdJREFU1xrR0Nx3lo1pPJVfvaUUh44dxmA8NzFvxhOgQJrkEPe2x2/gH/RkTyjAtdS+DU9+GQorVohQegze9tokWxh+u8kiaqtF82TmyYhTB18Vb3kTe3hT9q29McxSWg0FU+46PbxXsR2FpK+xjtdAUPokgqme04AIpLH2Z3w/6KVuPJHZeeztakVfdztySuYif95G8fZ9WrxoNiTsRXM8RXtWMRwy+eX3eWVVdh/6eyNPfo2/j8ckQAJTR0A5MPrEdaOrgRPVrDS31DuEimd8sKYTx+u7UNvcg4Vl4fEf5xZ74A+OankFQ4N4YW+dCCCDMDuyompHzC12YeuqEjy287RmszhRe2I5bxRHRhvPvziWrJPmeemFp9Eocejf/6G/0vL193u1T7NlVNvNIppvfX1D5yctLMLFiy/fhod++8uEVkk97sRf5fv6Q3j59SHPt+e/97GRllXNceN3/32xeAEOQcUp7esLwiMq1SpMz1c+uQJlxc6RvPHuXLyxAL/4w0m0dqRuFTzeNjC//ggk/i3WX18ypkXdrXVDKxelSqVunbZyoTzTJZOMJiscsiLqkq217gg6m2qSKY73znACAfEYOOyl7pvfuEMcBwx5qfvWN+6c4T1j8+MlMCjBBNvrZTVCngk5RVXILl+hCaT+nlaJYdiBkD/2FyyDwag5SLPKiqvdIx455f6W04dF6G2Lt1nMTwIkMAUEnKKeecNFlTCHL4xFrNnb1QJl6tPbehIF2WICI05qWjplUnvIEerIPWWiejs27T7cgsoiNzwOC+zuArQf2zv2csT9i5YXYr8IvYdqh7R5ImaK4WSW2IGuP3dzDDknzvLWm7vx7JMP4yMf/7Q4NBryYmu3D/UxGAhKCJehV+mArPw6HK6JC5rkyuKlK/Cs24OO9viflcpRUKJJqeC+9uC2CW9XK6OP3X0Z2jv7oYTX0iKnFo90whtiuJDlschK7JDn5hiyM8ssIUCBVKcDHZAVhQax83Jm5YsH3rlarNL+rmb4xdYrGOsLorwcWp3ZsMmLoSO7BJ3Np1Czf/ukq6I6xcFmpYEAvdSlAeoMLlKpqrfVH9U2Z1YBnNkFyJE4byopu+OgrxeDQZ9oVwxo59SnwSCO0ESNz2xzyubStv6edvR2tqBFQloFRU2eiQRIQL8EqmQ1cpF4uI0ldbfWo2zRBvSJFkWBtihqiyqc9MuK2hvH23D9efIeI9oSPjEF8vfH5qX11suq8Z3fHkjKnnRO+dxYujZhnjd278RDv/+1JozOKa8ayecWT7tms1kEyBbN6ZG60N7agqyc+OxURwqUnaXL14jq7jNjT0XdF6fIWLMs8TqjViAZVOQVZTeaypQtQml9E38fUsl0ppdFgVTnI6hU6tRmc2aJA5sSZM05R1psQFDsS4O+HgzKS6QKFaM85KoXRKPRDOVN1iQvhyrOn8/biZ72JjTWHJJ8+lZB1flQZFzz6KUu44Y0ZR1SKyFqU66OLOIB3CIO12zi5MxkccmzRia65Pmi1P0HRIUvJKsC/Z1t8pJ5SotlnLJGsCASIIG0EshxWfH+LaNCVrTKlCDZ1VwDT5GEqat7K1p27fouWR2tFhXeouIiiYE8N67wcnaxZ1xRnYM/vZmYhpjVZse5F2yJqZ2RMu14+QU8//Rj+OgnPosi8eY6Nikv/EskpunOV1/E1We87L65+zVc9Y73jM0W1/7aDefjjV2vorc3do+xSl23six8RTquSqcp89xyJw4eTZ+flGnqFqtNggAF0iTgTeWtPm+X9rKnHIObReC0u7K1l0SzvCCaRQ3GbLFrDkkCfp/YZ/TBL7N2/b1vTIm33qnkwLpST4Be6lLPNJNKDMhLqNq8surJRAIkkDkE5pd5NLXbeHrUJur9xXOXI6t0CbrqD056a2dvQFRuO3HTNesk/zI0nzwApf0VT3rneeWywtqBjhj8WYwv1+Fworg0ce+z+97YjXaJNfqv//yVsKJv+/ztKJFyr77+/+Geu34AJYj2i+3oitXrsSyOkC9hhcqBUi82izdfxLaArN1utZhk9XLUodT4MvV6nC9xU5lIYCwBCqRjacyQfbUy0TOJM6IZ0g02kwRIgARIgARIYBoIKHvOK9eVJFSzclBWUL5I83Fh80zsqGzXkQ6sW7sGZfNWoKlmf8KTWvNLPXj9cPxxOpVAmkz6yF9/atLb8/IL8el/vBNdne2w2UWLRFZkk035+UUSkzR2O1Kj0tmdgckj3paZSGAsAQqkY2lwnwRIgARIgARIgAQynIBDnMoUZNkS7mVL7SHNznzAXoTcuYvgsfk077sGifkp4SPR1mdGX3Yxzqm2ax79Q4HoIeQmasyVa0twoKYDXrFHjScVl82JJ3vCebOycxO+d/yNcyqqcOzI5CvPY+/x+eNjMvbe6dwPBIZ8EUxnG1i3vghQINXXeLA1JEACJEACJEACJJBWAusWjsbPTKSinz5+EIdOdaCt24cdr+1EWUkxPv+BTbAabZpa7k9+/2cUu4LwFpclUnzYPQXZNih70ngF0pKSqRFIwxqb5IFSMTaIF6FBJdXHkFzOGNwjx1DOVGcpyKXK7lQz13t9FEj1PkJsHwmQAAmQAAmQAAmkiIDTZsL6RckJpLdeuQQSVjQstdcfGTn+4OYimFIY2WNOvlOE3/jiVuYVFI20Z6bs5OTmifdei8Qjja+vM6V/bCcJTEQghY+LiarIjPMOhwP5+ck9wDODBHtBAiRAAiRAAskRMIq3ZpOod0ZK6lppaZl4jY/8isLf40jUYj/ntJuRm6QNnzJdVMMzdhvbglQKo6rcldXxqcUa5btldyZnQzq2P1O1rzwDmyScDBMJzDYCkZ/2s43CJP1Vcab+5Tvfxys7d+Phx57CI7KpH0omEiABEiABEiCBxAh87Z/uxFdvv+Osm6/d9g7sfmM/fnX/77Br735cceVVI3n4ezyCIqkdkwosOcNSVbFTU9uNtdlGicPu6595cS4DErt5Bg5PrMPCfCQwIQEKpBOiGbpwzbXbsHbdemzasAbnbVyLnTtfxRe//LUod/EyCZAACZAACZDAeAKXXX4Fdry+F7fc+hfjL8HlduM73/s33PLB9+Pizefho39xC/713/4TakVUJf4en4UsoRO57plnv5fjssEhdqSxJoMs4dqT9LIba12pzGex2rV48qksk2WRwEwgQIE0yihdfc02PPTgA+iT2J4q/eZX9+HKq66eUJUoSnG8TAIkQAIkQAKzlsDTTz2JjetW4cd3/c9Zjlu2br0Up07VYM+e3RqfnTteRVNTIzZftEU75u9xar42bgn5MtOSWWRRrhzOtFFje0kgdgJUVI/CqkTUc9UP6HCqra2VWFM25OblobWlBcXz1wxfivmzoe0YTrbq21X3E7sa4Mgugq24MGq/DMEe/PH3v8HG8zZHzTudGXq8vpjGKxjox7fuOonCopzpbG7Uur9796mY+jO+oPa6w/D39Yw/zWMdEMgvXwKzbWg1KF3N+c1LbyM/Nztdxcdc7o5DbTA7c1CcJ85RJkiDAyG8LlopS1asmyDH1J0+efwogoOGqH9zew8dwVvH9OGQ5Hj9YNT2Jkuwp60eve0NyRaj3V9SUoK607VhZZ0+fRrqd1ilaL/HYTfyAJ6CcgnNcvZv+N6at3GBzt9Bxg+fel44swpgKSoefyni8aD8jt9/7914700fjnhdrycf/v2vkFVYDndxbCF5rGjGHT88jvdcNbM8Cn//ntqIzyZfbyc6Go7pdXjYrjQSoEAaBW52VhZ8vtH4WT7fkE1Cdla2JpBGuT3iZWvePPx6T8RL+jlplBcAe2zNGTS70Sre7x578pnYbpimXGZ3QUw1my125JUvxtfvGR33mG6c4kyqjUwkEC8B9b3Rx/NH/h6jPGMMRpP2t6iXZ4vBHt2xirNwgW6eHaas6ni/HgnnX7RoMbZcvDXi/Z1dXbj/1/dFvDb2ZHZ2DvrH2f2p31/1O6xSOn6Px9Y/W/b18wyIh3j058XY0gzyO+4qqNT9e8nYNqt9k7sI8UTo9KIQBxqhm2fO+P5MdMz3l4nIzN7zFEijjH1nZyes1lF7C7t9aPWis7NDu7Px6JBqUZRieJkESIAEohJorY09IHrUwpiBBKaQgM1uR0HB2atxqgmxeg1Vv6s28TI6NtmlXPU7rFK03+Ox93Ef6G6p1TayIAESIAG9E6BAGmWE6uvrUF5RMZJL7asZ2/b29pFz3CEBEiABEiCB2UzgzTf2Qm3JpPr6eswpLw8rQv3mqt9hlfh7HIaGByRAAiSQMQTo1CjKUD7x+KO4/vp3Qc3SqnTDje/HE48/hoGBeJQqolTCyyRAAiRAAiQwywk8//yzqKyswuo1azUSG8/dpK26vvjnP2nH/D2e5V8Qdp8ESCBjCXCFNMrQPvLwQ7hoy1bNTX1Pdw+6e7rx4Vs+EOUuXiYBEiABEiABEhhP4Jprr4OKQerxDNmFKs+5X/3yF7SJ3t6eHnz+c5/Gvffdj+bmJuQXFOCzn7ltxMs9f4/H0+QxCZAACWQGAUNubu5gZnQlvb1wezxwu9xoaKhPb0UsnQRIgARIgARmMQGz2YzSsjLxuHsaodDZHun5ezyLvxzsOgmQQEYSoECakcPKTpEACZAACZAACZAACZAACZCA/gnQhlT/Y8QWkgAJkAAJkAAJkAAJkAAJkEBGEqBAmpHDyk6RAAmQAAmQAAmQAAmQAAmQgP4JUCDV/xixhSRAAiRAAiRAAiRAAiRAAiSQkQQokGbksLJTJEACJEACJEACJEACJEACJKB/AhRI9T9GbCEJkAAJkAAJkAAJkAAJkAAJZCQBCqQZOazsFAmQAAmQAAmQAAmQAAmQAAnonwAFUv2PEVtIAiRAAiRAAiRAAiRAAiRAAhlJgAJpRg4rO0UCJEACJEACJEACJEACJEAC+idAgVT/Y8QWkgAJkAAJkAAJkAAJkAAJkEBGEqBAmpHDyk6RAAmQAAmQAAmQAAmQAAmQgP4JUCDV/xixhSRAAiRAAiRAAiRAAiRAAiSQkQQokGbksLJTJEACJEACJEACJEACJEACJKB/AhRI9T9GbCEJkAAJkAAJkAAJkAAJkAAJZCQBCqQZOazsFAmQAAmQAAmQAAmQAAmQAAnonwAFUv2PEVtIAiRAAiRAAiRAAiRAAiRAAhlJgAJpRg4rO0UCJEACJEACJEACJEACJEAC+idAgVT/Y8QWkgAJkAAJkAAJkAAJkAAJkEBGEqBAmpHDyk6RAAmQAAmQAAmQAAmQAAmQgP4JUCDV/xixhSRAAiRAAiRAAiRAAiRAAiSQkQQokGbksLJTJEACJEACJEACJEACJEACJKB/AhRI9T9GbCEJkAAJkAAJkAAJkAAJkAAJZCQBCqQZOazsFAmQAAmQAAmQAAmQAAmQAAnonwAFUv2PEVtIAiRAAiRAAiRAAiRAAiRAAhlJgAJpRg4rO0UCJEACJEACJEACJEACJEAC+idAgVT/Y8QWkgAJkAAJkAAJkAAJkAAJkEBGEqBAmpHDyk6RAAmQAAmQAAmQAAmQAAmQgP4JUCDV/xixhSRAAiRAAiRAAiRAAiRAAiSQkQQokGbksLJTJEACJEACJEACJEACJEACJKB/AhRI9T9GbCEJkAAJkAAJkAAJkAAJkAAJZCQBCqQZOazsFAmQAAmQAAmQAAmQAAmQAAnonwAFUv2PEVtIAiRAAiRAAiRAAiRAAiRAAhlJgAJpRg4rO0UCJEACJEACJEACJEACJEAC+idAgVT/Y8QWkgAJkAAJkAAJkAAJkAAJkEBGEqBAmpHDyk6RAAmQAAmQAAmQAAmQAAmQgP4JUCDV/xixhSRAAiRAAiRAAiRAAiRAAiSQkQQokGbksLJTJEACJEACJEACJEACJEACJKB/AhRI9T9GbCEJkAAJkAAJkAAJkAAJkAAJZCQBCqQZOazsFAmQAAmQAAmQAAmQAAmQAAnonwAFUv2PEVtIAiRAAiRAAiRAAiRAAiRAAhlJgAJpRg4rO0UCJEACJEACJEACJEACJEAC+idAgVT/Y8QWkgAJkAAJkAAJkAAJkAAJkEBGEqBAmpHDyk6RAAmQAAmQAAmQAAmQAAmQgP4JUCDV/xixhSRAAiRAAiRAAiRAAiRAAiSQkQQokGbksLJTJEACJEACJEACJEACJEACJKB/AhRI9T9GbCEJkAAJkAAJkAAJkAAJkAAJZCQBCqQZOazsFAmQAAmQAAmQAAmQAAmQAAnonwAFUv2PEVtIAiRAAiRAAiRAAiRAAiRAAhlJgAJpRg4rO0UCJEACJEACJEACJEACJEAC+idAgVT/Y8QWkgAJkAAJkAAJkAAJkAAJkEBGEqBAmpHDyk6RAAmQAAmQAAmQAAmQAAmQgP4JUCDV/xixhSRAAiRAAiRAAiRAAiRAAiSQkQQokGbksLJTJEACJEACJEACJEACJEACJKB/AhRI9T9GbCEJkAAJkAAJkAAJkAAJkAAJZCQBCqQZOazsFAmQAAmQAAmQAAmQAAmQAAnonwAFUv2PEVtIAiRAAiRAAiRAAiRAAiRAAhlJgAJpRg4rO0UCJEACJEACJEACJEACJEAC+idAgVT/Y8QWkgAJkAAJkAAJkAAJkAAJkEBGEqBAmpHDyk6RAAmQAAmQAAmQAAmQAAmQgP4JUCDV/xixhSRAAiRAAiRAAiRAAiRAAiSQkQQokGbksLJTJEACJEACJEACJEACJEACJKB/AhRI9T9GbCEJkAAJkAAJkAAJkAAJkAAJZCQBCqQZOazsFAmQAAmQAAmQAAmQAAmQAAnonwAFUv2PEVtIAiRAAiRAAiRAAiRAAiRAAhlJgAJpRg4rO0UCJEACJEACJEACJEACJEAC+idAgVT/Y8QWkgAJkAAJkAAJkAAJkAAJkEBGEqBAmpHDyk6RAAmQAAmQAAmQAAmQAAmQgP4JUCDV/xixhSRAAiRAAiRAAiRAAiRAAiSQkQQokGbksLJTJEACJEACJEACJEACJEACJKB/AhRI9T9GbCEJkAAJkAAJkAAJkAAJkAAJZCQBCqQZOazsFAmQAAmQAAmQAAmQAAmQAAnonwAFUv2PEVtIAiRAAiRAAiRAAiRAAiRAAhlJgAJpRg4rO0UCJEACJEACJEACJEACJEAC+idAgVT/Y8QWkgAJkAAJkAAJkAAJkAAJkEBGEvj/W/N771xRglMAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6QAAAGQCAYAAAC5y61PAAAAAXNSR0IArs4c6QAAAERlWElmTU0AKgAAAAgAAYdpAAQAAAABAAAAGgAAAAAAA6ABAAMAAAABAAEAAKACAAQAAAABAAADpKADAAQAAAABAAABkAAAAABUH4gHAABAAElEQVR4AeydBXhURxeGD5AECcHdXYsUikNxr+BQoLhToHiRQuGnOBSKl+Lu7lbc3d2teAiSkIR/vgl3u1k22d0Q5zvPk+yVuTNz3zt7d86cM2eixI8f/71QSIAESIAESIAESIAESIAESIAESCCUCUQN5fJYHAmQAAmQAAmQAAmQAAmQAAmQAAloAlRI2RBIgARIgARIgARIgARIgARIgATChAAV0jDBzkJJgARIgARIgARIgARIgARIgASokLINkAAJkAAJkAAJkAAJkAAJkAAJhAkBKqRhgp2FkgAJkAAJkAAJkAAJkAAJkAAJUCFlGyABEiABEiABEiABEiABEiABEggTAlRIwwQ7CyUBEiABEiABEiABEiABEiABEqBCyjZAAiRAAiRAAiRAAiRAAiRAAiQQJgSokIYJdhZKAiRAAiRAAiRAAiRAAiRAAiRAhZRtgARIgARIgARIgARIgARIgARIIEwIUCENE+wslARIgARIgARIgARIgARIgARIgAop2wAJkAAJkAAJkAAJkAAJkAAJkECYEKBCGibYWSgJkAAJkAAJkAAJkAAJkAAJkAAVUrYBEiABEiABEiABEiABEiABEiCBMCFAhTRMsLNQEiABEiABEiABEiABEiABEiABKqRsAyRAAiRAAiRAAiRAAiRAAiRAAmFCgAppmGBnoSRAAiRAAiRAAiRAAiRAAiRAAlRI2QZIgARIgARIgARIgARIgARIgATChAAV0jDBzkJJgARIgARIgARIgARIgARIgASokLINkAAJkAAJkAAJkAAJkAAJkAAJhAkBKqRhgp2FkgAJkAAJkAAJkAAJkAAJkAAJUCFlGyABEiABEiABEiABEiABEiABEggTAlRIwwQ7CyUBEiABEiABEiABEiABEiABEqBCyjZAAiRAAiRAAiRAAiRAAiRAAiQQJgSokIYJdhZKAiRAAiRAAiRAAiRAAiRAAiRAhZRtgARIgARIgARIgARIgARIgARIIEwIUCENE+wslARIgARIgARIgARIgARIgARIgAop2wAJkAAJkAAJkAAJkAAJkAAJkECYEKBCGibYWSgJkAAJkAAJkAAJkAAJkAAJkAAVUrYBEiABEiABEiABEiABEiABEiCBMCFAhTRMsLNQEiABEiABEiABEiABEiABEiABKqRsAyRAAiRAAiRAAiRAAiRAAiRAAmFCgAppmGBnoSRAAiRAAiRAAiRAAiRAAiRAAlRI2QZIgARIgARIgARIgARIgARIgATChAAV0jDBzkJJgARIgARIgARIgARIgARIgASokLINkAAJkAAJkAAJkAAJkAAJkAAJhAkBpzApNRgLLVe+gri5xQkwx/379sqDB/cDPB8RTpSvUFFix3aTs2dOy6VLFyNClYO1jg1/bCxduvWUyhXKyMOHD4IlbycnZ2nStJncvn1LNm3cECx5MhPHCTRu2lw6/dxVypf9Wp48fux4Brzikwm0afeTtGrdTkoUKyivPDw+Ob/gzCBNmrTydclSkjp1GnGJHl1u3Lgua1atkKdPn35UjLOzs5QpW15y58kjb9++lRPHj8nuXTutpivxdUnJnj2nJEueXJ48eSxHjxy2mtby4pxf5JIsWbLK5s0bHWZlb/1QJn7TatSqLZkyZRZvb2+5eOG8rFyxTN+XZZ3s3f++WnW5fPmynDt7xuolVap+K9EVY2tyQZV//txZa6d4jARIgARIgAQ+mUCEV0h79f5VMmXOEiCI5k1/DHOFtEHDRvJL775SSSlUd+/cCbCu1k4kT55C/vp7pkSNGlV27twhjRrUs5YsUh+LGTOmJEyYUDNw9EYDYh89uov82n+g/LNjGxVSR6EGY3rTs40S8s4ae/cfkR3qefft3TMY7yDiZxUrZiz9/YoSJYrDNxPQ98vhjKxcUKlyVZkydbo+8/jRI4kaLZokSJBAevToJe3atpKd/2w3XQUFbuq0mVKkaDG5efOG4J66df9FFi6YJ71/6S4+Pj6mtGs3bJFs2bLLu3fv5P79e5IqVWr9btm+bYu0atFUHzclNtuAMrp46Uo1OBhbSn9dVK45oLw7Ur/ChYvKlL+ni7Ozi+zbu0fixI0jjRs3VYNyPeTH+nXl4sULZrWybzNPnrwy5s+JMnL40AAV0kGDh+l2YC3H8ePGUCG1BobHSIAESIAEgoVAhFdIQQGjt/Xr1rQKxN3d3erx0Dzo4uIiceLEDZJC9X31GoKOIqx4sAYnTpxEHj36NzSrH6HLCoj969evpUTRgvLmzZsIfX+svP0E3OK4SaxYsey/gCltEgjo+2XzQjsS3L93V7p27ig7tm9VVswn+j2YPUdOpRSukPETJ8uXuXMq6+E7nVO3Hj0lW/Yc8v03leTEieP6WOUq38jEyVPl+LGjWjE1ilyklNRj6tjpUye1ogplsXuPXwTW+qbNW8pfkycaSU2fqVKnllmz52trKhRSR8Xe+sFzA8row4cPpdq3lQXvKQgsxes3bZWRo8fKt1Ur2l08BkIrVKgk6dKlt+v3B6y7/Nzho/z5nvwICQ+QAAmQAAkEI4GQN0sEY2UDyspbjXSjw2LtD6PgGDWfO3+xFCpU5KMsMmTMpM+VLVfedC5GjBjS59ffZMv2XXLu4jVZv3Gr1Puhgem8sTF95lxppjowyHfOvEVy+twl2bnngPzYqImRRL6vVkMaqdFtyB9jxuuyUBfUyR6pUbO2wO14/J9/SDRlIaimFNSAJF/+r+Tv6bNl34Gjsmf/YWVZnSGlSpc1JUfnEVaDVWs3yrETZ2X1uk3SpWsPSZgokU5Tp159XT90iswFI/aoc6bMmU2Hv/n2e30sRcqU2tK4a+9BOXjkhPw+ZLjgelgyhg4fpetx4vQF+WPseHE168ghDfJEmZYyfORo6fFLb8vD/vazZs0m02bMkX9279fc9x86JrPnLZSixYqb0gXG/v3797re5jzR2Rs2YrTpevON7j17yYRJf+lOsXEcXOYtWCK4P9w7Or/JkiU3Tgf6mTZtOmWxmCDgdvzUeVmjngXKgCXYXGw9U3Ae9cefmvPJMxd0fXCNpRhtFRbJlq3ayOS/pun7N9LZ0+Zhpf+hfkNZuWaDvmfUfeq0WWL+3THyc/QzXvx48r/fh+rvz7GT5+TP8ZP8ueKPGDVGRoz8w2q2PXv1kXETplg9ZxycNXeBxHaNLXDVRLvDH/I0F3ueZ6fOXfX35vCxU3Lq7EXZun23fm5QaszF4F2seAlZuHi5bqNLl6+W4iW+1sngHrl42Uo5e+Gqfs+UKVvO/HKtPIQE69hubjJk2EjB9+XM+cuyYNEyyZsvn7+ysWPPfQb2/TIytIepkdby8+TJE7J0ySL9Xsc5fGfhbrpu7Ro9wJdSvXsgeK/UqVtftig3WkMZxfEN69fKmdOnpFmLVtg1yfRpU7U7r2E1ffnSXSZOGKfP51AKr6XEixdPZs9ZILt375TZM/0stpZpAtt3pH74fqIt3bh+zaSMIu9bt27KpYsXtdtyYGVZnhs6eJCUKVVciit3bHvEy+uddoeGS7T5HxVSe+gxDQmQAAmQQFAJRAqF1NbNnzl9WgoULCQN1FxES6ldp64UVcrhqZMn9Sl0zKGwNWveQq5dvaIUwTHaVQyKSqs27fxdjs5m+586yfxFSwQdiS2bN+k5OHB9wrwnCOYyGT/m6Pg8f/5M/0FRtiU5cn4hULzQKTulRvMvX7okUFCtSa3adQUd3vTp08u6dWuUq9duyZUrj1KwRunkqB8U0HbtO8itmzdl8eIF8uL5c+nQqbOUL+834o5r0WGPGtW/616ixIn1cfNONywGSLt6zUapUvUbOXb0iNy+dUsw33PqtBmyaes/UrJkaTly+JDmiHo3VRYIQ1AGrkeZlpI/fwH5Ilduy8P+9tOp677Ml19ZOU7JnNkzZeOG9ZIxgxpcUAMDOA6xxR7Ka+Ys/7l7Y34qBh4wSGEuuO+WrdrKUzXogU4xBLznL1oqadKmlRnTp8qe3bv0/LU16zf5U7zN8zG2kyRJKitWr5fCRYpq68+8ObNU5++JtG3XQfLk/dJIpssI7JnGjx9f1qnBkoqVKsvmTRtVPf4WPKslStGxVHDQVqEEbdi8Xfr2G6AHRNDuIfa2eQxeYJDhmarr9Gl/6YESdOB/7tzNVOegbixbsUbKqvl/J5V1C/PloOxggMGQ+/fu6cGL7MoKZi4YTGnVuq1Nt/wXz1+Ir3p2Xp5epu/gy5cvTVnZ+zwrVqwsGADbuH6dzJ41Q65du6LfAWPH+beqGe+GWUqRgWzbukVPLZjy13Q9sDFuwiTx9fGVrVs2SZIkSdSxqXogx6hQSLDGc16tBhPqqkGgU0rZWzBvrngot9MiRT4eHLPnPm19v+xlatyzvZ/4jvioeZXGfPLUyuUWlu8zao69pZxWCmlmNaUDg3mBifG9u3vX/5QKzKnEwNejx4+kR7fOgWUR4DlH6offiMOHD0q5chX0YKfhRp0iRQr9TkS7C2nBwKUtXiFdB+ZPAiRAAiTweRGIFC67WbNll937Dll9cr/06Cp79+zWo+Vw4YKFwONDRxQWn2rVa8r27dtMbrAtVecWSmCl8qW1KzAynTjhT4GFpUPHn2XWjGni6elpKgsdiMaN6uuReBxMnjyF7D1wRKrXqCW7dv6jXG3XCzoTmH/U79feWmkzXWxjA0ocXLYw0g9ZtnSxnouaTd0v3JQNwQh+v98G6o4M5pga9UNnqq5SsCBQdtCZb/xjfT1v0rgWc4tixIhp7Dr8uWD+XBk7ZpQOvIGLYfVBYJGRI4bKxPF/apc4dKqgcBQvUVLGjxvrcBnWLgDbAvly+ZsbNm7saGX5OS41FHu46TnKfsmihfJTh5+V0l9Lz7Uyyq36jV+wj4UL5+tDcL+GUof827VpaVJSoRivUh3+xo2b6TZjXG/5+c2332lLaJ2a1eTgwf2m01COvd956317nmk7NRgCi2yVimXl/Plz+rrJE8drC2Y/NT8WjBAQxZB8SlGfoJ4JFCm4fRuWcHvbfKMmTbUS2rRxQyNLnQcGFj5VYKGaOmWS6XnC1RBtFoMGmEe3cOE8PXhSr34D6f9rH1NxtevUU51nJ4FSH5h0/KmN8ha4qHlbuiQ68jxr16r2UTCbPn3768EqWKvNg+3g3dCwfh3Ts8G9wCKZRb1fKlcoawpQhsEreFjkV5Ztoz2EBOsWLVtLRhUkp2XzxnoAw+AF5RcWUXOx5z4D+345wtS8XFvb8NLAe2y9GnSDQgzBIAzEeK/rnQ//EKQJ7/n46tlgHmpA8t331fSpVSuWm5LgunETJmtvj2rfVQ1wbqnpggA2HK0f3ilT/54p/QcMEszRXbRogdRXngkYmPxTveNCUjC4dfnabfH19dXviLVrVmvvHPN2HZLlM28SIAESIIHPk0CksJC+efNau3LBncvy7+WHOaSLlDIBCwGUC0NgoUqRIqUsXuSnaOA4rAcIHmSu8OH4JmWBQycLrpbmsk+508ItzBAEybh+7aqkTJXKOBSkT+2eq6xEUEaNeUQrli/VHQVLK2kFZbWJGzeejBk90qSMolAopoaLGTru6OwiiI+5wC3O6ASbH7d3G8qNudKDaJWQ2TNnmJQLWBVxPP9XBVSgDv/uwPaWY5kOVmfD5Q7PBJ19WKVevHgu6dJnsExu1z4ieIJFzZp1/Lnm1qxVR0c4RpRjCKIewzo5Rc01MyymOA7rHqw2uXIHbt01LObpMvi3DsMCfl256kHseaboRO9SbdVQRnEdOukYNEmfIaPkVBZ2c1miOrSjRg4zDb4Y8+/safMYVEC9EyRM6M+VFnlg3tmnyrIli03PE3nNmuHnGonnCrl3964giA0GeswjgcKijUiqeHZBFUeeJxQcCCxyeb/Mp92V8V6BWLY7vBvMnw28BSB79+wyKaPYN44XKeZnqQwp1mCHuZOwptsSR+7TWl6OMLV2vbVjYD5euWbDqgtXVEPwXYQYCqpx3PyYkcb8nLGNQUlMQcC7zDyK+W9KISxQsLA0adRAv1eM9NY+K1aqoi2amMJh/BleHkbZ9tYPivU9NX8Wc1wfqwjAvfv0U54Y6bRV23jnoQ7wtDDKMj7Np4tYq2dgxzZv2iDjxv4hgwb215/weGmu3J2nz5rn7zsXWB48RwIkQAIkQAJBIRApLKRwQW3dslmg939g/z69xAeUi0UL/BRQKHaP/v1Xtm/z61BDWUqZMpWyXiUSzGMzF2dnP1TJlQJr3mkxT2Nsu6sORfTofp1U45ijn7AmJlaufBs3rNNWXVzv8cpDDh06IAh0NHTIIK2c4nj6DH4KWEBh+dGBT66stJs3h/zyJobyHC2a/7EOHIcrWEwV/fLduxeo9icJFPbOXbtrt1ZYpSFw44uirBpXr1wJct6LFy7QczIxWLFfKRRwTYa7d/9+/1nl0n9QeDFP0FLixo2jWKe0POxvf4ty0+z+uJcMH/GHcmNuIftV24Q101yxs+eZJk2aTM+n85e52rl29ao+lDZdOsGAgyHmnVnjmCNtfuH8efJzl256viwUYSg3y5ctCdTyZJTj6CcGdry8vLTHgXHt/HlzpHSZcoLoq6tWLtcuz3gWQ34faCQJ0qcjzxNu9P0H/E9ZM/8bXDHc752cAn+d4n7wDKJF9e8+anxnMKgEwSBHcLPG9yWtCmyDgTl75FPuE/k7wtSe+sCaP3nqdL3kSssWTXQkXeM6d3c/12u8XyzFGLxwf2E9uB3m9GLu+IED++R/A/qZLofLez1llaxfr5a/skwJ1ACNuUARtPQUGPS/3/RgpaP1w5xj1NuwUmMKwe9qGgimjWTPkcPkIZA6TRptRTWvx6tXr/QUBvNj9m7Dm8hcRo8aLob1v6xyIYZVmkICJEACJEACIUEg8B5USJQYRnmik7dYuT7BPQ1KBtY8hAvv3NkzTRY+V1dX7d4Fi8u6taus1vTCB9dIqyc/HHyv3J1URoElsXmuplqDDoKgMdYEliPMW4S4xnLVn4blTe+Y/YNlwbC6mB0OkU1971Zy9n2vmASjDFWBWWopqy9chmE5vnrlsjx79kwHoPqUYtDpGvC/wYKBCyiksCpBkVi5fJkpW0RrhcCS4OPjbTpubDx/9tzYtPoJ18GvSxRW7sGdtHJlWDdgRW7WpKGa4/jc5jPFnGA8U09PP7dF84LevvWLHBxTPXdb4kib/2P0CG1Bbte+o5ojXVp/fzB/dOBvv/qLYmqrTHvPw/IOt0lDMHAEC3T9Bg21Qlq/wY962Y6tWzYbSYL0ae/zhLsrXM/h7oz5hFjn8s6d28oVuEyA31PLCr0P4HtgbmnHNcHN2tU1tvZOsObWalnH4LhPe5lalm1tH4MmCChWvPjX0rnTT3o+rnk6rCMKwXfCUmKpdzoEAe8sBYNOeL9inmnzpo3099xIg8EBKIV43tZkx869enAhQ1q/wbDuXX8Wy++bsa6uI/XD1A4EJfu1zy8m13DEMmjwQ22Zv3CpmuPeUFuH8a6Hx0bpkn5WdaOOAb1/jfOOfi5S3kOInZDziy+okDoKj+lJgARIgATsJvDZKKQggjk4nbt014GBbt64odeTw/wcQ6AIwOUTrq6rVq4wDgfbZ1Q711pEVEa4bMJ1eOeO7f7KhxLyi1p7FdZdQyE13BVTqcXjoZhZChQ1d/cXer09y3Pm+5g3BMGcUihhISm+vn7BgYIyfxXWnsoqkBICxWCNQXvEXvawVq1ds0q78KFTWFNxxpI7aBeG3Lju5x6KiJ7oLAZFoBjA7RB/WMoHkW9bt22vAw/BEmjrmaKtIg/DOmxeB8NCC5c7W+Jom8d8TvxBUYSLNCLjwlKNwR6j/dgq057zmEOLgRTDhRnXQEGFBfsnNZc7rwpsgwGlcSr6tDXLb0BlmCu4Rhp7nyesZqhT29YttDJgXB9Sn8HJGt9/KDFJkia1Wd2g3Kfl98teprYqA3dorEUKS2aH9m3UQOHqjy6BNR2SJWvWj87hGBRDwz3dSFCyVBkdhRzBnZo0bmBS/ozzGGzo1fPjYF2oR9VvvhNYD/99+NBIrgdGTDsWG47Ur0CBQvrq27dv+8sF3639+/fqYGRQWuHmDRfgoL5//GUeyI7xXI257YEk5SkSIAESIAESCDKB/8wPQc4i4lyIeWhQ4qDM1axdxxQB1vwODh44oOcIwh3KUjAXyJgvZnkusH0ohBBjeZXA0uJcZeWSiNF+zOeZ9vdf/v7+njpFdv6zQ1vWDIvAcdV5gtSt+4P+NP9nKCxIA7cry2VF0EGH6ycEa99BMnxwAdY76l9qpegGt6CDiEAZlmVBEXGLEyfQ4uKo84h8i4jF5gKLhvnSMjjnKHtcA7dGrDWIwDqYi7lIBdQxl8OqMwiLFuZXWRODubVzOIY5rxhYMAQWtz+VYoVOJ1wlIfY80yNHDulourBymsu3332v5x0H5MJtnhbb9rR5uEOa3xfqCk8CRJZGYCUEjTEEwZkaNWmmLIdljUMOf1arXktfc0h9H80FwY3AftKUaUopjqJdW83PB7aNtgB3fEux93kiWirEst1Zy9OyDEf2Q4r1eeXdgcjXlvO4Ld9LjtxnQN8ve5kGxgVWSiyrVEgtr9S8aWOryiiuh8IJBQ33ZgTqwnG86/LmzSfr16/FrkkwZ3T6TLU81t7d0qhhvY+UUSTEQAgGhiz/EE0csmbVSu2doXds/HOkfjdv3tC5Va9R86NcSyklGhISSigCL1kbrKlUpaou8+TJ4/qT/0iABEiABEggJAhECgspfkzbtPvJKp8N69b6mwOEAEbjJ/6l5zjBzcpSfv/fb7J52061+PpK5TY3UgdJwrIMcKPCeqKIvntPLUHhiJw9e1p3omGdnaCizEZXo/53796WK5c/tmYiXyjMGFU3gp1YlrVm9UopV76CWu6jiqxcsUxHlIWrKaKl+vj6aIse5rNhQfSKlatIyeKFZciggXqJkEVLVsqI4UP0unZZsmTVa/QtUB2vhWqx+EMH9ut6Dhg0REdWhDWo6jff62VFLOsQHPsH1bwtWIKxdA4CQyEYULPmrbTibhlUyrw8dIJhCcYyJpjPi+AfWbNmlybNmmtl7+6dO6bkjrLHheh0Iv8man7nHWWpQJRmc0Fd0Y6wxA2UYMyjhLUSlgtYT+6rgCTdA1kiAs8JAU8QfAhud4j8XO+H+rpDaASdQpRgW8901Ihheimf6TPnyLChg7UVHG0HdcByRYayYF53a9v2tHlPZTHfsWufXuIGiuiD+/clm4p2imBZ4GG4JyL/H39sIo2bNhdr3y9r5eNY+w4d1f2uFcyBgzs61svFvFrM7TMXPA+sBwnlA9ayf//9z0plns7aNtoJ5p8iEBLaDQZiEDTM3ueJ5ThwX4OHjpD5c2erIqLoAYE6VgaCrJVv7zEMyIQE6xlqqR6s1zpDBamZPWu6GnRxU8vrVP9o4MCR+wzo+2Uv08CYYK7uVwUKapd8LK+EQQ5zuXP7lmn+/zz1PLDW8cjRY2SWWisUg3WY7+ykvCnM582mSZNWr/+L9op2XNvKs1unPCSsufial+3otr31Q8ArBOaD9b9T5yvaq8dZzZ/9Tj0n/AbNmT3TXyRnW/VARGIEIkv0Ya3ptOnSas8GDOrAAm9IdaWkwwV+gfodwEAWlkfC+sKIzIzfoR3b/QfDM67jJwmQAAmQAAkEB4FIoZDCQtNLubFakyuXL/lTSOF+CQuHs7OLds20vAaukt9VrSgDBg2WYWrNRWPUGB1lrBn4wt16cAzLfMz3ET0VQXEaK4V20VI/V2CE9remkMIKVaRoMW0VtZxXZuSJoDhwK66h5plCIYV069JJKbl3ldWutVprtKM+BjdTdIQgsI7Ur1tL39dff8/Qx/APnQ3MoYJACRwxbIh07d5T/p4+WyunmLc3+PeBOtKjThSM/34fNECv+dnjl946VyhQQwYPlNat29kspWOHdoI1HRF0AwKXxMkTJ+iAT+YXO8Le/Dq4ciO65WK1Xqu159D7l54qmvJ1adv+J62UGdeCIea1BiZQcIsppWvMnxNMydAB7tu7p2pj/82HtPVMsTYtlvFBJ3zFqnU6L1ie/xwzWi/FY8rcxoY9bd5XBePZtnWzv/aFbBGIqXevHv5KgFsjrN8IPGSvfPFFbmnarKUpOZYU6dbl4wEjJEDEayik6Jw7IsOV0g7LNOYIw9MBbQMKKcSe57lm9SqBS6W2/n6wVkFhhvsmFOjgktfqXRMSrFH/TJmy6OVzEIAH7Rr3DysglBFDHLnPwL5f9jA1yrT2icEeCOZx489Stm/bYlJIMSiEKOg9e/UxpUUbbNrkRz1gZVzrEt1FtwEMYmJZFWtyQg0GBbdCam/9MFWiebNGMmDgYB3vAIOYfnPFPfVSUn+MGmGtygEe66raJSIeG1K3XgMVSb6B3k2b6j/3bby30B6M9ykSwAsCvy8I9mTtHWjkyU8SIAESIAES+FQCUZQbqt9kvk/NKRJejw4RRuYxrxAWIUfmqgWEA67AsKbZa70KKJ+AjkOBhostLKX3lSXXWp3h7po8eXK5p6ywqIulwG0WbqXX1VxJKHohKZgPakSURXRYdILsFbgeZs6SVSfHwIOtea8hxR5zQBMqK8Sdu3es8gzoftCBxvJAHh4v9bMyXz7H/BpbzxQdVjxzWFrt4WCet+W2rTaP54WIzWhDsERbtg9YHQ8dPak7z8OG/G6ZfaD74AgeN9WgUGDfD6zZmTJlSilTqnig+QV0Em7diRImUgM4d0wBzczT2nqeWG4DgdHw/TLmB5pfH1zbIcUa958xQ0b9/cZaqQGJo/cZ2PfLFtOA6uDocTDLmDGTHrAz3F8dzSMk0ztSP6xri6WEMFcUS4kFFLQuOOuL91gyNSgKBRSuwdaWqgnO8pgXCZAACZAACYAAFVK2AxIggWAjAJdhLKNRvMhXDru221OJrFmzaZf635THwYzpf9tzSaRNE9KsIy043hgJkAAJkAAJkEC4IhA1XNWGlSEBEojQBOCuu2XzxhBRRgEGc9pgKVq2dEmE5hQclQ9p1sFRR+ZBAiRAAiRAAiRAArYI0EJqixDPkwAJ2E0AbsPv1Dw4zHEOCUFAIqzriOi+n7uENOvPnS/vnwRIgARIgARIIHQIUCENHc4shQRIgARIgARIgARIgARIgARIwIIAXXYtgHCXBEiABEiABEiABEiABEiABEggdAhQIQ0dziyFBEiABEiABEiABEiABEiABEjAggAVUgsg3CUBEiABEiABEiABEiABEiABEggdAlRIQ4czSyEBEiABEiABEiABEiABEiABErAgQIXUAgh3SYAESIAESIAESIAESIAESIAEQocAFdLQ4cxSSIAESIAESIAESIAESIAESIAELAhQIbUAwl0SIAESIAESIAESIAESIAESIIHQIUCFNHQ4sxQSIAESIAESIAESIAESIAESIAELAlRILYBwlwRIgARIgARIgARIgARIgARIIHQIUCENHc4shQRIgARIgARIgARIgARIgARIwIIAFVILINwlARIgARIgARIgARIgARIgARIIHQJUSEOHM0shARIgARIgARIgARIgARIgARKwIECF1AIId0mABEiABEiABEiABEiABEiABEKHABXS0OHMUkiABEiABEiABEiABEiABEiABCwIUCG1AMJdEiABEiABEiABEiABEiABEiCB0CFAhTR0OLMUEiABEiABEiABEiABEiABEiABCwJUSC2AcJcESIAESIAESIAESIAESIAESCB0CFAhDR3OLIUESIAESIAESIAESIAESIAESMCCABVSCyDcJQESIAESIAESIAESIAESIAESCB0CVEhDhzNLIQESIAESIAESIAESIAESIAESsCBAhdQCCHdJgARIgARIgARIgARIgARIgARChwAV0tDhzFJIgARIgARIgARIgARIgARIgAQsCFAhtQDCXRIgARIgARIgARIgARIgARIggdAhQIU0dDizFBIgARIgARIgARIgARIgARIgAQsCVEgtgHCXBEiABEiABEiABEiABEiABEggdAhQIQ0dziyFBEiABEiABEiABEiABEiABEjAggAVUgsg3CUBEiABEiABEiABEiABEiABEggdAlRIQ4ez1VIaN20uJUuWtnouLA62atNOChcpGmJFR4kSRVKmSiWp06QRZ2fnECuHGZNASBFwcnKWePHifVL7LVO2nPzYqElIVZH5OkAgRYoUkjZtOokePboDV0WcpHHjxhNXV1dThQsULCRt23Uw7XODBEjgYwKNmjSTUqXLfnyCR0iABEKMABXSYEZ7885DsfW3c88BXWrbdj9JufIVgrkGQc+uU6cuUuLrkkHPIIAr0eGbOXuenLt4TfYdOCp79h2WS1dvyay5C6RipcoBXGX9MDqQQ4ePksxZslhPwKMhRqBZ85amtn3j9gM5cfqCrFyzQWrVrhtiZYZGxkmTJjPdF76712/dl7Pnr8jGzds/UhxLliolJ89clKrffBfkqlWqXEVatGoT5Ot54acRyJU7jyxasly/j/YfOi679h7U76N1G7ZI8xatJLab26cV8OHq5SvX6nbVf8Agq/mtWL1enx80eJjV88Fx8PCxUzLmz4mmrIoULSZdu/c07XMjchIwf1dfu3lPjhw7rd9nI0aNkXz5vwqTm7Z8z56/dF3+2bVPevX+VeLEietwnbp1/0Vq1qrj8HX2XNC6dTupULGSPUmZhgRIIJgIOAVTPszmA4Hu3Tr7Y9GjRy95/OSxTJ821XTc4+VL03Zk3yhcuKhWPF+/fi39f+0tp06eEIza586TR9q0/Ul+G/C7bNq4wW4M8eInkB/qN5QN69bK5UuX7L6OCYOPQK+e3eTFixeSKHFi3SEY9cef4ho7tsyaMS34CgmDnBYvWiBbt2yWaNGiSfz48aVOvfoCZcHDw0NWLF+qa3T1yhUZPnSwnDt7JgxqyCI/lQAUzj6//ibXr13V76OTJ46Lk/LWyJ49h/zYuKn0++1/cv78Odm3d8+nFqWvf/fundRV7WjM6JHqO/PclOeX+fJLnjx5xdfX13QsJDZGjRwmt27eDImsmWcEIIB3tbu7uyRMlEgyZ84iNWrWljp1f5Cf2rWSNatXhckdLF2ySL9n3eLEkYLKYg/PrNzqu/Bjg7ri7e1td52+/b6aHDywT5YtXWz3NUxIAiQQfglQIQ3mZ7N44Xx/ObZRL9t7d++K5XF/iSLxTq++/cTT863U+L6qXL9+zXSnBw/ul1UrV0hvdZ4SsQhs37ZVHjy4ryu9cP5c2bBpm8C6HtEV0osXzqvBkfWmh7Fu7WptBYabo6GQ3rhxXSaMH2tKw42IQyBFypTSs1dfOXH8mDT+sb68fOluqjwGGJYvWyI/degUrErint07JU/efNLwx8b+2g0UY7S10mXKmeoQEhtTJk0IiWyZZwQhYP6uRpVHjRgqCxYtkxGjxsqVy5f14Eto38r5c2dlw/q1ulj0i54+eSKt27aX/PkLCPoFFBIggc+TAF12w/q5q3mV1WvU0q6PcGmFmyDcqsxl9ryFUu+HBuaHtHVq8bKVUqx4CdNxzHv4e/psyZo1m0ydNkt3pg8cPi6dOnc1pTE2smTJKsj3zPnLcvT4GYGVy9nFxTht+kyr3G3/+nuGHDp6UrkqXpC58xdL9hw5TeexMfmvadrVLXnyFNK7Tz+dBvUtWaqM5M37pUycMM6fMmpc/O+/D+Xnju2NXenQ8Wd9/8dOntNlbdyyQ/9QRY3q10xRlxEj/9Dp+/T7TXD/+IPCAKlWvabADQ6upHANnjFrLueBaDIh98/T01PWq84FRuCTJEmqC4L71bARo2XP/sNy+twl7R6Z/6sC/ioxZep0af9TJ3/HcI1lWx0+crT83KWbKZ2LaqM9e/WRrdt3C1y+0EZgyTSXgNqjeRp7tmEZ9fHxliePH5uSZ8iYSbe5L3LlNh0LrLxYsWLJwP8Nlv0Hj8nZC1dl0dIVkiPHF6ZrjQ22XYNEyH127txNnJyc5JceXf0po0aJ79+/l3F/jpED+/cZh7Qroa22bEpsZePt27cye+Z0adKsuWneMaYdVKnyjVhTFjGHH++0/YdUe1Fu47v3HRJ8B/ButRS8Y/F7cfHKTdmxc6/8b9AQfW26dOlNSSdM+ktatm5r2re2kSZNWpm3YIl079nLdNrWuxgJjd8bzKtu0rSF+p2YqdyD/RRg41zeL/PJrDnz9fsc7plIRwk7As+ePZMmjRro9v/7kOH+KpJbubLPX7hUPyu8r9AngKeIpeD3f868Rbp9whUYbsDoS8BzKShiDPblyOnXr7DnOzB23ET9nShTprxu8/jOdOjk551mtD1r7RL1s/c+g3IvvIYESCDoBGghDTq7YLkS7jNly5YXWGO2bNooPzRoqDvzXxfzU7JQyFdfFdSuruYFIghHoUJFJGHChKbD6FiUKVNWK7QYfZ844U8pVqy4dOnaQ7vInD1zWqfNlDmzrFm/WWDtgSvZmzdv9LwSBBpC4CFDkG712k0CyxHSQeqqThDmRpUqUUQePnygj6HTkTFTZl0Ojt1VFuE4ceNKihQp9fklyhXSHkmXPoMcPnRQLqjy4OKbT7m1YX6Ji6oXOooerzzk2NEjAmXg9KmTcuODxRUKA+aSjB4zTubNnS3Tpk6RxMqdtJRiUbfeD/LPjm32FM80QSQQ3SW6oDP/+s1r3eleuXqdxFKBVCaMGyvoAEHZWrJ0pTRULlmGK6SPj48eiDGsjYkTJ9GuZHAFxnVw3YLyWaNmHRk08DddMwxMLFy8XAfGgtvXqZMnpUrVb2TosJESVbXbhQvm6XQBtUdHbg9u5e1/6iiPVdtCWYbEVveF711c1b4NCag81He+skZg8Gf6tL+062S69OmlTp0f5NXrV8blbLsmEiG7gUGRw4cOyKVLF+0qCO9De9qyrcxmz5oubdt30O0dbuGNmzSXo+o9dkK5C1tKypSp5NnTp7JZTWN49OiRJFfKa4sWrVUnOq9UqlDGlBwDN3ivI7+pf03Wgba++a6afmfiu2dIXmWdxXcqIIHVGN+pe/fuysTxf5qS2XoXIyF+bzAgum7jFvW+TSKwfEHhN84heFcRpWCvWbNKWaWnSb36DWTA/35XLvAv/X2n9AX8F2oE4N2C/gYCq6EfgUFFzCtdopS6PXt2y699fpHYsd2knXr/oZ9QvszXuo+ACubI+YXqE2yUc+pZDx0ySLzeeSm328JSokRJOXP6VJDuAe95yCv1mw+x5zuAfgIGvHEvu3f+o6+7ePGC/gysXdp7nzoj/iMBEghVAlRIQxX3x4XBRaVV8yaCkXTI0aOHlUVphUAZhEuNo/JW/bhUqVhWbt68oS/9W3VWDh89pYMnGQpp7z79dYe/2reVTT80UOQqVaqiFQujTMynuq86KjWqfWM6vn7dGjl24qwaHW8qI4YNMZJqRaR+vVpyUs0RNQSj83CLe6JccuyRrp07+kuGkdOkyZJJ+YqVtUIKxXOBUjowArpaufvu3LnDlL5vvwFawe79S3fTsRnT/9aWZNMBbgQ7gWzZsqtBivp6Lg/mRjdt1kLSZ8go5VQn5uoVv/a7VnVIMYjRV83dq1KpnK7DXtXxqVL1Wz0CD6UVwa2uXb0iaZV1Bx4Cu3ft1AMPUAr27d2tr6lVp55AqahUvrTJ1QwDL/HUKD46/IZCisS4zrI96kwC+de7b3/5RQ2AQJHEPFIIBnUwwGJLrJWHQZIv1WBN65bNZOOGdaYsEilrciE1t9oQBEjC4BDbrkEk+D+hKKVNl04OHLDfJRButva0ZVu1xfsP89xgqYQigEHHLj9bj3SLdJZz4u7dvSPjJkzRAzF379yRZMmSK9fin7VS173rz6bi8XsBS5W9giAzUEbvqvybNKovr179N0hi611slOHi4ixzZs3QA4EYlDIXDHSWKVXcNHA5ftwYWaWCoIGD+SCP+TXcDh0CJ0+cUO9qZz13E8odPJsuXbwoTZQru/Ecd+36R3btPiDNmrcyuZv3/22gGix+JTVVnwDzoyGLFsz/qO9g710ggFjXHr/ofgjc2yH2fAfmzpml29G5c2d038CyvIDapb33aZkf90mABEKeABXSkGccaAk3r183KaNIeOVDJx5W0SAppKoTYCijyA9BM66pAB4FCvhZXGEBLaqsprvUqCI6DAEJOnCwrq5ft06++766v2R3VAcGARLMBaOU5soozsVWgW5g6XREEOijiCoXVqUECRJIzi9y2TWnC6OzGJGHeyeUVcxXxQ/rY2VloAQvgaHDR6oBDR9JmjSpfj7Xrl6VHt266ELgbgVLiaGMGiWvXrVSW0fQAYHiCoUUbfGrAgVly+ZNUqlyVdVJXSwFCxXSiioU0vxq1P7Rv/+aLFolS5aSO7dvSxblko4/Q148f66tNVAKjU6StfZopA/oEwMgmHMFwah9qtSppXHjZlJZuVdWrVxeXikX3oDEWnnFS3yt67PLbODE2vVsu9aoBO8xPM9o0ZzEy8vTX8YYDOjV51d/xzCN4MjhQ3oJLHvasr+LA9iBFRMujWPHTdLvpG1btwSQUrQrItoOAh8lSpRYUqt2CIECCYUUFnncD743QRW42C9YtFQePnjwkTJq5GnPu/jF8xcC5cCaeKpBVsOLBufx3dy8eaN0+rmrtqQ6EsDGWv48FnQC7u5+VnNjCStYDkeNGGZSRpEz3rXHjh2VQkWKaIUUg3T5Vb9kw/p1pvdsUGqAgUVMs4mvft8xoAnX2p7du+hYG0Z+cFEP7DtgpAvo01q7xO+DPfcZUJ48TgIkELIEqJCGLF+Hc/d869dhMlyfHM7AygWwvuJlDMHoesyYMWX/vj1WUv53KFny5PqHIlfu3Lpj/t8Z0RbPhw8fmh+yun1VKSpYywsRWAPrzONi/ChB0amtfqyOHjksZ8+e0RazmGoOnvmcKKsFqYNwiUTU144quE7nLt1VZMEXymI2XyYpC9dT5QJHCT4C795561HyPXsuCqzQa1avNHVQ4G716PHHgwCYLwxJpc7DJRsWQXSuMVBy6OBBZRUtKn169VBuiv+qQFf9pW/vntoaum/fXlPF4YoV2y22mo/XwnTM2ID7Y8yYsVQ9AnZPNNIG9AnlAxYsc9mqOv2Yp1qhQiVTYCPz84Ftw+0RUVxtDcqw7QZGMXjO4Rncv3dP0qtnYi4YuFqy2M+qiPaFJYzgxgixty2b5xfQNqz/UELLV6ioO9+GFcoy/XcqcigCzsAbBN4zF86fU+60d7SrpDGdAus4Q44cOWR5uV372pVczRXENIv/KXd4c8soMvjUd3FglUAAG5QPrwYOFgZGKmTP5ciRUyuf+K2F8gdl09p7GwMKSAuBtxL6EUFtd8Yd+arpGp6eXnLh3DkdLR9eLvfUd9MQe74DRlpHPu29T0fyZFoSIIHgI0CFNPhYhmhOn6qgGh0gBGqBpFCKQWCCjgOumTt7pvw9dUpgSQM8d/nDXK3iap6RraVdCqtRWCijPbp31i5ARqZQMq0qpMq6Zi7PlZUMLo+jRw3X86gQvbKRWsYhuVKsf2rX2jwptz+RAOYYYe6ONXny5LHkzJnro1MYiYdgCSRD9u7ZpUfKsRbvxQsXtGUf7rtYZ7ZQ4SJ+o9lq2QpDkLc35p5+V8U4FOKfUJ59vL11fWBBdURgCc6kOv22hG3XFqHgOX/x4nk9AALrIBQ+CKLrGkv4YD6k+Zq6jrRle2o4aeI45TXiqqP5WksPRW3goKGyZ/cuadOqmWmQB14ETZu1NFmv8G6GwEslKEodlI9DBw/o6KbjJkySurVriDGdA/k6/C7GRXZKwoSJtEeQcQ92XsZkwUgAfQn8PsIDC4O1mEMK+ULND7VcQCVePDVw8OG7grnNEEvvKH3QgX+IZh1Qn8Le74BRXBTx3w8wjlv7xPcZYus+rV3LYyRAAiFPwC98aciXwxI+gQCCCllGWYSVMyiCOZ3oxMAd0lzQSYmiOkSGwKKAtfrg0oYfCUsxAhFYHjffX60sZ1BcYPFyc4tjfkpvY7TViMyXK1cefWzHtm3+0mG03lxef5jnBHdgczF44N42q+BQWH8NCkSp0mXMk3E7hAkg2EXiJEl0pGfzouB+Bfdb8w40AmjkUpEdEWUac5MhsGxjLlHLVm20i6IRBAnnTp86JV8oF25LKxfO2dMekc5RgWtZNNWBu3TRL2CGI9fj+4OgMXC1NBfLNs22a04n5LbHq2BZCPgzYODv2gpoqyRH2rKtvHAebsBQ/ry8vKwmT5kqlZ5TjYEaw/UcCS0HI43gMWUsloxJlyGD1XwtD3p7v9OBa1o0byw3b9yQOXMX+vtO2fsutszX1j4svJgrfvLkcbumYdjKj+cdJ4Df8sFDh2u37+HDftcZwEKOaT54R5sLplfkyZtXBTA6ow9jis+Vy5d0oCpEDzcE7dZahH7jvCOf9n4HkCf6AqijvWLvfdqbH9ORAAkELwFaSIOXZ4jktmnTBj3v5vtqNVQH4roUKFRY2rX3HwDIkYLnzJmp8+v4cxfZuWO7DtzRSgWacFWdNcMtDPkNHNBfZs6ep5Z1mS6TJ43X84GyZMkmFSpW0vNPB/7mf+6VZR3gpgtr2uQp02Tztn9k7B+j5LSa6xnbNbZeOgZBQ1DmgvlzddQ+XI/5XHOUVRY/eAh6A4XVcPfEeQTggOWpUeMmem4sIvDCzfPP8ZNVwJJ9OlLx7du31BzUbFK2XHk5fuwYLqOEEgGMfDdS8y5/U53+/r/2lqfPnuoospiHibZgLlA2MShR4uuS0q9vL9OpdWvXyMjRYwXP8fatW6bjf01R1hwVQGnmnPkybMjvcurUCb3UDJRGKLUIdvQpklXNZ8JcVnTa0NHB8kl16tbT82EXf3DrdCR/zK1DAC4s2zFx/DiJoQaR4I6GxenRATQESyiw7Ro0Qu4TCiHeY3h3ZsiQUdCeEJkTChrcddGGzMWRtmx+XVC379+7L8+fP5MGDRvpto/5nQXVu769CmAEMd7NqDNcy1upNa5LqgE3WFSxvBYGd+wRI/YQ3s+NfvxBlq1Yo5fqqln9Wz2ACEUcYutdbKssfIcaN1URhZVbKN7njdV3IVv2HIJyKKFDAHEV3N3ddRRmKHvVqtXUg2Tdu3XWA7dGLRBF/4+x4wV9goXz5+n3X7/+A9T72UUmT5xgJFMeSCNk4uSpguXksI44ArQh2i3e40b7NCUOwoa93wFkDe8VuMCj/Lt3b0ssNWXjlIq+H5jYe5+B5cFzJEACIUOACmnIcA3WXFetWC611dymP8dP0vli/t2wIYP08jBBKWiSWhc0Q4ZM0rVbT/2HkcPRyjUSc97MZcf2rdK86Y86OuqKVf9FCUXAmpEqAII9AmslIqtCQRk0eJj+4cJ16AQe2L9fZs2cprPZ+c92GaXqgCAy6LAjGBMik8JyBpc1Q2A56KYiSxrr5OF408YN9HIiWOuvQ8fOOinmJyLoxx/qB5QSegTgClm/bk0VvGWibNm+SxcMlzAsEYBIzuaCgQQswYElYBB4yxC0GbSPfXv9ousax2Hdr1X9O92Wxk+couc94dyLF88dnt9p5Gn+iSWY8AeBa/uD+/dk/tw5WonBIIijgntDFNTBQ0foudRwgUfE4a1bNkvmLFlM2UExZ9s14QjRDQxkQIH7pVdfGa3WWYT1GwK37FNqsOxXNTBiLMfiSFsOjkqjzbdv20rXDetJQy5fuqTmaU/V72nzMjr+1E4NlFyREiVLCYIPYb4p0o2f+Jf2MjBPG9g27rFh/TqC9/uc+Yukdo3vxN53cWD54hzaex01DQPr8ELuq+9Ti2aNtIKqD/BfiBMYopbEwm8ppkLAZXX37n9k3pzZHwUghBst1o/+pXdfU1vDgGCDH2rr52ZUVA+EtHgn9dWgyVcq4jnecTW+r6rX/w5seSHjelufjnwH8Nvuqga3p82YrfsViNxsGR3asjx779PyOu6TAAmEPIEoauFj/7HaQ75MlhAEAnCpTa9cshCgCNHvgkOwhinWj0NkX1sRD+Fymyx5MhWV8aFDHR7zeuIeUqdOI07OTjqgjbUov3BnzJY9u4q4d8dmMCK4Mb9Ra19iDh4EI7RJkiSVGDFi+LNAmdeB26FHIIVaQxGdnCuq44yORnAKRuRTK6sW3LYQeMOYIx2cZQRXXgiSgwAysPZCqbYmbLvWqITsMbjCwjIKuaWeTWBtNCTbsrW7RHvxVoNv5pZ0a+nMj8EaCatWloxp9SCP+bmgbDvyLrbMH8tw1VAW53x5c+po6dGjx/Cn2Fim5374IIDvBLwHsE4yBnXtEcR5OHr8jJr33FxF4F1rzyV2pbH3O4DfGMzNvn//vt2/A0G5T7sqzUQkQAJBJkCFNMjoeCEJkAAJkAAJhD4BBKVBtFJYqODhgvVuR4weo6dgwB0zrMVcIXWkLhggPXL89EeXYBC2WBH/cQ8+SsQDIU4AAziYInH8+DE1OH1fu//2/fU3HQW6VIkiH0VsDvEKsQASIIFIQ4Auu5HmUfJGSIAESIAEPgcCXytX3WbNW/q7VSyfMfj3gf6ORbQduPFnSu8/Ajyir39frXpEu5VIWd8kSZPK6DHj/N0blk5q16YllVF/VLhDAiTgKAFaSB0lxvQkQAIkQAIkEIYE4OKdXrlWYlkr73feAqXAPPhbGFZNF43o0lji5bSNIDO26ono2Tt3H5CuXTrqOAG20vN8yBPAskkZM2bSU2Ngub5166bNKT8hXyuWQAIkENEJUCGN6E+Q9ScBEiABEiCBSEigabMWKvJ1Fb1cTiS8Pd4SCZAACZDABwJ02WVTIAESIAESIAESCFcEsCQYoqa3btUsXNWLlSEBEiABEgh+AlGDP0vmSAIkQAIkQAIkQAJBJ9CsRSs5c/a0HD50MOiZ8EoSIAESIIEIQYAW0gjxmFhJEiABEiABEvg8CMSLF09at2knDerV/jxumHdJAiRAAp85AVpIP/MGwNsnARIgARIggfBEoF37jnJg/345efJEeKoW60ICJEACJBBCBGghDSGwESnb8sWKSoEvvpC82bJJjOjRxTuqs/rzaxpOvt7i5PtOPF69lhMXL8jeY8fV37GIdHusKwmQAAmQQAQhkDRpMmnUpJlU/75qBKkxq0kCJEACJPCpBBhl91MJRuDrq5UtK9+VKS2J4sc33cWrqDHkjVJIfd/7HYoaRSSWUkhj+b41pXn87Lks27xJ1u3cZTrGDRIgARIgARIgARIgARIgARJwlAAVUkeJRYL0WdOlk5Z160iWtGn13bx8916eePnIUy9fieEWTx9LHD2aQCd97Omj9708nkt856iC47GclJaq5PSlS/LX4iVy8949vc9/JBDeCOTK+5WkTpdRHj28L4f3cwAlvD0f1ocESIAESIAESIAEqJB+Zm2gVMGC0qVJY33Xb7zfy603ShH9oHTiYNx48SVmtCiSIqafy+7t197ipcylL54/M5FKHCOapIoZTWKodG/evpXRM2fJwVOnTOe5QQLhhUCVanVNVVm/cpFpmxskQAIkQAIkQAKhR6Dol3klbYqU4uLsJF7vvP0VnC5lCjl39ZocUn3J+48e+TvHnc+DABXSz+M567usWKyYtG9QX28/fOsj1z28tRXUHAEU0ujKTze5Ujjhtnv3jbf4qE9zhRTpnVQ4rAyuzpIwul9crFEzZsrOw4fNs+I2CYQ5gdLlq0pM19jy/v172bBqcZjXhxUgARIgARIggc+JQKyYMaVfu7aSI2NGu2578sJFsn4XPZrsghWJElEhtfNhuri4SOzYseXp06d2XhG+kn2ZPbsM6PCTrhSsnnde+7niWtYydpy4Ei2qn5JpnPP29pZXHi+NXX+faV2dlDU1mj7WY+QouXDtmr/z3CEBEiABPV+UVgAAQABJREFUEiABEiABEvg8CfyqlFEEzvR8+1xePb8hUaJElfe+/vugLjHjq2Pe4pYgk4bUU/Unz7M/+Vk1GEbZtfG446uAP78PGS5p0qQVT09PiaqUtYED+snxY0dtXBl+TkdXkXPb1PNzXbyrXHQDUkZRYyiesWK5ipOTX9Pw8vJSL5E3Ad7MzVfegsBHyZQbb1tVRqfBQwJMyxMkQAIkQAIkQAIkQAKfDwEooz4+3nLvynrx8Q64Pwki77w8JEGyvFKxRHEqpJ9PE9F36t8U9pndvD23+3OXbuLs7CLfVKkgNat/K0sWL5RefX6159Jwk6ZlrVqSPHFicVfBi24pBTIwee/rq5XSWzeuyeNHD+XN61fiq44FJnD99VDzUdOnSiXNatYILCnPkQAJkAAJkAAJkAAJfEYEfL1f21RGgePtq4eaSrb06YONjrOzsyRIkEBZZv0Ccn5qxjFixJB48fwCgH5qXmF9va17CW52gd0vFdLA6KhzLi7RxcvL05Tq6pUrkkJNyo4oki5lSqmg1hmFXH/1zma1r16+IMN+6y5T/hwmQ/p3l3V2BoIxFF0sJRNXuTZTSIAESIAESIAESIAESMD73Wu7IPh+cOV9+uKFXenNE8GTcfnKtbJq7UbZuGWHrFi9XhYsWiYVKlaW46fOSxw1JS04pHmL1rJzzwGHsqpUuaqu2/Z/9siyFWvkqwIFrV6fKXNmGTtuoiROnMTq+eA+aOtegptdYPWnQhoYHXVu5vS/pUDBQjJ12iwpWqy4dOrcVYYP/d3GVeHnNAIZQRDE6LWyYgYmb9+8kfkzJ0u5KtWkR7+h0r3vYDl76ricOm47WNGLd7562RjkX7VUycCK4TkSIAESIAESIAESIAESCDYCt27dlBrVvpEZ06ZK9uw5pHPH9vJD3Zqm/AcOGixHjp2Wnzp00scGDx0hQ4aNNG1jH7Jj5175c/wk2X/omMydv1hiqqBMsCROmTpdTp+7JA1/bKzT4V+q1Kll2IjROt+Ro8dqy2nJUmV0Hh06dZZpM+ZI5Srf6GunTJ4oZUoVl6aNG4qXmgIIfeLU2Yty8MgJGT1mnJ4SOOj3YVKtek2lTK+TH+o31HrHoqUr5Mz5y1q5NhX8YcOvrpN1HrPmLpCmzVrIgcPH5X+D/KbPWatfQPdirT7m5UEHCqwu5mmDss05pDao3bl7R86eOS3//vtQNzofHx85c/q06aok6XObtsPjRsVSZcU5uos8eeOlPp0DreLNmzckqpOLFChaWqJFi6bSx5TCX5eXy5cuSv7CXwd6LU4+840qSVVZZYqXlq1nb9tMH1YJMAL3+ObZsCo+XJYbI3Z8iZM4dbisGysVMIHXLx6Lx1OuA2xOKF7yDOISg14a5kwiwvbTu5fF2yvw+WUR4T6Cq47R1G9xwtTZgis75hNKBLzeesjz+wzuGEq4HSrm5InjOj5K23YdZPKkCZI8eXKTGy+2VTB+LRkyZpLz58/J1CmTpP+AQVKkaDFJrayvsHJ269JJvsyXX7759judtl37jjrgadXK5WX1uo1SsXIV8XjpIcgjV648cuHCOcmn0mPq27atW/Q17u4v5NSpk+KsgqVuXL9OW0uhDK9YvlSWqz+UN2zIIDl08KDMnD1PHj9+LN9WqSiFi/h5O/rV0u8/yjl37qzMnzdHunTtIbdu3JBNG9dLo8bNZPSo4WKtfjFixLR6L3t27/qoPuZl/dpvQKB1MU8blG0qpDaoDfyfshKeOSMjRwzVoxddu/eUpctXS4H8udUkbR95FI4Vmy+U6d8pio+4q3mg7q9tu+uquGfi9faV6hS8lfdKIYXEdo0lZ+/f1sdsoJJHXiKpXbwlSdxYEv3tY7nz0G8ugK3reD7sCXi+ei6PXruHfUVYA8cIGL+gjl0VqVO/eHhD3V/wzBWK1KDC2c0hfgHlPwI+3l7hun/xX0255Z9A4J5o/tNyLzQJLFu6RJ48eaKUye+1EomyA5pXunfPblm0cIFWSJMnT6EtrrDAIo5MkiRJ9VJyuL5sufLi5hZHChf2UxZz5MipFUmc6971Z3nx4rkgFg0Corq6uup9nIPkyZNXOv7cVcVr8Vt3FeXcUoYhCPSOhw8fyOFDB6Vx0+ayaes/Sumcrc9Z/tu3d4/s2vWPVki3bdsq8HZs0rSFdvu1Vr/o0WOItXuxVp9Xr16ZirOnLqbEQdigQmoDWrHiJeS3fn11KoxwTBg3Vtr/1EmyZMmqR1AsQ1fbyC5UT2dIlUIw5OOu3GmxDqMtSZ4ytcSPn0jmz5ikrKRfy1ulyB7ev0t9kaLYdT3yf6nKSqi+eFnTpZXb92m5scU8vJzX7eO9/zDs4aVurAcJOEKAio0jtJg2PBMIz/2L8MyNdSOBgAgYc1TRJXZ3d5ecOXMpS2kKSZAwkTxRlkhzMdLi2IXz56V6jVqSQsVliadW3zDk2NEjEkspmm1aNpOoypCTOVNmSZnKv7fZ/r17pXOX7tKzVx8ZM3qkFCxUWFtqO3TqInNnz5SJE/6U85eu6yzfvn2rP11VLBYosWvXrpaFC+drV9zGTZrLiOFDVeBRD6N406d5H99821r98n6Z3+q9WKuPqQC1YW9dzK9xZJtzSG3QuqTcVWvUrGVaBqVM2fK6MWB0IbxLyqRJdRXf+thWRpEQS700b9dZ4iVIKPt2bpMb167oL1q8+AntvtU3vn5lpUgaOhOy7a4YE5IACZAACZAACZAACYQ6ASfnWHaVGTWqn3degrjBE4AosELXKWUvpVodYuOW7crqGXifdcuWjXLjxnXZs++wlC9fwWRZnaJcfzEn89jJc3LqzAUpXuLj6W0HD+7XXpY1ataWw8dOybDho8TD46Wg/Jat2+p5qkY9TytXXrgLwxOzRas2MmbsBO22+3XJUtqF2Joyalxr7dNa/QK6F2v1Mc/zU+tinpe17ShqnU37tBVrV38GxxC165fefeWLXLnl6dOn8lqZryeMHysw54d36d26lRTOk0cuvfSWJ55BsX69l6G/9ZDylb+X/IWK23W7SdV6pBliO8m2/ftl7Jy5dl3DRCRAAiRAAiRgSQAubnHV8gr3792z20vHMg/ukwAJhC2B1RMn6HVIb51fbHPpl4TJ8kt8tQ7ptgMHZOzsOSFecSiT3t7e+s9WYXDvjRUrlpi7sRrX4F0Fy+Tr16+NQx99wuIZXy0/8/zZMz3lDwnixo2nLLUvPnq/xXZzM1lClZ6mXH1fmK75KGM7DljWL6B7Cag+KALXBEddAqouXXYDIvPhOCyh7dq01CMgeKDwP48okvXDOk7ODkynglsyvjTv3/vK9s3rdXCjvF8VtvuWnT/Y3DOmSWP3NUxIAiRAAiRAAgYBWAMGDPxdkiRNpjqK7/Q64Ldv3TJO+/uEGxwCd5jLzp07pFGDeuaHuE0CJBBGBA6dOi0FcyvX2AyV5LX7LaXYqD7mh+VdjCq5xIyvjnmLW4JM+tDmPXuNUyH6abjI2lMIFE5ryiiuDei4eb7oX1u6BWOOqTXxePnSdBjGsE8Vy/oFdC8B1Qfl45rgqEtA90KFNCAyFsfRaB1puBaXh8nupes3pFCe3OLlgA1857YNat7obnWvbyRtuozS7ufeSim1v5l4fYhLcfX2nTC5ZxZKAiRAAiQQcQkgbsPYcZN0lMk1q1dqi0NAgUeMu1y0cJ706dXT2P3I2mA6wQ0SIIFQJzB61izp166t5MiYUWLESmCz/IkLFsj5a9dspmOCyEXAfk0jct037yYAAsVLlZfcXxZQbgWJtKU0gGQ8TAIkQAIkQALBTgDBP5aqSJYLF8wz5Y2R+cDEx8dX3r2zHUk+sDx4jgRIIGQIvFZRX38ZNTpkMmeukYYAFdJI8yiD50acndXaZ4kCn9wdPCWFr1wQ0AnL+Njq+ISvWrM2JPAxAWdn58+6cx41mrMp4MTHdHgkvBLw9XmnA+t9VaCgHD92VGbMmqsWpI8lO//ZIX9NmRjo/KlCKmolFqWHO9yaNavUWuGnwuttsl6fIQH2Lz7Dh85bdpgAFVKHkfGCyEYA4bXXbdii14zCOkuGIJAVjltKjmwZTZPNLc9xnwTCkgDCyU+cNFW+ypfLXzU+p3l2bolSinMMV3/3z53wT+D5/auSPFlSPZiA6TF/T52i1gp0k779fpM4ceMoF97frd7EkcOH5Pnz53pKTY4cOWXFqnXStHEDwSLvn6skTpZSEiRJpv+ix4ipMbxXVuRnTx7Jk3/vyf3bN8RXDcBSQp4A+xchz5glRA4CVEgjx3PkXQSRwP8GDZEateqYFkm2zAbRz/LlyenvMF3D/OHgTjgg4OLiIpu27FDzvtPL0wACr30u8+xePLwRDp4IqxBUAvBSGTtmtA5mhDyiqbX9evftF6BCum3rFsGfIYh/ULfe56eQJkySXLLmzi/Z8xSUuGpNxcDEx8dbrp4/JeeOHpBrF88ElpTnPoEA+xefAI+XfnYEqJB+do+cN2xO4Ne+vQR/Bw4fNz/sb5sKqD8c3AmHBLy8vKR0yWLyZb78MvXvmVZryHl2VrHwYDgicO/eXW25S6XWBsSaf4bEiB7D2LT5+fDBQ0mbNp3NdJElQUzX2FKoVCXJV6yM6Zai+bwRF8+H4uz5VKK+99LH30dxEm+nOOIVXa0r7pJQsnyRT//dunJeDuzYKHeuXzZdz43gIcD+RfBwZC6fBwEqpJ/4nKO7hvzivUGtYjQ1HxSLDEeN+l4+rDUc1Kzsvi6KLi+aODlHl3DLRo3Ae752t+ueMIcJc5Ow/uzRo4dl7ZrVgc5lsivTcJgompOLOEX3c+0Kh9VjlQIg4PPOS7y93gRw1v9hzrPzz4N74Y8A1gPcuHG9tGn3k/Tq2U3NIY0pNZUHC5ZxMWTw0BFy4sRxWbxwvj5Uq3ZdWb9ujY7GmyhxYpW+tiyYP9dIHmE/sTSGSyy3QOufLnM2KV21lsSOE0eni/Xyori+vKSV0cAu9HaOI29cM4iHW05Jl/UL/Xdk7w7Zr6LsUz6NgK+yPr97+8quTD6X/oVdMJjosydAhfQTm0BMNzXaGE7FySWmUkSdJEo0UUqpA4uRfsL9aAVYlekUPZaEVzZYY9UehfTpk8cyftwY7QKZOHESNZdpgBQoWFj69v5veYFPQBWuLo2mBhDC6/MKV6DCWWU8X7+wSyHlPLtw9uBYnQAJDPytn/w1babs3ndI4seLL8ePH5NBA/ub0hctWszfmn9QWIePGC33799XAfkSyepVy2XmjGmm9BF1I4paDzywd3L2PPmkRLnK+vaiv7krbs+OSXRlFdUSNfCunYvPa3FxPyNxXp4X9/hfiUfcXFKwRHlJkDiFbF+3MqIiCxf1xgChPQrp59S/CBcPhpUI9wQCf2uF++qHfQWfPwi/ayV5vlKd1Xee4vPOW32GTgADHzXfB2W99Xgm4ZmNPS3n3r17Mmb0SFPSXbv+kfkLl8pv/fqo+U3epuORYcPrzUvBHyVyEuA8u8j5XCPjXT14cF++q1pRkiZNpueRPrGYE13q66L+bvuHujXFzS2OJFbW0fv378kbtcREZBBY2gL6Dc1XtLQUKVlG/767vTglcZ8d0rcclF/52P/uEif3a/I0SSlJlzGTFC9dRtYu+DsyIAzX9/A59S/C9YNg5cINgajhpiYRoCIIrpAqdWqJHj16BKgtqxjcBB4+eCBYUoPPP7jJMr/QJoB5dm5usUO7WJZHAnYTePjwgVgqowFd/PKlu1y7djXSKKMB3SeOp82cXUp9U1sniff0gEkZDewaW+divL0jiR5slKi+byVLrnxS+ts6ti7h+WAmwP5FMANldhGOABVSOx5ZkiRJZdac+XL2wlVZuny1NGnWwo6rmCSiEyhZsrSkSZNW3wYGI1q2aqPXx3ul5pNSSCAiEcA8u1ixYukqG/PsPudlMSLSs2NdScAgECVKFClXrb7edXt+QmIrt9vgEhevx5LgX7+5ul8WKSWZv/gyuLJmPlYIfM79ixgu0aRAloRSu0QaKZM3mWRMHvhcaSv4HDoEQ0KCBAmCbX3qGDFiSLx48RyqQ0RKHNvNTXudhHadqZDaII6Gt2rtBrl+/ZpULFdKChf4Uqap9dEokYPAqD/+lINHTggGHaZMnaG3sYg1JGOmTLJ1x245fOyUHD1xVvLl/0q6du4YOW6cdxGpCMBqj3Y8bcYcPY8O28NHjjbdI+bZnTl3WfbuPyJ79h3WAboiwzw70w1ygwQ+AwJFylSRuPETSvS39yXu8yPBfscx3t5VFtfDOt/iFb4P9vw/twzZv/j4iTtFiypllRKaIVlsiaoGWBLHiS5fZU4gWVP5Beb6+Ar7j8CAsHzlWtVn3ygb1TJoK1avlwWLlkmFipXl+KnzEidO8AQhbd6itezcc8D+iqmUlSpX1XXb/s8eWbZijXxVoKDV6zNlzixjx01UUxCSWD0fHAdtldG//0AVzHNMcBTlUB5R4seP/96hKz6zxE2attCWseJFCwjWR4tI0qd1aymUJ7dcfOktTz2DMrvE8btNEiOaZIztJNsOHJSxs2c7nkE4uwIja8mTp5BXr1/Jk8ePw1ntWB0SsJ9AZJxnZ//dMyUJRGwCWN6lda8hOnJ+4gdrlVL6INAbGrbwhFy+8/yjNH0bfiXplDIQmDxMUV3eqaVhtq9ZJCf27wwsKc99AoHPsX+RTSmeeTLEF5cY8SR2vPTyzstDXj69LF7evrJi3+1PoPnfpdWq19RKXcnihfXyUVW/+U4mTp4qK1csk2LFSqigZ3+rgJVjBRG74XWAiN7YhvT+pbvs2LlXTp8+pYJYFpKrV65Iy+aNdf8fimLRYsXF46WHxHKNJXm+yKan8XXo2FnKli0v//yzXQdgy5M3n/w24H+yfPlSyau2ly5ZJJP/miatWjSVTSqKOBTjdOnSSemy5aR5i1Z6qsHePbulW5dOOk5JERW47fbtWzJB1fHmzRvSqXNXyZnzCzl96pRgzry5+NX1tBQqXFguXDgv/2zfJq3btpctmzbqJQ0xzdCyfpP/mi7mZWTNlk1SpEgpHh4eckbdd5q0aSV2bDddn2+/+1669eglCRMmlOVLl8joUcNl0OBhikMJwVSJtq1byLmzweOpwaBG5k/WyjYa3/nz5+SPseMlZcpUcvXqFRn7xygdPAHJXWIG/mK3kqU+lDNTRsmQKqWkSppE4qgfmsxp08jlm7fkgVJ67jz4Vy7duim31TyvT5GoTs6CZViiRPVVP2KfkpP91yJUPcrEMiJBZWN/aUFLiYEFe6LgIXesQXpLPYvILlGjOYuTC+dGR7Tn7OP9TgUt87Sr2vjxwF9kFyxfhGjflIhF4J3na3nv6xuxKh2CtcVvqXMMPzd7FPNlsbL6dzXm6xsSw/OR6PD5gZTfvV4+f4Po7q/fSf+ZhyW+WwzVCQ/8+xHH/bQKclRWchUoLudOHA2klIh7KknyVJIsdVpJkCipuLrFldQZMsvta5fFw/2ZPHn0UB7euSmPHtxz+AZ9fX3E29O+wFqfS//CHGLqxK56Fwqpk0ts/QeF1MUp5DupJ9VyUfCAa9uug0yeNEEZG5Kb3HixbdicMqjgXuj3T50ySfoPGKSVt9TK+gorJ5RGrPf9zbff6fto176jUt5iS9XK5WX1uo1SsXIVrbAij1y58igl8ZzkU+l91bsNwQUh7u4v5NSpk+Ls4iIb16/T1lIoxCuUAgslFsrisCGD5NDBgzJz9jx5rPSCb6tUlMJF/Ad0Q14o59y5szJ/3hzp0rWH3LpxQyu9jRo308qjtfpZlvF1SeX9qfLetHGDINgWFPG4ceNpz8E/xk5Qyx2ukpnT/5YChQpLwx8bS+ky5aRenRpKSU0kXl729T9QV1tChdQGoZQpU8qTp09k/aI1qjP3Uho1bipz5i2SyhXLaGXFNX5yGzn8dzpd8mRSoVA+KZAjq8SyEhgpkXLFMZfb/z6SPSfPyKYDR+VdEKK6OsdwlWhK0UDfLKpT6PzQR1UvFZQJZdQRNub3HdLb79/7yPP74Tc6ckjfv7X80Yl3jZfU2ikeC8cEPF89l9cvVOeUYiKApTKw5BUlYhFwf3RLfHyDr3MTse7+49piYNf8NzRr7gJKIXWW2G+uq99z548vsDhi2b3fsueWFPkipSSIZ3sQPbbnHXEXH0meJqOkzfqlPP43cGusRdHhdjeOWkYoe+4vJVO2nBJLKRGWYjlv1v3ZM7ly4YxcOH1SXnnYF4Uey768VPwo1gncfvRKEri5iJfnC3Hxiq8tpEgJC2lIyzJl4UOgtG++/V4rkSgPFlJrAovlooULtEIKL7ns2XNo48SSxQu1omZ4TJYtV17Ptyxc2E9ZzJEjp1YkkWf3rj/LixfP5ecu3dQgaVRxdXXV+0Z5efLklY4/d5XHj/x+w1HOLWURhZw9c0YQ2O3woYPSuGlz2bRVrfIwz7rX4b69ewSrQEAh3bZtq7xVkcbh3Qm3X2v126CUYPMysH3m9GldX2x/X606PiRb9uw6kOf0v//SCjTWf4byCsv+mnWb5OiRw9K+bSudNjj+USG1g+IyZW7frMzfEKznd+7iNfWgcijz+Ul5du+yzRzcVDCRJjVqSPmiRT6kfS+vX96XNx4PxfPNE/HxVqNpamgGo5ZO0d0kRqyEEsM1uSSP7ya1SxWRsl/mkCUbN8m6nY65znh6PFdh4d/6LfviFTouuz7qRxTLvrx5+dQuNjbhMUGoEPB67S74o5BARCfw8jE7gxH9GbL+Ir4+7/z9hsZXQVm8vdT6oS8uKVXRMXn84q3sPnFTBjYpoPoDb+262MX9sryKnVncYjvL5RO2+zl2ZRqGiUpUrCYFSlYw1SD6+0eS0OWRxHF5JjGi/WfRfOsTS14oRemxZ1Ltlpk7fwHJmfdLObxzs+zbutZ0PTeCRuDKfQ/JkDy2uMkzefrmmSmTc7demLZDcgMWbAisoe7u7soVNpeelpVAWfssp2UZaZH+wvnzUr1GLUmhjFTx4sfHIS3Hjh5R7cRV2rRspow/0SRzpsySMlVq47T+3L93r3Tu0l169uqjlxIsqCyNsNR26NRF5s6eKRMn/CnnL13Xad++9ft+uqoBEyixa9euloUL50tTFUy1cZPmMmL4UDU44uEvf+wYCrLltrX6KWVDX2+UoXes/MMyWpAiylP0zBm4BRcR9xcvpHTJotr1ecSoMVLi65ICJT04hAqpDYrw306VKo0pFaKtwvSOYEf2SOE8eaTjjw0l9ocIl88fnRX3J5fE6+1Tm5e7xk0rcRNlkwRxU0nrunUkX84cal7mHHG30hhtZsYEJEACJEACJEACEZaAi+eTINV99f4bUixnMuWua/+0DGe4BSuFNGHiFEEqM7xclCRFaqlcp4kkTOLnzZba9Zqkdbsq8Vxss3zimURueWSUu6/SSmEVUApL7mxaOlueKpdeStAIePv4yvaTDyVXuniSLqmrPHnpJTcfvpKr9+2zQAetVOtXrVPKHgIebdyyXV6/fv2RQmp+1ZYtG+WHBg11UEBYMQ3L6hTl+turbz85dvKcuLg4yx+jRqggqH7KpXH9wYP7ZeSIodL+p07SoGEj5dL7Ujp1bCcov2XrtnpeqpEWhi64C2NFj1Ejh0kTpYQ6OTtphRMuxNaUUeNaa5/W6jdp4nh/ZVi7DscuX7qkleUePXtJ1249Ze+eXXLl8mWp3+BHcVfTf44fPybr1wffIA2DGgX0JD4cx2To3n36Kf/wcvL8+XPdmPBgShQrKLaW/6hYrJi0b1Bf5+Tx/IY8ua9cbz0/DjJgowpq4ndGSZSygGqUrnLr/n0ZMW263FR+3raEQY1sEeJ5EiABEiABEgj/BLoMniiuL89L/Cd7HarsvcevZfD8Y/J7s4ISN7aL3de+jZFcHierKnduXJHFf/0XsdvuDMJBwkw58kjVH5qraUROkjDGI8kW74TEt0MRtaz647dJ5fzzL5XlNJ68VQEO1y6cJreuXLBMxv0ISADGJW81JQ5/tgRKKJZPs9b3hzsurJRQbAMSWDzh6fBcuYL7+PhZajFXE3NKzS2cuB5LrxjKpwo+q1x9X5iuCSj/wI5bq59RhmXZlvnARTdOnDimdaGRF6ysRv0s0wd1nxZSG+QwglGwUCHZtfegnqgcVYWsbtempdUGaZ5VWRXxylBGnz04KU8eHDE/7dC2x3O14LfHPUmWroykUROv+7RtI33HjJV/lS88hQRIgARIgARIIPITiOrr5fBNrtx7XUrlSeGQMopCon0oK3p0+7zBHK5YCF+QNnMO+a5ha11KatfrkifhwSCXmCjGQymebKMcf1xU7kkaqd64nSyZOkbu3WIsiiBDDScXGi6y9lQHips1ZRTXBnTcPF94V1q6BWOOqTWBFdWQp09te1QaaQP6tFY/8zICug7HEXwLc28NsZaXce5TPi3nvX9KXpH22v6/9pEihfJL3TrVpaj6PHBgX6D3mitLFunU6Eed5sn9I5+kjBoFYZ7p3asb5ZX7bUmWMKF0Um7AFBIgARIgARIggc+DgLezY+so3njwUs7dfCaVCv437cheUj5R/dx7E6totBFNsFZr1bpNdbXTu136JGXUuHfMusuXaJ/A5RcW16r1mknMWMpSRCEBEggWAlRI7cQI0/TtW7f0/FFblzSrWUMnef7vaXn28KSt5PafV9FhH9zYoeafvhAovQ2+qWr/tUxJAiRAAiRAAiQQYQk4ezpmKVm++5qUy5dKYsd03Bku2oeIx4/uR7wgYSWr1lTBIV0lWaw7kjP+sWB93nkSHpLEMR6IW7wE8nVlv2ikwVoAMyOBz5QAFdJgfvDVypaVjGohWgQtenzvkN25K0u+IBLeu3dqIxB57/tO/r3tN4ekbpUqklRZSykkQAIkQAIkENkIYK4SoloaAUQi2/2F9P10qZ1HqhVPF9LFhKv8s+bOL5ly5BXnqF6SO4H9U6V8fd/L/X9fq3UV/eb2BXZTuT7kmzN/UUmfJUdgSXmOBEjATgJUSO0EZU+yqGqSb+1KlXTSJ/ftG5V77uElY5edlg7jdsuwhSdk24m7Not6++q+vHx6RaerUaG8zfRMQAIkQAIkQAIRhQDWutuxc68cOnpKNmzaJqnUIC+FBOwh8FXxcjpZ1rinxSWq7SVuHj99K50GHpKv622SFr/sk0Vrb9gsJpaTh2SOe1any1O4lM30TEACJGCbgON+HLbz/GxTlC9aVNxcY8lbjwfy6sVNmxy8lDV08Lxjki9zIvmhbGZJEi+GWhjc5mU6wTPlDuyWIJNa27SoTF+2XDy9HA92YF9JTEUCJEACJEACoUOgWPESMnbcJBk2ZJCsWb1SR62khTR02Ef0UlKkySBJU6WVWE6vJJ2b7bVTPZU1tEm3vVKqSFLp3jKnpEruqiKZ2tcJy+h2/v/snQd8U9UXx39N0jTdg27KasveS5A9ZYkKMhREHCDIEBduBYE/ynbiYCggU0GmTFnK3htkrxYo3btN2/+5NyRN2rRJobvnfj5p3nt3nft9aXLPu+eeg8sxNRFYow48vHwpFMydko6P5WcCRUqAV0jzEf9j9evJ1mIjr1jV6j+nQinwLdC/fbBURkUlcuJrVRImwQmxt6CiuKjNG9S3qg4XYgJMgAkwASZQnAmIAPJ/UKD1ZUsXS8+VwrOl8E7JiQlYIhBEYV5E8nO4YamozF+95SYUShu8M6SOVEbFRaWVkzCVQisdHIk6wbV5DiY4cGICj0KAV0gfhV6WunWrVpNX4qKt+zI8fyMSAV5OmLfxPMJjkuDn4YCej1eyOnh1QmwoHJwDUCswELsOHsoiDZ8yASbABJgAEyg5BES8uyZNH8Oxo0fwy4LfYG/vgF07d+Dnn2Y/Ugy+kkOAJX0UAmK1UiQ/cmZkTTp08j6qVnbBuFnHERqWgMoBThj6XDV4l7Mu1I1wbnQ9LhjlKwdTd5ut6bJMl6lRox68vf1oIUUFbZpp3E9vb1/cunUNFy6cRmRkZoiRMg2sjA2eFdJ8vOEaOzW0qfFI08Zb1WpEbDKc7ekHuI4nNGoVdtL+0VkrT+KzQU3oH1Y4Gc89JSfo/mmrVa6ce0HOZQJMgAmUEQLOngFQqe1L3WifauQsx7T2aGZ8utI0yJiwG/Dz85UOjERswLlzfoKTkzM++Ww8XFxdyIT3f6VpuDyWfCYgzLrLkbIjkqttpFWt3wlLhLurGk91CoAjeSL+Y+N1jBq3H0u+agOVyrK5mocmTPYjTIU55UxAxLJ9rv8QVLTAqWaN+ujc6Wn8tfEPHDmSe3jFnHvjnJJKgBXSfL5zqckxeWrx8Tq+aBDsKesEl3fFKHJudCuM9j/4OllsJzlJp5B6enhYLMsFmAATYAJlgUBibDhthVCWuqGeuRyPav6OiI8MLXVjEwNKT0uV4xImul9/NRNare5cSdtSPvrkM1ZIS+Vdz79BiTAsIgmHQzY21pt4P9khAG2b+cq6DWpRKJf+m3HxegxqBrnJa7n9USuSoVLQ51RT+h6A5TbuvOY98/RAqYzapEbBLuUmVRfKvqk34zSVG2zStUixD0T3bn1w714obt68mteuuHwJJsAKaT7fvPQ0650LebnZI5xCveiTcDuugA1Stab/qPr8rO/p2mR5ycXRsvKatS6fMwEmwARKIwFtcmJpHBYOn4ujV6kcmmFQISG3STFNQ0BAAK5dy5yMamiFhRMTyI2A3QOl0Jb2dlqbAvwcKNRL5vdFmpiDka6UnGy9Qqum8DLadFtruyyT5apVqw0RstA1ahsUGZlzXnMwFOnxSHKsi0YNm7NCag5QKb5m2SahFA++IIZm5+BldbNNqnlh98kQxCXpvkD3nb1LprtKVPC2VsHMkH2RpQonJsAEmAATYAIlmoBWq8WmTX9h+IhR0nTXwcEBz/bph127dpTocbHwBU9Ar5BGp1he2dRL06mlP1ZtvoGYWN1Cwobtt+BAprvVq7joi1h8T9A6WizDBchZVEaiRWVUcFKl6sygy5O35NKS1Go1PMiSUSGeduSSXFxcIb7zCjoJOYQ8KlXOD1JEvp2dXUGLYtJ+7nRMivLJC4MG4/qtuyjnqTOxNUckOUH3z2QuL+u1JtW9UD/IEx/P3Y8P5uzH+v3XMeypWlIpzVqWz5kAE2ACTIAJlHYCE8Z/hlq16+CfvQdxiOKQiknRpAnjSvuweXyPSCA5SbfS6aqOsrqlTi390KapN54ZtgM9h/yNeSsu4sv3GpEzLeuNB0WIGU6WCSjSEiwXohI2GbrV6bjYvG1/0zc++o03ZeziP1atxdLlKzFg4CB9VoG/6/tesXI1fl+5Bs8PeEH22bHTE1i3YQvKlctZdxAFl/++ivbMf17gclasWAnHTp5Ds+bNc+xL5Pfp2z/H/ILIsP6/riB6L0FttmjZCoNffjXfJX6+QzB6taqC2IRUlHPVQMGrnfnOmBtkAkyACTCBkkHgzp1QPNWjC3x8fOU+0vBw9rhZMu5cyZTy3dfqYMSgGoiKSYGflz1seBJWMm/kA6l9/fzJk68PGjesg5deHoIvpkzHvr17UK16DQwbPgLOLi5Y+Ot8LFr4KyZ/OQ0ajQZvvzka383+CdHR0fj4w/ewbMUq7NjxNzasX4vRb7yFjh07Y+fO7fLBWP0GjTD+84lYteoPNKDjV1/OVHhF355eXujWpSOmTp8p6y5d8puMpZySkgzhrG38hEnw9y+PuLg4nD51Evv27cV33/8o5XJ0cMSxY0flSEaNHiMVQhdXN/zw/TeY8/OPhvsi2ggOrgZHR0f5PTlj+hS88upQ2u6nxfChr9D+27sYMXI0+vZ/HndCQzB92hQcOnhA8hjz1juIjsp0+tWgYSP8+PM8OJMDuRMnjuPzcZ+Qp+Pzhr7c3NwwafIUtGjZGrH0kOD1YUNw9sxpQ35+HvAKqRU0q1QJxOQvpmLE8CFWlM57EWGm6+XGymjeyXENJsAEmAATKI0E7t69A1ZGS+OdLX5jEma6/j4OrIwWv1vzUBKpKeJFh46d0KFTJ6kMRpICNm3GLGzdshkzp0+VCpZ/+fK4evUKnujSFc7OLuj8RFc82fMpqVA+3qIlzp87R0rdG+Tp2wk9unVG6zZt0aVbd3keGBSMunXr4/z5s9nkE6ug+w8dQ7/+A7B0ySKZL9oQdYSprHjQ1vzxFjKMVUhICD6f+D95/c03RiI8QvfwLTAwCGPf/wi/LVqAgc/1wfXr10z6EW0IveTXX0iRdHGWyui8uT+jXr36ctxC/qHDXsfz/Xrjxo0bGD3mLfj6+uGzcZ9jJyna06Z+aWgvLOweRo8cjsEvDkAVCiH5ypDXDHniQFiGtu/QCYMHPY9xn34MoVgXVOIVUgtkhU33T3N/wQfvvYubdGOzJkd3X8MlJdljK8RLmbNdtqFwPh2IPkUylkPftK3GAVImcjiptMKFub7eo7wrKKi06FOtcTIr06O0nW91yYtjfNTdfGuuNDSksrOHnYNraRhKmRpDanICUhIezrSptIKyd6a9Oip1aR1eqR1XYky4wdNuqR1kHgZmQ56iHVwzfVIU9vxCzGNEnyq15pF+y+1pT1zlarXg41ce3v4BcKI5lYYcEGlTU2nFKBGxpCyE3r6BkGtXcOPqpTwQMi3q4Or5YL6jgpLiXBZWEnM+JWwNjNK1KUiMjSis7rkfMwSEgvnd7J8prulNjBrxGqpWrQZXWmncunUTLl+6BOHJu23b9ti1Yzs++XQ8Br/0Mvbvo1XUajWkApacnIwD+/fKVU7RVvPmLWQvtWrVxsEDB+Tx2HfepBXV7ObhYhXxrTGjpAL77nsf0spq9v3vp0+dgqgvklCUF/+2EHv3/It4WjUVSTyME0rop+MmyNXOD99/V143/iPy16xehaGvDce5c2exauXv0txXKKvBNF6hBAszYZHEymxw1ar0/6HC/HlzEBuTOWcQXKZOmwkHWm21t7eHr58udJK+r5MnT0DEh163YTOOHD6Eka+bKqz6cvnxXnj/tfkhbSG3oaKbN/vHOfh1/lzspw+nWNrnVDoJiHudRt4dxRdV1iT+ScVGc35an5UMnxdHAuLHI5Ume+aS2P8ufvTEDxQnJsAEmEBBEfD09Uf9pi1QvU59s12o6HvKSbxowu9XoRIaNW+NuJhonDl2CEf27jJbp6Re5PlF4d658Pv3pcmuvlcnZ2da2UtB5cpV6EGIVjpME+ap//13AWKLwJDXXsd338yi4zt4+ZUhcr4vfiOPHjksFTVhBqug8FNVg6uifEAFfbNm39MoSoZQFmuG1ZL53t7eZsvpL144fx41SdEVi1/i4Y1IHuXKYdCA/qhUuTKtak6USvK2rTrlUl9P/24yZ30wfxVyi72zvZ7uIZVysSJ76eJFWaVBg4Y4ffqUvrosJ9po3rQhfl242HBdfxBDZszt27ZASzLZnTbjK6lo/75imT47X99ZIc0FZ506dVG1WjX4HvHD2++8B5WtDtfw10dh9Z8rcYZuanzkHUMLaRQ3LV28HsRTM2QU4IHoUyRjOfTdpSYlQMqUpqV360LJ6Os+7Hu6Skl9ASlJcWZleth2C7KeIz1J2rBxq3xiJezs9Un8iPyPTLW7kplGQkICImgv05BXBiOUbPJLWxKhMkpruIzSdq9yG89jzZpj9g9z0KRRXZNiARUqYO78hXClHz1HJ0d6svonxn/2sXwIY1KwFJzw6kQpuIk8BAqTkWbyG1rY8wsxjxF9alOSTOSwdGuE58423XqhwePtZFHRhhLpFGMyjbysZpDTGvHQ98GDXwoRkG6joJcNMmyUckLepGVb1KzbAPt3bMSJA7stdWfId9DQQ2Ux/6KwL2liElJIScz5RL/m5mBCBJ5f6G5EutI677EZ9HkQSTyoyK8UFxuLb76aIU11RVzjZUsXG/ZB7qYVzH7PDcDuXTshTGife34gxDWRfvrhe3xIMZCPnjgLtdoWs2ZMIzPfq7mKJR767jtwFKLPFcuXYhe11aVr9xzrLFwwX8q1c/deqfSKgn60F3XBoqVyzplOTp7EqmZe0pbNG8k8uTvWb9xCctvRqvBFaXYsFMkJk77AlcuZlgjb/94qPZnv2LWHwunam+wfFX32ePIpqbTG0Mqv2N/611/r8yJKnsrauLu7P/hmyFO9MlFYLH0be5kSCqlQTL/79iusX7tGLpMbg1g7+3vER19H6NVtxpcL9Di4gc7R0lMjRmbr5+Nhw9Csfj1ciNUiIrlwFFJvjRJBTir8vf8Avl64MJtMxe3CRPrn7E1hBYR5Q5/eT8mN33oZn3r6GbK9f1s62EhMTJSb0cuV8yJ7+2H6IvzOBIoFAeFWfvPWHfREtYr8EcuqkP489xdcvXIFX0yeKB0hiAcwX0yehM0UYoMTE2ACxZ/A25NnwyXyKFyidU5PClriVHU53PXvhbDQW1j07WSruvOlUB1PPDsInj7+srwyQwsVKaJkemRV/XRSStNIYUiniOwinTr0L7b+ucSqul5+ARg0+iMIL7utfTdZVSc/Cm0P6QkR+mXmRyOyNcfzCx2STz+ZKeOQuoWvsRj6JdGxvoxDeuLEQaxdl78rcWKRQbzyaiEknAeJVUSxMFEQSVhfipBX4qVP4sGOC+0PjYh4ePNvMVZnWh2OjMx0YiQekOhNg/V9CSvA9PR0ir9rfn+oGD8tK2erp6+fX++8QpoLSWHH/f13XxtKSG9cpJCKpxXCJIBTySfw6ScfQrzEJvSsqVv3J7Fu7WoIZVSk5UuXYM36TXIDuvjn5cQEigsBYY7Uvm1LNGzUGHPm/moiljDh7dipMzp3bCevx8fHY/26teje40lWSE1I8QkTYAIPS6BiUHX0GjxCt4+TVEoVrVLqQ3hY26Yig1ZRyZorjfbPahW2qNu0Fa2UueHPhbOtbaJYleP5he52/PffadqfWQcxrh1gl3qbLooHDqaLJGkqN1pF1yLFPlBWOnY801pN18qj/82q9FnbovjNLMhkTkHW0qr7oyijQl4xXmNlVFzLqoyKa/o5rjg2lwp6/Po+dY+h9Gf8zgSYgIGAcOF9+9Ytw/ktOhYx8dwpYDAnJlBSCHh6eskA2CG3Mz/Lt+k4q/OCkjIelpMJMIHiRUDsF31ywBCpjCpJqbQlxz55VUaNR6SkVVV1GrVBpr1VatRBzwFDjbNLxXFZml+sXrOUvL1eQYbaQ65+JjnWpvd6Jq9Uu4oGZXTDX7/j5s3cTWNLxYeAB2FCgFdITXDkfiKeYlQK8DEp5O5f1XCustVA+eBluFjAB6JPkYzl0Hdp5+RG+16FTKlQPQg2rM8rqHelrYL6tIXwdGlOpoLqNy/tZtAPZlToFYtVXClelbEJQ3KyzhGM2IdX2lbI1Q4ucHQz/WxbBMQFipxAcnwUEqLDcpXDhT7HIhl/lsV3mfgcc2ICTKB4EhBebl19KhuEE95ulbQfTMwxCiOl29pJD7tqe2eLv+VPDXwZTq7loKAVLlthPERmt/mRlKSSpirVqNnocSSlpOHw3n9ybNbVy1vKqxRy06uwkuxPoTEw0qaQ5+D7mQ//cpKjLM0vkslHxYKF3+WEgq8zAUmAFdJH/CDER4YaWkgjJwDCEYDY5F5YSfQpkrEc+r5Tk+Jpc79epsIxMU2nsC/krBYpicKpUSYbvUzF4d3EK1kuAokgyWJvnj4JV/UimXP1rS9TUt+FQ6Pier9KKtPCkFs407CUYh64eBefZb1SKrYflMbPsSUWnM8ESgoBnVOjzN9Q6bCH/t8La36RrtQ7Ncr9t6FFxx5wJ6+gGanJUNKqZn7PNBRk+iuU0npNmuH8sX24G3LT7C10sLN54NSI5H4wLzJbMJ8vppN8OqdGunuVLvbMWpHK0vzCChxchAmAFdJH/BAIxUufxA+IfNEKXGEl0Z9IxnLo+xY/XDqZ0mnDcuHIJHwXiD7TyGTHnEx62UrCu/CmK7yT6pM4FhP6rDb5+vyS/C4epKQkWlZuSvIYy6rs9++HyTAwwl293rue+CwLF/ecmAATKJ4EMsiqyfg3VP9bLix8CiNlkJ8E0adQuIzlMO7bjZz8NWrRVpaTymgBWGKRmkk7DjOQZqNCI/LAu2bhj8YiGI5TKKqAgVEh+njQ9ZmWIyODgFkOytL8IsvQ+ZQJmCXAe0jNYuGLxY2AI8VnCvDxgXgvrCQ8kD79dC9D/Nn+zz1PTmA2Sm9khSUD98MEHpWAiEkqXLs/R67tRRIe857s+TQ2/rXhUZvm+kyACZRhAo1atpejF/tG87JnVFgpzf9xFn7+bqpV9ISDJBEqJqhGPfhX1Dm9sapiMS7E84tifHNYtCIhwCukRYKdO7VEoFGtWmhapw5qBgXRywnl3KNpWwqZK2WoEBvngvOXtThP8aAOnTqNPUcf3g3+jFnfoFXrNvCi/Sc/zfmFVpJS0LJ5E+mdbMP6dWjTtj0OHjlBMaXiqN9YvDx4oCXROZ8JFDoB4Wxr954DsLVVg0J54cDh4xT/bDvee/dtKcukCePxy4LfpCLqTK7kxWd765bCC41Q6EC4QybABAqcQK2GzWUfwglRXtL6VcsQGREO5wf7262pK5ResUpaq1EzhJCDnJKQeH5REu4Sy1hcCLBCWlzuBMshCXRp1Qo927dDRT8/ea7RJMDLI4RCIJH5UIYCSkUKXJ0jUD3QC/7ezdChWTNExvTFxn/+wYq/aPXSynhnetzvvPWG/jDbu3CZLfKdKI6Tk6MTmThm7ufJVpgvMIEiJCBMyZs1aZCjBDduXEfH9q3h6+snH6yYc/2eY2XOYAJMgAlkIRBYvQ7UdhppTpuX1dEDe3ZSOIswtOvUDUcP7s3Sas6nSjLDTVMCwbUbYNvqpTkXLEY5PL8oRjeDRSn2BFghLfa3qGwIWLdaNbza51kEBgTIASsUseQp7xat9oTSj148rVj6kTMHfyiUEbBVXaHQK/ZI0XrR9QpwdymHAT16oFur1liwZjW278/f+FVxsbG0QhpbNm4Ej7LACYwdUk32cfVWAv7YdKvA+zPugB+qGNPgYybABB6WgG+FyrKqTR72tF6+eB77SSEd/sYHOHs6e+zv3GQRSq8IA+Pg6AyxdzUqPHfv4rm1VZzyeH5RnO4Gy1KUBHgPaVHS574lgWc6dsT/3hwjlVGFMgYa+71wcPqLFNGTFPczmlZHyVlUhm7vaFqai1wtVaviYau+AHuHbbB33E5xFu/C3dUFb774Iob178dkmUCxJ1AloPD2Qxd7GCwgE3hA4P0PP8b1W3dNXgsXL8uRT17L59gQZ+SJgIe3zopJYaVVUvj9e1i9fBEGvTISduTl+2GSvi/fgMoPU53rMAEmUIwJ8AppMb45ZUG0ft264YWeT8qhqu0ukBJ63GTYScnpcLJXUsBtYbabABtFssxPSsl0Lq9UhkHpsBPalCAkJTVBj7ZtoSFToq8XLjRpi0+YQHEgcCc8Cb7lNNh+oHQ84S8OTFmG0kVg+bLF+PjD9w2DshSqK6/lDQ3zwUMTcKdVSpFsrFRID+zZBXdPTxw9rDPTDb19U+4j3bZpDdp37kE+IqyZjpIbf0oOTs7ynf8wASZQeghY8w1Qekb7kCNRUpBnH/LwGhERQQpP0kO2wtWyEni6QweDMqrRHKag1pezFkF8QhrsbBVkphtH+0d1IXbS6TcpPjG7EwVR316RgMSEFujYvJkM0fLj8uXZ2uQLTKAoCSz680ZRds99M4FiTyAtLV2GKrJW0LyWt7ZdLpd/BKrXqis9fOtbFAqojQ3ot92WTHHpwKqkU0jt7HUxwa2qwoWYQBETEDHAnZycEBUVlWuUBhcXV9qGloqEhIRCl9haGQtSMFZILdDt/WxfTJz0BRISEyBu2JHDhzH23TcRfv++hZqcnRuB2lWryj2jokxOyqjIE0/GI6JT4GCvgp1agRRaGU1MIm97Qis1k5SqUDLj/ZeU0nbo3rYNrty6hS179pgpyZeYABMojQTUDi5WrraUxtGX3DElx0cb4mU3a9Yc02d+LX9n161bg9OnTuY6sLyWz7UxziwQAkFVa0C89OnY4X2IJ8/1bTt111/i9zJEwJnmdMH+LoiKT8HVO7rFhvwY/ug33kT3Hj0RHx8vH2qtW7saSxYvyo+mLbah71tEZBAPWVat/B1Ll/yGjp2ewCefjsczT3VHWNi9HNtZ/vsqHDt2FB99MDbHMo+SMWnyFOzetQNbNmf3sG+tjI/Sv6W6rJBaIBQSchs9n+wqA8o7UAzMufMXYtCLL+GrmdMt1OTs3AgYm+maWxk1rissguITtPQyvprzsZL2kwolV5jvDu3bF0fOnEE4PZnixASYQOknYKu2h1L9cHvUSj+d4jvClESalFL4kMOHDsqVBGGNVKtWbfy5ZoMMt/XvP7vNCp/X8mYb4YtMgAkUKoEO9X2hUZPbZEoOdkqcuR6dL/37+vnD29sHjRvWwUsvD8EXU6Zj3949qFa9BoYNHyFDDS38dT4WLfwVk7+cJuPMv/3maHw3+ydER0fTVoH3sGzFKuzY8TeFR1uL0W+8hY4dO2MnhVGbNGEc6jdohPGfT8SqVX+gAR2/+vIgg9yib08vL3Tr0hFTp8+UdYVCKlY8U1KSpYXl+AmT4O9fHnFxcfJB2759e/Hd9z9KuRwdHKVCKhocNXoM+vTtDxdXN/zw/TeY8/OPhn5EG8HB1aTFgY+PL2ZMn4JXXh2KVIoMMXzoK7h37y5GjByNvv2fx53QEEyfNgW1atfBgIGD0OPJp/Bsn36kpP9mMo6FC34xyFi5chVMmTYDderWx43r19C/b286rosxb72D2tTOqZMn8Xz/Zw3y5NcBK6QWSO6nD4s+iQ+V+FHs0LETK6R6KA/x3pVCu9QODoaCTHCz7hnNqbnY+FREx6TA092OvkAsf2yFkqtK86HmKqBvly5g092cyPJ1JlC6CMRH3S1dAypjo/l721aIlz4lJSWi/3MD5W+v/prxe17LG9fl46Ij0LDJ4xAvTmWTgF4ZFaOvHuCSbwqpaE9tp5bz9A6dOkllMDIqEtNmzCLF7jtcu3YVP/48D3//vRVXr17BmDffhrOzCzo/0ZUUxkTMmjkNj7doiR9mf0dKHYX9I1PbHt06Y+2GTejSrbuMSR8YFIy6pKydP39WdGeSypXzxP5Dx2SItRnTvpR5og1RR6FQ0PY/XzR/vAU2b9qIkJAQfD7xf/L6m2+MxJdTZ8jygYFBGPv+R5j4+WfY8+8/qFCxokkfoo0qVQIxdcpkTJr8pVRG5839WVqVCP3kOimRQ4e9jm5PdMBb77yH0WPewvsUk3zsex9g08YNWPDLPAQFV5Uy6cdhLKNQ4n0oRNyrLw1C3fr1Kb65Cp9+9jnuk2Voz+5dpPwmAuXTCXvZzSPINm3b4fjxvLkrz2MXpb54j3Zt5RjVdmcsjjU2LhX9Ru1Et5e2YdS4g+j84jbMXXbRYj1RQG2n+7IQprsu9IXAiQkwASbABEoWgbt37tKE0frv77yWL1k0WFomUDoIJKVk+gG5cCsmXwclFMzvZv8slcJRI15D1arV4EorjVu3bpIKmdgK1rZte+zasV0qo4Nfehn79+1BApnhvTBosPQ/cmD/XjK17Yz2HTrhr03boKI9z8JiQ5/GvvMmpk35Qn9qeI+NjcFbY0ZhNq1qvvveh6hbr74hT39w+tQpiPpCOaxZsxY2b96IvXv+JRN2neny3bt3pFL56bgJEB7G0ykGb9YklM41q1fh+rVrOHv2jDQPFntUhbIqzG+FgrluwxZ0IPmDAoMRSiulqalaUoJvkyJ9ztCcuXHUI5k3b/wL+4nBnJ9+QHh4OA4dPACh/2zethPVa2Sa3hsayocDy0tN+dBJaWni1SG6D/aokcMMQ3L3r2o4VtlqoHzwMlws4APRp0jGcui7tHNyo1ieQgVBteUAAEAASURBVKZUqCiGV2EkJTkgUtnawt7Zw6xMwQH+CKoUSN5yE6BxCCWR7HIVy9ZOgREv1kP7x33JqZENzl6Kxovv/Ite3YPhQ55Kc0+J9I98H9rUAPTs+jT+2ntQFs+guGlRoVdyr1rGcsW+O0c3saJsfapUoRICKwchwK88PNzLma14P+I+bt6+gUtXLyGEvhDLWvIiT5TBgVVRMaAifL19zQ4/Pj4Ot0Nv49K1S7h42bqHLfqGkuOjkBDN3nr1PMS7s2cAOUhjpyfGTErCcUzYDaSlJksztb82rJMrG8L87dk+feU+LP0YhJmdeCi8YtkSeUmYteVWXl+vpL0rlLZw9alsEFtFZuhKtZ2cYxguFuBBuq0d/R9poLZ3NvtbLq5LmbQ2UFB80EJJCnKERC8HV+9sMrl6eevkEXLTq7CSUvSn0Bjk0aYkIvb+rcLqvsT2s2Z/wTESPl6Eya4+OTk7kzlqCoQpqpaUMhvypnXixHH8998FiNjcQ157Hd99M4uO7+DlV4ZIRUxsGTh65DDFvXWUZrAKcm5alVYVywdU0Ddr9j1NmyaVyZphtWS+t7e32XL6ixfOn0dNUnSFQyN72hYokke5chg0oD8qVa6Mz8ZNlErytq1b9FVM3k08kD/weC3kFua5vZ7ugVu3bhpWNMUKsCONR6zU5pbEXK1h48YQ2xSDacxXaCV5/fq1WEbfuYLP4JdexbSpXxoU6NzaykseK6RW0urStTveoKX9F+hDcj8scwIYHymUKl1KS0ulLTD0Ii9ZhZVEnyIZy6HvOzUpHpkyFY5Cmq5UUJ+A2A9kTqa6LRtKmdTKq/JdL2tO7/b0u9K+uSd5N9LKdm3o3V6dASfSRfVjz6muuG5jc5nK+aB6eS/8/uBemfwD51a5DOVpkxPN3i9zCOrVaYQmjR+nfRq6OHSiTEYqheRJj4ciXYTlsUG6Qo10pTM8XF3pVRf1ycPizVvXcOTofpy/cNpcs6XqWuVKQWjS6HH6Ms98kii+GzS2CbBT0YOSDCU9LFEgMdUR9ho7BJP5jXi1bNIMBw/vwaEHoREsQUkrxO8aS7IUl/zE2HD6wdXtTSouMrEclgmI/w+RxP6mqdNm0hP9UJSjMCFr16zCr2Ripk8tyJxOOCzRJ0vl9eVK2nsG7ac1/g0V/+tiblFY84t0ZSpEn0LBMpZDz1FcF/lKcd8eTIT1eQX1nq7MkA4NUxKis8nkYGcj5UlXkNwPPksFJYdxu+lpNDchDnpG6XTfOBUvAnGxsfjmqxlk3jqFHN4psWzpYpw9o5uH7N65A/2eG0DOfnZKE9rnnh8IcU2kn374Hh9+8hmOnjhLTk1tMWvGNDLzvZrr4MR31r4DR8m0NxYrli/FLmpL6A85pYUL5ku5du7eC6H0iuRHe1EXLFqKCFqZTKfFpPnz5uRU3ez1LbTiunVLd6zfuIXktsPlSxel2bFwsvTasBFo3LipyXdq1kY+H/cJvvr6e5w4fUEq8m1aNZPnKjLdFfNnsWqqX83NWvdRzm3c3d0L6dHWo4hZtHWfevoZjBs/CS8NHkibeU/kKMza2d8jPvo6Qq9uy7FMfmcEN3hVNvnUiJHZmv542DA0q18PF2K1iEgunC9Jb40SQU4q/L3/gNk4oFPHvosaVarA3nEnfTFYv9frVmg8Vm2+gRNnIzDgmUB0bJGpDGUbuNGFjAw7xMc+g2R6Otb3zbeMcvgwrwTKlfNG1y69EBhYXVZVpMXCLon26iaHQqUNN9uc1tYbqWp/JGuCkKHUrVpduHCKnratIM/VmZNKs5VL6MVu3XqTwt5KSm9jkwY/1xvwcg6Fu0MYPSDJ/nUbl+yCyDgv3I0NQGySu6x3914ImfOsxI2buf/4lVBELDYTyJWAMLnzotVRYWaWmJiYa1mRmdfyFhsshgXenjwbLpFH4RJ9tFCkS1WXw13/XggLvYVF307O1ueg0R/Byy8A6rQUikVaOA+8tWQ2mWajwr7tG7Bv2wYTmYQsQiZXdRRa+2b3ImpSOB9Ptof0RILWETM/GpGPrXJTBUFApVJBvPIavlGsKgpFrKDCsWg0Ggr3opUv/bhVFA7JxcVZhpvUX8vruxirM60OR0ZGGqqKvtJo1Sg1VfcA0JCR5UCsInt4eJCjpxgZikack74oHT+J+gWReIXUAtWBL7yIkaPG4Ln+vXHxv/8slOZsSwT8H5gvKGxiLRU1yY9NSKXwL8lITk3H9VvWKzI2Nsm0WhJPIWMcTdrjk7wRqFGjLnr3elE+XbRJI3PrhNPQJFr+f1Cl3oN42ccfR5J9TSQ61kP16nXhX74SealbiBs3So/ptDuZLfd6ZhDKl68o4VYqdwEVy10kcy5trrCd7GIgXhXKXcb9WD9cvU8Kv7c/Bg8ejc1b/sTBg//kWp8zmUBpIyD2YYmXtSmv5a1tl8sxASZQeghkVfqsHZmxRYa1dfJSzpyCLOKRRkRE5KWZbGXFeI2VUVHAXF/ZKtIFoYCLvaP6JM4fVR59Wzm9s0KaE5kH17t260E24wHYtt10Uti1c3ucO5fdw5aF5sp0tpr2lrrQkyb6qMs9pHmBUTPIDePHNJDhX3q8sg1N65dD3eq61SRL7Shov2p6OiukljjllF+HTHR7PfOCzLZNugrHmANklJu7kmWuLU3iOdgm30Cic1M4OwXg+eeGYvmKeeT17pK54iXqmlg97tf3JXh6+sLZLhJVfU/C1T7zqaS1g/GklVTxuhJWC9fDq6HLE73oia4t9u7dbm0TXI4JMAEmwASYABNgAiWKACukFm7XoIH9LZTgbGsJCIVUl2ysrZKtnKODCh5uGty5l2i1QpqRwR/zbCCtvFCxYqBBGdXEn6GVzkfzMK2kfaZO0TsR79wcsA8mJe4VzJk7k57i3bdSouJXzJY+18/2HiSVUWGWW6f8QfLIl7s5jKVRBHrRnhXaa3rxbn107PAk7ZmLJScMhyxV43wmwASYABNgAkyACZQ4Arm7Wipxw2GBizMB/e45GxvrJ+vnLkfh6Olwg8+Efw/fxZ2wRNSu5mb1UPPSn9WNloGCYv/BUz2fkyO1S/jvkZVRY2SOsfthm3QNdnYaQx/G+SXpuEuX3uRqvTyc7SNQL2D/Iyuj+rEHuF9FVe9T8rRb1z7w9jLvpVdfnt+ZABNgAkyACTABJlASCfDSUUm8a2VI5qSkNHw0/Rg5ttDC2dEWieSc6dM3aA+ij849dhlCUehDbd+uO21i94QqJRQOcQdz7V+EybocEo17UYmo7OuM8p6WTaQdY/YjxtYDYhW2ebO22H9gV659FMfMmjXro2GDZuRYOB01fI/TfuXcN/vfDInD6YtR5HlYg8Z1PUh5zf2ZYIDHZXJ05Io7MRUptlhPLF2aN297xZEZy8QEmAATYAJMgAkwAWMCrJAa0+DjYkegYe1y2PhLJ0RGJyGRlFM/bwea9D+8yW+xG2AxFUgoos2bt5PS2cdZNtM9eOEujlwIQxU/FyzfcQk+7o4Y2Ck419GJfagOceQe3bUdWrXqjMNH9ph4mcu1cjHJbNmio5SkqtcZ6ZgoN7FSKBD42C+PogPF1D11PgpfzD6FP2a3pT2iuSul1X1PkLMjXwQH1US1arUpdtqZ3LrhPCbABJgAE2ACTIAJlCgCrJAW8e0SrpTtaEIqlCxtWjpStLTUxMmEACGS+0ZNLvJJgRJo2qSlbF+dSF5itZY9vTWr4YPmNX1knQ4Ny+PdH/ehf/sgWgHM/eGBbfItcnR0i/aTBqAJ9bl//8Otkrq6etAeTh84OTpBbWeHlGQRDzX3lJyShPv379HL+vBDxi1WrVqL4oVR2APa6ylWMi0ltVqJpV+3odAvupJvTTyEfw/fQ7vmuZviilXXip4XydFRbYof1oIVUkugOZ8JMAFJQMwr1MIKg75z0tIzkMrzC/5kMAEmUEwJsEJahDdGSZN1Z42tYYJqZ6uALf1gxCfl3YNpEQ6Duy6FBGrVbihHZUcKqTVJr2SJsnciEuFkT/G+LCij+nbVFMs01S4AtWo2yJNCKvafNm/eFrVrNYTwcvuwKS4uBmfPnZDhVfLiXEmErxGpvPs1+W7NHz2nDJocXr0ZB+9yGmuqobzbdamQilVSBwcniocWZ1U9LpR3Ap3bNkWXds1Qv3buK/x5b7l01rgbFoF/D57EyvU7ERYeVToHWQJHpaYH3Y4a0yleEoVNS0zm+UUJvJ2lQuTWzeujSgU/CEeAWeNgVqnoh9MXrmLvodMIvVtynRyWihtVRIMw/bYqIiHKarcOapVURtX27lAoaVUnMRxqpEJLKynJZN7HiQkUBYHyFCPU2ckFirRYq1ZH9TKK/ZBK0rgu347C4CcolqaVSZ18E/HpKRS/sxKcqF+hIFpKDWjfZpcnnoFabSeLZjxYdRTvNuQ9S3+eWzuinEiiz8eatpavnbs24Z9/tugyLPytXq2OLOHlFGKhZPbsaXPOoGEdd9Sqap1zLpUyhcLBhJDprr802z1+/ED2RvnKIxGoHlwRo17ujRpVKz9oJwPxUffoezkO9s7lkBibGZPtkToq4ZUVChWF0dKSqbkd7F094ePlgWd7tMPTXVtj7uJ1UjEt4UMsFeLb2+mmdyl2Pkin+YUm4QY09NA7VSussfQuBkvFUHkQxZyAo4M9Jn0wFHVqBOYqaatm9TH8xWfwzdzfsW7LnlzLcmbpI8AKaRHeU/0KkpunbmKbaOeC2PD/oFIokAxWSIvw1pTprv39K8jxq1Lu5ImD0AmPXLyH5rV84O1un6eVftvUcFol9UMlcnB05uzxXPvt0uUZUh7byDJC8UynbzFrFNCcGhWKqQ39uynIWr5d267w8vLBqlWLciour3t7+9FKpSPs1XFwtIvNtWzWzO8Wnkd0bAomvNUga1au5x4UUkYopAEBlcAKaa6o8pzZoVUjvDfyBSjpoUpKYgzuXTuDqNAryEjn72FLMB1cveBZsRZcfSrJyWSlAF/M/HGZpWqcX8AEhKuFNKUDhdiqZuhJKKW29BnXpvHn2gCFDwqcwAejX5DKaGJcFGLDbtBCjCLbd6vGyQ1p9Ll09wvEG0P64sr1EJyhFVNOZYcAK6RFeK/FM0oxiU9NiYOt2gnp2qQH0vDTyyK8LWW+a735qzI10moW96KScOj8XXRuHEAOjeyRlMcVfiXtUxUKqaubR659dujQw6CMCkU0PXd/QLm2pc8UyqwIVZtBCqlCmyFNgLVaLdauXaovku3d84GJsIPaemVUS+b4k747CRcnW0x6uyFs8uicy9FOt3JczuPhzZOzDYQv4LFGtfDhGy9KEhG3L+L2uX1MJQ8EEqLDcOPULriFBaJCnZbo1qE5meNp8e28P/LQChctCAIKsjxRpKfS96QtWbzo9tVn8PSiIFBzm7kQaN64NtK0qbh6dAvSyHdDbik1ibayVKmHHp1bsEKaG6hSmMcKaRHe1BTazyH2jUbepRUhsblMzIgpJafy08sivC1lvmsXZ1fJQJGRaDWLncdvY+/pO4hJSEUqPeW8dDsGvVpVQcNgT6vasEnX9eXk5Jxj+Ro16kHv1TZNKJD5oIwadybaS7e1gYLC5Nav1xT37oXkuKfVkcx8RdKocv9xNW7/wpUYbNp1GxXLO6L/G7tkViPyIv3B67q9qMZlzR2rVboJZW6MzNXjazkTcHDQYMyrfWSBsGuncefS0ZwLc06uBKLuXIE2JRFVGnXGU11a4dK1W9j49/5c63BmwRFIJbNcW6UWLpGHSCG1gzItQXaWQs4TOTGBwiaQRt8NlpRRIVN8VJgUrVbVyvK9JP5xcnamxSYbxMbGwNHJiab3NoiLtf7hdWGNWUHWmG5uboiJiaUIBzTxMZM8PDwQHx+PZCscRZqpnqdLrJBaicve3p5M9BwQHp5/+4gSpHMBlVRKQY8txYNL4XCA93dYeVPyodjuPQdQqVJlk5beG/sWli9dYnKtLJ34015OkWzy8Ci9X7sgiNdDpwfefnx9AnJsok2bJ2ReujJvyqjwuCs871qT9CbANI9Dh/Y9cPLkEbMOhJwfKM7Jada1K/quXc0N+//sYY0YZssIawqRPDy8dAdGf+vUrYcNG7caXdEd1qoRhPg4doCUDcyDCwN7d4Y37YGMi7zDymhOkPJwPS4iFLfO7kVArRYYMrAntu06THsW2YlOHhDmW9EEco4o9pGqVWlSGSU/ahBzjnRxwKlQCPD8IhNzarJ1D7gzHpiT34+IzqychyPhMKlrt+54okt3VK1WDZEREZj9/Tf4Z7fuIXBuTa1YuVr6pRj4XB+phM386lvUql0Hw4e+gmvXruZW1SRv3LgJcHF1xTCqN33GV3B1dcMAarO4pYoVK2HXv/ulbHv+/ceseMdOnsNHH4zF4t8Wms3Pz4v5vMaQn6IVj7ZUKhWmTJuJ/YeOYT1N+MSkz8/PP9+EEz8QkXEp8hVF78m0asqpcAkMHjQAwVUCDK/fl5ft/U8R4ffkDbDJKLyJpA2ZlokUFW3+gU+d2o3g4+0v94oKhdTalJychP/OnbK2uCwnVkrFS6lUoVGj5mbrxsfrlDx7W92qg9lC+XzRxkb33RAVZT4MT0xMtOEzrP88szKa803QaOzQq3tbWeDORV4ZzZlU3nIiQy7RKsddMk13RLeO5v9/cmvx/Q8/xvVbd01eCxeX7e/k3HjllJdODxTjk1IN84vo+BQO+5ITrAK8zvOLAoRrpunPJ07G5xO/wPhxH6Nr5/Z49eVB9FA5gZyw2eKdd9/H3v1HMP/X39CocZNstatVq4F69HB38EuvomGjxnjmmd6oWbMW7OiBdoOGjaQecObcJSxZ9geqV68h648cNQbHT53Hpi3bsWPXHlkvPiGeVkdNV0TFSqPQH0T5nNoS9T/+ZBxW/rkOgYFBsr3ZP87BgcPHMevr7+Rqq7HQ4ydMwm9LVuDPNRvkuJ7t00/2sXrdRvj6+lE4SQVGjR4jlc7lv69C08eayeovvTwEQtH8deFiQ3M5yaQvIFZSv5v9E46eOCvbE4p6fidWSC0Q7d7jSfnBbd60IR5/rBEOHTqAj+gDw6n0EBCmCsIFuf6Vns4PBYrb3Q0O1n3559lMlxYDYq3w2pt1vHqlt1atvDkeytpOYZ/rP8P698LuvyT114z2jtrSA8f4yLtIjLlfkkQv9rKG3zwvZWzT/OH+f5YvW2zycOWVwS8U+zGzgEzAHAGeX5ijUnDX2rZtj8M0T9fSPvZ33/sAI0a9AWdnF7Rq3QbDXh+J4a+9QpaO9/HZ+IlmhdixYzuGDnsd73/wMcSxPoWF3cPokcMx+MUBqBIYiFeGvCat68a+/yG2bt6Ib76ehcCgYGlJ6ePjC3//8vqq8v3LqTNJsdVg/ryfYa4tUUjUb922HS5duoikpER5HhMTg+lTv0TvZ/uiVas2Jm2KfqpUCcSvv8yDs4szXnl1KObN/Rn16tVHh46d8HiLlnIsz/frjRs3bmD0mLekovrZuM+xc8ffmEbt6lNOMunzXxg0GO07dMLgQc9j3KcfIyXFcqx3fV1r39lk1wKpbt2fxLq1q5GYqDM3EKaca9Zvkk8ehOKisrM3tGBDTyPEi/4YrhX0geyPOjGWQ9+nDU22pExkDqkvp88rqHdhKy/6UtDqUlaZVGqNTh4QpwcmmgUlh0m7dD+ETAZ5SEkRe530SXz59HzqGVy9egUrli1BBJl4lLWkUCihsFXLYdsoaQlS3B/hdKeQPsvy80l9KpS2mffJ6CZUCawuZcpQ0edLb7tqlJ/ToYbM7Fu06ZRTdu7XycGRj095OLm604+D6V5RyUoIIj5beREo9x5zzdUzsqF7pf8sp6eRCd6DvR/29g6YPvNrJNB+jyNHDmH9urXSa2GujZbhzDo1qsjRx9y/VYYpFMzQ4yJ1Vha1HzDOay9ptM9RPFQpy0l8ryjpN1OfxP+/7jugcOYXwhOqrs/M7xu9LOJdfA/JfHpKqA+hZZxfEMd6mZS02qX/DtT3o6IQYFIe4lZY38mibx2jzPlFBs0L01IzJ+s8v9DfocJ5T0hMoNBo1clRqC3qkmLWpk07qaSpVEppdnvy5AlSxrajb7/n4OLiSvsnTU2DT5w4hoqVKqFe/Qb45KP30amzbquQMLudStaSDo7kXZ+28Pn6+SGgQgX5WVuw4Jdc94g2btIUGo0G06d9KXUJc23p6Syithb/tlB/ilMk7+8rluFTUiLr1a+PzZv+MuSJg+vXr2HN6lUY+tpwnDt3FqtW/o5PPvuc5i6+CK5ajcLaOWHdBl0oOzGPCa5aFUrSDebPm4NYUnb1KTeZRBnBTZhDr9uwGUcOH8LI11/TV823d1ZILaD0JfPcbVsz4xLeunVLLt+70/J7+P375KI6yNCCytYOrp7V6MlMvOFaQR+IPkUylkPfp8bRFSK/sqsaLsmF4yjJiwJx0/89xe3zyCaTA5nI6eS1o30sjfViFvi7jaIChdLJZJRBpkz3r5+R/S5ZvAhJiUn0j6ZCl67dMWDgIPTo2lluRi9wwYpRBxq6X47uPlIiOwcXeZ9S3ZogI0U3sSxoUVM1gfS5oVh5zu7ZPjcqerjh5u4l91jTHKjQkg3p52KiVSGoPu5HmK6gObr5SEahsbWgsSucCWJSqqPs01bjYGCUHB+DGHKjH0FPfL/79it6D6ewNd7yB6npY83lD2qhASsmHYnvHoWKbp6FVJkmHQqa2Nqq7eFXNbv5loXqnG2BgJiUq+2d6HvF10JJXXZiTDjS03RKaLNmzeXDFfEbu27dGpw+ddKqNkpTISX9dhv/rovfzgTvxyGuF0ZKVZeT3zfiHhrLoe9bXJe/5/Q/pHfIqM8rqHcbioErJq0i1FBWmVy8vKQ88fDF5YTCm1+k2HhQv5nzCy2tHEWGXJQIeH5RUJ+EnNvdtXOHVM569e6DMaNex6Gjui07J44fl6uMQpmsXLmKVE6zKqP6VidPmgAvb2+5j1R/TcwNxdxRWEvqTV1PnjghH/qK1cuL/13QF832fuXyJfz7z24Mf30UxJYwc21lq/Tggni4IlY8hcJ4JzQ0p2JSNkPmA/8fR48cln31eroHbt26ieaPt8Cli7rPZoMGDXH6tI6NqGdJppjoaLRv2wItW7bGNNoX27pNW6koG/rMhwNWSC1AdHVxMfEuJfakieRKT1bEj6VY0dGnlyZ/qz8sxPd/ZV/Gcug7/3blRv1hkbxnlSmJ9scWDaMdJowyjGIL/jj7OwObX+bPxT97D6Jlq9bYtHGD4XpZOBBM9PdrzWbTJ3CFM/79hm70cugvCAPq2Qvm6E+L5D2rTKfOn4V4FVXSy5PxwDN3SEgIvpo53SDO7t075T6X8Z99TN7zCm8vsEGAIjzQOJeTipAlEaYv3ElFxItTwRA4JJt18vCzqvnkhGipkB4+dBBRUVHSKqFWrdpyf9TLgwfKCZ1VDZWSQmKlTf9/Lob06+xvimxkxnLohVj3+zL9YZG8Z5UpKiKqiBiZzi8oToKBB88vDChga2RNmHk1+5G00KLLnh46b//ZS+R+5etZM8hc1h8ffvQpPvl0POLIqd+N69ewdetmPNnzaezZd5i28cRi1oxpOTa0Y/s2mScWKfRp+99bIfZoin2eGlJqL1w4Lxcupnz5Pzw/4AXUpxVVkcxZdkRGRuKrWdPxdK/etL/1f1hOlnhZ29L3k/VdmAQLZfTYsaNy9TNrfm7nW8iUeOuW7uT/Zot01nSZTIF7dOssFckJk76AUJT1ydz49HnivceTT0mlNYY8BwtZ/vprvXF2vhzbuLu70xoAp5wIiM3Cixb+avggiCX+U2f/Q6P6taTHXWuf/ubUPl8vAgLC2QM53TCXxKZzYY8vTCTKUhLmT3YOD/cDUJY4FbexpiYnICUh0+xGL5/wnic8PNYWXnbJhLcsJWtXSMsSk5IwVuMVUmN5xQTOw8OT9m8NM75c6o+FSaxYCeRUsgika1OQGGt+209ZnV9sXfGVjEN6Ye+fFkO/+AQ1kHFIN+88iOmzlzz0zRfmpS60oCS2YImVTX1yJJPbh/1NFKurYquecQiU10eMpgdokXK/ZucnuqJFs0YQCqilZK6trHWEczfh4fbPVX9Ix0xZ8609F85ZnSkUjbFcIhxNVqeHlmQS7MSeqaz1rJXDUjleIbVAKDQ0RNqJ64sJm3HxYdTf2HgKF8CpZBIQk/bKVapId+DiC0uYIAib+wP795XMAT2C1FpyyS5enEomAeHIQeyBvnHjOnkHVkqTpWNHjzz0D2/JpKCTOqfJYEkeU1mW/e6du9lCc5UFHsJqhecXJfdO8/wi897tO3wajzepgyoNOyGW9uyLvcDGlmqipMbJTZq/uvsFyoob/360eZhYqTQXpvFhlVEhlN6XjBTwwZ80+j8V3mujSAkVzoP0uoFxGXPH5trKWm7Z0sXSxFZ4CX6UJKykssplTqm0JNOjsLNGflZILVASG4jfGPM2fv5xtjQh6v/c87SpeKN8SmKhKmcXcwJik/mMWd/A0dEJ0WQi5uDogPfHvi0n9cVcdBaPCZgQCAoOxpz5CxAdHUX7odW4TftFhEdATkygpBHo07c//tqwTq4IeNK+wGf79MXSJb+VtGGwvGWcAM8vMj8AU75bjEkfDEWdGoHSv0hmjvmjr+aswJkLV81nFrOrQjcoqCTmo2Upscmuhbutj0Pa+Yku5EUrTtqei/0sIbdvW6jJ2SWBgNgwLpzAiB8PselbmGNwYgIlkYAwURIxkkUMNLG/nRMTKIkEli5fCeHUKJQceJTz9MTaNavIbO29MrcXuiTeO5bZlADPL0x58BkTyI0AK6S50THKcyL7aydaSbtzJ9ToKh8yASbABJgAE2AC+UlAxA30otVRsWXGkhlZfvbLbTEBJsAEmEDREGCFtGi4c69MgAkwASbABJgAE2ACTIAJMIEyT6BwAuiVecwMgAkwASbABJgAE2ACTIAJMAEmwASyEmCFNCsRPmcCTIAJMAEmwASYABNgAkyACTCBQiHACmmhYOZOmAATYAJMgAkwASbABJgAE2ACTCArAVZIsxLhcybABJgAE2ACTIAJMAEmwASYABMoFAKskBYKZu6ECTABJsAEmAATYAJMgAkwASbABLISYIU0KxE+ZwJMgAkwASbABJgAE2ACTIAJMIFCIcAKaaFg5k6YABNgAkyACTABJsAEmAATKM0EnJydIWIpi+To5ARxXlKSWq2Gh4cHFIrCVw8Lv8eScldYTibABJgAE2ACTIAJMAEmwATyjYBGrUTbej7o36YSeresgGD//FPYbG1t0fOpp/Ht9z9h09YdWLp8JVq3aWuV7CtWrsbqdRvh6Ogoy8/86lvZRuXKVayqry80btwETJ/5lTydPuMr/DznF31WsXifNHkKnujS1awsHTs9gXUbtqBcOU+z+QV5kRXSgqTLbTMBJsAEmAATYAJMgAkwASYgCdQLdIOvmwawsYGtUoHGwR75RubziZPx+cQvMH7cx+jauT1efXkQEhISoFLZ4p1338fe/Ucw/9ff0Khxk2x9VqtWA/Xq1sPgl15Fw0aN8cwzvVGzZi3Y2dmhQcNG2H/oGM6cu4Qly/5A9eo1ZP2Ro8bg+Knz2LRlO3bs2iPrxSfEIzY21qR9seq4YeNWiPI5tSXqf/zJOKz8cx0CA4Nke7N/nIMDh49j1tffydVW40bHT5iE35aswJ9rNshxPdunn+xDKNW+vn5ylXPU6DHY9e9+LP99FZo+1gyDX34VAwYOwpRps/DTnPlo266D7Gf0mLcw75dFklVKSjKSkpIgFHFR78z5y9i4+W+4uLhCtLdz914cPXEWQ18bbizOIx+zQvrICLkBJsAEmAATYAJMgAkwASbABCwRqOLtJIv4BNaHUm1nqXie8tu2bY/Dhw5Am6rFu+99gBGj3pDms61at8Gw10di+GuvIDz8Pj4bP9Fsuzt2bMfQYa/j/Q8+hjjWp7Cwexg9cjgGvzgAVQID8cqQ11CpUmWMff9DbN28Ed98PQuBQcFwcHCAj48v/P3L66vK9y+nziTFVoP5836GubZEIVG/ddt2uHTpIimEifI8JiYG06d+id7P9kWrVm1M2hT9VKkSiF9/mQdnF2e88upQzJv7M+rVq48OHTvh8RYt5Vie79cbN27cgFA6t2zaSEpnPDZt3IBZM6bBiUyKRb9169bH+fNnDefCZPeLKdPhQ4rtqy8NwqpVfyAoOJjG+xF+W7QAA5/rg+vXr5nI86gnrJA+KkGuzwSYABNgAkyACTABJsAEmIBFAlfvxckyd6+cQBqtxuVnSkhMQLVq1WGrtkVdUszEiqRQRtu1b49r167i5MkT2EmKZoMGDeWKX9a+T5w4hvv3w1CvfgNsWL/WkO3q6oap02bi+x9+lia9vn5+CKhQgRZ5bbBgwS84e+a0oWzWg8ZNmqJL125Ys2YVEhMTYa4tfZ1F1Nb7Y99GSEiIvHSK5P19xTJER0eRTPX1xQzvQilcs3oVrl+7hrNnz2DVyt8RFRUllWJhfisUTmGC26FDJwQFBiM0NASppKyHhNwmBfScoZ2x77yJaVO+MJyLA6HYbt74F/bv34s5P/2A/y6cl0rop2SSvHDxMqSnp5uUf9QTVkgflSDXZwJMgAkwASbABJgAE2ACTMAigZNXonAnKgnIyEBqWjqOXIqwWMfaArt27qAVzCD06t0HY0a9Dq1WK6ueOH6czFh9YW9vL01RhXIaExNtttnJkyaQye8niI+PN+QLM9cMkrd504Y4dvSIlP3kCVKo09Lk6qVYjcwpXbl8CT//OBvDXx8lTWnNtZVTXaHwCsVQKLF3QkNzKiZlM2SSnCIdPXJYKp+9nu6Bpo3rYey7b8rrYvVV7JO15LgohJTXho0by1VfIUOFChUxaEB/DBrYH9FR0Xhh0GDZXn79YYU0v0hyO0yACTABJsAEmAATYAJMgAnkSCApJQ27Tt7F8t3XsWrPTVwKMd1vmWNFKzK+njVDrmx++NGnOHH6AlJSUnCDVhG3bt2MQwcPYs++w+j33PP4aub0HFvbsX0bVixbYpK//e+t8CMzXLHPs3qNmnL/a2xsDKZ8+T9pHtunb39ZPjU11aSeOImMjMRXs6aTghtH+1v/B3NtZav04IIwCV67YTOOHTsqVz9zKmfu+hYyJd66ZTPWb9yCsxeuyP2popxYRX11yDDaH/qnuWqGa5+TUh5YJUhyXLpilVRIhaOoL76cDjuNHZkfzzGUzY8DG3d3d50qnR+tcRtMgAkwASbABJgAE2ACTIAJMIEiIiC87bq4uCAiIsJk9VCsDBqvfOZFPLG6KsxUk5MzzYxfHzGaTGQj5X7Nzk90RYtmjaQCaqldc21lrXP91l189MFY/En7N4VjpodNKpWK9tE6m8il0Wjk6q45Bdq4H7FCKxwyRUfH0GpzqnQO5UL7VQXX/E6q/G6Q22MCTIAJMAEmwASYABNgAkyACRQFAaFohYeHZ+v6YZVR0ZDY/5k1paWnSe+1UbQKKpwHidVQa5K5trLWW7Z0MS5dvPhIyqhoU5gtZ5VLeNG1JgkzZWOOQiktCGVUyMIrpNbcES7DBJgAE2ACTIAJMAEmwASYABNgAvlOgPeQ5jtSbpAJMAEmwASYABNgAkyACTABJsAErCHACqk1lLgME2ACTIAJMAEmwASYABNgAkyACeQ7AVZI8x0pN8gEmAATYAJMgAkwASbABJgAE2AC1hBghdQaSlyGCTABJsAEmAATYAJMgAkwASbABPKdACuk+Y6UG2QCTIAJMAEmwASYABNgAkyACTABawhw2BdrKHEZJsAEmAATYAJMoNAIKBQKiBh4aWlp2foUeT4+vrh7946MC5itAF9gAkyg2BGoWqchPH39oVLaQpuWaiKfp095hFy/jMtnTyIqIswkj0/KBgEO+1I27jOPkgkwASbABJhAiSHw+cT/SVnHffqxicw9nnwKk7+cKuPqubm5471338SWzZtMyvAJE2ACxYeAWmOPXi+OQPnKQVYJ9feaZThxYLdVZblQ6SHAK6Sl517ySJgAE2ACTIAJlGgCnTo/QQrnNHh7+2DBr/NMxuLo5IRpM77CgP7P4vjxYzIg/a8LFqNJo7pmg9abVOYTJsAEioRA934vS2VUmRIFx4RryCDLB5t0U8uHVDsPKNJTEe9UFR2ffg5hd27RiumVIpGXOy0aAqyQFg137pUJMAEmwASYABPIQmDb1i0Qr08++xwqldIkt337jrh584ZURkXGoYMHcO/eXbRu05ZXSU1I8QkTKD4EAmvUAUjZ9L67Acq0xFwFU2rjEePWAPWatmaFNFdSpS+TnRqVvnvKI2ICTIAJMAEmUOoI+Pr6IuT2LZNx3b59G75+/ibX+IQJMIHiRUCVnmBRGRUSq5PvSMH9KlUpXgMoQGk8PDxgZ2eX7z24uLjCwcEhx3aFxYmTs3OO+YWdwQppYRPn/pgAE2ACTIAJMIE8E3B1dUNSUpJJveTkZLi6uJhc4xMmwASKFwGlNsE6gTJ0przxMdHWlc9SavQbb2Lj5r+xYuVqzP/1N/R/fgBZWjy8MWj9+g2waesO/LlmA35fuQbjPp8ENze3LL1mnk6aPAVPdOmaecGKo2Mnz6FP3/5WlMxbkeW/r5KWJjnVmk7bH36e80tO2YV+nRXSQkfOHTIBJsAEmAATYAJ5JRAdHUUrCRqTahqNBtHRDzd5NWmIT5gAEyjxBIS1hNh/3u/ZZzBh/Kf4lEz/hZIoUpeu3bFq9Xps3b4bg158SV5r1LgJdv6zD/sPHZOK7NvvvCev6/84ODqiZs1a+GLyRIwYPhSvvDpU1m3QsJGsc+bcJSxZ9geqV6+BwS+/igEDB2HKtFn4ac58tG3XATt27cHoMW9h3i+LSDG2xTvvvo+9+49IZVn0nVMaP2ESfluyQirCovyzffphw8atWL1uI3x9/WS1drSFYenyldi95wCGDB0mr9WsVRt/7/gHB4+cQMWKlQzNr9uwGef+u4pNW7bjuecHGq7rD0aNHoOdu/fi6ImzGPracP3lQn1nhbRQcXNnTIAJMAEmwASYwMMQCA0NRfmAAJOqARUqIDQ0xOQanzABJsAErl27isOHDqJxk6ZSGZw2Yxa2btmMmdOnSiXVv3x5TJg4GdpULd58YySECaunl5dZcEIBHfDCIJl3/fo1hIXdw+iRwzH4xQGoEhiIV4a8hi2bNiIhIR6bNm7ArBnT4ETtBQYFo27d+jh//ixatW6DYa+PxPDXXkF4+H18Nn6i2b7ERRHWqkqVQPz6yzw4uzhLRXje3J9Rr159dOjYCUqlEjNnfYPly5ZIxfujjz+TK7fCO7kIiyXGEx4Rbmj/669moNdT3XHp0kV88NGnJqvGgYFBGPv+R/ht0QIMfK4PxPiKIrFCWhTUuU8mwASYABNgAkwgTwR27twun/qLyaFIjzVrDk9PL/z7z+48tcOFmQATKBsExD7KCFLMGjZqBGHyv3XrJqkwZmRkoG3b9qhYqRK2bduM/fv2Ij4uLkcoYmXz+QEv4Kcfvsf6dWtlW1OnzcT3P/wMR1pF9fXzkw/GUkm5DQm5TQroOUNbY995E9OmfIF27dtDKMknT57Azh3b0aBBQwj5ckpCMVyzehWuX7uGs2fPYNXK3xEVFSWVVfEdWM7TU5oQT5k6U4bBqlO3nlzN3bx5I/bu+dcwHmFF0q//AGnG3LBhY7i7u5vsWRXxnEVfn46bgIWLlxVZbOeHN6zOiSBft0jAizYw161WDUEVAlCBlt5daVNxBXLWcJE+EJExMbhBT4FPX7yEkxcuWGyLCzABJsAEmAATKC0EuvfoSZOsiXB21u0L7db9SXz2yYfYTKsPYsL4/ti3sJhM2cQKhZiQvfv2GA75YnTz3Ty9UblqTZTz9qeXL+woBqRIqSnJiI2OxP27obhx+TxCb1w1qsWHTKD0EFDQ6mFw1aoQXrnF6qiIZXzu3FmkpKSgcuUqckXUhkLPnDhxHMeOHUWrVm2kp253mpvnlAYN7I+DB/YbsoVprlBqmzdtiF8XLjZcT0pKlAqqWKXMmk4cP47ez/aFvb29lEMopzFW7JUV/RjSg+PzNJ6EhATMmjkNixb8IldixffjhfPnIcx2haJr/8ChUcNGjclcuRu6dm4PobROn/m1oTlx4FGuHAYN6I9KlSvjs3ET8cKgwdLTuUmhQjhhhbQQIOu7aFqnDrq0aoXH6tXVXzJ5rxmkCxrcomFDeT0+MRF/79uHDbt2IzQszKQsnzABJsAEmAATKG0E/tqwDuKVU1q7ZjXlr4efvz953L2NtDTTeIY51Svt16vXb4K6TVuiYmB1OVRVRgo80kNgn6HbX5tmo0JkxaqIr9cELTv3RGxUBE4d2oMTB/9BYnzOK0OlnRuPr3AIpKly9vZqIoGNLtSTYy4rhyblzZwIr7Vbtu3C/fth+PbrWWT2OleW+obMVsV+UmHuumzpYpw9cxo/fPct3n3vAwiTVw09vNGmppppMful7X9vlfs6xR5RDSmYFy6cl4XEKuZrw0agceOm0tzWuObWrZvxZM+nsWffYcTGxUqzXuP8vBzHx8dj6pf/k6a8Qvb09HQ826snFi6YL8co9oMKxVykk6R437hxHUtov6lYDc2a/Gjf7YJFSxERHo70jHTMnzcna5FCObehpVsj1btQ+ixznVSkpfxXnu2NRrVqGcaeEHsLCbGhQMo92NqQ10AbBX2g6CkmnKG294bG2R8aB09D+ZVbtmLB6tWGcz5gAsWNgIujLWoFuEKbnoHT16KQlMoTxeJ2j1geJsAESheBytVq4/GO3eFXQRcmwwZp0CTcgK/2MjTpsRArQWk2aijTk5CmsEOYjT9iNVWQaqvzFCpWTvdv/wuHdm8tXWB4NMWGwNuTZ8s4pH63V1gM/RLj1kTGIT1zZD82r1yY72MQHnfFS++tu/MTXVC+fAVSKjUYS4rp2Hfekqax1nQsVjqFIig8fRsnYSIrHpSl5qDcChNfoVDmVxImuLGxsdBqtbJJ0b841p+Li+J7QKyaCsdw5pJwuORCe1UjIiLMZRfKNVZICxhz19atMOL552Uv6WkpiLp3BlH3T0Mci+TupJbvNvRUKIPcXado0xGfpPtQ2dl7ws27Npzdg2WZi9ev45tFv+F6SIg85z9MoDgR6NDAF14udlKkG2Hx2HfufnESj2VhAkyACZQqAs3ad5OrnWJQqtRoOEWfgmPcJdhAK+cW6UoHmtzXQ4aNLezjr0GTeNMwx0jS+CHOpS6SHCpKJlf/O4MNy+YjhUwOOTGB/CTw9KDhCKpZD6rkcDjQZzCDlCObdNMH1ql2HlCkpyLeqarsetlP0xFy/Up+imG2rRYtW+HpZ3qTwgYcPnwYK8hJEKeiIcAKaQFy79+tGwb2fFL2EBNxEWG39iMjXaeI6ruVCikpo3YaNyQnhiM1LQNxiaYmAxpHX3hXaAG1xh1x8QmYMncuTvD+Uj1Cfi8mBHo2D4CDWmciEhaTjO3Hs5uGFBNRWQwmwASYQIkm0LnXADLRbSXH4Bx9Eq6RB03GI+YWWpULYt3qy+tqUgYcY8/K48i4zHlIgmMQoj2aIY2U14h7d7B+2Vzcv8MPvU1g8skjERD7mJ95cQTKV9ZtS7PU2LbVS3GSTMk5lS0CrJAW0P3u1akTXu7dS7YednMvosMzPW4Zd+mosYVaRY9mHqSEZC2SU8l2N0uyof0fPhVbwck9CClkBvDBzFm4RCumnJhAcSEQ5OeE+oHutNIPHLxwH7fD+Ul7cbk3LAcTYAKlh0CnZ55HvcdaywGVC9tOq5/ZV5KEQppBD7vjXOtKZdMh7iLUyWFIJiushAdWWHoiWpUTIj3bIplWTYVSuuTHabxSqofD70yACRQKASXZQI8vlJ5KeCdqtZrcPLta5c2vad26GPPiIDniezf3ICZct9nZHIJU+nHQqaM2SEjRmeyaK0cG+IiLvgZbOxc4OHqRh94K2Lxnj/mifJUJFAEB8dT93M0YnKdXbKLO7LwIxOAumQATYAKlloBwXNSik87yyvPORtgn3jA7VqXCBipy9GmXdEea6irTEuTDQvHQ29hpp6isIMstR1JYhUKqdvWDp48/zp84bLZdvsgEmAATKAgC2f0SF0QvJbhNsVl49o9zsGr1esyZtwB/rtlA8Ywa5zgita0thvbtI/PDQw/nqozqG0kkRTSWzHSFcmop3b2+C0nx9xBcqSJe69fPUnHOZwJMgAkwASbABEoBAbdyXujca6AciXvYLmiSbuc4KuGLIiklnbxm6oqkaDPkPCNNf8FMTQ9abVVq4xBYoy6atO5kpgRfYgJMgAkUDAFWSC1wffPtd2Frq8aT3Z+QLpV/X7EMH378aY61+nbtAl+KjZYYF4rIuydyLGecEUc/HDEJpvtGjfOzHofd2icvPdmuLQJppZQTE2ACTIAJMAEmULoJNO/QXQ7QMfYiHOMvWhxsYoqWtk4k4Pq9eHKWmIrclFHRmDItkfaiHpLtilVYe0cni31wASbABJhAfhDgOKQWKKrVdhRMN9Ol8+VLl+DvX95sLTsy6+3dubPMiwg9ZraM8UWhhM796xyuhsbAUaOCq6Mdhj9V2+B517is8XFy4n1EhZ2Gm1cdPN2hA2YtWGCczcdMgAkwASbABJhAKSJQztsXtRo2kyNyji64+YVD/GUIR0fC+26jFu2xZ2vOMWFLEV4eChNgAkVMgBVSCzfg1/lzsWjJcmmu+8v8ORg1+k0ZjFZfzcHVS3+Ibi0fh52dPcUXvUUxju7DRmlryDN3sHzXf3C0t8PMkW3IsZESC7ecx4pdV0kprWOuuMm1mMiL8PBtiI4tWmLJ1p2IJe+7nKwjkEEbaBJj7ltXuIyUUqk1FP/WuYyMtvQMU5uSiJREDmpvfEc1jm5QUEw1TiWLQFJcJIVD473n+rtmo1DC3tlDf4pGrbtQoHsVecq9ANsMchhXgPMLl7jzSHEORIPm7XHs4H6DDHxgmUC6NpW2VZmP9Wi5NpdgAmWXACukFu79rdu3cOb0Kdy7dxdTps2UwW5PnzplqKW01cVdFBea1asjg8/Gk/MhEYTWUjp7PQqvdqsJO7XuNjzRtBImLDwMseVDYaG+NiWOFN+bcHSpiOb162P7oaOWuuP8BwQyKJAxJ1MCNjYKmt9kfpZNc/msuBJI02aGbyiuMha2XEIZ5c9yYVPPh/4s/OblQw8lqgkxgzD+HAfVrEvzCoU01S3o+YUm5Q5s02Jh4+yKisE1cbsQ4kGWqJvDwjIBJpDvBFghtYB0wsTJpJCexvRpX0KhUOCdse/jj1Vr0bRxPamcxt6/ZWgh2N8XYoIYff8iPem1PFFU2aRDm5qM9AeTSjcHBZKTkxARFQcPZ8vKQVwEBbp28EUFDycYy2EQiA+sJuDr64c7d0KtLl/aCqYmJ0C8OJVsAsIbuJOTEyIiIkr2QB5B+oTosEeozVWZQPEgkJ5Ozg6N5hcODg7IoAfRqvhb5HPfcnrU+YVtzGUku9SBq4sjzhvJYblnLpGVQFmfX2TlwedMwBwBVkjNUTG61rJVa4z/7BN5JZ1W1r7/9muMHDUG1apVx7lzZ41KAioyu9Umx5Iymrnn1KRAlpPHa/lg2c5LMu6ona0S529EyhLWPP0UBZMSw2X5qpUqy3f+k3cCo8e8hW7deiAqKgpe3t5YsXwp5vz0Q94b4hpMoAgJCG/g//tiKipWrEQPtZLlw7MJn3+GY0ePFKFU3DUTYAL5ScA2+Z7VzT3q/MI2WTe/KOfla3WfXNCUAM8vTHnwGRPIjQArpLnRobz//ruA3s/2wbatm6HVatGhY2fEx8Xhxo3rZmumpMSYvW7u4jMtq8DFwRYHzt2DWq2Ar5sDVEoF3BzV5opnu5aSpFNgvTwy95lkK8QXciTQ9LFmeH3EaLRs3hiRkZHw9vbBjl17sGHdGoSEhORYjzOYQHEjYOwNXMg2YOAg6Q283//bOw/4qIrtj/+yu9n03gsk9N57R4VHE0FBiqiIFdH3LKjPXp7Ke3Z91qco/sWGig1BsDcUpEoREEINhJBCet3d/GfusktCyt4NySb35nf4XPbuvVPOfGezO+fOmTPTpjY3VakPCZBAPQmYLJ4bX5iEy66UsMjoemrbsrNxfFF7//uajeiRHIrkmABk5ZfhUHohUtLsn7fac+n3TrgYwxcWFioPkxu7lZ6sy922cNsXF8TuveufiiH6nTBUPl3xpTLQu/aaecqHp6asFTb1QRmEBzDG9EvEPy7qjvnndxV7hlnQuVWoWCdSU8nVrzlmYgP9/arfPIsrfQcOw8SpM5WjV9+BZ1FS887q4+MD6RZVLh40SJHrhEtKShAReTpQVfNuAbVzRSChVRLOGTsJSW07ukqq6fvuRAPXdEOpfIsgIL2E4uLi4efXsL9tWodntJSobsLZji8MNvtWdAajUXWdTHiaAMcXp1lUPpOTLuf1jkXb2EAlVkpUsA/6dwhHp8Tgysnqff73f9yML9d8iw+Wf4o33nwbM2dfIrwX6z/31qtXb6z++nt88tlKfLj8Mzzw0CMIDQ2tVb9HFj2Gv40bX+v9mm5s2bYL0y+eWdMtt69dPGMW7rjz7hrz+fr6YsXKrzDlwmk13m/qi/XvpabW3EP1y5nQBfOvgezIgADxNCfL7sbiqN4nIMRxKtzkjPD2EwaleFUjMraOND7lsfdoLn7fk4kFU0VgJJX5ZR2yTimV9VAunMV/iUntIb4zlA21k9p1we49e86itGaYVUTZLS3Kw/p1v2HTxg34YtVXeP65ZxCfkIC1a3/Bju3bmqHSjauS0WSGSUSI1pv0GzxaaVKvfpE4np6ut+bBWl4GGWnXVTRw3TWcDdItgaHDhuPpZ58XS19sCAwKxIcfLMPDwv28NvnnXfdgwQ3/qHL7xx+/x+VzZlW5prk3YmBgrBRJVxrpNlOAaIa6eQQZTV4OLuTz7b1Hc7B+9wksmCIj+KvMb/AW2b0QLlx25e8DRR0Byd1mLef4ohZc7eMCESi2OSw3h6HYPxlGSwECCvaia+sQ7ElV7wFQS/GIFQ+ypLfbhHHnITm5Db748iv06dMPd96xEOPGT8R18xcgKDgYb735Bpa+9Sb69uuvfN/IMf5JEXvh66/W4OmnHncW7y/G/V26dMXF06bgwP792LhlO7KzMvHzzz/hlVdfR1BgEP74YyseeuBeDBa7XkjvpEnnX4Bp02fg3XfexoMPPYyPP/4IvXv3xXXXXImbbr5Vubd79y688Pyz2Lxpo7OuyicP/usRtG/fUbE7YmJi8dSTj+HKq65RJlDmi3JkzJPR55yntCchMVFpj9T9/gf/JewVP2Up2pzZF+Od9z4UHp5fKe28feHNyjaWxUWF4rvFiAf/9SjOnzxFuXb3nbejuLgYN92yEN26dcf2bdswe6ZnDVcapJU/AXWcy5kzeZwpfkERzksyJLvNUiyMRHVYT+QW47H3tygGqb+ItDt/Sk90ahXmLE/NiaxTSmU91OSrK400TPyERWoTv2elwmpuyLLrqtdT9yoqbIpBWl5ejp9+/AEjxA+IfDo1aNBg3HLzjVB+yD2lTDOpR0Zz1Fs/S7SVjWw9tq+0KFcxSF1FA28mHzOqQQJ1EggODsHL/1uMRx9+SFnPL2ciVq3+Flu3bMKKzz+rNe+y99/BPcKbySF6+A43it/2sIQOjibBKLfmMtrEq+uAhzLT8ewiPP7+Vuf4YsGFfdE5Sf34wlvExJB15ubmVdHDqRBPaiRQXlKI3PSD4PiiRjxoFSUfqgAW7xBYTYHKIQ1Ss0ndg5KaS6356sGDB7Bxw+/o13+AmCX1xhNPPYOXX3wB8ro0Jr/99mvIwKWWcgtuvuMGPP7kM4iMqtlDrnefvhim3HzZAAA/1UlEQVQiDE4phw4dREbGCfz9hvnKePH5F1/BlVdfi2effhK333EnVn+5Ev+35HW0a98Bbdu1R48evbB7958YPmIkrrv+Bky/cDIumztPGI8PY+rkCTUqL43QNm3a4vHHFuGRRf9RjNHXF7+KJ59+TiwdHINl77+Lp5/5L2SsiIKCfLz62hKsEMvNfl37CzoLA3rhrTchMzNTqX9EWRn+2LpF2DDFynv5PTv7kktxudDhNpHuxAm5bNAb993/kJJn8sRxGDxkaI16NeZFdZZTY2qg8bJzju93tkBGzLXKw6IuqFFEoAF3XNwNQX4m+PnYu0JtXkelsk4plfVw3Kvva5HYo7Pk1MxrmQiQ0pBl11enxsgn/6hnX3IZxo0drURMln+Ar7/xlvLH+duvaxujymZbZllxvtjPUn9rOA7s2Ya4hFY4mZWh28+x/FC5igbebD94VIwEKhHoKbYwMwlD7OPlHylXZbC5Zcvexdi/TajTILWK2VRpAOhJrGI/y8xDO51NspQWi6CJxbAKjwg1EhHghdund6k6vlCZV5ZvQYlSX2lhbhU91NTNNFCMBo4vqn8SjmQUil0khEdWea7Y1ihMmSGVqcoswmWwEUQaX9nZWejTty9CQkLx9derkbJvn2JIjhp1DlonJYmZzKVY99uvSnyY2lRYeNs/RayRbPzv5RfxxYrPFaPvcbEVpJxBlUsLYuPikJZ2THwPWUQMkqPCAN2lGKSyPDkzmZubI2YkH1GM4W3b/sAP338H6V4r9atNpOH72acf45pr5ytBVD9e/iHuFUajNFalgRwRGam4ENusViUOSocOHYWhnIGk5OIqM69L/28J3nn7rSrVyO/a1CNHhAfK+87rI0aMwtx5V2HNNz8IJlXTOxM14gkN0kaE66pog/CliQ71dZXM4/fX/fI9EhKTlHoPH0zxeP2eqnDosBHKH7lV/DFLkV9Iv4tNwIeJ6y3NIPUUc0/Xs2XDr9iywdO1er4+d6KBe147z9YYEBqjzOx4tlbWdrYECrPTlNgMZ65ZPJqaqrim1VW+9G6RMwdZYkZAzhK0xGUXZ/JpruOLM/XU63uOL2ru2X1pBWgr3HaDcBLeZfbAnDLln4dza85Qj6vyO6R9hw44R7i0ytnRB+67RxnrlYmZQunGK2dEpTu6dLXdsmUzhg8fiREjRyGsjgChl82Zid/Xr3NqI11zpSfG4AF98OZb7zivy1lIubxPbhN5pvyxdasIknqxYsBKPeRMbV6e63ZX8fiQrvhCdotdPoqKivDM009AGpxyJlYGXC0eba9ftq8ukYE744QRLWdh5UxqUnIyvvjic7wvZl7nXXk15l5xFZ54/D91Gul1lV+fezRI60NN53lyxNMkeehd9u7dg9mz5yhPmeRAJigoGAMHDhauYqefGOmdAdunDwLuRgPXR6trbkW5mAWSa7go2iJQIQLM7dyxHampR/DSK6/hvXffFjMaIZglvqPlDEBtIl3y5EyqXFLTtWs3JfjIvLlz8ItY40UhgaYiwPFFzeQtwpvhuz/SGzXKrowk+9U3PwpDK0OJD/LmksWKMv999inh/vqYsn7y/ffewZ87d+DlF57HbcLN9u577lfWXlpUelp8J9x95TpRuTODr5gh3bNnt1KHnMW89roF6NdvAN4UbruV5WuxW4dcs7n2t43IF262zzz1ROXbbp3LqLyP/+dRxZVX6i63pZwmXIG/WvMlZs6ajZ27UxTvv9oKXfL6YowcORoyYKvcQUSuIb3l1tth8jYphrbc/lAauJ4UL7F/nd3c9mStOq3r85deRGHuIaQd+MZjLWzf+yqlrgsW3OCxOvVSkXyCdfs/78KEiecjQ/jQBwUF4fPPPsVLL/5XL01kO1oIAbn/6J1334vuPXoK96RsFIkfqxdfeA5rf/m5hRBgM/VCQLqjXX/DjcoT/yOHDysBSmSwjX/cOF9VEx96+FGEh0eK9V3XqUqvlUS3LnoJwSc3Izh3s0dULjdHID3+QmSkpWLp84s8UqeeKuH4onn2poy4Kw9HTJixfxuHBLGsx9fPV1n/efvCW8SSgQ9VKS9ddaUhKPf+riwyQJL0vKttGYGcQZUGZUOJ3Ic8Pz9fMSxlmfKz5+fvr8qgDBTjXjkDK41POasqy8rNzVX0byj91JbDGVK1pJhOdwTkF8lj/35UOeLj47n3qO56uOU0yFU08JZDgi3VOoH09ON48P57lWbIgdVvv28WESZPR7101b704+lISkp2lYz3SaBRCXB80ah46124nA2Uh0OkYdila1cl+Nddd96h2hiV+eWDsprEYezWdE9ea0hjVJZ38uRp12f5Xn721M5uFghD1iHSMJUPtJtKaJA2FXnW26wISH96CglonYD8IXT1Y6j1NlJ/fROQsxdywCi3JbhR7CkoZxk+qTRjseg/T2CriBj5gVjrJEVGSF+1coWynkpGyJw2/WLF3VfflNg6LRHg+KL59paMSisPStMTqL7qtul1ogYkQAIkQAIkQAItkMD1C27Er+s2Ycu2P8X+gX0x9YKJVVzfhoqtF2Q0SYfIdVw7/tyrrMv65dcN2LRpQ7W1W460fCUBEiABEmieBDhD6ka/yCe2ccK1U643PNNn3I1imJQESIAESIAESKAGAotf+5+yxYsMblTZtc6RdPTIqvvjyc3bZUC6KDE7KrddqM2NzpGfryRAAiRAAs2PAGdIVfRJdHQM/m/pu0rUqo8+/hxXiJDIFBIgARIgARIggYYlIA1KuR1CTcZobTXl5+dh//4UGqO1AeJ1EiABEmjmBDhD6qKDZLSsz774EmtWr8L9994NuVGtXONCIQESIAESIAESIAESIAESIAESODsCtKxc8Js1+1KxB5oNDz1wnxIaWSZ358mti+J5mwRIgARIgARIgARIgARIgARaLAEapC66fuiw4di1608889wLYq+iRKSk7MNzzzylrFVxkZW3SYAESIAESIAESIAEBAGj8C4Li4yGj68fysTejaUlRcg72XTbTLBTSIAEmg8BGqQu+iIhIQFZ2VlYtWyFsvHs5XPnYek7yzBh3LlK5L+w+A7OEkzevjCeOpwXG/lE1imlsh6NXKXmi6+osCInbb/m29GQDTD7ByMgNKYhi2RZHiBQWpiDotwMD9SknSqCIhNhMvtpR2FqqhDIyzgMa3nVDeZbMhqD0RshMclOBCazGF+YfZQxhvNiI57YvH3E35EvzH5BZzW+SG7fEcntOiI6PgEhYeHVNLaIbX0yT6Qj7cghHEz5C5liH1oti6WsGPmZqVpuAnUngSYhQINUBfblHy7DV2tWKyk3bvgdf+7Zj85dumL7tj9QeDLNWYLVWi7ce8VhKXdea+wTWaeUyno0dp1aL19u/kupSsBSWszPUFUkmnhn9eB3jSaACCWL87NgMBi1oi71PEVA/nZSThOosFmrfCfLv3U5tvDU+MJmLIesUxpY9RlfdO8/FP2GjUZwaISzUbI8rwobvE5dqRBnXl5eiIqJUY6e/Qfi4F+7sPGXb4SBetCZT0snNtFvFBIgAfcJ0CB1wUwGMUpMbO1MJbd+sdlskMGOpJQVFzjvyR8Q5RAzcJ4SWZ+Uynp4qm7Wox8CcjBYVswBoX56tOW2RD5coZCA1glUCMOt8u+6fXxhE7EsPDO+qBDjHFmnzWqpoocrrgnJ7TBywkWIa9XGntRmgVGUY5CGqDiqixdsBgNsXgZYxZEkZlTlsfW3H/Ddig+qJ+cVEiABXRLgti8uunXlFytwyZzLEBoaqqSUm3AXFhTgz507XOTkbRIgARIgARIgARJoGQS69B6ImdcuVIxRL1TA21YOs6VUGKSWWoxRyaUCBmGwmsRDUR+ZtsKiwOo9ZDQuWXCHmGGt7ubbMmiylSTQsghwhtRFf6/84nMMHDQIP61dj4L8AhiMBiyYfw0KCwtd5ORtEiABEiABEiABEtA/gV6DRuK8KbOUhhrFLK40MOsjJjEja/SywSLW0MYmJuPia27Bx0tewMnM9PoUxzwkQAIaIcAZUhUd9cB992DIoH6YOeNCDBWv69b9qiIXk5AACZAACZAACZCAvgm079rLaYyaxGxofY1RByXp2ustZkuFI68IhBSByXOugcnb7LjNVxIgAR0SoEGqslOlm+6Rw4eV9aMqszAZCZAACZAACZAACeiWgHSpnTBzntI+6W4r3XMbSrwtZYpRGhkTj/HTL2+oYlkOCZBAMyRAg7QZdgpVIgESIAESIAESIIHmTmD4uKnwFrOXdjdd9cao3Ic0V8UepN6K628FOvboi47d+zZ3HNSPBEigngS4hrSe4JhNfwSioqJhEWHpT548qb/GsUUthoCMBB4XH4+MEydQKgZ9FBLQGgG5FUhsbBxyck6iuJhRk5tr/7Vq2xGde/VX1JOuumpk3+6d+PyT95CfmyNicphw48J7ERYeWXtWsU2bLNti8Mbgcyfgrx2ba0/bjO9wfNGMO4eqNQsCNEibRTdQiaYiIAfvtyy8XURSFu5A4odv//4UTL/ogqZSh/WSQL0JREfH4ImnnsGgwUOVgfySNxbjfy+/WO/ymJEEmoLA0GHD8fSzz4vtRmwIDArEhx8sw8MP3d8UqrBOFwR6DRqhpFAi46rY3ztl7268//ZrGH/+NPTsMxBmHx+R3/W+4HLbGKvBhMjYBHTq0Q97tm9yoZm62wFBIQgKCUVgcCjCo+OQfSINeTnZyMnORFnJ2T8I4fhCXT8wFQlIAjRI+Tlo0QQeengRunbthr/fcB1+XfsL5A8IhQS0RkDui/zZF19izepVuP/euyH3TzaZ+PWutX5s6foGB4fg5f8txqMPP4QPlr2nbLe2avW32LplE1Z8/llLx9Os2u8XECjcaPspOpmEwahGvvnyM/QbOBz9B9sNWXseLzVZlbWpcpa0U6+zM0jl/qgduvdBcoeuwsCNr7XujLRU7N+1DbuF8ZuVnlZrurpucHxRFx3eI4GqBDhiqcqD71oQgXjh1jj7kjmYNnUytm7dorTcYlHndtSCMLGpGiAwa/alyozSQw/cJyb67TMO/CxroOOoYhUCPXv1gkm4cX68/CPlek5ODpYtexdj/zaBBmkVUk3/pnXbTooSMhKu9C5yJVaxncuhA/vQOrkd/u+1/6K8rAwdOnfHyHPHQbpouxKjiLwrf52ThCFZH4mOb4Uh501Cuy49ndkNXhUI9j4JX1MRSqz+8DXaX3NLwxAVl6gcg86diN1/bMD6H9YIw/SYM6+rE44vXBHifRKoSoAGaVUebr8z+wU683gZjFAOL8/Nssn6pFTWw6kQT2okIAfs5SWFGDBwMLKysjB+4iTcefd9yt6yby5ZjJ9/+rHGfHq+aBB7vpnM0n2KoiUCVrHm2VpeCunmuGvXn3jmuReQkJCIlJR9eO6Zp5CWpn4ApaV216WryccPhlPfi3Wl09q9vm1D0DbWHx/9Wr/Zmube3vLSIuU72HCGl8rR1FSMPue85q5+w+snjDSj+F52iDTa7Iabh2JRnqrPy8sAo6n6litxSe0UfYy2ClUGZV5urmiKF7zNZow4ZxxKhEvsqk8/UF7Hn3+Ro5l1vsqWm8XvVEJyRxxPPVhn2so3h445HwNHjVUuGbwsSArcjzi/Iwj3zaiczHku7evM0jgcL0rA4YL26NJ7oHL89u0qxTB1JqzhRI4vbCIQE8cXNcDhJRKogwAN0jrgqLkVEBbnTCZ/POTA3mA6/SPivNlIJ44frMp6NFJVuim2QmzanZO2Xxm4W61WHDxwAN9/+y3k0/nXlyzFjOlThYuYNgMn1LeT5CA+IDSmvtmZr4kIlBbmoCg3Q3yWE5CVnYVVy1YgPz8fl8+dh6XvLMOEceeivLx+G9Q3UZPOulq/oAjxcMXvrMtpbgV0ahOkqBQQ1tw0axh98jIOY+eO7UhNPYKXXnkN7737NkJCQjBr9hwxwFfnEtowmjSPUoxipjgsoYNTGaPZF/bDMw8OK7x9lPrM/kFV9HAoFCeMQqmPSdmaxfVQ0ijKM4n0f5s0XYyR7A/SDUYzvvz8Q0y66BJHsXW+eguXXat42NS6cx+UVrgeZxkMBoydfCESktoo5bYL2oVOIdth8HJ8nmpnGWvORmxQNrpG/YW/crvjYEFHDJ9wEVp17IFvV9buPi4fduemH+T4os6e5E0SqE7A9bdI9Ty8UonAyWN7ne8s5SVitsJ+OC828omsU0plPRq5St0UL59kbt+2De+/947SpvXrf0PvPn0xYcKkFmeQlhXlQR4U7RJY/uEyfLVmtdKAjRt+x5979qNzl67iM/6HdhtVD83zM1Prkav5Z/m/FjDZLc2ES2fPwPU33Ih5V12t7P0to563xEi70vsh89BO5wfTUloMeVjLzj7YjrPQOk4sKFHqKy3MraKHI4vJa4py32Atg02407qSwAB/2CylyEhPRURktJLcItpSXJinlOMqv7xvMVpgFR5opfkZNepUuQyT2IrmoituQExsLEzWTPSNWIdwnwzYxPM519qeLskgOHQOWItQr0PYkjUICYmJGDFqFD5566XTiWo44/iiBii8RAJ1EPCQ70cdGvAWCTQRgcOHD6FVq1bVavf18612jRdIoDkTkEGMEhNbO1WUwblsNhtksCMKCWiJQHr6cTx4/724fM4s3HfPnYrnyi+//KSlJrQIXcOjY91qp5yt7NqjD3761v7QTK4h3bzhN3QU60jdlQgVdZ8/+yoktukg1ojmYGj094ox6m49ldPH+qdieMw38BPrTdsInSfOnFf5drVzji+qIeEFEqiTAA3SOvFUvXnpZXNxKDVdPN2rY8+sqln4rhkTWCsGOXHxCRg16hxFy0RhnI4efS5+/OH7Zqw1VSOB6gRWfrFCbF10mRKVVN6dNn0GCgsK8OfOHdUT8woJNGMCjujQ8qHK32+6RXE5/2T5h81Y45apWvaJ4243/PwLZ+LY0cN44uE7sej+hcq+3xOnXuxGOfbgSQX5cj1q7TJYBC9q27kHfIwlGBj9E/xNBbUnduNOkDkXAyN/gtGrXOy/OgD9h9e+tpnjCzfAMikJCAJ02VX5MZBBQ+bOu0plaibTAgEZwfH2hTcpgWCys7ORlJyM5//7DL779hstqE8dScBJYOUXn2PgoEH4ae16FOQXiLXsBiyYf40SJMaZiCckoAEC1y+4UUQ/v0zZg3Tzpo2YesHEFrcOWgPdVC8Vg0PCcMOt9yI/L0cEHjMhIPB0UMh6FVhDpoiYeAwVBqmUHmEblMi5NSSr96Ugcw56RmzClszBkIbvnu2bkZ97slp5HF9UQ8ILJFAnARqkdeKx32zTpi0W/ftxXHP1Ffjmu59V5GASrRD4+qs1+P67XogXM6UnTqSLiH/2Nbla0Z96koCDwAP33YPHH/s3wsPDISOTSpddCglojcDi1/6nbPEigxtx6yKt9Z46fYOCQ9UlrEeqASPHKrmSAvch1v9onSXsTsnFpbdUH9P9tGw8/P1qHx4n+B9Eun8CjqEVeg8ZjZ9Xf1JjPRxf1IiFF0mgRgK1/8XVmLzlXZQbdf9v8RLcecdtSoAFPRMIDQ5Gx6QkRISFIiQoCFarDbkiYudJEa59z8GDyBMugHoUOeiR6z0oJKB1AtJNVx4UEtAqARnA6ODBA1pVn3o3IYGAoBB07TNI0aBN0F+qNAkK9MbXb9mNWEcGk8n1ara2wbtxrKgV+g47B799uxKW8jJH9iqvHF9UwcE3JFArARqktaIR/swmkxJ+/s03FmPdul9rDBAS066PswRvH3/IwyQOT4msT0plPdypOyI4CCN7d0P/zu2QEBlRZ9b9aenYvCcFv2zbhZyCwjrTNuebFTYrThzY1pxV9LhufkHhCI5O8ni9rPDsCMgtX/QaVba+ZMLiO3Bf5vrCa8J8Wam7VUdbbUI1PVa13PszMqmbsz5Pjy8qzPbxjG9gWI3jC3ldGe9YTTCoiLLrbMhZnHiJrXAMXiYER7aqUaduvfooOsX5H0FYoNzuqu7tn7x9ypX0fgEBbmsV5VOEuOJ8ZJbEYODYaUjZs1spo6y4gLseuE2TGUiAa0jr/Ax0794DHTp2ROymONy68A6YvO32+/zrb8SnnyxX9kxLT9niLENu7C0Pizg8JbI+KZX1UFN3kPgCnjlhAi441x7QR+YpKREbk1sqUCRmRq322AFi8T4QKNajBZi80Co8CK2G9MYUcXy0Zg2WrV6D0tJSNdUxTTMnUJyfDXlQSEDrBLgFltZ7kPpLAlaxv2fl33VPjy8sFX7KeKak4GQVPRy9U1IwAeVBAfAS2754ecggtQiD1CoM0rzMIzXqNGLUCEXnSDE7Wi62yHElkml+bj7ufeI3+Pua0LNzGMYOjxfrW8XAR4VEGP5CWmkQQoP9atRHRRFMQgIkcIoAZ0jr+CikpaXhrTeXOFNYxcyalLKyUk1v1D24d2/8Y84cyH3BpGSW2pBRakVOWd1rzsLMRkT7GhBuNmD6uHE4d/BgPPfWUmzZtUsph/+RAAmQAAmQAAmQQFMQiE1MVqqN9FUXATgsxIwrL24P+ZqZU4pn3tiFLTtP4s7r1W1FE+GbrtQX37ptUzSXdZKArgjQIK2jO+V+aC++8JwzhdzTT86UvvH6a8jKzHRe19LJDDEreunk8xWVs4UBmlpkFbOidRuijvadLLNCHkHeBiT6GxEeEoKH/n4jFn/0ET7/7ntHMr6SAAmQAAmQAAmQgMcIBIh4H2YxRvM2lMNsUOe5FRPph2tmd3TqOLh3FBbctx63X9sVRuEZ5koCT20nExwa7iop75MACbgg4PovzkUBvK0dApdOnuw0Rg8VWrAnr1y1MVq5lfnlNuzKLUdqsX3G+Orp03HhmNr346qcl+ckQAIkQAIkQAIk0JAE/AOClOL8jPWPbxEV7oNyi1V4wal7SO/lZYOfyXNLtBqSF8sigeZGgAapGz0itwRJSozR5Ozo2KFDMWPCeKW1+wosOHbKmHSj+dWSHhFG7QFxSJl30UUY3q9ftTS8QAIkQAIkQAIkQAKNScDH1x7AKK9c/ZYy6zZn4OhxuwFrs1Xgnc8OoEenMPjVseXLmW0otnguiOWZdfM9CeiJAF129dSbtbQlLioK182codw9KAzIjBL7zGYtyd26fFwYtiLeEVr5mzBf1LF9zx7kctsJtxgyMQmQAAmQAAmQQP0JlJbYgxiFmHNUF3IwtQALF22E3PrFIjy/YqP9sOj20zsnqCnI31SIIov7UXrVlM00JNCSCNAgbQG9PXfqVJi9vZXgRWkNMDN6JjK5DjVQ7NsVFhiIy0Vdz7/99plJ+J4ESIAESIAESIAEmg2BWRe0wfSJSUjPLIa/mBUNC/FpNrpRERJoaQTosqvzHu/arh2G9ukN4Y2Cw0V291o1Ta6oqMAbrzyDV194XE1yZ9ljhw5Bq7hYVXmYiARIgARIgARIgASaioBJPExPiA2gMdpUHcB6SeAUARqkOv8ojBEGopRjwk231LG5qIo2f/Hx+ziZnaUipT1Jkdi/9MQpV+CxQ4aqzseEJEACJEACJEACJEACJEACLZcADVKd9/2oAQOUFmaKfUbVyvq1PyA7OwOjx0yAl/inVk6I/UylDOvr3hoMteUzHQmQAAmQAAmQAAmQAAmQgL4I0CDVV39Wac2AHt3hbTKhoLwCxWIGU42k7N2NdcIgnXXZtTAY3Pt4yO1gSsQsbFR4ONokJqipjmlIgARIgARIoBqBiIgImM3matd5gQRIgARIQH8E3LM49Nd+XbeodVy80r58q7o9tbIyT+DTZUtx2ZU3wEdsMF0fkUaplE5t2tQnO/OQAAmQAAm0YAJDhw3HB8s/xcuvvo4Vq77Cq4uXwMen9mAz/7zrHhxKTa9yvPXO+y2YIJtOAiRAAtojQINUe32mWuP46GglrZy1VCPr1/6IsMhIbN74K75Z/Rl2/LFJWUcqz61WdQGRSmT0JCGOutXUyzQkQAIkQAIkIAn89/mX8e7bSzFj2lSMGzMaAQGBmHXJpXXCWfb+O2jfJtF5XDm37vR1FsabJEACJEACHifAbV88jtxzFQYH2PfGKlM3QYpOXXuIH//T+2kZjSZ4iSWk3iZv1WtJHXUFiUEEhQRIgARIgATUEpDLRExii7LS0lJnlpR9exF/ytvHefGME6vwAiovLz/jKt+SAAmQAAlohQBnSFX0lNFoRHx8PHzr6caqoopGSdK5rd1t1qwyLlG7Dp0xasxE59Gley+EhkUo7w2CgRoxn/pEdUhqrSZ5s0nTpk1bbNu5B5dfcWWz0YmKkEB9CFx62VzFfTFCeDtQSEBLBGw2G55+8jE8/ezzWHjbP3HOuWPQt19/LF36Zp3NGDRoMJ58+jncdfd96N6jZ51peZMEPE2A4wtPE2d9WiTAGVIXvXbRtIvx8CP/RlFxkRJgYdPGjbj9tpuRlZnpImfT3969/wAG9eqJMnUeuw2isGOGdO+hww1SnicKCQ4OwSuvvYH8vHxPVMc6SKDRCMj1d3PnXdVo5Wuh4JCYZHj7nvb00ILO1BHISUuBpawEmzZtxF9/7UFsbCxefPlVrFm9ChknTtSKaOOG35GTk4OSkhJ07doNn3y2EvPmzsEvP/9Uax7eIAFPEeD4wlOkWY/WCdAgddGDx44dxeTzx2N/yj74+/tj8Rtv4bLLr8CzTz/pIqf2b/fpPwTy0LPI2e+XXnkNry9+FRMmTNRzU9k2nROQT+EX/ftxXHP1Ffjmu5913tram5efeVQsNVDpFlJ7MbzjYQI2azm8hbvu+x8sV9aP7tr1Jx57bBFefW0J7n/wYdxz1x01avTtN19DHg4pKSnGzFk0SB08+Np0BDi+aDr2rFl7BGiQuuizdb/96kxRVFSkPHU997wxToPU5OPnvO8l1r/IQ/znvNbYJ0p9opLKejjq9BJbvig6icGZI53jXmO9yoGgrMsg1p/WpFNj1etWuWLG2FJWrGR5QAx05NP4D95/t0UbpAaDEQZvbrHg1ueoGSS2iWBjNks55FP4/4lopHfecRuOHNaOd0JjIJSGDUWbBKS7rY+PL/bu3as0IDMjA+++sxQ3/v0m1Q1KP56OpKRk1emba0L5W2o0n452r/yWe3B84SXGMfY6jTX+lnuJ3wzlfoVI5yEvLIdORhHX4szxhcnsY9dHjkHE4Slx9ItDnwrhdm4tt6+B5vjCU73AevRAgAapm704ctRobN26xZkrNMa+TlNeMJp87Id37SHqnRkb6ETWKaWyHo6iff2DT+ljgFF8SXpCjCZRl/ix8AsMq1EnT+jgqo6KChuyjuxWZrqT27bFvMvnuMqi+/vmgBAEhsW63c6gwCDEx8QhOioGAf4B8Pfzg9VmFS7uxSgqLER61gkcPZaKYuFO5ymJj41DbHQcQkNC4CceGCUmJOJo2jGUlpUiJ/ckjp9Ix5GjRzylDkzi4YzUITY6BoEi2Je/rz/8BKf8gnzIh1xZOdlCv6PIPpnttk4lhcJVMfeEMsv/5huLsW7dr5pb6+52o11kkAND+YClMcXsbUKXDklo2yoW8bERiAgLFp9/P3TrnIyduw82ZtWNWravrxlZJ/NQWFyCjMwcHDhyHHtSjuCEOG9sKS8twuFDBxVjYsrUC7H8ow+Uc/kAeOfOHc7qF/3nCeU3WD5ElDL94plYtXKF8rcUGRWFadMvxnvvvu1Mr9UTg/gdrfy7bh9fmGH00PiiQjyglHWahft7ZT0cPOV1RSdh+3lVeMYirRDfpfAywS8osppOQZFRp8Y7YhzmIUaShdEkOMHHqY982J1z/ADHF44PCl9JQCUBGqQqQclkV119LTp06Igbb7jOmcsqZiecIr6UK+QXs4e+nJV6T9VVRY9TCskAEVIXRSd46AdD1iPqtAmjpCadnKya8KSiwqrUfv2Cv+Orr77ETTcvVN63adtODGQNYi1pHj75+KMm1NDzVcuZNnf6q0vHLujaqSsS41upUvbQkYPYsXsn9u23z3yoyuRGImkI9+7ZFx3bdkSImC08U5JbJVW5VCzc+vYKXTaLrY1y83Kr3GuoN4nxiejepTs6tu9UY5TqqIioKlVliH2Ad+3dhS3bTj/wqpKghjdydrR79x7o0LEjYjfF4daFd4gopfav9fnX34hPP1mOnTu215BTv5f8giJgMp/2XGnIlo4c2AVD+3TEgJ7tai22V/eOtd7T6o0DR07g92378OPvu5Ce2Th/L3kZh5GVlYUbF1yH6+YvwJVXXQNvsxk7tm/Dokf/5UQ3dOgwFIqHXQ6ZNn0GHn/iaaSlpUEG8vr8s4/x5pLXHbc1+1ohtlCr+p0sfstP/b56olGOcYN8raqHvfbK9708NL5QxlZiOram8YXNIrem8/wYzMHBwcjxyvGFJz6lrENPBGiQquzNceMn4h8334pLL5kJ6UbkkJPHTg+wLeUlwlXDfjjuN/arrFNKZT0cdZYW5MCuk0W4qNqNMMe9xnq1ipkJS7kVxfnZNerUWPXWp9xXXnkRcobPIdLVxmKxiqPSQwbHTZ2/lhXlQR6upH37Lhhz3mRERdlnU61lhfAuS4OpPAMGawEMtjKlCJvRBzZDICzesSj3iUOimLWUR2qH9vj668+RmnrQVVWq748YMRYjho+F3KZIisVSigrpsSUO4U0mxyjKuXz1Es9opHuZ2WhAtw6dlOP3DT/hxx+/EkFRikTCs5fIyBicd+4kdOzYXSnMVl6GUP8MhPlnwde7UBxFQhWD2NvXhOJyf+SWhCM7PxrhYkZ3WP/B6NW5K77/4UsxC7RelTJpaUa89eYSZ1o5Qy2lTMwI26ye+bt3Vt4MTvIzUxtUC+n+N2vqGEwZNxwR4faHHdIlrygvEyV52SiVfzvFBeK7v0wYwj7iu/b0liUNqogHCvMyeInlFt7CVdQHPn5B8A0IhV9oFFrHhoijH6b/rR+++XkjPv7iB+w90LCcHc2TQYzkIWc783JzxefY/p3iuD965FDHqfI6e+Y0BAUFi++kKGGUHkOx8M7Qg0jX88q/6zLgk1V8tuQYwxNi9SpVgkyVFedX0cNRt7xuKQsR3/tlsAmvI0+IRXzHW8UMaZHwCqnMRtZtqihW9LVC6H3KZdYTOsnvAovFVE0fji88QZ916IkADVIVvXnBlKl44MFHFGN0+7Y/VORgEi0QeOvNN6qo2X/AAGGYfI8Vn39W5Trf2AmMHTsFgweNUt4YLDnwLdoDn5J94r2w8M4Up02/UxiHZpT6tUOJXyfhupqMeVf8Az/+tAY/ieNsJEq4CU+YMB1Jre2zVdL4tAlPTcUYrVywNE6lOAxUeSpU9hK2mkGMowYOGIkO7bviy9XLkZKyR0la3//69h2C8eMuEsaxWF/lZUHr8BTEhx5SjNDaymyFFOXW8dxEHMtNFueRIpDaTLEOrh2+/HK5YljWlldeT08/jhdfeM6ZRG5PJWdK33j9NU1EA3cq3gxPhg/uhfmXTUFMVLiiXVFuhogGux8nhUuezVLVUGqG6jeYSkERiQiJaY2w+PYYM6K/crz36dd4492VDVbHmQVVfvB75r0z3+fn50EeFBJoLgQ4vmguPUE9tEKABqmLnppz6eW44cabMGvmRdj7118uUvM2CeiTwKyZVwt39a5K4/wKtghjdKfqhnpVlIn0u5SjOKAXSgJ6YNTIcWJ2OhgrV32oupzKCVu3aosZM64UazH9FQPUJr7JqhmilTOccS7TVsg8wjA1CE+vsLBIXDL7Onz66dvYvmPzGanVvR0x4m8YPWq8kjg25BDaRe2C2aR+NiM2JBXyOJ7bCnuO90LPHv3FjFw0ln2wWLgoFqhTgqkajMD8uVMxbdJopTxpiKbv34aCrKMNVr6WCsrPSoU8ju//A1FJ3RDZqjNmTx2LPsI9+dlXP0DKwZbJRUt9SF1JgARIoDkToEHqonfGT5iEhMTEatsojB97DmRYeop+CMybe6l+GtOALZk+fa5ijHpZCxGYt1a459a+J6Crav0K/4DRkoXC4BGQs4kywNQqMQvojiQktMacOdfBJIJ+yFlR4flab5GGqdXbbpTK2dKpUy9V5nt3uGmUSpdhhzHaIXo7EsXMaH0lNuQIQv2ysP3oQMi2XjL7Wrz9zsuqXRHlfoxJiTH1rb7F5/P18cF9t87FwD72BzBpezci8xC/6+UHw1JSiLQ9vyMv/RDiOvVH5/ZJeO6Rm/Doc0vx24aWtVa5xf+hEIBbBDi+cAsXE7dAAnKFFaUOApfNEa5zYnB35kFjtA5ovKUbAmPGTEaXzr2E1VaMwNzvz8oYdUAxl6YiMOd7MT1pRb9+wzB48GjHLZevcksI6c4qjVHbWRqjlSuTM6zS3VfKBZNnIyIi2v5Gxf/duvbB6NETlJRd4jaelTHqqM7XXIQ+rX9FkN9JxMYmijbPctziayMSMIq1xY/ceY1ijJYL4ytlw2oaozXwLsxJx771K8W6uRT4iMBD/7r9KgwZ0KOGlLxEAiRAAiRAAq4J0CB1zYgpSKBFEujUqTuGDD5HabsyMyrWjTaUeJcfR0D+r0pxY8dcgDhhdKmR8eMvFMFL4pxuumryqE0jDVJp5Mr1nxPF2lQ1Il2GpU5S2kT9qbjcqsmnJo3JWIbuwsA1GUrRqVMPDBw4Uk02pjkLAvfdOg+9urVHaWEuUjauUYKnnEVxus+a+udaZQst2VBplPboYl/PrfuGs4EkQAIkQAINSoAGaYPiZGEkoB8Cck2kFL/CrZAGZF0idxjam5qLtTuO42jm6S0Z6spjLjkEHxEYScpIsabUlcggPz17DFCSyRlNV1Iiom3u2rEVf2z+XeyJqm4NpmMtanJye/TpM9hVFcrMqL9/ICID05Ac4XqN+ZFjBfjyx1Ss35oJi1VAcyG+5kJ0it2mpDrnnIlir8tAFzl4u74EFlxxEYaJWT65H+bBrd+hvETdZ6a+9ekl3zHhwpuVav87vn3BbBHx1l8vTWM7SIAESIAEPESABqmHQLMaEtASgV69BiizlgZrPnwLd7hU/fc96fhq4xHkFpZh2ff78M43Mvqua5HGLmylYouUbpBGYF0ycMAI5bacyVQTwGjFx+9h355dyDxxHC89swgpe3fXVbzznsN11xFR2HnjjJPg4FD0PWW0thWzo66kTGy9dPt/NuPIsSL8uP44pl//o9guwLVRGh18FJFBx2AWG9X36z/MVTW8Xw8Cwwb2wIUT7TPQR7b/IrZxya9HKS03y7Hd60XQo2OIi4nELdfOaLkg2HISIAESIIF6EVAxz1CvcpmJBNwi4G0yYeSA/ujSti1ax8UrezJGR4TjRFa2y3IKiotw9Phx7Np/AD9v3IjcAs5suITmIkGvXgOVFL6Frg0tmXBQ5xgM7mIPpHNunwTc9spvmHlOO5iMImpQHeJVUQ7f4r0i8m53yDoPHqzZkJVrOjt37qmU5DAY6yhWuXXxnCudScIjo7Fx3S9o16Gz81ptJzJQkjR45X6i7dp1qnUrmG7d+sAg9t2NCT6CAB/XBozZbMR7z40U28HYa77l4Q34ZeMJjB4cW5sqzuuJoQeQmR8vZoj7nfV2Oc5CeeIkcPUlk5Xz4/u2oDCnbm8AZyaeVCFwdNc6dBxyAUYM6o3Rw/rgh7VbqtznGxIgARIgARKojQAN0trI8LrHCMyeNAlTzzsXfmL/xDNFGqUmUzkiw9PhLbbQsNq8cTInEsUlAc6k0QhHWxEJeUT//rh2xsVY9dNPeOuzz1Gkkw3SnQ310ElwcNipvT0rYC45oKpWh5ElEx/PFgGQ/EwujVFHwbIOaZB26tjdcanaa7t2dkNSGov1kfS0VASHhqrOKuuR+5R27NijVoO0s1jXKUXOYKoVycnP1whpp2fnlCI6ovpnvqaywgIy4G8WRq/YnqZ167Y4fHh/Tcl4rR4EZk0dg8T4aBTlnEDGQUaKrQdCJYt0cU7fvxVxHfpj5pQxNEjrC5L5SIAESKAFEqBB2gI7vbk0OSk+Hn+/dA46JicrKplM6cL4TIWXMRcGryJxTU4lVSA02Au+PvLcLsJzEZnZp10dKyAirlrChftjnDgSMXHkSAzp3RvPvbUUm/9UN8PnKJuvQKvEZAWDd+lR0QMWt5AUlFiwZPUuzD63g+p8Rmuu2ArmJHx8wsQ2J0k4evRQtbxyplKKDDrkrqT8tQs7t23B9TffpTqrYvgKg7Q2N2I/Pz8kCk5ewmqNCEhXXW6AMEaDAk34ZcMJXH9pR3TtoN5IDg84gaKyICQntadBqpq464TTJo1SEmUcVL+3rutSW2YKuT1OWFw7tE9OwLjRg7Dmh/UtEwRbTQIkQAIk4BaBegzv3CqfiUmgRgLSGP33LbcoxqhRGKB+/j/C1/8HmMz7RJTTDHgZCsVRoLz6+paLgX8ZrNZI5dXbVHbqvkxTKNwmc0S+/SL/WvgHrhZGbRrCgoPx4I03KIZpjQrwYq0EIqPsrrfSSHRHCooteOGT7ZgwqDV6tYtwJyuM5VlK+kRhkNYkUVF2t1Z3Z0gP7NuDLz5dhnnzb4Z/gPqAQNJlt0IoEilchWUk3TMlJiZBuRTily0+kzKlOjH7GJWARiViPekF56mLLOwoOcw/UzmNi3MvnyM/X6sTmDR2KEJDgkQ03QzkZR6pnoBX3CaQdcS+VnvMqP5u52UGEiABEiCBlkmABmnL7Pcmb/XNl1+OwAB/ZUbU1/8bGE21r9sqKhZTVUJMpmPKa2l57QaAwZArDNOfYPaxR3287cp5aNOKA3gFnMr/IsKjlJQGq/q1uCdySvDs8j8waXCScy2pyursddnkjDgQEBikvJ75X4hwI3ZXZHTdNV98givn34LwCHub3Crj1KR8YA06OfTx9S5WXaQMYLToxW3iwYoN5w2NQ2nZ6Vl+NYX4eNsZhYS4z0JN+S0xzaA+XZVmZx2xf1+0RAYN3eaTx/YLj5Vy9O7WQQly1NDlszwSIAESIAH9EaDLrv76tNm3SK7zbNe6lZgJzVZmNV0pnF9oQYWwQf39jCgutaJAvHclZp+tIo8Ix4r2mDd1Ku5//gVXWXj/FAGTCDAlxaui7NQV1y8/bD2KTGGUfvhjinLIHBcOb4M+7SNdZxYpDFa7sRUYUN0g9fX1U1XGmYlWr1guZtC98PpLTzlv3bjwfpi83fvak9u6AFXdch06eYu9QtXKnv15+L/lKfh+3emHL327ReDO63uoKsLbWK6k8/GpHw9VlbSgRP5+Phjcz26QygixlIYhUFFhVSLuhsQkYWj/bli+8seGKZilkAAJkAAJ6JaAeyMz3WJw3TC5Zszf3x9ZWVmuEzNFrQTioqJw/ujRyn0f3021pjvzRkGRBRlZJcJ9Uv1H1uzzByzliejdpQsG9uyB37cxYMmZXGt6n5Ssfv2nI/+M0e0gj/pKhcEe3EdGtj1TDIb6OXL884HHzizKrfcOT1xf3+ouu0FiyxcpRWXq3YC7dQzFuk8muaVD5cS2U/7KoaHhlS/zvJ4EunVqK9ytDSKqbjqs5SX1LIXZaiJQkJ0GaZB269y23gZpREQE8vPzUVam/qFPTbrwGgmQAAmQQPMnUL+RXvNvV4NpKGeLHnviaazbsAVffPk1VoojTmxLQqkfgSF9eisZTd6HYRAzpGqlSKxPXLs5Q21yJZ2Xl8XpujtmyBC38rbkxOnHU5XmG2z2GTlPsPCy2V1fM7OqzkTKum0291xbG0pfx16nJSX22dvK5ebn5Shv/c3q3Zor56/PucHLziEnR/3fTX3qaSl52onAO1KK8viQsaH7vFBELJbSNsn938qhw4bjg+Wf4uVXX8eKVV/h1cVLRMAzn4ZWkeWRAAmQAAk0IwI0SF10xsRJ56Nvv/4YPKAPhgzsiw0b1uPuex9wkYu3ayMwoLvdPdHbu3ok1dryyOvSZVduk+GumEyHlSw9O9mjtLqbn+lJgAT0SaBN6zilYaWFufpsYBO2qrQoT6k9Idb9tdv/ff5lvPv2UsyYNhXjxoxGgAhGNuuSS5uwNayaBEiABEigsQnQIHVBeMLE87Hi809RfGpPy2XvvYtx4yeIyK5E5wJdjbfbi7WjUgwikq47EuBvwoxJye5kUdJ6GYpEXxXAv4Y9Tt0ujBlIgAR0QyDA3+4mbi1z/0GXbiA0VkMqbJD7kror8nfV5O2N0tLTfZKyby/i6ZXkLkqmJwESIAFNEVC/IE9TzWo4ZWPFD+E3X3/lLDA1NVVxHwoLD0dWZiZi2vVx3vP28UdodBflcF700EllPRxV+odGQ+rUvQm8nQLDYquwkTr5+/ogMMi+9q6szHNPvI3egAxv5GBUYbPixIFtDkx8FQT8gsIRHJ2ksPALjoBJBM4pjp3sUTbyyyggLM7ZT47KfcxmRR/53qNfWGK/WynhiZ1QYgq2vzn1f0hMsqJTWmEPpB2wz/pXSdBIb0zib9knIMTJSG5Xkp9pd7FupCo1V2xYfAeY/Vyv7Q2LSlC+H9sPnKi5NmpJYcf3riuds1J3w1JajKeffAxPP/s8unbths2bNykeSvOvu8pVdt3dN5rMiEzq5myX/C0vjh2uHM6LjXwifjrhGxjm/L6pXJ28LnWqgDw8I3IaQB7Bka2q6RQeGanoUyT0WZN+pWcUkrWIwYW3OByf87LiApw8ttdz9bMmEtAJAa+wsDBPfZdoEtl3P/yCp596Al+s+EzR3ywGx3v3H8E5I4di//4U55eQJhvXQpWmQVq94ysbpNXv8kpzJUCDtHrPqDVIq+fklaYk4DBIu4llHYv+8wT+2r0LkyZPwZrVq3DnHQurzJo2pZ6eqvtMg9RT9bKesyNAg/Ts+DF3yyVAg9RF33/y2UosfetNfLz8QyVlcHAItv/5F/r26sqIuy7Y8TYJkAAJkAAJqCXgLdx1N/+xU1k/umvXn4gUUdlffW0J5Pk9d92hthimIwESIAES0BgBLoR00WFpaceQ2Mq+7lEmledyfcvJkydd5ORtEiABEiABEiABtQS69+gplsT4Yu9eu8tjZkYG3n1nKYaJyLsUEiABEiAB/RKgQeqib6W70JQpF8L3VFCcmbNmCxeiL5tsKwoX6vI2CZAACZAACWiSwOFDB8XesF6YMvVCRX95fu55Y7Bz5w5NtodKkwAJkAAJqCNAl10XnBz7kI792zgU5BcgvyAf8+bOwbGjR13k5G0SIAESIAESIAF3CIwbPxHXzV+gBA/0FjEbdmzfhkWP/gtytpRCAiRAAiSgTwI0SFX2a2BQEALFfmjHj6epzMFkJEACJEACJEAC9SEg14/m5eairKysPtmZhwRIgARIQEMEaJBqqLOoKgmQAAmQAAmQAAmQAAmQAAnoiQDXkOqpN9kWEiABEiABEiABEiABEiABEtAQARqkGuosqkoCJEACJEACJEACJEACJEACeiJAg1RPvcm2kAAJkAAJkAAJkAAJkAAJkICGCNAg1VBnUVUSIAESIAESIAESIAESIAES0BMBGqR66k22hQRIgARIgARIgARIgARIgAQ0RIAGqYY6i6qSAAmQAAmQAAmQAAmQAAmQgJ4I0CDVU2+yLSRAAiRAAiRAAiRAAiRAAiSgIQI0SDXUWVSVBEiABEiABEiABEiABEiABPREgAapnnqTbSEBEiABEiABEiABEiABEiABDRGgQaqhzqKqJEACJEACJEACJEACJEACJKAnAjRI9dSbbAsJkAAJkAAJkAAJkAAJkAAJaIgADVINdRZVJQESIAESIAESIAESIAESIAE9EaBBqqfeZFtIgARIgARIgARIgARIgARIQEMEaJBqqLOoKgmQAAmQAAmQAAmQAAmQAAnoiQANUj31JttCAiRAAiRAAiRAAiRAAiRAAhoiQINUQ51FVUmABEiABEiABEiABEiABEhATwRokOqpN9kWEiABEiABEiABEiABEiABEtAQARqkGuosqkoCJEACJEACJEACJEACJEACeiJAg1RPvcm2kAAJkAAJkAAJkAAJkAAJkICGCNAg1VBnUVUSIAESIAESIAESIAESIAES0BMBGqR66k22hQRIgARIgARIgARIgARIgAQ0RIAGqYY6i6qSAAmQAAmQAAmQAAmQAAmQgJ4I0CDVU2+yLSRAAiRAAiRAAiRAAiRAAiSgIQI0SDXUWVSVBEiABEiABEiABEiABEiABPREgAapnnqTbSEBEiABEiABEiABEiABEiABDRGgQaqhzqKqJEACJEACJEACJEACJEACJKAnAjRI9dSbbAsJkAAJkAAJkAAJkAAJkAAJaIgADVINdRZVJQESIAESIAESIAESIAESIAE9EaBBqqfeZFtIgARIgARIgARIgARIgARIQEMEaJBqqLOoKgmQAAmQAAmQAAmQAAmQAAnoiQANUj31JttCAiRAAiRAAiRAAiRAAiRAAhoiQINUQ51FVUmABEiABEiABEiABEiABEhATwRokOqpN9kWEiABEiABEiABEiABEiABEtAQARqkGuosqkoCJEACJEACJEACJEACJEACeiJAg1RPvcm2kAAJkAAJkAAJkAAJkAAJkICGCNAg1VBnUVUSIAESIAESIAESIAESIAES0BMBGqR66k22hQRIgARIgARIgARIgARIgAQ0RIAGqYY6i6qSAAmQAAmQAAmQAAmQAAmQgJ4I0CDVU2+yLSRAAiRAAiRAAiRAAiRAAiSgIQI0SDXUWVSVBEiABEiABEiABEiABEiABPREgAapnnqTbSEBEiABEiABEiABEiABEiABDRGgQaqhzqKqJEACJEACJEACJEACJEACJKAnAjRI9dSbbAsJkAAJkAAJkAAJkAAJkAAJaIgADVINdRZVJQESIAESIAESIAESIAESIAE9EaBBqqfeZFtIgARIgARIgARIgARIgARIQEMEaJBqqLOoKgmQAAmQAAmQAAmQAAmQAAnoiQANUj31JttCAiRAAiRAAiRAAiRAAiRAAhoiQINUQ51FVUmABEiABEiABEiABEiABEhATwRokOqpN9kWEiABEiABEiABEiABEiABEtAQARqkGuosqkoCJEACJEACJEACJEACJEACeiJAg1RPvcm2kAAJkAAJkAAJkAAJkAAJkICGCNAg1VBnUVUSIAESIAESIAESIAESIAES0BMBGqR66k22hQRIgARIgARIgARIgARIgAQ0RIAGqYY6i6qSAAmQAAmQAAmQAAmQAAmQgJ4I0CDVU2+yLSRAAiRAAiRAAiRAAiRAAiSgIQI0SDXUWVSVBEiABEiABEiABEiABEiABPREgAapnnqTbSEBEiABEiABEiABEiABEiABDRGgQaqhzqKqJEACJEACJEACJEACJEACJKAnAjRI9dSbbAsJkAAJkAAJkAAJkAAJkAAJaIgADVINdRZVJQESIAESIAESIAESIAESIAE9EaBBqqfeZFtIgARIgARIgARIgARIgARIQEMEaJBqqLOoKgmQAAmQAAmQAAmQAAmQAAnoiQANUj31JttCAiRAAiRAAiRAAiRAAiRAAhoiQINUQ51FVUmABEiABEiABEiABEiABEhATwRokOqpN9kWEiABEiABEiABEiABEiABEtAQARqkGuosqkoCJEACJEACJEACJEACJEACeiJAg1RPvcm2kAAJkAAJkAAJkAAJkAAJkICGCNAg1VBnUVUSIAESIAESIAESIAESIAES0BMBGqR66k22hQRIgARIgARIgARIgARIgAQ0RIAGqYY6i6qSAAmQAAmQAAmQAAmQAAmQgJ4I0CDVU2+yLSRAAiRAAiRAAiRAAiRAAiSgIQI0SDXUWVSVBEiABEiABEiABEiABEiABPREgAapnnqTbSEBEiABEiABEiABEiABEiABDRH4f9AvfhZNG1cjAAAAAElFTkSuQmCC", "text/html": [ - "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "score_figure(df_eventteams_scores, 'performance', legend=True, scatter_opacity=0.5)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In the experiment happened 2 main interesting escenarios with Accumulative method that weren't in Performance method:\n", + "\n", + "- Draws: there are more chances to observe a draw with a simple sum of scores. This forces to work on additional mechanisms to define a winner\n", + "- Multiple winning positions in a single event: a team can achieve multiple positions (medals) in the same event with a simple sum, independently of the other mechanisms already implemented when sorting values. This is a less probable escenario, but will require additional efforts in order to show in front-end and assign winning prices if happens" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Participation figures" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Participation by team" + ] + }, + { + "cell_type": "code", + "execution_count": 51, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.plotly.v1+json": { + "config": { + "plotlyServerURL": "https://plot.ly" + }, + "data": [ + { + "labels": [ + "Eve", + "Cain", + "Seth", + "Enos", + "Noam", + "Abel", + "Awan", + "Enoch", + "Azura" + ], + "parents": [ + "", + "Eve", + "Eve", + "Seth", + "Seth", + "Eve", + "Eve", + "Awan", + "Eve" + ], + "type": "sunburst", + "values": [ + 10, + 14, + 12, + 10, + 2, + 6, + 6, + 4, + 4 + ] + } + ], + "layout": { + "autosize": true, + "margin": { + "b": 0, + "l": 0, + "r": 0, + "t": 0 + }, + "template": { + "data": { + "bar": [ + { + "error_x": { + "color": "#2a3f5f" + }, + "error_y": { + "color": "#2a3f5f" + }, + "marker": { + "line": { + "color": "#E5ECF6", + "width": 0.5 + }, + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "bar" + } + ], + "barpolar": [ + { + "marker": { + "line": { + "color": "#E5ECF6", + "width": 0.5 + }, + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "barpolar" + } + ], + "carpet": [ + { + "aaxis": { + "endlinecolor": "#2a3f5f", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "#2a3f5f" + }, + "baxis": { + "endlinecolor": "#2a3f5f", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "#2a3f5f" + }, + "type": "carpet" + } + ], + "choropleth": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "choropleth" + } + ], + "contour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "contour" + } + ], + "contourcarpet": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "contourcarpet" + } + ], + "heatmap": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmap" + } + ], + "heatmapgl": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmapgl" + } + ], + "histogram": [ + { + "marker": { + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "histogram" + } + ], + "histogram2d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2d" + } + ], + "histogram2dcontour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2dcontour" + } + ], + "mesh3d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "mesh3d" + } + ], + "parcoords": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "parcoords" + } + ], + "pie": [ + { + "automargin": true, + "type": "pie" + } + ], + "scatter": [ + { + "fillpattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + }, + "type": "scatter" + } + ], + "scatter3d": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatter3d" + } + ], + "scattercarpet": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattercarpet" + } + ], + "scattergeo": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergeo" + } + ], + "scattergl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergl" + } + ], + "scattermapbox": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattermapbox" + } + ], + "scatterpolar": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolar" + } + ], + "scatterpolargl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolargl" + } + ], + "scatterternary": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterternary" + } + ], + "surface": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "surface" + } + ], + "table": [ + { + "cells": { + "fill": { + "color": "#EBF0F8" + }, + "line": { + "color": "white" + } + }, + "header": { + "fill": { + "color": "#C8D4E3" + }, + "line": { + "color": "white" + } + }, + "type": "table" + } + ] + }, + "layout": { + "annotationdefaults": { + "arrowcolor": "#2a3f5f", + "arrowhead": 0, + "arrowwidth": 1 + }, + "autotypenumbers": "strict", + "coloraxis": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "colorscale": { + "diverging": [ + [ + 0, + "#8e0152" + ], + [ + 0.1, + "#c51b7d" + ], + [ + 0.2, + "#de77ae" + ], + [ + 0.3, + "#f1b6da" + ], + [ + 0.4, + "#fde0ef" + ], + [ + 0.5, + "#f7f7f7" + ], + [ + 0.6, + "#e6f5d0" + ], + [ + 0.7, + "#b8e186" + ], + [ + 0.8, + "#7fbc41" + ], + [ + 0.9, + "#4d9221" + ], + [ + 1, + "#276419" + ] + ], + "sequential": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "sequentialminus": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ] + }, + "colorway": [ + "#636efa", + "#EF553B", + "#00cc96", + "#ab63fa", + "#FFA15A", + "#19d3f3", + "#FF6692", + "#B6E880", + "#FF97FF", + "#FECB52" + ], + "font": { + "color": "#2a3f5f" + }, + "geo": { + "bgcolor": "white", + "lakecolor": "white", + "landcolor": "#E5ECF6", + "showlakes": true, + "showland": true, + "subunitcolor": "white" + }, + "hoverlabel": { + "align": "left" + }, + "hovermode": "closest", + "mapbox": { + "style": "light" + }, + "paper_bgcolor": "white", + "plot_bgcolor": "#E5ECF6", + "polar": { + "angularaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "bgcolor": "#E5ECF6", + "radialaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + } + }, + "scene": { + "xaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + }, + "yaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + }, + "zaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + } + }, + "shapedefaults": { + "line": { + "color": "#2a3f5f" + } + }, + "ternary": { + "aaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "baxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "bgcolor": "#E5ECF6", + "caxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + } + }, + "title": { + "x": 0.05 + }, + "xaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "ticks": "", + "title": { + "standoff": 15 + }, + "zerolinecolor": "white", + "zerolinewidth": 2 + }, + "yaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "ticks": "", + "title": { + "standoff": 15 + }, + "zerolinecolor": "white", + "zerolinewidth": 2 + } + } + } + } + }, + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6QAAAFoCAYAAABACjY7AAAAAXNSR0IArs4c6QAAAERlWElmTU0AKgAAAAgAAYdpAAQAAAABAAAAGgAAAAAAA6ABAAMAAAABAAEAAKACAAQAAAABAAADpKADAAQAAAABAAABaAAAAAAsW5ObAABAAElEQVR4AezdB3xU15k+/ufemVFvIIEoAtFNBxtjGzAG2+AeO25xiVMcx3GS3ax/3mw22SRbspvy3ySb7Ca76Y577zYuuGKbZtNN7wiEaJIQklCZcu//PVcWIFCZGU255Tn5KBrN3HLO9wyW3jnnvEczpYCFAhSgAAUoQAEKUIACFKAABSiQYgE9xffj7ShAAQpQgAIUoAAFKEABClCAApYAA1K+EShAAQpQgAIUoAAFKEABClAgLQIMSNPCzptSgAIUoAAFKEABClCAAhSgAANSvgcoQAEKUIACFKAABShAAQpQIC0CDEjTws6bUoACFKAABShAAQpQgAIUoAADUr4HKEABClCAAhSgAAUoQAEKUCAtAgxI08LOm1KAAhSgAAUoQAEKUIACFKAAA1K+ByhAAQpQgAIUoAAFKEABClAgLQIMSNPCzptSgAIUoAAFKEABClCAAhSgAANSvgcoQAEKUIACFKAABShAAQpQIC0CDEjTws6bUoACFKAABShAAQpQgAIUoAADUr4HKEABClCAAhSgAAUoQAEKUCAtAgxI08LOm1KAAhSgAAUoQAEKUIACFKAAA1K+ByhAAQpQgAIUoAAFKEABClAgLQIMSNPCzptSgAIUoAAFKEABClCAAhSgAANSvgcoQAEKUIACFKAABShAAQpQIC0CDEjTws6bUoACFKAABShAAQpQgAIUoAADUr4HKEABClCAAhRIm4Bppu3WvDEFKEABCthAgAGpDTqBVaAABShAAQp4USAcBrbtNKGCUsPwogDbTAEKUIACmimFDBSgAAUoQAEKUCDVApEI8JdHIggEgOnn6JhwlmZVQefH5anuCt6PAhSgQNoEGJCmjZ43pgAFKEABCnhXICSjo2s3mFj+8cmh0cIC4ILpOkaUa/D5AK0tPvUuEltOAQpQwAMCDEg90MlsIgUoQAEKUMBuAmp09P5HI2htPbNm/fsBs87X0b9EQ0bGma/zGQpQgAIUcI8AA1L39CVbQgEKUIACFHCEgFo7qkZHl50yOtpZxYcNBS68QEdenoaAv7Mj+BwFKEABCjhdgAGp03uQ9acABShAAQo4TCAis3Tvl7WjnY2OdtaUieM1zDpPt6bxqqm8LBSgAAUo4B4BBqTu6Uu2hAIUoAAFKGB7gbBM1V27vufR0dMbkpkJzJSgdNwYDSrpEdeXni7EnylAAQo4U4ABqTP7jbWmAAUoQAEKOFIgEjFl7agR9ejo6Y0cNKBtGm+fIq4vPd2GP1OAAhRwogADUif2GutMAQpQgAIUcKCAWju6boOBpR/3fsc5NY13tqwvVSOlnMbrwDcDq0wBClDgUwEGpHwrUIACFKAABSiQEgFDrR2VzLotLYm5XVYWcPGFOsqHSNIj2cuUhQIUoAAFnCfAgNR5fcYaU4ACFKAABRwnoEZHP9loYMlHvR8dPb3xI4ZJYDrbh0zZIoajpafr8GcKUIAC9hZgEnV79w9rRwEKUIACFHCFgAoUV61LfDCqcHbtAfYfiGD2DB2jRnCLGFe8YdgIClDAMwKSp46FAhSgAAUoQAEKJE9AjY6ukcy6iZqq21lN1RYyby8ysPBdA80tJlQ2XxYKUIACFLC/AANS+/cRa0gBClCAAhRwtIAaHV29ThaQpqDs3mPi4ScN7NlrIhRKwQ15CwpQgAIU6JUAA9Je8fFkClCAAhSgAAW6EwiHTWvf0ebm7o5K7GvBIPD6WwY+XG4gIiOlRnJmCie20rwaBShAAY8KMCD1aMez2RSgAAUoQIFUCPh8WspGR09vz8bNMlr6VASHjshoqUwbZqEABShAAfsJMCC1X5+wRhSgAAUoQAFXCLSPjjbFOTo6tAwYPAjQ9PiHOBsbgWdfNKCC05CM1rJQgAIUoIC9BJhl1179wdpQgAIUoAAFXCPQNjoaX3ahieM1zJyuo/G4idwcDUtXSFC5RdahmlpcPh8uM1B5ALjmMh9MiUu1+C4T1715EgUoQAEKdC3AgLRrG75CAQpQgAIUoECcAmp0dMNmIN7R0SkTNbz0uky3PQyUDwHmzPJh/BgN7y42UFMTe6Wys4F5F/msdaUjh2no30+DX5ItsVCAAhSgQHoFOGU3vf68OwUoQAEKUMCVAmp0dFUvM+uqYFSVin3AY89GsK/KxE3X+pCb2/Z8LP9/+SW6df7aT0w897KBDZsMqKCZhQIUoAAF0ivAEdL0+vPuFKAABShAAdcJnBgdbYq9aX2KgNkzdOTlatbIqApGVYlIUqLlK1TG3kjM+5leMF1DdraGF189OX34w2UmqmuBSy/SOH23jZj/TwEKUCAtAhwhTQs7b0oBClCAAhRwr0BvRkevuVzHkRoTq9YauOwSH66cr3cYEW1pic1teDkwebyOVxaeDEbbr7B5q4lnX4lAbUmj1pWyUIACFKBA6gUYkKbenHekAAUoQAEKuFZAjY6u22iiKY7RUTUVNyxx47KPTaxcY+IR2bIlFALuuNkHtaYUWmxRo7re/It9WLbSQGND5+QHD8LaGqbqoGntWdr5UXyWAhSgAAWSJcCANFmyvC4FKEABClDAgwJ+f3z7jmZmAmqdZ8MpgaMaDX17kYEFb0ZQVCgBaYwZdi+/WEfFXhPrJUDurgSDwPOvGNiy3URQAmAWClCAAhRInQAD0tRZ804UoAAFKEABVwtYo6MbDBw/Hnszw7JGtFKSFpUN1mQNqYZAxslr7K8C3l8iW77EUGaepyEzU8PCd6M/790PDKxYbXCkNAZnHkoBClCgtwKaKaW3F+H5FKAABShAAQpQQP1F8eATETQ2xm9RWAhcfKGOPkUaPlhqYOfu2P9MGTFcJSvy4bFnInFNHR4zUpP1qzqTHcXfjTyTAhSgQNQCHCGNmooHUoACFKAABSjQlYBa+7l+kxlXMDqsXMOEsWpEEzh2DJIN18CSjwzMlcB09szY/lTJzwcum+vD0o/iC0ZV+7btNPH8gog1fZcf23fV43yeAhSgQGIEOEKaGEdehQIUoAAFKOB5gQcej310dOb5GkZIQHpckiCVFGsSSBrYuFWm2cp6URWg5uYAtUejp73pWh3H6oG3ZO1pb0txX+C6q3zIyTZltFTWsLJQgAIUoEDCBWL72DHht+cFKUABClCAAhRwuoBa/6kSB8U6Vbe0PzBquI6nXjSsUcnDR0xMm6rjps/40FeCwdbW2ILRCy/Q4ZMd1hMRjKo+qZF9Sp96IYJ6CXCN3se3Tu9m1p8CFKBAUgQYkCaFlRelAAUoQAEKeEfAL0HgynWxR2zTpuhYs96QrV0kEJXH70hSoceejSArS0Ymr/DB54vecLSs+xw3RsNLr8Vej+7uohI0PfacgcPVprUlTXfH8jUKUIACFIhdgAFp7GY8gwIUoAAFKECBTwUivVg7unOPid3yNbBUk2m2bSOsERlt1XUNj0pCInXtaIpKhDRvjoYPl0egtopJdFF1ekZGcSv3G1CjwSwUoAAFKJA4AQakibPklShAAQpQgAKeE1CjmKvWxjcquVX2/WyUEcgs2Z4lW0ZFdd3EyOGaTI81ZdQ0esrLZL/RbbuALduiPyeeI195w8Qe2deUQWk8ejyHAhSgQOcCDEg7d+GzFKAABShAAQr0INA+OtoQ4zYvKlmRyqyr1pCqovYfjUhM+7Uv+zF3lo5Fi6MPcC+apVnbs7yTgCRGbbXp/v9ff9vAbglKox297f5qfJUCFKAABZhll+8BClCAAhSgAAXiElBbojz0ZAQNDdGfPngQ8JnLfaiTKbolfTVJHGRi4bsGautM5Odp1uhjc3N01ztrtAaVyOhhqUMsI6rRXb37o9Q+paNkNDeWda7dX5GvUoACFPCmgKQhYKEABShAAQpQgAKxCahpq1tkym0swSg0U/YI9eMNCUD3VJjWti4zz9Nx83U+a81oLNfq0we49CIdb7+vkiLFVvdEHP2mtME3T8ewoRpUUicWClCAAhSIT4BTduNz41kUoAAFKEABTwvEs3a0sKBtb1EVjKqitnV5b3HEmrI7cVxs+3yqdaObt5rYtqPtWunoDDV9d+9+Tt9Nhz3vSQEKuEeAAal7+pItoQAFKEABCqREICzZbzduMVEfw1RdVbEmmYor+YrQr+SUapoa1BrUQOCU53p4OPdCHYbU4b0Y1pr2cMm4X351oYF9zL4btx9PpAAFKMCAlO8BClCAAhSgAAViEvDJXw+roth3VCUtuvxSHTk5bZcPBYHlKwzccI0PZ0/WUFAAqDWlI4ZpUY90jjtLw0g5/rkF0Sc+iqlxcRyssu8eOKRGStM3WhtHtXkKBShAAVsIMKmRLbqBlaAABShAAQo4Q0CNjqrtWt79oOeAMEu2clFJh1TAuUwC0fWb5BwZER0hyYAumKahWJIaqX1Dl3xsYJOMuPZUiouBW6/3YeE7EezY3dPRqX/9xmt19O8H+H2xTT9OfU15RwpQgAL2EWBAap++YE0oQAEKUIACthcwJbXuw08ZqK+PvqqDBgIXz9ahRkjf/dBAdU3buWqarhpVNIzoArjbbvKh6oCJ95f0HAxHX7vEHanW1d56g44+RW1b0STuyrwSBShAAfcKcMque/uWLaMABShAAQokVEDtvblpK2IKRlUFqg4ATzwbwS5JZnTTtT7MnqFZa0ZVdtxog9FL52iSTde+wahqp/J58TVD1sr2PNqrjmehAAUoQAFIAnb1UScLBShAAQpQwMMChgy4qW1MVFFbeKifVQKe5hbTmlLaKiN7QQmegkFTvtqyw1rPyWP1W9Qn52RmABnqS0b91OPsbA25snYyW6atZmVp1nfrPhK0WOfIaJo61klF1fuRpyI41sPoqEo6VFQItEgWXZVJt7VVHD99nJkJnDNFt4K3BQsjOFLds4DKwDv9HA0PPGbPkdHTW1DcF/jcZ33cDuZ0GP5MAQpQoBMB7pzVCQqfogAFKEAB9wmoYEoFkbrMDtVlftDRYyYOSzC0v8pE1UFTppGaqD0KHGswrSAqGQK5uUBBviTzyQdK+miy3lDD0DINKvmPmuap6qgCYxXQqumfdipq9G+rbLHSUzA6oBSYNF6TNZ6mZJ81kSUBqApC1ZYvak2paltjozRUSk/XUsf0kzWZarqvCl6dUmpqgZfeiOCGq33QopuN7JSmsZ4UoAAFEi7AEdKEk/KCFKAABSiQbgEV2KnpoGrkslG2FFGB0badsmdkpYmDh4Dq2raAKN31PP3+KsnPAAlOB5ZqGDNKw/ChmhXIqdFZtd5SZbdNV1Gmjz4dQd2xnmugkhbNmamjRpwXyXrPWNabdri6BHOfv0mXfgM+XOaM0dFT66/6cJ5MNfYxydGpLHxMAQpQoIMAA9IOHPyBAhSgAAWcKKCmwqqpoWrKbMU+ExskY+uOXQb27DWtqbdObFN7ndUI45DBbQHq5PE6yiVIVcG2amuqAtT20dF33o8+KFQB9AXnapgwVsfKtQZWfyLJi2Ic5Jx/sY78POD5V6K/b7ubXb6fM0XDeZJROODnUKld+oT1oAAF7CXAgNRe/cHaUIACFKBAlALto4aVMvq5dr2JjVsNCULtOfIZZZOiPmykjECOHa1hykTdGkVVW6eo6bDJmh4ay+jo6Y0oka1aLpEptwEJoN+TDLsqwVE0ZdIEDdMkmHvwcecGo+3tvOQiHWfJaKlan8xCAQpQgAIdBRiQdvTgTxSgAAUoYFMBNQqqgtC2TK8GVqyWIHSLYa0LtWmVU1IttR52wljNShR09iQJ/CToUaOniQpO4xkdPaPhminrSnXMmK7jrfcM7JZsu90VtQ5VZeN9WdZh7t3X3ZHOee3Gz+gYIFOxVX+xUIACFKDASQEGpCct+IgCFKAABWwooBIRqRHAFasNrPrEwPad3QczNmxCSqs0cpiGc8/Wcd45+onMv70JggzhfuwZWTta1/tm5EjW4RbJXNzdVi8qmdPtN/uwe4+JxcudPzrarpaTDah9VNV3FgpQgAIUOCnAgPSkBR9RgAIUoIBNBKz9KSUQWrnGsJLZqIytLLELjB6hWaOSKjhVI6Yq220sRY2ObpPMum/HsHY0lut3duzll2oStGl4YYF7gtH2dg4aANzwGWbebffgdwpQgAJKgAEp3wcUoAAFKGALARX8qLJbEhG9+4GBj2VElCVxAmrvz0tlLaNaf6rS60SzrYy1dvRZGR2V7XBSUaZOalsX+9ATMWY/SkXlEnQPNb36IslAzPWkCQLlZShAAccLcHm947uQDaAABSjgbIEWyY6r9t58f2nbaKjaD5Ql8QKr10mmW/nqK/ufXjRDx9xZEhRJJlyVxbezEpHPA9ToaKqC0UEDgVnn63jxdfcGo8p5o2SALik2rXW/0Xwo0Fnf8DkKUIACbhLgCKmbepNtoQAFKOAgAZWg6PARE6+/beCjVRwNTUfXqbWmV8/X0b+fZq03PbUOKonU489FcDQFo6Nqi5jbZb/R7TuBpR97473wuc+2uScq+dSpfcfHFKAABZwkwIDUSb3FulKAAhRwgUBIRkNVltWXXotgq4zAsaRfQG1Jcu2VPgyTPU4zJDhUU3W3SfIolRE3FeUqCYrVfV98LTX3S0WberpHnuyv+nlJ3qTazUIBClDAywIMSL3c+2w7BShAgRQJqABHTQFdv8nAK68b2Ct7h7LYT2CEZOhVI6Zqf9MlH6kpvsnvp3Om6pgo6yofftLdU3U76+3h5cCV83xRreft7Hw+RwEKUMANAgxI3dCLbAMFKEABmwpYgajEGSoQffkNA/sYiNq0pzpWa/IEDddf7Ze1jsAqWXe6JkmBadkgWCOzL74aQdXBjnXwyk8XnKdj6gQgEFCpplgoQAEKeE+AAan3+pwtpgAFKJASAbV1i5r2+dwrEeytTP5IW0oa5bGbqMy811/dtnfm8pURSXKUOAC1Bc1tN+rYvM3ERyu9/f64+Todpf0l+zFj0sS9wXglClDAMQIMSB3TVawoBShAAWcIqED0cLWJx2S7EJWllcX5AnMvVMmPfGhtNbFshYHKqt636erLNfh0DS/LFG6vl4J84I7Pcequ198HbD8FvCrAgNSrPc92U4ACFEiwgNpHVGXOfUGmX6p9RFncJ3DL9T7MvkC39opdLoFp4/H42jj9bA3jxuh4+CnvrRvtSmzcGA0Xz9a5nrQrID5PAQq4VoABqWu7lg2jAAUokDqBsMQVixYbeOalCFRgyuJeATWt9O++5rMCyiWyRcsnG2IbBR86BNZo6/MLIjh02L1O8bTsqst0jCjn1N147HgOBSjgXAEGpM7tO9acAhSgQNoFmlva9hJ95OkI9uyNLTBJe+VZgV4JTJHER7fe6ENYRsXfX2bgyJGeL5edrdaN+qwkVytW8/1yulhWFvDFW3XZE5aLSU+34c8UoIB7BRiQurdv2TIKUIACSRNQ2XPVl0pYtPBdTs9NGrQDLnyH7KV50UwdK9caPSYnuvYqHYaMoC9YyPdMV107aoSGeXM1BPwMSrsy4vMUoIC7BBiQuqs/2RoKUIACSRdQ60R3V5h46ImIlbwo6TfkDWwvUD5Ew113+CVJkYlFSwwc7mS09PxzdYyWYOtRGU1n6V5g/sVtVj5f98fxVQpQgAJuEGBA6oZeZBsoQAEKpEhAjYo+9UIEb7/PEa4UkTvqNrfLdNw5s3QslYRHaz85OSV3WDlw+cU+a0S9usZRTUpLZQMB4Eu3+ZAtU3hZKEABCrhdgAGp23uY7aMABSiQAIFQGDh4yMQfHpBENEdOBhoJuDQv4TKB8Wdp+OItPjQ0Au9+aFh7a95+k8+a0rtmHd870Xa3NXV3jg4VnLJQgAIUcLMAA1I39y7bRgEKUCABAmqKrtrG5dmXOdUyAZyeucS99/gxajjQKu8fNSr6+lscVY+185l1N1YxHk8BCjhRQHdipVlnClCAAhRIgYCanxsKYm9FmMFoCrjddov/+WMYr75lIi9HswJSt7UvFe15T0aYDYOjyqmw5j0oQIH0CTAgTZ8970wBClDAvgKymWjkYCWaHvhvDB8cwuWXMLuKfTvLvjV7450IfvrrsLW35lXzZfpphn3raseaNTcDSz4C1D6/LBSgAAXcKsCA1K09y3ZRgAIUiFcgEkZ44yq0PPy/MI/WIPTaU7jhigjKBnEbinhJvXze3koT3/9xCM3NJm693od+/bysEXvb120wUHuUo6Sxy/EMClDAKQIMSJ3SU6wnBShAgVQImAaCi15D6+vPnbhbZMdmRFZ9iHvv5DDNCRQ+iFngv/8Ywap1Bj53nQ+jR/HDjVgAVXIog0twYyHjsRSggIMEGJA6qLNYVQpQgAJJE5D1omawFS1P/xWhlUvOuE3ow4XIa9yHe+8+4yU+QYGoBZ54LoInn4/gkgt1TJvKP0GihTsi+7pu3GIyKI0WjMdRgAKOEuBvA0d1FytLAQpQIPECpqwXNetq0Xz/rxDZs73LG4RefQLjhwdx1XyuJ+0SiS/0KKBG+37zpzAmjdNw4QX8M6RHsE8PWPyRgQhHSaPl4nEUoICDBPibwEGdxapSgAIUSLSAKVl0jaq9aLr/v2DW13V7ebOp0VpPet38CIYN4ZTLbrH4YrcCW7ab+OefhTBooIZ5c/mnSLdYn74Ylu1zliyXKfXynYUCFKCAmwT4W8BNvcm2UIACFIhBwJS/cNWIaMvjfwBklDSaEtm1FZGPF+FvvxiO5nAeQ4EuBRqPAz+QZEdZmcBnr5YMvIEuD+ULnwqs32TiuLixUIACFHCTAANSN/Um20IBClAgWgHJpBvZ8glan3842jNOHBda+jZy6vfi7+858RQfUCBugZ/8Kowm2d7k2isZlEaD+OHyCML8PCgaKh5DAQo4RIABqUM6itWkAAUokCgBNTIaWr8Sra8+Hfclw7Ke9KwhrfjMFVxPGjciTzwh8IvfhmVrE+CGz+jIyjrxNB90IlCxFzh0hNvAdELDpyhAAYcKMCB1aMex2hSgAAXiEVBrRiOfrEBw4QvxnH7iHLOlCSrJ0TXzDIwczvWkJ2D4IG6B//5DGAcOSlB6jY6c7Lgv44kTl34sCY4iDEo90dlsJAU8IMCA1AOdzCZSgAIUsAQkGA1LMNr61ksJAYlU7EB46Tv45h2cP5gQ0Bgu4pOB6aJCQO/lb/FhQzUMGWyfDxR+++cw9lW1Td9lUNr1G+LgIaBiHyC7NbFQgAIUcLyAZkpxfCvYAApQgAIU6FbADEowuu4jBN9d0O1x8bwYuP7L2G2Mwi9+H8/ZPCcWARVAXjlPx5gRbZFoXh6wY5eJ3z8QRn1D91eaPUO39rFcItuHtJfP3+xDUxPwwqvRJbVqPy/Z3//2bj8GDwBefM1AS0uy7+bM6/ftC9x+ow+afT5PcCYka00BCqRdoJefraa9/qwABShAAQr0IGAGW5MWjKpbq/WkIwc247NXcT1pD13Rq5fVaOi99/itaa3/+G8h3PfDEP7+n0PYusNERkbPUcngARoGypcTyv/KSOnBw8BVl0mjnVHllLPW1gJq+xzj5OcLKa8Db0gBClAgEQIcIU2EIq9BAQpQwKYC1tYum9ai9fVnk1pD35ARyPzcV/HL35tWgJTUm3n04nm5wK9/EsAPfxLuMqmNClqvvsyHC8/XJDmQhvWbDDzydATlZRq+8RW/zPEE6upNCfZM/PHBCNQIaYZst6K2XJkwVsfW7Qaee8Xo8vqppv/u3/kRyABeeZ1RV2f2BfnAF2/lKGlnNnyOAhRwjgBHSJ3TV6wpBShAgdgEZG9RY9eWpAejqlKRfbsQ/HAh7rmd60lj66Toj1b7du7cY+LuL/pw3jk6SorPHDq87GId48Zo+O2fI/jRz8PIzdGsYysqTSs4XbfRwJ8eilhBZ/udx49VgauJn8r2K61B4JKL7POnwX/+pu39dPkl9qlTu5sdvqtp2hs2m9FuI2yHKrMOFKAABc4Q4H/hzyDhExSgAAVcICDpAYwD+9DywqMpa0z44/eRfWQnvvtNpiZIFrqayqqm6KqRzf/vX/z4+b/5Mev8k7/K516oY/EyA6GQjHrKgOi6DQbOnqSjtRXWWtFGWS964JCJ6pqTfbT0IxPLVrSNiqr1pePPOjPQTVZ7ornuj38ZRlGRhgtlDSzLmQIfrzJ6ndzqzKvyGQpQgAKpE+B/3VNnzTtRgAIUSJmAeewomp/8U8ru136j4ILHMby0GTfJfpIsiRdQo6TPvBTBvf8Uwvd+FMbb7xv4kkzZVMmO1HTd4j4aZs/U8YXP+ayvc6dKMBo8GXz2VCM1QpqV2dNRqX/9p78KYUS5hikT7RUsp17izDs2NbeNkjJF5Zk2fIYCFHCGgHx+ykIBClCAAm4SUEmMmp/+i8yjTUPm1EgY4QWP4fLbv47N2zRs3Bp9MOSmPkhGW1Q21VODjupaE2++Z1pTckeP0LBnrwkVsD71QsR6fHodDOkK3aHxnGqXyiR83zf80sYIdu4+vXXe/nnlWgMTxzGpmLffBWw9BZwrwI+wndt3rDkFKECBMwUkYml9/mGYR2vOfC1Fz0T2V1jby9x9K9eTJpJcjYJ+404fBpa2RZVqRHSCrP8cKgmLduxuC/zXfGLguit9yPx0lFONdk4/u+1X/V5ZRzqgf9u5TtwqRG1vo4Ltyy/xoV9JImWdf63GRllfLO8B+efPQgEKUMBxAhwhdVyXscIUoAAFOhdQe42G3luASMWOzg9I4bPhVUuQOWgYvv+tsfjpbx06LJdCr2hudbROZcPV8K/f9SMkU2s1iTPV2tAHH49gd0VbJPLsyxHcIdN1f/mjABoaTWvt5QdLDaxYAyup0SWzdfziR35ZQwq0JwyK5t52OUa1ZfBADVdcquPJ59vWytqlbumux4o1BoaV6/D7+O8t3X3B+1OAArEJcNuX2Lx4NAUoQAFbCpgSoYTXr0TwrZfsUz8Zhsv86j/i3bWFePolbtuRqI5RI6Nqu4+IkDZIltXOil9mbxYUaDgmW7ycPnNbbR/T0iL7x6ZhRndndY3nuW//jc8Kzl9/i++rU/1ulLXbgyRgZ6EABSjgJIG2eTxOqjHrSgEKUIACHQVknp5x5JC9glFVQ6lX6JXHMH+ujskT+OumY6fF/5MhMVjdsa6DUXVlFWzWHj0zGFWvqfWYTg5GVRv+6/8iVlA+/WwGX8qjvai1pEHJsMxCAQpQwEkC/AvBSb3FulKAAhToREAlMWp9KXXbu3RShS6fMg5WIvj2i7jrZv6V3CUSX4hL4Dd/DGPqJA3Dy+M63ZUnVexr297HlY1joyhAAdcKMCB1bdeyYRSggBcETJmP2brgSZj1ssDQpiW8ZjkC+zfhB/dyeqVNu8iR1Tp4GHjpDRPz5vqgpiGztAmotaTBGLb6oRsFKECBdAtwDWm6e4D3pwAFKBCvgASjIUkeFHzv1XivkNLzMu/6Dt7f1AdPPMfANKXwLr/Z39ztR5GsqV2wMDnvqz59gDtuPnNLlfWbTCxanJx79rbL7v6iD1lZvb0Kz6cABSiQGgFm2U2NM+9CAQpQILECsj4zcrjKMcGoarxaT3rpnfdi63ZgtWxPwkKBRAj835/D+OkPAzJ9V8fa9cl7X/3u/o5ZoAxrjxV7rmHdsMXAOZN1qARYLBSgAAXsLsCA1O49xPpRgAIU6ERAdhxE68tPdPKKfZ8yJIBuff1Z3HnTNVi7wQeVnIeFAokQePCJML7zLT8qq2BtaZOIa55+jdOzFcvGO9Yh06ZqkvEXKJSsxmpP2P1VJpZ+bFiJp9QBBQWA2m6nVPaAbZSteBZ/ZKJib9s2PSXFwEUzdZQUa1bm4607DHy0svebiW7cYkpAenoL+DMFKEABewrwszN79gtrRQEKUKBLAZXESG3vYtbJZpIOK+FPVsC3Zz1+8HeMRh3Wdbau7radJtQepZfOSd6fNeefq+HUr2HlbQFpfp6GcWN0VOwz8cyLMo0+DEye+Gk9NBOfuVy3gtPHn4nIBzEmrpyno7CwjfPyS9rOU3vJvvZWJGEf0tTXA/sP9D6wtXWns3IUoIBrBJL3X27XELEhFKAABWwkoKbqVu6BShTk1BJ641kMyq3DF26y53RHp7p6vd6PPB1BOCxB47Tk/GmTmSn76p7ypfZ6bS+btxnYss20As/NWw0MGdz2ygAZFe1TpGGJjJg2NAIbN5s4fMTE2NFt732/X4Ns1yv1Nq2R3RWrExdErpHpy07f3qfdl98pQAF3C3DKrrv7l62jAAXcJiDzXIOvPeP4VoVlPemcO+/Dlp0GVFZQFgokQuCvj4Xx/fv82Lkn8VN3P1gS3ftUjZBmBE6Onqr9YEPBk607dNiEGlWVjXolKVIEcy/0YfrZOvYfNGW6roFDkj04EaViLyCTKeDPScTVeA0KUIACyRNIzseIyasvr0wBClDAuwLhkJXEyDze4HgDo/qQrCd9Bl+8MSR/vDu+OWyATQT2yNpMNRo5R9Zl2qE0t5jW2lJdPznyqUZMm5vbflb7hj70ZBhPvRDBUQlcr5ovw64yzTdRZb0kNzISd7lEVYvXoQAFKNBBwB7/xe5QJf5AAQpQgAKdCRi11dY2L5295sTnwhtWwbd9Hb7/rehGnpzYRtY59QIPPRGRJEOarONsG6VMVA18Mqfs1C/tlCCzq3uo0U41YjruLPlzSwLNvn2BwQM17JH1pur8CePapuzWHgW27JDp+JLIV03hTVRRU4RZKEABCthdgFN27d5DrB8FKEABJRAJo/WN51xnEXrreZR+cQi+fEspHnyKganrOjhNDXr6pQi+Jntx7tgVQVNTYirxza+csmhULhnNPqShEPDmuxFcdokP552jIycb+Hi1IZl4JfCUGHWSBKQXnu+X9aUSjMrb/8NlBkwjcRHp8eOw1qyqtawsFKAABewqoJlS7Fo51osCFKAABWSlmQSj4U9WIvjmC67k0PqUIOuu+/DXxzUslzV0LBRIhMB93/Bb+3C+vcgG7ykZHS2QdaPHm63Pljo0L5Ah6zwl1m2W15JRxo7RZAqzhowMBqXJ8OU1KUCB3gswIO29Ia9AAQpQIKkCZnMTmn73E5WKM6n3SefF/eOnAhffgO/8RE/YiFai2qOCheK+KlsqkJ2tWaNc2Vltj09Mr5SPdltaTSuoaGpRwUVbxlWV0KZFEsuwpF5AjUb+4kcBvPZ2BJX7U39/u9zRJ+/fb8jo7on3ql0qxnpQgAIU+FSAU3b5VqAABShgYwFrz9H3XnV1MKr4w5vWIjBwKL73zWn4l192nBqZyu4ZPlSD2l9y6GBNtu7Q0K+kLQBtlaBSTanU1VJAqZCabqkeqz/21c+S/LjtSwJTtQ7QVMfKayphU7MEqEfrTGvd4J6Ktu9qz0qW5Ao0yYjjhx8ZmDldx9P7bTBKmtzmdnl19X7cLcmeRny6b2qXB/IFClCAAmkS4AhpmuB5WwpQgALRCBiHD6L5gV9Hc6grjgnc8bdYuW8g/vpEagK24fJH+jiZ0jh1oo4hZRqCsj2HGklSI6DJGFFSo6VqoYxfPg5WGWE/2Whg89a2INUVHWjDRvzi3wNYIes2t25PzXvKhgQoHwIrg69637FQgAIUsJsAA1K79QjrQwEKUOBTAVO2eWl99kFEKnZ4xkQr7CPrSb+Nh5/RsVhGt5JRVCKZ6ZJgZvIEHboEn34ZxUzX1jMqA6ssEbZGX9d8YmDVOsNKlpOMdnv1mpdepOPK+ToeeTI57yenuH79KzoCfjWez0IBClDAXgIMSO3VH6wNBShAgRMCkT070PLUn0/87JUHvjEToV92C773Mw31CdpyVU2/nXmebn0lcwS0N32kpv2q6b1qKvCyFYaVcXXffu+O6vXG8vRz//17AeyqMLDmE+96qqB81HAGpKe/N/gzBSiQfgEGpOnvA9aAAhSgwBkCpiz8ann0dzAOVp7xmheeCMy9GkfLzscPfi7RWS+K2mrjEhkhGzJIswK9gIyGOqGo/FUqQK2sMrHwPRk5Xevt0b3e9tk5k3V85fM6HpRR0pBMy/ZiKR/66bTd9C3R9iI720wBCkQhwIA0CiQeQgEKUCDVApFdW9DyzAOpvq2t7he4/ZtYe2gQ/vRI7NVSo6GfvUpHpmx1kZsb+/l2OkMl52lqMiVbrIEPljIwjbdv/vkf/DhwCNZ60niv4fTzvnmXz0rE5fR2sP4UoIC7BHr30bO7LNgaClCAArYQMGV4LPjBQlvUJZ2VCL/yKM6dZOKimdH/qpo9Q8cv/yOA227woW8f5wejyl9tX1JSrOH2m3z45b/7MUOyxrLELvDiqwbOniwj5R4eIVQj7iwUoAAF7CbA32p26xHWhwIU8LaApGA1ZO2ocajK2w7SerOhHsEFT+C2ayMSXHbPMf4sDf/+T37cfJ0PRQVqj9Duj3fiq2o/1KJCDbdc78MPv+3HWMkOzBK9wPrNBg4dMTFlonfdtu00EQpFb8YjKUABCqRCgAFpKpR5DwpQgALRCsja0eBijo62c0V2bIKxdim+c0/nU1X7FGn4+p0+fPMuPwaWtu0Z2n6uW7/nyRTkMlkT+407/fjal2QkWAxYohN49U0ZJZ3kXa+9sv8tt36J7r3CoyhAgdQJMCBNnTXvRAEKUKBHgbBs8cLR0Y5M4Q9eR2Hrfnzjyx0DCTU992f/7Lf2EM3KTM6+oR1rYp+fVFCRmwNMGqfjJz/0Y5asmWXpWUAlh6o7Jm7jO76Xej7THUeo9cg1te5oC1tBAQq4R4C/wdzTl2wJBSjgcAEzGET44w8c3orkVD/8ymOYOjZsZczNzwO+9bW26bkqMPPyiI+amqwyB98ia2b/7h4/CmW6Mkv3Am8uMjw/bVdWBrBQgAIUsI0AA1LbdAUrQgEKeF6goQ6RvTs9z9AZgNnUiNCCx3H7jT5ZKxrAeFk/qZL9sLQJKIuxozT823cDmDyBv9q7e18sWW4gEtEwwqN7cu7Za1hbCnVnxNcoQAEKpFKAv7VSqc17UYACFOhCwAyHEPzo/S5e5dNKQB9QBlM2kVQjpE7ZTzSVPZeR0TaN9+4v+nDFpfz13p39spWyltSjyY3UlN2Q7HPLQgEKUMAuAvyNZZeeYD0oQAFvC0gyo/D6ld426Kb1mdfcgsC0WdACEnWxdCmgy2/17Czg8kt8UIEpS+cCL70WQR/ZFqikuPPX3f5s1QHO2XV7H7N9FHCSAANSJ/UW60oBCrhTQBZ0hdd97M629bJVWn4Bsm67B75ho6HlSHpZlqgE1CjyREl49P37uK60K7BNW03LqKvX3fz8zj2mTFt2cwvZNgpQwEkCDEid1FusKwUo4E4B00Bo1RJ3tq0XrdKKipF9+zegF/eHlpvfiyt581SVhbdssIbv/70fA2RLHJaOAgsWRqD2r/VJYiyvlf0yQsrERl7rdbaXAvYVYEBq375hzShAAY8IRPbvhVlf55HWRtdMvd8AZN96N5CVLcGoDPexxCWQIRl4iwo0fPfv/NbepXFdxKUn7dtv4tCRtmRQLm1il81qaACCoS5f5gsUoAAFUirAgDSl3LwZBShAgY4CZrAFodUcHT1VRR8w2JqmqwJRTQJSlt4J+GQpqVpX+u2/YVB6uuSyjw1rlPT0573w8/4qriP1Qj+zjRRwggADUif0EutIAQq4VkDTdES2rHdt+2JtmFbUF1k33QktUyIovwzvsSREQO3VmpkJ/L+vy/Td/py+2476+jsR9JXkRgUe3L91zz6To6TtbwR+pwAF0irAgDSt/Lw5BSjgaQGVzGjLJ54mOLXxKoFR9q1fg5Ytix9VuliWhAqo6bvZMuD8t3f7UMAluSdsVWB21ijvvd8OHDShgaOkJ94IfEABCqRNwHv/BU4bNW9MAQpQoKOA2nuUW72cNMm8/ottEZPO7UpOqiT2UabsmlNUqOGbX/FgJp8uKBd/ZGDs6C5edPHTx+ohiY04Wu7iLmbTKOAYAQakjukqVpQCFHCbgApII/t2u61ZcbVH7TOq5xdBy5CpuixJFciSqbsq++49X2bgr6CXSkCakeHNPUmP1HCENKn/2HhxClAgKgEGpFEx8SAKUIACiReIbN2Q+Is68IqBGZfAN3QktDzOI01V96mgVO1TesWl/DNAme+qMDFyuPdGC/dWcvuXVP2b430oQIGuBfibqGsbvkIBClAgaQLW6OjG1Um7vlMu7Bs1FoHz50DLL3RKlV1TT5V595rLfZg6kX8KLF5uYPRI7zlUyTrScMQ1b2k2hAIUcKiA9/7r69COYrUpQAGXCajpupV7XNao2JqjtnTJvPJmaAFZ2MiSFgGV6OhLtzHJ0co1BrIyTPTpk5ZuSNtND1dLMmvO3E6bP29MAQq0CTAg5TuBAhSgQBoEIju3puGu9rpl5hU3yV/DEowyo27aOkbRq6/P38yoZF8VMHyot/4sks/F0NzMdaRp+wfIG1OAApaAt/7Ly06nAAUoYAMBM9iC8FZv7z3qn3Qu9GGjJIkRR0fT/ZbMlV12xsh01TmzvP0nwZr1hgSk6e6N1N//SE3q78k7UoACFDhVwNu/fU6V4GMKUIACKRJQmWQje7al6G72u42Wm4eM+ddBy2RGXbv0Tn4ecNsNPvQtskuNUl+PRYsNDBygISDTmL1Uqg4ChuGlFrOtFKCA3QQYkNqtR1gfClDA9QLGof1ASObKebRkXnwNEGEmFTt2/y0SlHq1qH+Sak1l2SBvCVTXSmKjsLfazNZSgAL2EmBAaq/+YG0oQAG3C5jyx9+2jW5vZZft8w0fA12+VEIjFnsJ+P3A+LN0TBzrve1P2ntid0VEAlJvtb/2qAndu59DtHc9v1OAAmkUYECaRnzemgIU8KCAyq6727sJjTLmXAHPzYl00Ns8U5b03vAZ70Yna2Rp99AybwWk9fWAt1rsoH+QrCoFPCLAgNQjHc1mUoAC9hAwNQ3GgcqEVqYhFMaxYPRz7iIyStuchimz/onToOXmc5uXhPZ+Yi+mMu4WFWq48Hxv/nmwaq2BgnwN2R4bwG9oZKbdxP5L4tUoQIFYBGSCDgsFKEABCqRKwDwsGUQSUEyYWFhZjad3H5RHQGvEQEDXcNngEnx+ZPeL4FZVH8P/bKzAY3OnJKAm0V8iY+YlVkAa/Rk8Mh0CKsHRtVfqWPyRNzPdVNcCgwdq2LHLO0Fa7VH1QUQ63m28JwUoQAHZAY4IFKAABSiQIgG1fjRB2XVf2XsEr+w9jO9PGYlRBbJvh5Tt9cfxjASoPZWziwvw+1kTejosoa/7p5wHZEk9ZYSYxd4Cqov8fg2zL9Dx4XLvBaUVeyXbbqm3AtJDR4ARw+z9vmTtKEAB9wowIHVv37JlFKCAzQRMSeNp7N3V61oFZY+GJ3cdwL0Tyk8Eo+qiowtyrQBVPV586Cge21mFo60h5Pp9mDOwL74wapCsFdOw73gLHt95AD+cOlIdin9evR2z+hfh7aoaVLeEcLEce4cc60tg8Jhx4Xxo2W2Bs3VT/p+tBQrygSvmeTMg3bTNxFXzvPXBSY3KtBvRIP+pYKEABSiQcgEGpCkn5w0pQAGvCmiSxtQ4sK/XzT/Q1IrmcATnyEhnV6V/VgbuHV+OwblZqAuG8OO1u6yAdYYEni0yvVcFpe2lorEZasXgnaPLkO3X8bN1uzC9XyHGF8nczQQU//ipgI9/6SaAMqWXKMjTcO5UHStlXaWXytpPDHz5Nm+9X601pN6ZoeyltzPbSgFHCHgza4EjuoaVpAAF3CZgHK+HGWztdbOqW4LIz/DLmtGu/xM+pjAXQ/KysfXYcWw82oj8gE+C0OYu7/1lCUYn9MnDiPwcTCspwLrahi6PjfUF/9QLZJsXjo7G6pbu41Vin0vndP0eS3f9knV/9c+k8ThQUpysO9jvug2NQDf/ObFfhVkjClDAVQLe+03jqu5jYyhAAScJGIcOJKS6JTL62SBZdVUio67KOzL99u7FG/DugbZpuLpMv41EOQKSJaOZagQ2EUUfMBh6/4FcO5oIzDRcQ+3JqRL8eK3UHVMBqXfa3Sqfk8kSdxYKUIACaRFgQJoWdt6UAhTwnID8tWdU7klIswflZCLTp2OFZMs9vajsu6o8vGM/vjt5OP5x0ghrPeiI/PTsY6G2eoHsvcriUAF5O50/zXt/Kuzbb6B/iXcCUvXubGxiROrQf6WsNgUcL+C93zKO7zI2gAIUcKKAldDoSGJGSNVU3c8NH4i/bqvE5jqZaydFBaLbZHruf6zZaT1WAWv7COphmeK7/VhTWtjU+lG19yiLMwXUtN3ZM7z3p8L2nSZK+zmzz+KtdSP3Io2XjudRgAK9FGBSo14C8nQKUIAC0QhoEkQaNYejOTSqY64r7w+JOfFTSUCkkuEGZfquCkLVPqQqk+6tIwbiN7LXqF/fhzxZP6oy7aa6+IaNBrqZVpzq+vB+8QkYholJ43Ws39T1FPH4rmzfs3bsNnBLkbcC8WP1anq2ffuENaMABdwroJlS3Ns8towCFKCATQQiERz/5feTUhmVRTci/ynvmxmwgtH2m6jtYdS2L/2zMzo83/56sr9nXPZZ+CdMg5aRkexb8fpJFJC3Fz5aaeChJxOzrjiJVU3opX//ywAeeDwCtb7SC+WcKRpmne+tINwL/co2UsAJAvwvjxN6iXWkAAUcL2DU1yWtDUUZARRnnhl0ZsiobGl2ZlqCUdVY/9jJDEaT1uupu7C8vXDOFO/9udAos9wLu95ZKXUdkKI7qczCCcpllqIa8zYUoIBbBLz3G8YtPcd2UIACjhIwjx5xVH17W1nf4HLJrJv6acK9rTfP71xAbQkycpi3kvzU15soKvROm5skqRHnzHX+/uezFKBAcgUYkCbXl1enAAUoYAkYhw96SkIfOhJq3SyLOwTUOuUJY70TnKleU1u/FBV5p81Nsv+qd1rrjn+XbAUF3CLAvxbc0pNsBwUoYFsBMxRMaEIj2zb0lIr5Rp4FcO3oKSLOfpiVCYwf660/GY5Umygucna/xVL7Fo+slY3FhMdSgAKpEfDWb5fUmPIuFKAABToISPY4mElcQ9rhZjb5QR841CY1YTUSJTDCY1N2D0tAmpebKD37X0clb/Jxlr39O4o1pIALBRiQurBT2SQKUMBeAqbMdzQa6+1VqSTWRh9QBjRLhhQWVwk0SZKfIYO9M6nzwCETOTneaa8kAock5mahAAUokHIBBqQpJ+cNKUABrwloftny2VMB6WDZf9RbW4R44T2tutRLo6SVByQgzfZCz55sYyjEnQBPavARBSiQKgEGpKmS5n0oQAHPCqjtns2gdxZo6aWDgMwsz/a3WxuemwOUDfTOiGFDA6DCs0xZP+uV0hr0SkvZTgpQwE4CDEjt1BusCwUo4E4BSWrkpaL3GwCNAanrulwN9A8v905AqjpQ/dNVCZ28UrgPqVd6mu2kgL0EGJDaqz9YGwpQwI0CKluIh4pe3N9DrfVWU/uXeCsgDcoU1iwPDfaHQt56P7O1FKCAPQQYkNqjH1gLClDAxQJmi2zw55Xi88voqMcW3nmlb6WdaicfL62rDIU1T42QMiD10D9mNpUCNhJgQGqjzmBVKEABdwqYHso4q+UXyDxHDrO4850MqL0qi/t6Z5Q0EgYCAe+0l/903fovl+2igL0FGJDau39YOwpQwAUCZrPsl+GRoucVwAwzIHVrd6tMu9kemsIalLeyWjvrlRKSAJyFAhSgQKoFGJCmWpz3owAFvCfgpSm7OXmymSG3fHHrm9wwTPTt450Rw2DQ8FRAys+S3Povl+2igL0FPPS5n707grWjAAXcK2CqeX8eKVZ2XZdsZfjZO3+I7bsrO/Rcn8I8LH7pfzs856UfNIlFPbWGVEZIfT7v9HDY8E5b2VIKUMA+AgxI7dMXrAkFKOBWAQ+NGGoZskeGiwbQfv7DezB/zrlufWfG3C6/X4PuoblVQUlq5Pe75BOWKHo7LFmFXfUPOIo28xAKUCD9Ah76tZJ+bNaAAhTwqIBMc/RMUQGpiyLSQMCPjECgw5fqy2//6HdYtGxth2792nd+iQ1bd1vPLV+1CTfd/a8476qv49Zv/Ds2b6/ocKxTf1DrKVWmXa8U9VmST3fRJyw9dJzpon+7PTSVL1OAAjYS4AipjTqDVaEABdwp4KFwFNbwmYuG0F5/92Ns3bnvxBszJysTd91+NcaNLsfTL72HuTOmWq+t3bgDO/ZUWc9XVB6yAtYff/cuTJ86Fk+/sgi/+tMz+PMv/uHEdZz6QOJzlPbTcO0V3pjHmpsDZElQet40bwSlqr0sFKAABVItwIA01eK8HwUoQAG3C7goIG2WfU4aGk9mSY5E2hbZXXf5LPzuwRdRc/QYivsU4qU3luD6Ky6U0TQdzy5YhBnnTsCI8kHyej3mXDAZf3zkZTQcb0K+w//iV+spZ53vxclV3ghI3f6fJraPAhSwpwADUnv2C2tFAQq4SEBTmWC8UkwZD3ZRFpgbrpqNy+ZMP6P3+hUXWUHngreW4bbrL8XCRR/j6T/9m3Vc5YFqbNu1Dz/61YMnzptw1jAcPnLU8QHpiQbxAQUoQAEKUCBBAgxIEwTJy1CAAhSggAiEWmUJqTdG0G686iL89oEXMLC02JqqWzawn/UW6NsnH5dceA6+fc/n+JagAAUoQAEKUKAHAW/81dADAl+mAAUokFQBSYrjlWK2SkDqos0MQ6EwWoOhE1/BkOwD8mmZM2MKamqP4Td/eQ43XjOn/WnMmz0Nz7/6AXZVVFnPqb073/pgZYepvycO5gMKUIACFKCAxwU4QurxNwCbTwEKJF/A2gol+bexxR3MoApI3bPv6j/++I/iqr7ayqn7kPpkavJ1sm70uQXvSxB6TvshmDFtAr7xpevwhW/9FAX5uaiurcPQwaW44JzxJ47hAwpQgAIUoAAF2gQ0UwoxKEABClAgeQLhHZvQ+txDybuBja7sKx+JzGtuhZZXYKNapacq6tfr4Zo65GZnIS83Oz2V4F0pQAEKUIACNhfgCKnNO4jVowAFnC+gZ3tnLwWjsV62fvHGliA9vTNVMqvSkj49HcbXKUABClCAAp4W4BpST3c/G08BCqREIDMrJbexxU0a6qFlZtqiKqwEBShAAQpQgAL2F2BAav8+Yg0pQAGHC2gZ3glI1RpSMxR0eI+x+hSgAAUoQAEKpEqAAWmqpHkfClDAuwKBDE+13aw54qn2srEUoAAFKEABCsQvwIA0fjueSQEKUCAqAS9l2VUgkUP7ASMSlQ0PogAFKEABClDA2wIMSL3d/2w9BSiQCgENnlpXaRw5JNN2T+7XmQpi3oMCFKAABShAAWcKMCB1Zr+x1hSggIMEzIiMFuYXOqjGvauqoUZIJQhnoQAFKEABClCAAj0JMCDtSYivU4ACFOitgOxHqed6Z19O42AlNH+gt2o8nwIUoAAFKEABDwgwIPVAJ7OJFKBAugU0aPneCUghAXhkfwXUdxYKUIACFKAABSjQnQAD0u50+BoFKECBBAhogQD0Pv0ScCXnXCKyezvM443OqTBrSgEKUIACFKBAWgQYkKaFnTelAAU8JaBp0PsP9FSTjX27PNVeNpYCFKAABShAgfgEGJDG58azKEABCsQkoPUtiel4px8cqdwD+Pgrxun9yPpTgAIUoAAFki3AvxaSLczrU4ACFBABzUNZdts7PLxtI8zWlvYf+Z0CFKAABShAAQqcIcCA9AwSPkEBClAg8QKazwctNy/xF7bxFSNb1wORsI1ryKpRgAIUoAAFKJBuAQak6e4B3p8CFPCEgBkxoPfz1jrSyO5tzLTriXc3G0kBClCAAhSIX4ABafx2PJMCFKBA9AJ+P/TSQdEf74IjA+fPQSQrGyHTcEFr2AQKUIACFKAABZIh4E/GRXlNClCAAhToKKBJpl1f2TCEPnq/4wsu+0kfNBS+2ZehpWwoqsLNeOjgKnx3wDkIMMGRy3qazaEAL8bt+AAANNVJREFUBShAAQokRoABaWIceRUKUIACPQq4ecpuxsVXo2nCFGRl5+Gx2u34y47XsPT4QctkfsEQzM4bCF2CchYKUIACFKAABShwqgAD0lM1+JgCFKBAEgW0wj6yFYpPEv1EkniX1F3aN2YCzBkXw+w/AGubj+J3R1bj0dptCJ82Rfcv1ZsxNqsIpYGc1FWOd6IABShAAQpQwBECminFETVlJSlAAQo4XMAMtqL1+YcQqdjp3Jb4A8i47HocHzMWhgTXf63Zggeqt2BTy9Fu27R70h0YlpHf7TF8kQIUoAAFKEAB7wlwhNR7fc4WU4ACaRLQAhmyjnS4IwPSwNkXIDR9FjKKSvBew378vvJDvFi3O2rJ/zy4Bv8x6DyU+LOiPocHUoACFKAABSjgfgGOkLq/j9lCClDARgLGgX1ofvh/bVSjrqui9e0H/8VXobl8BOrMEP54ZBMeqtmKqtDxrk/q5pV9k76Asgxv7cXaDQdfogAFKEABClBABDhCyrcBBShAgRQKaP3tv/VLxoXz0TJ5GnLyivDM0R340+43rVHR3jL964EV+FXZLBT6Mnp7KZ5PAQpQgAIUoIBLBDhC6pKOZDMoQAFnCJihIFqe/AuMqgpbVdhXPhKaBKKhgYOxO9ggCYo24hEZDT1uhBNaz1XjbsaU7GL4mHE3oa68GAUoQAEKUMCpAgxIndpzrDcFKOBMAckjF1z8JkJL37VF/TPmX4emcZOgZ2ThYQlA76/ZjDVN1Umr2xUFQ/HkiPkcJU2aMC9MAQpQgAIUcJYAA1Jn9RdrSwEKuEDAqJJ1pI+kbx2pf8LZMM6/CHpxKT46fsgaDX1KpuamqqiA9OrCcuTpgVTdkvehAAUoQAEKUMCmAlxDatOOYbUoQAH3CugDy1K+H6mWk4fAvGvRNHI06jXgz9Wb8OCm97C7tT7l0PfuW4LPFA5L+X15QwpQgAIUoAAF7CfAEVL79QlrRAEKuFzADLag9eUnENm5JektDUy/CMFp5yO3sAQvyTYtf5C1oQvr9yX9vj3d4K6ScfivspmcutsTFF+nAAUoQAEKuFyAAanLO5jNowAFbCgg60jDG1ai9bVnk1I5vXQQfHOvREtZOQ6Gm08kKKqNtCblfvFe9KWRV2J+QRmydU7WideQ51GAAhSgAAWcLsCA1Ok9yPpTgAKOFDCbm9D0mx8ltO4Zc65E86SzkZGdh8drt8m03M1YLmtE7Vr6+jKxbeLt6OPPhA6ZR8xCAQpQgAIUoIDnBPixtOe6nA2mAAVsIeD3Qx9QBuNgZa+q4xs1Dph5CYzSgVjbXIv/PbIKj9ZsgwGzV9dNxclqxPauikV4eNglKODepKkg5z0oQAEKUIACthPgCKntuoQVogAFvCIQXrscrQtfiL25uo6My29A05jxiPh9uL96C/4q27VsaamL/Vo2OOOHA6fh3v6TUeLPskFtWAUKUIACFKAABVIpwIA0ldq8FwUoQIFTBGKdthuYch5C0y9ERt9+eK9hP/7vyAa8XLfnlCs696HaCuaqgnLk+7gVjHN7kTWnAAUoQAEKxC7AgDR2M55BAQpQICECZiiI1qf+gsj+ii6vpxX1ReCSa9A0bASOmWH8XrLkPlizFQdDTV2e48QX1ArSFeNuwoSsvsjSfU5sAutMAQpQgAIUoEAcAgxI40DjKRSgAAUSJRD6ZAWCr5+ZbTcg60Jbp0xHTn4fPHN0p7Vdy/uNVYm6rS2vo6bsLh97A8oy8pCpMSi1ZSexUhSgAAUoQIEECzAgTTAoL0cBClAgJoFgK47/+l+sU/SyYdAvugyhQUOwJ9iA3x7egEckW26zEY7pkk4+eERmARaNuQ79A9kMSp3ckaw7BShAAQpQIEoBBqRRQvEwClCAAkkRkIA0vG0Djo8cA19mFh6q3irbtWzCuuaapNzOCRedlF2Md8Z8BoWyLUyGpjuhyqwjBShAAQpQgAJxCjAgjROOp1GAAhTorUDINBCQgOtYJIivyfYnT8vUXJY2ARWUvjn6Givzrp9BKd8WFKAABShAAdcK8KNn13YtG0YBCthRwDRNNMkU3AYJQl+RDLl/u/dDKyitCDbasbppq9N6GSGet+0VVEnyphYjkrZ68MYUoAAFKEABCiRXgCOkyfXl1SlAAQpYAiqoUqOha5uq8Ub9Piw/fuiEzN/0nyhBVxjX73zjxHN80CYwMJCDBaOuwojMQhT5MshCAQpQgAIUoIDLBBiQuqxD2RwKUMA+AgZMSUgUQaMRwhvH9lp7h9aEW8+o4ChJ5POjQdNRuPb+M17jE4DaEuYJ2af00vwyawovTShAAQpQgAIUcI8AA1L39CVbQgEK2ERAZcXNkG1LFjcewJsyGvpJc22PNfvZ4POx4FgF/mn/8h6P9eoB/1A6Ff8y8Fzk+QJWkOpVhx7bLdPCoakwnoUCFKAABShgfwEGpPbvI9aQAhRwgEBYgoAwDBwIHsfrMhq6SPYMVaOj0ZYLckvxheIxKF//SLSnePK4KwuH4pFhlyJPDyBT516lHd4EprzfIrJFkD+zw9P8gQIUoAAFKGBnAQakdu4d1o0CFLC9gEpQpMq7DZV4u74SO1sb4q7zH4bOxr8cWIG/Vm+J+xpeOHFwIBe/L78IM3MHoNif5YUm99zGcBCoqwQ2yzrkglJg0nWA7u/5PB5BAQpQgAIUSLMAA9I0dwBvTwEKOE8gKCNRukwa3dxSZ42GfihTcxNRri4aiotyB2LCpqcScTnXX+OuknH47yGzoGao5ss0Xk8WNQqvZuduexfYv+4kwfCZwNBzASaCOmnCRxSgAAUoYEsBBqS27BZWigIUsJuA+WmCIpUNd6GsC323YT8OhpoTXs3Hhl+KOyvexfNHdyf82m684NCMPPyybCYuLxgiQWmGt9aWytZBqN0LbH0b6GzboKk3A33KJGDl1GY3vvfZJgpQgAJuEWBA6paeZDsoQIGkCLTIaGiW/EG/TLZpWShrQ1fJti3JLDf3GYHJ2cU4e/MzybyN6659mQSkv5LAVG0T09ft03gjkqm5Rfat3b5IAtJuPrhQDjPuAgLZrutvNogCFKAABdwjwIDUPX3JllCAAgkSiMgc0KBpoCbcgtfrK2S7lio0REIJunr3l1F7lT4io6S37HoTr0rWXZbYBO6Wabw/lEy8WZLwqL/fZYGYGhFVa0V3LQEOrI8Opm85MPl6rieNTotHUYACFKBAGgQYkKYBnbekAAXsKaCy4uqyHu99CUDfkmm5W1qOpaWiHCXtPbsKTL834BxrbWmJBKaO3gRF7V2rvvZ+DFSujR1n2AVA+XlcTxq7HM+gAAUoQIEUCDAgTQEyb0EBCthXQG3XYsj60N0t9XitYS/er9+P6DdrSU671CjpA8Muxj0V7+OpozuScxOPXPWWPqPw96VTMC6rD3yyN2eOUzLPygg9VMKiphoJRFcCh3qZeXnyDYAaLeVWOR5557OZFKAABZwjwIDUOX3FmlKAAgkUaDLDCBuGjIRW4h3ZsmWf7B9qp3JD0XCcl9cfEzcy424i+kXt83qH7PN6e9/RUFOyVVbeTLsl+1HpgtVIqBqmr9og03Llq/FIIprftjfpBV8BMnLkeo4eL06MB69CAQpQgAK2EWBAapuuYEUoQIFkC7RKgqKAbNiyuukI3pApuR8dP5zsW/bq+g8Mm4sfVH2MPx3Z1Kvr8OSOAvMlAdJNkjzqpqKRyNcC8KtNfNKUiFbekhIeyl628gEJjuwEDstIaE03iYo6NiW2n4qGAGffxKy7sanxaApQgAIUSLIAA9IkA/PyFKBAegUMGXVSgWi9EcLrdZKgqLEKtWoUygFlbv5A3CojemWfPOyA2jqvilcVDMWro65GxTIDfYZpyCvVoAJEiQ5l+87kjCJaubFkIFQFwI2HTBzdY6J8htxrxSPyRAo+IBkqa0mHy5pS7k/qvDcsa0wBClDApQJ+l7aLzaIABTwu0CLr79RazA8bD+BNGQ1d31zrOJFFDQdwbdEwa5/Nf6hc6rj6273Ct8r60gObDVSuMq0vVd+8fkBuPxWcAvkDgMw8FbtpkO1nYcqHG5qsQ1UzXnVdDpYv9aMqaratLEaGzAJX8eyJY9WSVXVu81ETDRJvHj9s4vgRs8NM3OLhEeT1HZaagFQlRioaBBTL/TT+CSC9xUIBClCAAmkW4AhpmjuAt6cABRInoNYGhiUq2C/rQV+TLVMWyWhoqxUhJO4eqb7SpOy+ki32bPRf96A10pvq+7v5fvvGfgmN72ehZqeKJrsustzUCkxli1MEcjRrcNEnsZw/89No9NNTw60mIhJ8qm1CQ80mQk1Aa6P83MOOQWXTNAwdfwja6se6rkQiX1ENUutJM/MTeVVeiwIUoAAFKBCXAD8ejYuNJ1GAAnYSaJIhKFP+927DfitJ0e7WBjtVr1d1USO7H8ta1xdGXYGrtr/aq2vx5JMCJb4slOXmYPlea47uyRc6eaQCyqaj8oL6UsOfJ8qpj088GfODQxtl2u7MgTIUK4FiT9FrzFfv5AR1j40LZD3prSeHeDs5jE9RgAIUoAAFUiHAgDQVyrwHBSiQcIGQbIshqWiwsaUWrx/bi8WNBxN+D7tc8NHabfjLsLnW9N2X6/bYpVqOrsdX+41D7cFISuK/nqBCLUDwWCsy1LTdI9t7Ojwxr9ftB3YskvWks2SoNyMx1+RVKEABClCAAnEIMCCNA42nUIAC6RFQo6AtEog2yQjPQlkX+q7sGXoo3JyeyqTwrjWShOn+6i34ddkspCogzTtwDBf8zzuoGVOKNV+RoMVl5dr84ahfr6bcJmaUs7c8dQcC6Nd3JLRUBaSqwvtWAYWDgZKR3J+0tx3I8ylAAQpQIG4BlZaBhQIUoICtBVSmXBU2LDt+CD87sBpf3vMenqjd4YlgtL1jFkiG4GbZGuT+8ovbn0rq9wFr9+HwxMHos/MIMhqdkZU4FpBJmcWo22uPYFTVu3q71KVkeCxNSMyxm2QaeKu99uBNTMN4FQpQgAIUcIoAR0id0lOsJwU8LHAsEsQ3936ARpWu1MPlj7If6a+HzMKfqzdhuQTnSSsSGw1YV4n1t5+HQFMQpZ9UYt9MGUWT0n9jFYq3HsTmG86xfh65cBOC+ZknXj/7gSXYfuUkBHMzMPXBpciulWBHUtEeG9IXW64/Gy1F2dZ55/z5QxyeNBiDVlYg61gzDpwzFDsunwBT75goyDo4wf93uexD6ovoOF5tn4D06B41VhuAlttPUvEeSXCLu7mcZKO21pOee5sclHz7bmrClyhAAQpQwKMCHCH1aMez2RRwkkCG7sPk7GInVTkpdVXJmp6s2SGjpHOTcv32ixbtqbYeqiDy4JQyqNHS9nK8JE8C1P2QFO3W16DVFRJU7rFeVsFr0a5qNPXLg+nTsefis7D8vvlYdt88K2gd/dr69ssg72A9+m+owvarJ2HNnTNRKgFwYUXNideT+UBt92Kn0dH2tjbVyq/kvuXtP6bue30VsO09SagUTN09eScKUIACFKDApwIMSPlWoAAFbC+QK5s5Xlk41Pb1TEUFnzy6A5ni8buhFyXtdioAVYGoGjBT03YL9te1jXTKHY+XFsDw68g91ICCfUetkU9fMILso03ycy2OlRfDkGA0lJOBI+MHIauuCSVbD8GUUdLcw/Ud6qyC0aPDS9AwqAjVZ5Wi747UjAxekj0Ex3bbbzSwpkKHWTKmg1HKfqhcLfOGd0pQ6u1ZCCnz5o0oQAEKUOCEAKfsnqDgAwpQwM4Ck2SEtJ8/C0fCkpLU4+W3hz/Bf8nU3RfrduHN+sqEamgRA6Xr9+PoiH5oH9EMZQesUdLdl4y17qVeU6OZKgg9PGEQmopz0U+m8vpbQnJeiXVMzpEGnP3AUrQWZqN+cFHbiKrR9RTZSKYf/tZQQtvS2cUKfZkYkpOLj6PY7qWz85P53GG1/cv5sv2LLtu/GLFZhMW2uqEFR+pPfpXkZ+HSiXK9aMum14DzvwJkF3E7mGjNeBwFKEABCvRagAFprwl5AQpQIBUCKpS5omAoHpEtULxedsrU3Yert+KPQ+di+IZHE8pRvO0wIgEfGgcUnLhu7aj+HQLS2pH9ULS3FnlVddgzdwyaZBqvCl6NDB92X9wWtA5dshPqvM03nG1dp68kRyqUc9Jd7i4Zh7rDEYRtODs12ASEGoMIqGm71Tu6pXpv00F8uOUgDn8ahB493orsDD9KC7LRvzAL4YiJDZVHMWN0P+RIsB9VkWnY2ChJjqbfEdXhPIgCFKAABSiQCIEof0sl4la8BgUoQIH4Bfwy5fPqonIGpJ8SPl+3G1NzSrBg1FW4ZoeMbCWoqOm6B84tx655405cUY18XvTjV5EvAaiaXqtGQUe9sQH1ssY0nBVAfVkfa2quLxSR5/pY50UkOLWy80qMo8uoa8nmAyeul84Hn5XtXo5tVNN11Ucc9it1VRnoVywJpHoISEf0z0edrNkdICPQa2W0Wj3+p2snWw06LKOk9z3yEa6Xfow6GG2naJD9fLe+BYyaA/i4P2k7C79TgAIUoEDyBLiGNHm2vDIFKJBgAZ8EpbPzBiT4qs693K9l6u7MvFL8Y+nUhDTCFwyj36YqHJxc1uF6KuhU+5EOWFtpPd/UL1/Wkfqs6brWExLfVY8fKKOqhdb6UfVc5fkjUCAjdHP+YwFm//Q1K5OudWya/29yVoktExq1s1RvN2D2Hd7+Y5ffy0tyJeAcao2Afmn2KKzaXYMqmUJdK1v0fOfxFbhgdH/cNXd0l+d3+8L+dbJ4eLtMGw53exhfpAAFKEABCiRCQBIlqjk6LBSgAAWcIbAn2IBv7V3sjMqmoJYzckvxrdJJmLPlRaxpbsuOm4LbRn0Lte1Lq6xlNGQacLrLvPzBeHnINVj9F3v/2ptxTwT6msclg1T0/fnI4p3YdbgBe6sbMVZGsf/hmom938RFrSfNVSPe9ksAle73Eu9PAQpQgAKJE+AIaeIseSUKUCAFAv382ThHpqqytAksk/1IXz66G0+PvMyWJM19c20RjCqcW/uOxrEKewejqp5NtRIAFg9TD6Mu8ycOwmLJZlwuo9ffvnpCYkLITQvsOrM5ahceSAEKUIAC9hdgQGr/PmINKUCBUwTUFjA39RlxyjN8+ORRSSAUbsUbo68hRjcC87Jku5c99h/tq63wybTd6KfbNrWG8eMX1+E8STb1/esmQ5ep7aq8ub4Kaj1p3KXhMLDlTe5PGjcgT6QABShAgWgEGJBGo8RjKEABWwmMySrCWVmFtqpTNJUxVkuG4KZeBAjd3OTXh9ZhYlZf/HbI7G6O8u5LebKVytDcPFuvH23vnUObTGh9Bkk2qOimOd///nZkyZTof7lhKvz6yYD7uASqjy/d1X7Z+L4fWA8c2sr9SePT41kUoAAFKBCFALPsRoHEQyhAAXsJZEDHjUUj8NODa+KuWPjVZQgvWHbG+Rn33Qx9zJAznk/EE6En3kHGvTdCy8lKxOU6XKNREtD816G1+HnZDKyVtaT3V2/u8LrXf1DbvRw7Itu9tNpfItjYvv3LMMkWtbPHCl83bagVkAbDBjL9Jz9nvnpqGb7yp8XWKGn/gl6857YsBApkP9PcYu5P2mNv8AAKUIACFIhVgAFprGI8ngIUSLuAJlMSp+f2R1lGLiqDx+Ouj+/s0Qh85cqO5/uiG5XqeJI9ftreWo+fH1yL/xkyC9tajuLDRtnCg8USuL5gJI5tVqOH9l9Dqip87IAfJX1lanoUAenQ4lz867NrsGzHYQzqk4OxAwutxEZjBxXiM2cPwRMySnrvFeMth7j/b6OsJz3vi3L6yRHYuK/FEylAAQpQgAKnCDAgPQWDDylAAecIaPKH8Q1Fw/Gbwxvir7Raa+fv/D+Dwf9+Br5pYxBZshHm0Qb4LhgH/3UXyjTKthEoNf029MpSmHWN0EcNRuDz86AV5bfVpf44Qs8sgrGtEsjwQwW+/hsusl4ztu5D5NG3O71m/A05eaZKctS/NhvPjLgc52x+BlWhppMvevjRlMxi7HZAQqP2LlLbkBZfPFLe5bInaBTllhnDcfBYM37w2SnYWnUMWw4cw1sb9mPPkUYYEoN/4cKR6JuXGcWVujhEZfxVI6VjLuX+pF0Q8WkKUIACFIhPoPO/xOK7Fs+iAAUokDIBtSfp/IIheKR2O47GOQ/TOFCDsASVpxbfTMlQWlwIc381InIP/40XQcvKQPAPL0OfNEKCzzKYlYcRfORNBG65GProMoRfXY7QH19Bxndvl0uZCP7uRWglhdb0XBgGwh9+cuIWkQ27O73miQMS8OCluj0o9mdh0ZjPYsxG2T7E42Vu/iBkwI/Gw4ZjJGrUTN15EkCqabLHa3qs9/jBReiTm4l9Nccxf9Ig60udFIoYOFjX3LtgtP3uBzbK1N3BwEAZbZXkYiwUoAAFKECBRAicXGySiKvxGhSgAAVSKBAyDdzaZ1T8dwxHgGZJMnTql/wB314CEoyqgFMb0h/6xGEwtuy1Xoos32SNivouaAteA9dfCGPPQZhV1TDlu7H3MAK3XgptUAm0sv4I3Dav/ZLo6ponDkjQg79Wb5HR0eNYPe7mBF3RuZe5XTLW1jlodLRduumoPOpb3v5jj9/VKOgji3d0mJQc8OkYUJSNl1btxZGGBCTU2ipZd4/Xyucuzpj63CMaD6AABShAgbQL8CPOtHcBK0ABCsQrENB0XFU4FM/ItifV4dj/2NYl0PR/7pKobq9lZgAtQetYs7Ye+nBJ8tJe8nNlVLUAZm0DzJZWaAP6AnnZ7a92+f3Ua3Z5UJwvqL1aZ+SVWsHJX8rn4qsVi+K8kvNPa9vuxXntqKnwI2fUaGj7VkdV+Qllkn1a1o/WNLSiJD/TGh19bW0lnly2C0U5mZhY1gf98nuR3Ki9Fpte/XQ9qXPXW7c3hd8pQAEKUCD9AhwhTX8fsAYUoEAvBCIyUnNH8ZheXCGOU/NzYB6UUaL20hqUNaGN0PKzoRXkwqyuk7mS4fZXU/59dt5A/GjQdGRoPmTK160yQvg/Q2T9qwdLlmydUp7jjO1eTu+ew5sMWZcsU2SlD6Mt9105wQpGd8va0S/94UMs/GQ/vnX5ePzuKzMwsvTTNc7RXqyr49QU4s2ynjQS6uoIPk8BClCAAhSIWoABadRUPJACFLCjgFpLenHeIAyRjLsxF5nyawWOKnhs/4piKqJv4ghr+q4VlMrxkSUboBXKKOngEuhDS2XNaSbC78moVkSmBMsa0sjKLTFXLd4TrioYiv9XOqnD6bmy3u/O4rH4hWwJ47VyT8l41NfIOt7YB9DTTtXaIG/L4zIqH8O0XVXp2sZWfOfxFZLIaBT+784ZmDm6f+Jz4x7cBByQhGIMStP+PmEFKEABCjhdgFN2nd6DrD8FKGAJqHWC/ylbnsRSImt2ILLmNx1OiWYfUpXcyDdjPFr/42EZEc2x1tMFvnp1W8Ze+a+qehySpEeRt1ZZ19bKS+E7d2yH+yTjh1v6jsRNfUZaI6OnXz/fF8DX+01AqxHBD6s+Pv1l1/78WbXdyxbnbPdyekccO5iBkuIRQM2u01/q8uewpNXNkLWjV06R0dVTyrHmEJ79aA/UvqVqSm+vy7Z3gEKZui5Tw6EyVrNQgAIUoAAF4hDQTClxnMdTKEABCthKICijnd+rXAa1F2fKSjAEs6HJWj/a6f6M8hoCEqFKlt5kl7tLxmFeQRlyesh+2iAjWvdXb8Z9lUuSXSVbXL9u/FdR8YqOhkO2qE7MlSgZJTutzJH32PI/Rn1uRALSe+5fipvOG4YrJCitawriGQlEX1m9F1PKi/HNeWMxUBIdJaRk95H1pF+SrWD4+XZCPHkRClCAAh4UYEDqwU5nkyngRgFT0vdsaK7F9/d7Z/SvvR//vnQyLsgbgOwo1xo2GWH8qXoT7tvn7qBUraV9q/xarPyzsz93nfl1WUu66hGg6ZR1y+2d38V3lVH3Fws2QJeBy0376zBVAlGVhXf0gIIuzujF0/3PAsZdIUFpoBcX4akUoAAFKOBVAX6k6dWeZ7sp4DIBTVbJjcosxHm5/fDx8SMua13XzfnXgdMwIbs46mBUXUmNon5N1lbmaH7cs/f/b+/Og+us7jOOP1f7LkuWLMmW5EVe5d0Wi23C4hLsQFlicIAQlgRcGJKmLTTtlCnThGRKQ0ib0JCQ0vYf6EIS0hlKWEKpMWY1xSzGxjbI+ybZlixZlmSt/Z0ryyDLlvVevbqL7vfMOLLuPfe87/t5lcSPznnPb82ZB4/xd2505V52x3YYdbfAlX/JzBvvKZC63XRTkhLknrH+8U3nngyibvb0fz7apyP2bOr1iyb6c4drt1h90rHSuDmEUn9EGQUBBBCIKwECaVzdbi4WgZEtkO4277Glq/EQSN1GRd8dW6WJqTnBnXS93lkXSm8aPUUFSWm6dtuLXj8eE/2XpZerYb17tjG2Q2mdK/8yycq/7H3Pk/vfrJiv5ER3/bb3kAXRlzbs07+/sU37jzTr1gttLbCf7dPV9jyphdKcYp4n9dOVsRBAAIE4EGCX3Ti4yVwiAvEk4ALWVaMmjOhLLkpK18Oli1VhM8KurEuoLTMhWcutjutb01dotLmNpJaohJ5yL8MwQ7pp31q1tNkWuB7bseNHtPnAmx4/JdV+bEt280s9Bz0XRl0Qff6Dvbrtl2vtOdLt+vpFtvPubYu0euP+4Eyp55MZ6AMbn7VdpSkFMxAR7yGAAAII9BcgkPY34RUEEIhhgTQLaLdYXdJsmwEciW1SarYesvItJckZSg4M/X/C3UzpgoxCvTP9Wk1PGzViyO4qrNTRui61t4R2STWN2/TdZ5brybf+ut8Az374MzW0eF8Wfrhpj178aPCbE/UeuLXBlX+xoJc3ofelQX91z48+vW6HvnHRVD2+6gJdUlmiqSU5uu/qufrpC5vU2m6lifxq7kQ3vUApGL88GQcBBBCIE4Gh/2smTqC4TAQQiB2BRHue9NaC4S+zEm6ROen5+qGF0bzElOCzgX4d3wXbCRZ035lxXXCnXr/GjeQ4K3ImqXFbz3LVUM5jw55XVFlygbYfel9uZjPSrfGAbRjkyr94bLPL8iyILrEgWhzc4Kj34xVF2fq51ShNSQp9hr13rD5fD26V9lj5pU6rn0pDAAEEEEBgEAIE0kEg0QUBBGJLIMkC1tLscZqWlhtbJz7A2S7KLNIPxp0XXKIbGIaaj25TqCxbwvvc5Cv0zcJZA5xJbLy1IHWMjuwM7dlRVw1tw95XtKhihcryKrVx36v9LvqT2nV6bM3devC5a/XM+/9gS2N7lqp2dXdqzZZ/009eukU/fH6lfrv+IbV1hDhN+7mjHvrU9pEeXfG5Vwb/1zPF8mSrVXrLL17VgYahn1+fs6leIx21GWQrxURDAAEEEEDgbAIE0rMJ8T4CCMSkgAulq2wn2ZHQLrP6on9RPM8i42mrnfp6iW629MFx5+ux8gt9HTecgy3OLLadhBN19EBoR91VtzFoXZo3Q7PGXaQNe2zDnlPanrqPdcXsb+ma+feo+uB72lrTU27ozerfapvNqt543vd010WP2rOmjfrIwu1Q26FPbIRkqx3q6n6G2No7u/XIi5v0p0+8rdWbDqjYapFeOb9Mj760OcQRB/hY8HnSjgE68BYCCCCAAAI9AgRSfhIQQGBECrjwVm7LUL9km/bEclsxaqJW2fOQLmCHq2VbPcmbR0/T2/ZcaVlKVrgO69txvmq7B9fvDn24DXtXWxC9WG4m2i3b3Xtkq+qP7e8z4CXTb1VZfqVmlCzRnNKl2nHog+D77+x4VgvKlykpIUUdNms6rXhRSBsZ9TnYiW9a3Mrh/PGne2tQr/3y5c3aXtukqxaU22671Xpta61Wnj9B22oabeddn2dJj9umTxt/Z0t3CaWDujl0QgABBOJYIHz/woljZC4dAQQiI5BuGxzdYWVg8pNSI3MCQzzqbRYKb8ifLLdRU7ib2+xooW12tLHyhpjbtXhZWrkat4cm1tnVYUt016ru2D79fuPjeu3TXyk9JTu4hPdMI47JGa899Vvklus2tNTq3Z3P69kPHwn+cct9UxL92cG4bleSLdudcqbTOOvrdVZ79PJ5pVo6s0Q/WLlQ//TyFns+tlN5manaW9d81s977nCoWjqw0ZbuhrZ02vPx+AACCCCAQEwKjMxtKGPyVnDSCCAwHAIJtvjyrsKZ+tv964dj+GEb89tjZmlJVolcbdVItUSbIXSzpU9NvEy/OPiR7tnzRqROxdNxJ2Zma/2u0J5frK591wJkqlzI7G0VhfMtkK7WhVNv7H2pz9eahu3KtBI8CfaLg/TkHC2fdafGjprap48f39Ru6lLpfCv/EmKbPz5fz763W5dYIC3KTdOSqWN05z+/ruSkBM0sHRXiqAN8rMKWfZfM9FyuZoAReQsBBBBAYAQKRO5fOiMQk0tCAIHoE0iyULUgo0BuU6A3j9VE3wme5ozuK56veXbOkQyjnz+tNHse8w57HnepPct66/aX9UHL4c+/HVV/d798aKrvUluIE34ueM4r+6Iunnbzyes63n5MD714g23+U63i3J6Nhdo6eg7gZlJdbdFFk74c7D+jZLFWb3lCKxfeZzvYptuGRs36pOb/NHPc0J/JdUt2O5rblZQ/QarbcfL8BvuXKxeUqbGlXfc8uU656cn6YFe9rl5YrhsWTbRZYB9n4TMLpMrlkv0MK4K/UBmsC/0QQAABBCIrQCCNrD9HRwCBMAik2szVt2zG8Z0dteqI4uWDKfac6ANjz1GF7Q4ciWW6A90KN1M628rOrK9cqT/e9Zp+bjOm0dhcuZeGre4JYu/LRNs7WoPhctUXHulzaanJmZoypio4S9obSP/rvYeDM6J1zfs0t/RSzR+/LPiZL1bebkt1/1E//v3XgrOmja2HVDX+cl8CqTtAQ02K8vMnKRBCIHWfP29yoZ56a7uusSD6nT+crRwLpr62cfOkqX/QM+Qw7Abt67kyGAIIIIBAVAgEbHt77/+vHRWnzkkggAACgxdwQfT1pv16uKZn85nBfzI8PfPsOVcXRsda+HHBNJrbMXvO8q2mA7p95yva2Wab10RRq6+8Q7t/l6DGvnsQDcsZNrYcVLIt701Pyek3visD4+qXZqbmKdHHWcLCadKUJU0KvP14v2MO9oWm1g5lpfn8++iM/J4gmjtWsl9e0BBAAAEEEBisQHT/q2ewV0E/BBBA4CwCbunu+VlFOj9zzFl6hv/tspRM/X3pYpUmZ0V9GHU6mRawLrY6r1tm3ai7o6hm6Tl2bzMSk8ISRp1DTnrhacOoey/Rarq69/0Mo27cg1vsP1IzpbTQn/n0PYyWV9nU69elPNvRmjDqbhMNAQQQQMCDAIHUAxZdEUAgtgXc0t1vF82xZzN9fF5uiCTTLVj8qHSR8m2mzYXmWGluwyPn+XdWs3SdlYc5LwqC/tfyp+rI7tA2M4oVd3eerUdsYdPozzZditi5ZxdJ59izthMX92xcFEM/vxEz48AIIIAAAv0ECKT9SHgBAQRGskDwedIomdWrss1fXKDLCCTZ84ixE0Y///Phni2tsjC6Zto1erT8C3LlYiLVvpQxXg3bYtPRi1ndTiv/UhB6+Rcvxzpj32mXSlU3Sdm24iAx5YzdeAMBBBBAAIGzCRBIzybE+wggMKIE3POZ59qOu0tzxkX0ui7JGav7S6rkZhoDMRpGewFdBHRB/3ar+bpvzq2603bkjUSbmJ5tM6Qjf1uE2s1dCuSVRYLYyrjMli64277OsllR90+Ikf8LgMhAc1QEEEAgfgQIpPFzr7lSBBA4IeDKmHzTyoOMS86IiMmVo8bb8WfJ1UgdSc2F0lybLftR2WK9N2OlluWELzT9kYXh5gYr93JsJIme/lqa66z8i5VvUX4Yl+26Y513m21ctFRKsf/eRHAm/PQqvIoAAgggEKsCBNJYvXOcNwIIDEkg2eLgvUVWoiLM7ab8Kbo5f1pwRjHMhw7b4bJtQx9XR/U3Fcu0eupVNiM9/BtJrbD6oPGwXLf3JjbW2E62+RN7vx2+r27X3AXXS7Ovsd2srK4omxYNnzUjI4AAAnEqQCCN0xvPZSMQ7wJumWx5apZW2cxauNqdhTN01agJUbWp0nBee5YF04tsN95Xpl6t/558ueZbSB2udm5qkY7sHPnLdXv9DldbpdXRk3u/9f+r27Bozgpp/lekUaUEUf+FGREBBBBA4IQAgZQfBQQQiFsBt8R0eW6ZbcozfEGpF/c7Nhu7NLs0opv+9J5LOL+6Rcnptrzz8txyvTl9hX496TJVZRT6egoLbLyspGQ17vN12KgerHaznZ79QkVp/WugDunEXRB1s6ELb7SdfG0GNrg0d2QtLR+SDx9GAAEEEPBdgEDqOykDIoBALAmkWCj986L5GjWMO4U+MPYcnZtlNTLj+Lk797ys+wXAl0dN0uppV9uuvFfr0hybefOhuXIv9XFQ7uVUqtYjVuImf8KpL4f2vashOu86W55rQbSwoieIxvhmW6FB8CkEEEAAgXALBLqthfugHA8BBBCIJoFO+5/BLcfr9Zd73vb1tLIsgH5/7Lm2NDhbbndfWl+Bpq527Wpr0oP71+vJuq193/Tw3eapX1XiumzVbIqv/zubeEGCSkp3KLDhaQ9ap3QtnimVV9k0di7lW06h4VsEEEAAgfAIEEjD48xREEAgygXaurv0UuNuPXZwky9nWpycLjczWpiUoSRmmgY0PWbB9HhXpx47tEn/euhjVR9vHLD/qW+2zb1T7z/RLcu2cdUyRtuk5lesBMyrP/V23el5VrbFgmipberlflEyjKsDvJ0YvRFAAAEE4lEgchXM41Gba0YAgagVcDOYbglp9fEGC6Z7h3SeFak5+p6FUbepj6szShtYINOc3J97i+YG/7x77KB+dvAj/UfdJwN/0N79RsF0tRxV3IVRB9N8WOpq61aiW25bv+usViqaLo2bK1kN3GDFIVtCTUMAAQQQQCDSAsyQRvoOcHwEEIgqgW516892v27B1FJOCG1uer7uH1tlS3QTR1iV0RAwhvARt5zXPXf6q/pP9cThrfrfo6f/JcFzFVdoVnWpdr0RX8t1e2krrwwoL/CuVL2m96W+X11YHTNVKq60bXntraSUvu/zHQIIIIAAAhEWIJBG+AZweAQQiD6Bwx2tunvXWjV3dXg6ucWZRfqrkgWePkPngQXc873uPjRbQP11/Tb9Z/0ner3pwMkPHZ5xu/a9kKiG0+fVk/1G6l+KZgRUcX6DAuv+5bNLdGVaCq0kzJhpFkBTT5RsYab+MyD+hgACCCAQTQIE0mi6G5wLAghEhUCHhaCPW+t1397Bb3LkysesKqhk86JhvINdNsXXYuH0eFeXXmjcpactoD5Vfpnefsx2m43jtvjugAIbn7EQOkUqcDvk2nOhtgRaLBeP458KLh0BBBCIHQECaezcK84UAQTCKNDa3am1Tfv1SM2Gsx71urxJuj5/stJ4Ju+sVn51cKtPGzvblJOQoqaabtVt67ZZ0m4d/Wzy1K9DReU42cVS7riA8icF5EqHyiyCmxMRQqPyfnFSCCCAAAJnFiCQntmGdxBAIM4FXCh9qu5T/cZm4s7U3KY6y3PLlU4YPRNRWF63WyXbqFcJtk9PU2236nfKAmpXcOOfjuNhOYVhO4h77DOjwAXQBOWNl7KKAnKryd218mM3bOwMjAACCCAQJgECaZigOQwCCMSmgCsH85PaD7X26P5+F/AnY2ZrSVax0q3eKC26BOy2qbPddqBNCqi9RTpa06XGfbYz7aFutVpVGfcnGltajuT+ZBQEgpvhZhcnyCoIqdMCaKL9mFHONhrvGueEAAIIIDAUAQLpUPT4LAIIxI2Ae550Q0vdyeu9v2Sh5lghSJbpniSJ+r/0zqIq0LMjb3tzwGZQu3WsrltW7UfHj9pX21y5vVWyfa2GpSWlScn2JzXb/QkoNVfKzA8oY3RAyRk956XuALOfw6LPoAgggAAC0ShAII3Gu8I5IYBA1Am4nV7v3fOGDna06AGrMTrZkoQr7UIbGQJuCWx3lwVCewbT7Qnkmpth7WwPqK3ZigHZcmC39NcFVde3s90tEbb+JzKkq/GTkBhQou0l5CbMg5vb2lJb9zUpzb1us7XJPTvd2p5M9rlum+20YzG5HrTmPxBAAAEE4leAQBq/954rRwABDwKuPulhSyTtlkwKktKVzNpJD3p0RQABBBBAAAEETi9AID29C68igAAC/QRcORg3eZbATqb9bHgBAQQQQAABBBAIRYBAGooan0EAAQQQQAABBBBAAAEEEBiywIknZYY8DgMggAACCCCAAAIIIIAAAggg4EmAQOqJi84IIIAAAggggAACCCCAAAJ+CRBI/ZJkHAQQQAABBBBAAAEEEEAAAU8CBFJPXHRGAAEEEEAAAQQQQAABBBDwS4BA6pck4yCAAAIIIIAAAggggAACCHgSIJB64qIzAggggAACCCCAAAIIIICAXwIEUr8kGQcBBBBAAAEEEEAAAQQQQMCTAIHUExedEUAAAQQQQAABBBBAAAEE/BIgkPolyTgIIIAAAggggAACCCCAAAKeBAiknrjojAACCCCAAAIIIIAAAggg4JcAgdQvScZBAAEEEEAAAQQQQAABBBDwJEAg9cRFZwQQQAABBBBAAAEEEEAAAb8ECKR+STIOAggggAACCCCAAAIIIICAJwECqScuOiOAAAIIIIAAAggggAACCPglQCD1S5JxEEAAAQQQQAABBBBAAAEEPAkQSD1x0RkBBBBAAAEEEEAAAQQQQMAvAQKpX5KMgwACCCCAAAIIIIAAAggg4EmAQOqJi84IIIAAAggggAACCCCAAAJ+CRBI/ZJkHAQQQAABBBBAAAEEEEAAAU8CBFJPXHRGAAEEEEAAAQQQQAABBBDwS4BA6pck4yCAAAIIIIAAAggggAACCHgSIJB64qIzAggggAACCCCAAAIIIICAXwIEUr8kGQcBBBBAAAEEEEAAAQQQQMCTAIHUExedEUAAAQQQQAABBBBAAAEE/BIgkPolyTgIIIAAAggggAACCCCAAAKeBAiknrjojAACCCCAAAIIIIAAAggg4JcAgdQvScZBAAEEEEAAAQQQQAABBBDwJEAg9cRFZwQQQAABBBBAAAEEEEAAAb8ECKR+STIOAggggAACCCCAAAIIIICAJwECqScuOiOAAAIIIIAAAggggAACCPglQCD1S5JxEEAAAQQQQAABBBBAAAEEPAkQSD1x0RkBBBBAAAEEEEAAAQQQQMAvAQKpX5KMgwACCCCAAAIIIIAAAggg4EmAQOqJi84IIIAAAggggAACCCCAAAJ+CRBI/ZJkHAQQQAABBBBAAAEEEEAAAU8CBFJPXHRGAAEEEEAAAQQQQAABBBDwS4BA6pck4yCAAAIIIIAAAggggAACCHgSIJB64qIzAggggAACCCCAAAIIIICAXwIEUr8kGQcBBBBAAAEEEEAAAQQQQMCTAIHUExedEUAAAQQQQAABBBBAAAEE/BIgkPolyTgIIIAAAggggAACCCCAAAKeBAiknrjojAACCCCAAAIIIIAAAggg4JcAgdQvScZBAAEEEEAAAQQQQAABBBDwJEAg9cRFZwQQQAABBBBAAAEEEEAAAb8ECKR+STIOAggggAACCCCAAAIIIICAJwECqScuOiOAAAIIIIAAAggggAACCPglQCD1S5JxEEAAAQQQQAABBBBAAAEEPAkQSD1x0RkBBBBAAAEEEEAAAQQQQMAvAQKpX5KMgwACCCCAAAIIIIAAAggg4EmAQOqJi84IIIAAAggggAACCCCAAAJ+CRBI/ZJkHAQQQAABBBBAAAEEEEAAAU8CBFJPXHRGAAEEEEAAAQQQQAABBBDwS4BA6pck4yCAAAIIIIAAAggggAACCHgSIJB64qIzAggggAACCCCAAAIIIICAXwIEUr8kGQcBBBBAAAEEEEAAAQQQQMCTAIHUExedEUAAAQQQQAABBBBAAAEE/BIgkPolyTgIIIAAAggggAACCCCAAAKeBP4fE/r/n6xC4REAAAAASUVORK5CYII=", + "text/html": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "go.Figure(go.Sunburst(\n", + " labels = ['Eve','Cain','Seth','Enos','Noam','Abel','Awan','Enoch','Azura'],\n", + " parents = ['' , 'Eve', 'Eve', 'Seth','Seth','Eve','Eve','Awan','Eve'],\n", + " values = [10,14,12,10,2,6,6,4,4]\n", + ")).update_layout(margin = dict(t=0, l=0, r=0, b=0))" + ] + }, + { + "cell_type": "code", + "execution_count": 52, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.plotly.v1+json": { + "config": { + "plotlyServerURL": "https://plot.ly" + }, + "data": [ + { + "branchvalues": "total", + "domain": { + "x": [ + 0, + 1 + ], + "y": [ + 0, + 1 + ] + }, + "hovertemplate": "labels=%{label}
scores=%{value}
parent=%{parent}
id=%{id}", + "ids": [ + "A/Team C/Bronze", + "B/Team C/Bronze", + "A/Team D/Bronze", + "B/Team D/Bronze", + "A/Team A/Gold", + "B/Team A/Gold", + "A/Team B/Silver", + "B/Team B/Silver", + "A/Not played", + "B/Not played", + "A/Team A", + "B/Team A", + "A/Team B", + "B/Team B", + "A/Team C", + "B/Team C", + "A/Team D", + "B/Team D", + "A", + "B" + ], + "labels": [ + "Bronze", + "Bronze", + "Bronze", + "Bronze", + "Gold", + "Gold", + "Silver", + "Silver", + "Not played", + "Not played", + "Team A", + "Team A", + "Team B", + "Team B", + "Team C", + "Team C", + "Team D", + "Team D", + "A", + "B" + ], + "name": "", + "parents": [ + "A/Team C", + "B/Team C", + "A/Team D", + "B/Team D", + "A/Team A", + "B/Team A", + "A/Team B", + "B/Team B", + "A", + "B", + "A", + "B", + "A", + "B", + "A", + "B", + "A", + "B", + "", + "" + ], + "type": "sunburst", + "values": [ + 2, + 1, + 4, + 4, + 1, + 2, + 3, + 2, + 1, + 1, + 1, + 2, + 3, + 2, + 2, + 1, + 4, + 4, + 11, + 10 + ] + } + ], + "layout": { + "autosize": true, + "legend": { + "tracegroupgap": 0 + }, + "margin": { + "b": 20, + "l": 0, + "r": 0, + "t": 20 + }, + "template": { + "data": { + "bar": [ + { + "error_x": { + "color": "#2a3f5f" + }, + "error_y": { + "color": "#2a3f5f" + }, + "marker": { + "line": { + "color": "#E5ECF6", + "width": 0.5 + }, + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "bar" + } + ], + "barpolar": [ + { + "marker": { + "line": { + "color": "#E5ECF6", + "width": 0.5 + }, + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "barpolar" + } + ], + "carpet": [ + { + "aaxis": { + "endlinecolor": "#2a3f5f", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "#2a3f5f" + }, + "baxis": { + "endlinecolor": "#2a3f5f", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "#2a3f5f" + }, + "type": "carpet" + } + ], + "choropleth": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "choropleth" + } + ], + "contour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "contour" + } + ], + "contourcarpet": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "contourcarpet" + } + ], + "heatmap": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmap" + } + ], + "heatmapgl": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmapgl" + } + ], + "histogram": [ + { + "marker": { + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "histogram" + } + ], + "histogram2d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2d" + } + ], + "histogram2dcontour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2dcontour" + } + ], + "mesh3d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "mesh3d" + } + ], + "parcoords": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "parcoords" + } + ], + "pie": [ + { + "automargin": true, + "type": "pie" + } + ], + "scatter": [ + { + "fillpattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + }, + "type": "scatter" + } + ], + "scatter3d": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatter3d" + } + ], + "scattercarpet": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattercarpet" + } + ], + "scattergeo": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergeo" + } + ], + "scattergl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergl" + } + ], + "scattermapbox": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattermapbox" + } + ], + "scatterpolar": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolar" + } + ], + "scatterpolargl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolargl" + } + ], + "scatterternary": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterternary" + } + ], + "surface": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "surface" + } + ], + "table": [ + { + "cells": { + "fill": { + "color": "#EBF0F8" + }, + "line": { + "color": "white" + } + }, + "header": { + "fill": { + "color": "#C8D4E3" + }, + "line": { + "color": "white" + } + }, + "type": "table" + } + ] + }, + "layout": { + "annotationdefaults": { + "arrowcolor": "#2a3f5f", + "arrowhead": 0, + "arrowwidth": 1 + }, + "autotypenumbers": "strict", + "coloraxis": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "colorscale": { + "diverging": [ + [ + 0, + "#8e0152" + ], + [ + 0.1, + "#c51b7d" + ], + [ + 0.2, + "#de77ae" + ], + [ + 0.3, + "#f1b6da" + ], + [ + 0.4, + "#fde0ef" + ], + [ + 0.5, + "#f7f7f7" + ], + [ + 0.6, + "#e6f5d0" + ], + [ + 0.7, + "#b8e186" + ], + [ + 0.8, + "#7fbc41" + ], + [ + 0.9, + "#4d9221" + ], + [ + 1, + "#276419" + ] + ], + "sequential": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "sequentialminus": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ] + }, + "colorway": [ + "#636efa", + "#EF553B", + "#00cc96", + "#ab63fa", + "#FFA15A", + "#19d3f3", + "#FF6692", + "#B6E880", + "#FF97FF", + "#FECB52" + ], + "font": { + "color": "#2a3f5f" + }, + "geo": { + "bgcolor": "white", + "lakecolor": "white", + "landcolor": "#E5ECF6", + "showlakes": true, + "showland": true, + "subunitcolor": "white" + }, + "hoverlabel": { + "align": "left" + }, + "hovermode": "closest", + "mapbox": { + "style": "light" + }, + "paper_bgcolor": "white", + "plot_bgcolor": "#E5ECF6", + "polar": { + "angularaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "bgcolor": "#E5ECF6", + "radialaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + } + }, + "scene": { + "xaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + }, + "yaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + }, + "zaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + } + }, + "shapedefaults": { + "line": { + "color": "#2a3f5f" + } + }, + "ternary": { + "aaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "baxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "bgcolor": "#E5ECF6", + "caxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + } + }, + "title": { + "x": 0.05 + }, + "xaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "ticks": "", + "title": { + "standoff": 15 + }, + "zerolinecolor": "white", + "zerolinewidth": 2 + }, + "yaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "ticks": "", + "title": { + "standoff": 15 + }, + "zerolinecolor": "white", + "zerolinewidth": 2 + } + } + } + } + }, + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6QAAAFoCAYAAABACjY7AAAAAXNSR0IArs4c6QAAAERlWElmTU0AKgAAAAgAAYdpAAQAAAABAAAAGgAAAAAAA6ABAAMAAAABAAEAAKACAAQAAAABAAADpKADAAQAAAABAAABaAAAAAAsW5ObAABAAElEQVR4AeydBXwc19X2z8yuZBklW5aZmWOG2A444HAcarBJ06QpvW3at/3ylrkppNymKQUb5jhgJ3EcJ4aYmdmW2TLJlmRZOzPfc2a90YpX0uLsc/xbr7Q7cO//jqR95pDhwIRGAiRAAiRAAiRAAiRAAiRAAiRAAnEmYMb5fDwdCZAACZAACZAACZAACZAACZAACbgEKEh5IZAACZAACZAACZAACZAACZAACSSEAAVpQrDzpCRAAiRAAiRAAiRAAiRAAiRAAhSkvAZIgARIgARIgARIgARIgARIgAQSQoCCNCHYeVISIAESIAESIAESIAESIAESIAEKUl4DJEACJEACJEACJEACJEACJEACCSFAQZoQ7DwpCZAACZAACZAACZAACZAACZAABSmvARIgARIgARIgARIgARIgARIggYQQoCBNCHaelARIgARIgARIgARIgARIgARIgIKU1wAJkAAJkAAJkAAJkAAJkAAJkEBCCFCQJgQ7T0oCJEACJEACJEACJEACJEACJEBBymuABEiABEiABEiABEiABEiABEggIQQoSBOCnSclARIgARIgARIgARIgARIgARKgIOU1QAIkQAIkQAIkQAIkQAIkQAIkkBACFKQJwc6TkgAJkAAJkAAJkAAJkAAJkAAJUJDyGiABEiABEiABEiABEiABEiABEkgIAQrShGDnSUmABEiABEiABEiABEiABEiABChIeQ2QAAmQAAmQAAmQAAmQAAmQAAkkhAAFaUKw86QkQAIkQAIkQAIkQAIkQAIkQAJ+IiABEiABEiCBdCVgWY44juFO38CTidu0ZQE8yhwJuM8iZ87gga/PlJ59L+CIZQn2E7FtPGNvE/tm+A3x46+qD48MH571ga8zM0SaZOI503C/zsD3emzdV03Pqdvq+WkkQAIkQAIkkG4EKEjTbcU5XxIgARJIIwIqGlX8hcRmcYkjJ0+KHDshcrxQpLDQkaJiW0pOi5SUiJzGc8NNpWkEBuHZLEukaVM83GdDWrYQadPakOyWIi1bGtIM7wUFr+MKVj/ELo0ESIAESIAEvEjAcGBenBjnRAIkQAIkkD4E1NuoXkv1NJbBg1kIsVlwROTgYUcKjjpyHAJUBWcqWQuI1FatRFq3MqRtriF5ecGvM+FtDWCOKlLVu0ojARIgARIggVQmQEGayqvHsZMACZBAGhLQ26gqPk2ITxWZKjr37Rc5VGDLsWMixSkmPOu7hJlNRPJyRdq1NaRzR0PaQag2zTJcT7CGAzP0t75EuT0JkAAJkEAiCVCQJpI+z00CJEACJFAngZD3U/MzjxxzZM9ekd17bTlwUKQUeZ005KiqSG0rEKimdOsSFKsaqkyByquDBEiABEgg2QlQkCb7CnF8JEACJJCGBM6ccSCmDHg9Hdm5WyQfAnT/gTQE0Ygpd+oo0qWzKT27BT2qZQEDhZfoQW0EUu5KAiRAAiQQAwIUpDGAykOSAAmQAAnUj0CwgE/Q47ljlyNbd9quJzRUibZ+R+PWlQloeHNnCNQeXU3p3UMkC8WUTJQG1pxbGgmQAAmQAAkkkgAFaSLp89wkQAIkkMYENKRUBVHBEUc2boEnNB/Fh46nMZA4Tl2LJfXqbkj/viiY1MZwW9BoSDSNBEiABEiABOJNgII03sR5PhIgARJIYwJaHdaH6rD7Dziyaasj23c6UlycxkCSYOrNmgnCeg0Z2N+QDu1QHAkFozS0l0YCJEACJEAC8SBAQRoPyjwHCZAACaQxAQ3H1f5ih1ANd91GR7btcFiMKEmvBy2O1KenIUMGGpILz2mof2uSDpfDIgESIAES8AABClIPLCKnQAIkQALJSEC9oSWnDVm7wZYNmx0pKkrGUXJMNRHQsN6B/UwZ3F+r9aIgElvK1ISKr5MACZAACTSCAAVpI+BxVxIgARIggYoEVIRqsZyt8IKuXsfKuBXppO53PRDSe/VlpoSKT7EYUuquJUdOAiRAAslGgII02VaE4yEBEiCBFCRQViZSXOLIqrUIy93kSADf07xD4IpLTKyvyMKltgxCruk5Q0y3Uq+fVXq9s8icCQmQAAkkiAAFaYLA87QkQAIkkOoEQt6yAwcdWbbKll35qT4jjr86Ak2bitxzh08efdqSEojSkPVEld5Rww1pl4f2MWboVT6TAAmQAAmQQP0IsI5e/XhxaxIgARJIewLaG1SL3ayHJ3T5aputWjx+RQzoa8qBQ8gHDhOjOmXtF6uPNq0FwtSU/n0MN6TXpDj1+BXB6ZEACZBAdAnQQxpdnjwaCZAACXiWgPYNtVEud9WaoBA9c8azU+XEwgh89mafLF2JwlS4AVGbaYXeEcMMGY5wXr1hwb6mtdHieyRAAiRAAiEC9JCGSPCZBEiABEigWgJlEKIWelOqKFkJMerAQ0pLDwKdOwV7ktYlRpVGaSlyTJc4sni5hRxTQ0YjnNfvw4OfNNLjYuEsSYAESKCBBOghbSA47kYCJEACXiegIlSr5i5dKbIcOaK09CNwyYVwdTqGvD+nYeuvHtPRI0y3ZQzzTNPv+uGMSYAESCASAhSkkVDiNiRAAiSQRgQ0LNeGGF28wpZlK2oP00wjLGk3Ve07et9dPnnmJUuOn2jc9LX4kXpMtZ+phvPSSIAESIAESCBEgIE0IRJ8JgESIIE0J6BVc9U0LHfhEtsN0w2+wv/TkcCAfoYcOSqNFqPKbtlKVGLGY8JYQ0YOC+aYUpim41XFOZMACZBAVQL0kFZlwldIgARIIK0IqBDV8NztOx2Zv9iWU6fSavqcbA0Ebr3BdCspa2/ZaFoztJGZON6Ufr2D3lIK02jS5bFIgARIIPUI0EOaemvGEZMACZBA1AiUlYmcweOd9yy09ojaYXmgFCfQPk+kWTNDVq1tWO5obdMvRvuY9z9Egay1IpMhTPPaGpKJ8GAaCZAACZBAehJgt7D0XHfOmgRIIM0JqEe0qFhk1se2+HwiOTneTezTdiRZWVhwo6KnLyMTL5nB19pBgLXNTfOLImz6gwaYsmd/RV5hb0fly8OHRV5905ZZcyw5VeRIANckjQRIgARIIP0I0EOafmvOGZMACaQxAQ3P1RBJDcOcvyjo/crKtGUMKqFu3OwtRTB4oCEDkQeZ3SrogbMx3fWbHZm7IDjvL9zpkzdnWJK/V2RAP1MCZY4UHImtCEuJSw/Xh+aPvvxGfK6HbTtEtu2wkV9qyqhzWPQoJa4RDpIESIAEokiAgjSKMHkoEiABEkhmAuqBOnTYkQ/n2nL0WPlI125wZPBAR84dZ8iCRd4QZF06i1ww0ZRX37Jk/8HgnPJyDemLvMWQPfa0JWfO6Hvlr4XeS+fngX0NFDKy5XBBfCl8gvzlTVtEppxvSjuslXruaSRAAiRAAt4nwJBd768xZ0gCJJDmBNQrWhYQ+RiewVemVxSjITQLIAYGI0zT9IgIyMk25OhxR/YfwAzRR1MfKrDCBfdlF5mu9zTEIPR82cWm9OheUaRecwVEEsJ61VTs3nK9KV+82yefmaY5kMHX8/D+lZea0qlj8Hkqjp+KNmSQIVu2JmbkeqPk5ddtmftJsMpzqPJzYkbDs5IACZAACcSDQGr+tYwHGZ6DBEiABDxAwK2eu8uRJ561ZB08oTVZ/h5B6Kojl03xxp+FHZhzbmtDLoK3rSsEpOaRVjZ9319NnNDhAkeGItw3ZB3ai3uswwjnzc4Wufwinyxa5sjjz1iydQc8ywg1VdPCPD26GTJulCk78x33vdAxUuU5tw3yiTHHpWjRkkhbsx58cc3qOjK3NJErwXOTAAmQQOwJeOOTR+w58QwkQAIkkFIEVIieOSPyHgrGvPOeLadP1z189ZL27mlIxw51b5vsWxQVibz4uiXaYuTqy31y310+ue6qcm9mbePfgDzTrp0Nd1/dbiDySzdstsWxDRkywJDdEO7qfW2KY+/c7UiHdshRRYEktVM472tvB8X/tu2JFXXBEdXv/4H9TdmnXuUksBJU430b1+77uIZLEVqt1zSNBEiABEjAewSquTfsvUlyRiRAAiSQTgQCCM9VD92cebboh/pIrbBQZMlyR86bYMoLr0W/3Uek44jWdodQxfXNmbaYqKSbi5zE0cNNueISnzz5XO3KphjVh3fvcaQ/cilXr3OkTy9DXng1yKMVCiS1hRdxyuTy+7mH4FFt0Tw4ai2c5IYIR2sScT7OIBQzeuv92vnEeUiydZvIrnxbLgJzDaXO4CeXeC8Bz0cCJEACMSXAX+sxxcuDkwAJkEB8Cdi2Ix8tcGT9xoZ55xYutUW9ZEMHG7IGYixlTVu8aO4ozIZnU1uMzFtoy+du9bniUT2Ztdn6TY6MG23IyVOC3FNHCk8Gt1aBv22nUyEXNXSczvCYprJpwSftEbpvX/LNogze/pkfaJ6zIRdAmJrlEdXJN1iOiARIgARIoF4Eym/x1ms3bkwCJEACJJBMBDScseCoI8++YjdYjIbmo6G7o4al9p+HsSNNGT3C+DR3VENqhw815QS8wKeK6xbaO3bbCNk1ZDxE6TqI05Bpe5LBEOytW599BcJXw5yry1EN7ZMqz0OQN6s5scls63Cj5ZmXLPcmAUN4k3mlODYSIAESiJwAPaSRs+KWJEACJJCUBPSD+Zr1Wpk0OmJCW28MQRuY89E25aP5qRm6qxV1x48xZMIYU4oQgqu5pAcOOfLWu4B11nNa22JqvqjmjWrl4e0QoSHTnqWLl9ty49U+5DUGj3u80JE9+6LDPnSeeD+3aiXSPs+Q19AmJ9nt+HGR5xFCrdenekzZHibZV4zjIwESIIHaCRgOrPZN+C4JkAAJkEAyEtDf3trO5d3ZluzcFd0RamGjay4z5annkYcaQUGk6J49ekfz4barilGdQ6AsescVeEabNzOkDMfU4lGpbuMh3Nujbc0b75SL71SYk+b3XnphsF0Ro3hTYcU4RhIgARKoSiC1Y7KqzoevkAAJkEBaENDCRerx0wI90RajClD7d27dIXJpireBscDpJPI/oypGFRC8rFrJ1wtiVKczuL+ggFNqiVEd91ZUMn7qBUsO4mdBfyZoJEACJEACqUeAgjT11owjJgESSHMCZ+CV09YkL78RWTuXhuL6ZIktnTsa0r1bQ4/A/VKBQM/uQU/7jih72eM191MoPPXS67as3WhTlMYLOs9DAiRAAlEkQEEaRZg8FAmQAAnEmoCG6c77xHZbusT6XNr+ZNEyW84d44v1qXj8BBLQPNlUFaPh2OaiuvTsuegXi58RGgmQAAmQQOoQoCBNnbXiSEmABNKYgH7I1pYjL0+3RCuNxsuWrXQkI0Nk1HBm6MWLeTzP06yZSLcuhmi7Hy/Ypi2OvPi6hUJWDoWpFxaUcyABEkgLAhSkabHMnCQJkEAqE7ChFQqOaEsXSw4cjP9MtA3MsCH8cxF/8rE/48B+hpuLrMWZvGKH0HP26RdtOXjYEcsbOtsrS8N5kAAJkEC1BPgJo1osfJEESIAEkoOAtnTZsdtx21xoCG0iTAvHHEWP04sv4J+MRPCP5Tm19+iaDd5TbVpsSvNKt++EKE3+TjaxXGIemwRIgASSngA/XST9EnGAJEAC6UpAP0ivXu/IO+8lXjCol7Rvb0Oys9N1Nbw37y6dRQzDkC1bvTe30IxmzrJl5VpU4KUoDSHhMwmQAAkkHQEK0qRbEg6IBEiABMT16qgI1AJGyWCHC0TWI3f1osn8s5EM6xGNMQwZaMqu/PjlI0djzA05xoJFtuhDQ99pJEACJEACyUeAnyySb004IhIggTQnoAWMZn0Ez86a5BILWvimbVtxPaVpvkQpP/2MTKxjL0MWLU8PlbYKXtKZH7ACb8pfuJwACZCAJwlQkHpyWTkpEiCBVCSgQlTDdN+cacnmrcklRpVnaamgGqsj40bxT0cqXl/hY3aLGR10pLgo/FVvf71thyOvvW25vUr1Z41GAiRAAiSQHAT4qSI51oGjIAESSHMC+gG5FIVYXkFbl135yQtjNTxNlg1ROpptYJJ3leoe2VAUM1q/KT28o+E09u5DsaM3LNxcYVuYcC78mgRIgAQSSYCCNJH0eW4SIAESAAEVoyWnRV5900KriuRHormtmn9IS00CHdqLNGki6GebmuNv7KgLjqCf75s2fuZUlNJV2lie3J8ESIAEGkuAnygaS5D7kwAJkEAjCRQVO67X5sjRRh4oTrvv2i2y/4Atl1/MPyFxQh7V0wweYEr+3qgeMuUOduyYekohSksM94ZQyk2AAyYBEiABDxHgpwkPLSanQgIkkFoE1Dlz8hTCdOGtKSxMrbEvQC5p756G5OWl1rjTfbQG/uoP6GvIkhXpF65bee31Z+4lhMgXob8vHaWV6fB7EiABEogfAQrS+LHmmUiABEjgUwL6AfjUKUdefM1KOTGqkzgOD9Py1bZccC7/jHy6qCnwhRYzKoAn/vjxFBhsHIaoovQVhMoXl1CUxgE3T0ECJEAC1RLgJ4lqsfBFEiABEogdARWjGqb74uu2+0E4dmeK7ZEXwUvaqpXI4AGxPQ+PHj0CQwcZsmkrvaPhRFWUvgxPaXEJ80nDufBrEiABEogXAQrSeJHmeUiABEjgLAEtYKRhuuqVSWXTFjULlzgyargvlaeRNmPPzRVp2UJk5WoKr8qLHhSl+jNJNpXZ8HsSIAESiDUBCtJYE+bxSYAESOAsAfWMnoYY1bYT+gHYC7Zuo+NWK508gX9Okn09B/c3Ze/+ZB9l4sanP5OvvmW77ZeYU5q4deCZSYAE0o8AP0Gk35pzxiRAAgkiYCNS8o0Z3hGjIYzaBmZAP5GMjNArfE5GAgP7G7J8FcN1a1sbrb77+tsWeu3WthXfIwESIAESiCYBCtJo0uSxSIAESKAWAtMhRg+lQJ/RWqZQ7Vt794nsyheZOsXbf1J8iExu2hRhry2Dj5xskbYIg9VHm9blr2dlVYspoS/262O4FZ0PHkroMFLi5Poz+uZMxKPTSIAESIAE4kLAH5ez8CQkQAIkkMYE1DP67oe27IFw86p9Ai/pXbf6pHMnERWoqWRNmgRzK1u2NKQVcizdZ4jOZhCfTSEuMzNFmjQJ9qvUvFn7rFaxEddpBYIzNX2GmKYjBv6pcPWrt1hDtEtFys6giBVyE7W9yKkikRMnHIhDRwpPBtv+lJXFntaQgSJbttHtFynpPejTOmOW7d5kMb19nyVSJNyOBEiABGJGgII0Zmh5YBIgARIQUQEzf5EtW7d5u1iK9lNdvNyRSeNNeeHV5BU+QY+mIbltRNq1NeDZNFzBWYICU1pk6kShg7YojqggOXrMkaPHHTmCZ/Us1jevsBnEbCt4UVu1MKRzRz2nITk5Il06q/A1pHkzkaymBvKKHTmO/MWCIyJHjjhyGI9oetKzMYa8XFNeRXsTWuQEtm53sEa2TBxnujcZIt+TW5IACZAACdSHgOHA6rMDtyUBEiABEoiMgIrRVWttCNL0+TX7udtMWbnWSYpKrhpaq6KzQ3tDOnVQUWa47XZOQPzt2efI1h14bLcTXuinKwRqz+54dDOkaxcIV4jkFs0hTiGMtQhRPsZ68KDT4KrME8Ya0hZi+M2ZyXujILKfqMRspQW7tF2Oer5pJEACJEAC0SdAQRp9pjwiCZAACYiG6e7Y7cg776WXCOjXR+TccT554pn4e+P8iPlRcderhyFdEDrcNMuAd1Nk9x5bNmx2ZMVq2w2ZTYXLU8XPqOGmDIMQ6tXdFM1XVU/qHgjUnbiu9KE3PCKxe+/0yYwPLNkLry+tYQSuvNSU7rhh4GP4bsMAci8SIAESqIUABWktcPgWCZAACTSEgMadFCDs8vkkDl1tyLwi3ef6q0w5dkLkw7mxF+MaAquexR54dOlkuKG1m5ArqeJzzXpveaaHDDRk5DmmDOxruiHHe/c7sg1eXhWnGjJdnfWEOJ84zpCnX4j9WlR3fi+9dusNyh1ZwoaXZsW5kAAJkEDiCVCQJn4NOAISIAGPEShBr9FnX7IaHGKZ6jjatxO57kpTnn4xNh5JDcXt28uQ/qgc2xK5mHv327JqnchH8yw5hcJB6WDNkH96/gSfjBgWzE89WeTI5q2ObEHeY3iP26svN9281AWLvSXOE7HGLVDw6pbrfW6hq0Scn+ckARIgAa8SoCD16spyXiRAAgkhoN7Rl9+w5ECat9eYMtmUVq20p2N0PHNaCbdvb4hQPPKQF7prjyMLUCzq40+ic/yEXCxRPOkkFN7RglLdkIN6GLmn6zc6kr/XkTtv8ckjj0YY2xvF8Xj1UJ06ilx/lY9eUq8uMOdFAiSQEAIUpAnBzpOSAAl4kUAALUA++NiCp8qLs6vfnLRf5+fQBmbmbEt27KzfvuFbaxuZwQNM1xuajxzIxctttOOgwApnVPnryy/2ydiRpptHq21m3p+D/NEUa8VTeU7J9P2AfiIXTvKJ5izTSIAESIAEGk+AgrTxDHkEEiABEhAVo1o4Z848euxCl4OGkw7qb8ozCF+urw0aYMgQPFTYrt3gyBszLFSdre9R0nv7v/w6AzcDHBTjCba0WYuc2nWb4MJn9G6jL4zzJpoyuL9BUdpokjwACZAACaB3NyGQAAmQAAk0joCG6WqvSorRihxXrHZk0ABHxsBbtwSezbosC307hw42ZfgQQ46jKNI8hOTSG1oXterfH9jPcKvw/vEfuFMCu+ISn5w7xpDxeKxCWx4t+FRaWv2+fLVuAh/Pt6V9nokHixzVTYtbkAAJkEDtBOghrZ0P3yUBEiCBOgmUlTny9Eso4FNDpdM6D+DhDbTK64WTTHns6Zq9pM3Rc3PEUFPOGWrIjl2OTH/HCnryPMwl1lP7yj0+12v/rycrch85zJTLLjalR1dDVq+zZeWamiv0xnqMqX78ZvDefxY5upkZqT4Tjp8ESIAEEkuAgjSx/Hl2EiCBFCegvSDf/dCWbahuSquewNWXma437j1wCjetWjoavTaHotfmOhTh0WJQ+fvIMZxRQ75WofTnX2XI//6grMZ2MNomR4vzqCd1DUKiV6yypfBkQ86W3vv0QDi0ep+1byyNBEiABEigYQQoSBvGjXuRAAmQgBsSuW6jLR/Np4iq7XLIzRW5eZpPnn/NkqPIA/XDozRmhCmjzjHcvNsXX7dkD4VobQjr9d7FF5hywbmm/ODBYLhubTt3QdGom6f5ZQCEqYZYL15hS9mZ2vbge5UJTBxvyDkINacorUyG35MACZBAZAQoSCPjxK1IgARIoAqBArTXeO7lil6/KhuFvTB2lCHjRpmiOaf60H6l6zfZsnApjuEYYVt678vJEEjt2opshSdZK8Du2e/Is69YsjufYj7aq/3gD/2o9mzLBx9Ffm326m64PTY7dTBkEfJ9VyPPlBY5gZuv1+vb2z/DkdPgliRAAiRQPwIsalQ/XtyaBEiABFwCNj7rz/wg8g/8IWwqyGbMwn6G436AvfEan+yCKNt/ILSFN5/VAzp8iClNMg158nlLlsATR4s+gd49DWnezKiXGNVRbEfu7oN/DLg3C6Zd4ZOhA9HndYnjVumN/ii9d8SZ+Jm+42afmNSk3ltczogESCDmBChIY46YJyABEvAaAW3x8tECW44da8TM4BE9VOC4hWfKyoLHGTXccL8XfKjtjWJAG7c4sh65lX16oTrq6KDQ2HfAkQ/nooAS+kuqXXeVKVsgcgehBUXL5giB3WLLJ0tsMfHJ+KZrzeBGYf+/8mYwJLNLZ5FJ40zJzjYwDxwT7WoOF4RtGKUvW7YUmTDGFPW8zUFlUi1eRDEaJbjVHOYCtCPZuqPhYl/7vOrj0gt9ctlFhgzsa7jVjgsLqzkZX/qUwAnw0SrbkxC+m5lBVfopGH5BAiRAAhEQqPppJYKduAkJkAAJpCsBLWK0e09QKDaEQXYrbW1iyHBUlL16qg8C0pGCI8EjtWxhyISxprTOCRb5KTjiSFvkX150vilLVwZDXDXM94pLyn9157YxpA+8YvMW2jJ9piX9epvSsb22/HBcD656cfVxEgVr9KH5gdnZIpdf5JNFyxx5/BkLAsaRc3HeaNsIVHT97Gd8UlQs8s3vl8nTL1oosuPInahMSos+gQzcYtaQ8Jdeb7ggDY3qvQ8tFEUKuDc+7rjJh+s1+tdH6FxeeV6H4lB79or7s+eVOXEeJEACJBAPAvwLEw/KPAcJkIBnCAQgSGfDQ9lQa9LEkLxcQ1RIah6p5u71gjc0ZGvQimMOjr8JQvXQYXGroO5DvuXGzWjPAUG5AL0527czpE2b0B7o1wkxum+/uB7OnQj/7doZx4MH9vhxcR9tca62OOesszmFQwYYsnuvI0ePO9IUFVl37nakA46ZmVl+zMZ8lZcncuM1puvZ/dt/AvL3R8uL62gBI80hNfnXpzGIq91XPdHaD/fAoejlf/713wHRR78+wTVth7Wl1UxAf8b0dwSNBEiABEggcgIM2Y2cFbckARJIcwIaqjt7riUlJQ0HceiwI7NRcCZkGo577lhDtu8Migir/C13E/WahguMYpxb23Po60dRVKmyaU/U8L6I6g29AH1Ap8+w3NYrun2rVhCoELRTJperQg0fboF+oEcbWWF1NMTm2BEi8xc58tQL5UI0NM71m+BdRiGnb33VLw/9ter7oe34XH8CU84zwb3SBVT/w1TZYy08f9//RcD1bN90LTzrCOldurzqtVdlxzR8obRUQ3cdRDUY4mcgQBpeAZwyCZBAQwhQkDaEGvchARJIOwLqzVTv49Zt0Z36MXgpc7JrbhlRjBBdDeGFy9M9cQZapqhwLCmpWxD48Bv+8otNhObarrc1NHIV1NsggBdANEbLWiEU+UIIXA0bffCPlluoqaZjv/yGLVoJVluNqOeX1ngC3boEve5vvRt9QRoa3VMoRrUQ+cl33eqXzh1wYwWefPXa0yoS2LzVkb69HOmJ6AejPPih4kb8jgRIgARI4FMC5bfHP32JX5AACZAACVQmoIWHZs2J3od9w3REC/64LVBQgVZzU6szDafthhDc1jl4F5V5ByPcthg5mUfQz7MuOx+tVo6fEFmzrqLo24aiN4P7I1e19dkj4LhanbVJk7qOWP37gzCm224wXdH7Q/S+1KrBtZl6Y99533bzS2vbju9FTuA8rPUuXCuxts3b1FtaJvsPitx+o4lQXiqu6pirWNdK3DQSIAESIIG6CdBDWjcjbkECJJDmBFQsap5mqBpuY3BoiO7/fCEYy6fht1og6SNUn63JdqIdx/rNttx2o090e/W4zPzAqlHAho7THF5UFa865vvuKo8d1BzOfBRe0UqqN17tk1KE6DZDHunxQhRkgTCur52Pqq49uok88bwti7SfaoT22tuWTJ6Q4Xpw3TY4Ee7HzaoncC7yR3//cPxCoP/9VACVn025+Tof8o8d+RhVp2nlBDQK4eNPbDlvQs3RD+Vb8ysSIAESSG8ChgNLbwScPQmQAAnUTmA/isS8HIXKpbWfpfZ3/bh9qAWItEqtFiyKisEzqj0rVbSeqWfuqHp3L7nAdPf9678CcqIBoZsTUdn3RuQkagVeWsMJqDC8Hu1/HvhJ/ARpaLR6XX7nfp/bX3bmbLQjOhV6h89K4KZpplswjDRIgARIgARqJkBBWjMbvkMCJEACbiXc516xIgqRTRdc3buKXDrFlNXrHfnXEzXEGkcI4/vf8stBCP7//Ldxxwmd7j9/RpJtDfYkciDnwmuVCNNWPD//nt+9nvQ2sHqmNfz1yecCbpGqxozpe//rly041ktvRIdhQ8Zyzx2mjBjmc733+XsacgRv7tMGYfEa3cBcUm+uL2dFAiQQHQIM2Y0ORx6FBEjAgwQ0VHc18i8jydf04PSrnZL2T9Wepa+/bcsMhA431l5CCPH9X/KjUJPl9rxs7PG+9K1yb+uDP/DL0y9ZqOobDARKhpy+L3wjOD71MH/lbr9ceYlPnnu14Rw7dTCkS0dDHvxD/L2j4Wv16NM2KsuiNQzCwBeg8NHqtUHm4duk49dHj4ksX2XLOUNMUW8yjQRIgARIoCoB/nqsyoSvkAAJkIBLQFs4aO4oLUhgMgrn9OxmyN/Ql3INWoFEw9RLuHK1LV+/z4/qvI0XVdqaJ9z0pkL4a9r/9MpLfTJpnCFZWYasWW/Lf18MtsQZM8KU6640JRttcYpRxXjhUkdefctyvZrduxpy7eU+2b7LFs2bDUBXPgvPeauWhpsHa7q5vbabNxh+/pq+1uq0B9AC6HQ9Q6UrH2/SeFPyG5D7W/k40fj+A/Tg1J65937WJ9ngkihvdDTmEs1jLFjsyMD+QkEaTag8FgmQgKcIsMqup5aTkyEBEogWgTMQHLUVG4rWeVLlOFdcgly4PJGf/bYsamI0NPeX37RRGMmQ4UNj/yfp0gtNGYh2M3/9tyU//W3AzaHVSsdqR9DX9dFnLORilskfH7Fk9AgDYajB97QC8ZCB2lvSkD/+3ZIP59nytS/4Ua3YkH8/ZckzL1tugR9ty1ObXYiesNr/9TPTfNK1kyHvf9hw76ieZ9I4U956t3HHqG289X1vA9r4/PBXAWmXZ4heM7QgARXn9c3TJjsSIAESSBcC/GuRLivNeZIACURMQHP8CtCaZOuO6HgBIz5xEm6oAuuGa0x0QXXkB2jp0pDiRXVNS3uxvjnTkluui/2fpAsgCOdBHGghJ+2ZumqtLSPOCuHtqGisHj5tgdOvtyFFRSIaEhuyw0ccef0dS/YdcFzvn3pbn4YQ1TY36zY6chTz6IXek7WZ9gvtikc2+rZqP9mrp5ZXQK5tv+reGzUcRaUCDry8yXWdaluiH/2qTGwM66ZrTXiiqxt9er2mvUkLcP2wjGR6rTtnSwIkEBkBhuxGxolbkQAJpBEBDfPUPLh0txz0PlUv1+58kYcfja0X7s130SIDIcHTrkB+6juxYa8CMre1IRp6fO7Y8tU9WRQUdBPhbbzleh/EpS0HD4srqHSf6kwFrZqG6oZMPWB1iS8trBQybbfz6x9nyFyEhTek5c4UiOuVa5JLjIbmps+/+XNA/udev9yIGxrTZ9pSWBj+bv2/vg19T3PbGK6o05/RE2hVNG+R7V6f9T9a/Pf4GOt80zU+8TX8HkT8B80zkgAJkEAcCFCQxgEyT0ECJJA6BNSDoXmC+w+kzphjMVL14Gk+pXrfHn26XETF4lyhY770RrDfaqwEqRY1OgWv5wuvWbJzd1UhpwV5Hnks8GkRpOafia1y0L6yhScd6YSiRPUVpHm5huvJfehvlZJmQzCT5Plv/wnI5271uW1pps+wRYv8NMa0Z+3W7Y748Oll5DBDLj7fJ4/F6fpszLh138O4yaE50wP6Gqy621iY3J8ESMBTBChIPbWcnAwJkEBjCaggnftJVbHS2OOm0v65uSJXofDPyjW2PPFcfMSo8lm83BYNqf3K533y98dic94VKKCkxYn+8URAtGhVFnJDhw4yZelKW0rLHMnMUJen43ritIDTKlRZjoU1RRjrOPQPzck2XIFV33NMRFEmDR1OBdNr6C6I0muv8Mn0GdFpoWRBh2u7oAF9ywmMGm4EC1hhCXv3MGTjFkfWI5S6Ty9Dxo823HxhZfbhXPRLxY2JPOREjx9luhz1GigtdWTJCoTqnxW8Gm5c2V5BvnMZPOFdOgfzd7OxfseO4ZjIKT5cUHnrqt8vWGxjzLG90VH1rHyFBEiABJKbAAVpcq8PR0cCJBBHAprzthyCRXPg0tXa4UP6VchrXAaB9tQLsRGFtbHVXpoPfM0vbXNtN+eutm0b8t7L0y25A57P3/00Q06eciQnx5CPF9gQIgKxZMvnb/chL9PnVtlVD2a07d9/ClY9On1aZA/yVf/yzwC8hvUXlpMn+ORFtMxJFXsSolRF5DR43bVlUENbKWm146YIdW6SKa6n8cO55QxatjBkAApWqRDVnF7NTW6LmysXnW+6Bcr27rdlHASohqG/+LqNmw8imtNbgGJW05HDrF5nDRvfuiMgGhI884Py0PGJaHWkpmI0O1vk8ot8MgtVhfWYWuxKWyG9EUGouf5uWYWWOMMGG1JTOHiqrCnHSQIkQALRImA4sGgdjMchARIggVQmEECBmH89absfRlN5Hg0de24bkeuvNmXBIsdtadLQ4zR2v7tu8Uk3CI+fPxS7cFQ/nFSt0N5F8xBVfIRMCx2p10sr7ibrX8dhg025+zaffPP7ZxNZQ4NPgeebrg223FFP44l65pRqDmkJhLzup2KuNYShrtG7s23cXBDXu14GL/d8XL8hmzzBcL3QbyKHVU3zdu9BWxqtiqxe6imTffLfsBsvX7jTJ6+8aVUILVYPq+YXP49+sepVV+90C4jfhUuDx/RhLDqvx5+1IqqkmwExfe8d2pc0LAE5NGA+kwAJkEAaEqgaj5KGEDhlEiABErAsB17BiuIknai0Qs7oVVNN+QQ9E7W/ZiJNe392aq9hlrH7ExXAFNUzGS5Gdc5l0MDJXg1VW8do4aVUNPWAr0AhpmsQNt0cVYbra5rTPPtjW2bNsUVzjovgcRwMD2XIrEpY1Gt6AKG9IQvm7Yro69WZrn8mBGPI1BuqYeQzZgXFqL6uNzLatVUxG2zho31pD6Eqt1ZNjsTUy7psFYpmVRprJPtyGxIgARLwIoHY/bX3Ii3OiQRIwLMELMtADmP5B1fPTrSaianX6OrLTNmAUEf1HIVM8xtvv9GH3puhV+LzrN4uba9y/VX8E1WZeA4E0uABhjzzUvk6Vd4m2b/XnNINm223aFZdVYnrmou22mmDysk1WTE8qq0Rlh0ybWOkwrGkpO6fdS2cdPnFpixaZsshFCQKWQlCubftdOS1t+wKj/oUbFqMY2qvYxoJkAAJkACiXgiBBEiABNKdgHrLtKBOutqVl5qyZ68j/36yosgpKsaHfbTZ+PoX/dIExX/iaRqGqevymWlxVsPxnGQDzqW5ilrMR0NXU9m0cvN2iLprLzfdirn1nYuKxQ7tRQb2M90+sDXtr9WUu3U2IEqxheG4Yl7zOCPJYT0f+aTHT4isqVTYatsOWwb3N6V167NnxXG1d219f0aW4HdOZQ99TfPg6yRAAiTgZQIsauTl1eXcSIAEIiIQQJjeitV1e0wiOliKbaQFXgpR3Ocv/6ooRnUa2mvzYbTt0EI/3/qqX/78j4AbIhmvKWpI5t2ozppKxXtizUZFUnixnVifL5bHf+RxLWDlk8suMuVt9KGNxNRjqXmjGu6qnvRVa21Zt6Hmn92du1BpF97Y2+Dp13BdA87SmR+gwFLVy73C6TWcWD3R+jNw313lN0X0WszfG7yBpW2CShF+qxEGx5GLXN/WPdpDdswItLDxlXtwKwyC35AACZBAmhBgUaM0WWhOkwRIoHoC+uFWP0xqTtqBg9Vv49VXNTdOW7z86MHaiwfdgA/eF6NS6WHkyf3hkYDrNYoXk29+2Q/x4cif/1mHgojXgBJ4noGoIPulu/1y/3e9Fev50+/45ehRkTnzIxOlDVkCP26/a3VerawsTpQEIDyjzZsFResZCNOG2Aj0UtX2P1pMi0YCJEAC6UqAIbvpuvKcNwmQgEtAPSY5KFIy7Ur0SURLis6d0gPMsCGGdOloyC9/X7sYVe/VBSja8uAfAyjE4sh37vejoEuUPtBHgPplFMEZhPDIrgi7THfTddi8LXaiLVF8f/OXgFtVWa/JWJlGQZw8iaNHS4zqQHGsIvQzbagY1UOsRAuY2M1az0AjARIggeQnQEGa/GvEEZIACcSYgIpS9VB07WS4PThvuMaU7l1jfNIEHl7nNmGMKf94IuC2sahpKJPGm3LNZT6E8wYQpujIGzMseR+eZA1ljJfl73Ncz9m9aNWRzta8mcjIc9A/8zXvCVLN6fzPfwNuL88e3eN3bSXD9eRgOVWUWtoEmUYCJEACaUqAgjRNF57TJgESqEpAhWkmqnB27GAgr80nN19vSq+e3vqAnINCLFPh9dQ+kFoptCYbBfGjFXYfeTwgW7aXb/cBWm58OC++oug1tIHRSqraXiNdTW8gHD7iuA8vMtiw2XGvyalT0Dc0VCzIixOtZk7LV9li6i8fGgmQAAmkKYH0/euepgvOaZMACdRNQD8aai/CvFxDLjlfW5+Y0q+PNz4wXopcUPXIfPBRzTmZg/oboh7Jx9GeQ/s+JtpOlwraa1hyNfqkpqtp79F5C+N7IyDerGfNsWTpCkemXpBe61yK63sTWi5pPjuNBEiABNKRQHr91k/HFeacSYAEGkzA9ZhmGm7rkwsnGfLZW0wZ0K/Bh0v4jpMmmFKKejiV27uED0z7XH71Hr9b2VZ7JYZbF4Q033iNz23F0qNbfAX67Lm2W+H3jpvSL3S3Ty9DWrU05J33K65H+Np45evHnrGkBAJNC26lky2Dl5SCNJ1WnHMlARIIJ5Bev/HDZ86vSYAESKAeBDIhTLX40fkTfXL37aYMHRRfQVaPoVa7af++hvSFsPnzP2svYqR9Fx/6W6BKWO54VAL9zjeQaItpHzvuyH13+tycv2pPFqMXX0KBI61Imm6mrV52oJ9mutgfHw6I3vAYgKrC6WJHj4kcQH9ZGgmQAAmkI4H0+8uejqvMOZMACUSNgOaYtmhuyMRxptx7pynDh+JDc5J/bs6G11M9vCroTkBw1mU7K4mf9nnwDn/GJ7vyEVYIJ50WNvrbfyy59QYfeijWdbTovb8W/SY3brHl2+iJmi6m19uYkaa8+mbNIdZeY3EKRY70WtUwZb1208WWrrBFqwHTSIAESCDdCFCQptuKc74kQAJRIZABodA0y5DxKDZz310mGtybor0Ok9Eumqx5oyLzFzUs5FN7Ja5eb8vv4blq2ULkzpt9crLIER/+gjRpEt8ZvzLdlpC3N75nTszZ9Po6ccKRnbgZkE62YLEty1c7aRW6uytfpOR0Oq0y50oCJEACQQIUpLwSSIAESKARBLRdTBOE844eYcgX7vJBoBpxF2m1DX80vGsmvJj/RIuXhpoNHauFV/T5CRQ60iJDP/q2XzZtdURbdmiubbyKPmlY47uzbbnrlji6ZhsKLgr7TcHNhEXL00uMhrD968mANG1iIAohfT6qrFhNL2lo/flMAiSQPgTS57d8+qwpZ0oCJJAAAuod9UMjjRyGUF5UqJ2MAkLN0DsykdYuT2T8KEMefbpx4Z5LUPl08EDDzevT+bz4uiUzZtkQp0GR27mjIXff6nPnrQI91vba25a0aGHIpRd6+09Y966GtEWl53QK16187Tz+bEAmTTAkN7fyO978fj3a38QzDN6bFDkrEiCBVCPg+wks1QbN8ZIACZBAshIwoZHUY5jX1pBRw01p3syQoygCpB7GeNvlF5tu2OPHCxoWqhsa72mEEebvceQrqL7bto2BokYiq9YFQ3Zz8b16LefMt2XYYIQuwyO7dGVsPXpajfRUkcjVl/lcb2lonF57vgbz07k2NNTaCzyOoNiPXnPDh5iivUq9bjbuHbXBfNvkGO7vEa/Pl/MjARIgASXg7dvLXGMSIAESSBCBkJdDe3pqzuXF6K3YunX8BjPiHFMcVFv674uN846GRrwRfRJ/+tsyOXlKpPCkI9oC5pc/yJBvfdUnP37AL716GG44b7/epnRsH/sqT9qTU4X+52/3Zuiu3tTQ/NE3Z0Zn/ULrmIrPjz9roS+wIcOGxP66SgY+azcwbDcZ1oFjIAESiB8BCtL4seaZSIAE0pBAyGPav4/Irdf7RL2WeW1jCyInR2TCaAOhtQ3PG61uhCcKRaZDIBWe1Kq98ISiKuj/+3HADQm+DRV3r7/Kh3xa5JueqW7v6L/2MiqxjoTwzopzYaXoz6TqEbXNTnGxI+s3ed8rWHX2VV957hVLJqGydQsU1fK67dmLn6EyrrvX15nzIwESKCdAQVrOgl+RAAmQQMwImKbh5ob17mnITdf6EG5qSof2sTndBHjWViOkVtukxMo0ZDaUI7sb4bz/etKSqVPg0XvXkqPHgufV75tmxWoEghYwDuZpyze+FIfE1dhNo9ojX4hiRitQZZYWJKDrvAbXs4rSdLD1G8UN106HuXKOJEACJJAev9m5ziRAAiSQJAQ0FFPDebVgzbQrfXLdVaZ07hS9wfXoZkg7eGAffjS63tHKI3x/jiWdOhhy/xf9bk/Wr97jk1kf2TLzg2C+6mem+eTGa3yi4jgkXCsfIxrfv/KmLSryhw7yTjhnJxSJ6oLHs/AK0soJ/O3fAfea69ndO2tdPruKX63fZFOQVkTC70iABDxMwHu3lT28WJwaCZCAdwioMNWKtFqh9qpLfXIE+ZBLltmivQgbY1rd9/05jStiFMn51UP6s4cCMgTVd7/8eb8sWW671Xd13ysuMWXsSMP1mvaBWPz5dzPkT/8ISP7e6Hv8jhx1XK/srQgZXrM++iJci1Op8G6DMGjNjW2N5+xsw62o7Hp/sY4qj7T40JkykTI8NMf2wCGRI/AUH0cBqH0HHdl/IPK5T4YXcG89to9kvbyyzayPbZk83pAduyLnmYpzP4mw+AJc2+1w/dFIgARIwOsEDAfm9UlyfiRAAiSQCgTOnHHcokELIUy376j/iIcPM6R3d1N+9GuoojiZCuuJEFALFttun9LzJ5puLulv/hyQfWdF1bVX+KQTwpMfeTx2Hr/f/cwvH6Ga8JszGy7GtWJwv96GaCGqXvDCacsVzYctLnGkpERQXdiByBSITEeK0H9VH+GmuazNm6NKKiqktkEBKz1ec7T+adoUvWmRW6vViHfudtxqsZu34VgQHNXZX36VIU+9YKFaccPnUt1xvfLaL76XIVu227JyTfX8vDJPbbV0AX6eNA+dRgIkQAJeJkAPqZdXl3MjARJIKQJaSTS3jcgl56OgzViRRRCmm7dGNgV/hshotJn5L4RMPE1vaWrFW7UxI0w3TPePfy8Xo/p65w7i9jC99nIf2tDYMfGUvjzdlpuv89VbkPaFAB2FwkgjIeZbNDfkBLybu/IdmYHQ4xVrbCmCJzga1gJCVdsAqdi9BvnD2a0MCFpHlq1yIKxsNx9WzzMaDMvg6KUYrZn6C68F5Cv3+mXdRsv1SNe8ZWq/s2W7g+JhqT0Hjp4ESIAEIiFAD2kklLgNCZAACSSAwBl450rhNV20DF61OqqtjhsDjx48cg/+Ifphq5FO/QJU3j10uGJlWO2lOXmC4XpHtVWMitJX3rRcj2qkx410u+/c75fjJxz5xxO1i/JuXQw5/1yEFY8yxcKme/c5Mh8eXvXyxtO0QM84VNPVsG0fvGB6A6J/32A46hPP1T6HeI4zGc/13W/65RhCoj9Z4m0v6Y3T0EapHcN2k/Ea5JhIgASiR4Ae0uix5JFIgARIIKoEMhHmqV7T8841EBYrshiCRavnVramTeFZg5fvj48kTozqmObMqyjopqBS7JTzTPk1wncPII9y+05HAhjipRcGQ3wrz6Ox37803ZJvfcWPPE8L4bVVj6YFlvTcGoqrXtB/PB6Al60qz6p7xuaVeYts0YfaiKGGXHKhTzpAfOiNiHEQyypQadUTeP1tS+5HdeWVay03nLr6rVL/1fUbbWmX63MLoaX+bDgDEiABEqieAD2k1XPhqyRAAiSQdAS0YI6NGNllKwWhnhArZ7XUecgz0xzF3/0tsYI0HJj20bz9Rp/8HuG7mjcZsi/f7ZP9B0Vefyc2HsDP3eZzK9T+4vflLFSE6kPDixcudVwPbWg8yfisoccqUDU/V6sWf1hJ6Dd0zF8Cew3rrs603+kfsFaJsp9+x+96itVjffJUsCiU3uCoLXT52//jd8VoKGQ8UWOP5XkzkZf8hTt9gq5RNBIgARLwLAEKUs8uLSdGAiTgVQJlAcet7LocfSrVw/e5W33y09+WyZ59yTNjLQ6kgmrT1nIxeh3a3IwfbWCsARQKis1Ys1uJ/ObHGfLo05a0ailyJSoYl5Y6buXh2XNTy+Oo3uULcbOhOXJb30J/18aOX9sN6ZqoaUserRL83xeDNwZUrKsYTJSpIJ2OglTLcaOlZQuRIQNMueV6n7wKT2hlz3tojNre6Jc/yJDHn7WilusbOnYyPd94LcJ2UeGZRgIkQAJeJcCQXa+uLOdFAiTgWQIZ/uCH05HnGCgkhOqvJ9ByBGGeyWRaRTbcLrnAlPPQkkbDd2MlRvV8JwpF3v3Qlns/63Pbr7wxw5KP5qeWEA1xm40WJ/rQ3NypU4Je3hdet2QFbkQ0xMIFpw0kNg6jIdThpoL+9pt80r+P6Qr5GbPKPbR33eKTYYPhjYfXruCII69BLK5aGxzL5RebkpVlSIc8kYH9TbdwlQpFHbeGk+cjT1dzhzVUujZTYVyIlicLlthyAPnImhes59AKx5XtUIHIWtyQ0aJUH6PCsldtM27qaPsXvaFAIwESIAEvEqg+dseLM+WcSIAESMBjBPxnP6Bqj8sHf5gh3/6qX7p1Tj5PytiRplyN4kZ/QI7rQYiMmky9d1r4SD1kDTHtFfrVe3xuwaKVa235fz8OpKwYDZ+/egi/+7MAwlcduesWv9x3l8/thxq+TTS+Vv7/g+q1BxBS/f1flMm//2u566YVgtXWbnDkob8G5IGflMnb79nyxbv84j97W7tNa0PORWGtZRDLWlhLw8t//IDfFa6/wT670YNW+9PWxzTnWFvj9OpR8zX9yvSADB2EtjoQyV61ukS8V+fNeZEACaQPAXpI02etOVMSIAGPEVBvknpP1Is2f7GgdYkp3/+WX3bscuTVtyyp7KVM1PS1fcWf/hGotd3LhSiANA39SrXnonqCVIw8+bwlhwtqFrDh89FeqLchZ1XzVb/xvfj1YQ0fQ6y/fhlFm/TxwNf88svvZ7h8oln4qHtXQ/LgiXvsGQv9Uw0phLd5+y7b9YpqBWLNW85DQSgNp9VwaF0rreys/VXVFix23MJb+rVua2KDd2cHPZcLULzpga/rR476xQUfPCwIV9UjVm8apr4TXlf13C5Z7k0vqXr9i0870hKh2zQSIAES8CIBClIvrirnRAIkkBYEAvhsr70y1UpPi3wC0bB0hchwFMT5BiqQ7kNl2+kztDJvYj+oa7hldVVvQ4ukuYITx5ryFHqoqpBRoa1tWb77Db/8BiG+tXlV1Uv8+Tt86O9pyguvWZ4O3Qzx+i08jhrGexNyC4cNNuTpl6JTaVbFpraf0WJU4ZaZ6bg3Ce5DcZ3u3Qy3BdFRVDHWsF8VpdWZekjD39PvtfBWfU3zROfMr30v9dbeg2tgyfLat0vld3fniwwekMoz4NhJgARIoGYCFKQ1s+E7JEACJJDUBPYftOFBrDhE/eC/ZLmD8E7LFaZaofPIUZ+8/b6VlB4kDbe8AIV7fokwz3yEdYZsDvI+s1B05/O3++RXf6qU6Hh2I+0n+uXP+9xKq171ioZ4VH7WMF59fP9//fKT//PLv9B7dRu8yo2xwpOOFJU48ruHq/Lu18eQPr1M+b+fln2ad3oRii7F0vr2MkRDgbftqP2GyiqEZx8vNCHYjIS28Ykli61gMKAv27/EkjGPTQIkkDgCsf1rkrh58cwkQAIk4GkCWsRo9dqap+jgM/yKVY785ykIFXyYve0Gn/ziexkyeXxy/dq/4hKfG9YZLkZDs5r1kS1dkBOrBV0q2wS0lfnht/2YmyM/e6iqgKq8vVe/VyG/HoV9vvtNv0xq5NpquLOGS2v/2JBpddc+EIZ6o0PfC+UtDxloSFYM8jbVq6rhwBqC/ZV7/PLEcxbawIRGU/PzvIWODEXYrlctf29Fj7NX58l5kQAJpCcBekjTc905axIggRQnoIJUc0UjsdXrHITtWjIIHqRrrjDlSojA9z+25AMIvkSbFjHSfNfqTCvA/gmFkA5VyiPVyq3XoEjSkxAr85CbmO6mubaaR6n9S7UAkfYubYiV4pr6GbGm6wAAQABJREFU+6MWCif5Pi1A5EMDzMefC+D6cSB8bfnDLzLkDMTppq121NvEaI9a2/a5AnQ/ws01hHvF6sjm8t5sS65Apd/OnUT2JlH7o4asQ3X76A0mLfDUFmHVNBIgARLwGgH2IfXainI+JEACnieg7Tu0mM0yVF1tiGn45ajhppvj9xHCPjWcN1H2AxRh0sI3S1ZEJjy0JckYjP3hxwKypVJrmUTNIVnO27unIV/6nE+0P+1zrzRuTZs1FcnICLZg0ZzekLWE91LF0ami0CvJ86ytfnKyDXn/w8iupeQZeWQjGTvKlLEjg/19I9uDW5EACZBAahDwbnxLavDnKEmABEig3gQ0dFL7LzbUtDLvcy9bshC9Hs8da8jvf+6X667EQRNgs+faaC0S7G1Z1+nvhOduBAo2fRctSShGq9IKhS+fM8SQOyDcG2PaK1aru4aLUT3eSfQITUYxqmN7BzdWNO/U59HYr917bNFCZjQSIAES8BoB309gXpsU50MCJEACXiawZ58ja9c3XJCG2Gjl23UQtschPFToTYMozW4V38Iwmjvavp0htyLHVQVQUbEjpaWhEZY/qxgdgpBj7S2qoby06gloKLfm3ipPDYdetbbx10n1Z0q+VzXXVHveavXfgiPJN77GjkhvBIxD7rT2i6WRAAmQgJcIMGTXS6vJuZAACXiegObvvYcQ10jzR+sDpAvy70aeY6IXpaB9TDCHrz77N2bbMSNMN29RRelf/hVwRUXoeNoWRoXGt35YVsVjF9qGz1UJ/O5nfncdn0c7nHSxqy71yegRhrz2ljfDdm++zpR2eVSk6XI9c54kkC4EKEjTZaU5TxIgAU8QUO/gI4/FVmB06ABhOtR0K9xqURktHlQWJ6+ken/Cw0SvmmrKxef75Ls/L3Pbu3hiEeM0CS1w9HNUVn5/joVwVm8KtOpQPvxQhjz/qiWFuLnhNRs32hC9eUMvqddWlvMhgfQmwBzS9F5/zp4ESCCFCKhQ27I99iGYBw5oPp4NL5MlbXIM+ctvMtDv0y8tW8QeVrgY1dYuU6f45K/wmJYgp5FWPwIa4vlHVCmeeqFPzh2TPn/ud+9xpF9vb3oR9x1wmEdavx8Dbk0CJJACBNLnL1QKLAaHSAIkQAK1ESgrcyBIyz1dWVm1bd349w4XiFsB90WEfDbFuX7/8wz5+n1+9AVt/LHrOoL2vrwHVVNffB19VHfGXoTXNZ5UfV/F2ctvWnL37T7p3tWbIq3y2ixcaqO4kTc/3uw/WN4LtvK8+T0JkAAJpCoBb/7GTtXV4LhJgARIoFYChuzaHdwgJ0fk8xAZA/rFXmQcPSZuz9L/vhgMFX7whxny7a/6pFvn2JzbjwKxX4AYXbDYlrmflAvwWtHwzRoJKMP56NeqLWGaNKlxM8+88dF8W1q0cKR1a89M6dOJBJBDXlzCGzSfAuEXJEACniBAQeqJZeQkSIAE0oHA9l3lH0R7dTdkw2ZHOnUIisJmzUQuuTC2v9I1J08/7D/2jCXFpw35/rf98p37/VEPj/z8HT586Bb3POmwrvGY4xPIAy4qFrnz5sa1g4nHWKNxjj2o3tyjW2xumERjfI05xpGjjdmb+5IACZBA8hGI7aeX5JsvR0QCJEACKUlA23nsCAtd7QlBunSFLbltgtPR7wuOlAvWWE6yCLmJ8xfa8ujTlhw97sg3v+yXH0CcDhvc+D8pk8abMniAKT/9bZyqKMUSVJId+xe/D7hslbHXbcVakV49vClIte2TE55s7fXF5PxIgAQ8T8D7f5U8v4ScIAmQQDoQyMiAIN0dFJxNmwZnrH0XtdqmYTqiHtOQB7UFig+1y8M2RrlAbYPwxdB+0eJVelpk0VLHFab7UQjpvjt98pP/y5AxaNHSEGuba8jtN/rk5emxrSLckLF5ZZ/X37HcHqWtWnplRtXP48O5lnREf1v9ufGaHTzkiGV7U2x7ba04HxIggcgINOxTQ2TH5lYkQAIkQAJRInDwMD6EntVp6g0N9SE9dlykPfoSNkfI7okTIv36GHLhJNP1DmmFWp9f3LzBc8ea7jZRGk6Fw5Qhr029tf+Bx1RF8x03+dx2I5Pr6Ym7eZrpimrmjVbAG9Vv5syzZSfWSIW/l00jCg7hZ6Yzeut6zQ4fCd6I8tq8OB8SIIH0JUBBmr5rz5mTAAmkCAEVott2lA823Bt6uMCRUeeYotVU1Rs0arghM2bZsnCJg5xBR9oipLd9O5FuXQy8Z0qnjuXHifZXDuoPrUTf0scgTDdtsWXalaZoAaSLzq/7T43OoX9fUx76K0N1o70ulY+njPv2NuWcId72sm3caiOPtO5rrzKfZP++tFREbwLRSIAESMArBLz3m9orK8N5kAAJkMBZApblyN795dVmP0bV1OPwjKpp3qjmymm4rh/eUC08FDir6ZpkGsGQXsT1rt3oiHrHTiHMN9w03Lc6a9FcxNcIJ9qa9Y489bwtq9fZctkUU379Y79ccUnNB7zxWlM+nMdQ3erWIhavadXdG66ueT1icc54H3PdRtyI6Rzvs8bnfCdOVP9zG5+z8ywkQAIkEF0CFKTR5cmjkQAJkEDUCZimIQcPlR9WRWfItC/h+3NsOYC8MvWaaJ6o5pDmoVdoTraIhvq6HtWdtqhnpfBkaM/g8/kTfa4Hc9J4Q1qG5RVOOc+UljhOY23DJkeeftGWZSsdmTzBkId+5pdpV1QUQhdfYIoPf41ee6tcdDf2vNy/dgKvoDdpJjzqF0z07seA5atsaXb256F2Gqn37sHDqTdmjpgESIAEaiLg3b9ENc2Yr5MACZBAihFQUVmTaTjvRrR/EcdwPaPvfmDLhDGmDOpvyqyPbHFQ/EQLGu3bX80xUPSoM0J41Yu5K9+Rqy41XS9rRqa4+abHkZMaLdu81ZHnX7Hlk8WOjB5hyB9+kSE3XRsUplfBc6phxslsWjzKazYT18o1l1e8OeC1OR45akgHFDfymml+bCgSwmtz43xIgATSjwACvGgkQAIkkPoEzpwJVp5UT5uGroYKAOnXqSwmLOi0PfsiXx+tvPv+hxXFXQGKoJw7zoTwdNyQ3tDRtBiSvne4IPhKKQrBGODXHfmmu5CTqjZ0sCFw0Mp2tJzRYzfWtu1wkA/rSHf0iBw5zJCpUzLkRKGDcN2KY27seaK9vwq3gf0Q+rzBxsNxBXyqd96Yg56ylyKc+spLTHn7/eTm39D13L7bdnv1bt1ezQ2Zhh40CfY7hp8Z29Y5eU9sJwFeDoEESCDOBChI4wycpyMBEogNAdNnyNMvWaI9Mps0EWmdoyGrhvucl4uvcwxp0dxA/z7BBzlxRZaK1WQ3C/mge/Y1Tix8BOGhhY00ZDfcwosjKTPlU1amIb4Qr+uD5zxw0JFWrQzRsNplK23Zvddxt6ucixp+3Ei+3oVKr/r43G2+KgI6kv3jvc3sjy0Id/U8G3ItxOkpXGfrNgbFqT5HQ6zHe056PvWoX3WZdwXpBuROX32590Sbhu378DuPRgIkQAJeIJACH8e8gJlzIAESiDUB/WimYlRNhdcB5FaqmCq34NfafzFHxSpEVts2huRCrGbj6ywIsrKzxYAyksirqpVzQx7M8rnU/6vwHNTQ3t27goHOH0y6djZkxRrb9SbnoYep5qR27mRI756mnD6tRZUc6YJtdu8RuQYC5tmXg4JVCx+FvNGh40b6PAAex9PoZTpzduMEd6Tna8x2KjgXLLbxEBk22JRHHg+4ubkT4Xm+8xaf7D+AkORXLdmSYp64jxag6NRFpmhbIJ2f10yv6Xs+i4tUf0GE/zpI8YkWF2MC1KMpvoocPgmQQIgABWmIBJ9JgARSmkBxSWSfNrWojz52u59Oy/dRb6kWAVKvqgrWvFyIVeRearVZE2GslhWsWBvvEGAVQrFo8ZDdSqQEYvA9hPdqS5j8vbZbOKkLROj+A0EP8pTJprz1ru1W2508wZRVa8t56cWiPU6nXWGK9g09pEVWkJOqXhv16kZiwwYZooIo1ayoyBHt/zoTbUWU3/hRptx6g0+0P2yqCVJlv2iZ7RY38qIgPY2bUyfw894BEQJ6k8pLVoqf32boP0wjARIggVQnQEGa6ivI8ZMACbgEGhsyqQVCNJ9S26gELfQc/NCnYrV1KAS4rQGvajDENYCiQtp/Uz2FjWmTUtMyavGSWJiGLi9FCK56k7dsKz+HhqKuXGsjrNkQTVHTD7wlJXhGtVLtdaqmAlk9t1qJdx1CIlWMno9qrSrcdbvNOF74MUPjnwpP3LuzFZjhhhBrKPDMDyJUr6GDJMGzMtIw8HOGmHLx2R6rb8ywZO7C1BPXivP1dyBIJ/lcL3k+QrK9Zhreqj+7FSMmUn+Wp3BjpFkzuklTfyU5AxIgAQpSXgMkQAKeIKAeq1iZhsfpo7xSbfmHdjf896xnVUOANQS2ZQtDMlGpNoB8TI2rU/HWkMJKmut6qKD8XNGcX8hTXPmY4ZV135ppyxB4Mf3weurroaqeRWChArQQhVW0wm/vnoZ07CAyH4JsL7yrV081XUHaCqL9HBRF0lBoFbPaZkTFqFrf3qakYqGZXKyx5tt+40t+t7DRK9PR0gbtRXStUtk0JHsiwnaff817vWC1h69Wmvaa6c9wO4TX00iABEgg1QlQkKb6CnL8JEACridPK7Umwo5DCOsjmKBWPoZMiJYcCDINAW6Dgkqaq5qboz1CwworwaOoXtWaxKrmZhYcLT9mvOd3Ap6l+Qv1/A6q7+pzUExqGKSKsk+WqgozRHNRlywPFj8aiKI/KsZVhF93pU8WLLHlTKkjF04y4Xktn4tWrP37o6njHdV1uu8unwyHV3QNKu3+90Xki4Z5luO9NtE+3+y5ttx+o8+TglQrROsNlODPaLTJJe54x46X/0wmbhQ8MwmQAAk0ngAFaeMZ8ggkQAIJJmAF0M4E3oJksjMQbRrKGgy5LRdiOsYWLYL5qhpG2Ka14YZ/aviqhruG8kU1V1VFkBZfOtnGkaNHEzs77Weqpp5QrWCsYZ4hb+dhhDmrB0pF6Tq0RFHx2g8e0C3bbdmC/qNqY0aK7NgV/LpTJxSeQqGk9ZsqcnE3TNL/1AOqYeE/+lVAausLm6TDr3NYWkFZBakWmnL72ta5R+psoIL0uqu8F9p6HDeM9LrUUHkaCZAACaQyAQrSVF49jp0ESMAlAAkkRcXqrUsN05Yp+tjj5uuVizJXgIYVVho30pQe6Nc5ZoTpehzVM6n9VjVk9ugxkf2ohJuPUFitVBsv0wJIM2bZFQoXrUF/U/WMXneV6Vbc1TYz6iENhVGr0FZzK4PiuXcPU7btcl9Kmf805/ZpeEW9bAdxPY0cakKQemueO/Md16Ov12Toho8X1rGoWHsvOxCk3hPbXlgfzoEESCByAhSkkbPiliRAAklKAEGwbsXYJB1exMPSEN0j8IQeQZhuXluRoQNEfvZQMKxVQ2Tb5xmoFqr5moZbGXfkMPQHRWEhC1pcixOVQqyehKdYPZb7kMsZFLwRnz6iDRctLRfQ4TtsgLdzw2YVosgZPSOSCXGjRY/Ug6OVe0PeUd2nR1eRJ5/3lugJZ5GqX89bZAdb+rySqjOoedx6A6glIhP0Ro5XrBjFxvRGCY0ESIAEUp0ABWmqryDHTwIk4HoIQt43r+Bo2VK9vuWzUcGphYFClW7L3wmG/7aHUFXB2qWj4VZLHdA3WAlYK+SWQiBqL9FjKEyk4aZawCYmIcAoWKRiVE17p878wHbHpIJZwybVtNBR06aGrFnPT9IukCT6bz4Eqbav0cJNelPES6YVabUytpcEqf5smzUloHtp8TgXEiABzxOgIPX8EnOCJOB9AppDpYLNS9YS/U8LT0YmCrQC7vETjmzaUnF75aIiVcWq9mHs2tlAuKwh49A3MwO//cNDgI/Ac6RtMdwQ4CixPIFxncC4Np/NI9X1UcHsNbHjpevu6DFH9GbG/EUVr6VUn6MWPWuFmzxeKmykfYQ1zJ9GAiRAAqlOgII01VeQ4ycBEvBUXlhoObNRzKixFXY1XHY/RKY+Kltz9BcNeVXdEGCI1dHDDbnkAlO0t2ooBFiLRWlv1r37Rfbuq3qcyset6/sO7Y1PvaV1bcv3409Ab0r0QNXk+Yvif+5YnlFvgmg7Ji+Z9j/WMH8tgEYjARIggVQmwF9jqbx6HDsJkIBLoMzt9+ktGCoYt++M3Zw0HFjDaEOhtOFn0n6q7eFRdUOAkf+pOaCDULSoBby26pU5Ex4CjFzRPQgBPhZhbl7H9iILlzVe2IaPl19Hj8AG9JW9cLL3yrYePRbMvfaSh1RX/UwZBWn0rn4eiQRIIFEEKEgTRZ7nJQESiBoB9eh5zVSQnkTeWyJMPbMFKK60bmPF82eiSmnIq+qGAKPibr8+hkwYayKXLZirqoWViopQmElDgM9WAQ4Pp26Nnqxr1sO1Q0tKAouX23Ib2r/4oEk199crVoBQ5ObNvOUh1bXRm0OhKtZeWSvOgwRIIP0IUJCm35pzxiTgOQLxbHsSL3hNsjQvNF5ni+w86o3JR6safVS2Vi2DYrUDclY7oQqw5quOG2XIZVPMT8N/0aHC9ehoxVNachJQz7l6wfPaGu4NheQcZf1HVVDgQLh5T5AGo0O8N6/6rzD3IAESSGUCFKSpvHocOwmQgEvAix7SZlmG7NufOi4qzTXVIkxbtlUVq0GvqrZ7MeT8iazCkuw/ttrfsjPCtNXD7RU7huJaWWid5DXz4u8+r60R50MCJFA3AQrSuhlxCxIggSQnoNVivWYZmWhRcdwbszoIYXPwUDAnNdLKwd6YeWrOQj3YebmpOfaaRq3RBhkIOfealSFqgUYCJEACqU7Ae5ULUn1FOH4SIIF6E9A8Kq+Z5vBplVwvWTuEgaqnipbcBLRFitcq0oaEm+kxB30gkNzXEkdHAiRAApEQoCCNhBK3IQESSGoC2vogUvMhLkSrxRpm5MKoXZ5I2xo8Rnqc/ujbaNbjeHWNtQlCC8s8+EGzVSt4fSOsxlsXI74fOwLHC0VysmN3/EQdWYs0ea1vp+Z100iABEgg1QkwZDfVV5DjJwESiMiT2LsnqsGOMSQLuZnqVdDKlHvQV/OTpbYcPlw7xAH90JsTrWW0H2dl86G87KUXmrJjl+NWvKz8fkO+z0S4buDsB83Rw0350t01u3W+9n9lbhGahpwnWvtMu8InV0015YnnLJm3sGa3rvZW3bGr5vejNR4ep3EETsCL3aGd9+5Xuz078aPkJQ3nxeiQxl293JsESCAVCVCQpuKqccwkQAIVCNTlJdAemuPHmPLubEv27gvuql7IIQPRbxNhpIcPVxWaFU6QwG+WrbLlS98Kirie3Q25/4t++cb3yj9SJ0PI3rjRhixZYaOqrlmrIG0Coa0VXGnJTUA9pNp2yGvmeNBDyqJGXrtKOR8SSE8CFKTpue6cNQl4ioBTi57UEL2J4035cK79qRjVyWtvzGUry3fU3LKJY7Wvpil6vI2bbdd76thVWyr06GbgmIabZ6cFe6JtBk4ZsILH1bGERKcFz27496HzZiMU9vabfNIfYy8tdWTGLFs+nBcUsWNGmHLdlaaod7K4xJGFSx159S3LPc7lF5uux7gDQpIH9jfddi6PP2vJVLRqGX0OvocH+ZU3LdmVX/Mce/Uw3J6Vz79qyW9/koHziJyAoKnOstDKphhtRWjJTUDbKGnPWa+Zhb5DXgvZtbWXklT9HeW1teN8SIAEvE2AgtTb68vZkUBaELBrUaTZyIVTz9x2hNTWZmNGBPtnvvWu5X5ovWCiKadLTVm+quJ+erzLIOSWwiOoojW3jUiXTjWH1NZ2zpreUzHgOJF9yFTx+j/3+mXDZkeeer5MOqIH6Jfv9rsey1NFIkeOOvLoM5YcOOi4ovRr9/lkx26dly1tWhsyfIghL0235bW3A3LL9T758QN+UQa/+WtAJkHIX3GJKY88VnOSrnpFl6xwXBGqLV/GjjTl/TnVh+VGNqOaqCTX6317G9K3lyEd2xsux+QaXeNGk4ObCtnZhvy/r3nrI0JGhiH6c11XREXj6MV37+yWXvqpii87no0ESCB5CHjrr03ycOVISIAEkoRASxQw0rYw9llNpcWHzh1bnh+3Y7fjek4HwUP4yRLbbU+iQ1+7wZGhg40qgnRgPwPbOBCkQaGa6JYz3dHbMw9hx49BdDZvZkghvJPbkac5bLApCxbbrhBvCs+kCqg2OYYUQaR2gmhdviq4QAsWO7J4WVBAaniwaWpoc/D7BYtseeDr+meiekGKTWUsPLB/+mewAtPi5bacd27NgjR4xtT5X7kORMEqDZXu3N6WvJan3dxjX9Om4pQUiXVov9i7t4u99wgSE71T6tns1F38fQdJ9xUzUmexIhhpZocbpOO+VeKc8U6fKDMHd8Tajopg9tyEBEiABJKXAAVp8q4NR0YCJBAhAVPdhFLRkxna9SR6Kqog0+q6bsgr3gjlXfXtZUpRsS37Dthu5d3w8NsDEJ0Tx5UL19DxNPR134HqzxXaprHP6sExjMjOkZcbDJm9/caKXtrMzOD+Ogf1fK7bCLGN4k0a4adCsjrT1hjh7+n36l2uyVScN0WuoXpFx45EoSh8reHM7fMg2qvJy41sRjWdLTav+4FtMHKJ+/Q0pWtnkY6tS6VlU0sysuCmxmVlFxyC4Nwp1rKtYu/fLcX78vGc7wrS2Iwo8UfNmHix+PsMlNMvPZb4wURxBE2mXi9lyxeIc8I7pZ4zJ18aRUI8FAmQAAkkhgAFaWK486wkQAJRJODq0RqOpwVatBJlP3gIN2xyRHNCFy4JSqO2bYLP+pp6OlvDg3jsePA1DWctLql6UA2BVVFakwCuukf9X9EIZL8vslC8wpOOFCE39HcPV98n5sarfQi5Dch6zF2t+WcqCtf6j658Dw3X3YhQ4dKzzkF9zt/ryLjRpkyfUdWrqrmJKloTYepJ7t/HkB547twuIG2an5EmWaaY8HbaxwrE2r9H7B1bxZq7Q87g69MQnfbROsovJ2IicTin2aq1OKc9mOyrd6VquHEVB6yxOYVRw92l2JyNRyUBEiCBmBCgII0JVh6UBEggngRqK8CiobrzEbqq+ZClpRrCinBU5GfqZ1OttBuynQjdHQCPn7aCUYGrAlZfq2wquIYMNKUNIuWOHnOkD7ysiTQdoxZqmTLZlNko3KSmeY3NEaq8bQfEItrVZCJ3Tj+I57ZB+Ck8mKvWVZ2Xu2M9/suAA3EkCh/9+k8Bl1lo18MFptsCZno10Z56Y0Db7cTKWrUU0dBrLbTUtaMj7bMRYpvliL9ZFgRWSTDENn+7WHPU25kvp1SEwuOJuxSxGlJKHteA21t5ec2M2u5cpepktUcUjQRIgARSnAAFaYovIIdPAiRQMcy0Oh5rN9hupdrJE0y3Z6i2HsmCGN2L0FsVoGrzkS+pVWfvvg3qDvpNw3cXokdpZTtUEOxHqiGyKrC0/2i0TY/rj7DKqXol//6oJXfd4nMLEOlYtDfq488F3Eq602fY8vnbfVIW8LlVdqvz+jZk/MOHmK4gD/ELHWPlGlvuvNnnhu5WFvTHCx1pixDjxpqGCmtBoW5d4O3MLZXsZgHJaApgiDe2C5DXuW+XWKu2INR2l5SopxPC0ylG7DYtIgJm5+7iHD9aZds9liFtTUfQyjc1Te+ilHqs75Dr9U3N5eCoSYAESCBEwHBgoW/4TAIkQAKpSEArzM6qobJr5fmoQ0E9o6eKguG7ld9XD57+Uiypw0GkHkjNsVTxGAvTarj33o8T1MN07PqZu/Ak5hD2mz0Dtx61aqqGG4e/Xo9DR2VTFfFaKOhP/6g+vDj8JB3g5R2gBYXg0e3S3pK2LUvdFjU+gLePHRH7wB6xdiHEFh5P9Xa6jyPpGWIbzi0aX7f42d9dtiWP/qHC4R4obCL5liktIUo76cNnn31GpIDfllYR5j1XOGgcv8l5cZ4U/fY7FX844nj+WJyqyZWfEf8QFjWKBVsekwRIIH4E6CGNH2ueiQRIIEYE6hO1pgIyKCKrd/NE6kHUarWxNBvOWS0wpM+Rmjv2aoR0GfRfwZEwhRrpAaO8nRY66gPPZsj0xsDg/ob0RkGhbp0d6ZhzWpo3tcWvVagCpWIfOuAKTmvuZldwFp0VnvWCEjoZnyMmoDmkZQf2Vtn+t61K3XrLB+Ep/d/CLOkJEboX+ddLy+CdzwrI2IyqecNVDpKoF7TRsIXxJfKOTCzmnhmWdxCL4/OYJEACJBAHAhSkcYDMU5AACcSWgIbfes00FLdNDoRk1cjJlJvqEFSx7d0TLVT6majA68jffnJaMrP8YuJOgnUEVWz37RZr/Sax9+wMFhOC8HSKGGKbsIXWQk8FB6o9PWSdZOKegkrPm7LKBJ2GUsLMNm091e4lBF3zfWkkQAIkkOoEKEhTfQU5fhIgAVSk9R6EktMIiexoQpDWw0WaQAxdOgVDbLWabed2tuS20BBb5LOirK5deFzsg3uR07lfMtpNkKK//VDOQITaEKO05CNgwOumodA12T54SHMQsltZjJ5CsbD3Sn1yBF7TMRm2DE8ij6mvW29P5hEbPsTo00iABEggxQlQkKb4AnL4JEACKFAE4eM109orOdnJNavmcMZoFVv1dnbtJG4VWzfEVl3UgTPwqh0Ua88OsRdsEQvVa4vh6bTwkLLyRNucZ+eItXOzOCfRj4eWdATUk2g0Q56uVh+uwfbZpps7WvntX5/KlJ7IKx2AUN4ZEKYqTh9oEVz7t0v9sjWA/FPkmQ7C+2MzLYlnfWqjNTykXmxlA282jQRIgARSnQAFaaqvIMdPAiQgfn+KxA3WY62K0AYy2O+0HjtFaVNteaOPbvB2dsotk9bNy9wQWwPVkSz05lSxYm+A6NyzU0ohOFV4OvCCRmIWKt9mTJgiZ957PZLNuU2cCfjHnIeCUVXzR8OHoR5SLWgUbsuRR6p2c9OAtIDonATBeefxLNmNIkjdsG0OXhsFj2kRvKjTIU4XYfv70QtWbQa+72Laokc8ifdHwLvavAEFkjSMGF2ORH8dVP5wY7TKEecUqn15zIwMtn3x2JJyOiSQlgQq/85OSwicNAmQQGoT0CqyXjMVpHm5sZuVVrvV9iluFdsOtuShYI3WEvKhVK8N76V9cJ9Yu7eJvWyblEGAqvC0D+1r9ICsLeskY+S5FKSNJhmbA2QMHyeBdStqPfh+hOQOg5cz3N6FN1Rf+SW8pEV4PxshvWqhesoTIVBL8FIZeiqdA2H6vydwsaFStdrcMz45ZPllEISoCtYnig35JjyrH+P1AnhjL8oMyLnYvyY7g+M+U5Ihc7C9ymI950CM7yYUWtLqv2q+Dl0gSE+4X3vqPwpSTy0nJ0MC6UrAgx/j0nUpOW8SSF8C2urEa3YCPTs7tGuc59eP3/CDBxjSB1Vsu3YW6dS6VFo2s1DFFl4VKyD2YYTY7t0p9iINsd1dHmJ7pjRmOAMbV0mT6++K2fF54MYR8HXrJacXf1zrQfbC6zm1SUWBGIDQVOF40dnXT0CU7sOjEzyfmxCq+5eiTDdEtwk8n4UQnVlhHlD1uP645Rk33FdP/C20l3keAvPKJgHxGbY8VpzhFlIaXUNO6l+LM928Va0C3B5CWHNZP4RA/tHJJvJETom7r699p2D4eK0zS8E3WWU3BReNQyYBEqhMgIK0MhF+TwIkkHIEtDWKthApjZ2OijuTk2gr069lZIJUCwn172NIj24oKJQXkDbwLjXJ8okJKDZCbDWf096qIbY74OncI8X43ik8Fvc56QkD61dJ03vzEnJunrRuAkbLHKzRyho3VBlaCo+kCs1wGwmx+C5Cb8dnBsNt1UOqorMJLuFnIS4vhbi8Fh5LtU/gydScUjUVp8V4dK50vGnYVkN81ZZlmKKtZqSaG0+al7oMx3s4+7S0PuuV1ZDhq7H/YHhctSKwazltxN64+uw3FZ/WHz8lv129XTo3y5IuzbOkT6tmMrF9a2mW5NXSjKxmYugvP18wXLrirPgdCZAACaQOAQrS1FkrjpQESKAGAvqZDMVcvSVITzqiRYRClt0KYYhom9K7hyFdOjpuQSFE17o9O52SIrEQYmsjxNZaBeGJ8NpTGmKL15LNtJ2I5ptmTp4qZ+a+m2zDS+vxZEy+FMWmTrgVkWsCodLnUfSLrWyXQXAegmj8+okmyBl13PDcjnjWPFEVpiH5qs8bICI7nhWP6h3Nxdch4QitKwcRptsxTKCqt7U7jlWdLUEu6mAI15AYDd+mV1ieq9m8ZY03YfYWnZY2TTLltt6dJL+oRD45dFxe2HFA/jBugLRK5nwAFJ9ybEsMCtLwZefXJEACKUiAgjQFF41DJgESqEhAP6pq/mNifH4Vx9KY7zT0uGN7kXbI72yTa0iL5o78/aelktEUv6pNEyG2EJ0oCmQt34RQ211SgjBbt4ptDENsGzOfmvYtWzpPMi+dRkFaE6AEvd70pnvgwi6TjPEXSNmy+Uj4LIt4JCpU725WJrc0LZNdCOnVCrpdzgpC9Yw+jJDd9+AV1e00kOEKCFi1ygWSjkJ8BvAD3S5MgGrO6mVhAtXd8ex/J7CthunWZUYLCNIT1f+G2FtcKt1bZMng1i3cx9QubeWOOatlW2GxjMjFnaAkNbN5CxGn7rkn6fA5LBIgARL4lAAF6aco+AUJ/P/2zgJAjvJ848+s757GPSEuRImSAEkguAQrJbgUt0Kp0dI/paUObSnFKcUKxaG4uwaLkBB3l8vZ3ur833dOcrmc7d3u3c7u87XL7c5888lv9i777GskYF8Cpog39c2zx4ezzpKsqJvEh3buKMKzQDKQygd5r88Q4elBrLRU3Gy3Ads2wgyOQuSumxBctrDBD9N2vGeWIJ16iB2XntFrNkTgxKRerP/cHyLnmt8iuuhrhD94HZG5H8LcKe/JZjS//Bpq2ZfaTcu8/F1careJsOwk1tLFYiHtWCUiQxJ7OqCW+FSB2lXOVX840ZE2i8DtWatP7bEtgSsuv401Z/+hUvKlQh7BerttKK+AW77wWSYCtKPXDXXhdTukrm5hZdaludt2ISxuGBM7F2BnSLJOSx/t3+5NrL4QfmwkQAIkYHcC1X/z7b4Prp8ESCCLCWjZl7zc9BKj4k2HHl01U64DnTqYKJTSKTl+cU30u2GKFSq+qwimuK/Gl4nw3LkVURGhYRWi4oJX3XxdusHo0CmjxKjuLbrgC+tztHvSQYg0kUCnmgV/ppaAa9R4idH0IPTUA5UTyXPPtFnwHX8m/Gdfabl/Rz58Q8Tp+5J9eUXCi9EPG92rROgoie2sbkdWWUqrX6vr7fG+3ZbZLSJiVXKpW299bT8Z6x9lbis7b0OlYlzDR8uXPFvqu9w6tr4shEKvC3d/txbrxH03GI3hN+MHw1/lCvvp1iIsLirDv5asR4WcO7JPF5w6oAdeW78NC3eWWgL18F6drfjTBidJwQmHxMUamrmMjQRIgARsToB/yWx+A7l8EiAB8WaVT6z5VgKg+j+0ppJRzx7iXthFLD9q7cyNIj8nWplQSBKixIp3wRSRaUosp7l9i2X5DIr4NINS06UZTcusOAfvC7zxXDN626tL+IM34D3iZArSNLlt3sNPQnT+3N2riYQRfuclQB/S3BOmwX3QYfAeNwdmqAKRT99B5JN3JQHSV7uvScKz3mIJ7e3c/aWMWkvVutqQPXKcxI8Ol9+1/yvxiLtwFH3ETVhLx2gpmWNF7Kol1jlweIPx1DFxed0UDOEno/uL265ffCxMfLmtWJIcrcQfJw5Fj4AXKlj371qI74sIdRoGQrE4Xl63FW9t2I7DRIhuEJffn89dgj9MHGIlRlpVGsQLa7bgMHH9XSTW1gF5AYzqoNbM5DZHobhapIOlNrnb4mgkQAJZSICCNAtvOrdMAplIoGOH1O2qsFCsO1XWzmoXW58kFPLIh9V4eTliO7eLtXMjsGYz4iI4QypCi3a0ekHxzRuh1p1MbOH3XkHu9X/PxK3Zck+ukeNQ8WSVdbSeHajbrj60OYeMhGvMJHimzpJfAi+iX32M8EdvVsadRqsrj9YzSAsOqRDt0oB1VIfT8z+WrNJvSHzqixUurBWXX02QNFDchAurrnP27IPodwu0+15ts4jRuIhSFZ7a1B47Xlxzu8vrJcVllYJUXHrPG9LbEqPaR78Ae3rVZvxs9AAMKah0690VieKVddtwvvRbVRLEu5t2oFSsqd39Xty+bg0OkKy9p0vSpC0VYTyyfIMlXHvJHD0ls29P+el1NiS5dcb6m9FZAs7ZSIAESCADCFCQZsBN5BZIgAQgLrutoyBJNtG9uyYUkvi2jkBHyQ6a65eyET6XfEQ1ERMX27hYObFaEgtpKRURneVq7Uwg8UuiK1QLqeOAwxK9zBb9YyuXSDma1ZY7aPCBW22x5kxdpHf2GeJCLtl1JTNzc1psyQLoQ5ujRx/Leuo/72rk/OgmRBd+hfCHVXGnRdubM1yr+6iU07Iy+qivOTp1bdBCqgmNCjwucdOV33VPpSjUmNLVYuXs6vOgTETlrnDUEo3VY3+9vcSKIa0Wo3q8s8SVbg6GrS7r5fqDe3TCJcP7Wq/Hd87HQ8s2iCCVv1NuJw4ScarzzttRgnvETThXMvnetv8Iq++SXWVYIG7AXWTuA7oXWgLZOlHPfxy56ZtwqZ7l8hAJkAAJNEiAgrRBNDxBAiRgJwJaAqU5rZuUwOyqCYU6iJttQRR54ubnDzjhlA+UsZLiyoRCms12yRbL3bZCkrmYpcXNGTrpfeJbN0Gzg2qsWDwJFtekL7CVA4bfegG+E88GBWkrQbbycq9kPK4dy6turOqa2pymIjb0v8cqu0rgtGfKTPhOOAv+c66yysdExDXbijtdu7I5wyW9jyGizSiQ3x/5cqe+5pJ99hAr5RWffIuIuOKqOCwRa+fsvl0xvDDXspIWetx71CSNyRdUGmdau6nAHJBX+UdIy8gMrUqIpH00Ea6OqU3jUtUCKxG7eF1iUDVh0k9G9bfOfbB5Jx5bsRFTuhTiqx3FeE48LvRcV7Gy1tsoSOvFwoMkQAL2I0BBar97xhWTAAnUQ8CUuLEc8Z4rKwNyxVrao5shCYUkrrMwjg6BMFSwugMemOEwYirutm2GuWSjJUBDaunUhEL6yTGdmqwnLut0TTgA4TeeT6eVJWUtKkj9cy6E5+BjoM/Z2p6AR2qPGuJ/biWakulXlJTj99+swM/HDLBiHxNaUXnZHvfRPXk63DOOhHf2aVaG28gnEnf6mcadfp3QsK3p7B4/zcoc3NAYWtalurRLuYhMtYjmiSj1VbnQ7gpFa4Rm9Rj7ilANxmL4TJIdTRLxqMw0udEVI/pZXTSm9OCeEt9Z1TaKW3CPOqLy2dWbLRffmyYMsdx69UuAx0WM/lTcgPvkSA0raf/4djVelzhVdfWt24w8Edrp9veq7iL5mgRIgASaSYCCtJmg2I0ESCDNCZhxnHWyKS5ucTjkw2RMag6a4lqLDbtdbKNq7Wyg9EO67i62djncI/bLSEGqzCue+w98J5+7h5BJ13tRd13rJF7x6mKfvOcqi294paSJlji5WMr4VMcv1r0m3V77pPaoCsXq9uTKTRiUH7CyzWoynmpLoF8SByXaIp++K8mP3rUuc+07Dq6R46ECGFJwN/LFx4h8XBV3KuIuVc2931TE1yxv1vAB2aM+areJXQqgj9pNBeu1Yrn856I1kpl3HYrFpff8ob2RI9dqUiQVpBoXWt3UBbhnlcjUYw+L++5nYhn9nYhRLTOj7fOtu7BDSsr8ed4KGUHKQomALQpHaoSx1anWfzShkWbrZpbdWlD4lARIwLYEKEhte+u4cBIggdoEXEYcobeeQWz1MimTUlT7lK2fa4kNdYPM1BZ64TEpLXIGPIcch/Cb9rQCP96hsr7lLilRcnOZB89Icp1zRZSme/NMPxJGXgEiX35kLXWtuJqWiIXwgK4drEyyevBpseRpYp5Daln8WrIvjS3VhzZnn/5wiVAM/OBHMGrHnX4h9U6T7Jru6N0P0a8/bcmSG71mslhGJ4jr7VZJUqQCVcWotnKJRR0ogl4FZXXTLL0aR6pi9a7Fa8WiGsRNUlZGr6tu5SLK+8t1v9lvMKoz/6qw1fjW+prRobOA3FM819ePx0iABEjADgTq/0tnh5VzjSRAAiRQm4DU43N2l2ya82qVrqh93qbPNUbPkKQsmdwqnvgXfMedZltBWn1vCiSraw8pO+JTk6kNmu9754l19K2alT61ahNO3qcbdoqbaqlky1UX1s/Ecnfz5GE1fZLxJCbxpPrQZhQUwj1phmUlD5x3jSS6WiNJkd5AVOudrltl9WnNf5xdeyG0NvG6qc2ZU+NsVazXbipMfy+Wz9ptVq9O6Jfjt5IjfSuuvTvE8vmrL5damXbVknqcxKuqG7CKVf1SQF12e0lcqz4aao6u3WFIrVg2EiABEsgEAhSkmXAXuQcSIAGLgKN7r4wjYZaWSN3SMqjrYbUlK9M2GXr1aXiP+h58p16Aisfusd32XpWSI3FZ9RaxkK6OOnB6XmW21XTeiIpRyJc41aVctPyJPsZ0zMdHW3YiHDLx4tqtVp1NTfyzPRS2BNU+UqvT0cyER83Zv3ozhF9/tqare+oh8EpMse+EM2GWlVguv1bc6aJvavo094l7ygzEy4phSrKy9myapKi63SrZdLXMjFpWNRGSuvM6pY6MWlR/IG6/10k901EdcuGWsIOVxeX446ShViKk6uurfzp7VGbwrX7NnyRAAiRgZwIUpHa+e1w7CZDAHgSMjpJCNwNbfNUyaIKYTBWkesuCj9yJwIXX2lKQrpRYUo37C0tirRJ5PBVMf5dd75EnI/T6czW/LS9LDc0T+lXWtfQ6HNgl5Yy+kvImf544FN8WleKBpevRuyoO8vIRfa1yJFtEwKqoqk4KVDNYK55EtJ6pPLS5Rk+Ea9QEeKYfIfVlHNb7P/Lx2xJ/Ki7G8abjTq2ERuLCn25NBb0KUH3sJ0mVqtuhPTtjmrhLz99ZYpWhOaJX53rFqPY3OuxOmlR9PX+SAAmQgF0JUJDa9c5x3SRAAnsRMFxuK2Oo3RIX7bWROgeiq5aKID2oztHMeqlWsMj+M5F74z9R+qvLbLU5TWJU3cpEkF62y4uDvTH0E/fddGy5P/uzuMyuqKklqms8fWAPuMRSp80r1rk3Jbvrif26W9a72yV5z03jh1jxjI8s34AvtxWjs9TJfHDZeqiISlWLzvtcXPA/t4Z39h8C17gp8qXFT6QUUr7Eo36JsIpXjTuVBGb1NdeQkQjXSthUX590O6ZJlTQ+tbFm+ALirrunq3Bj/XmOBEiABNKdQGUV6HRfJddHAiRAAs0gYEqmXUfXvUskNOPStO4SX7kE6qKnH8QzuQUf/AecA4bBe+jxtt1mjmTaLZB/WdeK1TQdm++kc+AcNR7h917dY3lusUAaVr7gygyvfSTm8cjenaFW0MGSbKc6uY7W0yyQupzaVkpyntekluZisaCmusXkdyD09IMov/MPKL//rzKdCd8p56PgzmeQ98f74JUYZEevfXYvQ0Sbo3tvxOXLnExrji7dYMYq65pm2t64HxIggewkQAtpdt537poEMpKAWkgdvfoh1swyD3aBYIZD1p48ItRCzzxol2UnvE5z53YE7/kL/GddLu6kzyZ8fXtfUC5+u++HXdgphtFhUv4lHZv32NOsZDjuRmrbdhHrZ3ViHs3+ulPKmoRicSvhznKJazx3sA8Pi6X07MG9MEkyzapIbctmbt+K0MtPVU4pmWY902bBe9gJVmIks3inJGp6R2JHSy0rsP7uZFpz9Owr/syVXwpk2t64HxIggewkIHWVWVk5O289d00CmUlAy77YMTFOU3fDPfFAOHr3R+kvL2qqq+3PBy6/3ioNUvJTSbyTxq12HVJdpl+so32dJub4I1Y90nRbet5fHrCy25aL6M+97mY4OndDWBJKNfUFzuJdZfjXknUSz+jA1SP3gVpTNfnOLZJ9VzPN1m0aczqsICepyY/qztHQa/d++8M5YiycPftJoKWBmJSaiSyZj9jyxUAK6502tJ5UHPeKlds1aHgqhuaYJEACJNAuBChI2wU7JyUBEkgVAbO8FOX/+E2qhm+3cY1OXeA/4zLsOuvQdltDm03s8SL/5ocQWfgFgnf+sc2mzeSJAlffCJfEYRZfNUe8XTUFEyyLorq6ap3O8LsvN3v7Kjg/2VKE84b03usazR57xcffSt3NAvTP80sZme5WH80s++iKjRKr2jYu9YGrfw3DI2VTZF61khpuN6KSHCz23TxLnJpiQbVrC1z2S3Hfz7Pr8rluEiABEtiLAGNI90LCAyRAArYmoAk//AFbb6G+xaubollcBM9h9o2vrG9f9R4TAVF26w1S/uNYeGbNrrcLDzafgGeWcJw8A2X6RU0tp6iKJ+9HyTVnWHHXvnOvguUK2oxhB+YFsEWE57OrN+/V+5lVm3H5iH64RiypW4NhKzmSdvpIBGyZ1DVti+YcoHVAqyy3YiU1vCJMHU64BgyF55Dj4L/0F/CffaXUPz3IdjV+9W+bEci8v29t8b7gHCRAAulLgII0fe8NV0YCJNASAtGolcykJZem+zXRxfMkXi4LLKRyI2JLvxVL943wn3YxnPsMTvdbk7brcw0bA/+Zl6P8jt8J04V7rTO+bTNKfnYeohJ36Z9zIdxTZ+3Vp+4BzcL7s9EDJOnRnmWWdoYiVomYqV0LLVfegZIMSWNPxUZpidfqsjJ1x0v2a9ewsVacbH3jGmJ9N8TlWGsWuw84DIFzrkTg4p/CPeNIOCX+PN2bo0cfmFKSh40ESIAEMokABWkm3U3uhQRIAHC7mm3psRsuFaRa/iJbWvj911Dx/CPI/eUt4l/qz5ZtJ2+fbg9yrv0tQs/9R1xyX2l03ODDt6Pk5+eLW+9g+M68VKymla62jV2kwrR2e27NFozqmGfFjobjcbwhpWOGFeZg7tZi9Mv1Q5MlvbJuK+5avNZKkFT72mQ+dw4dZcWPNjWmuvFqciCjoCM8EqPtPeU8BK78FbxHnQznwGE1RtamxmnL844+A8QV2dOWU3IuEiABEkg5AecN0lI+CycgARIggTYiYGiSFfkgHv3mszaasQ2nqSiHU5KZGCLOYt/Nb8OJ22+qmIhwR6euCFzwY4ReeKz9FmLDmfNvfxKRz99HxSN3NGv1Ws8zJEmOXJI8y3fi2UA0gvj61c26VjPtPrJ8I/rm+PD4ik2W8Jwk9TQP6NYB//h2Nc4d0gt58mVRf3H37eB14wGpYVrocaF7ILn1NJ2DRsA9dCTgTLCIgCFlb+QaQ/52aOko1+DhcIs3gkPLLUl9VrO02OLRLBgp7OQ58DA48jukcAYOTQIkQAJtTyDBv9htv0DOSAIkQAKJEnB265XoJbbpH134peW2G3ruEdusubULDd7/d0so5N/+FIovPam1w2X+9eKSqqyiX31ildFJdMPl996M0AevI3DpdVIXdqglUrUkT2Nt4c5SHNOnCw7r1Rm7pEyMNq1d+s2OYnTxe9DN78U/F63Bdok97SkidIxYUr/ZUYIxnfLw8LKNOHNQcpIducdPBcQtt1VNv9SShEgaharZbF39BsgTD2Ib1yK26BtEly9CUzxaNX8jFzt77J1IqpHuPEUCJEACtiCwp7+NLZbMRZIACZBA4wRMiSN19unfeCebno0u+FJiKgfB0bGzTXfQsmWX3/1ny+qdf9sTMPILWzZIFlzl6NAZ+Xc+g+i8z1F+V8szFKtluuTKUxGTzLSBC66Fe9yURulNkbhRFaPaVIjqQ9sOiSvVTLtavzQoSY1+NW4Qju7TFS+L6+7+ck2FxJgu2Fli9dX/RMTVt6XNkIRmzr4DW3p5w9e5ReCKSHVK/U/39CPgP+9q+JWJWivbUCDq3zTGjzZ8m3iGBEjAvgTosmvfe8eVkwAJNERALETqYhdfs7yhHvY9Lh/YjcKOcO0zBJG5H9h3Hy1YeeSLD+EQ67dfEtFEJUGPuX1LC0bJ3EucA4Yh76Y7ERHrZlBqjSajRT5/zyqT4j36FLgGDpc6pisAyYLc3KYuuoUeidMUQaciVONOt1VE5BHGyf27oyQSw9fbizG9R0csknIyf5q3Evt3K7T6NXeO6n7u8dPkiyixZsrvf6qaIdl6rYc/x0qC5BoxDu4J06BfBCAeg1nUuCW5NetyjZ4o1loR3OJezEYCJEACmUSAgjST7ib3QgIkYBHQD79a6kHrK2Zi0xqK3plHIfS/RzNxe43uKfr1J+I+6bJiSs3SXYitXNJo/2w56T3sBASuuB6hl55AxX/uTOq245vWybiPwz1mIrzHnFr5Zc+WjQnN4Xc5MUFqk24KhvDa+u34/oAelhvvjnAEi3eVWVl5H1+5ET8fMxA+pxN3fbfG6tfJ60FXcfltTvMdN6dtSz5Vx52Ki7B+UeIcLPGrUw+RDL59KhMiSZkmxJJX6sY78xgYeQXNQcE+JEACJGArAowhtdXt4mJJgASaS8Do0kMSmziT+oGwuXOnul98w2qYkuDIe+TJCL38ZKqnS7vxNX5WraOBK/8PruFjUX6b1NfM4ha4/Hpospvyf/4W4fdeTRmJsluutwSX/+wr4BBrbEQSIJkVwWbP11GSGc3s0QkHdhcLv3xppK1c3Hi/E0EaFtfd/xs3WIQpcONXy3FM3y4Y2zEft0pCpHxx/+0jyZJqt2JJouSUMXJE6Gqzao/69uxTu3/Kn1d9CabzuESYqlu9JkiKrVuF2OKquNNdIlBb2iThkpaqYSMBEiCBTCRgmNIycWPcEwmQQJYTkDjSimceQGxFZlrQXGMnwT1yAoqvPj1rb7RLsqmqKDXLy1Dy43OykkPeH+4Vq1mhJcqjknCnrVruz/4E5/AxCL32rAiueS2aNiYfP+75bi30U8iFw/pYAvOLbbvw5sbtyBMruArOiJyc1bMTBuT58f6mnVZJmWni0vuvJesxqkMupkoWX23e7/9A3NjTs16tGQlbMaiQLMYRuUdaYze+ZUNCzFRwe4873fL8SOhCdiYBEiABGxCgy64NbhKXSAIk0AICGkcmBeRjkhEzE1t862Z4ZhyJ+NqViG9Yk4lbbHJPcbGShl5/TixS+8J//tVAqEK+gFjc5HWZ0MEj7ptanzW6fDFKb7oG8U3r23RbYYlTNUt2wXesuMl27VH5xY+ZWEKie5esQ2epTXrW4F6W0NQNbCgPoSwaxwVD+6CP1C5dWlxmJT+68atlcEr5lYjM8ezqLVhXXoHzh/S2YlMdMr9HSrQY6hGRhk3XZcWdBqriTkeOt+JOjQIR07EotNxOU82939TKRG1VluWm+vM8CZAACdiJAC2kdrpbXCsJkEBCBEyJ4Sq/4/cJXWOnzhqvpmUgSq670E7LTslaPYccC/+5PxTr00KU/vrKlMyRLoPm3ng7nP0HI/ivvyH89ovtvqzcX/0dzn6DxFr6NGLLmv+FgAlTSqtUuu7W3sRDUqNUY05Hd8hDb3HVnS9ZeOduK8Zlw/ta3e5evBaDCwKW+68e8B7zfWhyIc2Ea6sm1l9TE0RJLGps5XeILvpavkD7rt56p4GLfwZLwNpqg1wsCZAACTSPAFO1NY8Te5EACdiQgJGTm9ElQqJffiTCZIiVTMWGtyepSw6/+T+UXHOm5b5bcN+L8M25KKnjp8NgvjMuQ8G/X7EskyU/PD0txKhyKb3xKlQ8/QC8R5wMz6HHNxtVfWJULz5zUC/0Dvjw4ZadlsZcWRKUhEj51rgaO7pQsvEeJHGo2jTJjy3FqLX4yuRrhscD19BREhP+PeRc8xv4TrsI6pJv5FXu2SjsBMjfMjYSIAESyFQCtJBm6p3lvkiABF757nIAAD/RSURBVKyERuF3XpTyKB9mLA21DBoeH0p/+8OM3WOiG3NPOgh+EW+ajVeFUviN5xMdIq36e2fNhveksy33zuDDtyPyyTtptb6axfgDyLvuFnHh7Y6wJDyKrU5O2SW1kD6+chPmSGZejSPtl+vDEb27WNN6Dj4W7v2kRqok/cmkZoYl7lTDDnbtQFRK7bjEzddwuTNpi9wLCZAACdQQoCCtQcEnJEACmUggtnENKh78ZyZuzdqTWlECl1yH4h+ehvjGtRm7z5ZsTEuh+L53HuJlJQi/+F8r3rQl47TXNZ7pR8B30jkwcvJQ8eT9tsmorGv2zj4N0W8+R/idl5KCb4GI0iW7yq1aprdPlfIqItaMXHnvX3qd/Vx1EyWisbmsPZooNfYnARKwEQEKUhvdLC6VBEggcQKm1AEM3vZbq0xK4lfb4wrPwUdb9RdLb6SVdK87JlZS7+EnSYbSORKbF0X4g9dQ8ejde3VLpwP+c66Ce8oMyyJW8fSDVg3QdFpfc9bi6NgVOT/9vYjGAoRfEWvphtXNuazJPhVSHsbnrIw28swS6+jYzLOONgmBHUiABEggwwhQkGbYDeV2SIAE6hCIRhB+83lEvv6szonMeWn4AvBf/guU/upSq6RE5uwsuTtR92bvobOlnmMfK4lMxbMPixUvPd4XmkXVd8r5cPYdILUrVyMkFt3wuy8nF0A7jOY/4xIrNjL82XuISGbeZDUjvxCa6Md2iYySBYDjkAAJkEAGEaAgzaCbya2QAAnUTyC2Xtx2H85ct13dtfuAQ+GU8hclv8i8ZD7139WWH3XuM0hK5hwNz0FHSJbTCqtkSvi9VxB+64WWD9qCKz0HHgbPrOOknMcAIB5H+MM3rDUFH7g1aa6uLVhW0i9x9umPwA9vlDhPp8SWPpNwDc76FuQ77jQ4hoxM21Iv9a2Zx0iABEiABOonQEFaPxceJQESyCACpnzYD972G5jB8gzaVZ2tyIf9wGW/RPk/bpQkTh/UObn3y4/DTtxS5tn7RNWRBwqDCLRTFY0nKlx4POi2CoLkGiY6OExMdscw2xeFN8lrcg0fKzUhD4B74gEwOnSCWVZq1YXU+qaRz96Flg5KSpM4UO/+M+GePN2y0GoJD1NiWyOfvmMlKYounmdN4z/7SriGjULJzy9IyrTpNEjgvKvhkbheFf+RT99t8dIcXXvCf9bllsBt8SC8kARIgARIIG0IUJCmza3gQkiABFJFwJTi85G3X0Lki8zNtqvsVFg5pXxEyTVnNIlS0qQgZlZ2WxZz4PelHtxXUFFznTvJwq9m4GY8UUG6VtZ0TU4Y5bLGVfL8PyJQ/SJOf5obRqryqTrEwpz7y78iumwRXAOGinDsbcUeW19kyJcZ8aLtiG/bbFlUzYog4pIBFVJL0mpSA9MhItPw+uGQLLOOzvLo1BUISOkhn09ifHOs6yILvpBand8i+u3XiG9eXy+NggdfR+n1FyctS229k7TTQeeQUci57DqYkTBCEltq7tyW8Ep8p15ouTbTXTdhdLyABEiABNKSQKr+XU/LzXJRJEAC2UnAkJIQrjETM16QqmXUNXYyvMfOQeh/jzZ6szUtjKNKdFb/Q1BXhO6MG7i33I1vow74pO/xYqE83Bu1xv1ILKyPikgsEj2WI+cO9MRwmj9iWTWfEUFZYRrYINfPjzjQz2niMhGXz8vxT+S6fq44TvdHMcCpsrjxplbaEdL/F7khXFfixashF46uWkPjVyZ+Nr5lI+D1WRa88lt/bWU2VXHp7DsIji4iMHv0hkNqQrrGTRGR6ZdHQPpUzSPC1AwGKwVs0Q7ENq1D5KtPEN+6CbG1y0V8btgtXptYWkzKfHhmHo3gv29toqf9TseWzEfxVXPgl8zQgQuulZI8Yon+8uNmb8Q5bLTch16MHW02MXYkARIggfQnUP05JP1XyhWSAAmQQCsIGB27wHKT3LWzFaOk/6Vad1Xj65oSpE3tRO1+fxKX3lEiBi/OCWFdzMDNYkWdKsIzTyyVXcSN9nIRmb1EbBaJrvxDqReDpK+61m4XITo34sQZIlDn+CK4X4TrtcVenCyC9td5IbwVduGZoAs/Emtnc5tfhN8EdxxLRBwf7W3uVYn3c0iynNiShZUXSrkNFZKWmEx8qBZfEXruEaucSSYK0moowTt+h+hHb8IvotQh1miNLTVLdlWfbvCnCnWtu8tGAiRAAiSQOQQqc6dnzn64ExIgARKol4DhcFrF5es9mUEHY8sWi2voOgR+9NtW7WqFCL/NIkIP8kRRKoKzUEToYBGcX4jFU5s+7yMWThWI30ad0FjPtdK/uk0X4XqAPHqKYJ0iInWwy8RxIkhVwM6QMRfKdYm2Ho441teaI9Hrm+rvOfBwxHdshVle2lTXlJ6PSEZaM1QB99RDUjpPew8e+eZTFF/+PRH8G8Va+mO4Rk1odEmegw63yhs12oknSYAESIAEbEcg8U8EttsiF0wCJEACQkBi/NyjJ2YFipCUuXGPn2Y9WrrhzWLljMnF95V7cHfVQ91wQ/LQ9ra43l68y4d35KdaRNX9N14VTml1qPUfT51z+lrHSrRtijvQVwRtqprG4EYXfZOq4RMaNypurN7Djk/oGrt2Lv/br1B2241W7VXv7NPrFZ0a3+ueMhOGu+FEXHbdP9dNAiRAAtlOgII0298B3D8JZBMBiflz9OyX8Ts2S4qtJE7+c69q8V4LxCVXY0P/T1xsaz+qY0gfkdjSa8VlVxMPzRHX3P7NiAdt8WLkwqDo0M/EDXhfl8rk1DRn/yGIzp+bmsETHLX87j/DNXhfK7FSgpfasnvk47dRfPEJVuZh/4U/hnP4mD324ZH6sWwkQAIkQAKZSYCCNDPvK3dFAiRQHwG3G+6xk+o7k3HHIl9+JAl2KqzkMS3Z3EARmCr9XpYkQtVN40gXi6ut2ijVyhmuyuizVSyky1rggls9bmM/Ncuuuvf+TmJUe4vL7kxv6gSpxhhHq+NHG1tUW5yT+NXY+tVSL/WotpgtbeYo++NPEbz/7/BOPxKeo08BXPI7K9Z+LfXCrLppc5u4EBIgARJIKgEK0qTi5GAkQALpTMAQt13XyPFZU78wLK673hlHwLXvuIRvi2bV/bFYP98IOXGhuObq4wbJclsurrbqbHuKWEVvK3PjAjl+k4hFlx5MYtM6qafs9ONSGf8+scaOljjUK2U9qfpHyzlohJUFN75xbRJ30bqhQi8+Du8hx7RuEBteHX77Rey64FhIXToErroBnoOPkURGKcxkZUNGXDIJkAAJZBIB1iHNpLvJvZAACTRJwIxGEHn3FWiJlGxo7kkHwjliHEqu+H6Lt1smIjQilkp1462tO8NyrEjOacbd2sdbPFE7Xug/+0op7zIQpb9puZtzKpZfcM//UH7XH7Pm/VqXYf4/n5Sart2kaK5Yxl27rfV1+/E1CZAACZCAfQnwr7t97x1XTgIk0AIChroASvKabBGkkc/eh7PfEOT88Nco+9v/tYCY1hkV5VmP4lS33a56LgOaa8QYhD96K+12ElnwBTR+svb79RYpx6MW5PqaWpKvT6CcTn1jtObYNVLeZ12s0o6tdW27i5v1mWJNHyslexJtgUt/IRmPy1Au71vv4SfCMWg4LaWJQmR/EiABErABgVR5P9lg61wiCZBA1hII5EAT2GRLC736FNwTD4Bn+hHZsuWE9+no1A2x7+YnfF2qLwjedwvcYybB0bFzzVTquvyfwqD1OMoblTI6sZrXP29HMVq9QE109XiHIO4vCFp1a2+XLM2JNo2d9Uw7BKFXnoQZDqHif4/K86escjiIRRMdjv1JgARIgATSmAAtpGl8c7g0EiCB1BDQ0hHu/WcitnJJaiZIs1HN4iJUvPQk/GddgbDUuESwPM1W2M7L8Qdg5BVIQqMF7byQvac3S4sRk7hWjyT5qXjmIauD9Q93lcXaKT81zZRaI2u3+VIv9qGgG5sk4ZTWfr0wUJkJuUhe/77UAy3ro99Iaz3ZC+RcZ3G71vZriROeIgL3TYkd1mRVB0sSKa0pe7/E8a6WpFZT5flpYvEM1JnPurjOf9SCPkiSY71b53hTLx0dOsN/5uUiQJ+GWbSjpntMSvIEVy+H54gTxeo/iNbSGjJ8QgIkQAL2JkALqb3vH1dPAiTQQgLOnn1hdOzSwqvtd1ls8TxEv5uHvBtus9/iU7xi78xjEFu3UgqpJu5WmuKlWcOHX30GnlnNL3uyUYTjX8Wt9xR/FHcWVGCKuPE+Eqz8/lmTT53gi+KW/JD1KBCXaxWu1W2NXDtXxOz5IlLV2qrC9G+SvOpoueZGKQG0RDIefy3ldxprX0mfVyU78zMVLtwf9OBCsZgm0nJ+/mdEF3+D6Ldf7XWZWV6K0NMPIvzm/6Dx4KbGlrKRAAmQAAnYmgAFqa1vHxdPAiTQYgJOFzxTZrT4cjteGH7zBRg+HwKXXmfH5adsza5xUxBd8GXKxm/twOqqaogV1zVqQrOGeiPskqzEcfSS+M1dYuUcL4J0qYhELaGTKwJ0klg5t8lxFY4OEahazqd2O12E7FCxnA6Rx0B5HClW0gkyRm+xtOpPLcPTWNsiMaQrZcwN8lPjjx8TwavzNadprLOWegm/9UKj3aPzPkfw3r8gtnaF5dLbaGeeJAESIAESSGsCjf+rktZL5+JIgARIoHUEXCP3E7e/xOPbWjdr+15d8cLj8BxwKDyHHd++C0mj2Z29+iG6cG9rXBotEVFxV/U200q6RcTfChGNd0vspj7uk8cAEZM75PgGEYpXSCmdh0UkrpY+6qjbmI1Rfztq243VDbdCMis31g6XuNaLxcJ6mVhGbxKrakdxB36jVj3bhq71zj4drv32R+iFRxvqssdxc1cRQv+9F5H3XrFK9kBqt7KRAAmQAAnYjwBjSO13z7hiEiCBZBGQT+OuiQch8uEbyRox7ccxd2yVBDGPwX/GZYhJPF46JvJpa4hGfmFaxo/W5hB88B/Iv/W/MHLyYJaV1D6113N1w1Ur6BkS61m33VtV0/UiEYzaNNb0u0Ysnio9G5ef1jCN/qeXCFJ1BW6sucdOhu+U8xGSOFkVmom0yBcfIbpqKbxHnAxn155Aln3JlAgr9iUBEiCBdCRAC2k63hWuiQRIoG0IOBySffbAtpkrjWaJSfKeyEdvIuea34gPZ34araztl+IeP01Ki5RK8pztbT95AjPGN29AfPP6ZmVKniRutW9J7Ge1K67aDT+VuE+tJ+sVXRiWn2oZ1dqyXzQRD5rAEvfqqnVqNeb0HSlR01jZF0dhR3Ej/4VYOl9tcaIxc7t80fLIHVK6580qa6nukI0ESIAESMAOBGghtcNd4hpJgARSR0BFaRbVJa0GGfn8fRgiRvN/eyeKf3ha9eGs++mePF2sxOmXXbe+GxGSuErPoccj9NIT9Z2uOabxoydLHOivJGNujgjQItFm3cVKOTIvjEPFnfaPkmX3vCKfZfnctwX1QWsmauCJ1klFmXgfyHnN3qulaXTehlquJNrSDMe1a6021Lep45FP30Fs1RJ4jzwZhmTrNTzepi7heRIgARIggXYmYJjS2nkNnJ4ESIAE2pWAWRFE+d9vaNc1tNfk3uNEjEqCp9JfXtReS2jXefP++rAIvCcRfv3Zdl1Hcycv+PcrKP39j5vlaq3/uO+UuFGfuPDWLdOicaaFclxjQtuz5f7mDksYVzz7cNKX4T7wMLgnz4AhXzrBaOeNJn13HJAESIAEMocAXXYz515yJyRAAi0l4HTCPWVGS6+29XWh5/8Dw+tDznV/sfU+Wrp4R2EnqAuzXVps6bfwHnJss5arEkwTCtUVo3pxVzne3mI058e/l6zPAaRCjOoeI++/htCjdyEucdOIhPUQGwmQAAmQQBoSoCBNw5vCJZEACbQtAcPtEUE6s/XZW9p22UmbLSTWKWfv/ghccX3SxrTDQI4efQC3V5I7LbPDcq01Bv9zJzzTDpV12zs7dM5VN8C5z2CpKfrvlLKPrV8t5WFuRuSrT6y6pSmdjIOTAAmQAAm0iAAFaYuw8SISIIFMI2BI7UP31FmZtq1m7cesKEfF0w/AJZlO/edd06xrMqGT56DDrXhDO+0ltnIJ4pKASddu1xa4+OdwjRyPiifukxqibWO5DL/9IkJPPiAZfHfApLXUrm8drpsESCBDCVCQZuiN5bZIgAQSJFDltputSVDMndsReuJ+eA48FIHzrk4Qnj27qyiKzvvcdosPiyuq97ATbLduXbD/nKuk1NI0VDx5P8yS4jbdQ2z1UpTf9Ser5ixFaZui52QkQAIk0CgBCtJG8fAkCZBANhEwHBJLOi07raR6n+NbN6Hiv/dCk8Fkgyh1dOuJ6OJ5tnuLVzx2Nxw9elsur3ZavL6nPDOPsiyV8W2b22fpkscx/OrTCD3/aGU912jD2X/bZ4GclQRIgASyjwAFafbdc+6YBEigIQJWCZhpMAK5DfXI+ON7iNIf/Cij9+vIL7RVQqPaNyO2cik8Bx9T+1BaPw+cf431RUfFY/civmVDu681tuxbBO8Wa+l389rMbbjdN80FkAAJkECaEqAgTdMbw2WRAAm0EwHDAc+MI9tp8vSY1hKlj90Dl5TMyLnyhvRYVJJX4Zl5tAijTdCSP3ZsFY/fB890e7xPA5ddL++lmUgXMVp9vzV+NfTCfxF65UnrfWDSWlqNhj9JgARIoE0JsA5pm+LmZCRAAnYgYMZiqHjoNsQ3t78lpz15GR06wXfi2YivXWHVvmzPtSR77pxrf2e5bB79u781OPTFgTAO8cYaPN8WJ1bHHLi22Iux7hh+kbtnAqD8O55G8JE7EPng9bZYSovmyP3pn+CQbLoV/71HYkZ3tWiMtrjICOTAc/iJlht0tsaRtwVnzkECJEAC9RGghbQ+KjxGAiSQ1QQMcd31HNy8Wo+ZDEoTHVU8ejeMLj2Qe+PtGbVVZ79BiC74Av8pDNY8Okltzp+J6Ks+NrOdxagC/yDsxBQRowsiTuyKa2XR3S3y6TvwiohK15b7mztgdO+FCilVk85iVPmZ5WUIPfMQwm8+X5mFN96+X0Sk6z3lukiABEggFQQoSFNBlWOSAAnYm4BhwCEfpJ3Dx9h7H0lYvVleagkKSBbivL88CHh9SRi1/YcwCgoRXbIAbtF41Q+Vey6YNa/1H8i4PJ6ocOHSXT6cW+TDP8o8qDAr118kAvGnYr08R46fJ4/fl3qwrUo0rhDLpr5+Sq69SK69XB5fiqh8RwTmVcU+XCGv3wi5Kgdq4L86jQrSY31RDHXF8ZFcX7sF/30rnP2HwNGzb+3D7f9ckoPl3fwglKclRuU9ZJcWnTfXqlsaW71cYktDdlk210kCJEACtiZAQWrr28fFkwAJpIqAuu15D6GV1OIrmUlDTz8oWXg3ouDWx0Soj00V9jYZ1zVsNCBu2c1xyf6fCEq1Tqrl9M/5IZSISvxQRKI2lyiuE0Qs3iLH9VFgmHgo6LbOqWj9Rq6LmAauzw3hcG8UfxSBqseuygnjB+IO/EDQhXCVuLUuqvOfxVGHJeoGixid5olZ4rROF8TXLJfMtUfXPdxur52D90X+P59AfNN6VDz7sCh6lfT2amZxETRGN/Luy9b6TRvuwV7EuVoSIIFsJ0BBmu3vAO6fBEigYQJeP9wzjmr4fJadCb/xPCJffozc6/4CzxHp6yra1G1xTz0EmmW1Oe1VsWIeLGLSLZbTiIjHCe44PquyVOaKAJ0kQlGtol+JeHSIQF0XU7tgZesqLsCn+iPo7TQlFjVqWVvPD0QwwBnHGBlHXYSXiiW1oabWURWiOuJk+blc5thcx2234umH4E2TbLveY+cg9/q/SW3XuQi/9UJD27LNcX2vl993C+LrV4sbL62ltrlxXCgJkIDtCDT8L6HttsIFkwAJkEByCRguFzyTp8PRuVtyB7bxaJG5HyD04n/hP/Ny5Fz+S1vuRC2kkW8+b3LtattTsamutXeXe6zHxyISfVWac4OIT3W9fVisoqtFLKqxs6HIQ0/VNbUNol7pHxQLan1Nq2PqXJtkDrW6PieWWhXAKlJrt8jc96HZYd0TD6p9uM2f+y+5Dr5TzkfopccR+ezdNp8/VROaO7ZabseRD9+snEK8BdhIgARIgASSS6DxAJbkzsXRSIAESMCWBDyHHS8fSu+y5dpTsejYUqnheP/f4DvqFOT96V8ovfGHMEuLUzFVSsZ0dOoi9SfnNzm2fmObJyLwHLFyDhS32brtJRGqoyXh0EVi9dQ2P+LAdyJMk9HUtVdFbB+xpla30WJVVUF6krgJ126RLz+S5EYnIPL5e7UPt81ztxt5N90DQ2KLg//+O8yiHW0zbxvPEvn0XWjtV++RJ8OQ94/h9rTxCjgdCZAACWQugeT8y5m5fLgzEiABEoCjR1+4Rk8giVoENAOvlhwxt29F/t/+k1ZxjLWWuddTI68ARk4+YksX7nWuvgPqkvu4WCerExkFxUD2UZWV0iuCMSwWTrWZqTvvF1WuvPWNk+gxFZ4zZe5T/NGah8adbhYX31V13HyDd/0RrhFj29yS75k1GwV3PIP49s0IPviPjBWj1fcuvmUDgg/cKhZgEf6ahZfW0mo0/EkCJEACrSJAQdoqfLyYBEggGwhYrrvy4dsI5GbDdhPaY0jiSsPvvQL/D36EwFW/Tuja9ujskZjg2JoVzZ76DBGEfhGemilX3XN/sMtfYwU9VOJCV4hLrWbY1fPbG3C/bfZkVR1V/H4u4naqZ09LaEDWofVI36/jtquXxdatgmf6kYlO1eL+OZf9Ev6zLkf4nZehscXZ1LTua/CRu0SIb5FMvHvWhs0mDtwrCZAACSSLgGFKS9ZgHIcESIAEMpWAacYRX/4dKp76d4u3+N8VG/GoPERXSAIcA/keF2b17ITTBvaQY3rUvs0o7ATvEScBHg/K//GbZicNausda9Kd2OplYtG7LaGpVRpqmZdCSURUN9Zlix4X197qONGEBk5SZ89Bh8N3+iUovuj4JI1Y/zDOgcMkdvh6K2419MqTGW8VrZ/C7qOeGUfDNX4q9EsrNhIgARIggZYRoIW0Zdx4FQmQQJYRMAzJotpvIFz7jmvVzqd2K8Qzs/bDEwePxS/GDMSzqzdjUVFZq8ZMh4vNou2oeOxuxKS2Z95v7oD/3KvSYVl7rUFrdka//Xqv400dULnRuR4xqtdpNt32FKO6hvB7r8KQ+p+uMZP0ZUpa4KKfIPemuxFdvti615kaL5oIvPA7LyL05L8Ql9hZM1oZS5zI9exLAiRAAiSgNcDZSIAESIAEmkVAE5logiNNbmKWlzbrmoY6qYV0QJ4fXocDfmdl5tSnVm2C1ynZWsVv5ZOtRZjRoyMO7dkZH23eif+IZXVHKILhhTm4ZFhfdPZVJlW5/sulmNa1EG9s2I5tFRHMlGvOGNQTMRnkp59/t9f0vxs/BH6XE9/sKMEDS9dhY3kIvXN8uGR4X1lPYK/+iR6IfPIOYiJYvMLJ9fdHEbz7z4gu/DLRYVLW35FfiKiI5kxskflzhfsJiH7zWVK35x63P3xnXwEjbqJCEhfFt25K6vh2Hyy2ejk0jlf/NrhHTZRPVvxoZfd7yvWTAAm0LQH+1Wxb3pyNBEjA5gQMp5SCOfxEhJ55sEU72VQexsvrtiIiH+6/2VGMGeKy21+EqTYVlG9v3F4jRFUoriwJ4h/frsYFw/pgZGEuHlu5CX+ctwJ/njTMumZ1aRDq6nLu4N4iNB34/TcrMLFLgSVcrx3V3+qj/3lw6QZJvmNaYnRDeQX+Mn8lrhjRFyM75OHV9dvw4LINuGHcoJr+rXmigiX4yJ1wTz5I6lL+VWqXfoKyP/20NUMm5Vr3pOmIl+yCWVyUlPHSbZDgfTej4L6XoImbTNlnMlrgqhvgnjITkXdfliy+7ydjyIwdI/zas1bCLNeg4eKTTwe0jL3R3BgJkEDSCfAvZtKRckASIIGMJiCC1LnPYLjGTm7RNsukZuSKknKokHSKlfQzsYR+Ko/qdkTvLrhYLKBqHR2UH7AE6r4iGg/u0Qld/V6cJdbPpcWV11dfc46I0X075FoWzvGd8y3rp8ak9gr4rMdqEbWrSstx1b77WJe8tn47xnTMsyyjReEIJsg1S3aVoSzaUBXN6pkS+xn59D2U33szHHn5KLjneXiPOTWxAZLcWwVybPG8JI+aPsOZZaWIbVgDz4zWJzfyHjsHBfe+AGeX7gje8yeK0WbcZtfYSXD1H0wx2gxW7EICJEACtQnQQlqbBp+TAAmQQDMIGJK4x3uouO6Kq565c1szrtjdZaCIzMuG96s58KG446r1cnKXQuuY27FncqMtFWEMKdjtSlvocYsw9Yg1NYx+uZWW1ZrB5IlP3H+DtYSluuTe+d1a/GrsIOSIq662LcGQCNQg7li81nqt/9F17QiFpc/eY9Z0asETLQ9T8ezDcA4aAa/ULfUccgwqHr4DkS8+bMForbvEOXA4Qv97tHWDpPnVoVeegu+4ObLPx1q0Uvekg+CbcxEMfw5Crz8ryakWtWicbLvI6NAZnlnHA1Xu99m2f+6XBEiABFpDgIK0NfR4LQmQQNYSMMW66Tv+TATv/2urGKhb7kYRiJF4vN5xCiUT77qyippzwVgM28W1VzP0NtXCMuaf5q/Aqf17WNbW6v4FImond/Hi7MG9qg+l/Gds2bcIykMFT+CHv67MdCs1HWNLv0353NUTOAo6WkmXql9n4s/wa8/A//0fwDV8DKKLvmn2Fp2D94X/zMvg2mcQwu+/Lm7WHzX7WnaUL4JmnwaDYpRvBRIgARJoEQG67LYIGy8iARLIdgKGCFJHpy5iFZndIhSadEitn/9duVHiOHPhbiDmbHznAssFV0VpXK55XdxtO3jd2Kce62jdhdzz3Tr0FLfdo/p02ePUlK4FVhKktVVCV8f9eEtR0l1295i06kXks/cQvON3UsNxK/J+e6fEmP4djt67Y13ruyYZx5x9ZA5JNhNbuzIZw6X1GCpEPZLcqDnN0aM3cn5xi2RGvl1ia3ei/PbfUYw2B1ytPp5DpUZxp261jvApCZAACZBAIgSa/oo9kdHYlwRIgASyiYBYRNwSNxZbt0JiE+c3a+cfbS7CCZsrs84WirAcK7GcF47s0+C1E0WQavzoVZ8sQkGVVVSTFTUkYKsH2i7ut69LsiKfZO09453dlrI/Thoq8aP5+P6A7rhu7hLkup3YKdl7ewS8GC1raYtmhsQi/N4riIoVzj1lBvJvflAyw34uiZBuE8vpipQswX3gYYit2DvrcEoma+dBg2J5zr/tCZTf+QcgtNu6XntZzn6D4DvrMrj3HY/I3A9Q/s/ftTpzdO3xs+W5c+hIq9SOJjtjIwESIAESaBkBw5TWskt5FQmQAAmQgEVA6g+W33cLUlmXMRSLY5ckIOoi8aOasCgZTbPuaikZLTsTqIovTca4iY5h5IiFWDLgusdPkxqXixB6+sGkW+lyb7pLBPDHqHjq34kuz5b986XkTujFxxESF97azb3fVHhPOBOuISOtOF6N5U3l+7b23Jn23JASQv7zfwSNKWcjARIgARJoOQEK0paz45UkQAIkUElAvteLb16H4AO3kUgrCBheH1wiSt0TDoC5fQtCbzyH0EtPtGLE3Zfm3/08ym/9NaILvth9MIOfeWefDs/0I1FyzRnWLj1HnATv4SfB0aGjVYYn+tXHtIi28v77zroczu69AXHfZyMBEiABEmg5AQrSlrPjlSRAAiRQQ8AUK2l0/hfQpDJsrSQg7o/u0RPEFXIyjEAOol9/huDTDyC+flXLBhbBUPjYuyg681AgHGrZGDa8quChNxD+6E14xCpqVgQtq3N03uc23En6Ldlz2PFwj5ogccnu9FscV0QCJEACNiPAoAeb3TAulwRIID0JGPLB1LXvOMS3bBAB9Wl6LtIuq4pFEfnqE+vh7L2P1Hydgvy/PIDYxrWIfPhGwm63nkOORXzjuqwRo5Z1dNosy5XUJdlzQy8/YZUoasvbHxWvgeJw1Ip71nq71U1LEnkkrlmPLZN6ulrlaEDe7rJG1f3S+adrjNQb3Xc/itF0vklcGwmQgK0IUJDa6nZxsSRAAulMwPB44ZXspubWTYitX53OS7XN2mLrVknSqFXQ+pquEWPg3n+mFQMZX7McYRGnGifZVNO4ycjCr5rqZuvzarHzHHiElG0ZjPi2zYjM/xzht/4niYuuaFMxqiLzqVWb8G1RqcVTRenwwlz8ZHR/aA3dM9+bh+vHDrQSa729cbuVdMtOgtTRs5+4Pp9IN11b/7Zw8SRAAulGgII03e4I10MCJGBvAmL58Z5wFoL3/BlmAxlO7b3Bdlq9ukTPm2s9jIJCuIaOsoSB/9QLEVNx+sk7CP3v0XoX5+w70BKv9Z6068FAQL78OEnibafB1XcAYiXFiM2fi3IRoWZxUc2uzB3b4Bq5n8TOVmZ2rjmRgidayujGr5fh8F6dcfXIfeCRUkZFkojrxbVboUm5tP3rwFHtmkCrNds2cvLgO+lsitHWQOS1JEACJFAPAQrSeqDwEAmQAAm0ioDEPfrmXIjgv29t1TC8uH4C5q4iRD5733oYHTrBNXgEvDOOgv+MSxFX6/Syby0BGvn8fWsAzYYaW7Kg/sFsdNR9wCy49xMBKvt1dO1hWY6jUm4o8v6rYhXdUu9OomIZdo3bv00EaZm445aIRXRGj46WGNUFqVX09IE9a9Z28/yVuGBoH/TO8dUc0yd/luN6nZY5qm6//mqZde2g/IBVi/eBpeuwsTxkXXvJ8L41rr7Xf7kUcwb0wHubdmBFSRDXihju6vdWD5O0n75TzoPht5d7cdI2z4FIgARIIIUEKEhTCJdDkwAJZCcBQ6ykRpfu8J18LiqevD87IbTRrs2d22vEKSQZkrP/YLj6D4H/B9cicMWvLGuhlb13+BhEJKGRuWtnG62sddMY+R3gHjfFip919hsIZ7eeiMva46uXWYmK1GXZrKi/xmjtmSOfvStuzjPg6NzNcuWtfS7Zz/PdLgwrzMFfF6zC7L7dMKQggG51hOHq0gqE4pXW0trzD8jz49V122oE6eJdZVhTGkR/Ob6hvAJ/EcF6xYi+GNkhD69Kfd0Hl23ADeMGWUOsln5/X7gKh4pldlhBLnwpKGHkO/EsGJ260Tpa+6bxOQmQAAkkiQAFaZJAchgSIAES2IOAwwnHPoPgmXUcwm88v8cpvkgRAUmGFFu2yHroDEZePjzTJLOuJJzynnQuAhf/HGZZCeI7toqb7wrEVi2RuqeLEVs8L0ULat6wThHLzn6D4B4yCo5efeAQ4WPkFSAmCbJMiZ+NfPkRQqtFgJZXxmU2b9TdvWJrVsI1eqLElL6w+2CKnv18zEA8vWoz7vpuDUojMXTxeXCqWC8P6dmp0Rln9uiEx1ZstFx81ar69obtOFiu0eRHr63fLjGneZZlVF2AJ3TOxxMrN0EtsjlV4vPaUf0xOD+n0TlaetIzazacA4YBUq+XjQRIgARIIPkEKEiTz5QjkgAJkIBFwBCLnWbkNIt3WlY8YmlbAqbEVTo6dZWsx5Kxt8p919Gjt7i79rRcXrVOp/ekc+DwBSyxZ5aKWC3eITVlN4o1cRPiO7chvmEt4kVyTJ5DxGxCLZArdT87y6MTHN16iZWyKwyxVDrFem4UyrHcfED6QIRmvGi7zCsZmr9bID9fk2zNG4F4LKHpGuqsVlK11reFIFUr6TmDe1mPLcEQPt5ahNsXrUHfXF+jgrGj142xHfPxrrjdHtW7Cz7cshM3TxIRKE3HWSVW0DsWr63Z4kBx490RCosg9VvHXIaj5lwyn7gnHii/wxMpRpMJlWORAAmQQB0CFKR1gPAlCZAACSSTgJaD8Rx0BFQcRRd9k8yhOVYzCBgFHaTky24ho+VfrBIwta5Vl17tp26yDvlpCUgVrpLEBvKwzns8YnJ1wLTqmJoiFsXtVBP1xKOAvLSsZ2IV15+GWtL0uTQzXCHJrcRVWMSs9ZCEQ9YaxCqr7sPx7VtlHBkjhS0uGZ91buew0Sm1BpsCQpzVa3aicZzquvv+pp1YVFTWqCDVi2b16oRHl29EF6/Hig+tdvctEIvp5C5enC1Cty2bc9gYeKYfIfeUH5XakjvnIgESyD4C/CubffecOyYBEmhrAvKB1nvsHJjBcnETXdrWs2ftfCouDbFAxjasaZSBZkM21SIpj0ZtknIfDbe7Uny65J9Ppxv6hYM2MxYBJBMwxI0U8tzUn/o6TVp08Tdwj52cUkG6VEq+PCvuunMkiVEfSVqkWXfn7SjBSkk0dOGwpt1pJ0hCozvEmvqIiFJ1861uU7oWSAzpKsuFV8eNy7ifbt2F0eLGW+2yW903WT+dkrnYN/u0ZA3HcUiABEiABBohQEHaCByeIgESIIGkEdByMCefg4pH7tzDYpe08TnQXgScQ/ZFTNxgLWvmXmdbcEAsmWYda6YaR+3QIh+8AffVN4oluKNYZnekZMmdxO02HDdx9aeLrCy7pghHTTB0uSQjGtKM+E6NF9VY0tc3bIOK0Oo2Rlx5vz+gO66buwS5bid2hiLoEfBagrS6TzJ/Orr3lt/Vc5M5JMciARIgARJohIAh/2DY5d/TRrbBUyRAAiRgDwJqjat4+PaUZzy1B43UrtIrmVFNif0Mv/1SaieyyeheKVsS37QekfdeTemK1TK6S8q/OMR7VxMUJaupS/AOEaN+cYkOpCCTrq7TKOwI/1mXw5C4YohAZiMBEiABEkg9gdRkAUj9ujkDCZAACdiTgMcL36kXWDGL9tyAfVatCY1i61bZZ8EpXmn08w/glmy7qW5q6dQkRckUo7pmjU/tJPGlKROjYj32n35pZa1RitFUv004PgmQAAnUEKAgrUHBJyRAAiSQegJWjVKJa/SffolVliT1M2bvDBpDqlly2SoJxFYusZIyOQcNJ5I6BDTW2H/6xTByJOtxrcRMdbrxJQmQAAmQQAoIUJCmACqHJAESIIFGCYj1xZCSH5Y1Rst+sCWdgHPoKMRLdlnZZZM+uI0HjC1dCNfYKTbeQfKXbolRcdOFluGhZTT5gDkiCZAACTRBgIK0CUA8TQIkQAIpIaCiVCx4/nOuFEvp7gQuKZkrCwd19R+C+PpVWbjzxrcclvhRZ79BYgmUkjZslb+DKkbzC0WLMmaUbwkSIAESaA8CFKTtQZ1zkgAJkEAVActSeuZlVvZTQkkeAaNbT8TWrkregJkyUiwmbsyr4Ro1IVN21OJ9aMZhy3WeYrTFDHkhCZAACSSDAAVpMihyDBIgARJoKQG1lKr77pmXwtG5e0tH4XV1CDhEbMSbqD9a55KseRn56hNx252cNfutb6OOzt3kd06+CKKbbn14eIwESIAE2pQABWmb4uZkJEACJFAPARWlEkvqk6Qqjp596unAQ4kQ0DqS6n4Z37opkcuypm9s8Txrr+q6m41N3x8+TSqmCYzkfcJGAiRAAiTQvgQoSNuXP2cnARIggUoCKkq9PvhPu0Ri/AaSSisIuAaPQGwTs+s2hjC24js4s9BK6hwwBL7TLrJ+1xrjw3MkQAIkQAJtR4CCtO1YcyYSIAESaJyAWmucTqlTeiGcg/dtvC/PNkjA6LUPYqtXNHieJ4DIB6/DLZmI9UuQbGmu4WPgO/k8GG4PLaPZctO5TxIgAVsQoCC1xW3iIkmABLKNgG/26XDvt3+2bTsp+3V2YPxoUyDN8lLENq7NmuRG7gkHwHv0KRSiTb0xeJ4ESIAE2oEABWk7QOeUJEACJNAkAbGUeg4+Bu7pRzbZlR1qEfD5ASmjE2NCo1pQ6n8a/eazrKhJ6pl5dOXvkdNVPwgeJQESIAESaFcCFKTtip+TkwAJkEAjBOQDtHviAfAdf0YjnXiqNgHX0NEwNZlRNFL7MJ/XQyA673MYHi+cvfrVczYzDnnld8c1fioMF8VoZtxR7oIESCATCVCQZuJd5Z5IgAQyhoAhotQpSXr8Z18Bwx/ImH2laiPOfQZJ/dGVqRo+48aNrV6akcmNNGu1/5wr4Rw0Avo7xEYCJEACJJC+BChI0/fecGUkQAIkUEnA4YSjWy/4z/+RlIXJXGtWMm63o0t3xNatSsZQWTFG5OO34B4x1kqmlSkb1tJJ/vOuhqNrTxGjzkzZFvdBAiRAAhlLgII0Y28tN0YCJJBRBLQsjNRN9J95adYkomnJ/TPyCxFn/Giz0cV3bENMXJzdoyY0+5p07ugaPUF+Ry5njdF0vklcGwmQAAnUIUBBWgcIX5IACZBAuhPwzJoNz6Gz032Zbb4+Z/8hQEUQZnFRm89t5wljC77MCLddz8HHwnMIfy/s/F7k2kmABLKTAAVpdt537poESMDGBAyPB67RE+E/SyxBefk23klyl+4cOAyx9auTO2gWjBaZ+wEceYXiFt7Tlrs1cvPhO+MyuMZNliRNUmOUjQRIgARIwFYEKEhtdbu4WBIgARKoJGC43HB07w3/D35sJT0iFwmD7NEHsTXLiaIFBGJrV8A9ZlILrmzfS5wDhiFwwY8ltrqPZNJ1t+9iODsJkAAJkECLCFCQtggbLyIBEiCBNCCgcaViEfLNPsOqWZoGK2rXJRiFHdslfjQUi2NbRRgx02z2/neFo/h0a8OuxfN3lmBjeajZ47W2Y+STd+AaOb61w7Tp9Vpf1HfiWYD8Dhjyu8BGAiRAAiRgTwLMhW7P+8ZVkwAJkMBuApJJ1L3fVDh790fFcw/B3NWw0Nl9UWY9c3ToDIiFLL55Q5tt7OMtRXhk+QYUi7j0Oh0oCkcwqkMeThvYE4PyGy/Rs768Av9ash6TuxTWu95nV2/GFDnXI+Ct93yyD8Y3rUO8aCdc+45DdOFXyR4+qeMZHTrBe+wcOCWLLphFN6lsORgJkAAJtAcBCtL2oM45SYAESCDZBOSDuaO7lIYR98Xwa88gOm9usmdI6/GcQ0bCbEMx+saG7ZYY/dHIfTBSRKi20kgUr63fjuXF5U0K0nSEGV30tcRh7p/WgtQ1bgq8s44DDHHwolU0Hd9GXBMJkAAJJEyAgjRhZLyABEiABNKUgLrwOl3ygX02nP2HIfzqUzAl62w2NGef/oi2UfxoJB7Hv5euw6XD+taIUWWc63bhxH261eDWfg8u24D3N+2AQ+7NzB4dLeupsx4hpS6/ty9ag2+LStHZ54G6AU/pUjNUmzyxapJOmg6jUxeY27e2yZzNnUTjQz3HngrnPpJJWeryspEACZAACWQOAcaQZs695E5IgARIoJKAW7LwDh4O/8U/g3P4mKyg4hARFW+jDLsbJLazPBrHxC4FjbJ9YuUmLBKBed2Ygbh2VH98vq0Yz6/ZUu81f5q/Eh5x+/3DxKH4ifTNcbWP6IqtXwn36PRKbuQcNhr+y34B58DhzKJb77uHB0mABEjA3gRoIbX3/ePqSYAESKB+AmIpVWup76jvITZsDEIvP5G51lLJZ2MUaEKjtin5otbMXLfE7Toqv9ONSjKjh5atr7kPEzsXWJbTN8Wt9/RBPTGkIMc6d3ivznh53Vac0G+3FVVPrCwJYumuMvz7oNEo8FT+s9zJ1z4ZY6NSAsZ73OkIv/1izX7a64nhD8B7xMlwDhCrKDPottdt4LwkQAIkkHICtJCmHDEnIAESIIF2JCAf5J2DR8B/iVhLJWFNJjbn8LGIb98CM9Q2WWm7+j0okURG6larTfO7ekSc6uOzrbuwvKTcyri7IxTBkPxKMar9hhQEsFXEbN22ORhCrxxfjRite74tX8dWLYMZLINz6Mi2nHavuVxSgiZw8c8rSxpRjO7FhwdIgARIIJMIUJBm0t3kXkiABEigPgIaW+rxwXfk9+A77SIYmpE2g5pL4gpj61a22Y66+73wi0vtB5t3WnNqTOjpkllXH70DvppjOWJFXSfZdKvb+rJQvaKzT64PKl7jCZSNqR4zFT9jSxbAPXZKKoZuckxH5+7wnXGJFQet5VyYuKhJZOxAAiRAArYnQEFq+1vIDZAACZBAMwlIJl5nnwEIXPhjuA86vJkXpX83R9ceiK9d1WYLVVfds8QV935JbKS1RE35nza1mJZFYzXrmCCuu+9s3CHxpjHr+HuS3GhCp73jTnuJiA2IwH1L+qooXV0axLqy3UK2ZsA2ehJ+7xU4evUTN+j6S9KkahlaV9R/3g/h7LWPuOgyoihVnDkuCZAACaQbAf7FT7c7wvWQAAmQQBsQcE88CO5RExF683nEFs9rgxlTN4XGj8Y2rEndBPWMfHjvzlYSovuWrMNfF6yyLJ8lkRhGFObWZN49e1AvaLKiH3ywAKYITY0lnTOwRz2jAd/v3x13SJbdf8l4aoH1tmd9TdHXceHpkvdH5IPX611vMg+6ho6CRzJDw++nRTSZYDkWCZAACdiEgCH/SFZ+tWuTBXOZJEACJEACySNghkOIS/3O8DsvWSIkeSO3zUhqyfOdcCbKb/tt20xYzyxqAS2VRyevxOvWU9KlKByROFOjXnfd2sMFY2JJFVGrZV/au2ldV++hs1H+z5tSthRnz35wTz/cqp+rLuVsJEACJEAC2UmAgjQ77zt3TQIkQAK7Cej3kiKGoksXWsLULC7afS7Nn3nE9djo3A2hpx9M85Xab3mBi3+K0OvPIbZ8cVIXb+TmwTPjaCtxkmaCZpxoUvFyMBIgARKwHQG67NrulnHBJEACJJBkAmrVk5g9l9R71Efk8/ehcYQqUtO9OXvvg+iShem+TFuuT4Woe+zk5AlSeZ+5JU7UM2Ga8NBaPZqfmI0ESIAESCDbCVCQZvs7gPsnARIggWoCVQLBJYLBJVlWI5+8hcjHb1efTc+fhZ3aPH40PUEkf1Wh919D4IrrYQRyYZaXtmoC9/4z4Z5yMAxNVmQwn2KrYPJiEiABEsgwAhSkGXZDuR0SIAESaC0Bw+GUwppOeKYdCvek6Yh89KZlNW3tuMm+XoWSPjQBD1sKCFQEYW5YC9foCfLlxDstmsAzZQZck2fAcEtcbHsmamrR6nkRCZAACZBAWxCgIG0LypyDBEiABOxIQASE4fTDfeDhYt2aWSlMv/wQVVVO2n1HzmGjEN+0vt3XkckLiHzzGdxTD05YkLonHijXzaq0iLKESya/Rbg3EiABEmg1AQrSViPkACRAAiSQ2QQMtxuQh3v6EVb90sgXHyL62fswK8rbdeOuvoOk/ujydl1Dpk8eXfCFdc+dfQcitqZx1obHC5dYRN37TRWvXHHLVasoGwmQAAmQAAk0QYCCtAlAPE0CJEACJFBJwHK7lKceccH07H8wVKyEP3kb5vat7YLI6NINsfmft8vc2TRpfNVSOMdMalCQGh27wD15utS1nQAzHherurh8s5EACZAACZBAMwlQkDYTFLuRAAmQAAlUEVDrlzTXvvvBOXwMzI3rEJbkR7EVyS0PUjVbgz8cBR0kfnRtg+d5IjkENIbYf+FPEHn1aWjd2urm7D8E7mmHwNmjL+DQjLlSbZVitBoPf5IACZAACTSTAAVpM0GxGwmQAAmQQB0CkpVX60gaUnrFe/zpQHkZInM/QOSbT4FIpE7n5L50DhyOeEkxzGBZcgfmaHsRiBftQGzTOjhHjkds4RdwjZkM93gp3RLIkRhRcedmIwESIAESIIFWEDBMaa24npeSAAmQAAmQwG4C0ShMsZbFFn2NyFefIr5+9e5zSXzmOXQ2DI8PoRf/m8RROVRDBNwTDoTnkGMkoZV8ZND6tExU1BAqHicBEiABEkiQAC2kCQJjdxIgARIggUYIiFBR503XCHHnHTwKCAUR+fpTROfPhVmyq5ELEzvl6N4H0W8+Sewi9k6IgFFQKCVfJsEtllH4/JViVGvVUowmxJGdSYAESIAEGidAQdo4H54lARIgARJoCQF15/VIllV5eA6YBY+UDolL8iMVkdFF88TVtnUZeh0dOiCWIutrS7abKdcYvoB8kTACbnHLdfToLQZRk3GhmXJzuQ8SIAESSFMCFKRpemO4LBIgARLIGAKGJEFyOuDo2gPug4+DZ9bxiG9ci4hYTWNLFsIsL01oq47O3SR/jrPdsvsmtFgbdDb8IkIHjZDY0Ilw9uwHMxpBdUZltXazkQAJkAAJkEAqCTCGNJV0OTYJkAAJkEDDBCTeFJKVNSbiNCoxp7Hli2Hu3N5w/6oz7ikz4ew3EBX/vbfJvuxQPwEt1eIaOExcq8fB0a3nHiK0/it4lARIgARIgARSQ4CCNDVcOSoJkAAJkEAiBGIiTiX6VK2lsRXfIbpkPmKrlgFS17Ju851yvtTEXIGI1EBlayYBMXU6BwyTx1BLiBo5eYJbLdesGdpMguxGAiRAAiSQIgJ02U0RWA5LAiRAAiSQAAEpH6PNyCsQ19FJcI3cT2pbivV0y0bEli4U6+kixDetr+zToTPiH79lPed/GiAgMbxOKcfjEBdcjQl1ajyoWKQtV1xNTMRGAiRAAiRAAmlCgBbSNLkRXAYJkAAJkEADBCSxjoopOBwwt20SF9NeqHjqAYlDXQOzLLH40wZmsP9htxvOPv3h6DMQLnFndnTvBUgsKJxSJ1S4sZEACZAACZBAuhKgIE3XO8N1kQAJkAAJ1E9A3HjNcFisfW6YFeWIbViD+NoVYkHdgLgI1tZm8K1/0vQ5qkmIHJ27i/WzLxy9+sLZvTeM3HwgIgJUmIAW0PS5WVwJCZAACZBAkwQoSJtExA4kQAIkQAJpTyAWsxLzwCWCLBKSDLzbENu8DvHNG2Du2Ir4rh1SB7U47bdRe4EqMo38DnB06WYlHnKI8HR06CRC3FuzV4MxoLWR8TkJkAAJkIANCVCQ2vCmcckkQAIkQALNJCBuq5a7r8slOXwciIuLr1lcVClSpS5qvHgnUFqCeFBcf/VcK+ujNnNV0HqfyMmBI5ALiPB0FHaCo2NnEZxdRIQWAHrclIRO8Zi43craq2Jsmzs++5EACZAACZCAXQhQkNrlTnGdJEACJEACySWgGXwlu6+pP8XN1ZAkSpp11hQLK0LyCIulNRK23INNeW5ZXkMVclyOaXymNolvhfwfDkkUJFlrDbHQGl6PuM565eGB4ZGHPDe88trrk9fyU/qYKjTFqmtdXHUdXW0VKBsJkAAJkEC2EaAgzbY7zv2SAAmQAAmQAAmQAAmQAAmQQJoQYOq9NLkRXAYJkAAJkAAJkAAJkAAJkAAJZBsBCtJsu+PcLwmQAAmQAAmQAAmQAAmQAAmkCQEK0jS5EVwGCZAACZAACZAACZAACZAACWQbAQrSbLvj3C8JkAAJkAAJkAAJkAAJkAAJpAkBCtI0uRFcBgmQAAmQAAmQAAmQAAmQAAlkGwEK0my749wvCZAACZAACZAACZAACZAACaQJAQrSNLkRXAYJkAAJkAAJkAAJkAAJkAAJZBsBCtJsu+PcLwmQAAmQAAmQAAmQAAmQAAmkCQEK0jS5EVwGCZAACZAACZAACZAACZAACWQbAQrSbLvj3C8JkAAJkAAJkAAJkAAJkAAJpAkBCtI0uRFcBgmQAAmQAAmQAAmQAAmQAAlkGwEK0my749wvCZAACZAACZAACZAACZAACaQJAQrSNLkRXAYJkAAJkAAJkAAJkAAJkAAJZBsBCtJsu+PcLwmQAAmQAAmQAAmQAAmQAAmkCQEK0jS5EVwGCZAACZAACZAACZAACZAACWQbAQrSbLvj3C8JkAAJkAAJkAAJkAAJkAAJpAkBCtI0uRFcBgmQAAmQAAmQAAmQAAmQAAlkGwEK0my749wvCZAACZAACZAACZAACZAACaQJAQrSNLkRXAYJkAAJkAAJkAAJkAAJkAAJZBuB/wf/TBjwU13sbwAAAABJRU5ErkJggg==", + "text/html": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# df de ejemplo funciona para dejar huecos entre leafs\n", + "\n", + "# PROBAR HACER UN GROUPBY VALORIZANDO LOS NOT PLAYED A PARTIR DE DF DE JUGADORES\n", + "# INCLUIR LOS NOT PLAYED A DF TEAMSCORES\n", + "\n", + "#df_sample = pd.DataFrame({\n", + "# 'vendors': ['A','A','C','D',None,'E','F','G','H',None],\n", + "# 'sectors': ['Tech','Tech', 'Finance','Finance','Other','Tech','Tech', 'Finance','Finance','Other'],\n", + "# 'regions': ['North','North','North','North','North','South','South','South','South','South'],\n", + "# 'sales': [1,3,2,4,1,2,2,1,4,1]})\n", + "\n", + "df_sample = pd.DataFrame({\n", + " 'medals': ['Gold','Silver','Bronze','Bronze',None,'Gold','Silver','Bronze','Bronze',None],\n", + " 'teams': ['Team A','Team B', 'Team C','Team D','Not played','Team A','Team B', 'Team C','Team D','Not played'],\n", + " 'events': ['A','A','A','A','A','B','B','B','B','B'],\n", + " 'scores': [1,3,2,4,1,2,2,1,4,1]})\n", + "\n", + "px.sunburst(\n", + " df_sample,\n", + " path = ['events', 'teams', 'medals'],\n", + " values = 'scores',\n", + " #maxdepth = 2\n", + ").update_layout(margin = dict(t=20, l=0, r=0, b=20))" + ] + }, + { + "cell_type": "code", + "execution_count": 53, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "RangeIndex: 10 entries, 0 to 9\n", + "Data columns (total 4 columns):\n", + " # Column Non-Null Count Dtype \n", + "--- ------ -------------- ----- \n", + " 0 medals 8 non-null object\n", + " 1 teams 10 non-null object\n", + " 2 events 10 non-null object\n", + " 3 scores 10 non-null int64 \n", + "dtypes: int64(1), object(3)\n", + "memory usage: 448.0+ bytes\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
medalsteamseventsscores
0GoldTeam AA1
1SilverTeam BA3
2BronzeTeam CA2
3BronzeTeam DA4
4NoneNot playedA1
5GoldTeam AB2
6SilverTeam BB2
7BronzeTeam CB1
8BronzeTeam DB4
9NoneNot playedB1
\n", + "
" + ], + "text/plain": [ + " medals teams events scores\n", + "0 Gold Team A A 1\n", + "1 Silver Team B A 3\n", + "2 Bronze Team C A 2\n", + "3 Bronze Team D A 4\n", + "4 None Not played A 1\n", + "5 Gold Team A B 2\n", + "6 Silver Team B B 2\n", + "7 Bronze Team C B 1\n", + "8 Bronze Team D B 4\n", + "9 None Not played B 1" + ] + }, + "execution_count": 53, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df_sample.info()\n", + "df_sample" + ] + }, + { + "cell_type": "code", + "execution_count": 132, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "20" + ] + }, + "execution_count": 132, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "len(px.sunburst(\n", + " df_sample,\n", + " path = ['events', 'teams', 'medals'],\n", + " values = 'scores').to_dict()['data'][0]['parents'])#['ids','labels','parents','values']#.keys()" + ] + }, + { + "cell_type": "code", + "execution_count": 168, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
event_gameteam_playedmedalscore
0ADog Patrolbronze7
1ADog Patrolgold18
2ADog Patrolsilver8
3AGo Magikarpbronze1
4ANot played9
5APower Birdsbronze2
6APower Birdsgold6
7APower Birdssilver2
8AThunderCatsbronze6
9AThunderCatsgold9
10AThunderCatssilver18
11BDog Patrolbronze9
12BDog Patrolgold15
13BDog Patrolsilver12
14BGo Magikarpbronze2
15BNot played8
16BPower Birdsbronze2
17BPower Birdsgold6
18BPower Birdssilver4
19BThunderCatsbronze9
20BThunderCatsgold3
21BThunderCatssilver8
\n", + "
" + ], + "text/plain": [ + " event_game team_played medal score\n", + "0 A Dog Patrol bronze 7\n", + "1 A Dog Patrol gold 18\n", + "2 A Dog Patrol silver 8\n", + "3 A Go Magikarp bronze 1\n", + "4 A Not played 9\n", + "5 A Power Birds bronze 2\n", + "6 A Power Birds gold 6\n", + "7 A Power Birds silver 2\n", + "8 A ThunderCats bronze 6\n", + "9 A ThunderCats gold 9\n", + "10 A ThunderCats silver 18\n", + "11 B Dog Patrol bronze 9\n", + "12 B Dog Patrol gold 15\n", + "13 B Dog Patrol silver 12\n", + "14 B Go Magikarp bronze 2\n", + "15 B Not played 8\n", + "16 B Power Birds bronze 2\n", + "17 B Power Birds gold 6\n", + "18 B Power Birds silver 4\n", + "19 B ThunderCats bronze 9\n", + "20 B ThunderCats gold 3\n", + "21 B ThunderCats silver 8" + ] + }, + "execution_count": 168, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# players df transform for sunburst\n", + "\n", + "df_f = df_eventplayers.copy()\n", + "# replace not played scores for counting purposes\n", + "df_f['score'].replace([0], [1], inplace=True)\n", + "\n", + "#----------------------- add 'Not played' in the team columns\n", + "# it is bc we need to separate the players that didn't contributed to team scores in other group\n", + "aux_team = []\n", + "# for each medal='', it will replace team by 'Not played'\n", + "for i in range(len(df_f['team'])):\n", + " if df_f['medal'].iat[i] == 'not played':\n", + " aux_team.append('Not played')\n", + " else:\n", + " aux_team.append(df_f['team'].iat[i])\n", + "# add a new column\n", + "df_f['team_played'] = pd.Series(aux_team)\n", + "\n", + "#----------------------- group by with simple sum (medal and 'Not played' frequecies)\n", + "df_f_gb = df_f.groupby(['event_game', 'team_played', 'medal']).sum('score').reset_index()\n", + "\n", + "# REVISAR PARA GO: NONE DEBE SER '' SI SE QUIERE HACER FACET\n", + "# replace medals='not played' by None to transform into leaves\n", + "#df_f_gb['medal'].replace(['not played'], [None], inplace=True)\n", + "df_f_gb['medal'].replace(['not played'], [''], inplace=True)\n", + "\n", + "df_f_gb" + ] + }, + { + "cell_type": "code", + "execution_count": 176, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array(['A/Not played/', 'B/Not played/', 'A/Dog Patrol/bronze',\n", + " 'B/Dog Patrol/bronze', 'A/Go Magikarp/bronze',\n", + " 'B/Go Magikarp/bronze', 'A/Power Birds/bronze',\n", + " 'B/Power Birds/bronze', 'A/ThunderCats/bronze',\n", + " 'B/ThunderCats/bronze', 'A/Dog Patrol/gold', 'B/Dog Patrol/gold',\n", + " 'A/Power Birds/gold', 'B/Power Birds/gold', 'A/ThunderCats/gold',\n", + " 'B/ThunderCats/gold', 'A/Dog Patrol/silver', 'B/Dog Patrol/silver',\n", + " 'A/Power Birds/silver', 'B/Power Birds/silver',\n", + " 'A/ThunderCats/silver', 'B/ThunderCats/silver', 'A/Dog Patrol',\n", + " 'B/Dog Patrol', 'A/Go Magikarp', 'B/Go Magikarp', 'A/Not played',\n", + " 'B/Not played', 'A/Power Birds', 'B/Power Birds', 'A/ThunderCats',\n", + " 'B/ThunderCats', 'A', 'B'], dtype=object)" + ] + }, + "execution_count": 176, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# understanding how data is build for barpolar\n", + "# create a dict to understand how to build the data for a barpolar/icicle/treemap\n", + "px.sunburst(\n", + " df_f_gb,\n", + " path = ['event_game', 'team_played', 'medal'],\n", + " values = 'score').to_dict()['data'][0]['ids']\n", + "\n", + "#len(px.sunburst(df_f_gb, path=['event_game', 'team_played', 'medal'],values = 'score').to_dict()['data'][0]['ids'])" + ] + }, + { + "cell_type": "code", + "execution_count": 178, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
event_gameteam_playedmedalscore
4ANot played9
15BNot played8
0ADog Patrolbronze7
3AGo Magikarpbronze1
5APower Birdsbronze2
8AThunderCatsbronze6
11BDog Patrolbronze9
14BGo Magikarpbronze2
16BPower Birdsbronze2
19BThunderCatsbronze9
1ADog Patrolgold18
6APower Birdsgold6
9AThunderCatsgold9
12BDog Patrolgold15
17BPower Birdsgold6
20BThunderCatsgold3
2ADog Patrolsilver8
7APower Birdssilver2
10AThunderCatssilver18
13BDog Patrolsilver12
18BPower Birdssilver4
21BThunderCatssilver8
\n", + "
" + ], + "text/plain": [ + " event_game team_played medal score\n", + "4 A Not played 9\n", + "15 B Not played 8\n", + "0 A Dog Patrol bronze 7\n", + "3 A Go Magikarp bronze 1\n", + "5 A Power Birds bronze 2\n", + "8 A ThunderCats bronze 6\n", + "11 B Dog Patrol bronze 9\n", + "14 B Go Magikarp bronze 2\n", + "16 B Power Birds bronze 2\n", + "19 B ThunderCats bronze 9\n", + "1 A Dog Patrol gold 18\n", + "6 A Power Birds gold 6\n", + "9 A ThunderCats gold 9\n", + "12 B Dog Patrol gold 15\n", + "17 B Power Birds gold 6\n", + "20 B ThunderCats gold 3\n", + "2 A Dog Patrol silver 8\n", + "7 A Power Birds silver 2\n", + "10 A ThunderCats silver 18\n", + "13 B Dog Patrol silver 12\n", + "18 B Power Birds silver 4\n", + "21 B ThunderCats silver 8" + ] + }, + "execution_count": 178, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# orden por el que crea las etiquetas para cada nivel\n", + "# leaf, parent(event/team) en ascending=True\n", + "# el id de aquellas etiquetas que no llegan al ultimo nivel se repiten\n", + "df_f_gb.sort_values(by=['medal','event_game', 'team_played'], ascending=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 175, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Index(['event_game', 'team_played', 'medal', 'score'], dtype='object')\n", + "22\n" + ] + }, + { + "data": { + "text/plain": [ + "(2,\n", + " ['A', 'B'],\n", + " 10,\n", + " ['A/Dog Patrol',\n", + " 'A/Go Magikarp',\n", + " 'A/Not played',\n", + " 'A/Power Birds',\n", + " 'A/ThunderCats',\n", + " 'B/Dog Patrol',\n", + " 'B/Go Magikarp',\n", + " 'B/Not played',\n", + " 'B/Power Birds',\n", + " 'B/ThunderCats'],\n", + " 24,\n", + " ['A/Dog Patrol/bronze',\n", + " 'A/Dog Patrol/gold',\n", + " 'A/Dog Patrol/silver',\n", + " 'A/Go Magikarp/bronze',\n", + " 'A/Go Magikarp/gold',\n", + " 'A/Go Magikarp/silver',\n", + " 'A/Power Birds/bronze',\n", + " 'A/Power Birds/gold',\n", + " 'A/Power Birds/silver',\n", + " 'A/ThunderCats/bronze',\n", + " 'A/ThunderCats/gold',\n", + " 'A/ThunderCats/silver',\n", + " 'B/Dog Patrol/bronze',\n", + " 'B/Dog Patrol/gold',\n", + " 'B/Dog Patrol/silver',\n", + " 'B/Go Magikarp/bronze',\n", + " 'B/Go Magikarp/gold',\n", + " 'B/Go Magikarp/silver',\n", + " 'B/Power Birds/bronze',\n", + " 'B/Power Birds/gold',\n", + " 'B/Power Birds/silver',\n", + " 'B/ThunderCats/bronze',\n", + " 'B/ThunderCats/gold',\n", + " 'B/ThunderCats/silver'])" + ] + }, + "execution_count": 175, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "print(df_f_gb.columns)\n", + "print(len(df_f_gb))\n", + "\n", + "#----- build id list/array\n", + "# lv 0\n", + "id_l = df_f_gb['event_game'].unique().tolist()\n", + "# lv 1\n", + "id_lv1 = []\n", + "for id in id_l:\n", + " for team in df_f_gb['team_played'].unique():\n", + " id_lv1.append(f\"{id}/{team}\")\n", + "# lv 2\n", + "id_lv2 = []\n", + "for id in id_l:\n", + " for team in df_f_gb[df_f_gb['team_played']!='Not played']['team_played'].unique():\n", + " for medal in df_f_gb[df_f_gb['medal']!='']['medal'].unique():\n", + " id_lv2.append(f\"{id}/{team}/{medal}\")\n", + " \n", + "#show\n", + "len(id_l),id_l, len(id_lv1), id_lv1, len(id_lv2), id_lv2" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Participation by players" + ] + }, + { + "cell_type": "code", + "execution_count": 71, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
player_idevent_dateevent_gamescoremedalteam
0107112024-08-15A1bronzeThunderCats
1107112024-08-15B1bronzeThunderCats
2114172024-08-15A2silverThunderCats
\n", + "
" + ], + "text/plain": [ + " player_id event_date event_game score medal team\n", + "0 10711 2024-08-15 A 1 bronze ThunderCats\n", + "1 10711 2024-08-15 B 1 bronze ThunderCats\n", + "2 11417 2024-08-15 A 2 silver ThunderCats" + ] + }, + "execution_count": 71, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df_eventplayers.head(3)" + ] + }, + { + "cell_type": "code", + "execution_count": 79, + "metadata": {}, + "outputs": [], + "source": [ + "# crea barpolar en subplots, con jugadores individuales\n", + "\n", + "def players_score_figure(df_data, sorted=True, ascending=True,hole=0.50, h=400, w=900, theme_colors=theme_colors):\n", + "\n", + " \"\"\"\n", + " Creates figure with barpolar subplots to represent individual players scores in each event in a given date.\n", + "\n", + " **Parameters**\n", + " df_data: dataframe containing desagregate players, teams (factions, color, etc.), scores and score description\n", + " (medal, cups, etc.)\n", + " sorted: sorts players by scores (default: True).\n", + " ascending: way player scores are sorted, only takes effect if sorted is set to True (default: True).\n", + " hole: set empty center from 0 to 1 (default: 0.5)\n", + " h: figure height (default: 400)\n", + " w: figure width (defautl: 900)\n", + " theme_colors: set colors in HEX code (default: color_theme palette in app, max. 5 colors)\n", + " \"\"\"\n", + "\n", + " # copy to keep integrity\n", + " df=df_data.copy()\n", + " # sort values before building the figure (if ascending=True)\n", + " df.sort_values(['team', 'score'], ascending=ascending, inplace=sorted)\n", + "\n", + " # team list\n", + " team_names = [i for i in df['team'].unique()]\n", + " # event list\n", + " events = [i for i in df['event_game'].unique()]\n", + " # other config: color theme\n", + " color_map = dict(zip(team_names, theme_colors[:len(team_names)]))\n", + " \n", + " #---------------------------------------- create Figure\n", + " fig_polar = make_subplots(\n", + " rows = 1, cols = len(events),\n", + " column_titles = [f\"Event: {e}\" for e in events],\n", + " specs = [[{'type':'polar'}]*len(df['event_game'].unique())]\n", + " )\n", + " #----------------------- config unified legend\n", + " sp_legendgroup = [True]\n", + " sp_legendgroup.extend([False for e in range(len(events[1:]))])\n", + " sp_legendgroup\n", + " \n", + " #----------------------- traces: bar polar by event and team\n", + " for e in range(len(events)):\n", + " for t in range(len(team_names)):\n", + " fig_polar.add_trace(go.Barpolar(\n", + " name = \"Team \"+ team_names[t],\n", + " r = list(df[df['event_game']==events[e]][df['team']==team_names[t]]['score']),\n", + " theta = list(df[df['event_game']==events[e]][df['team']==team_names[t]]['player_id']),\n", + " marker_color = theme_colors[t],\n", + " legendgroup = team_names[t],\n", + " showlegend = sp_legendgroup[e],\n", + " customdata = df[df['event_game']==events[e]][df['team']==team_names[t]][['event_date', 'medal']],\n", + " hovertemplate = \"\" \"Team \"+ team_names[t] +\"\"\n", + " \"Player %{theta}
\"+\n", + " \"
Date: %{customdata[0]}
\"+\n", + " \"Medal: %{customdata[1]}
\"+\n", + " \"Score: %{r} points\"\n", + " ),row=1, col=e+1)\n", + "\n", + " #----------------------- bar polar config\n", + " fig_polar.update_polars(\n", + " patch = dict(hole = hole,\n", + " radialaxis = dict(showticklabels=False,\n", + " visible = False),\n", + " angularaxis= dict(showticklabels=False,\n", + " visible = False,\n", + " categoryorder = 'array',\n", + " categoryarray = team_names)))\n", + "\n", + " #----------------------- figure layout\n", + " fig_polar.update_layout(\n", + " legend = dict(font_size = 10,\n", + " orientation = 'h',\n", + " yanchor = 'bottom'\n", + " ),\n", + " hoverlabel = dict(bordercolor = 'white',\n", + " font_size = 8,\n", + " font_color = 'black',\n", + " ),\n", + " template = 'plotly_dark',\n", + " height = h, width = w,\n", + " #margin = dict(t=20, l=10, r=10, b=20),\n", + " title = f\"Players participation during {', '.join(events[:-1])} and {events[-1]} events\"\n", + " )\n", + " \n", + " return fig_polar" + ] + }, + { + "cell_type": "code", + "execution_count": 80, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.plotly.v1+json": { + "config": { + "plotlyServerURL": "https://plot.ly" + }, + "data": [ + { + "customdata": [ + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ] + ], + "hovertemplate": "Team Dog PatrolPlayer %{theta}

Date: %{customdata[0]}
Medal: %{customdata[1]}
Score: %{r} points", + "legendgroup": "Dog Patrol", + "marker": { + "color": "rgb(240,205,204)" + }, + "name": "Team Dog Patrol", + "r": [ + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 2, + 2, + 2, + 2, + 3, + 3, + 3, + 3, + 3, + 3 + ], + "showlegend": true, + "subplot": "polar", + "theta": [ + "49813", + "87726", + "80442", + "66490", + "16806", + "91986", + "14340", + "20361", + "98849", + "50323", + "67125", + "69386", + "62285", + "56114", + "40335", + "18256", + "24128", + "34137", + "53269", + "39232", + "86339", + "47987", + "53184", + "10910" + ], + "type": "barpolar" + }, + { + "customdata": [ + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "bronze" + ] + ], + "hovertemplate": "Team Go MagikarpPlayer %{theta}

Date: %{customdata[0]}
Medal: %{customdata[1]}
Score: %{r} points", + "legendgroup": "Go Magikarp", + "marker": { + "color": "rgb(173,172,194)" + }, + "name": "Team Go Magikarp", + "r": [ + 0, + 1 + ], + "showlegend": true, + "subplot": "polar", + "theta": [ + "85870", + "77310" + ], + "type": "barpolar" + }, + { + "customdata": [ + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ] + ], + "hovertemplate": "Team Power BirdsPlayer %{theta}

Date: %{customdata[0]}
Medal: %{customdata[1]}
Score: %{r} points", + "legendgroup": "Power Birds", + "marker": { + "color": "rgb(251,230,197)" + }, + "name": "Team Power Birds", + "r": [ + 0, + 1, + 1, + 2, + 3, + 3 + ], + "showlegend": true, + "subplot": "polar", + "theta": [ + "37587", + "91590", + "35674", + "59077", + "21128", + "40783" + ], + "type": "barpolar" + }, + { + "customdata": [ + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ] + ], + "hovertemplate": "Team ThunderCatsPlayer %{theta}

Date: %{customdata[0]}
Medal: %{customdata[1]}
Score: %{r} points", + "legendgroup": "ThunderCats", + "marker": { + "color": "rgb(160,185,205)" + }, + "name": "Team ThunderCats", + "r": [ + 1, + 1, + 1, + 1, + 1, + 1, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 2, + 3, + 3, + 3 + ], + "showlegend": true, + "subplot": "polar", + "theta": [ + "10711", + "67791", + "95249", + "47806", + "20256", + "18715", + "11417", + "88890", + "31802", + "22628", + "25282", + "50348", + "52432", + "33831", + "83622", + "72017", + "78778", + "81499" + ], + "type": "barpolar" + }, + { + "customdata": [ + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ] + ], + "hovertemplate": "Team Dog PatrolPlayer %{theta}

Date: %{customdata[0]}
Medal: %{customdata[1]}
Score: %{r} points", + "legendgroup": "Dog Patrol", + "marker": { + "color": "rgb(240,205,204)" + }, + "name": "Team Dog Patrol", + "r": [ + 0, + 0, + 0, + 0, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 2, + 2, + 2, + 2, + 2, + 2, + 3, + 3, + 3, + 3, + 3 + ], + "showlegend": false, + "subplot": "polar2", + "theta": [ + "87726", + "50323", + "18256", + "69386", + "20361", + "40335", + "49813", + "98849", + "67125", + "62285", + "53184", + "10910", + "14340", + "53269", + "66490", + "16806", + "39232", + "91986", + "34137", + "80442", + "86339", + "47987", + "24128", + "56114" + ], + "type": "barpolar" + }, + { + "customdata": [ + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ] + ], + "hovertemplate": "Team Go MagikarpPlayer %{theta}

Date: %{customdata[0]}
Medal: %{customdata[1]}
Score: %{r} points", + "legendgroup": "Go Magikarp", + "marker": { + "color": "rgb(173,172,194)" + }, + "name": "Team Go Magikarp", + "r": [ + 1, + 1 + ], + "showlegend": false, + "subplot": "polar2", + "theta": [ + "85870", + "77310" + ], + "type": "barpolar" + }, + { + "customdata": [ + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "gold" + ], + [ + "2024-08-15", + "gold" + ] + ], + "hovertemplate": "Team Power BirdsPlayer %{theta}

Date: %{customdata[0]}
Medal: %{customdata[1]}
Score: %{r} points", + "legendgroup": "Power Birds", + "marker": { + "color": "rgb(251,230,197)" + }, + "name": "Team Power Birds", + "r": [ + 1, + 1, + 2, + 2, + 3, + 3 + ], + "showlegend": false, + "subplot": "polar2", + "theta": [ + "40783", + "35674", + "21128", + "59077", + "37587", + "91590" + ], + "type": "barpolar" + }, + { + "customdata": [ + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "not played" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "bronze" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "silver" + ], + [ + "2024-08-15", + "gold" + ] + ], + "hovertemplate": "Team ThunderCatsPlayer %{theta}

Date: %{customdata[0]}
Medal: %{customdata[1]}
Score: %{r} points", + "legendgroup": "ThunderCats", + "marker": { + "color": "rgb(160,185,205)" + }, + "name": "Team ThunderCats", + "r": [ + 0, + 0, + 0, + 0, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 2, + 2, + 2, + 2, + 3 + ], + "showlegend": false, + "subplot": "polar2", + "theta": [ + "88890", + "72017", + "67791", + "50348", + "10711", + "11417", + "78778", + "22628", + "25282", + "52432", + "33831", + "81499", + "83622", + "31802", + "95249", + "20256", + "18715", + "47806" + ], + "type": "barpolar" + } + ], + "layout": { + "annotations": [ + { + "font": { + "size": 16 + }, + "showarrow": false, + "text": "Event: A", + "x": 0.225, + "xanchor": "center", + "xref": "paper", + "y": 1, + "yanchor": "bottom", + "yref": "paper" + }, + { + "font": { + "size": 16 + }, + "showarrow": false, + "text": "Event: B", + "x": 0.775, + "xanchor": "center", + "xref": "paper", + "y": 1, + "yanchor": "bottom", + "yref": "paper" + } + ], + "height": 600, + "hoverlabel": { + "bordercolor": "white", + "font": { + "color": "black", + "size": 8 + } + }, + "legend": { + "font": { + "size": 10 + }, + "orientation": "h", + "yanchor": "bottom" + }, + "polar": { + "angularaxis": { + "categoryarray": [ + "Dog Patrol", + "Go Magikarp", + "Power Birds", + "ThunderCats" + ], + "categoryorder": "array", + "showticklabels": false, + "type": "category", + "visible": false + }, + "domain": { + "x": [ + 0, + 0.45 + ], + "y": [ + 0, + 1 + ] + }, + "hole": 0.4, + "radialaxis": { + "autorange": true, + "range": [ + 0, + 3.1578947368421053 + ], + "showticklabels": false, + "type": "linear", + "visible": false + } + }, + "polar2": { + "angularaxis": { + "categoryarray": [ + "Dog Patrol", + "Go Magikarp", + "Power Birds", + "ThunderCats" + ], + "categoryorder": "array", + "rotation": -42.09217857002834, + "showticklabels": false, + "type": "category", + "visible": false + }, + "domain": { + "x": [ + 0.55, + 1 + ], + "y": [ + 0, + 1 + ] + }, + "hole": 0.4, + "radialaxis": { + "autorange": true, + "range": [ + 0, + 3.1578947368421053 + ], + "showticklabels": false, + "type": "linear", + "visible": false + } + }, "template": { "data": { "bar": [ @@ -5886,297 +11735,16 @@ } }, "title": { - "text": "Event Performance scores, by teams, date 2024-08-15" - }, - "width": 900, - "xaxis": { - "anchor": "y", - "autorange": true, - "categoryarray": [ - "gold", - "silver", - "bronze" - ], - "categoryorder": "array", - "domain": [ - 0, - 0.22444444444444445 - ], - "matches": "x4", - "range": [ - 2.5, - 5.5 - ], - "showspikes": false, - "showticklabels": false, - "type": "category" - }, - "xaxis2": { - "anchor": "y3", - "autorange": true, - "categoryarray": [ - "gold", - "silver", - "bronze" - ], - "categoryorder": "array", - "domain": [ - 0.35777777777777775, - 0.5822222222222222 - ], - "matches": "x5", - "range": [ - 2.3733520504491565, - 5.6266479495508435 - ], - "showspikes": false, - "showticklabels": false, - "type": "category" - }, - "xaxis3": { - "anchor": "y5", - "autorange": true, - "categoryarray": [ - "gold", - "silver", - "bronze" - ], - "categoryorder": "array", - "domain": [ - 0.7155555555555555, - 0.94 - ], - "matches": "x6", - "range": [ - 2.5, - 5.5 - ], - "showspikes": false, - "showticklabels": false, - "type": "category" - }, - "xaxis4": { - "anchor": "y7", - "autorange": true, - "categoryarray": [ - "gold", - "silver", - "bronze" - ], - "categoryorder": "array", - "domain": [ - 0, - 0.22444444444444445 - ], - "range": [ - 2.5, - 5.5 - ], - "showspikes": false, - "showticklabels": false, - "type": "category" - }, - "xaxis5": { - "anchor": "y9", - "autorange": true, - "categoryarray": [ - "gold", - "silver", - "bronze" - ], - "categoryorder": "array", - "domain": [ - 0.35777777777777775, - 0.5822222222222222 - ], - "range": [ - 2.3733520504491565, - 5.6266479495508435 - ], - "showspikes": false, - "showticklabels": false, - "type": "category" - }, - "xaxis6": { - "anchor": "y11", - "autorange": true, - "categoryarray": [ - "gold", - "silver", - "bronze" - ], - "categoryorder": "array", - "domain": [ - 0.7155555555555555, - 0.94 - ], - "range": [ - 2.5, - 5.5 - ], - "showspikes": false, - "showticklabels": false, - "type": "category" - }, - "yaxis": { - "anchor": "x", - "autorange": true, - "domain": [ - 0.575, - 1 - ], - "range": [ - 0, - 40 - ], - "type": "linear" - }, - "yaxis10": { - "anchor": "x5", - "autorange": true, - "overlaying": "y9", - "range": [ - -11.903207776427688, - 133.74320777642768 - ], - "side": "right", - "type": "linear" - }, - "yaxis11": { - "anchor": "x6", - "autorange": true, - "domain": [ - 0, - 0.425 - ], - "matches": "y7", - "range": [ - 0, - 42.10526315789474 - ], - "showticklabels": false, - "type": "linear" - }, - "yaxis12": { - "anchor": "x6", - "autorange": true, - "overlaying": "y11", - "range": [ - 17.108961988304095, - 104.7310380116959 - ], - "side": "right", - "type": "linear" - }, - "yaxis2": { - "anchor": "x", - "autorange": true, - "overlaying": "y", - "range": [ - -11.246872746007202, - 151.6868727460072 - ], - "side": "right", - "type": "linear" - }, - "yaxis3": { - "anchor": "x2", - "autorange": true, - "domain": [ - 0.575, - 1 - ], - "matches": "y", - "range": [ - 0, - 40 - ], - "showticklabels": false, - "type": "linear" - }, - "yaxis4": { - "anchor": "x2", - "autorange": true, - "overlaying": "y3", - "range": [ - -37.27639700883749, - 177.71639700883748 - ], - "side": "right", - "type": "linear" - }, - "yaxis5": { - "anchor": "x3", - "autorange": true, - "domain": [ - 0.575, - 1 - ], - "matches": "y", - "range": [ - 0, - 40 - ], - "showticklabels": false, - "type": "linear" - }, - "yaxis6": { - "anchor": "x3", - "autorange": true, - "overlaying": "y5", - "range": [ - 13.154969325153377, - 127.28503067484662 - ], - "side": "right", - "type": "linear" - }, - "yaxis7": { - "anchor": "x4", - "autorange": true, - "domain": [ - 0, - 0.425 - ], - "range": [ - 0, - 42.10526315789474 - ], - "type": "linear" - }, - "yaxis8": { - "anchor": "x4", - "autorange": true, - "overlaying": "y7", - "range": [ - -1.1550906266183283, - 122.99509062661832 - ], - "side": "right", - "type": "linear" + "text": "Players participation during A and B events" }, - "yaxis9": { - "anchor": "x5", - "autorange": true, - "domain": [ - 0, - 0.425 - ], - "matches": "y7", - "range": [ - 0, - 42.10526315789474 - ], - "showticklabels": false, - "type": "linear" - } + "width": 900 } }, - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6QAAAGQCAYAAAC5y61PAAAAAXNSR0IArs4c6QAAAERlWElmTU0AKgAAAAgAAYdpAAQAAAABAAAAGgAAAAAAA6ABAAMAAAABAAEAAKACAAQAAAABAAADpKADAAQAAAABAAABkAAAAABUH4gHAABAAElEQVR4AeydB3wUxRfHf+m9EQgJNbTQpXfpIE2agCAoVUCxIkVBBRQbYvurIIpUpQpK77333nvvgSQQ0pP/exP2uFwuyV56wnt8wt3tzs7Mfndvb968MlZeXl5xEBECQkAICAEhIASEgBAQAkJACAgBIZDJBKwzuT1pTggIASEgBISAEBACQkAICAEhIASEgCIgCqncCEJACAgBISAEhIAQEAJCQAgIASGQJQREIc0S7NKoEBACQkAICAEhIASEgBAQAkJACIhCKveAEBACQkAICAEhIASEgBAQAkJACGQJAVFIswS7NCoEhIAQEAJCQAgIASEgBISAEBACopDKPSAEhIAQEAJCQAgIASEgBISAEBACWUJAFNIswS6NCgEhIASEgBAQAkJACAgBISAEhIAopHIPCAEhIASEgBAQAkJACAgBISAEhECWEBCFNEuwS6NCQAgIASEgBISAEBACQkAICAEhIAqp3ANCQAgIASEgBISAEBACQkAICAEhkCUERCHNEuzSqBAQAkJACAgBISAEhIAQEAJCQAiIQir3gBAQAkJACAgBISAEhIAQEAJCQAhkCQFRSLMEuzQqBISAEBACQkAICAEhIASEgBAQAqKQyj0gBISAEBACQkAICAEhIASEgBAQAllCQBTSLMEujQoBISAEhIAQEAJCQAgIASEgBISAKKRyDwgBISAEhIAQEAJCQAgIASEgBIRAlhAQhTRLsEujQkAICAEhIASEgBAQAkJACAgBISAKqdwDQkAICAEhIASEgBAQAkJACAgBIZAlBEQhzRLs0qgQEAJCQAgIASEgBISAEBACQkAIiEIq94AQEAJCQAgIASEgBISAEBACQkAIZAkBUUizBLs0KgSEgBAQAkJACAgBISAEhIAQEAKikMo9IASEgBAQAkJACAgBISAEhIAQEAJZQkAU0izBLo0KASEgBISAEBACQkAICAEhIASEgCikcg8IASEgBISAEBACQkAICAEhIASEQJYQEIU0S7BLo0JACAgBISAEhIAQEAJCQAgIASEgCqncA0JACAgBISAEhIAQEAJCQAgIASGQJQREIc0S7NKoEBACQkAICAEhIASEgBAQAkJACIhCKveAEBACQkAICAEhIASEgBAQAkJACGQJAVFIswS7NCoEhIAQEAJCQAgIASEgBISAEBACopDKPSAEhIAQEAJCQAgIASEgBISAEBACWUJAFNIswS6NCgEhIASEgBAQAkJACAgBISAEhIAopHIPCAEhIASEgBAQAkJACAgBISAEhECWEBCFNEuwS6NCQAgIASEgBISAEBACQkAICAEhIAqp3ANCQAgIASEgBISAEBACQkAICAEhkCUERCHNEuzSqBAQAkJACAgBISAEhIAQEAJCQAiIQir3gBAQAkJACAgBISAEhIAQEAJCQAhkCQHbLGk1HRtt1vwFuLm5J1njzh3bcevWzST3Z9cdxucVGxuDe/fu4cL587h580aGdNnGxgaD3noHXV/pAT8/PwQ9CEKtGlUQHR2VIe1Jpc8WgV59+uG994egedMGCKR7WSTzCbwx6G0MGDgI9evVROijR5nfgSRatLOzQ/0GDVG2bHn40rMnMPAe9u/bi61bNps9gss3adocz1WqhPDwcBw6eMBs2SJFiqJBw0YoXLgI7B0ccOnSRSxd/B/u379vtl7jjeUrVERAQGmsWbPKYlZ6+8ft8W/XS527oGTJUvSsjcbpUyex6L+F6ryM+2PJ+/YdOuLs2bM4cfxYosOKFy+BSpWrJNqubeC24+LitI/yKgSEgBAQAkIgUwjkeIV0xMhPUbJUQJKw+vV5LcsV0h6v9sRHIz9Byxea4Pq1a0n21XiHufOKjY3FurVrMHzo+3jw4IFx8TS/79uvP4YOH4HVq1bij99/Q548eWhgEpvmeqUCIcAEnJyc4O3tDWurjHfK2L5zHzZuXI9PRn4o8I0IODs5q2tgZWVltFXf29Q8w/TVDCxbuRZlypRFVFSUmnArVKgwrK2tsWH9Wgx4vY/artXFCtzkKdNRp249XL58CXxOQ4d9hLlzZmHkR8MQExOjirZs1Qa/T56q3t+7exfWNOHGz7Th9Iwb9OYAbN60Qasy0Ssro/MXLIKrqysaN6iLCxYo73r7x43Wrl0Xv/85FXZ29tixfRvcPdzRq1cffDB0OF7r3hWnT59K1LeUNlSqVBk//TwR3337jVmF9Pn6DTD2y2+SrGbpksUyCZkkHdkhBISAEBACGUUgxyukDOYUzSp379rJLKOQkBCz2zNzo729PdzdPdQgy5J2T544jk4vtVODeB6s1KlTD5+O/gyz5y5AqxZNLakqxbLt2ndUA5gBr/dOsawUEALZmYCbuxucnZ2zcxdzXN9S+wzTc6LzSJk8cGA/jh45rBRKVuqGDf8IbFXvQxNlf0yaaKhm6PAPUaZsObR/sSUOHTqotrdq/SImTpqMg1QHK6YsN29cx5DB72LjhnVkcQ0EK+Fly5UnRfM//DpxEqo8V96s4lWocGHMmDlbWWlZIbVU9PbP1tZOKaO3b99Gh7at8PjxY9UUW3VXrF6H7374H9q2aaG7eZ7wfOGFlvD3L6brd6Zrl444Y0bhFY8Y3ciloBAQAkJACKQjgYw3V6RjZ5OqKppm1nnQYe6PZ915Nv3v2fNRq1adRFUUL1FS7WvarLlhn6OjIz7+dAzWbtiCE6cvYMWqdehGrqymMnX632DLItf716x5OHriDDZv24XXevY2FG3f4SX0pFlvlh9/+lW1xX3hPqUkPNvPrnUPH4Yoy+qCf+bh34ULUK58BRQuUsRwuJ7+vti2vWrbw8MT1arXwGdjv8T0mbPAM+p//DkNpclCkTdfPkP/2MKgSbv2HfDvomU4fvIc1m3YCrbesluasWgs2BLWf8AbmPTHFFKeP1dFtLYLFCyotm3Zvhu79x3Cl19/Cx6YseXim2+/x7ade3Ho6Cn8+L9f4WIyGHxv8BAsWb4aew8cwZHjp1U/hn04IpG7ttaP5K6Jcb+rVquOP6fOxI5d+1X7zKJR44TKPlsyZs35R/WN+82DX19fP+NqknxftKg/WSwmgM/54JGTWErnwP1ma6EmPNhnK8/iZatw4NBxdZ4fDBkO77x5tSKK0fc//qz6ePjYKdUf7rupaOdv7jpwWT3nwtapV7q/ikVLV6pz5r5PnjIDxt8R03b1fvb08lQWGv6eHDh8Aj//+luCazj++58w/rsfzVb34YiP8cuE383u0zbO+HsOXF1clQsof8/4j+vURM93hctaer/Ve74+5s7/Vz0DFvy7BGyJYmndpi3mL1yE46fOq+dJk6bN1Hbtv4xi7ermhq/HfYedew7g2MmzmDNvISpXrao1a3jVc556nmF67itDoyZvpk6ZrNxuNesmP+8mTvhFlSpHSqQm/Ex4uWt3rCU3Wk0Z5X0rVyzDsaNH0Pf1AVpRHD58CPy85N8EFnZDZRfW5cuWqsnBgvQsMhVPT0/M/GsOtm7djJnTp5ruTvGzJf3j7ycr3pcuXjAoo9zAlSuXSVE8rVyMU2zQqMA3X32BJo2ex/Pkjq1HgoODlesyuy8b/+k5VsoIASEgBISAEEhvArlCIU0JyrGjR1GjZi30eK1XoqJdXu6KuqQcHjl8WO3jASsrBn37vU4xm+fw688/KXevceN/wIA3BiU4ngehb739HmbP+0e5JK5dsxoOFKv0xVfjVOwSF+YYp7CwMHUcD7SCgh6oP1aUUyNRkZHqMDtS5Fj09pdn/jlOa9SYz7Hwv6WkYL+KWqRo+RUoiOCgILA7MP9p/YuIiFD1D3zzLaUERFK7v038hSwZe5XCyQNcHkxrwix48L1yzQZ8MuozpXAzVxat7SVLV1GZF3Fg/z5cvXIFr9L1mDxlGlav24SGDRtj3949ivlLnbqgD1lHjKVFi1bgiYdVK5Zj5oxpuHDhnGL/v1+eWk+4vJ5rotXbuUtXsPJQrFgxLF++lNzmtqJixUoYN/57rQi4zOx5C1CkaFFMmzoZ27ZuUfFrS1esTqQ0Gw568sbHJz/+W7ICtevUVZaaWX/NoMFfIN4c9I4hjosHpqxoc/zulcuXMX/+HHU93nlvMJo3j7eQeHl5YTlNirRo2QprVq+ifvypJg/+IUXHVMFJ7jroPRdWhnmC4AH1deqUP8Bx2KwYvD94qOkpWvyZ772mFP93mKxbHC/Hys7MWXMN9dy8cQMvd+tO8YTlDNv4DSvnAwa+maL7fXBQMGJJ+YiMiDTcyw8fPlR16f2ucGFL77cZpMiwrF+3VoUQ/P7HVEz47Q/67vyG2Bh2tV8NHx8f2jZZTcKowvRfRrDm81xCkwldieMRUszmzPobj2hiiz0sTEXPeab0DNN7X5m2ndxnLc7x+vWnIQ6FyZWXLd/Hjh1NdOhRUkhLUegGx8InJ1xvDMVq3r59K0Exfm5PmfYX7t67SyERgxPs0/vBkv7xb8HevbvRrNkLalJTc6MuUKAAKlR8Tj3n9LabmnLMie8TESEgBISAEBAC2YFArnDZZeve1h17zPL8aPgQbN+2Vc2is2sXWw4ePRmgskLVoWMnbNiwHnfv3lHH96dBb+nSZdCyeWPlCswbJ074GWx5eefd9zFj2hRoyhrv44FFr57d1Qw9f/bzK4Dtu/ah40udsWXzJorJXAEeZHBc0qhPRypFjMulRlh5af1iWzWjzQk6WCztL/ej28svKeWPk2jY2tpi1crlZNFpiCNHDuHtQQMNXWOLKSshy5ctwVsUd6Ulu9ixfTtYEWR2/y78x1C+atVqmPDrz0phZJ5s/TSWObP/xv9++l4l7+DtbDni5CTfjf8GE+k4tpDwwIyVFu7Pr7/8z3B4l84dEiUX+fiT0WqSgC2sxolKUromXClbQ1g550Fhzx7dDNeUB6ac2ImF3axZueZrOOiN/obz/2vmdCymAX+vXn3VvaEKm/nvxbbtlCX05U4dsHv3TkOJUgEBpFxHq8+snLLy1eu17thEcY+asOXa0dFJfRxEkx5skW1NbtonT55Q2yZN/FVZMEeRFZrvM76Wmpi7DpacS8/efZQS2qfXq1qV6lryhEZahS1fkylGWbOGsashM6hb73kVRzd37iywMt6tew+M/vRjQ3NdXu5GyoYtWKlPTt59+w2ycJ9WvD94/50ERS35rlh6v73a/WXDteFz4QmbAHqOtHqhKc6cOa36wQl22JOiGlm2tfshI1i/3n8gSlCSnP79eqkJDA0CK79sETUWPeeZ3DPMkvvKuN2U3rNXBsvi//41FOXnEYv2/DbsoDfsScLPcy96FnDMqDkpWaqU+q6toMknVrI14eN+mTBJeSF0aNcmQcyqVkbPq6X942fK5D+nY/RnX4BjdOfNm4Pu5JnAlt2f//eDniZTXWY5xe2ysKswh4bwbxznJxARAkJACAgBIZAVBHKFQhoW9thsAgcG+vBJDOm8ubOVktiGFLp5c2Yr1my5KkAWwtGkKGrCVoXNmzcalFFt++qVK9CoUROwC6Y2wOR9O8h6xO5imnAW3IsXzqNgoULaplS/svLMg1hWRDnRB7sCc8ZIjo1iayaLpf3tTYqPcdZhY0XGtKM8e88WCY7h0pRRLrN40b8qSZNy5TVSSP+hgdT3340zVGMaj8SWTeP2OJMmu9bOnD7NoKBwO7y9d9/XlVuwZknWsoJyf3igzy6v2gy/f7HiCRRSPdfkBbK4svvyTz98Z1BGueM82aC56zV/oQXYOvm7yfmzdY8tLBWfe85wrubeaJZx/+LFDAoIlzt75oyhOCtarJwYK6O8k10ONWHOW+ie1JRR3s4Dap4cYUtmeXLhNi5v7jroPReeEOB+5yG+7FLIyj0LX0uOx0urLPxnvuFac10zpk1NoJDeuH4dnHCGJ3S++uJzw7Vhl3nOuqpNxKSmH5Z8Vyy934yvDVv6WbZv25LgWaFtr1OvnrrmGcWa2XFMJlvTUxJLztNcXXrvK3PHJrWNJ7rYzZ+fF8bPWv4ushgrk1od2jYuY04h5efGr+TuzZZidm81ljGkENaoWVvFcgYHBxnvSvS+RcvWKFiwYILte/bsVr8BlvaPFesbFOtqf8QeoY9DMfLjUeq5Pum3CQm+I8m1maAjOj5cvXpVPd9u3bqF6Jho9XvGzxcOW3hjQD81OamjGikiBISAEBACQiBdCeQKhZRdHQf275ssmF07d+Dq1Svo1Pllg0LKrqF379yhbI7xA22OiyxYsBApO3lVfJtxhXZ28ajYxdV4kGRcRnsfQgMNB4e0u0P5U4IKtqhocpmySvbt/apyC+RtqemvZpnS6kzutai/v9p9npabMRZWGi9dvKgGM8bbLambj+PZeRYbm6euv/yZt3NcpRNl0IyKCuZNKm529GdjybpUwxC/qimrbOVNSUyvSbHixdUhbB1ISoqRosvCcZmm4uHhrtydTbcbf15LbprD7o3At+N/JBfk17GT7kG2ZmqKHVtj/ch6vmbNSuPDErznMvnz+6rYtwQ76AMvA8TC18lYITV3HfSeC1/bubNn4f0Phqo4X1aEWblhS7i5gb7qQBr+4wkcdgdnzwJNZs/6C42bNAPHMfPkB08ccf+//vJzrYjFr5Z+VzhOO7X3G58PXwMb64Tuo9r9zhMhLBnBml0xi9Jzgyfg9EhazpPr13tf6ekLl+HYW07os2vXDoz9bFSCw0JC4l2v+dlgKvw9YQkJTpzEjj01Jk2eqpZx6f96b5WdVzueXd67kVWye7fOCbZr+8llw/CW3/CkoKmnwBdjxyiF1NL+ccwx91uzUnM+gy8p3IPDQ8qWK2fwEEiuzQSd0/GBnz3a80cr/uvPP6pQiyHDPhSFVIMir0JACAgBIZCpBFIeyWdqdzKuMR78zSeXKHZb45hGXguRXXj/njndYLVzcXFRbl9siVm+bLHZzpx64jJpdueTjXFsvSQ3sLQKx7C+/+5biKTYySukjIaGhiaoMr36m6BSow9sVWCJiHjq3qbtDg8Pg9OT/do2S18VJzMHxZosN8Puh+zGy27AHN/F6w5eu3aVXDObqGQ7ZqpItMn0mrg4u6gymhUz0QG0gbO1snzx+WhSMKLVe+P/eK3W5IQVuAb1a+Ptd95TyhUnwOI/tgDzxAJbyDQrWVL1sHWcyyR1Dfg4PdfBknP58YfxyoI36K13yULfWH1P2HX78zGfGrKYJtXf1Gxnqzm7TWrCE0Rsge7e41WlkHbv8ZpaDiQtLoWWfFfS5X4zuYe1c+PnkLGkN2sXSujEyrc5t1bjdvl9epynJfeVafumn3nigZNncTxovz491USFcRlen5SFvxOm4kzPbhYtiZG2n1lwLO/zzzfA4PfeNkzmaft5coCVQn6+mJONm7eryYXiReMnTIYNeT/R901bV9eS/nHoBCcl+/TjjwyhCPy87/FKF5VFvdsrrypLLj+fkmvTXJ8t3XaD4rY5Np5/D9nrRLM2W1qPlBcCQkAICAEhkFoCz4xCyoA4NmfwB8PAltHLly6pdeY4bkeTIEruwy5b7La5eNF/2uZ0e7V0DUa2qBhbvkw7ktH95cRDLGy9YuussbClWNtvvD0j3rMVg5XjNwe+juNmEpqkpk3N9bMQuUCfP3fWbBVsBWbhjJ48WEyNsGLALoL8ly+fj0oIxYmiOAEUWwJDQoKVO3ZSdfM15jqMLYhaWb4GLHqug6Xnwusi8h8ripwoidcuHDxkmJrU0dzFtX6k5ZVjefnaXrx4wVANK6jz587B2xSzXblyFTVQ/oWsOOYsv4aDTN4YK7i8y5LvSkbcbybdS/AxPVnz/cRKjE/+/AnaMPchNedp+gyz9L4y1w/e1rBRE5Xtm5Mw9e7Vw6CkGZdnazpLQOnSxpsN21gxNA4TYOWK1yJlq+s7b72hYuFND+TJrREfJk7Wxce0ebEdfvj+W9y5fdtwmNYHwwajN9o+Pf2rUaOWOpJdaI2Fv1s7d25XSeFYaWU3b61e43Lp/Z6/L7zudHR0THpXLfUJASEgBISAEEiRwFOzRIpFc34Bjk/jmWBWSDt1edmQ1dX4zHbv2gWOizJeVkXbzzFCWtyitk3P64MHD1Qx42U89Bynp0xG9Fdrdx9Z8ljatmuvbVKvnJSHEz/t22c+kVSCwunwgbNXsnAGYGNh1+rUykEaiLJ07fpKoio05W8vDQbZotXv9QGJyvAGrZzZnbSR443ZuqkJW3h/JsWKB53sKsnC/Wja7IUEy8Dwdh4gsqsuC3Nm5YGtfMbC14UnLZJzO9bK6z0Xdoc0Pi/uK3sMcAZpTqzESWM04fjXnr37qjhbbZulrx06dlaH7KHvnbFwciNm/9vvU4iFlXIjNt6f3Hv+vpm7N/R+VzLifjPXX0tY83eOWZsuSWSu3pPkxcFZq9k6aCymzx9LzjOpZ5je+8q4H6bvOWZ06nRaemn7VvR8tZtZZZSPYYWTFTQ+N+OEaRxPXrlyVaxYscxQNVs+eakmziTer08vs8ooF+aJEJ4YMv3jTOAsSxcvAidj0yOW9E+b4Ov4UqdEVTci5ZwltZNgiSo02sCZv02FWdWp+zzlYTieQKE3LSefhYAQEAJCQAhkFIFcYSHl7IZvDHrbLKOVy5clsO7NnzebFkb/Q8U+sSuUqXw5dgzWrN9MC6gvwo8/fKeSJfFyDexexeuJcvZddnGyRI4fP6oG12ydnUCZYx1o5v769as4d9a8Zc6SujOiv1r7bD3gZSzefX8IOAZz6+ZNSlH/fOxXlBzkYYIF67VjMuKVM+H2omVgvvpmPGb/PZOasFIK2stmlEm97R+kuEjOtsmZV2NiYyiT7koa5NqqxeVbtGqNhs/XVnFhfL/w8jTs1sdxlGytZMsFW09uUkKSYcksEcF18xIOnHyILbucpKrbK92VsqklMfqaEvfwki7z/lmE8d9+rdYhDAgordZUnEMD5blzZuH78ePU0jBTp/+Fcd98payqPKnCfeBliTRlIblz58Rbes7Fzd0dG7fsUEvcsCJ66+ZNlKEswKx8ch2aeyIrAby+J7tOs9u7XnnrnXeJ+zLlfs7ZaHn9VY6r5ZhBY7lGliNeD5KVD87yfOfOUyuVcTlz748eOaxcpDkREsd7s2K/kpQVvd+VjLjfzPVTL2s+9rXXeqvvgLlnlmnd06bwcjO/Y9qMWZQYaCp5grjR8jodEymzlpxnUs8wvfeVaR+1z0WKFFXr9PJ9xfdbFzPf6eVLFxtccWfR95/XKf7uh58wg9YKZfddjne2pdhZ47hZjv+tXqMm/vs3fskmVuaN5RrlE9ByBxhvT+t7vf3jhFe8Liq7yb43+Jzy3uGlvNrRdeLfmr/oO2WcOTylfnGmbk5ElvfJ2sVF/Ysqzwae1GELvCZrN8RPLvHELCvFnDPh3fc/UJNK77w1UCsmr0JACAgBISAEMpVArlBI2XIzYuSnZsGdO3smgULKigdb2uzs7LGMBjqmwq6c7dq0wGdffIVxlMFUc/3j+E1eSzA4JHHSDNM6TD9zVtXRoz6mZUL6YN6CeFdgTvmfHgppRvTXuP/v0DIanGiDlVDN2neK1o/s3LGdLkXIuK7Uvl+6ZDHYxU1ZiJ5YD1iBYXc6VmhSK0M/eI8mBq6TBXQgrQP6rqqGXbZ5UKnJyI8+pKzJF/HmW28rpUzbzgxSspzwckP1SOn66ecJ2mFqYP3JyA8NSyywNat7187qfvvjz2mGcmwJ4lg6liOkYPGyMDwI/2/xcrWNXRN//ukHtYyO2qDjPz3n8pju8/Xr1iRgwlVzIpSRI4YbWmFlku8HzoTKVlS9UqHCc+jTt7+hOC8pMvSDxBNDXIAzW7NCyoNzS+RbUtq5b5/RPcseDfz9Y4VU73clo+4303PQy5qPYxdSVlA4yVNKwv0vWTJALZ/DCXhYKeHzZysgx+NqYsl5JvcM03NfaW2avto72KtrxZOKvPyJOTlEk0dabChPCvFSMx+O+FhlYubyzKVP79fAExGa8AQSC2cc5j9T2bB+bYYopHr7x4mv+vXtic8+/0rlNeDJSr5nOVyEl2D58fvxpl1O9vMQeg6yZ48mXbv1oAzsPdTHooWeWkU3b9qkMhjzBJMmnOl3wOt91ISAtk1ehYAQEAJCQAhkJgErckNNmGUjM1vP5m3xoKZI0aLKLZItRZbEsCV1auwKzFY2PVatpOpIantG9Fdri91FS1AWSF4uwBJrlXZ8eryyuxknpLpJFur0jKviSQdeToctpVx3UteZY0DZMnjt+jVdSWO0c+YBNC8DxFZlrp9jJM0JL7Pi5+eHGxQrx/eIqfCAlfvJllaeaOFBbWolpXPhbK2cAZj7dP3aNWWVNW6Ll5thV8ta1SuruGvjfSm957aZx2Wa/Enue8AZpnmJjSaNnk+pSrP7XVxdkdc7L006XEvEXM93JaPuN9POpsSaLbx79h9Wisq4r780PTzJz3z+JYqXILfUi4ble8wVtvQ8k3uGpXRfmWs/NduYGT+PWIHT3F9TU09GHWNJ/3gdZV66ipMJ8ZJhySVaS4/+sis3L3fGLtwcxmK8DFh61C91CAEhIASEgBCwlIAopJYSk/JCQAhg6449tM7mVnw0fEiG0OAYZXadH0OeBdOm/pkhbeSUStk9m5dCeb5OdYvDBXLKOUo/hYAQEAJCQAgIgWeXgPWze+py5kJACKSGAFvIOPZvegYqiq/3H6gsRQsX/JOaLuaqY9hdd+2aVaKM5qqrKicjBISAEBACQkAIaATEQqqRkFchIAR0EeDkT7zeJcfbZpRwQiJe15Gz+z7rwi7aUeSeze6pIkJACAgBISAEhIAQyG0ERCHNbVdUzkcICAEhIASEgBAQAkJACAgBIZBDCIjLbg65UNJNISAEhIAQEAJCQAgIASEgBIRAbiMgCmluu6JyPkJACAgBISAEhIAQEAJCQAgIgRxCQBTSHHKhpJtCQAgIASEgBISAEBACQkAICIHcRkAU0tx2ReV8hIAQEAJCQAgIASEgBISAEBACOYSAKKQ55EJJN4WAEBACQkAICAEhIASEgBAQArmNgCikue2KyvkIASEgBISAEBACQkAICAEhIARyCAFRSHPIhZJuCgEhIASEgBAQAkJACAgBISAEchsBUUhz2xWV8xECQkAICAEhIASEgBAQAkJACOQQAqKQ5pALJd0UAkJACAgBISAEhIAQEAJCQAjkNgKikOa2KyrnIwSEgBAQAkJACAgBISAEhIAQyCEERCHNIRdKuikEhIAQEAJCQAgIASEgBISAEMhtBEQhzW1XVM5HCAgBISAEhIAQEAJCQAgIASGQQwiIQppDLpR0UwgIASEgBISAEBACQkAICAEhkNsIiEKa266onI8QEAJCQAgIASEgBISAEBACQiCHEBCFNIdcKOmmEBACQkAICAEhIASEgBAQAkIgtxEQhTS3XVE5HyEgBISAEBACQkAICAEhIASEQA4hIAppDrlQ0k0hIASEgBAQAkJACAgBISAEhEBuIyAKaW67onI+QkAICAEhIASEgBAQAkJACAiBHEJAFNIccqGkm0JACAgBISAEhIAQEAJCQAgIgdxGQBTS3HZF5XyEgBAQAkJACAgBISAEhIAQEAI5hIAopDnkQkk3hYAQEAJCQAgIASEgBISAEBACuY2AKKS57YrK+QgBISAEhIAQEAJCQAgIASEgBHIIAVFIc8iFkm4KASEgBISAEBACQkAICAEhIARyGwFRSHPbFZXzEQJCQAgIASEgBISAEBACQkAI5BACopDmkAsl3RQCQkAICAEhIASEgBAQAkJACOQ2AqKQ5rYrKucjBISAEBACQkAICAEhIASEgBDIIQREIc0hF0q6KQSEgBAQAkJACAgBISAEhIAQyG0ERCHNbVfUgvPp1acfGjZsbMERGVt0wBuDULtO3QxrxMrKCgULFULhIkVgZ2eXYe1IxUJACAgBSwj07N0XjRo3teQQKSsEhEAuIWBrawdPT880jUuaNG2G13r2ziVE5DSeRQKikOayq3752m2k9Ld52y511m8OehvNmr+QbQi8994HqN+gYbr3p2hRf0yfOQsnTl/Ajl37sW3HXpw5fwUz/p6DFi1bWdRegQIF8M2336NUQIBFx0lhIZCbCfTt19/w3Llw+Qb2HTiKVWs2YPz3P6FqtepZcur58/sa+sTPxJNnLmLTlh0YMfJTuLt7WNynocM+QqfOL1t8nJ4DBg4chBdatNRTVMoIgVxFwPjZcenqLRw6egqLlq5E5y5dc/R5mj5/Ll65ieMnz6nnoqni2LBRIxw+dhptXmyX6nNu2ao1Xh/wRqqPlwOFQFYTsM3qDkj76Utg2NDBCSocPnwE7gXew9Qpkw3bHz18aHif29/Url1XKZ6PHz/G6E9H4sjhQ/Dw8MRzlSrhjTffxpjPvsTqVSt1Y/D0yoNXur+KlcuX4eyZM7qPk4JC4FkgMOLDoQgJCYF33rwoVSoAL3Xqgpe7voK3Bw3A0iWLswTBgn/mYd3aNXBzd0fNmrXAnhjPVaqM13p0RXR0tO4+tW3fAbt37cDCBfN1HyMFhYAQ0EeAnx3BwcHImy+fmvj5/sef4eLqihnTpuirIJuWmj9vjnr+2NjYwMvLCy93644vvhqHR48e4b9/F6henz93Dt9+8xVOHD+WTc9CuiUEMp6AKKQZzzhTW5g/d3aC9t6gwdeN69dhuj1BoVz8YcQnoxAREY6X2rfBxYsXDGe6e/dOLF70H0bSfhEhIATSh8CG9etw69ZNQ2Xfj/8Gc+YtJEvp/3Du7FmcPHnCsC+z3pw8cRwrVyxTzfFz8H5gIAa++RaqVasBfg6ICAEhkPUEjJ8dc2f/jZWr14O9pnK6Qnr61Ema9F5hALx82RJlBa5Bk2OaQnrp0kVM+PV/hjLyRgg8iwTEZfdZvOrG50xxlR1f6qxcZNilld3s6tStZ1wCM2fNRbdXeiTYxrOY8xcuQr3n6xu2cxzUn1NnonTpMpg8ZYZ66O7aexDvDR5iKKO9CQgoreo9dvIs9h88Bp4NtbO313YbXouSu+0ff07Dnv2HyaXlFP6ePR9ly5U37Oc3k/6Ygn6vD4CfXwGM/HiUKsP9bdioCSpXroKJE35JoIxqB9+5cxvvv/uW9hHvvPu+Ov8Dh0+otlat3agGrtbW8V8T7sv4735U5T8eNUadPzPgHxaWDh074b8lK9R5s2vwtBl/S1yYIiP/PasEHjx4gN49e+DhwxB8+fW3CTA891wlzJ67QH3Xdu4+oJ4BbEEwFf6+/zVrnnJ3Y1dgdgPmZxJ7KqRGtEFgufLxzxGOW+fv8c49B1QbW3fswbff/aCeJ1r9//tlovrcpElzw/f+nffivVG05x7HgfXu8zo9r6bjp58naIdC73kaDpA3QuAZJxAREYEVNInEnhY+PvkVDXazHzf+B2zbuRdHT5zBvH/+RbXqNRKQ+n3yVLz19nsJtvExpmMQ/n6//8FQQzl7Gnt8OOJjrNuwVbn2828/WzKNJalxhnEZPe/ZMhoTE43Ae/cMxYuXKKmeKxUqPmfYllx7zs7O+HzsV+Dn5vFT5zFvwX8oV66C4VjtjYxJNBLymhMIiEKaE65SBvaR3emGkVvv3t27MOGX/8HVzU099I2brF69JgoVLmy8CQ4ODqhVqw68vb0N24sUKYomTZri38XL1QB04oSfwbODHwwZjvIVKhrKlSxVCktXrAHHWPz0w3f44fv4gSonGuLEQ5pwuZWkIOfL56PKjfv6S+V29++iZepYrVzlKlXRjQan6zZsUTGxcXFxcPfwIAtIfOzaP+Qyo0f8ixXH3j27wVadMaM+UUw43uytt99Vhz8KfYQD+/ep90ePHMbWzZvUH/+wcGwZD1rZGvPJyA8x+Y/fYE0uOl27vaKnaSkjBHItAbaYslWgUuXK6rnBJ8pxpf8tWY6o6Ch8+vFH+OXnH1Grdh31XHBycjKwKFe+ApYuXw0PSvjxzddfYPz4r8ETRPXrN1TJyQwFLXjDg0+WUHLjZylYsBAe3L+PKZN/x8gRwzHr75n0HGuuJpRUAfqPnwvs9s/non3v+dnGws89nphbvmot3n3/A7i4uBhiVPWep6pI/hMCQsBAwMHeAfxb/jjssUr2s4ieFw0bNcbvv03AiA+H0RjjEf5ZsAh16z1vOCYmJkZNsGsbeOzAY5w+ffvD1jbeIZC//y91ehlBD4JUMX6ezJ3/rwovWL16hZqk5u/2N+O+SzARn9Q4Q2tLzyuHCw3/cCTu0ZiBQwk0caVnBo+nPGjcoklS7XF/Z5PXSeeXu2Hhwvn4bPQn2L9vL3x9/bRD1auMSRLgkA85gIC47OaAi5SRXWSXtQH9eiM8PFw1s3//Xpp5/A+sDLKLnaUSTjObrVs0xeXLl9Shf/4xCXv3H1GK4vFjR9W2kR+PVrFbHdq2QlhYmNrGg8CWLVurHyC1gf4bNWYsbt64jpc6vGjYvmL5Uhw4dBw9e/fB+HFfa0XVD1b3bp1xmGJENZnw2x9KMQ4kFz09MmRwvOKplWVLSn5fXzRv0YoGzD+pGc05c2ZR232xhNx9N2/eqBXFJ6M+A7vdjPxomGHbtKl/qngYwwZ5IwSeUQKHDx2iQaGdit1k5Y49Gc6cPo3er3U3fLe3bNmELVt3oW+/AQb3tdFjPidFMBSd6BkQFRWl6M2bMzvRs0IvVp5wGzL8I/Xc2bZ1szqMY0JN40JvXL+GXyb8rrJyX792DX//NQP9B76JEyeOqWeBaXv29nb4a8Y0pczyIFoTveeplZdXISAEgDJlyqLrK91VzDbnvOjT93UUK14CzZo0wPlz8eOSZUsXgyenP/l0DFq3bKawbd+2Fa3btFWxmuydwUkLL5w/h6L+xZTn19Ytm8FWSJ783rF9qzqGFTu2tLZs3tgQUsAutp7krfHmW+9gLv3ma8LHmY4ztH1JvY78ZDQ+ooltViQ5jpSFJ+uvUyhVSmKuPVY0q9Ak/MD+fbFq5XJDFXnJmlyLcmZowgmSZEyi0ZDXnEBAFNKccJUysI+XL140KKPczLknD3u2iqZKISUFU1NGub7Y2FhcuHAeNWrEu7WyBZRnNLeQdVFTRrmcqfBsZj0qt2L5crRr3zHB7ms0WOSEKcbCVgtjZZT3uVJCBLZqWCKVKNlJHWqXXYrz5MmjLLt8DinJsaNHwGnX2Q2IlVWOV+WB6b27d1M6VPYLgVxPICQkWJ2jtrQBWw6/Hz/OoIzyzmtXr+LAgf2oVaeOUkh58FaNnkMrV5Al9YkymhpQPOBkt3ov+j7zQJddaz8c9oGKrdfqY3f/5+s3QJWq1ZA3bz4UfuIRwl4crJCmJMFBwUppNS7Hg0k952l8jLwXAs8qgW++/Y4mqmPI+ym/+t29cP48hg/9QOFgt3r2PtKUUY3RksWL8NnYL5VnFyuurJDyGKN6jZpYu2Y1WrZqQ5bI+ahZq5ZSVFkhZc+pu3fu4MyZ06qahg0bqWdPAIUa8Z8mwUFByvuBv8fa88fcOEMrn9QrT2xzfCwLW2fZ26xXr75o1fpFtGnVHKHkwpuUmGuPn1Pcny1GE+LmjpcxiTkqsi07ExCFNDtfnSzoW0R4hGpVc29Jjy6w9ZUf6izsVsIueTt3bEu2al8/PzVwrPjcc4nchdniefv27WSP553n6QeN1/bjTH3JPfS5LA9S+QexCw1e2f3l+PFjambViWI1/Gl2NSWZOuUPZQ19l5IwDP5gGGUaDaaZ1dn4jWZC75M7oIgQeJYJlCtXXimf/N1i5Y+Vzbv3Ek/W3L59i2Kh4mM72TuBnxv79u1JE7pYcuOLiIjEqRMnVHZstn7cuHHDUGc7yp7LSZfY9Z49Rk6dPEH7r4HdhY1DCAwH6Hyj9zx1VifFhECuJhAVFa28IbZtOw32Llq6ZJFBEWS3enPPC84DwVKI9p8iN1u2CPIEEk+A79m9m6yidfExueHfvXuHEhiOVuE0bA3dsWO7gSW73Lu6uaI3WWFN5dChgzRecaZ+xE+ome7X85kVaQ5ZMJZ1pCxznOoLL7Q0JDYy3p/cew4tOkz9SmmyXcYkyVGUfdmRgCik2fGqZMM+pVVB1dzYOKCfpQD9gCQnnAmTj/l75nT8Ofn35Iomue/skxnQ5ym+K6WlXWqTVYaV0eHDBoNdAjXh5E1mFVKahTWWIJpNZXddjoetSlaWxk2aoWevPjT49qMlLwYaF5X3QuCZIsDPDv4+sMcFT85wwhKWCqTwmS6g4unppeKreD/HdbKYekOojRb89+/Cf5J8hrAb3edffINtW7fgjQF9DQNgtrBw3Jn23NKas0LC77223dxrYGB80pKUztPcsbJNCDxrBDiWnGO0zQl/l8qXf5qHQivDHhcsvLSdJtu3bVEeEbzG+ulTp5THFrvv8vrhHKeuvBa+G6cVB9cdzbGn7VobtmX0G1aeY6KjVX/YgmqJsCW4ZMlSKR4iY5IUEUmBbEZAkhplswuSHbvDAf48228sxolHjLen9J6zbbIbq5ZwSCvPFhMrGhxqwrN/F8nVl+MgeNBoKlpiEtPtxp+X0Awr/8DxzKibm7vxLvWerS9aps6KFSupbRvXr09Qji2nxvI4NFR9ZHdgY9F48LmtWb2Kki4MVTOfjRo3MS4m74XAM0WAv7tfffMtOEHHt+O+VOceSt8hdutn1zNj4fhOTnzEcZos7NJ/7uwZ1CF3Pc4qqUnBQoXMZuTW9lvyynVxZl8exGpueXy8uQk4/u5zH/WK3vPUW5+UEwLPKoETZGXM5+OjMvgbM+BnCLvfGofGbCO33YqUwZtXD+CcEyzsscQx4/0HvKESIu7Y/tRD6+iRI6hASReLkeXRVPSMM0yP0fOZQwhsaKLuzOlTeoonKMPjogIFCyZI7MgFTMcqMiZJgE0+5AACiUf6OaDT0sXMJbB69Uq8QIl92nd4SS2jwsk9/lmY0AXFkh799dd0FavFGSk5ZpNTk3MmTc5Oaewi9/lno9Vs5qQ/pqpXHjyypeVryn7HSQJSEnbT5VnXwoUKY836TSpjHmf75Wx2vDzDytUbwC62LPyDxzLi409VW/xD99U349Hj1Z5qu/bfdYpf5RnKnr16q+VnuP8FChRQy1IMpWQp/JljT2vXroumzZrj4IED2qHyKgRyPQGOo36xbXu8+lovtYzC9p37KNN0D3xEEzQ8UaMJZ9cuQbP8/AzgZR142YNfJ0wiF117TJo4QStGHgfjKcFaAHj5qLFffoPffv8Ta9dvUa68xs8KwwEWvrl54yaCgh6o73nzF1qoJVpe7z+Q2pmiajJug60a9Rs0VMtJcdI3Xs4lJdF7ninVI/uFwLNMgL2k2LtqzOdfqvwO7LnEawlzHOZPP36XAA0rmzzZzN/VFcuXGfYtX7aU8jw0x9WrV3D1yhXD9j9+/w0PHtzH9L9mqzhTjvFkKyrXv4TGJWmV0hS3zrGsnGyJl5L5dPTnmDJtpoqHnT9/rsXVc4I19tzgpWt4LMPL2/GyeS916pKgLl4qS8YkCZDIh2xOQFx2s/kFyg7dW/zfv+jSpSt+/vU31R2O0xj39ReJlofR29ffaF3Q4sVLYsjQD9UfWxJ+IBcajo0wlo0b1qFfn9dUFr3/aCkZTTixwXeUEEWP8CCYM/DxD9kXX41TP1R8XDQtN7Fr507MmB4/8Ny8aQO+pz5wsgF+sHMiI85gxzOs7L6nCVtRhg5537BmKW/v06sHZezbRjEo/Wh7/NqEHMfCSRV+pAG1iBB4VgjwZBF/d9hFjl3htm7dhFl/zUyUcIzdaHldwY9GfqKeAcyHB4o9XumCmzefxndy7NWA16PQnSaGqlPsFycieal9G7Xeb3Bw6uO6tOvBz4G33hyAj0Z8otZQ5u1nz5yhGLbJhn5pZfm77OLiqgaTPODlZRtMM3NrZbVXveeplZdXISAEEhPg+O7uXTuppdXW0vJuLOz6z0tBcYZ+Y+F4UX5O8BIwnFBREx4L8Pddy66rbWevrc4d26kxwq8Tfzdkwg0ODrI4vlOr0/iVl53hPxZWqm/R8232339h0m+/qslt47J63vO5DaMxCE+Yc44MVk454/C6tWtQKiDAUIWMSQwo5E0OIWBF7kpPc9TnkE5nRTfZ/YHdxvQuIZIVfczINtmltljx4iojL2fDTA/hNUx5nTDO7BtN8RTJCbvc+vr54vat28r9JrmySe3jcyhcuAhs7WxV4gNzWX7Z7aVM2bKUgfNaismI2I05jNZI41gNFramsLXH0dExQabhpPoj24XAs06AXWOLFy9Ba4KG6spmy7zYOrL/4DGK+exHGXifWkDSypItttE04cTuxMkJK9Kuri6kON9MFGOa1HGpOc+k6pLtQuBZJsAeSfwdPHfunFIw05MFTzQVpiRH7J7PCdZMY8jTs6201sVrwfMzi629rFSbExmTmKMi27IrAVFIja4MxxAsXrZSWd9mTp+q9vBA4suvvyWXi9Yqqxkn23m9b68Es/hGVchbIZDjCHCcH/9w8YyypfKsT9RYykvKW0aAM2ByvNXBgwdoMuqmip365NMxKgNuo/p1wN4VIkJACAgBISAEhEDOJmCds7uffr3nGbdJk6fiYcjDBJW2bvOiiieoXaMK6tSsir17aVF3SpIjIgRyC4HRn43FqDGfJzqdLdt34/K12wn+eLFyFp6oGTf+BxXbt2zlWiynP9PEV4kqlA1CwEICPvnz44effsHGzdtx4vQFrNuwVS1yP+iN/qKMWshSigsBISAEhIAQyK4EJIaUrgy7ck6cNBlT/vwDrcgSaiwcNM/rYWnunbwkyOJlq1TmV46VEhECOZUAp8XnOBR2M9ZiaU3Ppddr3VUGUm27ZkU1nqjh78aYz79QEzXvvCVL3Gis5DXtBPbt3YOqlcujBCU9Yld4Dhe4cuVyii7+aW9ZahACQkAICAEhIAQyi4BYSIn06DFjVRD8/LmzE3H3pThBTlCjyTV6z777XpRJVUQI5GQCnAShZrVKao3GpGJlOAkEJ3LS/rRJGHMTNS1atjK7RE9OZiR9z3oCnNBkz+5d2LJ5k0pSklK8edb3WHogBISAEBACQkAIWELgmVdIX+vZG/6UrOfLsWPMcvNwdzcs5M4FIiLCVTkPcvEVEQK5nQAv8cOuuW8MelstZ6Odr0zUaCTkVQgIASEgBISAEBACQiAtBJ55l903B72DNWtW4r33hyiOxSjjIyd5eRgSolJ+89ICxosjOzo6qXKcElxECORmArNn/YXwsHBaKscWLVq2Rvcer6FNy+Yqo19yEzVs0RIRAkJACAgBISAEhIAQEAJ6CDzzCumkSRPg5upmYBVHcaHR0TGGdOK8Jh4vlKwJv+f1r3idPREhkJsJTJr4q+H0pk39E1t37EG95+ur9VllosaARt4IASEgBISAEBACQkAIpIHAM6+Qasu7aAyr16iBzZs3UiKjxWrT6lUr8O57H+CPSRPVGpxdu72C1atWqsXftWPkVQjkdgIct8dLHrm5xU/eyERNbr/icn5CQAgIASEgBISAEMgcAs98DGlKmJcvW4pDhw5iz/7D2LFrP2rXqYevv0q8REZK9ch+IZCTCPD6jw0aNlLrk3K/6zdoiJKlArB71051GjxR0759R5X5lDfIRI3CIv9lIwK8tq69gyNcXNzg4eUNdw9PODu70JJFdtmol9IVISAEhIAQEAJCwMrLyytOMKRMwJUsQ64urrhFi7OLCIHcQKB1m7bgNUjd3NzV6Tx8GIJRn4xQHgABAaUxa+4/NJh3RXBQEJxdnDH604+x6L+Fqqy2DmnzF1rg0cNHePjoIfr06oEb16/nBjRyDjmQgLW1Dd2nLvDO54MSJcuicLESyOPtY5g00U4pnJYpunXzKs6fOYVL507jUWgIHoeGarvlVQgIASEgBISAEMhkAqKQZjJwaU4I5BQCbGHKR4N7tf7jtatm3dRloianXM3c209WQn3y+6FO/WbwLxGQqhPdv3sb9uzYTJMrIYb8AamqSA4SAkJACORgAgEBASgdUIrOIBqIjQAvCWfr4IEH9+/j2PGTCKTQHREhkBEERCHNCKpSpxAwIeDmagsnR1v4eNujaAEXFPJ1RF4vB9hYW+FxeAwCH0Ti2q3HuHorDA+CIhESGo0w2i4iBISAeQIO5I5bsHBRtGjbGZ7kkpsecurYIWxYs5SyrAebnYBJjzaehTrs7OzU2sWWnitnuM+f3xe3b98S/pbCk/JCII0E6tatjTyejnDEDVJGE3qNxNj4IM6uCA4cOIgrV66ksSU5XAgkJiAKaWImskUIpAuBPJ728HK3Q6uGvmjRoBDy5PWDvaM3bOxpDdvYSJp5jICVtQviYsPo1Z7atEZ0ZDAiw+7i6tWrWLL+JjbuvIvQsBg8DI1Klz5JJUIgNxDgeNDWHbqhWCotoikx2L55DQ7s2U4W04cpFZX9JgRq1qqNib9NRvWqFRPs+XDExxj01rsJtnECwZ49uqltbV5sh6+++VZlsPf09MLwoe9jzepVCcrLByEgBDKGQIUKFVCsSB44xJ5PugFrN8Q6lsP69evBmfZFhEB6EhCFND1pSl1CgAi4udiicjlPDO5dEl6eTnB0LwpHl4KIi7wHqxhyd4nhB3lsYlZWpJTauCHOlmYirZwQEXod4Y+u4fzlR/hx+llcuPqYMj2L1TQxONnyrBCwsbFB8ZJl0LlHvww/5fuBdzBr6oRso5T6+PjAxycf8vvkhaurO2zJChkbG/88sLKypomtOIRSPGxg4APcvnMXd+7cQWRkZIZz0hrg9bpXr92Iov7FVEZucwqpt7c3Ph7xoXaIcgfkDN4urq7Yu/8IunftpJII1qhZC9NnzFJKbRjF/IpkTwLO5PVjZxOfG9Pe1gpO9rY0uUo/cTFxeBROLp/k7slJSkLpfTRtE8meBDh7frNmTWETfoiuWfKT3zE2vrgbZI9t2+MTHGbPM5Je5UQCz/yyLznxokmfsycBF2cbBPi74eNBZcjtxR72Tvng7F6cfp1pzdrQA7CKS2FwyPujA2HFf9aucHQqSHXkRYDdOfw62hWHTwXhhylnceteBLnDmVFosycW6ZUQSBcC7KL7XNWaaNaqQ7rUl1IlnBDpnWGfYcrE73CXXEjj4jL/O+dC8bHFi/mjWPFiyqvCFiGwjrsDRJHLHCmbNsYnYWULdztHuBV0Q6ECAbC1r0meFpdx/sKlTIn7YuW3ccN6qFK1Gib/Od24Z4b3MTGxZl15GzduSn29opRRLrx3z25SqG+r7N5iJTXgyxZv3Jzs4O5sh6olvfBccS94u7F3T/Jy4eYj7D1zH6euBiM8KgYR8vuVPLBM3uvr64vo8LuwSUEZ5W7ZxNyimP2amdxDae5ZICAK6bNwleUcM5wAK6Dv9SqJ+jXyqrYcXQuTVbQArCLJ/UVZRC3sQuwjWEWchrVtfrjlrYzQB6dQqQwwY3wNTP3nEhavu0FuvDQDLZKrCDi6esHaRh7LphfVijwKqlWvjfpNWpjuyvDP/d/5CDMm/4zA+w9oGaR4a1BGN8oJxcqXK4OSJUogJuImbGJv0XPEOKbLkbrAf+YkFA6gslZ3UaJYPviXfAH3yGp6/Phpyob9yNwBadoWFfEYUeHGfUu6ulrkzvvdD/9D4L17WLp0MY4dPaIK84D4xvVrCQ68Thm7ff0KJNgmH7KGAN+Pbk62aPxcfjR8zsfiThT3cwX/sQQ+jMSy3ddx7sZDZTm1uDI5IN0JeHp6wt6avsM6HbAiIySUId0vglQIGfnITSAE0kjAz8cRv4+tSssCxX+dHF0LwdE5H6zCj5P7S0SaareKvk11hMPFqzQppXE08AtE3y7+qEIuwV9MPIUHwSlYXdPUuhyc2QSsaY1MG9uULQ6Z3a+sbC82JgqlSgagQdNWurrBLqAhwQ/AFlUXVzezy64dyQAAQABJREFUx/B+dw8vs/vMbew94H389tNXiIzNeIU0f34fVK5YFrZWZA2NOAzr2CcudKmZqIglqwf9+XoXRIHmzXDsxCmymF40d4qp3hYdpe8Zt2/vHgTRElLh4eEoV648/lu8XC0VtW3rFnhQTDBvN5aIiAh4uMcvSWW8Xd5nLgG2hjauRIpoRcsVUXM9ZYtqr2bFEBYRg1kbL+HirUcIi9SpCZmrULalmQDNN9Bkm/5qrJQjtv7yUlII6CEgCqkeSlJGCJghYE0ZcksWdcEkUkY1YTddR9eCsAo7mmIshnZMiq9kYbUKP01KaRk8vHcIMVGhqFLeE3+MrYK3PjuEO4H6BoQptiMFspzA4yByxxRJQMCvYGG0atsJMdEpT74sXjAL+3ZthRspOGGhj1CoSDH06DOI3N+dVJ0b1y7DscMH4OzsQpl0Q1C9dj083+iFBO0l9aHbq32VpZSXhskoKVOmNMoGFAYeHaXlZwJ54YV0kvuUM+0Ciub3h4OVH3bv3ptO9eqvZv26teA/TcLDw9C1Ww+wQhocHKQmELR9/MrLTUniFGMimfve0d4a5Yp44tUm/hnSsJODDV5vWQIXboXi7w0XEfQo5e93hnREKsWjR6GI9HaF3qlQG1sXoSYE0p2AKKTpjlQqtIQAJ+ZwcXGlAaIrPCizopd3PvXq4OiEKIpJCg4KVAPH+4F36TUIPGseHvbYkiYyrGyxQs4JlFEra1s4e5ZSymNKiQEs7hS7/UZepfpL4uHdw+pw7zwO+O3zKhjw8QEE0lIxIkIgtxHgbLqv9HpT92kVL1EaL7TuACdSOKOiIjHh+y+xf/d21GvUDJcvnsPmdaswfPQ36nnDS7v88NUnqFipBjy8UraWunvmQaNmbbB62UJVt+5O6SxYoUJ5FPcvQIlFeDIrAyaZaBkHu9jj8M1bHM8/Xxfbtu3Q2bOMKXb71m0ULeqvKr958yYKFiqUoKFChQvj5s0bCbbJh8wh4ErJitrWLogaAd4Z3mBxXxeM6l4Bv684p9x4Yyg5l0jmEuAEaKVK+tMY43qKDcfZeJPrv7jspghKClhMQBRSi5HJAWklwDPfdvaOKFO+IqrVqg+vPPFxl3rqZbeug3u34fjhg3j8+BFCs+jB6OVhh8lfVUvQZSc3f0o2Qi62MeYtKOyiFBYWTVl47WBnZ7nrn1XUTVjTAtUOzr6IeEwxZSReHvYY92FFDPnqCIIfJp8dTx0g/wmBHEKA49aq1KgLB3pe6JWKVaobivJamLFxMfDMk0dti46KomRhVrT2b/zPnpu7B2WqtccjykyrRyHlSipWqYG9uzbjdjorSqVLl6Z4z0Kwiz6dfp4VBhIJ39jFXEBez+KoW6cWduzcnXBnBn7q3KUrVixfSs/tx8ibLx86de6CObP/Vi1u2rRBxZZWrlIVhw4eAC8dkzdvPmU9zcAuSdVmCHjQ71PfF0qgcD5nM3szbtPA1iWxaMc17DkTiHBx4c040GZqvkcx3Xfu3oePV0GatEpGKbWi9YWtC+LkyfhJcTNVySYhkGoCsuxLqtHJgZYSYGuod978ZMHoiEJFKWtkGiU46D42rF5Klo+zCKNBTmYJJzD67qOK8C/01G3F2sYR7j7VYBW6j7qRMBtnGC3V8sfcMwiieE9WRh8+jkaDGj5oXMdXdXny3LO4dC1xspFBr5VGwfwmgwIbD8Ta+SP4DrfzVFZvuY1f/zqn1ix9ulXeCYGcS8DNzQNvDxudqhPYvG4lzp87hfz5/dCqXRdKFGVDS1FE468pExB49w6atHgRQQ8CcefWTXR9rb9Fbdy5dR1/Uz0REQljHi2qxKhwwYJkiapeGbaRJzPGMmrUlvHbKNtSuHglEEeOkEU2HcTBwQFbtu+myTZaf5kszpwldzMpmsOHfqBqnzNvITipEVtDvfPmxZLF/2LkR8PJNTneMbld+w74+hvKaEzXh/fzcStXLEuHnkkVegl4uNjjg45l4OacdbaKdQdvYd2hW4iUTLx6L1u6lOPvb8OG9eFo+wj2SilNOI4BrUEaYVUIFy7doARpJ9KlTalECBgTyLqnjnEv5H2uJsCDQTc3dxoYvoxiJUun27l6kAtdx669yJU3GEsWzsKdm9cSJcZIt8aeVGRna41ubQonUEZ5l71zfrKOcvyfyUOctnCygKZ1/VC+lKd6f/32Y0z86zSqVfSGu6sd+r1ckpdrM8ijx1H4ecYpuJPymkg4ntQuGrYOXoiOoOVknkiLBvmx63AgNu++p22SVyGQYwnY2NqiXmN9sZ3mTjKQ1hCNozU679+/h/CIMOWia0NJgUqVLg8r+ndgz3ZcPH8WXVKxnqmPb0H4+BbA1csXzDVt0Tb2FqlerSpso6mujHDTTaY3djEXUcy/PO7dC8SNG2l3jeVwilqkWCclr9Aao/w7kI+so+yKa7q+6JLFi8iCugx+BQpQxt3rNIEgiW6SYpkR210pi+4bZKXUq4yyZ21waCSthRsHL1cHWCfh9MPWTl6HNI+bg67EOc2q+FK9Udh58h55OBj9MGbESUudBgL8/d24cTOqVK5E38FKiI18QGvMhtP1pck8OFPGfzccP3YcFy6k/blnaFTnG1v6PeDnQZyZ+4Enr0Ipe7hpUjSu2ppuyvz5fXGblu2KjU08NtPZvBTLJAI2Tk5OYzKprWzdjDu5b/n6+qnYoChy7TIV4kSZAD0S/YialpPPCQlwLGiV6rXQtedAi1xzE9aS/Ce1PiG50rEL3o2rlzJ0MfiC+R3VOqOmPXL2KA5rWp/L3KDSlpRYH29Hw49xKFlIj5x6gMa1fWFjQ8Nj0lg5QZL2t377TVX+uTJJxLXReoOwcaOMu5SoxEga1cqHZRtugi2yIkIgJxNg62i7zj1SfQplK1RGVXL3PX7kAG7SciIBZcrj1Imj2LJ+JQa++yGq1qyHYiUCMO+vP1HEv7jFz6a8NMg5fnh/mgc51apVoTUdw+jZkRXJrGJpHdMoePuWwtmz51LN2pIDIyMj8ODBA4NV1PRYHjSGBAebHXialpXP6UfA0d4GrzTyRzFfV12VHjoXiHFzDmLLkZvYfuwW1u6/Rse6w9v9qXv98UsP8PO/R7Fkx2Vso3LVS/vAhWJT9Ui5Ih44Q8vCPMhmiY5saHLd0dGZYtSdKZTAiX6/bdS9GpdLlB3+/l2nyambN2+R27QVTSTYUNLEcFy6fAN79+1T31091y89y7i4umL12o2kDB9VE1Va3RxjPn/hYvTt2x9vvfMuChQshC2bNxqeHW1ebId/Fi5Cm7bt8N7goaRIn8P585nznNP6KK+WEdD3dLCszhxVmtPNL/xvKQoXKaJmUfLl88Gk337F/378Xp0Hz8x8+fW3aNmqtYp9uR8YiNf79pJkCzquMicraknucgFlK+oonfYiFSpVh3/xUphJawYGBz21Hqa95vgaHB1t8EHfUmars7GlH/II87Gj2gH3gyKw50ggrpB7bscWRczGkQaFROLA8ft4r09Z7bBEr1YUo2pnXyLRdt7QtokfZvx3mR7KZnfLRiGQIwj4FUiY4Ca1nc7r44u7d26qw8+fOQlfqpcngFjYW8O/RCmcP3sKxUuWUdv0/legYBHK3OuMRw+D9R6SqJy3tzd8aYkXm8gjifZl2oaY+7Cz9UZAQADOnDmTac1KQ9mHgDV9H2pS8qLyRT10d8qNloIZ0rUyxZnGh60s2HIB/DeiexVVx8nLQZi8/AQ6NSiBGqXzwcGOFDfdtccXfLttAMbOPpZlSik/J5xp2Sh3mhwrSRNaHGbk4+MHZxrXGEtYWKgKA7h66QIunD2pvDJCKcN3TlZSQygDOf9ltYz94mu81PlluJJSaiqjRn+OzRs34OuvxlJiTBcsX7kWzZq3wOpVK2i5L1eM//4ndCevjEOHDqJGzVqYPmMWqletKEYlU5DZ6HMSThbZqIcZ3BWeEfrxh/EoV7o4GtQjS17nDvhgyHD4PVmQu3WbF1G1WnXUrlEFdWpWxd69uzHyk9EZ3KucXz1nx3y131uZpoxqxFzpx2PQB5+iQKGilMAkfW/von7OqFTWU2sqwWtsbOIY0AQF6AMnNQold9yomDjcu28+i+b6HTdRtXwe5cprerzhM2XLtE4i7XrPl4qSddXBUFTeCIGcRsDa2gbVaj9vcbfZnWv3jk2IjopWx7Ir/9GDe+HvHz+JlJ88YE6TlTT0YXyGyPCwMFwit90CBWiZlVRIgUJFUnHU00PKlAmgNUJZWc5aVzK72BsoUzrgacfk3TNFgF11O9S1bAKoRAF3gzLKsGzIw8fYOrpk5yXUK++L+hV9wdZXngOiIhZL21qU6MsmfX/HU+qEq5sbihYrqdz53x02Br3fGKyWhvIvViqRMsp1OTm5qOWl6jRoih793sY7dEx3ygxeohTF4tJ4RCT1BD79ZATKlymRyADECeuaNmuOefPmqMpDQ0OxbOkS8HidpXHjprh69YpSRvnz3j27VUx7/QYN+aNINiXwzFtIH9KacsuXLTFcnmjyU39EAxZeF42lVesXsXTJIsOsyrw5s7F42Srlmy4+6QZsCd6w62zvge/TLFXWLWrea8B7mDbpB9y6cS1B31L7gbPi9nu5aNKHxyZ28zYtzAmKOrUsSslQYvHtH8dQoqgrCvs9TYzErjEnzgRjcL+kraNanXEx5hVa3l+/el4sWHVdKyqvQiARARuarOFYMRey+nu5OCC/lyM8KZ6Zw/ZsyY38PrnKPXgYibvB4Sr+6yFlh46OyRzFieMMi9LgLzWyd8dWLP13LnhCjBXSKtVro06DJqqq6qTkBt67i0k/fwNXekZF0DqYjZq1RvlKCbNl6223YuXqOHf6eKrcdjkEhGObrB/v1dtcxpWjCS7qCAqTC9zVq1czrh2pOdMJ8OSOFf0lJTZWcehYlydWUqf0Hb14D/tO30UITbS+0oS/s9aIpkn+8zdCUNzPHb/8dxwR0TEo758HLasXNngnJNUf0+2VS+TB+sN3cCsTljWzp6Q+RYoWR8u2nZWFzbQvlnwuWrwk+I8Tn61buYieEyfNxjhaUmdGlrWxpjhgd1s1eeDn4wjffA4o6OtEE+O25F4fh7s0gX7jTjhu3Q3HbVr3PCoqDkEPYyy+nnrOIS4uFrGUgC454QzctrZ25ML7dHx3nd7XqFVLHebr65tgH2+8TnHpvk8MTcnVLfuyjsAzr5Bq6P39i6F7j9dQvUZNDBs6WLnn8j6+gdetXaMVw7Vr12gBbweKOcpDg5t7sLG1N+yTN/GLmXegRENsqdQrnGUx5MnC6OxqkV7S980h+GX8Z4ZrmZZ6vdxtUOM57ySrsLah+4CngXWIAykBnG03KCQKhQs8PWb99luoWTkvuaekfE9Z2XKCiKfHGjf7StvCWL3tHh6Hm3eS4oc9P/RFsh8Ba/qR5aQ7GSFsaHBzskax/K5oUMEHhfKaZHBOptF7IeHYfPQuTl0NRihNqERlYJiyNSUfSureTqaL6ph3ho1Sg8CH5G7GSqm9vfF3yYoGm53UXzDFMepd6iWpNouRmy9PuvEyJpZK4SL+QHRQssqCpXWmpbyDTQiKFSuGGzdp2SoLJZaSR3ECKZHsR8DZMz8c3fIk2TGHyNuoWiY+23uShZLZERJuTQlv7BBGSucjijn0s3fAg2CKibZzUHGWLQMKIIySGv2z+TwiY23xUv1iydRmflf3ZgGYtvkeZQ7MmAnuuJhIOJMVt+1LXeGdj5ITpqM40/J27V7urcY3y2iiLOjhY/Bvd3YQq9jHcLAKRbnirujUIj/KltA/9uK5yTU0xli+6TaCQq3o2ruQ15ZdupxWVBgZhO5cTrYud/f4e4ETMWnCSY08aKKRhUPxTJMccVmPJ8dpx8hr9iIgCumT6+FGNypn62Jls0SJp/F5fAMb3/Raqn++8Vkh9SqYupn87HUbpE9v4qIpyyKl9fcvmbKFT2tx8YJZ2LdzK9w4YRS5XRQqUgyv9n0TDhSfZSy7t2/Con/+xidjf4ALWVD0St+3hmP2zD8RZ+uk95DE5cgVsHzRcNjQj2xSYkUzzVY0kDYnN26HUaKl2PjMvKRrnLlA8RmP41C0kCctRxF/zPVbj3HhWhg6tqLkSJQoIUWh9pLqTz6a3fTM404/Nj5mqwm+fYkSIpFVRCTbEXDPVwS2NIhJT4mOfAy7qBC0rOaL6pTpOTWSP68DXm4c/2N//DJ5ley7jcdxlNTDQf8gRm+7nLHTJg0MeBDo7Jb8eeah5WDSKk7UjqObFxxo7T5LpXTFymR9eEBKqX5lII4mkmyto2FjFa8A2pElmye32LbF4QCRZLXgrJJxlPQsIpq2WzJAtLKHv09FnLgcaOmp4HHQHTwOvmvxcXJAxhOIn3g0PzEZF/UYraqnTQFrUMkP/Lf/9B0VM/rtwDrqpHhK7cXaRSnpT7zllbPlLthyPlUKaaG8TnC1iQBFZaY7sDh6Nlao+BwaNG2Z7nUbV8iTY937vEFjnW3Ys2cHZcpPOL4xLpvR72PpurvahaJ/18JoWLNkqprjy9qqQV71FxoWQ3krrmPL/kCExbqRkSZtiqmeyXItvpUnHLXxOWcs1zwb+ZWTXRpL/P7Ux/wb1yXvM4aA+RF0xrSVrWs9euQwhgx+lyx7bti95yC2bduKgwf20w0enGCW3ZEyq7FoN/69y8ez9XllZueKU5KQSpWr0nIkYbqbLUJxWE0++YJmU11UhuMJ33+JXVvWo16jZoY6OOnI1nUrVL3R5AITba//gefsRMsqVK+Otcv/TTKzo6GhJN5w9ttmncshOjLpdQdjY8iuFW3ebTc8LBxzl5ESSEqpo4MNIqNj0a5pQVrWhaLHnhyzatNl1KrkCUc7cleh/SlJHMWhJtefqgF2WLxO373Jg1i2SJlbZiGltOnseuhMGQcDKdmXSNoJBN08n/ZKjGrwpHUF65bLi2ZViqqtMZH6v5tG1SR4W8bPDmXaFlLLMqw9SOvrPjJ/3yc4yIIPfpVrWPQMsaDqdC8aFhJIIR4XLa7XpkoJPLp9krJyR6Z4rLOTDZwpO2mZ4m6oEEATp17GVt/Eh3MW71MXHuL42ftkrYqitYmjdCU5i7RzQUzIjSzJpJn4LGRLehAIfXAL/GdOeM3Rcn4VkB7PBG8XKwTeD0ZE2GO4O1ghNopdO4OR3zNeKeDfKl4rPLVt1SruiHlb9P2emTtXc9uMky5aMmYxV5febZWrVkMeL0+aXJ9JS5XEx7LrPTY9yuWj/BK9OxTBi43LqOqSG0PobY+GNBjQ2Qf9O/lg7ISTOHQ8iCzB6fubYNqXexR6wathFCxUGBeeZM7lrLu3bsXf67zWccFCCeOieT8vNyWSfQnET19l3/5les84fvQu3eyFntzMfAPzjawJv+cZGU5dL/KUAD/cO73S7+kGne8qVqmulFEuzoHqsXExZN176mIUeO+Osox27/2GzhoTF6tcrTa55z2tM3GJ5Lfk8bQnd12v5AvZJG2B9S/kig8HVsDg18uiX9eSGDmoIiqXTdifPp1Lolk9nVYbaxfExSSvWDStm4+yZ/I8dcoy+rOxGDXm80QFOW36wSMnMGf+Qhw4fAIvtGhpKMPZp8eN/wG79h7EMspuxxnutERghkLyJksJ5PdywjvtS5Myqt8KZ0mH65TNiw+7lKdYMddUudgm1Za7ZwrftaQOzILtHMeUKmGX+RSUUVcXW5qkyoO3Xy2Bga8UQ8NaeVNURrkvLhQbXK2CF3p2LIL3epdAm8Z+cKUQgRTdoMmFz40mZEWeDQJF8qXeSrf31F3cfxjvLsnum5sO30Axihnl+HO2nlUplQ+r91xREyERUbHYdfwWxZGm/ntdq4w3XHUuGaPn6vEz5uXXBmR60kXuW5FiJfBav3dUSIGevqZHGXvKgVGnijfm/a8WKaM6xxkWNswRRKPeLovPB5fL8MSKrIxuWL8W3bp1V73kLLsvtm2PlSuWq8+bNm1AkSJFUblKVfW5Jnnucdzptq1bLDwrKZ6ZBJ55hbTic5VQu3Zdw491k6bNUJDWM+JU0SycQrp9+4609pSj+ty12yu0bWWqElmoCnLpf+WeqwZbu9Qb3DevW4mpk35C6TIVULZ8JUWJs2D+PWUiXuraE3m886aJXIcuPcnSnbTLbXKVs1rHa4kmJ7HRFEdm45FkEX5Yu1Kq/Dye+hYHT7Ii2hFH7URFJu96UtLfVVljk6unWfMXsGf/YfTqnXgiQUub3uvVV9Cofh3079cLP/70K2UUjFe8Jft0cmSzdp8tjQgrFfciZbEsLVifSoVJ5yk40ECHl2eoU9YbPOhJD4k2sw50etSbEXXY0MRMaiQmOukJJRfKelq5jCfe68WTVD5ml4eypM1KZTyorhLgSSp3UkyTElvrSMP3O6kysj13EODfo9o0oZRauR4Yio+n7MbQSTsxeOI2XL79EL1bljFU17VxSVy58wgjpuyiMjsQSVrryw1LGvan5g1bdNND2BvrJcpzwUtA6ZM4SpAWhOAH90nBTuw2zM+roAeWeQh50XjmVcrIyx55GS08sdWnsz++HFI+o5tS9VcI8MBcUnzLlnAzjKtT2/D3P/6M3fsO0XI7+fH75GnqPU+Gs3zx+RiVaXfHrv1qYnznju1Yu2aV2hf66BE+HDYYs2bPx6YtOzBl2kwM/eA9Q3JSVUj+y3YEUvdrmu1OI/UdcqZYxV8mTiK3QxdadylYuR8OG/I+rl65oipdvmwpGjRsrAbujx4+wkNys+jTq0fqG8yFR7pT/GezVu3TdGaBgXdUYoz79+8hnFx+efHp2TMmqQyZvIB9WgepPr4FKGGBD25ev2pxP3nWNyWJDA8kBdALVjHJK4op1aNrP60bGPnoQrJFOdW+XQpKNCfr4r9PRn1GCjf53RhJcmnT16xeJdmnjVhlp7e8REINWlOwc/2nXh2Z0b/OzxeBh7M9Nh65TQuqpy3BjSut/ZdThD1DAu/etri7VuQJYk7y0oRV93aF4UbZLdNb2NrKfwtWXcP5y6GUNTnh4NoaUXB6MvGa3m1LfdmLACt3ZQvrz8Vg2vsO9fxVjOgDspLa0xqjHiYTHV6UmO+TV6uqNURtKeSF1y1Nq5Qr4oHrgZYnEDNulyelm7fuAD9aR1iPnDx2CAvmTKcla6xUbgf2MujWc4Ba75yPnzvzDxw/coASEbpThGscqtaoixfadNRTNTw886A9TZQvnDMN4eTqnBGSl9z736WJrecp835my4TPqmDsryex48B9RKTyN4HD6JKSK1cuo2nj+vCl5bx4XM5KqLEsWbwIK5Yvg1+BApRx97rZkCTj8vI+6wmk/69e1p+TRT3YvXsnalarpBIasXLKqaONY+k4A6wWW+pKg49bt25aVP+zULhkQIU0nybPWLLMnj4JG9esQKWqNXHn1g2E+BfHulWLEUNZ/Fg2b1gFdsEtQLEDlkqzlh0wZ+Yki5VbT/eUZ2YjH9+hBCfVgShSeJMYbFraX7PlbTxpltaKYuzilyUyW+bJRo59Ta2klDY9pezTqW1Xjks9AbZ6lPf3yHRlVOtx86q+lIE3GtuP30VMbEJlRyuT0a+ODvbksupMC6U70QQRf2/jY6O13jAjW0oaFkNLU4RRbHfo4zAazITSM5/8DjNRbOzJXdIoJN2GJr1K0TJQnVoWzPBedG5ZiAaJgdh58D5N/hkpxlYONLBOnReJaac5/ILd6swJJw/kwaNpFkwum1LMurn6ZFtqCGjfiNQcG38MT9TmexIjmlQtrJiml1SgZ9vag6kff/ESOBUqV0N58ubSKy40Odb/7aG02kK8NXXV0gVYuWQB3nx/hKqCvbk6kgcXJ9Dh8KKfxo1W4xMfUpL0SBH/EqhWqx52b6P1k5PIQaGnHnNl3N3sMLhvKeWqa25/Zmz7lFx4R//vOLbtC9QVx56aPiU3Jufxu2ZcSk3dckzmEnjmFVLGzW4Y9+4mnyWQY0v5z1S8Cz11UzHd9yx8josKQ8PmbdMtM6hvIX/cvX2TrJm+eL5JKwNCHjBy9lFHZ1fYU2Kp1GQi9S9VFh558lOwqmWZQb3zPtbVXkxkIOydigORlwz9Tu83cY5FERV6V1d/HIiVt0uxRF0IuXsFURHJz8imlDY9pezTiRqVDRlOoKC3M3o2TXy9k2r4cXg0HtEfW0vY9dacsBVNj4eAdmyHOoVwLzgCJ65kgqeA1ii9uru5wsvTnaw1trTcUSQeh9E6qsGkaJLiaU7syCPAgRRWNzrOL39eBIeEUvkQpaSaK5/e22Louan5JDhQVpCq5TzRpE6+9G4myfrqVvUGW09WbrmDR6FPFMe4KIQ8iQtM8kAdOzhea+Jvk1G9asUEpTn/wp9TZ6qlGVxcXbB40X8YM+pjwwQwx6x/9c23Kj+DJ8X4DR/6PtgbQyT9Cbg4pN1imf69Sr5GbzcHek7ZICKVa07xSgotXuycfCMme1lhNBZWar3yeBs2VapWy/DeO68PrS1cAOfOnIBehZQPbkDjnLMnj+EOjXvSSzh5Yt9O/hYpo1HElddC55ABTw/zE1M8DotPgqi/p5+9Vx5vjjqI05RoTUQIJEdAFNLk6OjYF3z3so5SqSxCirKLA2VAZWcQes+DRicHW/We1/aKpGQBVmQFi6EMr4/pYWJlZX5QmcrWdR3GLl5Ozo5kwUw5W6RphXE0WNyzcwuq1axH8ad2eEgZjQ/t3Y5a9RrB2cUZ9Y0y7fJs++ql81GrbgMVd5Ga9rh9tvydPmVZtr77Tg6IiYow7X6iz6H3z8Imfw26XhRnGZMBD187X+pHFMJCriRq29yG2OhwBAclvj/1nEtKadNTyj5trj+yLeMI5KHB2ruUwEiPhJISOm7uQdwLCocnWTCCQyPRsmZhtK3jn+Dws9eCMWnZCXz/Rp0E21P68HrLEhg7+5hy10upbFr3uzg7wSdvHlrqxAqhoWG0gHuIriqjyOMiiuI4yTiKB0GPKOmPEwr5+ZDFNJyS2t2nfckvzK6rkWQK0aJNaq8NPb8zWxnVuhVQzE3Fxi9aewNh4TGIibNJU4wVL8Gweu1GFPUvhvtmsm6PGv05Nm/cgK+/GksWbBeVCK1Z8xYqT4MWs969ayeVv6FGzVqYPmOWUmrDKJeASPoS8Mzg2PL07W18bc60xBEn6oswb3hPtkkeX7Tp0C3ZMsntPHXiKI4e3EuW/RC07RSfSMe0fOjDENy8cRWFaek6S6V9l9cw889fEBGe9nudvS2a1cuHds30WWm5r+MmHcOiNVeQz5uWTgmJxP/ZOw84t6or//9GvYyk6b3Yxt3G4G4DtnFoNpiSTcHAEgKbupuEtE02CQFCCZvGJrv5JyRkQ0lCyQYC2KbYhE6CaTaYZtzt8fSm0WjUNf9z3ljjKSpPGmlG8pzjj6ynV+679/tGV/fce8q8mQX48XcWK3EvIm3p8wTxz197Cdd/ZQFOnTs8KGPknFjvv75pIT75le1o70w8jopVhuw/8QmIQjrGZ5zucOE8QLFSNLnKIrPiCza9ygY7RU2MJ220IvHOISd27O2kJMV+8IAziu99vCJSPlY3aw75fkZfhUhUKCvZr778PB576D4l4pyLfHgXLlmBlWesHV0m3UO5T+Q9UeExjs9fsAjv73ozqaBUZUUU1VYF0P7+IOXk2wuLYzryPKT09qex89WRqa6+Bu72t1TVhZtfYNOgqYVG3ClIorDpEn06BagZuoQHIOdRjlG1K5nUxeAiUj4XUSRMyviDg829uOWPr+OM+ZUoJMU2GOzHjfe+htZuD/l+pWZyt3FNPX6/dR8NHlPrG9SgKi8tppVRq5JsnhXJVIVzJPb09ikvh82CaVNq0NLWgW5nBiaVjlVSRylWQNayM0gpVLsyyl0Qr2ayObTDZqAJyNEt5pQvBoMmof945MpptVbKRViKv/29Ff5+Eyn1qfUXXJ7f78faNadjIaW2uPN3d0duobyzCe9ZZ5+Dc846U/nM99m86TFwcDQOHJjIZ31YYfJhzAQsNLGdi8L+qKlIKVlc1U+bkcqlyjU9zi4lLZ3bTXFEaOKcV0OHSjgUopgXvyVz4EWoJTejZKWkrALVtfXYTynuxioVlDP669fMTKqYRfOL8MUrZlJ/aiAz/iCu+sbLeOzpI+TPPtCWH//mHWx5poFSSKU+UffdL87CD37xPpxpThOWVEPl5KwmkJu9UlYjTa1ybIpSRv4Y65dUYnaSwQZKybxi7YIy5cV3f+WDDmx9swmuvoHBS2o1SnxVHo1mk/HHGFkiBwj40je/T2l0vGQO3QO7vQB6mmWPJjzDedvPfxftUFL7ps2YTSusDvAPTCbE72mjVWsjzPmzkeelH5d0KKXsN2qaBXfn+7RCmvqAMZn2ctj0n97+CyVs+s4db2Jk2HQeRH7l2q/jt3f8SvEFk+jTydBN77lsysaBjNQKW1ksmVU6eDorpbzPYhow49PRKsQt1yzDvsYe/OqxdwfPS2ZjRrUNtaVW7G1Mv1LHPqBVleVKEJGm1i5KFTV2f7hI25yuPuqPAiguKiDzXz1aabU0E8L+YqWFNnzsvCpVxX+wz4mHnjysKKE8AcHD8ksvmIr6GlJsSbppVeMPf92v+IT6yXpmAaWV2vCRmqhKq3LBkP8Wzy9AY4sHOw7lwxXFLWXIqSlvcsoFTpHTSDEaIsLxGpYuHzB5TOSzHrlG3tNDINpkRnpKzmwpbC6arHDu+LPWXZTsZcPOX7ZyNfj1zs7X8eAffotv3/iTIcf78dAD99AkdxCfuOKaIfuT21x/4Sdw929/Pqb8pLyK/O3Pq7OUGVq7c8443g/xWJQnvSqHpAX6FqWt49cF1zw99LKktk+dU4AFFPH7xdfbk7pOTp48BEQhneBnrafBRbHDhH9eOwVVxQMpNcZapRWUs4tfb+7rwqZXjqKnz5+RFVOOWFdZXTum6mopKmhVRTls06dRZF0jzUIGKfpjSPFT4OBSWhp8sr9XmFZGXbSK4exx0aArefPg4ZVM3wB2eLkDn3xuHnT1w2ybhzzfPloJSd2frl9fTj6vdejteJcCGaVXiT7/ggvBOUhttoFoi+vP34Drr/uOktZoaNj0trZWJejX0LDpEn062pMf+z5bSTW0uuj+O9FKz6N0Q588ozSpayLltNAK6ItvN5HS6MS/bFgAy7GUPpHjWr1RKTeZ+kSu5ffLz5qJX1FE16B2QGkaeizWdjgUhM5IPuJ072iip5D/1ZWl1AcEaKbdgzytbtAXM9r5qezjRd2O7j5K0WSjCTIjrZbGVkoN5nwUVAysIiRzryBZU1z+TwspcmfssoeWZ8s347OXzUFF6UD6sadebMTWl1vx+csHVn2efOEIZs8ownmrqmilMoz/98fd2H3AjbkzYqeiGlr+xetmYd8DemitpSigVzLi7e0Cv+KJnfz3WDiHd0Q4qJHDPlC/RD7rkWvkPT0ErDm6QhrL1z0eFYPRSKuWw31B450f71gJpR9hdxVeEdXQ2ITHJf933+/R092Nqz//NUrRFH1CPV6ZkWOcG5Un5d0UMTZVmTvDDk67kqrc/dBevP5WO1YuKsWqZcNXgVMtc+h13/rcTOza7SSrlhTsrocWJNsnJAFRSCfwsRZQqPT1S6uSWt1IprqLTioEvx77x1G8tqdDMeVN5vpE53I+KAtFHk5VSosLUVJcQGZoXlrN9aK9yxVztYODlVjIl7O2phJ9FBmzvbObBjepKab8A5Vp8bmP0o+WFxb7NBo09yAvQEpqfxL11ZCZsKGWeGjJTHcn+ejGD0KUSnse37KJwqJvinlpvLDpEn06JrYxHfC5nbTCHgl3k7gohyGIkyro74Rm55OVPo8P3TTJw9+jxvYeLKS+Yqj0k3LI5aZSNpdTaNXAYfChgXxV1Up/f5j+1gMx71lZXgYPKTUchCiTEgxTgI/2Lkrw7kBJkT3mSmmQfMs9ruRyEHIbKx0llPZhFvq96lYLaioGFNGIe0QeleGwaRU3Bl7NeH9vF77y6dnKZ04HPZ8Gpu/s7lByAaripLNjzake/OXhVgTD6v/+uOyQ/7iSGetePT0Dvr3sZxpRSjm3N/uqsyTyWY9VruwXAokIjMWK623yG62fMh2OwkLqk8J45aXnUFc/TVFG2Y3n3jv/W1FCr/78V8eUhz3ShpMXLlX8UCOfk3l3UFTdL39qbIp3Q1MfrY4CTa0eMt+ngHcqMgwkU0cruZ+dtrgYjz/XnMxlcu4kISAK6QQ96BK7EV/76GwylUvuxz+V6l60shpz6uz44zMH4fKkb2YqFfMZrr+FApFwZEufP4ijzZ3Kimiidvlp5ZRf3TQQtdNqwdS6asXPq6tbXRCToeVbrJznMPncgUPLULMdoNykTnqZ7VNgtJ4KBDuRRy+Eqc60QjJKNDTo1FI+M20xBWkx0apDA3zuxlGnjeeORGHTY0WfHs86nkj38nuG51JL1LZl86pJCSFnxBSkrtSMq8+dQQpeCN/67T8wq9qOk6oGVrK4uDCVy2WnWj6XsWZ+Me7aul+13zNfoyjCtAIxUqoqymj1L0DRcJNjNLKcZD63djhRTkqpjYIeOXtG3zdMyjNPIiQjxQUG/PP5ZvRreDKPfoKTmKjavd9JimY3esmX60IyyWXllv1KgxSkyU65S/kzi8Omw8EjPYOflZ1x/uvXFGN69R6UF/ZjfwYiJLe3tylpYKprarF/316lJhx1t7l5YGCayGc9TtXlkBCISYCtuDitSqrCqed4BZTz1AfIR5p9Ry+98jNKcX6aGNtN0XFZ3vn3Lyjv/B/7g37ju7cMfk5mY/HyM/Dis0/B05f8hFt1uQm1lZROagxy3ZcWKFf/x4/fwF1/2YuvXjN3DKVFv/Qzn5yCV3Z2orM7iQn66EXJ3hOMgCik4/xAOWjRdPKv+vz66eN6Z/bp+o9PzsVPH34fXa70dARsspKsFDhsqCgrVlZDeYUmFekhUz2vN4CiQgeMNOPe3KpulSFyL05mP57i6TlIyuVRSglTSilryqA1kZkdpVjoD/tp9ZTMtMPEIY9NfcJkltsDf18T2BdVRAjEI8CTWSvnlMQ7RdUxLsdOwYs6e3ykkKq6RPVJ8+tJmaM0Aj3kzz4W4X6D07S0tCfOvzuW+4y8lldFOikKb2V5qRKBlydoxipnrmCT2H5lssloqESe/5DqInsoIEggGCYrkSAFYaI+sMCoTChwATpyf4gIB7jiiQZVoitWVqSDfie+fOVJuO72dyl4icprVd2A0jNTdPBn/rYNGzdejh/eepMSZXfDhRfjtltvVkpI5LOu8jZymhAYRsBEbgg2MoNNVc5efzE+cu4GWsHvIp9yynF8zL2FyzPSCn864lqMrBv7vCarkLJPcDpzGNdXWXGwIXmleGRbon3mvO4Fdr0opNHgTPJ9x3/BJjmI8Wi+hnqNk6cWjLsyGmkbDzy/f9l8FNPqbDqE/SiSEYc9H2UUGbO13Ul5AlNTRiP389PAkAenJjK/LScFNxlxuZJb0Uim7Fjn9od5JaURro5d6G56Cd3N2+Fs3UHbf0d3yxv0+R/Kvt6u90UZjQVR9g8jwMEnUrGw4Ki6uxu6afVsoLi393egw+XFlAq2HEi/jDXFBFticGoXDjg0EeIjZYqj8JaVJpfqIFpd2azuyovrlENsAZFHCinIGkKtLF1Qgo0XTiX/rnL8ectB5bLI3wDnCIwI5481U7R2NdKvq4KH6sJyCgUeYbO6VMRIffH213fif+/6g+Jzzts//untg0XdctONSqTdv7/yBl55bQf+8feXsW3rk8rxoT7rz73wdyrjXgz1WR8sRDaEQBIECgqTGxtEK5on3guLSoYpo9HOS9e+VOJycL+ydkVqPp9hMvl/6IlDZH0yMJ5r7/Ri20vNOGXucBeOdLWPyzl7ZWp1TWcdpKzsI5DaL0/2tSMnalRDUcuSSVzPeUZ7KMF7sc2kKlqiWgjf/sQ83HL/rjGvWnC0WrXCAYt4laGVlEgvmd2lQ9iHo72rR/Hz4tXSzi51imZhYQkaDh1IRxWkDCEwYQSmlqe20u8n8847N79P38MQOP2Dn3IYf/q8WSilKN8sAep3vvO/25VIi24y8f/mHf/A/KlFyjmpNHYGmQIfbk1dmSwlP/M+ry8NwcxSqf3ANewqUFVWpLgbsA97qsLKnp0Gjyw8SeVxHaRgbnUU/OzDpIosKTTCRT5e7D/Kiex5RZQj7ZYUDTzDLkoFxia8iaRfX0UuEz4EPMetTJacXJiSjxf7hi5fQq4JMeTw4UM4a+0qygVdSQHqXBS8ZbgJdDyf9RhFym4hEJdAWUWaTT7i3i09B8vo+/Herh1JFcZuAGORv1IO0p/c+S6NpUzo6PJh/ZnVFMV7ymCRN/5iJ17d2U7B3nz499veUPLBbvrdRyjoZGprWuefWYEHtjQoVh6DN5GNSU8g8S/WpEeUHgB2ix5fvWSW6sJ+SwPGN/e0KaZ0nNbg9PkV+OgZU5Xrn36zAQ88M+CHM7TAdUvr8PE104buirpNQWvByet/8/jetAc6inpD2llBK6Ns+pYuZTRyH2YzYFJXpAQ7GnsE3kjJ8i4EsptAXVlq/kIzaxz4yedXKhNSrIwW201KPtJIa/V6DX76hZWRj2N+T1Vx5htzlO0Chx3NbV1jrsdYC3C5PSimia+xKKRnLh9uYu11HYHeeAq0+goKfNYcs4q7PuhCXbVVyT/KKxrbaXBYU2EBu4CwzJrmwOvvdGLd6oEou7vIz3Td6uqY5SkHtLQiToHT+treGHbeJ9ZX42mK4MsTopmQ5uammMUm8lmPeaEcEAJRCBQVsXl8bkkJ5UxNVlYuTH0lWEN9yB//axVZrQVJGfWilCa1TCOsK268NvZEU7J15fN5Us5i1opCmgq8E/gaUUjH4eE6KJruF84fCM+v9nannFSMT507EyaDFi0UpfLGu1/F8tnlqCqx4CMLa3DmKcMHG//z111K+hi15ddQOesWV2HT9gb4yScpk1JYMBAopXcMKwvx6sfmu11ON60OFKKhKfPBiuLVRY4JgfEiUF2cmkLK9WOfI+6XKKdQxqvL+ZU5d2aIzEiTFVu+BR5aHQ3Qqu5ECyuktZUllE9TqwQRSrY+nCPwvDMojdMI6eveA1spDfjCFI041D3i6MDHFjKj4zykZhrE8Qo2+45+8vz6wXPXralS8pC+s5tSsJDv6PxZBZgzPY4FS54e/cbp6Ov+EOHg8BXfelJ8ixzkm9+uPjryYEVkQwhkEQGOjptrwqll2E2B/dfVysmz4nzXVRZiIUsLC6WxGi+xWXU00Thed5P75AIBUUiPPaVC6rjYV6Cj/bjp0tAHaCbneIvFgo6OjqG7VW2fOq2Ioheq9xPiQpfPOW5jX04DuqpiK9473KkopDwprqEBXkT2NDhxtN2NL108P7JL1fvp80rwygdtONoxfECi6uIkTioqcGQ8Mib7eFVXFJNPqWFCTfuSwCKnCoExERhQKMdUxLhcXJhvgJGUuD5KI5OsOOw2JZhQstdl6ny3x0uz+/mq3QOG1oMHfLVVoycROKVTb+f7yC+mvMWeD6LmLT77tEryEatAD+Xv0+vzkE8WN0OFFdRrr56jrDgYaRLTaIhjSqcoo7Mp0Foj+au3Di1mcDsvzuWDJ8mGEMhiAmxdYXMUpLWG+VYL8mmSjIMp8qQeR/7v7XXT9zJ9AYA0Gh0FcKPARh51Zep0eTipbnS/ktaGZ6CwyjIT9hwcbrafgdtIkTlEYNL/7FRVVeGFl7fjZQq0sO3p57H58a1Y+5GzBx8h59r80U9uV4IwbH5iG7bQq7JSvV8Cm+peTGlXxiJOCut/pK0XUyuOp2QYWt7DLx3AhhX1NFBJ/nFuXDsFZhrAZEq4A2cTs3Sb6karL+cz5cGiiBCYDAQi5prZ3lZ2MzKk0Dfl0YjPbDJQtFh/1jSRo3tzn5aaxF4hDvq64CalFOa5FC53uFlv5F78vAtp5XKkMho5zu/2fH18ZZTzG5vmwUs+oxxUKZaUFacn8F2s8mW/EMg0AQ3lc0428GKsOrFyW1NdoQQ260eekjvd6fKQ/3U/mfEXor6mSokCHuv6ZPZzui02o1UrHNSMJ6RyTdgPXkQIDCWQvAYz9OoTYJvzt9104/cxb/ZJWLxwPv768F/w3euuH2zZ+RdswKLFS7Bi6UKsXLYIr722nY7fMHg83gb3KWsWjDbRinfNyGPc4d25+V0smlE6LEdg5Lxd+zspjYsXZ5xM0RpTkOoiMzjYUqbESvn7OJH9eAib9tls1vG4ldxDCEw4AQ5ocyKL2WxSchWTm3jWCK+IsBVGKsIKdjzhvMWu9p0I62vRb6iPd2pqx/T0W2Q5mQIpHYHXdThuGUVjDJISt3A5KATGgwB93TTa9BgB1tVUKBPrzW3dFJDLo0yS+Sg4Yy+Z8bd0dMNH/UJNZTkFFxv75D4r0kjCRCGuNcR4cE7xHuwWICIEhhKY9Appa2sLnt62lVIg9Csv3p45kyJOlg6YzK4/fwM2PfYImU8MmLU+eP99OG/desXGfyjIaNsOqwFrFxw3vY12Trx9PN68d+tuBGnj6nWzR53KA7WHX9qPC1ZMUaIsjjpB5Y6PnV4L6wgndpWXJjzNajFTOPHkTfUSFhzlBB4ssu+FiBCYDARyZYWUn0UqdTXq9Sn5amby2QeTTHU1tC5W8v9MJEF/D3pa3yCfWQ36zZSkXpeGoCxaO/mLzkJIU4qeth3w9cUOnhSpXxHlCRQRAkKAAjKWlSimuRxpO5awyxBbciSbgi5Wecns50WLXBQec4sIgaEEZPQ+lAZtr15zJhqPHiVf0QFf0goyzz3acNy0qYG2Od9aYVHinHSc7iBV4ZRyv3/8A0pW78VXP7YAxigmb6/tbqUVhBBOm5d8VLah9eKgI5ky2zUa9EpnPvR+mdwOUtRQESEgBHKfgF6vI5O47Ps+p1onf1DdAKy/PwQ3BRtyOw8gpC0lxfRkij1FFjDk+5mUkOlvv2kWwoaT4HG3K8poKKDOZ6ujOz2puZKqr5wsBLKQQEGBjXxEBxYk4lWPFVZryub88UqOf8xqSTzRFb+EiTlaUigrpBNDPnvvmh57huxtX1I1mzFzJr79ne/h2//+jcEIZw67HZxfLSI+30DkQYfdoQRAKqyaETk07L3f78ZZSyoonH9ywYy4EPa5/PVjuyjXkw5f37iU3kd3OGyut/nVJnx0zWwYjMnfY1hl6cOy+bV4eR/5LiRh4mKwGKEzxL93Hjno51GZo1swsgbp+RwmU5dEddKbrIj13KLVQm8KQKfPPX8Ho8VO7Rw9WeHqaEDQl/gHNhoL2ZdZAvbSOuoz1P2t8Xlqzx1a6zyyIrA6SmG2FcFEfyNaHa1E+j0IBX3QGa0Iet1KuRqdQbEa8Xtc6HN1oc/ZRuekpqiY6F6F+Yn9u8MU+EhntCjfYYPJrPSFXL+sEurTIn2MwWJT3ZfUVnqT6kf6Q26KgvsB8SiA0ULmgJaT0B90IS9MOV37SbHsp2fBL0Woh2WFlX1ENWbqcwsQCvRQ0KI2eu1RzkimD6urped1RF1AGK+rg8yAO4/VQ96yiYCFvudG6+jnqDOFUhqbTHTbjFYHCk016qoRpr6E+sjId1XdRaPP8gdoIonMaLVsSptAOFXSWO+nMxhhLSiHwU4m9irEZHEn1a+oKHJcTuF+Pto4LODtpSBvTeNSB7lJdhEQhfTY8ygvr8Bd9/wJv/5/v8SWzY8NPiWn0wkDRVSLiIkGSSxO50B4fndX9C9Ovj6MsvxqCqkfGTBESkj87qFVz7f3DqQveeOD4+WXF5pxyzXLlQJeeLuRBiNBLJlZmNI9RtZi+fR8PP/WbgTCiTvdyLUWfVnie7MpNDnpj5foyHE3EfNQwIdYzy1aPUP+fEpZkfxzjFbWeO5jpdPd5Rx1y1Age4LEjKrcJN/h6Wkn9yF1hivhEClsZNqpVnQGMwrKapFfWAF/Xxf8vR3oatuHcGBgki1aORqdEXqLAxZrEYoqpikDBWfbEfhJaU1GAp5euEmxTSRsxsWKMX+H8/rDFJQkPK79R6L68fF+WrWN9DED37HjfXS864MlppT6kVBfG5nZUn4EmmzTGxw0gWAlZcIKnjDgCT9FFFY+hGhiIRjoogmG94lb6n1WKOinvkNdTgbpT+I99Yk95uvrUSabRtYiVG4f/BseeSybPwd8fXC71K3ycyAinkCLfFdTbReNKFT3QRyQaKz34+t9fd2DbmKJ6m2j34tcHJ+EqZ+PNg7jSUmRyUlAFFJ67rV1dfjT/f+HP/7hHtzxq18O+0toampETW3t4D7e5hXTrq6BRO1+GmhFk5Ji8tsh06tUxEQT3b/9+qqol0bKXH1yOfhFPSXUGYJFLW5wp82kgUkThpuc9NVKOFhEKxjx2xiiziWZfFpq7x3rvAApW4nqxB1erOcWrdxw2ESY1ecEi1bGROzjH6lk2jkRdZR7DifAAy61wn+Tkf4g0TVFldPgKKtHX+cRdB58nVbP1H3PQ5SjMtTjgbenGb2te2FylKNyxkK4OprQ2bhHWUFNdG8+zgqO33Pc0iTeNYrCR/2K3+8nhYsiZWbZd6+flb9j/V4yfUk4qBtjPxImhpx2LPnUY/F4RzuWTLuiXS/7soMAT77ya6T0h2glPcXxyciyxvMzK2v+Y/E8Et1XTwsJQ7+ric6PdTxAec7V9kEhCpIZ6RtilZdoP98r6Pep/u0OBXNzfMIRkGV8kuivYXIdVz+9foJyOWn6DPzfQ4/iV7/871HKKDf5qScfx8UXfxQm04Bp6qUbL6N9TyTsoE6qTGyelm1IbZbMzE9oVa74pIMHz4qKCAEhMEDAYLaheuYSGMmyo3P/a3C3H1StjI5kGA75FYW2Y992JYhazewVitnvyPPS9Zl9NbWcMybLJB2RNLOsSVIdISAEYhDg4GpqhWNmiAgBIZAagez7tU+tHSlftWTpUiWvKOcaPdTQMvj65rf+Qylzy+ZN2LlzB1594y38nXKVrlh5Om774U0J71dXmnvpR0odxoTtSvYEL0WeM1BwkvGS8bzXeLVJ7iMEUiFgLShD9YzF8Pe0wNW8m1YpY5vmJlN+P/lmucnUt6/9AMqnzIetWH1e5mTuEwiQ73aWKaScuUWvl0mvZJ7jyHOLS0oGJ3hHHpPPQiDbCLBFnE1FsCKL2aisyGZb/aU+QiBXCIyfppClRDiNC79iSZDMNb7xta8g32ajhOj5aG5W5y9UbD/udxqr7GzbX2KPH6Aolfr29XkoUfv4JLfn/IB+yg0mIgQmOwH2Ey2pngnn0XcVf9FM8PD1tiN0xIPCyjmUbkkL9i1Np3Be4fIkVifSee9YZRmoPl6f9DHR+Mw/eQG2PLFt1KG5lOPb3duruL787vf3ggMCWvOtePSRv+LG679H/m/x3T5GFSg7hMA4Emht78SUumr6Ow2izxs9/oKJVkaLKBrv0caB2B/jWD25lRA4YQhM+hVStU+y1+VSrYxymVZj7un6nDc13dLr7oOZZg7HQ8wmA4Vnj+7TOx73l3sIgWwgwNFzS2pnkTL6TsaU0Ug7gz63ovQ6KFiSrYhSk6RRApRXmH3ADBRtPFuEB55eb3pWmrOlTemsR0+PE9On1gx7sTLKcv0NN+H5Z5/ByuWLsHLZIqxatRpnn3NeOm8vZQmBtBNgK6+jTS2Kwllgtw7LesDm+w6bBeWlhWht64CbJuBFhIAQSI2AKKSpcUt4ldmYe2ZdFlP668yrHLzKbDFlVillP1V7vhk9vclF/0z4ICf5CRriWkm5ePldJPsJcMqBsvq5cDV9gIC3Z1wqzAGSXE27SQmeTelJHGm9Zy8FWbNQeqlsERNPekkfE/dxsKn10BefrKeV5bPOPgcPPni/cq3b7foQHJoAAEAASURBVMbmTY/h/As2xC1LDgqBbCDg6u3D/oMNFPU7hLJiB2orS5RXRWkB8iis5L4DR9DtTBxFPBvaInUQAtlKQEaZ2fpkJqBeBl1m/hw6u7qVWcRMNslOs5Sd3T00EJKQ4Wo5c87doX7TvH3vnx4YvPyCDRdhx9vv4f4/P4Q333oP5563bvCYbGQngZKamfB0N8FHKV3GUwIeJ3pb9qKkZkZab9tDq2uZnsxSW2GTUa8EWUomErnask+U88xmC356+y9w080/xMWXfJR4DUxylpSUQkf5ZBuPNgw29ShtV1Smd1V9sHDZEAJpJsBB1ppb27Fn/2Hs3ntQeX247xAamynXL03CiAgBITA2AtljCzW2dsjVWUyAZxcd5INbYLOi25X+FUwOJsDmuvsPtmYxheys2oMP/Anf+863ByvHeSBZrPn5+MnPfo7LL/2YEtRr6bLluJvy9C5ZdLLq/GiDhcqGagKF1TMo1+RAruNEF3ECdX5FJL+Qkqmb8smXcx/lqjy+P3I80+9+dyelhalAcQ2ZC7cO9yflAEva4sKEVQhTqiK9OR964wCDALkXhmgNwmG3Ux7TiTWVdTjstDraN1g3bowpvwBlUxckbNfAuT3DrlV10QSdxNGZ1bbL3dUCd3cLOjva8cv/+Tm9d6C0tAzXXf8DLF22Atd999uw0/Nj4QAxEWHTZ/YnFRECQkAICAEhIApplv8NsAmeyVoAg9kKg5GSofOMM0V6DNGMHCen58TXnt5u1YmbJ6q5jS1tmEqBAXiWsbcvfQNLjqpb5MhXZinV5gqbKAbZeN9QKKyY142s29q1Z+HIkcOKMsrHXnt1O1pbW7Bq9RpsferJkafL5zQR6G7aRyXRF1yFBP1zKV/d8fy4+YVlFE13j5LzU8XlGTnFRaukBbUL0NW0n8zbjlsruJ1t6HQ1qrpnYO5MatfxPqK9rZ18tIrJP3ziViE4nYNe04/29jbyaz3eDK/bibZDB47viLNVbbEj4MsNHzO/t5fadTROa4YcOgaksbERP7/9p4MHXnjhOdz3wF+UwEU9PQPm4wYKcBdRSjmVmtPZPXi+bAgBISAEhMDkJSAK6RifvVYXKxDQ2MxfrY5SSqdQScqoAz53F0L+PgR62wYHeXxfg8ECCyW7L596CniW2tl+VFFQU21SHg2ENVo98ji3gQrJI79CtefyytvR5lbU11Qq16RDKTWSMlpcaEdbR5cSTEBtXfLyNLSCFOu5jW44n6+27NFXT9yevDxt1HayosDBYliWL1+hmNh1tLdj06ZH8c6ut5X9FRUVw8zreOfRo0fJxC4zKT6Um8p/NLF0XMFMjIM1o2Mr2rQC2U95QgOersSXZfCMoM9F5sJtsFPf1d16+Pid6PvfH1YZTZXPPabkcAEu8tm0UVRWDh7S3ZN+C4vjlYy9VUD3bqGgJeHwEG2UT0+yXbHvkGVHkmlXjKq3NDcrvqNGo1FR5NmvtLqmFvv37VWuqKmtpUCBzTGult1CQAgIASEwmQiIQjrGp80mdtFEO8SULtrxWPsMJiuKKqaSIkHRHJ1N6Gz7MOqpoQANzHjw6YSiRLKpXNX0hXC7OtDVfGBQcY16cYydWlqNtVO0TJ1Kk0EDBUHia9RKkMZyjW3dqCwvJtM1mh0fg/mu1WJSVkZb27vg8gSSqoeeVptjPbdobdGbPNDqx98EMlpdktlnpBWZwurqUZc4Ww5SwBs3Xn/tVXR3dytRQ+fOnYe/ProFV191BV568QU4HAWjoonyygabTopkHwF7cTV8lG80G8TrbIWtbPpwhXSMFWtt78C0+lpK68SpF46bfY6xWFWXc2RN9hFz9kgE73jA1qxZiwMH9uPw4UOK7+hnP/cF7HjzDXAAI5Zn/rYNGzdejh/eehOsVis2XHgxbrv15nhFyjEhIASEQFwCnNeYI3lL9PO4mHLioCikY3xM7YfejVpCyL8o6v54OznBPOcOdLcfhLOrId6pw46Fg370tu5TXvml01BByerbDr8HNidLRoJ+D7rJ1E6t6KvrEEzSBM1F53t6XSgjE7yyAqvik+X2qB9gctqFfKuZAmRocfDgYfSl4Ffm73Mh1nOL1nZ/RckwE8Jo52TjPi+trLcfGrJKNaKSf3t6G/gVEa/Xg0s3DiikbEpnpEmDoTJgYpfc39TQ62U7MwTYqsFotcPV+E5mbpBkqQFPN1kUgNwMbPB70hN5MhgMoYnM/ivK6bvYESIF8bg5cJLVS+p0G/U1ZspvfPCIOnPjpAo/wU4+afp03Pn7exQzXL3egKMNR/Dlf/vCYCtvuelG3HXPHxVF1Ga3YcvmTdi2Vcz/BwHJhhAQAsMIvPDydtTXTxm271v//jU8eP99ktd4GJUT44MopFnyHB1ldWTmVoWuwztIyUvdLK23bT9Mvl5UzViM5gNvo8/ZniUtPF4N9iNtJPNdNsMrKnQopniccNpLLx5ohoeY6/FVnIfQSINCi4miXJIi2tHZjS6KqCuSXgItzS2DnX9TUxOZ19UMuwGb2DU1ycB8GJQs+GC2FcLvZl+8EeakE1g3P02GmPOpXmlSSLkpbLrLE1ElRQVo7+iBn9JJZVKsZrIYoVRSh482I0R9lkh8Ar//3zvxh3vvVtJEufvcYDeAocIrp2etXYWKikp6li5lVWPocdkWAkJACIwkcNWVl+Pll14Y3B3piyN5jW/74c2KxcWWJ7YpeY2fevLxwXNlI7cIjM3RMbfamrW1tZdUw05J5Z0Nu8akjEYa6O1pRfeRXaig6I/sg5qtwgPMQ7TycLSplQKxBMkc1IqaymIlv1d9dRmqy4vA78WFNmjywmjv7MJeCrkuymh6nujHP3Ep5Xi0KIWVlJbiYx//hGKuyzuee+4Z1NXV49SFAyv9y8jXlFM3sDmvSHYR4O94cJxyjqpteZAmxUxWm9rTVZ/H332ekCqj/H+8cpkp4YjgDpsZDY0tFITHn6nbnHDlsp8oK54jldGhDW1ubhJldCgQ2RYCQiAmgWBweF5jDl4peY1j4srpA7JCOsGPj/38iqum08roToSD6k1XE1Xb39cFZ+P7KK2bgyPvv5Lo9Ak97iGfMH6JjC+Bj338k/jxT26nVc8msB/GY48+jLvv+l+lEuyT8W0yjfnTfX9GW1urcvybX79WUr6M7yNSdTeOwO3rzq6V6yBFaTUVjPZfVtWgBCexUsqz5BVlJeh1e9OaSkpHUcwLHValBocamiSvcYJnIYezm4CGYlFotKOHeXkajtafe+sRefT91B1LCZWIvJYsq5SAhBR8MZckT5OnxBBR205+vjkZdJH+BqO1kYPfhQLHJwE/+/kv4sKLLlH80//8wH3o7OxUJsej5TVeunx5Lj1qqesIAqN7qhEnyMfMEiimoEiuln1pWRkdWVOfq41y+jnA9+g4umfkYfk8yQlcRjlGbTY75QwsVUxxPZ7hKSkee/QRPL5lMyqrqiji7lExW8zSvxet1kCTWcd/wLOhmjy5ximrMiU9FBCN/ccry0tRQaulLlJM3WNIJ6WlQWu+lU10LegkhbetvTNTVZdyhcC4EWCzeVN+0aj76Qz+qBHYR52YZTuM5JfuMKqz+uoPU7BDiqafTET9bGgu55A220ugz1eX7cBoduVk0EXOoe0orR+F3O91wUUZI1ju+9Mf4KV+Xk8ZFc5bdz4uv+JKXLDuHMlrPIraibFDFNIJfI42MtPNI78vb09zxmrR13EIRdOWoYe+4AFfX8buIwXnJgGXqwf8iiVBMqU+cvhwrMOyPwsI8Ax5fziz/pTJNjNM9Ym2MpNsOfHO50BHR8i/00ZKZFFhAewUgIgj8Lr7fEq+43jXRo5xflGL2Yh8itrNLgQcvEhMdCN05D3XCbi7W8GvkRIoKqdVqOO5fkcez9bPXsq53tHZpKp6esp5G6Q2Ds1prOrCCT6J69tLbXT3xv5dHlpFU4Up59rI9Q94+9DRED2LRKR9d/zql5FN3PX73+HFv7+K089Yhbd27lD2S17jQTwnxIYopEMeo45MPNgUbGgOvMhhs9ms+Nt1dHREdo35nX1HvUlE003lhuFQgLLDNFJO0yp0Nu5NpQi5RggIASGQtQRcvX2kTPYp0bdt+fnKimmI/IwCFCAtECDzL8odyn5HbNamYXM4Wg3lGXcDvUJkHtZD6VzaKa2Mzx/I2jZKxYSAEBACk5kAT4530vjbZrNJXuMT9A8ht4zrM/gQrDSQefrZF7Fk6bJhd2El9UfkZ/fKazuwmaJ4cSSvysqqYeek8oFTInCuUV/v8EiEqZSV6Bov5Se0FVYkOk2OCwEhkIMEwqRUKT5hWVR3rk94nCPT9ro9SmqYD/cdQiMFSutx9dJKaRAUmJcCIFGkboOWgqPRzDz5J3VR/t1DDY3Yf7CBgqV1izKaRX87UhUhIASEAAdVXL3mzEH/2FWr12D6jJnY/so/qA8PDOY1ZlKRvMZPPL5FwOUwAVkhpYd38y234Z8owEs+KaUj5fwLNmDR4iVYsXShEtDlxptuwXevu4Hyq31+5KlJfTbnF1Cqhq6krkn15JC/j1YIAuAASr4+dWYgqd5LrhMCQmB8CYQpCmGeRj++N01wNw35tYbSGKQtwe1GHZZAaaOQyA4hIASEQM4Q4LznP/uv/yZlMx9OmkC0WC0UaPHrShRvboTkNc6ZR6m6oqKQEqrvX/cd5cWroCNl/fkbsOmxRwaji3JC3kc3P0mmXxrFDGzk+Wo/s3IY8Ixf4IxAnxMcEEAUUrVPSM4TArlBwE++4TqjhfoTzkWaHaI1mMmvaXiQrOyomdRCCAgBISAEsp3Ahx/uxrLFp1DQxTKwctrQcGTYmFvyGmf7E0y+fqKQJmBWQea5T2/bOnhWQ0MDjEYjCouKlFxrZtvoCHZ8cp4mPlpWDntdLWSOQPZk4yC8imKw2JDXFbteGqozK8pqg5Fo9QbV545DE1Xfgk2lYz23aIVwlD4NhZvPNdHpKVqfbfTKma/PReaU4i+Xjc/TSDlFNZySQYXw95X7GT8Fh8i3FcDrbFFx1ficYjAXwOfpG+wHOeKumXJ7JpL+/jBipapIdO1EHOc+UG1foiWf1VzpR5LpIwM08RD0yeTDRPz9JbqnniaqokW75u9YojFKorIn4riWIrOaKT+wGmF/ce5L1Y5n1JQ5HudwH2EwWRHOiz1WG1oPnaE/Z/qVofXmv8FofWeIxqp+j0s5leO5tLbG/13jvMYiJwYBdX/xJ0ZbU2qFw05mrr7jOTJ9voHIdA67Q1FI9aRYRpNEPl08kFEiY45TLrD+/hD5rObTj1DswS4f0xmtFEJcXcL5gR+13HNDzqOopLGeW7RnqdH0j9vEQbT7p7pPo9VTO0c/S45uJwppqlQzex0PIDU0AaJG8shKg7+zPMFQVDktq/IK6inVhKvp4GB/o6XJEb0m8UAy4g/LbcsFGfiORf8NGFl/jTaYM/0IKytq+0h+ZqKQjnza2fFZ+d5FGaNotHmD383sqKm6WrArgJ4CTKqRPJrc4v4xV/qSSJu4zlqawNNr1P0OaHTenOlXIm3kd54siNbH5JHFT0QhHXq+bJ/4BEQhTfCMnU4nOLR0REymgc7Q6Rwwj+tpPRQ5NOw9HCwe9nnkhzAF22CFlHNljYf004pYOOSnfIXHleuR92WfL3eX+tkmq75uWALjkeVl62cePMV6btHqHJhaQv5w2ZXnMVo9R+7ze3upnQMzjSOPyefsJMDh/tVKKGij7zPgo+9t0Os+ZrbrVHt5xs7T6s00Y6+ndBPH01n53E6KZjs6/US0SoQo7cHQxOjRzsmWfQHirrYvCZQU5Ew/wubWPa1HsgWz1CNFAt7eLvBrpAQryuOOBUaeny2fA7Ry1tOprh/htC/8u50rfUmEMdfX09OhOu2LTWPKmX4l0kZ+5/Q2avvOodfJ9olLIDemoSeQf1NTI2pqawdrwNu8YtrVNbqTHzxJxQavUOXRoG28hAeIrASLCAEhcOIRcHU1w2Qvz4qGGW1lSh69rKiMVGLcCXCKtOLi+BOy414puaEQEAJCQAhkNQFRSBM8nqeefBwXX/xRxamaT71042V46sknhjlXJygi6uEArdLp9KaoxzKxU0P3CpAphIgQEAInHgEXrawa7WVkbq/OnC1TBNjczFJYBVfn8dXRTN1Lys0uAplKkZZdrZTaCAEhIASEQCYIiEJKVDm09PbXd6KsrBy/ufMuZZt/XFm2bN6EnTt34NU33sLfX3kDK1aejtt+eJNybCz/ed090JkdYykiqWv1dC/2NRMRAkLgxCPA1g89bYdhKa6f0MZZi+vQ291CgZZ6J7QecvPxJzA0RdrKZYvw2mvblRRp418TuaMQEAJCQAjkGgHxIaUn9o2vfSXmcwsGg8rxfJsN+ZQPKV0RvTzk1+EoqY5533Qe4BQMHMhHUr6kk6qUJQSyi0Bn037UzF4OY34JfL3t4145vckOk6MKRz54ZdzvLTeceAKZSpE28S2TGiQi4Citha2wnCL525VTeYKsj/wg2XLD4xq/9HaJ6inHhYAQyF4CopCqfDa9LhelaUnfCiNHEQuRH6kxv5gGjx0qa5HaaSZ7BQUYURcIILU7yFVCQAikg4CNJqm0OqOqojiCJqckGirdzYdQWjcH3YfeHNdAF2yqa6+ai67mA0A/RrXBlF+AAkvitC88kNUZzeTOoI7B0LZPxLbBnI+Cimmqbq03+6ldw5+Xqgsn4CSO9qy2XZHAOYlSpE1AM+SWGSbA/U/51HmgABXo6ziI7iMDwR45ZoXRVoqy+nlwth1Bd8vBDNdEihcCQiDXCYhCOoFPsKejEfaiqowqpJyr0FxQiaN73pjAlsqthYAQUEPAYLIpCpmac5WUBiPy43o9PejpOAp7zXw4G3ZRFO+QmqLGfI69eg763F1w97STNcbo1FJa8mE36hK7KHC+ZM4byG3LBeHUV5w7Vo1odd250y56BkarRU2zBmMTJEqRpqowOSmnCFRMOwUBdyf6OodnG+CgjZ7uRvhc7bBXz1X6IVZMRYSAEBACsQiIQhqLzDjsd5FC6iiugomiUnpdmVnBZJ8y9uni9AQiQkAIZDcBV0eDaqUlFJhCKQ1oOXKEdDbtU/bkl89Az9H3wDmIMyn2qjnweT1oP/xBzNvwKprTO7B6EvMkOtBPuQMDvpm0uhs7PVW868f7mN/Ti26Vidn9VkpDQSkdckE4AF53c4Oqqob8A88qUYo0VYXJSTlDwFFWR6ljPKOU0aEN4FRzvc0foqh+kWKlFQzkxvd6aBtkWwgIgfEhIArp+HCOeZf2o3tRedIplJPJTcnF06s0cvoFTlDf8sGrMe8vB4SAEMgeAqzgqBVe/Yy1Atpx9EOUVM+gldJ56G3ZS32L+nLV3p9Ni1np9ZNC0nb4/biXhWgg6nOrG4z2k9luOJRZJTpuZZM4yCu6nGNVjYSDBRSdPUfaRc9Abbsibc9UirRI+fKeXQTsJTVwNb6XsFJBfx88zmbkF1agO0be9oSFyAlCQAic8AQkyu4EP2KvuxsdjXthq5hFpmrp8y8yWApgr5yN1oO0QpIjg6AJfhRyeyFwQhFoP7oHzvZGFNYvJLP9qrS2ja06CuoWwu3qTqiMpvXGUljWEshUirSsbfAkr5gmT6N6osvf100m4AMBjyY5Nmm+EBACMQjICmkMMOO5u6f9KLQUBMBRczJcTe/TaunY8oVylE171Wy0HXqXIuuqm70fz/bKvYSAEBgfAuwW4Pe4UVw1TQmg1tfVAD/5eqYqHEnXXFRDfqJGtFL/wtHCRYQAE+AUaavXrFVSpPW6euHqdeHqq64QOCcoAW0SAbryiIE5v/AEJSHNEgJCIB0ERCFNB8U0lNFFUeiCQT9KaDWjt20/BQRoSqlUa8kU8kktR9PeneDVVxEhkIhAcUkJ3L298Hq9iU6V4zlIgCelGvfuUEzmCsqmwlIyFb4eyhVKimlIxeSXVmeCwVoIo72MFFE9md0dBiu6IkJgKIFMpUgbeg/Zzh4CHBFbrXBwRU4DIyIEhIAQiEVAFNJYZCZgPw/yfO4elNTMpJDp5aSUHqUodW0Ja8Ih1k32cpjILI9XLI7s3k4+WOp/LBLeQE44IQnU1Nbid7+/Fw67A9Z8Kx595K+48frvUTqi3PBzOyEfSgYb1dvVDH6ZbUWUM7CCLDJqFHP+EPmuh/we2g5CQ2kcwhRQKI8GkBqKjKszWmmfkYKudaKr5TDczsT9UQabIEXnAIF0p0jLgSZPyioG/V7KO1oIf19iKwmOZeHqHv/cyJPywUijhUCOEhCFNMsenN/bS6sZb8JaUEYpYSphK5tOHX43ApTOIRz0Dgb7YHMZXrnQWRz0o1CgRLBrOfgOmej2ZFmLpDrZSuD6G27C888+g9t+eDOsViu2PLENZ59zHtgXTOTEJcCJ6iPJ6g0mKwxmG/QGEymeenqZaUKin/qaIIJ9nfB5DpPJb/ryL5+4VKVlQmByEWBLCUdpbUKF1GApooktG3o7d00uQNJaISAEkiIgCmlSuMbvZHd3q6Jk6migyL4XnIDdYCs4lhKin9IiBOD39sFFqxae3rclcNH4PZoT4k56vR5nnX0OzjnrTKU9brcbmzc9hvMv2CAK6QnxhNU1wk/poPglIgSEgBBIhsCAtUUhbOUzaRzyYdRL9SaHEs+i9TCnnxqdoirqRbJTCAiBSUlAFNIxPvayqQuilqAzqEsqHvXiETs9vU5SOmMHJ+L0C+kQvTGEwqoZ0BvNqoozGfNUn6uqwHE6yWixI9Zzi1YFo8Wdk+00k5lU2dSpo5rURXkqSwod0NGKWOPRhsHjR2l76fLlg59lQwgIASEgBIRALAKc7oldjIqmLoWXUruwX3oeRd9l039DfjH0ZNLLymifU8x1YzGU/UJACAwQEIV0jH8JeRpt9BI4rFwOSp5Gc2wVNnHl8/J4xjMHG5qXp7qNiSlk8Rkx2plH++32gRD8Pt/x3JAc1Ij9SUWEgBAQAkJACKgh0N7wIUzWAnIzKqW8xDPBVl3sOsTxLJoPfSDWW2ogyjlCQAhAFFKVfwRmsxkWiwUdHcMjxbUeeDtqCUHfqVH3Z/POgM+DrqN7ScdUp2RWVNVQihpPNjcpat34xzLWc4t2ga+kCMwm18RLA4LWA0dGVbu/P4yengFfY4PBgIhSajKZ4HRKZOZRwGSHEBACQkAIxCTAEf0lqn9MPHJACAgBFQREIU0ASafT4dbbfox1689HX18fOkkh/cw1V6GpaSDtQX84VkTSXPSX6Cc/jzCgturkE5KTfiFc75jPLdofhFog0a6duH38LGO1s729DYFAANU1tdi/jyYhSDjqbnNz88RVWO4sBISAEBACQkAICAEhMOkIaCZdi5NsMAd5WbR4CVYsXYiVyxbhtde247vX3ZBkKXK6EMguAqyMPvO3bdi48XKlYhxld8OFF+OJx7dkV0WlNkJACAgBISAEhIAQEAInNAFRSBM83vXnb8Cmxx6BxzNgsvng/ffhvHXroSFfSxEhkMsEbrnpRiXS7t9feQOvvLYD//j7y9i29clcbpLUXQgIASEgBISAEBACQiDHCIjJboIHVlFZhae3bR08q6GhAUajEYVFRehob4eVEsxHE41WH213Vu/TUp3NtmIlH6GaiuooGq+WIrXmmmj1xpjPLVpbdHodtNrc+6roDWZqp3VUk7yUhzIU9OPw4UM4a+0qVFRUwtXrgru3d9S5smN8CZjtJdCo/FvjPiZX+hk95Tu1agsTwmQT84Ecy7nRr3AAl1i/ASMbS4FHc6YfSaaPDFDubL9H+o6RzzsbPhsoorzeODriP3/HcqXvGMpRR22xUoR4NaKhUBg8psm1MYqW3MSMVmqjfvRzi9ZuvSmYM/3K0Prz32C0vjMU8IHjX4hMPgJ5hYWFuekgN07P6pnnXsLtP/sJ5Wh8VLkjB4HZs/8I1q4+Dfv370P5SQvHqSZyGyGQHgJdjXtkAJkelGkvpbhmNiWRV5d2Ke03lwKFQAoEejub4O4S3/MU0GX8EltJDSyO0ozfR24gBNJFwOd2ort5f7qKk3JyiEDuLfuMM1yn0wlWQiNiMg0MFiPRSPnHWEQI5BKBUMCfS9WdVHXt62lXvUI6qcBIY7OWAK+QimQnAY4oHw4Fs7NyUishEIUAr5CKTE4CopAmeO4cTZejj0aEtzlNRlfXgEmBzAxHyMi7EBACYyXgIYVURAgIASGQDgJ+Ukj5JSIEhIAQyHYCEpknwRN66snHcfHFHwXnaGS5dONleOrJJxAOU3oUESEgBISAEBACQkAICAEhIASEgBBImYCskCZAt2XzJqxesxavvvEWel29SvCXq6+6IsFVclgICAEhIASEgBAQAkJACAgBISAEEhGQoEaJCB07nm+zId+aj+Zm8RlViUxOEwJCQAgIASEgBISAEBACQkAIxCUgCmlcPHJQCAgBISAEhIAQEAJCQAgIASEgBDJFQHxIM0VWyhUCQkAICAEhIASEgBAQAkJACAiBuAREIY2LRw4KASEgBISAEBACQkAICAEhIASEQKYIiEKaKbJSrhAQAkJACAgBISAEhIAQEAJCQAjEJSAKaVw8clAICAEhIASEgBAQAkJACAgBISAEMkVAFNJMkZVyhYAQEAJCQAgIASEgBISAEBACQiAuAVFI4+KRg0JACAgBISAEhIAQEAJCQAgIASGQKQKikGaKrJQrBISAEBACQkAICAEhIASEgBAQAnEJiEIaF48cFAJCQAgIASEgBISAEBACQkAICIFMERCFNFNkpVwhIASEgBAQAkJACAgBISAEhIAQiEtAFNK4eOSgEBACQkAICAEhIASEgBAQAkJACGSKgCikmSIr5QoBISAEhIAQEAJCQAgIASEgBIRAXAKikMbFIweFgBAQAkJACAgBISAEhIAQEAJCIFMERCHNFFkpVwgIASEgBISAEBACQkAICAEhIATiEhCFNC4eOSgEhIAQEAJCQAgIASEgBISAEBACmSIgCmmmyEq5QkAICAEhIASEgBAQAkJACAgBIRCXgCikcfHIQSEgBISAEBACQkAICAEhIASEgBDIFAFRSDNFVsoVAkJACAgBISAEhIAQEAJCQAgIgbgERCGNi0cOCgEhIASEgBAQAkJACAgBISAEhECmCIhCmimyUq4QEAJCQAgIASEgBISAEBACQkAIxCUgCmlcPHJQCAgBISAEhIAQEAJCQAgIASEgBDJFQBTSTJGVcoWAEBACQkAICAEhIASEgBAQAkIgLgFRSOPikYNCQAgIASEgBISAEBACQkAICAEhkCkCopBmiqyUKwSEgBAQAkJACAgBISAEhIAQEAJxCYhCGhePHBQCQkAICAEhIASEgBAQAkJACAiBTBEQhTRTZKVcISAEhIAQEAJCQAgIASEgBISAEIhLQBTSuHjkoBAQAkJACAgBISAEhIAQEAJCQAhkioAopCrJms1mFBcXqzxbThMCQkAICAEhIASEgBAQAkJgLAR0Oh3y8vKiFlFcUgKTyRT1mEajQWVlFfhdJPsJyFMa8oymTp2Gt9/djU99+prBvfxF+NFPbscrr+3A5ie2YQu9+A9cRAgIASEgBISAEBACQkAICIHMELDm5+PpZ1/EkqXLht2gprYWT257Fpu3bMWrb7yFm2/9T2i12sFzLthwEXa8/R7u//NDePOt93DueesGj8lGdhIQhfTYc7HbHbjjzt/D1eMa9qTOv2ADFi1eghVLF2LlskV47bXt+O51Nww7Rz4IASEgBISAEBACQkAICAEhkB4CN99yG159/S3wYtFIuf6Gm/D8s89g5fJFyth81arVOPuc85TTWIn9yc9+jqv++TKcuWolPvsvV+G/fv5LsKWjSPYSEIWUng3Pqvzqjjvxv7/7LT788INhT2v9+Ruw6bFH4PF4lP0P3n8fzlu3XkwAhlGSD0JACAgBISAEhIAQEAJCID0Evn/ddzBv9kloamocVqBer8dZZ5+DBx+8X9nvdruxedNj4AUklrVrz8KRI4exc+cO5fNrr25Ha2sLVq1eo3yW/7KTgC47qzW+tbrhxptJEd2NPz9wH9avP3/YzSvIPPfpbVsH9zU0NMBoNKKwqAgd7e0wWh2Dx2RDCOQCgYDXjXAomAtVnXR1NJjzkac5bnY06QBIg3OOQMjvQzDgzbl6T4YK6wxmaPWGydBUaeMJQoDHJjxGiSclJaXQ6fRoPNoweNpR2l66fLnyuaKiYtgx3nn06FHweF4kewlMeoX0yk99GlOmTcPVn7oi6lNy2O3w+XyDx3y+gR9eB5n4skJqtkmgo0E4KWyEaCBjMhrQHw6SY7oF+TYH7A4HAgE/Kf4m9Lp6yIzaSe9O+mE1wuvz04BdTy9Z3E8Bt3JJKOAThTRVeBm+jie4tDpjhu8ixQuB9BHw9naJQpo+nGktKb+4CkazLa1lSmFCIJMEgn4vOhqGWyqOvJ+dxuUsQ8fmXq8XPC5ncTgKwJ+HCp/L43mR7CUw6RXSL/7rl7F16xO49qvfUJ7S1GknKea4rp4e/PXhv8DpdMJgOD7DaDIN2KA7nd3K+d3N+7P36WZpzTS0ApSfb0MhzXItXnYuZs6ZTxHU1CmYjUcO4fXtL+LIoX3werzw0+y8iBA4UQi42o+eKE2RdggBITDBBJzNB0A/rhNcC7l9rhGoq6tDWVkZ7DYrAsEgOju70NzcjI6OznFoSn/Ce/TQ+JyFx+YRpZQj7UbG5fzOCxpDZeC4c+gu2c4yApNeIb3jjv8HGylHEekPhxEMhugVUHax7TpH84oIb/MXoKurK7JL3lUS4NDbFms+Vq09D6cuWanyquGnVdXW4yJ6sRzc9yGe27YF7W0tyorq8DPlkxAQAkJACAiByUugvz8MJB7fT15A0vJhBMrLy7Fw4SkwaAPQoRsasOKnRaHVgmlTl5JS2obXX38DYRonT6S0t7fRmC+A6ppa7N+3V6kKj81ZaWZpamqiYzXKduQ/Pj7SFzVyTN6zg8CkV0jvvfv3w57EkqVL8fzzz1Igo0eV/U89+Ti+cu3X8ds7fqWYAFy68TI89eQTE/6FHFbpHPhgI1OK5aevxdKVq9NW2yknzcSn6XXowF48/siD6OnpJlPUUNrKz0RBnMu2hPJm2e02WC0WOAoK0NXZiV5yyu+hCM8tLS1wuYZHes5EPaRMISAEhIAQEAJCQAgwgVpS2BYvXgRN4AA0oY5hUPSgBRg/+WCW1GHtmavxzLPPo79/4mY6WBl95m/bsHHj5fjhrTfBarViw4UX47Zbb1bq/dxzz+Cnt/8Cpy5chJ073sSy5Sto3FWKl158YVi75EN2EcgrLCycuL+q7GKh1Oaue/6IZymUdERRjeQhPefc88iPsReuXheuvuoKcpgW0zo1j09H0dCmTJuJT1zxL2pOH9M5Lz67FW+SOW9fX3yH+DHdJIWLOdT4jBnTUV9fB4QDNN/ogi6P/Bv6/VTaMVNljQGBsAn9eXb4aYV+z5592LdvXwp3k0uEgBA4EQnwoIuDdVRWlilWPSazhSLED8wp8+DQ5+2j36demtRqUya2xIrnRPwrkDYJgfQT4ECd69evgzawB7r+Hhj0Gmi0edDTK0waQihEloOhfnKRon4mrw4NLR68+eaO9FdkRIk/+6//xhmUzqW0tAzd3d2KJdzpK5aQBWMQdXX14PG6mfpBG03wb9m8Cd/7zreorgOLEhddfAlu+8+foq2tFcW0CPCtb34dTzy+ecQd5GM2ERCFVOXTyLfZkE/mps3NTSqvkNPY3/a0NefQyuiZ4waj4fABPPzA3XDTxEE2yKxZszBv3jyEfc3U0beRQtqXuFpaUkr7SxDOs+HtXe/g8OHDia+RM4SAEDghCdSQ6dmM6dMoUIcD/cEu6POobwvzhBalIuuPWISQn6CG4hvQK4R8hHhiyx/C/gMHaXJr74SuZpyQD0UaJQROEAIWkxaLFi7A2tMqMLe2A9VlJprw0o9qXSAQRmePH4cb/Xi/eQb+/H+b0dzqQog11gmUiopKZaHITZNxI4UXlCqrqpQFpIiiOvIc+Zw9BEQhzZ5ncULVhKPlnrvhnzBrzsnj3i4PrZDedcftcHZPnJ+vhcxxly5djAKbDvrwERpADuSxTQqGlqINa+spn1YT3tyxM6lL5WQhIARym0BpaSkWnDyPTPv1MKAFCA43o0vYOu4/wBNb+crE1qFDMrGVkJmcIAQmAQFOUlBebMLKRUXYeEEtps1aQaujB2icos66LGyYRkEle/HyK+/gwS1HcOCIG53OgbgrkwCfNDFDBEQhzRDYyVyslYJE/dPGT6OmbuqEYvjlT3+gpIwZ70rYaDV91RmnwZDXCV14eELn5OuigV8zBc7efjz/wkvJXy5XCAEhkHME5s6di5kzp0MbPIK8YOvY6k+KqT+vGm0dPdi+/TWJfzA2mnK1EMhZAhxwudBhwKUX1OAT648H/SmoWoW83ldUt6tfX0muRXr0OQfcinrdQfz4t7ux8wNK0UfbIkIgFQJa8m+7MZUL5RohEI0Ah9o+94KP4qSZc6MdTmkf5yT1ejzD0u+oKejUxSvw9o5XEfCzr+b4CJuIrFmzChZdJ7ShdJh390Pb3wWDyYHi0mpaLW1Ie0M4+jG/ogUp4P1sEsN+udGOs38smxJ66PmICAEhMHYCy5cvRX1NCfSB3cgLD6Q3GFOp/T5ow22w5Beitm4GmltalQiVYypTLhYCQiCnCBTY9ThvdQVu/+4CzJsxPB+n2TaFghYlMbbQ2shXU4uAb8AKzWDQYO3KMiw9uRDv7ulBDymlExjzKKeei1T2OAFZIT3OQrbGSECr1WLxilU467yLki6JlZ27fvNzJd3O5770LeV6Di3+yP/9Ae++vYOc7A3gldcrP/MlikxbqLr8wwf3KT6lbMY7HnL66StRWtAPXYjMdNMsfu0s7N57FLt3705ryT+4+ValvBu+/71h5V6w4SL88D9/rKQ4KiDm3/rmV7H1qSeVc1jxvvW2H2Pd+vNJWe1DZ0cHPnPNVRJWfRjB7P2g0eTBQaagep0GJXYjimwGlDpMij+QjgJZdPT4Bl4umgwiX0SXJ6AEtcjeFp0YNTv9tJUoKSQz/9D+jDQorKuCN1xEkeRfgpsie4sIASFw4hMocOjx/X+bg4VzC6I21lG2BBo/pU9RbbI7lRYJ+uBzR1dif3nvPjzxfDM8voiPe9Tbyk4hMIyAbtgn+SAExkCgpKwiJWWUb7n54Qco/UkHRUs7PnP3zltv4PCB/fiPG38MPSmkm//6AJ547P+w8VOfU13LuiknYcnyM/Dy89sybqo2bdo0FBdYSBn9QHX9kjnRED5IAZJOUSJocsS5scrZ55xLCudPKAF2Oe65+3+HFWfNz8dPfvZzXH7px7Bz5w4sXbYcd9/zJyxZdLKyGnr+BRuwaPESrFi6UPl840234LvX3YAv/9vnh5UjH7KHgJaUULtVj/pSK86YV4pplfmqK9fQ3ocXdrVhX5MLvZ4gAhR1USS9BNjnvKSQJglCA2Zw6S19oDRNsBEmbT9OP20Ftm77WyZuIWUKASGQJQTYRLe63Izf3LIQZlPs4b7f2wmjvpAsMtRMUmmQpyui1dHYk+5f+tRJmDElH795YD+6e8S3NEv+HLK+GsdyTmR9PaWCWU6AQ29//LJrUqrl9pefQ2dnG848ez3y6F9EWCFdsGipoozyviUrzsC7uzjUeHJR3c5Yex6trh5XdCPlp/t9zuyZFHwkg+mAyPSun34E5s2dk5aqP71tK5YtPgW/u/M3o8xx1649i8yDDyvKKN/stVe3o7W1BatWr1Huvf78DZSr95FBU90H778P561br5j+pqVyUkjaCPCgxE6roZecVovvXzYfnzp7alLKKFekpsSCy9fW4/uXz8ela+pRSCuqGi5YJC0E6uvrUVVRnLGV0aGV1JArgcXgw6JFpw7dLdtCQAicYARmklJ470+XxlVGuck+dyPyjLUUpduakEC/vlox1Q0H47vpnLe6HNd/aQ5NshkTliknCAEmEHvKRPioIlBQMU3VeSfySeFQEFOn1KOotCLpZu7b8z5ef/Uf+MJXvk3K5k5odUbo9AMdWG9vH0rKqgY/l5RWUfkaeL0BcBqeZOTCj1+JzY89BI3OlMxlqs+tramCvchBfl+UegH8ypSEYC45BUfa+tDjSi21TW9nI4J+b9wKcr7DxqPDzXGOUu7dikp+BlDeWaGNSENDAziXWWFRETra2yO75X2CCTisBiydWYTzlw48t3RUZ9H0QvDrhV2teI5e3b3+dBSbtjL477C8vByUY5teRfR3aaBJLb0yjcUJ1fvIVLWzsxMdZGbe0kLRaydYuL4LF54KnZ9N8ZObbEu16rrQIdTVLiAT+xZ6pcPXfXhNmDezjiacE5BTNHi9o/sg9lkvL6+g59KccYuWaHWTfULgRCHAK6O/vnmRquaEQ144295DkKL6m/oPwGqMrmw6vWXINxWgr2uXqnJPJRPhb35mBm799W5KzRK9P1BVkJw0KQiIQjrGx+xxJRmKf4z3y8bLTQYD1m24hAYQyUVXa6eExQ/dfzeu/eb3UFNdAT3mkP+lGdPqK8E+iqvOWInFyxahtr4K7j4Penr0yMvrpwFlDyzW5JS+qSdNh5F843oy9LzKimZQWsBDFHludC6sdD+zIIVnLyHT4JbGgykVzRMIicThKBg1YPT5fHAcM6nmd/4cEZ9vYHDpsDtEIY1AmcB3Xrxk39AvXjATBVFyyqWjaqtPLsPy2SW4Y8semiBxKwnU01FuqmWwEjpjxkwyQS+Fx0tKcp6WfGLDinlxgBK6s596Xp4eVnsx7AXFmDJ1GvnQainP7xHs3bsHrhQneFKtb+S6uXNnD0TSDac2wRQpJ7n3sOLnfvL8uWlXSJctX4Ff/fpOxbx/aJ1qamvxu9/fS32IgyxWrHj0kb/ixuu/N5jIPp7P+tByZFsICIH4BIoLDKSMLox/0pCjP7rjHTyy9TDlI52F6dPno7YshCsvKoJJPzBWePZVF97aZ0Ao0Iznnn8I564qwz9fom4xZtkpRbhsQw3uefgQfH5x9RiCXTZHEBCFdASQZD/63M5kLznhzj9p2kLFfC8cCiXVtkN73sUll1wCT28n3t7ZgpbmFsUs1BN6CvNOXohulweHGpqhowizRiMNJC0mXHThhaitqYbbc1wZUnvTM89Zj4dJAQ6pUMjUlhk5z5FvQdD9Hn0chw5X20gKaTWZ2WTub8/p7Cbmw1eTTSYTnM6Be/K7gSYiImIyDUwQ8HUiE0tASxMvM6vt+Oy6kzJeEaNeg2svmYX7nj2Etw50IRAch7//Ea1iRXTevPmw0yQK395gK8HUuVNQUFBESml0s+JgMID2liY0HT2MqloNpk2bikOHDuHdd98dNEMfcZuMfOTV0WnTpiOv7/WMlB+3UMprajKWoYoTxzeONT0Vcaf+4Kltz6J+ylQlyNnIe19/w014/tlncNsPb4bVasWWJ7bh7HPOw1NPPk4Kanyf9ZFlyWchIASiEyiw6fG9f52NfIv64f2i+UX44hUzYSdXDJ+/D9f/TyONswpw7uqZ2H+oG3987ABuvrYWZn0IF51xKj7+r8/hnDMqUV6ibmFg44ZafHjAhedfbZfou9Efm+wlAur/YgWXEIhCQEemWWeceW6UI7F36fU6VJSVwLxqNQ4fOoLO7gFH+iAFSuHho06jVS42W6xk2uWi6J4hBPtC6O7qQGdPH4qKClFJg5/m1nbKedUX+0YjjkynVDQWq4Vyk6YhlcKIsoN+N/mPjtNgPOSiwXfhiBqk9yOb8VXX1AwrlFc4mpoGBq78zp8jwtu8YtrVNRAGPrJf3seXgE6rUUx0P7GqblxvzP6lHKn3+XdaaUCT3MTUWCp68skLMHfePNgLy1E9ZSaZ/Kv7SdPp9KiorlNefP/eHpqAsTho1XQqtr/yCvlPxw7YMZb6jrx2Crk6hHwt0PUntloYeW06PhvQjuknTU2LQuqn9Fpr15yOhYsW487f3T2semzCe9bZ5+Ccs85U9nOE382bHgMHR2OFNJ7PeiSy97AC5YMQGGcCJWRqPnfuPHJXqaBJbfqtp8kuHZmYs9n/hx/uTst3KB1NWrqgCGwqm4ycc8Zxlw4DdaH79u1BX6cWzpZO7NvdjtffeAPhALlJ0ditpMgEo0GLTqdPtULKdeEov+/tfRWtHckvJiTTFjk3dwmo+/XO3fZJzTNMwETBjIpLy1XfxWIxo6ayDC63B3n6fNRPnzN47aEDe+DzejB7/kCwjZq6KZTy5U3MnrsAGkopc2DvbpRX1qKjuxcWs5GCgJShvbMLnV3qVwr5elfPu4P3TNdGfzi6z0W6yh9Zjs+bWdPg5557Bj+9/Rc4deEi7NzxJtgMr6SkFC+9+IJSFR5EfuXar+O3d/xKMe29dONlNLB8Qvy+Rj6oJD8bzPnIOzYhk+SltDgfxuxqEz65ZkrSl6bjgvXLauAL5WH7Hhf68zTpKDJmGZy25sxVqyjf8RxUT5095r87O62mzlt0GkJBH0X6LsKuXW9j17ts8ZBZmT5zFpnFUSA0rSWzN4pZugeVNfORX7A7ps9nzEuPHQj5fQgGRvuDDr2O+w6eBBjql36UfNSXLl+unJbIZ31oWbItBMaDQB4pnBZrPsWrsGPNmWfhlFMXQmvIhy8QVMYjXId+6nMX6rU4x+fGBx+8i21PPUHjCye5FfWOChQ4HnUutBvwnS/OSvlWdz+0F6+/1Y6Vi0qxalmZUs6ieUU4ZU4hrvz6S/iXT05Hc7sHSxeUYPa05JTePOqzr7i4Dv99z15S6MfHVz5lEHLhhBAQhfQYdjv5tXAQjDbya+S8iiPFbDbDYrEogTBGHpvMnyurhq+ixWNhJWW0lnxFO7pcZHIbfwDD5dTWT0NzYwMe/cufoKcVUZ5lX00Rc1n6yGQ3QD8MxYV2mqikvImd6kxF55+yGPs+fC/tPxbavHFe4egfe4CA8y+4EDf84GbY6AeXhSPnXn/ddxTFkoOOfPvfv4Y/3fdn5TvBgUi++fVrB80Zt2zehNVr1uLVN95Cr6uXAha4cPVVVyjlyH+pEzBaHUpgr2RL6O8Po1DnxjXnTld9aZ8vSClcAnDkG2GkfKTRJEx+l10uH0Xppe9fjHOGXvdPp9eji3ypD3bpaNCWmZ+XvP4Q1p93FpaedqaS546HNikr8UMrT9s6gwWzTz0NM+csgGnzw9j13t60lT3iVjCZjCgoroDW00ArD+pT8IwsZ6yfA9oA6qfNwtHG1IIbeXu7Eiqk9mO+50P9zjmoEfuTsiTyWR9rG+V6IaCWgMVqQzFNoCw7/UzMnD0fBQ4bigoLaPLbqfij8+R4RPJohTRAypWGvr+r1pxNWQFWKBPkB/d9iFdefhZt5BbQ60q/RVbk/kPfaRiEi8+pHLor6e2Gpj7yuweaWj2UpzhI308DTSRpsOLUUrJea8PmZxqw490O/OBrp8byhoh7zws/Uok/PnoYbUmuklZUVKK5OXr/FC9IWtzKyMGsI5CZEUPWNTN2hfiH8KG/bkJtXZ0S2a+0tAx3/PqX+MV//Uy5iIPr3Hrbj7Fu/fmKotpJkRk/c81Vg6aLsUueHEfmn7JEVUMNpExW08poe1ePokxGu6h+6gzwKyKsaC47bQ0NdgLkm+aH2Tw8JHkgGKIfiR6UFduV2f0eV+IcWnNo9fVvTz5Gs5jqFNhIXRK+869BjsnjWzaBX7HksUcfoeObUck+ZhRhNzTERzgYDOIbX/uKEu04n2aRY/1YxCpb9kcn4GpPLW1QYb4BX/zkPGWFL3rJx/e6vUH86IEdaO/2UsAjA5xuP9Ytq8WFK6cMnsSRc+95ajc+bOiGxUTmlouqsW7pcRPtwROjbHz6zArcdN87GYm+ayC/5k99+l9w6tLT0eXMjJUAGxxrNEZc+enP4t7f/Rp/f/mFtE9gMTb23XS174ch2BqF4vjt6iczPH3Yj+7m/Rm7ac8xNwn2M40opQM+6QP9cCKf9YxVTAoWAscIGCkOQnVtPTZ89DLyaR6I4s+WGBVlxWhu6ybXIdLUYkiYJgTZcquqvIgmZ92YctJM5eWjSRfOnX5w3weDk7kxihjz7rJiIz710foxlXPdlxYo1//Hj9/AXX/Zi69eMxcvvd6Cv249hAf+ew31i3l4Y1c7vnHr65Rz3YgltFKarHxh41T86Lcfwh+IzTNS5pev/RrWr78AnHe9tKwMf37wftz5m18rhxMFSYuUIe+5Q2DSK6RhMrn4r9t/gief2KIMuBcsOAWbHt+KPz9wv6J0so/LosVLsGLpQqVDufGmW/Dd627Al//t87nzlDNUU4PBSIr8VFWlV5SXoKfXE1MZjVcI+6nyK5qwf2mX043KcoqsyaumpCglEu5U0y2hsGacHbLH56vLiueRw4dj4uqlyKT8Epk4AhzE6JxFlbSCqe7vmv/8LyLlc9GMUhpgAAebe3HLH1/HGfMrKb+oURko/PBPb9LxElx21gyUFZiUWfNkWviJM+pwz9/2qxp0qC2XA99cdfXnldzEbTQRlUnhASb3K5/54rWsnWL7P15SJsbSec98ao8G42vqH63+eeHjK5XRjqdjX3t7mzJpWF1Ti/379ipF8oCyublZ2U7ks56OOkgZQiAaAS1ZchQUFeOfLr2K0sxVDDulwG6jCP9e6scSjyt4LNJDqer4mraOgVgKRgoEeMknr0SPswsPP3gPBVJrpu9BZtJkLZybvrgS9VVWHGwYmOB//e0OzJhiV5RRhrP45BLyUS3G67s6UlJI166kRZ/7D6CtM74v6dJly/HFf/0yTl+xWIlNUVZWjmeffxlbNj2q+OvGC5I27CHKh5whEN1OK2eqP/aKusicYsvmxwZXf7hT4QF2JFoomzFueuyRwdmtB++/D+etW09fzkmPTjGhtR4z94z3JNjkRUN+cdxZZ0I8Pj/NSnpQUqyuQ9aSL1PaJc+Y9iLjFag3TpTPWbxaybGJIFBMq5wrZhervrXZqMOSWQPKKF/EXRnv45VQlhd3NSn7Ll07XVFGeR/FSkpK5tTZUVuSvr9RE7lMXPLxK7Bk+UoKgpaZldGRDWQLDF6Fvfqz/0q+qnPJRC1JCCMLHPGZ86PqNIkHuiMuy8DHgJKrNQMFDxbJOUmf+ds2bNx4ubKPo+xuuPBiPPH4FuUz+6zX1dUrPuu8Y6TPunKS/CcE0kxAyQG8dCU+9+Vvj1JG+VbsquUl1wa14vMFyLVrdORZDkL46c99FStXnwWOu5FuMRg02LihOqViw+F+PPQEpaw7FoyuvdOLbS8145RjCu7U2ny8/Hor9YUDCmRvXwA73+vAzKkDrj6p3HTWtMQuCvxswuHQ4CJDa2uLEq+CzakjQdIepBVTlqFB0lKpj1yTHQTGZ5klO9oatxZTpkzF5VdciSVLl+Hfv/m1QT/SisoqPL1t6+C1DQ0N9ONtRGFRkZJvUas7nvpi8KRJsqHVGxT/zUTNLS4qQDdFx2UT3ExJDwVJqiorpE7TSCZh8WcgbeS35CQTkHSKgZJF53nG6euktcJPbUz1b4/zkLLPoUj2EdDQZEmeEmtaXd0ongatdtbRyckrS63dHrzwdiP2Njrx6XVzYCTTTZbdR5yoKbXh90/uRofTi8piCzasrEdh/vA0QMrJcf77xOop+OVje+AJjC2AhZa04WWnrSUfrbU0qeWlfKecTzR2X8KDGI4DoCeWvEIxFunz+pQAap/716/i9tt+QCt6Y0+PEqmPo6CQ/FOJjWac+o3IjUe+02Sh3VGcen9CvPvpxb+LL7y8nQaLBiUew/bXd+J5UjS/9c2vK3e85aYbcdc9f1QUURutIrEf+ratTyrnZf5dAABAAElEQVTHEvmsj6yyfFZHwEw5dw3m1BUHdXfJzbM0FIfhI5QKjt14YondYVdiXnC/rEbCNGnFlg9affQJ6tX/v73zgG+rOvv/Y2tbw3s7TkIGISEJhISdMBIKAQqUPdoC3X3fFtpS2n8HlEIphVK6aEsphZYyS9+ywkrYm4QkkAQSshM73lOybE3r/zzXyFPjSr6yJft3Ph/ZV/eee8b3SkfnOecZK86karbXfvbJ/1CQYyJrlaw6J02fqm5BfnidWWwD+9TLDXTHfTvZ/MnMqsceWnliFV169sE8JmTR5zh8WF1zgL720/WKmq67J0BfvmQenXJC8urBF545gzbt4fmjfuT4HOCwM+72RvZ2/g6tf38drWKNxT/+/rdUUVlJb731Jm1hh3NiUxrLSdrwPuJ9ZhAY51/C9IFkZ6cLYhwtP6ozZszob1gunw/bvMhJr9ejXBNnDK0tLZRfOas/72Q7yA50s9e5kQPKYA4SO5Qt/sknhv8qB/XB9ydy3M1Bl+UZNja3xbwtt6CU3EGNFxJMDrY7OZgoGNnjb4h33sXxkUEX5N34AO+MZLHr9CwWDNk5Kr983HaeZisOVHxBHXspZcEkyi58r76cWpt0SX/2Ohv3kt8T3942JkRcTAkBR3E1O9aJ/Z0aXLHB00jzZ/Z5Qxx8Xs2xL+Sj7kA2f9aM1NzFn09WwZfEMijZ2YnRUfMqyMwxAF794AD98alP6PovLCYRDtWm8mLxhF1Abb0Fam8Zka+Xbccry0vpjM9dSEaThdpc7THHkfXvvUW7d2wjCzug83EYogJeTT+enY3oP+1buIIu9oS5+tknaMFhi2nmnHnh0xH/d7HNbXFxEX3p29fSX357K5Gpz74sYuYETuptxWTNZ4tV3j0c15SdQ90hR9LjSXcHOwLsbFZ+J49aHH1yv3//Plp+0lJlMilO0EQIHZxi2awPzodj9QREk0Y8dyMNJZAdcNNZ513O/hGqhl4Y9k7MgGTxKzvGAtjgW3S8uOPhXdJYGnQHzTyYLr3i6/TIA/dQllGbxYKDp0gbB5wtDW5TvGNZD3vo9yeyo8mAIowW55vJYh4kGnCxV10xT3mJh90ylbFHY9Ur6sX5jgM87oz8bIo3XkmiVfH6a6/SUp4knX/BRXQUe/r/7ne+pdjzx3OSFqtuXEtfAoM+denbyLFo2eZNH/Y7aXlv7UZ68803aOOG9ay626kE/A63wcyG75LCKr0t+z4KX5p0/5VA9N7YNlA5eTZFBTqYIruJwdC7nL0cI8tOgThtam+uo5Z9uwffOurjTUYfzZ1dSoZg7ZCyLCYdq/3oafY0Kx12SB57BY4tCItwWtfYQxs/7qDdNW6O6djLA/PQ3UyfPo82r9tALc3NQ+rCm8wn0FG/K6FOnL6kgoK+2N/BaAVW5evpiydPVTzV/uDud2hWqZlmVDgowOUtWVhEh1b3ORGbdsp0+tYf36C9B1ppWtnICUS08uX8MTMsdP9LHykLL7HyRbuWy+FYzjzrm2RjdeLOTifFG0cKCwtp3qEXslduk7Lws+aZJ2gHh2OYfcih/VWIDdfrLz3LashZ7ATKH7fMHs7fY9ZxG4x02uln0X8e/jt5epJj3t8IPmiyhqhAx7ZZgaFjxuA8Y3Ksy2XPyCEeE8fmtyyWA7R4NutjwmMCVeJsriGSF1I/gRyOb37eJVeyiU8h+ePMFSQOunj4lzjFEuLFwqrm7NO7vyw5ED8kPd1uxc+FtahA8aobr1y7jdtwwSX0wN//pMRaH1JgEm/mLZ1B/iR/B8LVcWhR1obhP8ROJH2RF8nYf+So6wnX53e3UnPTgfDbEf9PXr6CLrn0C3TqKScqJnVHH3Ms/f3e+6mpqYn27tmj5I/mJG1EYTiREQQgkA57TGI/2swOGKqqqhSBtL6+jsT5QjjJseyYtrf3Ga2Hz0/G/1Zb/NU92SFtaRsbpzc+xaHR0B+LSM8lL7+QajQWSPft20eHHso7LR5W6Qt5yWbV0/zZuRzPq5Dt89TvKsniYFUZx2rll6S2Dh+98X4r7anp4hVMVo3TFVG3x8+hWCCMRnq2k+mc2H0eN7d41F2WRRMJ69Lm9LJASlScZ1FUdcMFi41RNk/CxKYy0bSQY9XZ3zaQk+2OEk3i4fyEFStZNUtHdlsO1dS1xC1CQkWFk47DM4Sol6zsBXoghejt119SBNTa/XsHTsc56u7xUa7dTlOmHUTlldVKTOQ4t8S93MU7hIFQEcVeohpZjAjSBgM7UWNnVuLQSjZvAqyBIrH9ZPFKjhNK2WZyOsdmjE6oXcgMAhoTEOHyxM+cSVWDxolYVax77x1ydzaxl912HktEFM2iY5ae3G9vun7tW7SHNTLMLOT6OR7v3DmzqHrmfCVnrHLlWkFhCWt+XEJPPfYvto0c3QLXgoP7wifFqzOdrhcVmKiuqU/jMFK7jj1uKW3d+rEijMr1d995m9aufZeO4/Pvr1ur7KBGc5IWqTycS38Ck14gnc9eda08mLzHA0+IVQNkVaaysoo++GCj8vReeP5Zuurq79Hdd/1ZMai+6OJLlDiNsiqGFJ+ATCb7BMX4ebXIocbLrhb1DC/D5/PRJ59sp8PmTaUjZrbSyceMXlCQOgryjHT2inJlsvn4Grb3a6qiLevXD68e7ychARMLJSJMJprEq66XF29mV7LdMwszm3a3UqvLw7uffaqoi2cX039e30XLFlbwrqCe3vm4kVV3dTSlZLBgp77WPFtyAmlufgHNW3AEq4+ZqMfjU2xH1da6bcuHHMarjlXyplDFFLGx7Usb173DMS/zafqMgykRgbSHbUkL8/v6/9lzL6V7/vRr6nYPVTkN16H2v4QyIFaXpThyvqgMWi2sop9roENmOmhaZQ4V82QuUmp3+thkwUubt3fyZM/L3ALK2BEpb/icv5dVodsbwm/xHwQmJAFRo523YBEtXHSU6v6JmdGhhx9NZ0ydTk0ch3TThrX0Ab9WnHaWUkZJabmi9i8aGbl2Cz38j7/S/tomOu7EFarqmDFrDi066nha+/arSXvxNvNvQGWZejMPVQ0bg0yVpRbatC2yiZNUv2PHJ3TJJZcpZlhiHifx0o888mgO/fKIIoyGnaT98uYbedGxz0naLTffNAYtRxWpIjDpBdIc9nj2xz/fxZ7RrLxK3Mn/c+jaa77TH+pCHC8sY2caa9d/yKoYXezN1UVXXn5Zqp5HzHJlNdzMXkxErdPrCyj/Y96QBhf9/jizLY3bGAiMz0KBeLnL0dXT1VcsJ0MW714GtN3BlGd/3tnHUw0Hrn7jjQ5FkBD7U6TJS2BaqTWpzvt4p/Nvq7aSh70q5vAuq4+/o1ecejDvjPZNasQD744DnfSTe95VvO9K+L2vnzVXEUqTqXBmuYP2NyXmYdvItvzLTztbqU68Vsp4l0hydTl5gbGXuni8FhVdI9vl7tq+leMPd9Ky5aclUpSSVxwpCaccSx+jat5h2fbxpoTLGXyDxOYMhVh7QoTS3pF8TDzWF+Yb6LgjCtmjpTq71XwOZC+vOTP68je2eOiNda1U28CB7tlGLGLS5bHGxeaIl3ASBNQSEN0kEy9cib2lnwcN/zj9Fkdrr40FmpVnXRjtcsTz1dNmKDujXl5wLi3KIzMvjg3WuBCNDCM7g8u157D6f4A2bNxAp55xbsSyop08YflKNivYTM0cEiaZpJgFDbb5TKaQcbinKI750mMseE6bNp3+7/GnWbW3iQVSO/3pzj+wZ+5VSmtjOUkbh+6gSg0IZOXn50/6aa2sQIszHBFODxyo7VcRGMzXxl8GG6t+xbJ/GZx/tMeyMyEqeQeV26iKvVyWF5iVIPYWUfTn1O0NUhN7H6lv7aGaZjftbWJ7Q1bXkknmWCVRXbvi69+JWd2cWdNpf522wlmsCgvz7FRzoD5WFlr134dp8wfrYuZJ5KI1R0+XnTWF3a5PYe96NrIXHUZZnu2886GdWnfIUEG9ukJyNm1QmnbTnVvprfWtmsZ5TKTPyDv+BM46popOnJ+cQyNZzBA1WhGyCh1mJczL8B7JWOLiPIW5fF1mm0mmj/Z10t9f2JXQ3XZHHn3r+9cr90ypLFN2SLt5lzTRJOq5sth42OKjadXjjyiB70VtT9L+PbtIJqlTp89UXvHKLuCxRRYlO1i9tbOjje6589fsjCx2LL14ZS5adBhNqzCyHemALZWo4vZpRlSw18vIO6Hxyh1+XVR5n3yxnsfibsVmuP8624+6/BX0wuoX+0/hAATiETDqs5UFqopCNi/h8E5Tiq3KHEUWzHk6pcxFungB5EBrN89P5OUmJ7+X8WQ8knhkveCyL9O0GbOTqn7bx5tJfE9UVZTT4Ucex07TZDEwSzEnMLAW2PPPPk2vvvISlfKO6cqzLqBsNhdIJDWzNsf999zJjtiiq7BGK6+0yEwP/+7IaJfT9vyTrPH1+3/uVNW+iooKJfZopMzicTeSk7RIeXEuvQlM+h1SeTyiqhvPQYzYlsorlcluMZCDbQ+Pm1sSN66grIoV8kr4IVMG7Dg97ADn1U2N9P6ONnKzpzdxiDPeya8ioLSWbQzKds4YpkJWqf3+V2bRUYcVKrUG/Wzr2b6VbAXz2J70E94pbRt1a0KGSrYdLaau1oFdjOu+dQg98OR+euzZWnK5o+x8jLpmFJDOBGShKtkkk8Zcq4Fvl1fkJGq68hptKs23KLaOYuOoNoknynASW9JgMDnBT0I8OdkhiaQ5cxewWtyAUCsMRI0vlkfMcBvkv5hpGD4NjSPOloyspjdagXTfvhqqnnJ0v0DqYPXm5azuP3fWwLg+uA3JHovN6fkrK9me30uPrKqlzi4ZM0IUyCqk3Xv2JVss7ptEBERLJzfHQHOrc+mkBaWUb49u/WxlRYICvl5dkkPHHDIAaQsvTr22qYla2F690z3wXRzIkZqjopLSpIVRaZGzs532sCOdDevXUTDbwmXNGtJQMfGS0EdtbS3sZbeHF8ESM28oLq1gXyVTafdOnjMkmKI440+wlLHPrudFDbWprq4uatax2iSK2gBc0IyAjgP/3qBZaSgoKQIy6ZtZYacrTjmIVhxWpqw4JlOQrKxLOct412Qqr1jWtnSTh3dARMU3FUkme7LzECsVFebz6tXoDPZjlT/8mpV/CZ3O2LZd27duoSYN4gmKMPrLa+bRAvaeOzj1BnrYU6mTjLaZvIiqp6ygc/Bl9ccc+iVkOojdsrCn4raPqHfYpHzBnFyy5ehoyw4ndkrVU50wOVccXkbWDFDVEtXTN7Y0K2p8auCLACqqdbJ7KamoMI8Dn/fFH419f4h2sYORvLxCDpmUxZ5wu+nDDe/RlOrpVFhcooSAKSopUxySyP+GulrFxnS6yl0To4FDMbEQ6+aYx5KaG+tHPY70sLfe0rIy1s4x8AJjgL560TQqK+5TC47d1+Su5rDH7yMXFlBTq5c6uvTUq6+md959V1mUTa5E3DXRCchn3sGC6IVLq+nCZVPpEBZIk7FdF04lbBZw5MGFyoK7i3dM27vYo2uKF5ElMsIZ51xCYpOebKpkYXE+h4gSLbrH/30/HX/iZ4YUJbFMFy05lj7atIHqWctudpxQUkNu/vRN9dQZ9PHmjewcKTFBPdeup3M/UxmpyLQ+J44aRcsLCQTCBLBDGiYxDv8NHNOvOM/EA/1UZSVRyybMqrTTDy6YS+t3ttMz7x2gjjFcjRzcD/4tU2IXjtXOpT5BVZnBbU3kWLzofu9Ls2hWFNuugLednM0bKSd3BunM8yk72Eg9XfXUwz/Cdt6Zkh2L4UnU6nz8srLH05ChjDevKsjXIzH+tg7P2v/+s8sr2COqjx5+qjbtbHb6G4mDlBAQb6uZkCR0qZE/790qNznFe3dp+cAEK8QramJWoSbt2r6NNqx9W1GpE4F06kH8HU1ichixLm5CaNAu74LDlygTSIkrPJq0a+cOWnTOUvriaezgIzQ2Jhfnn1ZJa9blsobFDmXndzTtx70Tl4A4JBONreWHlWraSVmEv/iEqeRcEqAHX95DNbJ4niJzI7FHr54+Q5P2y06rhALsDQYjquXKQldzU2yToWgNceTls51kriZhYKLVgfMgkM4EIJCO09MRW9BjOWTDGUdWpLQFR8zMZ6+v+XT3czvZUYmLgqnaLo3SC/FOaWabLXdP4rYRUYqMelrHuiviYCDVycQOjC5he1EJ6RIryY5mV9vH7NHUTn/9P2YfspDV4OWdmxZadoSNTjpa7s9SJoRPvtREH+9i+xq26crlsDQXnMoeVHWbOUZi7N1eqf+Kc6fR3hp2dsThYUT9HGlyEBjr7/JYUdWxTdbgFFQmfyzVxpX7sugzZ3yOAhxbVOKEWng3Q8e7rdHS0pNOjXYp4nkZX/zclnCqZttTs8Uy6glkZZGPLlpppxDHF87y7Q4Xn9r/hlI6+fhi2rZ1A23eomM1w4F+pbZilJ4JBGT5p6zAQt88c5biaTtVbXaw/wWpY+0nrfTM2jpy9WhvYzp3/qKkm79p4zqaOm0m/ybnK7/T7775KolDM7ERld/ate+8RkcsOZ5jkOoVh2mbOf/Rx52UdH3zeZGrob426ftxIwhkMoHov9aZ3Ks0b7uN1abOP76aFkwfquqZymZ/beVMeu79elada+SVyLGzs3R1ucnBDqHGQiC1WMZG8F3IKrqXfHaK6sfl97XR3KoWWrF0OplyplNd83S684EaVvGZR7mOHNr8UTNtrQnS1V+ppuyQm2790+v089u66Obvq/8hveHquXTpd9ZSA3vVRJocBDJlh1SeRiJtlbAsg5OEchJhUG0SByY2e3TbWLXlDM8nfRgeViorS327hpcn76dX5dAt1x5K3R07SV+yiLIN5ZTlj7zDImtNzi4fqw3qyRDB/kquu9x+RZ0ykgZGf/06VoU2TSc3a3B8/pxqam730jOvNPCEG4tZ/Ywm8YGY/syflkdfWD59zCiIGu+U4hy669mdmjo+knAsizmsSrJJTHsee+hexTGaqNIWFpXQRV/4Sn9x695+g57+7yPkyM1TBNLD2YTpmGUn919P9GDx0UvpzVdXU0+3O9FbkR8EMp4ABNIxfoT5NiN99bSZvPqYOjuhaF1aubicCtnRQKpWIiPV62SvlGUlhWRw6Xgyl9pVeKvFRK1tfQ5MIrVFi3NiN3oz240mkmxsf7PiuHL2iuIhb1cttdZ30isvvUM//ALb97Id15/vXk8zpznIz5NJSWeeVEaXf/8tdpLAqooJqGX+9Ftz6Ie3boke3iGRRiMvCIwTAXEYNDh5vT4ysdrdp6abgy+N6bHRaGBHccN2cDi0TLKphGOJ/vXmgUWnrtaPyVF8OBfH46S/aUixH3zcRk+/VKuo+otzqOoKK517ajWr9/f9hO/e56L/PL+PHTRlkZd3OxcdWkgrT6wcUobyJtvGdukzqbv9k37ti+9eOYt27e+ij3e4RubHmUlFQLzkHjuvmM5MseZWJKjlvCP744vm0W2PbWXbUpX6/ZEKGnSOfaSQnYXFZNOKlWfTyZ85k9V021n7ykjWT+3apTwxI/jW96/j75uHHV46ycGewcMevJOtT+4zsc0rBNLREMS9mUpgdMu7mdrrcWq3nQWTr50+S7UwKvaELU4Pq4ZEb3A7r5gnkmQlcuWSChJHI2ORZNW9rd3FIXMsKa3OmmNWODldqVtZFDO2s5aXJ7TbM7jTtfVu+sM/ttKtd22h665ayDHN+iaTja0eKi8e4FNWInEXg9ThSuzZzp3pYO+c6uIVDm4XjkEgnQjYc3OHNEe0K0wsDI5nktAOEl9RhOPBycCCcjLJyruc17B3br0Y2H6aeoM8sW3bwo6GqtiGnBewBqVc3vH95mWz6f9941D6wdfmsVpyL733QYuSo4cF0IdX7VUWvb7/1Xn0va/MpY92dNDmbcPCTnG80ZDlEOpx7lNs0wcVT7f/aAEVaxRiZnC5OM4cAqIBIPMDtcIoO52mNpc3pkM9CfMSCMSYwAzDY2Jb8x9ccIjiRGnYpaTejsaRUbhCUc/NLygaIoyGr8l/k8ms7JxqIYxKeRUVVfIPCQQmHQHskI7RIxeb0YvYQ10pOzFSk+7mwPUbdjTzwGxkL7khOu7QMvrc8QMqNKve3adct5oN5GSHRcceWk6nLlY3kB09p5AaOzz05pamMbEpbWlrp5nTp7Cdkk+JJ6im/4nkEXU+CUxd39icyG0J5y3gZ/eFz01N+L7wDfLj3NbpVWK07asdEJxd7GnQyHap4SQ/ypJE/S4/V93nJXzvD742m77yow3U6Rq2kxPOgP8gkOYEetzdQ1rYwwKpjgU3I9uD+lh9dzySxWxib+ED39lwG0IyK08izZ5uoyULhu4ESzEBn4tcLR+SNf9g0pmsbFO6nx0d+Wj6lIGFJlHHPWiqnbbvdtLJx5ZRXUO3om67cG5feRZe6DqCd0i37uqk+XP61J9DRv5t0JewwLuVxOHa8CROZs77TAX99ZG9sEMfDmeSvBdHiOccq24O8c7HjfTQSzuUhW1ZHJlRmUuXn3pwvyC5bX8HPfX2XoVctydAJflm+urpcyM68xuOV37/rj7nYPrt49tIYpmOJpVwOJVMSyVlFfTxlg8yrdloLwiMmsDALHjURaGAaATEm+7x80o4fpf62HILZxTS7/73OLrt60fTtRcfTqvfr6E69kQnaUdtJz2/toa+d/5hdM0FC+m75y+kVe/sVVYrlQwq/px9dCVNK5HgzqlPEr+voamV8hy2ITsCWtWc57Aqk8VwOAatyh1cjqjnnLNi6K7F4Otqjg+ZkUc3XH0Yq+kdQ/f/dydt/qRvYiixB8XDbjiFbXwdSpzI8Fl1/wtZaJ41LbEYaOpKRi4QGBsCuextcnjq5FBOOTmJLc4ML2M078UcQNowPDmG2bsOvx7pvXzfr2P1+mhJdkpFKPVyPMNQzkLeLRUhYehP9c69Lqoq64tDK4tZw80/89g0o529b4sQGrLMp0CvmTrZZjSSMBpux4VnTKHCvPHdiQ63Bf/HlkAemxKJnwm1Kd9uoh9fdgTd/o1j6NavH8MLRUF69YMD/bf/7dmttGxhOf3g4sPohisWKx5039hS33893oGYNp1zzBS2hx7dnklhYUm8qtLueiF76kUCgclIYOiv3GQkMAZ9Lsw1sppsYsLMUYeU9AelL+XYXRWFVvp4f5vSWj/bEIn6aNhRiPyYiJML56c2iGq79PUzZpPcOxZJbEk7Op1UmO9Qdju0qjM/l4Uv3kFuZIE3lSnfYaDLzq7WpAqx+yrgZ9rQ1BfPsKTITHWfHksF9Y3drKKo413f5J6NtFOv5w8IEghMEAIdThc5bJaEnBtp1XUxBwjyolq3Rp7CF3L84DxH/O92j3MvC6ab2LMvxyO2LqaQ8SAe9PPp7Q2t1NzaQ0uP7JtsV7CKv4xPjzy9l7bvcdIH233stdRCQdNCCmTlk7tzn7IzGgoOVTeOxOdLF0yP6DApUl6cmxgErCz0feXUxMKizJmSR2LzKUl2NOdW59NW3hWVJIsjEubNMCgEW1mBNaEFcylnEUcHmF01oBkg5xJNkRa3Ei1jrPMXc2iZ7AScuI11+1AfCKSKAATSVJH9tFxR1f3CyTyRGEXqZEGzprmLppf17bDOrsqlmRW59IsH1tM7HzWSqO8eMiWfppYmtjMm0RWO49AzYhs1FkkcDnWxOl5xgWPU4VmkzYV5dmKHgFRT15Dy5hewM6Nk09ZdHbRhi4Rk6SvhzfcbqaG5h+bN7nO2cNLRZfTC6wcUu1HJ8dSLNXTi0aUJOTQa3DaZ8MouDBIITBQCPnYm1N7RxR67+3YFx7JfIgg3t/YtBo623hyLjq48X73av4R9cndsJ2fTevJ4emjDdjO9vGkKXXbpOWQtmM9C6gzKtsyiyy87nayFC+mtbdNoR10x744GaP/uD8nVuoX8HvWLdactK+XFMowdo33OmXS/CH0VhQM+DJJp+0f72nh+0ic8ih++s4+bTvc+t5WeeGsvbd7dRrvZkd+JCxNXn/3iydPJzvbWySQdC8T2vOQdGiVTpxb3ZGfrych2qUhDCRQXl1A+h98ZngqLitgfB3gN55KJ75P7pmdiT+O0WT7oYrze2tLnKGJ4dvHWlpOTQ62t6n/cpYxppVZeSUz+yxLg3dC/rfqIFs0qphkVfQKpuGWfN42/mPuI3vqogVV4O+hLpx+i7JoOb3e89xLw+g22JXWyfeNYpOaWNlZP9VN5aRG1O93kdA21F1PThhxWnxObUVdXNzU1J/Y81JQfKc9njk9e9cfjCdKPb99IPWwPY2c1XHFCct1V86mitG9yLR5439nYTCuveFHxmmll51e/u25JpGaoPjez2kZrO7SZRKuuFBlBIIUERCicMa2KVVmN1O2Jv9unRVNEA8PDsZS1MgfIMetoWlXiphKixvvUs+/Sb+75iH73syVky+qkjqGOeOmEBX09Fu/cd/zxTfrGZQcnhWDWVBs1tniTuhc3ZRYBEfY+v3z6qBr94vpaqmvtpq+eMeB9fka5Q9Hq6mCnR39d/zEdPquIctkfRqJJ1sqPmlNEL21soE/Xc1UXkZ2tU2ISq74hTTIGgwHeJMBekTwOWVT47jXX0qWXfVHRhNu9exedf+5ZypOqmjKF7rn3fg6dl0tWm5WefOJxuuH6n/DufGqjOaTJx2RCNmPSC6QVFRX0yGOPU1FRsRJMva7uAP3m9tvolZdfVB64nh1p3HzLbXTaytOpu7ub2lgg/cqXLqf6+rq4Hwjxqnvhsmlx80XLIKov96/+hO1/QnTlaXP6s23a3Uqvb66nG764hFU7iLbVdNCfntiiDPhzqhNfEVy5uIL+7639JMLvWKSOThcLZ14qLsqnytICdlwgEz4P1x99IJEd0RyLmQU2tiPjrcam5raITkZS0f5c3m088ajipIs+fF4hPXffCt618LBTpyCVl+Qo4RnCBYrDFrEtdXcHWC0wwN4uk1/ACJe5ggXodZvb+ndlw+fxHwQylUCfLXoLh5Eq5hBSHSkPI2VjVV2LyUB79g/Yxo2W3ZELRzoyUlPmfzmky33/2Ul3/eIYms6LTcOTqEjKOCJeze/9907FeczpkcK+DL8xwvtzT62ktze2IS5pBDYT7dS8qXnEMl/SacOOFvZfsY++w34scj/1eSDziNsf+4Cuvehwji1qpc8tPYj+8tQWevS1XfT5FbMSrut0jgqwfkcbh4JJcBGKO6bXJy4EJ9xAjW/Q6fSsHQWBVLD+/KZf0ty58+jb//t1evutNxUBNYz7+p/dSK+98jLd8subyGq10jPPraEVp5xKLzz/bDgL/mcYgUkvkAbYGP/GG66jl15cozy6L335q/Tjn17fL5CefsaZtOiIxXT0ksNZiOqhG278BV//mfIFifesi9jwP9eaHGKeX9B9z22jji4Pfee8BYqdRrg+8WBXVWRThFE5J/YcsyrzSM4nI5AexV53V2+oT3zADzcoif9eDjJdW9eoCJkOu41Ki/N4AtTLLuQDvKoZ5B8SWd3kSRbr/xgNenatblQE0Fb22JvK0C6RumLmXY0ijhk4miQrvWI3GiuJbWk4rmCsfGquzZ/tYLY6FnKjC/lqykEeEEgnAqIVYTJ2si26nVranLyINeAMTMt25rBX3fxcO9UcqFfs4bQo28i2ditPSM5hycvvNFA925lf8K1XhzTlkT8sU2IY//P/dtPjq/cpi1oL2LPufbcdy2NocpPaw+bmUVG+kZpasUs6BPYEeyO7o2eMIt7o2m1N9MgrOxVhdFrZwCLJvkYXLxb1smZYnwaQCKrL5pfTs+/tT5rgwVUOendbZO21pAvFjWlNQDaLLrn0MjrvnM/SBx9sVNoa+NTLusFgoOUrTqFTlp+onHe73bTq6adI5usQSNP6scZsXHLSUswiM+tiU1MjvbhmdX+j5fj6G24i0Vdvbm6ilaefSU8/9YQijEqmRx9+iJ5c9bxidC4CVKx0HAeYTiZJsX98fDOHOciiq89dMMJVejk7OHqDd0hFzdbBu7A93gDtONChhIZJpj65p5o97ia8AplsZYPuE0ch8mpoalGETpPR2BdzkHdBZfDp4ZcEo5f4f/F4DypW00PZfci0VMqOkows1LsJAmmmPTu0NzaBFrZFF/uE4oJcau1wKYtYse9I7KrsjBawfXrNgQbNHBlJC+y8ODl3Rp+dXWItIrrz50fFvOXSs6fRZ5aWs/YFO37inVIkEBACOoOJdPrINsGs5Ug2Nn9JJr22qY6eW7ufd0EXKaq5g8soZQdGWaxy+v72VjpmbqmiartlXwdVsw+MrKzk4p+feFg5bdrfTYGQ+s+2qHtKO0R1N5OSODTSG01ktAwI+bHar+OFp0zcURUTuUh97GWV5YDPQ0uOPFoxkTvt9DPo//34Otaic9M/7ruH3nj9NUWjUc+f67oDtf1oDvDxkqNij5P9mXGQlgQmvUA6/KksO+FE/pAf4C9C32pcWXnFEIG1traWBSdePS8oiGpvKmXaLAbFS9zw8tW89/qDtGVPn23kN3//ev8tZfk59IsvH6kInk0dPXTrwxvJYTWyS/UAnX5kNR0xu6g/b6IHx84tos17O8ZVTUuEzuGB5xPtRyryOzgofSYmaP1k4lNDm9UQaGltp15eKCpltf92DsfSxSr/o02ixSChqSysjbGvpo7V67XdIcxibQ95pSKZ2VNqVbl2P+dF+SbskKbiQY1xmaYcB5msI814eoN+OmKmgbKjCKvxmvnBng5qdwfp5w98MCTrz9iMqIrVdL9+9mEcqm4/vfxhI5sc9dLUEhudv4wdcCVZX3mhgSQWcK85gTlOb0ARxpOtc0jHxvCNtNeUk0fZ5pHPLVIzDGY3L0Jl3hwlW2/ieMvlI7rk9/B43lZPlZVVij3o3j176JWXXqIFCxfS3+/7F114/jnUw+ZzkrzegTHa4/Eo9qQjCsSJjCGg3S9YxnQ5ekNnzZ5NP/zRT+iH117TvxuX63AM+dB7vX0THzGkFgdIJdM/9SQxrFiTr4FXufpUVoZdivtWon3848enx8x30fJ5dNFyYlfqHiqwx1YFjVnQpxcPmZZDZWVuCpjUD/hmUxYZTKPzzqembVrnkR/paM8tUl1lJc6M7KfZlssByUcO+O31u9jzpjtSV3FunAnkV84ig1Hdd0pW0eWVCcmaV0K6wpEeEoe3XSbKBt4ZUDOuuHp8FGzpZHX6PLJZbeTs6uHd0uScs4l9unjT9bCzpJqGVg5dka2qDWZbnuqxxOCvV1XmcCbj8b5qSgm1BKepqtrd3siegBtV5ZVM4hXT3dXFrEe/iKC60kmaMZsFlYjfJV78PfaQAmUHMRk03zv/8Ji3HTG7hBfIS1iLy0c5vFii12DXfkalg/Z2qRsbpXGhgFfpn8QQz6Qku7o6VkllC1hVzc7WcT8zcPVZdoIjfTblN0BSiLXkNm/aRI88/KDy/r333qHDDl9EK1eewTulf1fOGVmjLiyUiqfdzk7WnkHKWALqPvEZ2z31DS8tLaP7/vkg/eVPd9Izq57qv7Gzs5PkQx9OZnPfgBj+4Dfv+yh8acj/Y9kuM+DrizM55ILGbxw8H9WqnkB3GzU3qJ9Y6CqqFNUKjbuU8uK8PS6K9twiVT7Vnkt+DlKfaSno5X7WtY1odiikXgVZfjTku9HY2NC/SDOiQJzQjEAHLxawPqqq8gK+ufz9U/8shxdqMFvJYssnEwuARj6WlXmDKUcZT4IBv7Jo4eOFi25XO/n4OzOa5O5s5sWz+I7gpA7/3NmqxxUnq3Y5eRJSkOegQhZMfX49O5/zstaIX4kdGqvNBlZpN/NuqM3KcUbZbr2+vp53WhP7nnvcnTyW7IlVTf+1KeWmjBlHcgw9qvsV9px26PwFimOR/g5/ejB3zgxFAIVXzOFkUv/e3d4QcbGgkB31mbOL+HsWSGkj2C2CBCVlW+/RVzOnREfrPoo834pUusFgJD/PwUT9M5OSzOdcLXWsoqpuzDWUZs64Mvg5yG9L876dg099etznXHP//n101tnnjLhu5sXDlpZmJVpDZdUU2r2rrwwZXxoaGkbkx4nMIQCBlJ/VlOpqevDhx+iBf/2T7vrznUOennjTlQ96OMmxrMi0t7crp0K9kUfaqiIRXMfGa224baP9X8hbs00dCQzevIIlq1gZl6TdUZ5bpL5YLertViLdP17n8nMNHO80+vMUbYD/+d+rhjTvtddeoS9edrFy7owzz6Jf/uo25bOel5dPP/j+d2j1C88PyY832hIIxbFLH1qbfPcS//45CivJXlDGq/Bm8nW3U9Djom53E6vA+lgUzlK+07Kzomfh1Gyxk6OwghcjguTiya2zuZavJyEEJ/KdS2JcaW3vJHnlssqtw2ajgnwbT1iC7FyF7ZHCNuCMSlRm9Wy7ZDCwfRnTEwH0QH0T+wiI/j0ZynzYu4T6NezeNH7r6vInNEaGu+J0dtKihQPhP+S8hPmSBK+YCoYx/aN8VyMMEdlZsgMX4cKYti6xyqrZO70uq5e/z+raHQr1zc0ybY7CQ4oyxqqeoyQzHieGPjW544ydb735uhLh4oQTTiKZl8jc+8QTT6Zvf+sbypjy8ktr6OKLL6Vf3nyj4mX3zM+eTbfcfFNq2opSx4TApBdIZ8ycxcLov+l3d9zerxowmLx47Lrq6u/R3Xf9WVExuujiS9iL13Nxd4sk/mimpbJ8C22tcWZas9HeURB49JEH6Sc/+mF/CeEfbytP6n/9m9/RpRedp3i4W3LkUfQP1iBYvGh+v4Ov/ptwkBEE7CxYFpQdxDufTupp268Io9EaHvT3KPmI+lacDZZcynGUUsH8pdTesIdjYO6Pduu4nu9ke1J5STKzzZnJaFBCBeh4p1+SOCgTIdXDi4p+9ug9lqkwb0DTZizrTaauksLkVcHDAujgeuEVczCN8T+2K1uX49+ORFqQb2OHh+zAJ1Z4uETKQ970JtDR0UHXXnM1/fb3d1JbWxtNnTaN/viH39LLL72oNPwXN97AWo0PkAiidoedNRufpjWrsWCe3k81dusmvUC6eMkSKmfHRbf++g7lFcYlH/zbb/uV8iFfxis0a9d/SF2uLg494qIrL78snC3q/xxz5qHN4wEfaXIRUCboEezuTjppOdXU7O93t75u7XskHqmXLjsBu6Qp/IiIyqxaeyDJp8ZrpXjaLKqazWFA9OSs30aBnr5FpyxSv/MfYJXdLn71tNeRtWgaWXPZxrB2B/nYAYWapON4gEZ29BYvyYJIFu9gauEZ08fqiPKKlrSoI5tjBkbyFBmpzmzmr/bZRrp/LM8l0q+gn215A30xIi2WHLr9jt/zjrub1q9fp4RikED1EucbXjHH8gnGrkucLmZaElPQPg/SkbXSMq0/aG98AmtWv8AhGBdSRUWlMv8YbHcuKr3LT1rKvk/KlXm52KUjZTaBzJOaNOYtYVzkFS1J6JFrvnsV2ex2xXFGQ0N9tKxDzhuTjAE3pJAxfiMqu0iTi8BRRx2tTCDFQdfTTz9JWzZvUgCUlZUNcakuJw+w92nxOo2UOgIWR5ESqkFNDaJWG8+DpOLAa+pc8nRymKimGqXYLBaikk2i1utq3E6WvHKqOuQoamIb+m5nn0fwWGWKoyKrOX4YA3H5r2Pvi/H6FauusbymZ6dukTxFRmqD3uDJGG+YsoCgtl8eVyv1uNqojT3T3/nH3/H/ViVs2k+v/7kSuuGnP/4hOdg5oKSwAxI5hldMoTA+ScLFZWIyaOAcKRP7PZnbLHNwET6jJbVz8mj343z6EEh+ZpI+fRiTlnS5eIeAX8NT6YzI3uasEuQr05LeR/kVM3nFX12sPIsxpDhBybRumqy5FO25ReqLKSczvexa7IXcz5kjutRexztbPV30/rq1JGoxMjGcO3cePf7kM8ru/5tvvE65uXkjvGDKZFK8TiOljoCzWb0qbNB/KAX90e2pxGFRSfUh1NWwnTyuJk0b7W7dR37eaS0sP4RtDQPUxZ5WYyUPCyztTnWLeQHv/IxxROLrdlF73a5YXe+/5svLo4B/IExB/4U0PPB7u7lffQsYaptXV1enmL6E87/++qv00CP/oRuu/wk5nX278vCKGaYzvv97vJm5y9grBpZIIAACE5IABNJRPtbGXRsjlhDwLop4Pp1P6omdNdX1eSxT087yymr2GtkXD0pN/nTJ42XPmNGeW6Q2ejlMQSZ62e3hnYvGXXsjdUk599KLa0he4eTx9NBFF19GIpCKF2mTaWg4oT636p3h7PifxgRE9bdk6jxysTDq7WpOSUvFIVLngS1cz2EsGPuop6vP0VtKKkOhGUegkT1eiu2oxO2GV8z0enx2S2ZO/cxGXXqBRGtAAAQ0I5CZo5Jm3U/fgnQcgsGWX8avUiUuod/rpl6/p9/zYRar6+k4XqHeZCVPVxvvUDTxCy6v0/eJpn/LGjnkz9Sp05SGSgiMyqqqIY0WL3fidRop/QkUT5nN9p41KRNGwwTEQVJn3VYqmnIw1W57LzO9boc7g/+jIiDeMPfs2a2o1+nYDvirX/sGbdywnsNX9MU8hlfMUeHFzSAAAiAwoQlAIE3Dx5tfNp1yS6aSx9lIPa17qbM7erBfCaJsshWRo6CU8kunUXvjXgimafhM07FJ519wET37zNMct7GbioqL6bzzL6CHH3pAaeqrr76s2JZKIOoPNm6gI9nWVByTyO4pUnoTyONxgGO4UHf7gTFpqNfVTAYzxwFlx0ktNZ+MSZ2oJP0IzJg5k/527z8V7QqJAXmgtoa+/b/f6G8ovGL2o8ABCIAACIDAMAIQSIcBGc+3ppxckp2NoI/td/a8z54L48fGkzhjYh8mL4Mlj/KKp7IHzGJq2v9x/27qePYJdacvgfPOv5BuY+/SshtayGrJTz35X/rHfX9XGiwe63547XfpwYf+Tc3NTcr173/vaoR8Sd/HqbRMzx51ZUGrjcePsUxdzXuo4KAlZMppIG831LrHkn261HXv3/9G/7r/H4rXene3m8RR2uAEr5iDaeAYBEAABEBgMAEIpINpjONxTm4RlU49lD1Y7lB2RpNpir+ngzpqOjgsw3SqnHUENe7dkpE2nsn0HfckTuASjjFqtzvYI2axoorb09MzpJCnnnyCd1BXUXlFBXvcPcAxHDPTEcaQTk3wN3msWdHTVss2nUOfZeq7zQtjvCObW8zu+fdBIE097/SsQWKQxvKIKa2GV8z0fHZoFQiAAAiMJwH1gejGs5UTvG5FGJ12KHXWb01aGB2MyN2yh3zsyKRs+gLSG4c6phmcD8cg4HI5affuXVF3PsXles3+/RBGM+CjIur7toIy6ulQ581W6y51t9dSTgJha7SuH+WBAAiAAAiAAAhkJgEIpOP83PqC1s9hb5VbWYiMH89PbXO729ihiauRVYDnqL0F+UAABDKYgCxs+djeXI2qf6q66XW1kC2vJFXFo1wQAAEQAAEQAIEJSAAC6Tg/1GJ2BOLtbCCfWzthNNwlEUqzskLsIKk6fAr/QQAEJiiBHEcB+cfZftPnbuNd0sIJShjdAgEQAAEQAAEQSAUBCKSpoKqyTHE+ZGCVWjd70k1VcjfvpoLyGaTTG1NVBcoFARBIAwImi4P8PeNrvyn1myz2NKCBJoAACIAACEx0AuKQUWKkI2U+AQik4/gMc4urUm7vFfT1cDzCOnIUVY5jT1E1CIBAqgkYzFbFQ3eq64lVfm/Qz7FIe2NlwTUQAAEQAAEQUE1g+vSDaNNHn9AXr/hS/z0SF/35Na/QqmdW09r1H9JNN/+KJP4xUuYSgEA66Nnp9XpWcc0adGbg0GKxUGGhdqpoRt5F0Bst7MSoYaCSFB15WCXYXliRotJRLAiAQDoQ6A340kIYFKEUCQRAAARAAARGS8DhyKW7/nYvuZyuIUVd/7Mb6bVXXqZjjlpExxy5iJYuXUYrTjl1SB68ySwCEEg/fV5Wm41efOUNWrzkyCFPUITUWzlW47vrNtKq59bQM/wqLx+9cGex5bPdaPuQulL1JuBzU4gnqxLnFAkEQGBiEgiFQmnRsd7eQFq0A40AARAAARDIXAKy4/nnu/5Gf7/nbtq+fVt/RwwGAy1fcQo9+ujDyjm3202rnn6KTj/jzP48OMg8AhBI+Znd9ItbaO37H5KoBQxP8gFfdMRiOnrJ4coqzLp179GPf/qz4dkSfm+x5VGA44aOVfJ7XGS2QiAdK96oBwQmLYH0kIsnLX50HARAAAQmAoGf3XATC6Kf0L8feWhId4qKikmvN3B89Nr+8wf4uKy8vP89DjKPgD7zmqx9i6/76Y9IXrILOjytPP1MevqpJ/rjND768EP05KrnKTs7m3p7k7eVMpgsHMDePby6lL0Pet1ktNhSVj4KBgEQGF8C2br0GM7TpR3j+zRQOwiMPwFbQQVJOKjhyZjTzSZDOcNPp/17C3vwLsktUNXOUMDLTiMtJHOtTEoGk4cc7F/EWqxuPM8xdmRcH+V5yHy0ZPqCEY/G2+2kzsa99IUvXkHTDjqIrvziZSPyOBwO5ZzX6+2/5vF4KJfVe5Eyl4C6T3zm9m/ULS9j9dwX16zuL6e2tpZMJhPlFxRQa0tL//lED3R6k6JGm+h9yeYXuy4Dqx8jgQAITEwCorKbrTNSb9A3rh3UGTJrAjiusFA5CKSQgLu9gdwdjSNq8DmKKcAODzMt9bjaqLm9XlWzDQYj+bmPAZ9HVf50ySTPxdVSR273UJvJaO0zlJrI7828Z+nzuKl5384I3epTsfnm/3ybVq9+jq7+zjVKnukHzVA2glxOJ737ztvKOaPRSGGhVDztdnaOndZhhIbj1CgJQEKJAzCXV2LCH3jJ6vX2DW6yEiMCaV7ZSDVfyScCZ6yk53AvlKXjL1hkJ0qx7k3mWna2geMDFsdsl97gY+dHlaQzxG57uH4jO3rSq8wbvicd/htMOVGfW6T2GUxB7mfmhc0Rx1l5ZcUjutTVVpdxP9IjOjFBT9jZG3a8sSPcdfmeDg7nFPT7yGDJ5Vik4/ejrDdZiT0rjeiDmU0U8nL4WpzUGwyQnnc0MmVckVX+aL8Bw7tqsPgyZhxJZIz0dLWTvJDSj4DZnh/Rd4TeKN/RzPxNyzWUqQMd4t9tnodlWj9l/JedYL1V3U6wSXa7M3B+InPg3JKpI56ln7X53O2NdNddfyK7bSCEWIg1EgOBIL/81NLSTH6/nyqrptDuXX1CrXjdbWhIvZPQEQ3GCc0IQCCNg7Kzs5NkFSaczOa+1f/wSkyPqzV8acj/3t7YHnkD7GRIUogHzbFIvVyPrC7Gcjgik0FPdycLyepcZ1tNRTHLG4t+JVNHkNlHe26RygsGcnjXaWyeU6T6kz0X9Hu5nyPVwuU5I6UnAa+7k7JUfv96g3b+/g24Aeh2tbAalIOdpUUek8aix3qzjbq7WkeMC7KC38MqVfGShIwJ8oQj1jgVr4yxvB5QvmPqeAf9snudGeNI3xjZpgpl0DegNqfqBmQaMwJ+Tzd/5kaO970BW8Z8xwbDCvo91NMVfxyRe3SKWVUg4/opY5/f06VqvJR+BgyUMeOKtDecenmcjzQPC39e7//HveGsyv/FS5bQa6+9wiZ0TyrvX35pDV188aX0y5tvJKvVSmd+9my65eabhtyDN5lFAAJpnOdVX19HsvISTnIsO6bt7X0rwjKBjJRCvbEnHgFvN2WzUXZgkA58pHK0OpetMyhqHbHa1ctt9vd0qa6yNy83MwdC/oGO9twidb43aOAftdjPM9J9431OJpVelWo/491W1N9HwJfA90++y4O/z92dLWSdcvC4hn4x8qp+R/OBIe2SnsniiNetTnAJ8fczUwQ3mVSpHUt6A3kZM47IpFBtv/DdTV8Cov4ZSTW3N2ge8R1N314MtEy0QLxudeqpBt5IkN/tTBlLwr2U9soCntftDJ+K+T9oN2fMuDK4I6MdY35x4w103z8fUARRu8NOz6x6mtasfn5wFTjOMAIQSOM8sBeef5auuvp7dPddfyYxmr7o4kvoheef4wEgeYdGUqWfBVK9ycYCqXoBME5TY16WnQu3c/xU+WI2DhdBAARGTcDDi2Oh3hCJUOhzq9vdGnWlgwrQG62kY0cpXRFs1gZlwyEIgAAIgAAIJETgyss/PyT//v37aPlJS6msrJxcXS5yd43NXHpII/BGUwIQSBnnb377Bzqeg+oWF5fQX/92H+um++i4oxezrnpAWXVZdsJJtHb9h9Tl6lI++FdePtLrV6JPpZvVZ22OfPI4x0bnXW+2U0/dnkSbifwgAAIZRMDFTkyseeXjIpCa8yvI2Xogg2ihqSAAAqMlIOHk8kqnsa2qne3XnewaQ0dZ7B9Dxx5unS211N6AecdoGeP+6AQaGtQ5uYpeAq6kCwEIpPwkrvnuVVGfhwilct1mt5PNamOjaW0+/GLPWVgxk7qyslOuYmew5HEdIWVXNmpHcQEEQCDjCXQ215CjsIJMtkLysi3nWCUDL3hJnU373xmrKlEPCIDAOBOw81hTUD6D3C17qav+oyGtEec8OYVTqXL2EmrY/SHbho+v9+8hjcMbEACBtCMw4BEj7ZqWXg3qcrk0E0alZ+KKvNvZQpa8ypR31JxXxiuV2LlIOWhUAAJpQKDlwA6OYTdDtXMkLZos9bXV7cpIWyYt+o8yQGCyEbDYC6mAowx01m4iT+fIhfogxwF1NW4nPztZK51+6GTDg/6CAAgkSAACaYLAtMze2VRDloJK9mqbuo1qY04e6c0ORXVGy7ajLBAAgfQkINoXXew231568Jg00FY8k3xsE+9qGzkpHZMGoBIQAIExJ1BQPp26GnewH4yRntwHN6a7bT+7gQ2Qo6hq8GkcgwAIgMAQAhBIh+AY2zfeHhdPHJvIWjIjNRWzOrDsXLTX705N+SgVBEAgLQm01fNuJccXt5XMSmn7rKySl81xfZv2b01pPSgcBEAgfQhYbPmUnZXFnmDVmQV4OurJXlCePh1AS0AABNKOAATScX4krQe2U5beTDn5A6FltGqSnSejPRywvIsdnSCBAAhMLgINezaxgxEj75TOTknHbcUHkT6ngBr3bJGAyimpA4WCAAikHwGjxcaxMtWFJZHW+7rbFadH6dcTtAgEQCBdCEAgTYMn0bTvYzKxZ0xLvnb2pDaehIZYFbildnsa9BBNAAEQGA8C9exMJBDspfyph5M4HtIiifdMR+U8CulMdGDH+3BWogXUCVSGxWKhwsLCCdQjdGU4AaPFnlJTo+H14T0IgMDEJwCBNA2esQSurt+5kUz2Ulaxm8ktykq6VTqDhXKrDqUQZSue7ZIuCDeCAAhMCALNNduos6Wex4UFZC2anvREMotNAHIKplDBtMWseeHkndHN2BmdEJ8QbTqh1+vp1l/fQe+u20irnltDz/CrvLxCm8JRSloR8LG5UW9vMK3ahMaAAAhkNgEIpGny/EQoPbD9fQr0Eu9mLCKzvSThlonab8H0I6irs40a97IaHRIIgAAIMAGJB1iz7V1lfCmceYyixmuw5KpiY2CnaDa2RZf7Qjoz1X6yFrEFVZGbXJlOP+NMWnTEYjp6yeF0zJGLaN269+jHP/3Z5IIwSXrrcXeSgR0mqk1GK8dc53uQQAAEQCAagdS5d41WI85HJRAK9VIL72bkOAopn92pWwqqyONs4mDTHezJrivifTKpNFoLyOwoUQb82k/WsW1HbK93EQvCSRAAgQlNIOj3UiuHhJFA9Y7CSt7tnEp5rHrn57FFFsRCHCdQZzBR0O9hu3YjH5tJb7Ip792drdSylQVaLgMJBCIRWHn6mfT0U09QT0+PcvnRhx+iJ1c9zzvy2bybxiutSBOGgLfbyeOCl+cdpTxHaYzbr5z8aupsrYubH6pzHgAAEIxJREFUDxlAAAQmLwEIpGn47LudrRyjtJUs9gKy5haTvWwO6Yw8UfTypJHdp4v7kGyeMBrYu6X8MHRzmIf2XR+SzxNZaE3DLqJJIAACEQjY2BOlfLfVJB3ny+bg88kkZ1sDyStbZyATOyjRmyyk4+MQ6SkY4lePl/ydHeTr6RpiI5psfSZrLjnMlrhNFTVAndHMwrA6BnELTHEGg9lKjpKpqmoxmAMkzywTkl7shFX2y+vuYG+rnVTG6rkvrlnd373a2loymUyUX1BArS0t/edxMDEItDfspbIZC5UFK39P9N1PMRPw82IXwkJNjOeOXoBAqghAIE0VWQ3KlXiC8kICARCYHARMObmKcKimt1k6PQuUOjVZY+TpJW+PU3lFyzT6OohEwLHoC6JV0X++N+Bnoc2QtJ1rf0FjdCCCsywcqkk6Q4cGz0tNTaPPI8/AYreqKkh2ykQgzXU4yOsd2EH3ej3K/bmOXAikqkhmVibx4N/M4Z6KqxdQV/Me8nTUsbPtgZ1w0a4QM6IQ75A3iCduJBBIgkB+PocY4t+5aItahUVF5O7qIo+nb7xJogrckiYEIJCmyYNAM0AABECgq72ehTF1Qmavv5p3JzKDmeyiOb2uuI2VCW3Ad/CQXdm4N41jBjGPcDbFV1mUJvptvPPMO0WZkESF29lUr6qpfs4rqbOzk4zGgR1g86c74p280440MQl0tTcqWhR5vJteNOs4Ni1yUxZ795ckmlzO5hrq5BcSCCRKoKKigh557HEqKiomD5sB1NUdoN/cfhu98vKLSlFVU6bQPffezwthuWS1WenJJx6nG67/CQWDcLaVKOt0yQ+BNF2eBNoBAuNEACuM4wQ+QrWy06Q29fZWsAp/ZvilC/g8rO0xsHsWq4+yS9obDMTKkjbXgn6fai2WoD+P+5UZk6UgP4NEtXPq6+tIJonhJMeyY9re3h4+hf8TkICPF2Wa9n9MJC8kENCIQCAQpBtvuI5eenGNUuKXvvxVdpJ2fb9Aev3PbqTXXnmZbvnlTWS1WhWv3itOOZVeeP5ZjVqAYsaaQGbMZsaaSoT6EFstAhScymgCMmF8fs0rtOqZ1bR2/Yd0082/YjtCdbtzGd1xNB4EQEBzAjIRPPvsz5HZbFbKvujiS3hy+BwcGmlOGgWCwMQn0MSaJ2KTHgqFlJccz559MBUXl5DBYKDlK06hRx99WAHhdrtp1dNPkXj6RspcAtghjfPsJLbazbfcRqetPJ26u7uprbWVvvKly0lWg5FAIJMJYIUxk58e2g4C6UXgmVVP07ITTlIWt7pcXeTqctGVl1+WXo2cZK0RZ2JG9qQ9POmMOtXO04bfO57vDRYr2YsKVTUhi3oVe/RMcSQW7pTYb5vtbDfJ4bbUJKPFq/RTTd50yiOOOu1FVSOaJOYCPezUc3hadsKJVHfgALW2tlBpaRnpmVPdgdr+bAf4eMlRR/W/x0HmEYBAGueZDY6tJu7sb7jxF0pstW//79fj3InLIJC+BMIrjKcsP1Fp5OAVRqi8pO9zQ8tAIF0JBAIBuua7V5HNbieb1UYNDepsUNO1PxOhXSH2Wi1Op4anUMis7DoNP5/u70Os8h6pP5HanZ3FdqzK7tqAo6VI+dLtnNJm/i6JOYCaJJ7J5Z6MS72hiM8ykrnGrNmz6Yc/+gn98NprFI0LBztQkzTYiZo4NRJ7UqTMJQCBNM6zixdbrWjqvIgl6NirZKYlvTFAeeUHKR4x1bTdZNap9giqpryxymPMsVO05xapDUZLDzPpU0OLdD1dz5k5GHnR1OoRzets3EtF+ezNFSuMI9jgBAiAwOgIdLlcJC+k8ScgYZvkNTz1+ksplCke0QY1XmzRuzv7nGgNOh3x0MAOtkS4iSTgRLwhTU5Ke709LurucqpqUcBizrg+SsfEwVt3Z3PcPspu6H3/fJD+8qc76ZlVTyn5nc4+NuJELSyUiqkAHKjFxZnWGSCQxnk88WKrRVMH+cszO+nURWVxSk+vy399difZi6eojpXX7Wqnmr270qsTKlqzaf27VFB1sIqcfVne2bifPtxWojp/OmT8cGsntXV4+FmOVG+S+LVYYUyHpzSyDYVVc1Qv8ty9Zg9dcoK6GJgjaxq7My9saCCzo5hKi4vjVioOjV5/9UWactDsuHnTIUMXx2stnXG4qqY0ddbQR7vV7XqoKjCFmf6zulV1v7ra6snd3pDC1qDoZAmISmQOxzIfnt785BNaMCszHGyF2752exvpLHn8uZwTPhXzf8jvoX8/eB+df+mVMfOl28VV/32YHMVVZCs1qWqaMdRMN/55D513WqWq/OmS6Y5/1kYcY8SxX0fDbqWZU6qr6cGHH6MH/vVPuuvPd/Y3vaWlmfx+P1VWTaHdu3Yq58UnRkMDxqF+SBl4kMUxfjJwr3/sSL/86pt0x29+zQbTTyqVyorMjt01dNKyY2n37l0Rv1Bj1zrUBAKJE2iv30mFuXZ6d91Gmj2jun+F8ZJLP0/nfO5cuuiCcxMvFHdoQiARgVSTClEICIySAATSUQJM4e3RBNIUVomiQWBUBMIC6YyZs1gY/Tf97o7b6ZGHHxxR5t333Ed79+yhX958o+Jl99kXXqJbbr6Jnn/umRF5cSIzCGCHNM5zihdbrXHXxjgl4DIIpB+BFl49xgpj+j2X1tpt6dcotAgEQCAjCbhaakleSCCQaQQWL1lC5eUVdOuv71Be4fb/8Q+/pdtv+xX94sYbWJX3ATrzs2eT3WFndd6nac3q58PZ8D8DCUAgjfPQEFstDiBczkgCIoy+/NIauvjiS/tXGGVglxVGJBAAARAAARAAARAYLwKPPvwQySta2r9/Hy0/aSmVlZUrHr3dXSNtpaPdi/PpSQBxSOM8F8RWiwMIlzOWgKwwSiyvt99dr6jvvvP2W1hhzNiniYaDAAiAAAiAwOQiIN68IYxOjGcOG9I4z1HikIrKwCmfOZU9Bw7EVpN4SEggMBEIYIVxIjxF9AEEQAAEQAAEQAAEMpMABFKVzw2x1VSCQjYQAAEQAAEQAAEQAAEQAAEQUEkAAqlKUMgGAiAAAiAAAiAAAiAAAiAAAiCgLQHYkGrLE6WBAAiAAAiAAAiAAAiAAAiAAAioJACBVCUoZAMBEAABEAABEAABEAABEAABENCWAARSbXmiNBAAARAAARAAARAAARAAARAAAZUEIJCqBIVsIAACIAACIAACIAACIAACIAAC2hKAQKotT5QGAiAAAiAAAiAAAiAAAiAAAiCgkgAEUpWgkA0EQAAEQAAEQAAEQAAEQAAEQEBbAhBIteWJ0kAABEAABEAABEAABEAABEAABFQSgECqEhSygQAIgAAIgAAIgAAIgAAIgAAIaEsAAqm2PFEaCIAACIAACIAACIAACIAACICASgIQSFWCQjYQAAEQAAEQAAEQAAEQAAEQAAFtCUAg1ZYnSgMBEAABEAABEAABEAABEAABEFBJAAKpSlDIBgIgAAIgAAIgAAIgAAIgAAIgoC0BCKTa8kRpIAACIAACIAACIAACIAACIAACKglAIFUJCtlAAARAAARAAARAAARAAARAAAS0JQCBVFueKA0EQAAEQAAEQAAEQAAEQAAEQEAlAQikKkEhGwiAAAiAAAiAAAiAAAiAAAiAgLYEIJBqyxOlgQAIgAAIgAAIgAAIgAAIgAAIqCQAgVQlKGQDARAAARAAARAAARAAARAAARDQlgAEUm15ojQQAAEQAAEQAAEQAAEQAAEQAAGVBCCQqgSFbCAAAiAAAiAAAiAAAiAAAiAAAtoSgECqLU+UBgIgAAIgAAIgAAIgAAIgAAIgoJIABFKVoJANBEAABEAABEAABEAABEAABEBAWwIQSLXlidJAAARAAARAAARAAARAAARAAARUEoBAqhIUsoEACIAACIAACIAACIAACIAACGhLAAKptjxRGgiAAAiAAAiAAAiAAAiAAAiAgEoCEEhVgkI2EAABEAABEAABEAABEAABEAABbQlAINWWJ0oDARAAARAAARAAARAAARAAARBQSQACqUpQyAYCIAACIAACIAACIAACIAACIKAtAQik2vJEaSAAAiAAAiAAAiAAAiAAAiAAAioJQCBVCQrZQAAEQAAEQAAEQAAEQAAEQAAEtCUAgVRbnigNBEAABEAABEAABEAABEAABEBAJQEIpCpBIRsIgAAIgAAIgAAIgAAIgAAIgIC2BCCQassTpYEACIAACIAACIAACIAACIAACKgkAIFUJShkAwEQAAEQAAEQAAEQAAEQAAEQ0JYABFJteaI0EAABEAABEAABEAABEAABEAABlQQgkKoEhWwgAAIgAAIgAAIgAAIgAAIgAALaEoBAqi1PlAYCIAACIAACIAACIAACIAACIKCSAARSlaCQDQRAAARAAARAAARAAARAAARAQFsCEEi15YnSQAAEQAAEQAAEQAAEQAAEQAAEVBKAQKoSFLKBAAiAAAiAAAiAAAiAAAiAAAhoSwACqbY8URoIgAAIgAAIgAAIgAAIgAAIgIBKAhBIVYJCNhAAARAAARAAARAAARAAARAAAW0JQCDVlidKAwEQAAEQAAEQAAEQAAEQAAEQUEkAAqlKUMgGAiAAAiAAAiAAAiAAAiAAAiCgLQEIpNryRGkgAAIgAAIgAAIgAAIgAAIgAAIqCUAgVQkK2UAABEAABEAABEAABEAABEAABLQlAIFUW54oDQRAAARAAARAAARAAARAAARAQCUBCKQqQSEbCIAACIAACIAACIAACIAACICAtgQgkGrLE6WBAAiAAAiAAAiAAAiAAAiAAAioJACBVCUoZAMBEAABEAABEAABEAABEAABENCWAARSbXmiNBAAARAAARAAARAAARAAARAAAZUEIJCqBIVsIAACIAACIAACIAACIAACIAAC2hKAQKotT5QGAiAAAiAAAiAAAiAAAiAAAiCgkgAEUpWgkA0EQAAEQAAEQAAEQAAEQAAEQEBbAhBIteWJ0kAABEAABEAABEAABEAABEAABFQSgECqEhSygQAIgAAIgAAIgAAIgAAIgAAIaEsAAqm2PFEaCIAACIAACIAACIAACIAACICASgIQSFWCQjYQAAEQAAEQAAEQAAEQAAEQAAFtCUAg1ZYnSgMBEAABEAABEAABEAABEAABEFBJAAKpSlDIBgIgAAIgAAIgAAIgAAIgAAIgoC0BCKTa8kRpIAACIAACIAACIAACIAACIAACKglAIFUJCtlAAARAAARAAARAAARAAARAAAS0JQCBVFueKA0EQAAEQAAEQAAEQAAEQAAEQEAlAQikKkEhGwiAAAiAAAiAAAiAAAiAAAiAgLYEIJBqyxOlgQAIgAAIgAAIgAAIgAAIgAAIqCQAgVQlKGQDARAAARAAARAAARAAARAAARDQlgAEUm15ojQQAAEQAAEQAAEQAAEQAAEQAAGVBCCQqgSFbCAAAiAAAiAAAiAAAiAAAiAAAtoSgECqLU+UBgIgAAIgAAIgAAIgAAIgAAIgoJIABFKVoJANBEAABEAABEAABEAABEAABEBAWwIQSLXlidJAAARAAARAAARAAARAAARAAARUEoBAqhIUsoEACIAACIAACIAACIAACIAACGhLAAKptjxRGgiAAAiAAAiAAAiAAAiAAAiAgEoC/x+Hh98wEx1XfgAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6QAAAJYCAYAAAB1mCsLAAAAAXNSR0IArs4c6QAAAERlWElmTU0AKgAAAAgAAYdpAAQAAAABAAAAGgAAAAAAA6ABAAMAAAABAAEAAKACAAQAAAABAAADpKADAAQAAAABAAACWAAAAAAL7lmzAABAAElEQVR4AeydCaBNVRfHl2iQeSwzZZaSoShDRYQyzxVSESlDZokoM5nJUDILGTOGzGSexzIPGUKlgeJb/617v/uee89w33vedf3X9+nde84+++zzO++dddbea4iTLFmyG0IhARIgARIgARIgARIgARIgARIggdtM4J7bfD6ejgRIgARIgARIgARIgARIgARIgAQMARqk/EUgARIgARIgARIgARIgARIgARKIFQI0SGMFO09KAiRAAiRAAiRAAiRAAiRAAiRAg5S/AyRAAiRAAiRAAiRAAiRAAiRAArFCgAZprGDnSUmABEiABEiABEiABEiABEiABGiQ8neABEiABEiABEiABEiABEiABEggVgjQII0V7DwpCZAACZAACZAACZAACZAACZAADVL+DpAACZAACZAACZAACZAACZAACcQKARqksYKdJyUBEiABEiABEiABEiABEiABEqBByt8BEiABEiABEiABEiABEiABEiCBWCFAgzRWsPOkJEACJEACJEACJEACJEACJEACNEj5O0ACJEACJEACJEACJEACJEACJBArBGiQxgp2npQESIAESIAESIAESIAESIAESIAGKX8HSIAESIAESIAESIAESIAESIAEYoUADdJYwc6TkgAJkAAJkAAJkAAJkAAJkAAJ0CDl7wAJkAAJkAAJkAAJkAAJkAAJkECsEKBBGivYeVISIAESIAESIAESIAESIAESIAEapPwdIAESIAESIAESIAESIAESIAESiBUCNEhjBTtPSgIkQAIkQAIkQAIkQAIkQAIkQIOUvwMkQAIkQAIkQAIkQAIkQAIkQAKxQoAGaaxg50lJgARIgARIgARIgARIgARIgARokPJ3gARIgARIgARIgARIgARIgARIIFYI0CCNFew8KQmQAAmQAAmQAAmQAAmQAAmQAA1S/g6QAAmQAAmQAAmQAAmQAAmQAAnECgEapLGCnSclARIgARIgARIgARIgARIgARKgQcrfARIgARIgARIgARIgARIgARIggVghQIM0VrDzpCRAAiRAAiRAAiRAAiRAAiRAAjRI+TtAAiRAAiRAAiRAAiRAAiRAAiQQKwRokMYKdp6UBEiABEiABEiABEiABEiABEiABil/B0iABEiABEiABEiABEiABEiABGKFAA3SWMHOk5IACZAACZAACZAACZAACZAACdAg5e8ACZAACZAACZAACZAACZAACZBArBCgQRor2HlSEiABEiABEiABEiABEiABEiABGqT8HSABEiABEiABEiABEiABEiABEogVAjRIYwU7T0oCJEACJEACJEACJEACJEACJECDlL8DJEACJEACJEACJEACJEACJEACsUIgXqycNRpPWurF0pIoUWLT4/Xr/8r58+flpx9/lNOnT0U4y+p1G2XxooXStUunCNv5JfoJxIt3r9R/o4EcP35MFi1c4PgETz9dRPI+/rjMnjVTzp076/i46GoY2+cPdB3vNGkqDRs1kWLPPiVXfv89UDPX24O9T65P5PCAF0uXkYQJE8nuXTvlwIH9Do+6vc3c3AvfZ9ONGzfk77//litXfpft27bJ5cuXbu/AeTYSIAESIAESIAESCFECd7xB2r5DJ8maLXsEvNevX5fvliyWNq2ay8WLF82+ZMmS68tuggjt+CVqBF59ra606/ChvFT6BTl54oS3s/vvv086de4q3y9f6sogLaUGScNGjWXTxh9i1CBds26TLNexfdihrXfM+HC7zh/hpA6+PBj/QUmRIoXEiRPHQWvnTYK9T87P4LxlmjRpZeTosXLPPffIihXLpe6rtZwffBtburkX/p5NGOo//1yTIYMGymf9+9zGkcfsqQL9TcXsWdk7CZAACZAACZBAOBC44w1S3IS9e3ZL1SoV5J4490jiJImlSJFn1SD6WCZNmS5ly5QMh/sUktdw3333SeLESYwR4TvAP/74Q4o985T8+eefvpttPw8dPEDGf/WlnDlz2rZtVBokSpxIHnzwwVu6uF3nv+XEsbQh2PsUE8OtWLmKMbixoo6VxVSpUsfopERMXIO/Pvfs3iVVKr1srg0r0ilTpZJmzVtK85atZOPGDbJ61Up/h91x2wL9Td1xF8IBkwAJkAAJkAAJ3HYCYRFD+u+//xpXxt9++9Ws1E2fNlW+mTFdcud5TDJkzBgQarMWH8icbxfJxi07ZMfu/fLdslXSum17rwswDuzTb4D06fuZ3z7atu8og4d+HmFf4cLPyMTJ02Tbzn2yYdM2GTZilDz8cJoIbb4YO0EavPm2xI8fX95u+I6MGDnGrCiiEVaIatd5TWbNXWD6WLlmg4wa85WULPVihD78fXn5lYoyYdLXkilTZunarbt8v2qdbNm+x4wRhqOvOLl2tA801oqVqkjdem+YLj8bMMScF+cu8syzAvdErJBWUiPDV2DAtmrdTmbPWyhbtu027Ft+0EZSpExpmhV5pqh079lH+SfyHuY5P65/8tQZsmvvQVmwaKm8UqGit43ng5Nr+mrCZEmYIKEUK17CO2bcY4i/82N78uTJpd9ngwRu39t37TP3N3+BgtjlFQ97rPRh1XjZ96vNWL/8aoKkTZvW287uQ0K99h69+sq6H7aY43HN+fLnj3AYDBuwrlGrToTt+NK7b39p065DhO0ehpF/3/zdJ7fXgd+rXn36y/qNW2XnngPmHn340cdmfDifU6lStbqsW7tGVw4/k7hx497yu2PVT44cOWXMl+PN7zvGAHbjJk6RZ54testhHhZwzx4/caoZ84rV6+X1uvVvaevkXtxyUKQN8NbAxAyM/19/vazhBIfUe2ORaeVmxdvuudK3/0BzHyKd3nzFM23o8JERVtjt+sOBTllZ/U1F5Xnm71q4jQRIgARIgARIIPwIhMUKqb/bcu3qVbP5Xn15DyRlypSVv/76SxbO/1Yu68ti9uw55N2mzSRXrjzSoP5r5rDTp04JDJ0vxoySvXv3eLuCEQX30i/GjPZuq1a9phoEn8nJkyfkyy9GScaMmaT8yxWk0FNPy3PFn/HG/z1btJiuLCaWuvUbSJYsj8ilSxfl1MmTph8YaO81ayHLli4x/9KlSy9FixaX5i1aydLvlnjP5e9D+gwZjKE1d/4i+e3X32TTph/UGH5YKlSsJJkyZ5YK5ct4D3Ny7WgcaKw/bFjvXQHFRMCVK1dM39euXTM/YQxcvHjBfMZ/YJzMnDNfsqt79bffzlPjY7XkyZPXXOupUydlyuSJkj59ejP+++6733sczl+wUCFd0UxgXHnhil2sWAljZOMl35eJk2u6fOmyXFeD+erfVw13nOi3334z5/N3/mTJksm3C78zRvLXU6cYo6JsuZdl2oxZ8vab9fUefXfz2P/Yz/l2ofm+bu1aSaq/By+UfFGNgVFSuWJ5s93qPw888IDM0YmIzPo7sWTxQjl29Kj5/NzzL0Q47J574hhOO3duj7AdXwoUKCQnlaevBLqHaBP5Pnl+h5xcR4KECZXNEoER/u28OXLixHHJli2H1NPfa0w+xI3n7PGCiSMYlS2Hvyc7dmyXgwcOCAzUUSNH+F5GwM+Zs2SRJ/MXkDWrV2nc8lH9XXtQSpd+SSaowQnPia1bNnuPBYsnnsgnSZMl1e1blPMiw+CT7r3k6NEjsnLF96at03vh7djhh/vvv1+q16xtzrVh/TpHRzl5rvz88xlp+l5z+XzEMGP0ejpGfP3bDRvLVP37wgQExEl/aOeUldXfVFSeZxgDhQRIgARIgARIIPwJOHtjvMM4wPgp9/Ir8ssvv8iRI4cDjr56tUpeI9HTqOOHnaXhO03MqhiOnzJlojGaatV5VTp36uhpJtVr1NKVnHgycfxXZhtWirAytGjhfGnyztvel7/x48bKbDUy6tVrIMOGDvIen19foIcOGSTj1EUVCXyw6gWpW/8Ns1L0Rr2bBjG2YR9W9JzKsKGDZdTnwwUrx5AOHT+SRo3flaLFintdBJ1cu+d8/saKODis/OV5LK981KmDHD92zNPc78/GTd5TQz+31Hu9jokt9TSCcfDAA9YraadPn5bGjd7yvmhjxXnJshXS5N33IxikTq7p/abvyHPP75cNG9ZJy+bveYYR8GcTnaDA+cqp67dnQmLEsCFmBfsjXQWGAfPPP/94j/966mQZ0L+veAxzrPgi1haTE8eOHfW28/fhrbcbyaNZs6mhW88k4PK0wUs9JkWiIv7uoVV/Tq7jvfebm+uqXbOqrF2z2tud2/HC+MTkwoL580wfM6Z/bVaZc+bMJfv27fX2G+gD7kGh/Hm9v+9oN3hgf10p3SpVqlSLYJBiHyZQ6tWtI7t27sBXY1CvWb9JKmtbj0EaXfcCkwvwmIDguZQ1Wzbz91y6VAm5+t+kmdkZ4D9OnyvTdLIEBmmVqtWkb++e3t7K63MQRvCUKZPMNqf9eTpwwsrqbyo6nmeesfAnCZAACZAACZBAeBIIC5dduNYVL/GclHmprLz5VkPj0pkhQ0b5tFsXgctcIPFkLEU8Yb4n8xu3WKyMQPAiCcHK5Yrvl5mXVbzYeaRW7Vdl1coVXoMXGUKxmoYVCs9KBNpu37ZVsHqB7LG+Mk3divv17eWNk4OBBxc+uPcl1wQ2nszBOAb7li+7uRLn20egzzOmfR3h5RyruxBfF0Yn1+7p399YPfuc/oQBDyMQiY58Zfv2bWa777bInzdv2ug1RrEPMabzdZW1QMFCZiXO097NNXmOsfuJ1eWVmmTHY4yiPVbVv/pyjGR55FFd5X0sQhdjvxjjNUaxw2OopdPVXzuBQbRFV/OQDTq6xe09dHId5cq/YiZPPNcYzJiNe666f8MYhVEKmfnNdPN3C0PVieBvxjP5And1/J5jdQ+ZbD1/x779rFXXYI8xiu3IyH34px/F9x7FxL1Alt0jR47IvffeK9O/mSMvlbVfNXf6XMHEG/6+qlatEcE1t2q1GiZrMTIXQ5z2Zxrrf5yw8rSN/DO6nmeR++V3EiABEiABEiCB8CIQFiukmTNnMfFgnlsD1zu43Pq6c3r2+f6Eq2Dnj7sZN0e8JEI8K1vxfNwNJ00cL8+/UMq8QM6e9Y0ULvKMcbXt8WlXb3dwvYUg7iqyJNFES2nSpouw2fMC7bsRhuyUSRNNwhPEn8IQgoHyzYxpcv7cOd+mrj7DgMNqDFwrPeL02tHe31g9/Tj5CUM+ja6mLl7svASMXb9H9cUeL7xYvfSsPLq5Jrv+sR/jfuihh9Udde4tzVFaCAJXaBjVgeS3X381u+6//+ZER6B2MMwy6e/x1P9WsgK1C3Z7VO9h5OvA30v69BlcTZT4G3tRdb9OlTq1LFzwrWBiCfK7lkb54Yf1gkRHPXt8YjmphPZg1+KD1sYV1fM7/q+uWsfReOwfDx1CE1v5Vd22PfcoOu/FkcM/yau1IxrWSZIkFcRd9h8w2PCDoRpI3DxXvp4y2cQ64/mEeFy4XyNcoPNH//fscNNfoDH5sgrUBttj6nlmdU7uIwESIAESIAESuPMIhIVBikQhzd9/V65q/OIxNUY98YxWtwOukTNmzjUrlG1atZBtW7eYGDjE6yGJkK8gThCrnHVefU1rZH6jP183qyqIZ/QIskxCPunaWQ24/7twevZfuuis7iBKQWClA+6oxUs8L4hXRPwo6qcizjJYgUHiWbl1c+3Bns/3OKxAe1ZLfLdH5fP1GzdXvm/Izbi4mLgmuFhi3H///dctQ/3rr5sZhOP7ydbr29gzTt9t/j4n0ERLMPJ+/y+e1V+b2NwW+TruU2Mdhpudu7XdmKtWu2msRf6b8xyH1U67TLQ9NQlUNV2Bnzxpglld/fHQQVPuab7G/jqVG/CkUAMWEtP3Aiu3Y0aNkCHDRhpXfN/nSOTxunmuzP92rnysycywKgqDFKu8mIia9c0Mb7du+vMeFOmDL6tIu275GlPPs1tOxA0kQAIkQAIkQAJ3LIGwMEjh6me1SuXv7rxQspQp/YHYRI87m7922IYYQaw+NNWYuXz5njRG4mDNBuq76nTk8M1Y1W3qogsDOSoCF0j8Q4ZKuB52+7SnWQFCXJ+VC3Kgc6LUBIwruCVC3Fx7oD59t6PcjpWgFiwyjGJFLboEfeFl21P/1O01ga2dXLp0yRiInlU33/aeFW+72FnfY6w+gw9cT1M/9JBVM7Pv+vWbRnhUjUHbE1k0gHs0xgxX92AFSZFKa2Ix1B1dsXxZhG4wEdBOawzDbdfKIIVRXLb8y8YbokO71hH6CPaLm3sR7DlwryEpU6ay7MLNcwXPwXlzZwsyJXfq2E7dd6ubOsAwgD3ipj/PMU5/Bvqbiu7nmdPxsB0JkAAJkAAJkMCdQcD+rfzOuA7Xo8zwn3GEDLe+kiLFzRIkvtvwGcmNsMI4/PMxaijGMa61vm02bvzB7EcMqz/xZ9REbofMpL7tYHwiThWZQOGamkzLjwQjtTXeFbJas5BC3F67OcjPf2BoQjxlW/w08W7aqivQJUuVlhQaH+sreImFW6wbgWsnyr6s1Uy9HgPdzTVh3IHuc+RxIFMxjN0ECRJE2IXzwwBADdzokr1790gJXRX3uI97+o3MFzHFSLj1yCOPeJqYn0mTJpVEmr35dglW4bJnz2Hc1z3nxFgLFnrK89XyZ1mNocREyeCBn8mY0SMj/Bs96nON3V5u3OTRJpAgWzXirSP/HcPdGgZvsOL0XgTTP4xtrGJC4JlhJW6fK3D5TqjXjdJDiHGeqs8tX3Hbn++xVp/9/U3F1PPMahzcRwIkQAIkQAIkcOcRCIsV0mCwoyh9vTfeNHUvJ00Yp13EMYZHDS3J4E9OHD8uq1atMAYDSlycPftzhGZIkvL11Eny2uv1TOwh4j7hfokstCj9clpLcbRW12ArgTGxfOVaUzIGhugZzS6bUzPTIiEQ+r9w/rzV4d59qI+6eNECs+KGFdaGjZqYpDGe8hdur93bcaQPu3fvNEZ4i5atZejggXK/JoQ6efK4HDp4MFJLkR6fdDXlU6ZOmyV9evcwcZ8wZhqoAT9ZY3St3JGRsKr+G2/J/v17JXXqh6Txu+8ZI6Rn90+853FzTTu1tAgSyiAx1YED+41BjKQ6/qRfn16mXuoXY8dLr57dzaogVu1wT4cMGmBcQ/0dF8y2L8eMNOVsvvxqomZf/kINi0RSsVJlzQpc8pbuNqxfa1YXUaYIvxtImtXgzYZmcsBJZtpbOgxiw8AB/aXEcy9oXdkFpuQKDMCCBZ8S49LpoD9wREKhTTqZ40/mzpklpV4srcnKysmsmf93O/VtC0MILrpIsIR7iXubI0cuqd/gTVOP17OC7nuMk89u7oVVf8mTpzBZltEGRjK+45py5c4jY78cbZtF2O1zZcvmTYYH/l7wzEIpHF9x25/vsVaf/f1NIQ44Op5nVuflPhIgARIgARIggTufwF1rkM6dM1sKFXra1AJ9Tl+qIev1Jb9/v97SqnU7v3d20YL5xiAdP26s3/0d2rVVt9jDajA1NUakpxEMBMS32ckfWstz6XeLNVNwIxND6mmPDLsd2rfxfLX9mUGTmXw+6kvj8ouEKTD2EIPqkWCu3XOs70/Ui0TClHr13pCp02eaXSh5488gxYpTnZrV5ONPusvI0V96u4ExslMNKitBTVkwxSox5LAmiqldo2qE1Uk319RbDUusUiHeDlmVcR2BDFLUxUSpmr79B8jM2d+a82OFcpAaYwMH9DPfo+s/uIasWbObMkMo84MVeYwLSbUQt+wrn37ysTzyaFZp066D2QzDrEf3rtJIJx9ul8DVHfVVUdIna9asGoN9QuA2i9Im7zRuKvh9DiTwBCjyzLNmVdQT2xy57ZIlizR+92+ponGmgQxSHPP+e03k85FfCEo2QeByO2LYUJMUyWwI4j9u7oVV92nTpTOTXmiD1XyUeEJ92aZNGqp77RyrQ7373D5XpqprP0o9ff31ZPM75O3ovw9u+4t8vL/v/v6mXilfOlqeZ/7Ox20kQAIkQAIkQALhQyCOliq5GZAWPtfk6kqw4oZslKdPnTKrNVYHj584VdLpC+YLzxW1amb2pUqV2rinnjh5wnWiGsTFISstXBGxwoMXbCfyTpOm0l7j7go+mVfdSa8IxgAjAQaUP3Fz7f6O992WIWNGc50wjOwE15UmTRo5patjdkl89h86KqhL+WGHtmYlE/G8eKkPJG6uCSt6KdVF+6TeI99aov76hgGLUkJwFz508ICjGpL++nGyDeN6VN0tD2tcMupABhL8nmT5z20XWX897suB2t+u7YOGDJfHtb7sc8WK3K5TGjfnbLriDonO++P0XtyuC43Kc8XfGKO7P39/U8E+z/yNl9tIgARIgARIgATCj8Bdu0LquZVwvY3sfuvZ5/szR46cptZpF58SCr77I3+G0WRlOEVu7/sdyZLgbhcVQabhK1cOW3bh9NotO/lvp5vkPjCyrAwtf+eDsQX3Tjtxc01IzIN/TgSreJ7yMk7aR6UNxoSVWTvB74m/1Wi746Jrf+LESXSV8xlZv26dqfkJw+PF0i8Z99khgwdE12kc9YNyTXt273LU1k0jp/fCTZ9RaRuV54q/80Z3f/7+pqLjeeZv7NxGAiRAAiRAAiQQHgTueoPU6W186+1GJiZzxvRpTg9hOxIIawJJkiZR9+ux5hoxwYCsv0jIhPq/nw8fGtbXzosjARIgARIgARIgARKIHgI0SB1y3KzJQhYvXujYfdZht9HaDImQkPn1999/i9Z+Y7MzxL7+GMUyOrE5/nA+N9zca1arLNlz5pQkSZLI+XPnTJIeT/KscL52XhsJkAAJkAAJkAAJkED0ELjrY0ijByN7IQESIAESIAESIAESIAESIAEScEvgHrcHsD0JkAAJkAAJkAAJkAAJkAAJkAAJRAcBGqTRQZF9kAAJkAAJkAAJkAAJkAAJkAAJuCZAg9Q1Mh5AAiRAAiRAAiRAAiRAAiRAAiQQHQRokEYHRfZBAiRAAiRAAiRAAiRAAiRAAiTgmgANUtfIeAAJkAAJkAAJkAAJkAAJkAAJkEB0EKBBGh0U2QcJkAAJkAAJkAAJkAAJkAAJkIBrAjRIXSPjASRAAiRAAiRAAiRAAiRAAiRAAtFBgAZpdFBkHyRAAiRAAiRAAiRAAiRAAiRAAq4J0CB1jYwHkAAJkAAJkAAJkAAJkAAJkAAJRAcBGqTRQZF9kAAJkAAJkAAJkAAJkAAJkAAJuCZAg9Q1Mh5AAiRAAiRAAiRAAiRAAiRAAiQQHQRokEYHRfZBAiRAAiRAAiRAAiRAAiRAAiTgmgANUtfIeAAJkAAJkAAJkAAJkAAJkAAJkEB0EKBBGh0U2QcJkAAJkAAJkAAJkAAJkAAJkIBrAjRIXSPjASRAAiRAAiRAAiRAAiRAAiRAAtFBgAZpdFBkHyRAAiRAAiRAAiRAAiRAAiRAAq4J0CB1jYwHkAAJkAAJkAAJkAAJkAAJkAAJRAcBGqTRQZF9kAAJkAAJkAAJkAAJkAAJkAAJuCZAg9Q1Mh5AAiRAAiRAAiRAAiRAAiRAAiQQHQRokEYHRfZBAiRAAiRAAiRAAiRAAiRAAiTgmgANUtfIeAAJkAAJkAAJkAAJkAAJkAAJkEB0EKBBGh0U2QcJkAAJkAAJkAAJkAAJkAAJkIBrAjRIXSPjASRAAiRAAiRAAiRAAiRAAiRAAtFBgAZpdFBkHyRAAiRAAiRAAiRAAiRAAiRAAq4J0CB1jYwHkAAJkAAJkAAJkAAJkAAJkAAJRAcBGqTRQZF9kAAJkAAJkAAJkAAJkAAJkAAJuCZAg9Q1Mh5AAiRAAiRAAiRAAiRAAiRAAiQQHQRokEYHRfZBAiRAAiRAAiRAAiRAAiRAAiTgmgANUtfIeAAJBE+gwZtvy9ETPwf8l79AweA7j+KRZV4qK126fhLFXm49/NXX6prr3XfwiCRIkODWBtxCAiRAAiQQEgTuFh310EMPR9DDh4+dlt17D8nCxcvk9br1Q+JecBAkcDcRiHc3XSyvlQRChcAn3brI5cuXbxnO0aNHbtl2uzY8/kQ+qV69lnT56MNoPWWlylUF15UpU2YpXaaszPxmerT2z85IgARIgASil8DdoqO+njpZvluyWOLGjSvJkiWTGrXqyCfde8nvv/9OXRW9v1LsjQQsCdAgtcTDnSQQMwTmzp4lZ86cjpnOQ6jXtOnSSaGnnpbWHzSXd99rJpWqVKWSD6H7w6GQAAmQgD8Cd4uO2r9vryxaON+L4Nt5c2Tbzn1Gb3Hy1IuFH0ggxgnQZTfGEfMEJOCOQIkSz8vXM2ZJtuzZbzmwTbsO8tnAId7t9913n7Rt31G+W7ZK9h44LAuXLDczvN4G+qFu/QYy+otxkiNHThk15iujbNdv3CrNWnzgbVazdh2pUrW6xH/wQXNunH/y1Bne/fgwYdLXMnL02Ajb7L5UqFhZ/vnnH1X4C2Te3NlSrGhxSZEihd1h3E8CJEACJBCiBMJJR0VGjJXRf//9Ry6cPx95F7+TAAnEIAEapDEIl12TQCACKVKmlFSpUt/yL168e2XLls3y+OP5pFbt1yIcnjhxEnnr7Xfkp59+NNvvuecemfL1N8aQXLRovjR//13BbG/PXn312Fe9x2bMmEleeKGkfDP7W/ntt19l2NBBpl3LD9pInsfymnZHDx+RY8eOqiL+V1at+P7mv5UrvH3gA1Y68+cvEGGb3Re4667U/n799bLMmzNb4saLJ+VfqWh3GPeTAAmQAAnEIoG7RUf5Ik6SJKm0adtBzqsxOn3aVN9d/EwCJBDDBOiyG8OA2T0J+CMwf+F3/jZL5YrlZcvmTTJ3zixjaPbs3k2uXbtm2laqXEXiaZzL1MmTzPdqNWpJgYKF5KUXn5e9e/eYbXA9SqpxMI3ffU+mTJ7oPcdff/8t5cqUNLGc2Dh65AjZuHmHlHqxtOzetVPWr18rmzb+II/lySuDBw3wHuf74bP+feTvv/7y3WT5OXv2HJIrV24ZOWKYabdPjeUfDx2Uymqkjhv7heWx3EkCJEACJBB7BO4GHQW6HT7sLO06dBJM8CKOFIJJ25MnT5rP/A8JkMDtIUCD9PZw5llIIAKBFs2ayi+//BJhG74cOnjQbJs4YZzUqFnbJAFCTAsE35csWSRnz/5svpco8ZycOH5csqsrLv555PKlS4JV0XvvvddrzP71559eYxTtrl+/blZaCxV62nOY7c8Rw/7vKmzbWBtUVAP66tWrsnjxQm/zeXPnGFfhDBkzyvFjx7zb+YEESIAESCB0CNwNOgq0ESe6bOnNCWKEwKTPkEHq1WsgZcu9LOXLvihX1IWXQgIkEPMEaJDGPGOegQRuIbB2zWrLpEbbtm4xq56I7YRBipXGvI8/Ib17dff2BaMzYaKEUr/BW95tng/btm2V+PEfVIP01ky+njZ/6WonjNaYkkqVqspvv/4qbdt19J4iTZq05nNFjS0dMnigdzs/kAAJkAAJhA6Bu0FHgfbePbuNjvUl/93iRSYfQ+nSLzEJny8YfiaBGCRAgzQG4bJrEogKgUm6Svpxt+6CTLUwTBHjuconrvPChfPyj8Z8Vq5QLujT3LhxI+KxceJE/B7kN7gSY6Z5184dunqbI0IvWBmuqG67NEgjYOEXEiABErijCNzJOsoKNMJL/tVkfE8XLkKD1AoU95FANBJgUqNohMmuSCA6Ccz8Zob8rbGfr75WVypVriaTJ04QXwNy544d8pgmJcqS5ZFbTgvXI7fy5x9/SPwHHhAkVvInT2pCoye0VqkTqVSpiqnjVrXyK1KzWuUI/0YMHyImvjR3HiddsQ0JkAAJkEAIEriTdZQVTiTwQwK+A/v3WTXjPhIggWgkwBXSaITJrkjAKYGXX6kgly/f6k67bOkSuXDhgukGGXHnzp4pjRs3lRv6v6lTbyYz8pxj5OfDzcrp2PGTpFePT2XHjm2SOvVDJhtu5SrVTLIjT1snPzErDCX87nvva4mWOZI2bdoIK7LI6AsX3IL5b2bmDdRnvP8y6S5etEDgFhxZcE3tNYkEjFa4S1FIgARIgARCi0A46yhf0jly5pKXypY3SY0SJkpkyqPVqFnLJOD7+uspvk35mQRIIAYJ0CCNQbjsmgQCEejUuavfXciy6zFI0WDixPGmrihqeEauiwaDtVrlCtKl66cyZNjn3gyBly9fCsrNaOl3SwRGbt26bwhKwsCYzJE1k99xWm0sWqyEqTU6a+Y3fpudOnVKfvhhvVSoVFl69vgkwqqv3wO4kQRIgARI4LYSCGcd5QsSyQLxD4IapGdOn5JJE8YLPHl+/+0336b8TAIkEIME4iRLlixSEFkMno1dkwAJxAgBJCfKoEmO/rhyRX7++UyUjDykvk+fPoNJugSXYQoJkAAJkAAJRIUAdVRU6PFYEgh/AjRIw/8e8wpJgARIgARIgARIgARIgARIICQJMKlRSN4WDooESIAESIAESIAESIAESIAEwp8ADdLwv8e8QhIgARIgARIgARIgARIgARIISQI0SEPytnBQJEACJEACJEACJEACJEACJBD+BGiQhv895hWSAAmQAAmQAAmQAAmQAAmQQEgSoEEakreFgyIBEiABEiABEiABEiABEiCB8CdAgzT87zGvkARIgARIgARIgARIgARIgARCkgAN0pC8LRwUCZAACZAACZAACZAACZAACYQ/ARqk4X+PeYUkQAIkQAIkQAIkQAIkQAIkEJIEaJCG5G3hoEiABEiABEiABEiABEiABEgg/AnQIA3/e8wrJAESIAESIAESIAESIAESIIGQJECDNCRvCwdFAiRAAiRAAiRAAiRAAiRAAuFPgAZp+N9jXiEJkAAJkAAJkAAJkAAJkAAJhCQBGqQheVs4KBIgARIgARIgARIgARIgARIIfwI0SMP/HvMKSYAESIAESIAESIAESIAESCAkCdAgDcnbwkGRAAmQAAmQAAmQAAmQAAmQQPgToEEa/veYV0gCJEACJEACJEACJEACJEACIUmABmlI3hYOigRIgARIgARIgARIgARIgATCnwAN0vC/x7xCEiABEiABEiABEiABEiABEghJAjRIQ/K2cFAkQAIkQAIkQAIkQAIkQAIkEP4EaJCG/z3mFZIACZAACZAACZAACZAACZBASBKgQRqSt4WDIgESIAESIAESIAESIAESIIHwJ0CDNPzvMa+QBEiABEiABEiABEiABEiABEKSAA3SkLwtHBQJkAAJkAAJkAAJkAAJkAAJhD8BGqThf495hSRAAiRAAiRAAiRAAiRAAiQQkgRokIbkbeGgSIAESIAESIAESIAESIAESCD8CdAgDf97zCskARIgARIgARIgARIgARIggZAkQIM0JG8LB0UCJEACJEACJEACJEACJEAC4U+ABmn432NeIQmQAAmQAAmQAAmQAAmQAAmEJAEapCF5WzgoEiABEiABEiABEiABEiABEgh/AjRIw/8e8wpJgARIgARIgARIgARIgARIICQJ0CANydvCQZEACZAACZAACZAACZAACZBA+BOgQRr+95hXSAIkQAIkQAIkQAIkQAIkQAIhSYAGaUjeFg6KBEiABEiABEiABEiABEiABMKfAA3S8L/HvEISIAESIAESIAESIAESIAESCEkCNEhD8rZwUCRAAiRAAiRAAiRAAiRAAiQQ/gRokIb/PeYVkgAJkAAJkAAJkAAJkAAJkEBIEqBBGpK3hYMiARIgARIgARIgARIgARIggfAnQIM0/O8xr5AESIAESIAESIAESIAESIAEQpIADdKQvC0cFAmQAAmQAAmQAAmQAAmQAAmEPwEapOF/j3mFJEACJEACJEACJEACJEACJBCSBGiQhuRt4aBIgARIgARIgARIgARIgARIIPwJ0CAN/3vMKyQBEiABEiABEiABEiABEiCBkCRAgzQkbwsHRQIkQAIkQAIkQAIkQAIkQALhT4AGafjfY14hCZAACZAACZAACZAACZAACYQkARqkIXlbOCgSIAESIAESIAESIAESIAESCH8CNEjD/x7zCkmABEiABEiABEiABEiABEggJAnQIA3J28JBkQAJkAAJkAAJkAAJkAAJkED4E6BBGv73mFdIAiRAAiRAAiRAAiRAAiRAAiFJgAZpSN4WDooESIAESIAESIAESIAESIAEwp8ADdLwv8e8QhIgARIgARIgARIgARIgARIISQI0SEPytnBQJEACJEACJEACJEACJEACJBD+BGiQhv895hWSAAmQAAmQAAmQAAmQAAmQQEgSoEEakreFgyIBEiABEiABEiABEiABEiCB8CdAgzT87zGvkARIgARIgARIgARIgARIgARCkgAN0pC8LRwUCZAACZAACZAACZAACZAACYQ/ARqk4X+PeYUkQAIkQAIkQAIkQAIkQAIkEJIEaJCG5G3hoEiABEiABEiABEiABEiABEgg/AnQIA3/e8wrJAESIAESIAESIAESIAESIIGQJECDNCRvCwdFAiRAAiRAAiRAAiRAAiRAAuFPgAZp+N9jXiEJkAAJkAAJkAAJkAAJkAAJhCQBGqQheVs4KBIgARIgARIgARIgARIgARIIfwI0SMP/HvMKSYAESIAESIAESIAESIAESCAkCdAgDcnbwkGRAAmQAAmQAAmQAAmQAAmQQPgToEEa/veYV0gCJEACJEACJEACJEACJEACIUmABmlI3hYOigRIgARIgARIgARIgARIgATCnwAN0vC/x7xCEiABEiABEiABEiABEiABEghJAjRIQ/K2cFAkQAIkQAIkQAIkQAIkQAIkEP4EaJCG/z3mFZIACZAACZAACZAACZAACZBASBKgQRqSt4WDIgESIAESIAESIAESIAESIIHwJ0CDNPzvMa+QBEiABEiABEiABEiABEiABEKSAA3SkLwtHBQJkAAJkAAJkAAJkAAJkAAJhD8BGqThf495hSRAAiRAAiRAAiRAAiRAAiQQkgRokIbkbeGgSIAESIAESIAESIAESIAESCD8CdAgDf97zCskARIgARIgARIgARIgARIggZAkQIM0JG8LB0UCJEACJEACJEACJEACJEAC4U+ABmn432NeIQmQAAmQAAmQAAmQAAmQAAmEJAEapCF5WzgoEiABEiABEiABEiABEiABEgh/AjRIw/8e8wpJgARIgARIgARIgARIgARIICQJ0CANydvCQZEACZAACZAACZAACZAACZBA+BOgQRr+95hXSAIkQAIkQAIkQAIkQAIkQAIhSYAGaUjeFg6KBEiABEiABEiABEiABEiABMKfAA3S8L/HvEISIAESIAESIAESIAESIAESCEkCNEhD8rZwUCRAAiRAAiRAAiRAAiRAAiQQ/gRokIb/PeYVkgAJkAAJkAAJkAAJkAAJkEBIEqBBGpK3hYMiARIgARIgARIgARIgARIggfAnQIM0/O8xr5AESIAESIAESIAESIAESIAEQpJAvJAcFQdFAiRAAiRAAiRAAiTgmMAD990nD6VMKZnSppXjZ87I4RMnHB/LhiRAAiQQmwRokMYmfZ6bBEiABEiABEiABKJA4KEUKeRhNUQb164lZYoWNT19PHQoDdIoMOWhJEACt5dAnGTJkt24vafk2UiABEiABEiABEiABIIlEDduXEmbKpUUyZdP3q1TRzKmTROhq58vXJBX3mks5y5ejLCdX0iABEggFAlwhTQU7wrHRAIkQAIkQAIkQAKRCMR/4AFJmTSp1K9SWRpUqRJp7/+/YtU0U7p0NEj/j4SfSIAEQpgADdIQvjkcGgmQAAmQAAmQAAkkSpBAUiVPLi3r15PyJUo4AlLh+edly549cv36dUft2YgESIAEYosAXXZjizzPSwIkQAIkQAIkQAI2BFLoiuiA9u2kaIECNi1v3V389bpy/PTpW3dwCwmQAAmEEAGWfQmhm8Gh3D4C99xzj8lEmCxx4tt3Up6JBEiABEiABBwQwIooDNF4GiuaNFGioIxRnCZbpkwOzsYmJEACJBC7BGiQxi5/nj0WCGR4+GF5u1o1+X7cV1Kx5AsSJ06cWBgFT0kCJEACJEACEQkgRjRjmjQyqGNH2TR9mjEoUb6l35djIzZ0+O2NypUl/v33O2zNZiRAAiQQOwRokMYOd541FgggyUOlUiVl0ehR0q7h22YEnRo3lsya+IFCAiRAAiRAArFFACuhmdOllS7vvisrxo+T554qZIZSqVQpQUbdhatWBTW0ogXyGwM3qIN5EAmQAAncJgJx48eP3+U2nYunIYFYIZBE3Z3yZs8uwzp/JHXKl5d74/0/lxdWR0/+fFa27t0bK2PjSUmABEiABO5uAukfekjqVaokI7p0kTzZskaAUSBPHlm4eo0cPHpUbly/IYXzPRFhv5Mvuw4ekt2HDjlpyjYkQAIkECsEuEIaK9h50ttBAIYn3HMHdmgv0wZ8JlkzZvR72g6NGsoj6dP73ceNJEACJEACJBATBFIkTSKlihSR2cOGSvN6dQOeolrp0iaWdP7KlQHbWO1oXLuWJEuSxKoJ95EACZBArBKgQRqr+HnymCKQLnVqgRJeOWG8lCh00/XJ6lxlihUVJDqikAAJkAAJkEBMErjv3nuNe+6wjzrLqG5dJbmNsfiG1hzNnjmz/Hj8uAyaMMH10DKlTSuZ9R+FBEiABEKVAN/AQ/XOcFxBEUj44IMCF6dZQ4dIi3r1HPfRukEDeSQDV0kdA2NDEiABEiAB1wTS6mTpu3XqyPKvvpKnHs/r+PiaZV8y4Sbzln/v+BjfhmWKFmUCP18g/EwCJBBSBBhDGlK3g4OJCgHEg169dk3WTp4kD8aP77qri5d/lY07d8qNGzdcH8sDSIAESIAESMCKAMq4zNbJ0pJFCls187vv8Rw5ZMnatXLg8BGT5OipvM6NWXSYN3s2+WbJEvntyhW//XMjCZAACcQmAa6QxiZ9njtaCCROmFBQsw2CONHr168H1W+zuq/LowHiTIPqkAeRAAmQAAnc9QQypHlYUmuW918uX5beo8cEzaM2kvKpu++cZctd93H/ffcFzKPgujMeQAIkQALRTIArpNEMlN3dXgJIWvTBG/VlaKdOZvZ4/+HD8uOx41KuRPGgBoLZ4x927JDrXCUNih8PIgESIAESuEngAa3/mfORR2R8r15qDGaQNVu2yokzZyR31qxBlWJ5LFs2WbpunexTPXffvfGk4GOPuUKdQD2HFq9ZI/8GOWnr6mRsTAIkQAIuCNAgdQGLTUOHAAp9w4VpSv9+UlBjRiEPp0qlCn+LHDl1SrJlzhRU5txC6gaFTIYXLl0KnYvlSEiABEiABO4oAmlUHzWoUkUGaJZ35DbIkSWL7Nx/QHYcOCCHjh4TrHYGI8gev2rTJjl97ry8VuEVV13AA2jOsmVmpdbVgWxMAiRAAjFMgAZpDANm99FP4KGUKaVB1arSr20bwQy0R7Jo6ZZ9Px2W7fv3y4EjR+S1V9wpa08/f/79t6zbvj1o119PP/xJAiRAAiRwdxFAtvZ0Wld0dLduUv65EhEuvkzRZ2XBqtVyUPXTzxd+kZKF3ceS5n70UVm6fr3qup+M/kMSPzeyZc8egScRhQRIgARCiQAN0lC6GxyLJQEkLcqYJo2pK1q5VCm/bZFJcLEmfoCyPq6uUaWffdZvO6uNBfLkloWrVsn5ixetmnEfCZAACZAACXgJIJ8BjMzpAwdIquTJvNs9H2CsJk2USFarJ88x9eSBR87DOsHqVuAhtGLjRjl17pzridfM6dLJXM3U+/fVq25Py/YkQAIkEGMEaJDGGFp2HJ0EHnzgASmSL58pII60+VaSJmUqo/APnzgh+XLllPQ6W+1W/vnnX1mzbRtXSd2CY3sSIAESuAsJpE2dSpq++qp0aNTQ8urhurtDXXfhyXPwyFGpWbasZXt/O9HHsg0bZK9OvCIuNH/u3P6a+d2WMlkyWbBylZy9cMHvfm4kARIggdggQIM0NqjznK4IpE6eXF6vWFF6t/rA0XEe191t+/YZ16RgYnVgyC5avVrO/fKLo3OyEQmQAAmQwN1JIL0m1xv5cVd58ZlnHAG46bq7yoSWXPnzTylaoICj43wbIbP8cjVKT/78s7zqMjzljMafbtDkfRQSIAESCBUCNEhD5U5wHH4JIF1+rw8+kFrl3M0ie113f/xRExRdlueffspv/3YbV2/ewoyEdpC4nwRIgATuQgIopfL043ll3ojh6qKb3DGBuP+57q5S/QJPnhJPFZLkSZI4Ph4Ns2XKJN//sFH2qI6DcZovVy7HxyMOdebSpXLljz8cH8OGJEACJBCTBFiHNCbpsu8oEYCCnzFwoBQr6H72GCduWb+eJE2cWJNIrJLdhw65Hkudl1+W7Jkzuz6OB5AACZAACYQ3AWS7hffOxD59grrQCi+8IM88mU+z5Z6TD1XPBSMNa1QXxJNOW7jI1eFJNI71EU0CSCEBEiCBUCHAFdJQuRMch5cAZp2R/AEZdLNnymxKuHh3uvgAhYsYm6179pokR8HE6sSLF1dWb9os//z7r4szsykJkAAJkEC4EoivOQ2QFAirlDXKvhT0ZZZ5tqgsWK2uu4ePaB9x5CldbXUjj2TIICs2bZTdBw8JjMwncuZ0fDh07NJ161lz2zExNiQBEohJAjRIY5Iu+3ZNAFkKixXILxk0my5WNXcdOmiSGSERQzDyksm6u0b2/viTvkBc0xnpJ111k0cLmC9Zu05T9N8ZCSCQ/AkMkckRq8NJ9DNcwcw2/Y4EGHiRwr6HUqQwLzFw9/K0T6T18h7QPuLGjSvX/vlHbty44YoXG5MACZBAOBNASZfr169Lan1+onwKXGZfef65oC45btx7zDN4lU56/njsmLxUrJhxv3XTGTyJUAbm+OkzAq8ep5LrkUdk5nffyaXffnN6SJTbwQiGvoHxnEx1UDLVTdBRifSf+a7boHv+1QlglHeD7sJ+tMNx0GPQYZi0jqOjgY6ikAAJhAeBOMmSJeMbZ3jcyzv+KmB0opB449q1zLVUa9ZcNu/eLY/nyC5T+vUTzEoHI5gFbtOvr9x3772mn0xp07rqBkq742cDBPVJY1vu1WuAkr5ff/6rL0VJEycyLyJwH+vW7H3BtaVImtQYm/7GeursWSnX6B0pmj+/DOn0ob8m8uvvv5vC6afPnpM6rVubNmCHcgEwZrFajDa/Xbni93huJAESIIFwJICJ0ukDPjPGKEJBOg8eYp6DyHHQ+d13g77kxh9/rKXGVpvwlHE9e7rup06r1kZXftSkiSY4cm6UNuna1WTcdX1CiwNuGpwJ5Z44N72cjpw8KVevXTNHTFL35jSajdgzSeqvm6bdPjFZ8ud/PkICZdTHBPGFS5dU952WjgMGGsMU+SYu/fqbID73bz3fxcuXvef1dx5uIwESCC0C8UJrOBzN3UoAtdjavv2WVCpZ0otgVLeuUrNFS5Miv7FmMBzbo7t3n5sPJYsUluIFC8rspcukXb/+MlmNUzeCmqfjZs+WbXv3uTksym3hspxKjXQYntkzZ5KCj+XV9P65BKu2mCn2SOk331L35vukrM6u2wlquWJmGT8DCfrGPxigH7xRX/p9OVYGdGgfoX/M5m/Zu1fWbtlqVrFRJueyGql4CaCQAAmQQDgRwPMS7rFzhg6RB3WFDoLnLRISjZgy1eiWbBpeUufl8kFd9sAOHaS8ThRu3r1Hvpo1S+pVquSqn6av1pF31ZCbMv9bVwbpW9WqCVZnfw8yuRFWNbHaiQnLx7Jlk2fzPyl5s2c3rsyeC4Dh3kT1N3RJEY2ZtRMnOgrePfiH5ExDJ02Sv/6+KvOGD/d2jQlThOts3LlLftBswke15itWtc+rEftXCEwsewfKDyRAAl4CNEi9KMLnA1yK4NJy+PhxuROWvzHePq1bGddc37sAZYftTbp2k7Vbt0rrPn3Nd982Tj9/1q6didPZqkbU51OnSqOaNZ0eatq9WbWqtO3bT/746y9Xx7lpDFek5Lq6CYUJV6SCj+WRUTqDbSd4QXKaLdEYojBKLQxS3/MdPnFSEqobb+QEGI9mzCj4V71MGW9zuIyVa9TIKH6sduM6zl28SLdfLyF+IAESuNMIwIW0QJ48MrV/v1uG3qR2bWPszPpuqTGMbk4cPnZLO7sNMOhQw/SjwYPlq5mzzMQsDD2nglAUTFRu3LlTpnw7X2qVL+foUNQvzairvnA7thPoDEyQwlMJ5dDgfjtn2DBJ/7B1nW/oDugQ6BIn4lZH/fnX35JA+/cVTKg+/fjj5p+ose6Rtz/6SDbt2i3wKEIyqAs6gepUd3r64E8SIIGYIcAsuzHDNdZ6hbtM41q1ZMmY0VKmWFF9UN+czY21AdmcOL0ao8NUSRTJ53/mFEkaWjdoYFbsUBd0+JQpNj0G3t1Cs+7C6Jswd56cV0PJjbz83HOSU2NuolOg0OGSlEVXIuGqPKlvH1k5fpyu5hYwxhzuoxNJlOBBx+7E98AY1U6dGqS/qMLG71Qg1ynf8cFlCi7DaLtCr2OWriZ83LSpeSnInC6tIL6VQgIkQAJ3CgEYLghv8GeMeq4BZcmKaR1RZMuF+yhcSYORiiU1667qwcPq4tqqt/vMvc1ef80YfhPnzXN1+sL5ngjYHs9sPLth3OFZPnPIYPl+3FfmGY9nvZ0xio6hD6BDoEucCHQTdBR0lRNBKA10oBPBBAImSqFjoaMmq86F7oUOxjihkykkQAKxQ4B/fbHDPUbOisc3lAtiSPBgHd65szR/va550MbICaPYKYqJwy0XMaJWUqlUSeMKBZebsTp7/N26dVbNA+4rVaSIcd1FIfEPevUO2C7Qjrc1xT4M2qhIPJ1thxLHjHuPli1k4aiRsuyrsdKpSWPlkMN0jRqqiNNcqK5OTgTxOFi5xQuRnRhlD4XvTNeb+CjMiOOFwk7gsnvh8iVv/GqaVKnk9YoVZIquLCz/6iv5snt3k/wDLzKJE9r3Z3c+7icBEiCBmCIAL6MXChd2FCoy+pNu8qTWAT1w5IhxTw12TAM7dpCs6nmyQd1Mv1myxFU3hfLmNW6zB48ela8XLnR8bMPq1cU3aaAnXAOTsHhm49mNZzie5Z6JyYdSpjCGN1xj7QS6AzrEac4B6CaPnrLrGzoPug860IksWLlK/lHvIySPgsC9GLoXOhi6GDoZuhkT5dDVFBIggdtHgAbp7WMd42dKr643IzU5gq+8Vb2ajO7WTYtm5wyp2T8YZZh1drrq2LJ+fXnxmWfkF5197v75SBO743udTj9/1r6dILvgpl27ZJLLmWRk7M2lMStuBcoVs71QzL3VBXnVhAkyfeAAqfHSS34NPcySo77dLk3l70QQ6/mrZkqEoW0nGAvE89Ou/R9//ul4ZXP9tm3qynUxYIF2lDQY1LGjmWGforG8yKIIVzUKCZAACYQSgQfUGMXzfkSXzo6HNazzRyZ2cpMm4kOyoGAEz8N31cUUj2nEpl675i6LbIt6dc0q6YQ5cx2fHs/hLOpWi3PjMxIILlcDbfCHHQOWoXkyV27jtrth+w5H58FKK3SJE/HoJs9Pq2NOqM6DUQwd6ER2HTxoElL588iCfoZOhm5eNXGC0dXYhnE4GYuT87MNCZBAYAI0SAOzuaP2YIawe4vmfsec61FN766xKRWef96kUPfb6DZuTKeuMZP69vXOtjo9NYxJKBIkkmjZs1fQtUHhuouEQaOmTXesJD1jfKdWTaPwPd+tfiIGCKvAiNNBdkb8Q4IkO0E8DGJ1EKfjRJDY4bqWZ9l/+Ihtc49yvekUZdvcuAI7dYdavGaticspV9w+uRJ+J19+rgSzINrfArYgARK4jQSwMlpGV9CQyM2NIMkOdDAS9H3/w0YzcermeE9bJPYrku9JwUpnC5cZd/PpKi1W/Q7qSu2MxYs9Xdr+rPDC80af4pmMZ7Od4BmPVc9Fa9bYNTX7/xHvJwAAQABJREFU3YSVQDd59JRd5we07A48p6ADnQh0KnSrE08n6GrobMTYQodDl7uJ63UyHrYhARL4PwEapP9nccd+gntuqWeKmFgXq4uAQde+UUPJmDaNVbMY3ZdBH+qTdWUUP4ORcb16GoW7ff9+adS5SzBdiMd1F5n3mvdwl2K/pLpw5c4aWPlBkcKt6fmnn5KvevTQ1dDxZsY1R5YsJkX9Fp09dyIZ1a0VGQGRMt9OMDuMmdxDx47aNfXG5TiZ8b2sq66Iz0mW2Jk71JFTJ83Kbm5NruFEkAGRQgIkQAKhQgCrhNAPA1RXBiMFH3tMmusqJRLmwCCcvmhRMN3IQDWG4bq7RpP5LXZo9HlOhGy20AfjZs/xbLL9+arWL4WbqtNnMjyF4MVz+OQJ277RADrkz7//EugUO/HoJicxpAePHjPX6mSF9Jjqe+jUTA5XU6GrUVYGutusmqouh05/7qlCRsff9DWyuxruJwEScEqABqlTUiHcDooEiRWcSM2yZWVCr17GFed2x0hgRhXGc7DGqOf6hqtrFBItrN68Wdr3/8yz2dVPj+vu+u3bZe7y5a6OfbdOnVtiIJH8AjOob1WrKis06cMXn34qT+S8GROKzhF/g1VMxMA6EbwU/aauSKihaifIUowshqfPnbdr6p159ih9qwNOnz9vygHgupzIhYuXjDuUk7Y7Dxwwyt5JW7YhARIggdtBIKl6tQSqz+z0/Mg8XlPrkv6lNZsHjBsv2/ftc3qotx1WaaFnrmsuAfThRlB+BfkIEM+K7L9OBPogW+bM5pmMZ7MTSa0rwuc1RMOJQIf8fuUPOaM6xU4wFs8/u7Znzp8zug860E6Wbdhg3HtLP/uMXVOzH7oaq6/Q3R6BTkdcLXR8A9X1uC7ofgoJkEDUCdAgjTrDWO0hhZYJQVyiG4EbytT+/aX6S2UcJwNw07+/tkiU8KcmH/hXFazbGd/I/UH5dHu/mc66Jtai3ivlixkzIjdx9B0z2VAmgydMdNTe0wg1TXM/enMVELFGUEofNn7HrIZ20LIn8fwoKGRqzKTc9x7+ydON5U9kAUylCn/d9m2W7bATxihidKJ79hkzykiJj5hbO9m6Z4+cVXcoq9Vj3z6g7C/++qvvJn4mARIggVghgIlSPEeRff21Nm2iPIY2b74pL+qk4s9qgLXTSdPLv9kn/4l8UiTzK6LlXPZpPc1Wvd0l4Wv9pmam11XSsVrT1KnUr1TRZKB1OmkKwxcusNscGNxwA76iMaRHT522HY5nZdTJpCm4Qvfh3tnJGq2ZjVXdZ1UXOxHoaiTgg+6OLNDxH75zU+d/2LixuvY+LHgXoJAACQRPgAZp8Oxi/Ug8sOEaipTswUj3Fi2kW7P35VEt+B2TgmyrcD8q/MQTcvLsWekyZKgpJB6Vc6IA983kD3Fk5LRpWtx7k+vukCSpmBqXh44dk/d1RdONvPfaayaeJJEa2nDLrVuxou3hiO+BC9ASjbW0k6RqbKfUyYbTZ+0z56IvKOUrf/5h16135tmJsscMO1zPsmbKaNvvwtVrTL3R8iVK2LZFAyd17xx1xEYkQAIkEAUCeBbCuIIefThVSq15vU1qtvzATJ5GoVsTg1pYcx7AoHynS5eguoLrLvTzio0bZZ0mjXMqcDNFyTTEWM5Z5swDqKiWrkGoiNNnc7kSxZEdz9EEM/Q/dBR0ip3gfnj+2bWFzkO/TuSUvnsgmzBWwe0EOhp1taGz7aSurqCuHD9e8C4AfYnVbQoJkIB7AjRI3TMLmSMQq9indesojadc8eLy9YDPTB21mHiQwq2no64azhg0UCb36yslChWUsxcuSI+RI00B76gM/vUKFaSSJh7ALOnHWqAbGffcCmKFsAK4St1/l2/4wfHhzzyZzxQiv6Yp5JGx14nAnRcrxVPmz3fS3Lg2o3bbJQdxNwl1NhwFwu3EY4jGucc+AgaFzBOr8kYSKjvZfeigJvNIYZI/2LXFyxUMcwoJkAAJxDYBJK2ZrTWTUbqlR4uW5rn7g5ZdqaGfsaoXFRmjfSLJ0MadO+W9T9xNeuK80MlN6tSWq1evSc9Ro10Npe3bb+nzO6F8OfMbx8ehdA08Y/CMthO0xYrjjv32Lr7QIdB9RxzEnHp0k0dXWY0DOg+6z07gPQRdinvtRKCjUZoMOtuJIPYW7wJPavKjWuXK0pXXCTS2IYFIBGiQRgJyp3zFw72TuolGhyBDL5IF1VOXnVTJk0VHl6YPrPK9WbWqlNfMfR5B/EUplG9Rd83+Wt/sixnOlaWnD9+fnd9tokkGntLMuyel2afdfXc5/gzX3Xvi3CN9vvjC8TFo2Lzu66a90xgfpNbPlDadHDp+zNHsO1a/z6kL2ZotW2zHlTxJYpOAyK4h3KH0/97kRlbtocAx+5zMQY23sxd+0dnn5FbdefdN/vbbKL/oeTvjBxIgARIIkgBcMpGwxiPFdcIUk5RYldyiYQh1WrUy9TY9+93+RJIkrHIiTAYxjG51DM6HbK9FdAJ0t5Ys6TRosOMh4BpgNCL7+rcrVjg6rlHNGnK/rvLhGe1EYJD+rBPMdgIdghwSFy5dtmtqdDGmSz2uu1YH/KVJ96D77GQtSpKpLi1ZpLBdU6OboaOhq6GznchAXSGFvK+eU12aNjVeU60avGFcee2nfp2cgW1IIPwJ0CC9Q+/x4zrrWkbrpEWntG/YUPq3bau1QbNEuVson+plSkvDGtVv6Qu13crryiwKZQ+bPFmGTJx0Sxs3G5DkqJBmN9y6d680/Kizm0NN25uuuwVUcR+WNlqOxqmgEHledfXac+iQIIbSiZR+9lk5pW64UxcstG0OQxsxwkvW2rv4wtUK8Z4oFG4lN2edURfV/k8f98eJOxRm1C9o9sLsmTNZndq7D5kRKSRAAiQQmwTgYTSy68fGjdN3HFjlGq46CnoQq39127ZzVOPZtw/fzzBqMHGaSOMcp85fEFS4ysAOHSSz9rNEM+46WZH0nB86HS6qY6Y7y7OAbLVIGOj0GZ1DGSHu1onHC3QJdIqdGENUrTi7FVLouj80LwV0n53ABTeFGsXI/2An0M3Q0dDVTmTL7j3mHcC4fT/xuPeQhjVqyHc6yV1da5vCU4xCAiRgTcD+rdT6eO6NBQJI6uO2RprTYSKOBDVLkeXViTHir9+4miACiQCQ4CeQIMstZn6RiXCMJiUKZubYt2+svCJuZqXGknYePMR3l6PPA9q3l5x6/LL1Gxy74KJj1DSF4vzsq3GOzvPqKy9LWo2pnfe9fVxPKp19RhzpMQeJIHI/8qhR9idt3JYxVszYetyirAaNQuaoiWony9TV+Xc1hp3Ej36zZImjlxe7c3I/CZAACQRLIHWK5NL1vfd0Ei2z3y6yZcpkMqU/niO7ials0PFDk2vAb2MHGzG52KhmTVPrs9+XXxoDxsFh3iZw3X23dm1jgHXV8BSn4qmhicnWBatWOTqszLNFzTMaz2o7QcgPkhV+78DFF7oEOsVObuqmm3GkVm2h637VTPTQfXaC8mmIH8U/O4Fuho6GrnYiA8aNM+8AHo8p32OwQt6r1QcyuW8fE6cc7DuVb5/8TALhSoAG6R12Z5EVFqVbsHIWU/KAuuyM6tZVGteuZYp8uz1PVlXmmHm2ExQRf00f+jc0tfqEOXPFjaKN3Hf8B+43rlFwIZqzbJlMmDs3chPb783UBfeGlmbpNnyEbVtPA7hEIUZot66S7tDaqHYChfSoJniAizFcYu0k7UOpHbmMPaLuWViVtksaYWad1Sh1skKKGqROEkCs1Vp5D6VMaZJW2V0PyhAg1oZCAiRAArFBAOEuCCWxc99EMr4Jmt0WtUUPajKed7TutdOSKP6u640qlaXiC8+bzLSt1RPHiXHm20/lF0vJM5okCXqm9+gxvrssP3fQ2uMInxk9bbplO8/OuiZ0J7mjkjFIBAWdu3qzfVgJdAl0ip1AN5lJU9VTVgJX5PvUUIfus5Pzly5qXKd9aRjoZOhm6GgnxiNK+kD34x2gQJ48AYeBMc4dPkzaN3w7ymXvAp6EO0jgDidAg/QOu4Fw/XjvtVdvy6ibvvqqcV3Cw9bOfcYzIJRA+WbQQM9X25/t3n5b3XprCGqiTlu4SNp/FlxdUZwIs90dNRU7UrIPmzRZNmzfYXt+3wZw0SmmK8Rwwe061PksNAqRg0+/L8f6dhfwc+3y5UyJlvFz5gRs49lRvEBBE6ODpBhWkk4NVxRDt3O1MjGk2pFdfM5lnXnGywPc2uzk1LmzkkpnnlE6wUowm31YZ6opJEACJBAbBKAbEKIBneNE8Eyd2r+fPKMeP3h2va95Cn7YYf0stur3Y12VLaGrpft+OiwN1cB1K/CMgovq7GVL5afjxx0djmd4wcfyyD4tY+Kk5JonszquF89sK8EzH548dp456APjgIstdIuVeHST52egtoeOHTWlbaD7rGTzrt06CXBREyo+ZdXM7INOvqT5LaCjnUj/sV8Z3Q9PKSfymiZiTPBgfIkb92aZISfHsA0J3C0ErN8g7xYKd9B14mFZT91LUarkdkg+TR0/Z9hQgWsOlLOVPKyrZP3btZUH48e3anbLPmQRbFGvnlnhm7N0meuaa74dlin6rDSoUsW4kHYaNMhk9PXdb/cZCh8FwpEEYq+m63ciMNif0ELkuzTpBBJP2AleiPBSseKHjXZNzSw+uNu5W2HWH6vE9jGkN//k7Vx2z2h8DmJS4cZsJYgJ+kUTVWRJn86qmdmHzIWnbFyKbTthAxIgARIIkkDuRx+Vvm3cZaaH0TWhdy95Xg3JE2fOGP30/Q/OM7JHHipyKMBA3LB9u7To0TPybsvv8F5qop5Lv135Qz4c6HziFxO1yRInkZFfT7Ps37OzTvmXzUquk4zwWP07rzkEfreJD4UuQRvoFisxugmhJTZ5Dk6fO6/vGg+Y7L1W/S1as9qsdiJJoJ1AJ2fSOFroaDuBvt916KA8rrof+t+JYDX1l8u/SvZMmfW47JJew68oJEACNwnQIL2DfhNgmCAN/cqNm+T1Nm2lff/+8q+6u94OGdLpQ2n1xhsB3V5QhLuxxrgguVAw8lqFV7TQdCNT23Pe9ytc1wX1PSdcjV8qVkyOaLKdpp984rvL0WfEgvzz77/SaeAgR+3RqJUWIseLS58vvnR0zGPZsprx2a0YYlYZcaSYUbeTBx+Ib1ZerdpB2WM1185lF3GrV69dCxhj5TkHavbBzamsTljYyXfr1sl1dYmmkAAJhB+BhBojmMDlZOTtpIB4SsTyBSsoC1NaJzzP/vKLdBwwUOavXBlsVzLy449NfWc8E51mafecrMqLL0oRdd3dsmevDNekgE4EbrVPaRI+1ERdque0E0zsZlBvJ4zPTsoVL2ZWFdfbeCTBgwnP/2M2Jb+8Lrs2pclQygU6z052HTxkVnHhgm0l0MVH9Z0ButmJ9FVdj7G2eqO+k+amDfJbXFO9ipI8E/v0kUWjR5lQF4TbUEjgbidAg/QO+Q3A6mOerFlN4hjEj545f95kai3XsJGMn23v+hkdl4nYkrGaPAixEkhc5BF8LqlJkFAgOipS4YUXpHuLFiYmZdHqNdK4y8dBd9dbEwkgsdJmzYDX5OOurvrxuO4iXgguOU4EtUyxmoxZUycrq29WrWbiZL5wkP0QivScvgTZCV4I7ermeVyv77FR9vuPHDF12OzcoeACBoP52SeftBweVhacJGey7IQ7SYAEQpYAEgHVLl9ensiZQ5DMJZTkIQ116de2jWvvncjXMLRTJ3lZy5jBU6nb8OEyY/HiyE0cfU+i8ZSoIY7Yzkma72CBS+MWpWQQHjNFs/b+rO8CTuRDLROHEm8jpn7tpLlJwnP05CmzKmx1AIxj6IBFqgusBLoEnjx2eQ48usmjqwL1CV0HnWcnmECw02PoA7r4+o3rGl9cza5L2fvjj0bXQ+fn1vcyJ4JkVninQIKrEoUKmUPgTYb67E3r1BH8jlJI4G4m8H+r4m6mcAdc+7NqXOHBhZXKsT26m1k1BN3j4d5j5Eip2aKlq+ywwV4ygv1Rtw0Zcj0Jb6BUG1StEmyXEY577qlCJoMwMgljdvatDztF2O/myxeffmJcaZare9WnIz53c6ggC7C51kWLHGeFbfPWmzdXScfYJ5zI9egjWucsral1ZzewwqrwoVR/tHHTToZapBqjYyUeJW/nDoUC5gniP2ibrt5kL9TZd7iSWclXs2Y7qldn1Qf3kQAJhCYBrMB9qknqOqqXy6whQwS1nVEHM06IDPeiGpBIThQd0rdNG6lS+kUNafhTeo/5IugJYZQJafvWWwKfkV6apAiJk5yKx3UX19W2Xz9Hh8EYffqJJ4wxtVwzo9sJSrb9rVnw8ey2EowlpdYv/+mEdUwr8l88qGElh0+csOrO66rr0VWBGkPXQedZCeJsL2hZGrw/2QnqzmZJl16gm+0E9x0eUa3VM8qJYOUVWYvxN4GwpsiCsKURXbow4VFkMPx+VxGgQXoH3G4YZ120jplHoMhgnCJLbe6sj8pVzVr6gya9eUdXFN9TF1UoqZiWPhqH85GOCXXLUIOyUefOMtrBap+TceXXOnBwaUJsCozJeu3aOznMbxtkCwY/zGRPW2hf+9PTCZRhs9dfNwq5bb/+ns2WP7FCkD93LlMnzm4WGB1hlhSKyq6GKdyn4mrSp6Xr11ueHy5pdiukJqkRXHZtVkhRwNxJLDDufSY9r53g95NCAiQQngTyabZxeIl4pHGtWrJg1EipVqaMycDt2R4bP5Gk518NwajWrLkcV0+N6JBu778vr2uCGoQ1DJowQT53uOoY+dxYba1bsaLRoS179Tb9RW4T6LvHdXfjrt3iJEEe+umkq6QpNAHd8ClTAnXr3Z5L420zaU1SJ8/uzGnTyXlNHGQn8dXFFrrFSjy6yS6p0V+adA86z0pgeMNNGGXsrAQ6GL8bnpVLq7YHNLsvPKHy6+98oLJBkY9v3/8znSz+WzBpHUjy5copKyeMN95GD2j2YAoJ3G0EaJCG+B3HLFzlUiUloZ+EQnBx/XbECJPkAA9mGAeIv6yimfxQGyumBaukMIzhsoMsdgP1nE27fRItp82aKaOM69lDkIRi1ebNUqdVa/NS4bZzuDfDfRezuIjV2bp3r+MuYAiiLiuOGTXNWTIIzHjDeMSMt53ABRqrzF/OnGnZFCupqZIllQ022R3xQgiD1C5pBE5mF0OKZEUJbeLBtu3dZ5JZ2BUQh/K2ixuyBMCdJEACIUsAiVkwORpZUKKsd+tWJm4Tni9J1F3zdgviILNlzmQmJTfv3i2vtW4j09XrJToEq2Pv1ES23huaLOhrrUXtLLwj8rmRNf+lYkUFtULf7vRR5N2W35GEL02qlDL2m5mmDrVlY90Jl1mUjoHLKXJR2AkMNHjB4BluJYitPa8rkXalz6BToFusxMSQ6qSplSB5HzL2+k6C+Gu/bvs24wprZ7hCByNHB3SynfQaPdqELFkZl759fK6/G9v0HQIs4a5rJxP69Jaa5cpqEirr1V+7frifBO40AjRIQ/yOQaF+8MYblqNsWb++zP98hLzy/POm8PMRjftA2ZOK7zZ1lObdsnObnYhtnaSJIhA7hOLdSPRQSc8LhRdVQW3LKeqOhFXH9ZqRsPYHrVzXbsMYsOKK0iwoY4KZSjcryAPUdRcZZMdrnVRkk7WTLOnTS0GNsUV9sh9t0vJD4WAVeO+PP9l1a1YZ7AxN1H9FkquTZ89a9ofVX88sdKCGqJGHOCcrWbh6tTFaixawdof6Ul+WEHNFIQESCD8ChfM9YVkXG8/ELzX3QP927QSrQLcrvhSTkR+/11RmDx0q43r1NEl9Tumz8RMN32jVO/jkRr53sFHNmgL9C+Mbrq3dP//cd7fjz4gnxXN03bZtrsaG1d/GtWrLOTUGP9AVVifSqUlj854w1EFCpDc0Yz0S7uAZbiVwiYW+sCsrgzZ29VftdBPGcerns/KXuhND51nJ6bPn1GC3TmaE46GD4U5rZwQibAZxoPnz5HZW/1Tvy8S584wnGcKAnEqzunXl/vu5SuqUF9uFBwEapCF8H1EzDTNlTiSBBvcP6tjBrCo+82Q+LRh9r5mtbNOnrzTo+KFxDXXST7BtoPh7ftBSsmqM6XYt3I2Z3rE2K39OzoWaXdM1vX1hjX3ZpDPcr2r8DrK6upWqpUtL7XLlTDyomyRHHtddlEBp2auXo9O20+LXeEHpOXKUbXuMC7O9S9autWyL+Ce8dFy4eClgO6xUYAYaM+12YhdDCuMdMT9WsksVc+oUyW0N1z0/HrLqhvtIgATuUAJ45sCYciIvFH5aZg4eLK0avGH0hF2MoJM+A7VBXevyJUrI808/bZrAy2TqZ/2lapnSZnVr1tKlUr15C4GBGlXBZCyMPDx7kWTITTkW33N/8emnJpEQjLphDoxFz7FVNZ61iE4KYNIW12UnyD2BetuYNF69eYtlcxhoj2ZIL3bPcKx+p1Qvnm379lv2B52ClU0rsdNNOHb/kcOmlItV2RR4jOHf0088bnU6o3uhg6GL7aTHqFHGAwr1050IJj5Q6qZVgwZOmnvbNNaQpTPnnCWr8h7EDyRwhxOgQRrCNzCtzuwhFseNIO4D6cR7tfxA8mTLalw4l2/YYFYXPxo02E1XrtsiTmPGoIHqllJILqjRiAy1KCQeHYJV2OfU5WXngYMmphQzn24FLlYYI1y33vvkU8eHlyla1Mxeb9q1S1845tseh1VtlL+Bmw7cnaykYskXzAzu5G+t+y2rZWyQLn711sAvEJh9xmz2oaPHrE5pEo1YzUKjGDric3JkyWzZDxItIdOjlazctEnddaMnbsvqPNxHAiRwewnAoMSz0a28Xb26KXdR46WXBB42MSEZNIQFk6SRpWfLltJVQ1oyq4GK5zlCQZBsJqoC47eHTsgicdCs75ZKa50IDkaGftTJTPJ9NXOWo5IrnnMM0NrkSCw1fPIUU7LMsz3QT2TcTaWxpEMnTQrUxLu9mhpqJ878LHiWW0mGh9PY1v2GTkFYCXRMILHSTZ5jDqqOQ4ZdKy8erDbD+LX7HYXuxSoqdLGVoCzMjv0HTHIsOxdg9DN53rdmEr24vrdgMsapIOxp085dTpuzHQmEDQEapCF6K7HC9noUyqiU12QJ8zQtfdNXXzXZXDEDOHHePCn7dkNHRlWwWBCHAfest6pVNcbRt99/L5X1BcBJkh+7c37R/VMtWF3E9NXgww9ts/X562+griI/9XhekyCozxdf+GvidxsUPpQQCovDWLOT9o0ayr1a+qD75yPtmpqsfoeOHZXrFjVlkTAJySiWrd9g2R8KhZ/Se20pcNnV+mmBBL8rWCHNoYXMAwkSQGCl+oX/ViACtZuk7kp2LlqBjuV2EiCB0CWA1SkYNsEIciPAowarlljF9GRsD6avyMdgFe7zj7tE3uz9Dt04pX8/M8mIZ1234SOkTd/gDEhvp/oBq443YzpTaS6H76V59x6+ux19hmH0afPmZhUOmeEPn7Ce0PR0iolI1N/G9bTs0dOzOeBPuE0jnnH3oUPGTThgQ91RWeueplJjF89yKylZuLDJBn/i558DNoNOuXrtqo7zfMA2TmNIoeusBFn6YaTDFTeQQOfCDddJZt0eqsux8t5ePaDsBIbw6OnTJaNO2CLsx6n01twTWEC4XfXlnY6L7UjgdhAI/FZ6O87OcwQk8LAqpreqVQu43+mOZnVflwUjPzezfyl09nafunN2GzbcrJgizjGmBHGvcCHOqSnUkfzmTXUbdpoJ0GpMwzWbb7kSxY0LcqPOXdSVyH2s6nh1vYUb0hSdGZ29dJnV6bz7sBrwvrJEMW4nLxp4sXj68cdNQqTjNoXA36hcWRM9/KF1ZRd4z+fvA+qU2fWV8MEEZoz+jvdsQ7oIq1loJCDC9Vq5Qy3/zzC2y0p4UA1tCgmQQHgRwPOhZJHCUb4oTPKhPNfADh3kSc0VgDwEURFM5FbSlS5M4FlJSp3cgx5Ahtt71ciYueQ7Uzotqm6SqEs5Qo1h5B1YsGqVNOna1WoYfvdBbyDDO3RNix49LCcqfTuAyynieVdt2eJodRUlehByMXjCRN9u/H7OqQnzDhy1fpYXK1hAkB32e82MH0igU3CPrfSYlW7y9As20HVWgrrXyENhJdC5l7Qv6GArgU7cvn+fmcxOmzq1VVOzr4VOCmDC1i7/h29HM7/7Tr7WSgB2Ls2+x/AzCYQTARqkIXg3MQtXNwqro5EvCbOnWOGb0Lu3qceF2WnEmyDOs7kqPLusd5H7c/odinWOJpSAywwSCfXVFUmcL6rymSbHQOZhzAbDvQUuuG4EL1PDPvrIZNXDmDBL7EReguuuJm9Yq65A365YYXsIVkmhfD+1SXTxpCZdgpvvnGXLLfvEy87ZCxcsXbIQ82NX+kWtTcsVUqxmJ9DZZ5TLCSSr9aXnoZQpzMx5oDZ4yTtOd91AeLidBO5YAukeSq0rRQ2jbfzFCxWUbwYNMmUxYEziGR2MwFhwMy4YZX3btjExrShvUrtVK8eTlIHGhxW5seolhFU35AZwmzkX/SJ3RHV1aT6oRqCbWtwDVc9j4nnAV+MCDc+7He8BCGGB/tuwY4d3u78Pb2qd8V80HhPP9ECCVdQUGke6ysK1Fzol/v0PmBjQQP1Yee94joGOs0pAhDI/5y9dlAKqW60EOhfxxdDBVoLV6nvj3SsdHPzOz1v+vXm/KqGhS04nbZDFGCFOiHmlkMDdSoAGaQjeeSjV6FgdjXxp2bNkVqO0lyahaCV5s2eTizoziBVCZON1EksSuT8n31ECZUSXzvK+zvhiRnOuPqyrvt/MuMk4OT5QG7g1vVbhFbmos5BINmSXnCFyP4gx6vr+e1rD9ZrG+/TRIud/RG7i9zsy5WGWd9D4CX73+26Eu1BhTaiwefce28y3SEoB1yGrbLTldWX4iroCbbSo6Zn+4Yfkd5trwateHIs6pHATS2Qz+4xkIOlSBzZYwQEzvte0Ri6FBEggvAjAMyImsuU20Kyui8eMNlnbnWRH9aWKVU/EYLqV4gXVGB48yBgPP+uE38c6idrOYe3pQOeC2/BETWiTP1duU0u7fvsOgZoG3A7XULjBIhayrWabdyKYfH5H804gpMJJHCuS88DzZtD48ZbdF8iTR9LppCme6VYC3XhSM+BaCepbW7kiQzfZTUf8qXoQui6QbNLarL/+fsV4UwVqA12LHA/QvVZyUl2Q4U2GCXa7RH/oZ/DEiaobU5tFAKt+Pfvw7tGmbz+N02WuBQ8T/rw7CdAgDbH7jlnLKpo1LyblJU2QM2fYMHULes2kIz984oQxsCq/977GLwR2t4nKmBrWqC6j1H3p8ezZNRPfPnmjQ0eZpEH/URHU/GykdeCu/PGnlnPpb5upNvK58CKClPlIId9Q3X+dCO7P+8oNNdeaOYgR6tCokc4I3y+fapySlSC9ftx4cWXc7DkBm+XOmtXMClul1s+Z5WYt0oCd/LcD1xFIMBOOrM2BBAoU7khw0QokWHXH7xWFBEggvAjgZRulTmJSPm3eTKYN+MwYZEnV68NOsKKKWNQ8+owMRmDIje7WTfVBTePVMmPxYqn1wQe2SXqszoUM8YiRRZ3uNepRghqobmXQhx21xEgeWbByldbCnu7o8GqaSRjGE2IR4QllJ/Bg2n3oR5PkyaotJlcRgmHlUVVMdSqMeisvnQRqkELHBBKjm2xWyJHHwaoG6SLNVIzMv3A1DiTQtf/oSip0r5V8orXekQ+ig3o82UkzXRmHF5Obvw+8e0RHmTy7sXE/CYQ6gcBvpaE+8jAdH2b93GbWDRYFEh4tHDVSkxaUMtnqkBW2pdZrg4sRZgWjW3JnfVRmDhms9VKfk8uaZa+3Fphu2dNZKZVAY8FsMB7+V3UlrvPgIer26iwm1NNf/cqVTHztVr12xH04ERj0qLu2cuNGWaH/rARZF/FCslEzOp45HziRA7JNZkmXzsymW/WHVdf9h48EbIKkEf8oi0DnQrINvLyd/+ViwD5+VWMyccLA8TlwWf5bM/4+b1HkG5kL7eqhBhwAd5AACYQsgcdz5jDZZGN6gHDvHP1JNxmiCewKaN1HxCcGEoQ89G71QaDdjre/99prMqzzR+pu+6j8sGOnGqWtTIIixx34aThedSoSCMEluKZmv7+qz043MkYZINZ2jCbJsdM3nn6RXAmJonqOGu3ZFPAnanRjlXTAOOtVUnht/fvvdbHKCA+dcI/qF6zqBhLoFuiYQOLRTdBV/gS6DQyzZ87ib7fZtu+nn2zrjy7XWNdsmTJaZnrGubZqDoxnVIejrq2VfP/DRlmlZXSQVbeUJl90IghhsnOXdtIP25BAOBCIGz9+/C7hcCHhcg1lixXXmMtnb9vlIF4VM6SYXT6irpqIy8TDHDOMMErtktYEM1AYdMkSJZadGjeB1PsrN202yQKczIT7O19eXXVFiRzENa7cuEkSJnjQ1HPz19bfNlw70rkjGQNmTO3qlqEP3KO5y5cbxVvn5Zf9devd9pTOVk9ftEgTSv1kauN5d0T6ACU7X2fCEauaNHGiSHtvft2r9wbxJvUqVfK7H3VnMUONenhwAcLPSZpdGf+QVGrdtu1mBhezuF8vWGgSKc3UMgULVq2U79W4XrBypcYtHTEuVXCJ9pdkZNikyZp44U9pUru23zFgYy99EaJBGhAPd5DAHUkASXCQjyDYZ3UwFw1jrEbZsjpJltDUDYV3hq/Am6PtW28KPEiiQ+AqjNqiiN/c89OPGhO5WY6eOuU4HtDfGCq88LyZSIShhvIpKOPl79nq71jUI8eK53x9Nq/avFlXjZ82LPy19WxDcidkoZ2jOurM+XPGIPbs8/cTOR4Wr1krT+XNG9CQQwb979auk5+OHzfxrf76wT1CGR2UdSn97K3vMdiOFcer1/4xddLh7fO1JhaaqN5S0E8T5sw13BFLCV03VfXX9EWLTX3VJWvXaLjKLumqSRkxIYpxVC5Vyt8wZPiUqeadAl5Q/uToyVMmCy4mpPH+EEjaqistVnMxSfGAejpZCfJZwB0ZYVFOBHG+uLa/r1510pxtSCDsCdAgDaFb/HCqlDKk04em4PPtHhZW8rBSmlVnDKF88cDGiumi1Wv0QXyf5NYZ4+iUxzSGFYp158FD5jxL1603iXTyZMsW1GmyZ86sM6aZjUGKpArx4sWVJ3PlctwXVm2/3/iDGqUbBfGldlkascqYXGdMsSIL11SrGVHM7KOsC15sKmkyJrgs+ZPH9NphJCIZQ6ByKnBPXrh6tazdulUN7wSmDM1QLaI+TOvJYYYbShpZ+vBvx/798qN+Rxp+zPSe07qhUPQwfPECck7djmGYIh4UsTT7fjpsXprgkoXYz7FaC2+8ujVNX7zITBrgRXDd1m2yZc8eLYKePGDdNkxkjJw2zdJty9/1cxsJkEBoE4ALZMMaNWJlkE9oUrfXK1TQcIFL5tnlcR1Nri69bd9629SljM6BIZs7ntU7DxwwcfswJjFBC6MjGPFkh1+nbrQrVNcgPtQqNML3HNDP0EuYMFyzZatJeuS7399nGOh4VmOiFl46VvGPMHhn68TkDr3WKvoeEEhgPCF7MOquwvj0JyhNBn3zy6XL6gp8UPNTTDY5KoZOnCTQVdBNuHfw9IHOge6BDoIugk6CboL+ga6CzkJf0GHQZdBpOB7jgJ4ZM2OGqfeJ3BQIBYJ01XAkTMZiUiFbZv/ZlvuN/dKcs2+bNgETaOHcSDSEe15Or9dKEOOL96VOTRrLoxkzWjU1+zC5MGjCBNuM+LYdsQEJhBEBGqQhdDM9M6aFHntMy3LEjjc1MgTiQR4vbjyzwoVZ4jVqhKxVJZjjkSymrld0IUNR6+ovldFV2bM6E/2TMXoOaWIffzOrTs6JbHn5NVseVvpWbt6krqv/mhlfJ8eiDZQOVj2xUlq0QH5bFx0YrchQCDeqghrnk0ZjqwJJ4SeeMLOhe3XGvVzx4n6bwcjFCuZ+VdKvvhJx1RUuzrOXLjUGK5QtCpUjwQTOD4WNmWco6es3bvjtO5iNcP1FLBBeDGDowlhHTBLiZ1G/DbXksGIS2ZVpiCZ1gPFNIQESCC8CqI+YU/UAnrWxJfBogUGEsh5Ianden094wT999py6S/pfEQt2rMhsjlU2GGpbNDndknXrNLN4MtsJy0Dng26D4bV++w4T4wk947QG6yPp0xvjaZFOSCJRHlZd7QRG74zFS4z7cQ3N2mslv/9xRSegV2sivicCurFi0hS5H5A4D/GivrJfS8r9j73rgG+q/KJX9i5lU6DsvffeMh2IiAqCExcK7j3BvQdu/eNWQFRQ2XtP2RvK3pTuXcD/OV+aEkqbJmmSJun9/MWkyXvf+955Iffde88995upvxvVewr0sW6WtNj9CNjShtCW0Ka4a9DW0ebR9tEGkjlE+30Kr1nCQ5x5vGohlS+je7838VvjODIQndV4Gk7mWTjVn0OU0Z6AF1X+2TqH15JlUNkNqtgz80o2mg5FQBG4iIA6pBexyPVXVI5j3QqVbzfv2g3aaZ0so5CeXmzbpk2EVFQaeSuNl42mGdGk0SclyF2D0vOsneU5r9my2dRh0CjSYXV2sBazG8R2FkOcaSnoTXHo79mpZUuHpqHRadO4iUxH1pNO5g39+pkG5fZ27gvq7l+4XsuRsbx54MAsN+XcB48dNU7dEDQap4hGZoORcNJ42oI69R8MLiO0b3z1lXyAZ0amGSkmrZiP3BhcE29KqVBIQ/wrbk4mI6vLzGkJUOdq4qbpXRh70oZ1KAKKQGAhQKeCNMs5K5YbpgUdttwY/K25pmdPadGgoRwkowcP/h7NXrbcZDXtCd44u94ypYPkJlCGD6OF1Y60ACTbWfUCw8eV0bN9O0lITDLtwxauXm2CplQIdmQw4Mpg5ALsRzVbOpz2BsV4isHW0KZlZwvbIBDO7ZiFzIoKy6Ap2Tl0qhi45vpf//IreQt6EF9NmWK0EmgbaCNoK3JjWO0jbSVx+mHadNNSbf+Ro2BRVQdb6bCpg3367lEm65zZGulAv/ftd9ILvXb7ZUI9tt1n9PhXDP2abfWyG2Qn3Yma6H2HDme3qX6uCOQ5BNQh9ZFLzh5ejIAy8sgM1C5EG9nPatmGf5GVLGtEDby91PzI0jKieyV+lA+AVsPMHGkxpIwmJ6dAaKKx25ZEuu3VPbrLdlB4STNirQprVlyhCrM/Getimemk8BDxdLQWltFvUqdJAVq1eVOWhtl64hRwKBNU2mQvT5+NsBuht2RJ50BRb78M6NbVOsUlz2zk/euMGehzuhg03F8NFjSOvto+hTcdpF+Rtvw3erpR8OIknFFfXe8lYOsfioAi4BACLIEoXLCQsCUZf49OhZ81gcO/Fi00NX/s95hdjZ1DB3JyIwYymfkrE1TKOGpk9JCdsWLjBiju1kVpgWOOniOHpS2k+A9tIG0Ds5x0LrMKLtqbs1PLFkL7yiwiy1Wa1a8Hu1Pe3i7pn/WCE7oJQjuLoaLLY2cXFKDy8AY460ugr8C+mPbqf5NSkk22mUHcrCi+L3/yibGpP0yfbmwVM6C0AbnlgKYDk8ULK/2X140lKKRLs6coW95QQyOzwbY//J6zZR1reLMar3z+uawBa+h59LOt4wBVl90F2JJGhyKgCFyOgDqkl2Pi9XeYbeQPGntrkg4VER0jlDVnPQVpSYxIU3CAP6zN69f3+vro4DFiWh9OIyPRYYePwCBvNg5fCJQQKTrhjsFI7vXIHsbEx8k2UKRIvSVVtE+nTk5Pz9qf63pfaai7pJoePXUSxrijQ/OQimsVGOK5Zkch5vakCy1YvUa6t2lrmoNndiAaNvaHW7hmtQzt1/+SGzhmxh9H37pX0R6GDnQsMrukxfrbYAZFnVF/u2q6XkXAPgJVoWK7fupvYI30hSOV39AvSZU8jTo7CsIxs0Z2C4OqWTky9o+Qs08pTEMRtmj01qaY2o59YcZuktHDTCadP3eMhrVrSf+uXQyFl4J8c1euhJNaziFnJOPxW0E5mCwgihwxk0f7Wq1ypYybZfo3s8O0N3w0ql0n2/3oxJJ5s3bLFhnSt2+mc/JNZmD/QmCRzhv1DmzHBNQ8Pvfhh6DCRhiqLH/r/W3QptK20oGmRgKDF7x/oaKzdTDD++63E4XsJ+KW1SBF+e1v/icd4byPGZE9VfdxZFDn4zr7o13PCgN9XxFwJwLqkLoTTRfnYjNpFtdz0KBTVIBOEH84kxGxpINC2ix/PP9evMhko2g4rDWnLh7W6d1IxyQttXChgoa+tBNGn84eW6aQYkoalTsGa3ZYr7pxx05EujeaKDIjylmJKGR1TDr6jJ6TYsR1MouXnXNpnYvKuHRG5+GG4wq8STqTvcF5p6HGkxHvoXZqdSgf/xsUd3eEheHGpqt8DzrR42+9bRT/6KzSEdahCCgCioAvIXBlx07mt5M2h7/FLOegPYiCA5iI4Cnr9UiJZC0naZxFCheR+jVreP0UyIRhXeDhEydMxpRsmxlLlkoqflfpALpj0M7dAKcuPDLKCB4twvlSlIetXZwdjevWkaoVK8kSsHlYEhNaOURqVavq0DR9cE3YGoX9RkkrtWd/WTJSrEhh2Ci2RfvPrj0j5fWfxUtMTST3exZO6PMffWyc5kgEy92pU+DQiXpoI9pa0nr/QM9Z1p6ev3DeCCE+jZ7mrB398uWX7Wp5jB43XvIhw0pVXVKZ7Y3PIOZExXsmGnQoAopA5gioQ5o5Ll59tx8irhmzgBQ6oJPD9h5FixQ1WUNG9Vi8z+glo5jr0NesFkSISPf15iBVdySi0RS1oRO1GTUnFENg3WCX1q3dshSKZgxBNJ5O77+4qWCWmK1Q7DW6zurA1/ftYwQpSOGlsl9WdNmM+xP/NaBlkaJMOg5vwLIaFKFi/SdbqLAWmPTczAa3I3WKio1sxUKVXqoK5k61TWYr1PcUAUVAEbiIAGmvHz7z9GUBQSqYDsFva492bU3GiQIzzJhS/XQhnKSZcATJ8qGCa3Y37BePlvNXZMdc3aOH6V16EGrxZNlQaZa//8yGsWepOwbpurS/ViVbZh97te9wCfPFkeNQ2Z7MKAoA0SlliY4jznxROJhkTDE7zSzrjQPsixaRurt++zY4sGshCtUDCr+ZqwVTzfh3OGl8fDllstF2oLJtoA7aXtpg2mUKQFGQiX1os6qjJQ4f/vCDCXI/e+892Qpc8Zq+9+230F2IDVQI9bwUAbcgoA6pW2B0fZLyMPbvP/XUZcbedkY2BWdmshloSfzhZJSNGVNm8CgDvxAGhkY4u1YltnPm9DVvMOhE9+3cCWI9bBNzTFbDILNXWIlixWFQa+b0EEY46dpevQzFZQOysIy8s5aVIkjOjkG9exkaF29Ktu7dY25YHJmDtCVG/dn+huqO9hQRDXUXVGNmVUnryiyjy15rrI9lRoGUNx2KgCKgCPgyAmw3Mnr4sCyXSJVtsj2GXTUQaqSFjA4CqbPHYaNYisAgnRHpQ6uvzH4Ts5w4hx+w3pUq7nSoWWqyHcFN1mtuAPOGWV6WiOR00CGljdi6Z68JELN/d0iF8sZRdWZuYkw7T2eRDkwp6Cc40gKNmgPlgi3tx6i8a081luvpDYd5yuzZWOsWlLRcSsnl53EIej8Kxg5b3bDNV3JK3mLs0CYz4091XgpCNcukRIpZ1fGffmb6lY8ZMYKwZTnY0ubRN99CBl0VdbMEST9QBNIQUIc0l78KrF144JbhDq0iFFlDGhFK3rN+IyktIn0E9CT2/pq1bKmRwSd91lsRadbAcE0Na9WGs3jUqPAyWkvRB0ZkM7YEcehEM2zECDuzsht2bE8TrNhoMrH2KEoZpjB/Ejf2MqPRp4Q/nV1HBpUM2eybdT4MDNjDllnVP+bNNxF5Zg+sg73j7n7hRROB5c2aDkVAEVAEfB0B1r0/ededwp6W2Q0KxLRr1tSorzLDFxkbY27uSWdlvd0/oEUug/J5hXLeFeljq5IR11xjHGVSeVliwiDjGdRCslVHTgdpzHRKmSGmXaFDSSaTo0J61uNTMKkrFOIXrV2DOVabgGwLB3ppM/jLDCbPiS1P7FGHScFlZnUaWobRfrL21jpYD/nYO2+bmuC8rgNAx5SiUaR716xaRXjvZR33g6pL2vIPb70pFDXMalDk6fZnnjGKxFlto+8rAorARQTUIb2Ihddf5YcBf+LOOxyKhNoujuqzzBLeOuhaCS5ZStijkj+glIOn4hvrRBjhbIqINLf1xqhRpYpx1hh1ZlSQEXEKPuw9eMgYyJyKSlSGAiFl5km5Xbd1m5H3p7qtI9Qm2/PvB6GCk6Aas+6GPT/t0XKs+zH7TOeaohCsac0ssmzd1lB3S4G6CweWrxvgZuFe1KJQEIKNtnUoAoqAIuAvCJDe+vYTjzu9XGYO+dvap1NHBE+phZAiJ+As0TZYRPpWeF2kj9oE/O1mAJcZ05Uom2BGM6hECaHKe04HlWlJoaXYEduGrdu21bRlocPq6KACLutBF69bK/MgZMi6RgaYsxssEaGtnQ0mD7Orto5mxn1py2hDGWClwBG1KUa98IJh9miN46VoMUvM+tKNO3dIXzDCfgDDiWypp9AyhiJU9sadzz0Poa8t9jbRzxQBRcAGAXVIbcDw9ksjZvSURczI1WM3b1Df9EhjBpF0XtJNWNe5c/9+0zaGmTm2MaFKojcGxZZuHTQIrT/CDY13LepcZy9bZgyrI9He7NY4sHs3UK2Kmn5n8+HwHj5xPNtebBnnJPU2LiHRGGTeOPDGyV7Wk/uT/lWqeAnQz+Yb8Y4rcaOV1WBtFZUnWYNDA7YdvetUWS8rtPR9RUAR8FUE6OiwHtPVQQeLrJGRCJ4Wx+92bEK8sVPMVBqRPtzsUwyJ9ssZx83V9bBNylVoL0Yn7wCOuweZW7KLWNNPZ5I6ADkZZDyRurwjbF+6/gDfs6c/kPF4xRAAHQT2DrPJdN7JhiLFOLvBYCvPYwYypWwFQ5uV1aDyMDUMfvr7b5mEVl10vHRkjgCzoSxLmjRzJnrd7jD6EA+NHJn5xmnvsm0Mr53afbsw6YeKwCUIqEN6CRze/YMGcDAUdd0xaPSu7dXTRIBTUPdBx5S0IQo68IeRdY0X/rtgN3LqjnVY52AGt3+XriYizkbUFAxgT1BSX+iI52S0aNjAUJvYz4sO5cqNm4TRb2YyHR2MZtMJJS4LQLHiTRdVee0NKiJGQH3v78WL0Zssv5HIz2x79i+bPGu2oQcn4GZChyKgCCgC/oYA2TXjxoyx69g4ek78raXKLUsemoC5E0U6b1KyUcPdDJE+CvOw3rROqHdE+si4uaFfP6mEGkyWcWxGX89Zy5abnqq0XdkFKO2dN/elPSHdmUJHbNlmelTDRjk6aIu4PjqYc6HLEA6bQhuX3aBWwgzYJ2Z+B3Zj8DbzOlmLOu9ao0URKKq52WGT0895T0VqNMuU6NBnhe3/pv5uHH1ur0MRUAQcR0AdUsexcuuWjNSOG/Og23p4WhfHH0nWkLAnG2tSouNijbobxYBY2/n3osVyCFlFZjJZT+LJQQELGsgmcOTolG7bu88I+lCVl5H3rH7QHVkTa1NvGjDAOLy8kWFUuHyZYKeEnRiVDypZAsZ7uXHa+3XpIkULF7Z7eKoIUxTpL9CiG6AnHdWAbcefqB+9f/x40KcO2r6trxUBRUAR8CsEKJjzHPpju3vwN3MQqLNku/AGn3Re1pnuPXTI0jYG5RTMppJp4unRCGqqt6C+lM7D/qNHZDVKXmag5Qnr/5hlzMmgfWFmkywhloiQyktmjTN2l+wdijCRvsuSHHt9MblWOsOsQyU7h1oJFHXKOMa8+pp8MWmSqanN+Jn+nT0C/K7+ATVeZtMz1lYz6//GV18ZFkD2M+kWioAiYIuAOqS2aHjxdRXQaV4cPdqjR2RGjz0xO6L3JZs9sx3JQdTOUKaebWNoICk5TxVCTw5mRek8Un2XjikdSLaJYa8vR6hI9tZGOliFsmUMPYpz0miTkuvooOAFM7azli4zdam92reTEtnU3TLyTIn+vxctNHQ0a53uI2++Kew3xvY8OhQBRUAR8GcEyLjp5cRvqbPnyt/N3h07GDovqb0xcfFyFtRRsnrYNoYK8hHRUaZtjLNzO7t9l1at0P+7D+pLTxobtQg0XrJvalapKlUqZk19ze44bMnGrPC+w4eMZgHtTLXKlYSaC46Oa3r2NH2r54HJQ2z6dO5kd1cGgutWryG/QU2Xvbwp5sfB+t0bH31UVkM7QbOidiHM9kMGUvgdpZBjfwSyOeiojn3tddP2KNsJdANFQBG4DAF1SC+DxDtv0AAyQuyNwUg3KUSkALGmgT+m/PHchTpTKvOxFQpvDthr05ODVFvWErE3HR1TZmwXrFyF/qKlnMpsZlwje4axfoYONh1FUnjZG8/RDGyd6tWhElzLOKXMtHZu2UqCsSZ7g+IYFDlidpUR7E9/+QXNzddpzYg90PQzRUAR8AsEmP0ZP3aMW1TSHTlhlq+wjyZbn0TFxpq6STpfq9EHetqCBajJ323KTazBP0fmdHabImDH0CZ3QAB336HDpvaf+gebd++SzrDX/NzVwbY4tCkUUpoNp5RlHc707B6AIOiBo0eFTintNuezN+j00v5RHf5MRKRs3LVTnvngQ3WW7IHm5GfMou/af8BkoqnczJZuvDY6FAFFwDUE1CF1Dbcc7UW59TcefcRQanM0kZM7UzSCRvCWa642VGFmTSlmQKoU6yhnLV8m0bFxEHxo4uTMzm3O+gtmGUmR2gVRCdZxstaGPb+ycwSzOhJvVG7o1xey92cN7eof0K5YH1TbQSebfeDaNGliHHTW4LRp0hgU4DJZHc4o6HZu1VK+++NP41wz+qxDEVAEFIFAQIC/fY/feYfXT4VaCMwIstQjJfUcem4nGZG+bXv3GpG+5f9uENZ/elKkj6UutCUhyIzuQemFKQmBPYmErezogLhQVqCRjXMlMsJrQOFlL+p/oYHAXt7sd+nI4LbsX82aVDro1sxnVvtSaXdnGMQNlyxBG7J/RfUMskIqZ++fwjU5iZ67FD7SoQgoAq4joA6p69i5vCfV754cdZfL+7tjR/Yuo9FlrzRrRJpZS4ooTEdEmvWezevXM73K3HG8jHPQgWQf0Ob16svugwcMtYh0JjqppIm5KipBui4VDVchS0qn9AQMhb2+bLbrqoAbEeJBqthfUH+kQefNT1Zj+YYNpvaU+OlQBBQBRSBQEGCNZ0+UL+TWsGghtDX9QyuWLYdAaawR9mEA07SNgdAP2T722pvkdO0NwJq55eqrJeVcKtR4D5o6UAZPy5YOcplNREEc1nWytGQF7AcZOTVQ0mLb59LeummfEuGkz4YAExlBdN7tDarC7wgLU+aOPZDc8JkKGLkBRJ0izyOgDmkufAXYjJsZQl8YrB/lWobD8Oa7Ip8ROjiKtjEUHqIAEvtuMmrNmldPDFKLbkR9KQ01m6dTFGAWaFJ0SJvBIXZl1EYPPEbYKdG+AA3G6WTTyXWEclUa6yA9imugY87+dKHInmYcrBV99YsvDbUs42f6tyKgCCgC/ooAWSqvPfJwjluguOv82TeTTlzHFs2NY8oa/T3oubkEJR//wEaRnUIBIWfEgpxZGxXZGbw9jPpSUjJpG9hfsmWjhkJ74cqgki9ZOcvR2oXnEBUTC1pwS4emoiAgVd5nLlkK+7why77Ywx9/AuU46xyaUzdSBBQBRSC3EVCH1MtXgOq6Lz/wgHHyvHxou4fLnz8/ameawzG9ytRzRsZEmzoX9tCcg2jsfFB6r8B/FEryxGAN0chrrzVCRzT6cxGJpnPKBuv2spRZrYX05Ouu7G0cRku/u8WmfYuwUAoAAEAASURBVEGtalWz2iX9fV6jIX37mEg8a3CoCsl1WMc7/5son/3yKyhlqda39FkRUAQUgYBAoALouo/efrvPnQu1ENhDlM4hyvcQPI2XwxDpW4dMIUX61oEKWye0ukdE+mhPBnTrKtR+MIwetIn5G8dkXWfvDh1cwqoutAuY4eS62aaFAdR+EOlju5jsRsuGDSU4qJQJGi9au8Y4pbasomtHP4D5tmc3jX6uCCgCioDPIKAOqZcvRVmIRbDOkYbVVwfrLqk4yJqVmLg4oxrL7CUFg0iDJd2IEens+na6cn6kiVGAKQz04a179pgo8FbUD1GN15EMZ8ZjdkZ0m7Qu1h5RHIP1HqQ9ZTfooFOheDGk8ymhz7oi0pxfQ1b0m6lT5dz589lNoZ8rAoqAIuB3CMSjd/IglFOULuVa9s/TJ2y0EOAYkk5LqitLJk5HRMgW2AuWW9BBo6I7FeTdPVhbO6RvX8OaIRWWwU7axPz58rlEH2bwk7aWGVKq+nKumlWrmOxpdmtny5rQkMrGMZ6DulLWlJLGfM39o2UHAsk6FAFFQBHwJwSuCA4ORqxRhzcRoGMVUqE8jFqIUfW7Bg6YK86WN9f8xaTJhqpE5cO4hAQjKsEa04dvu83leprs1k9a1LsTv0U9616TJWXGc+yIEdntlunndCAfGP+KoVoxGzvh+eeE8viOjFEvvCDb9uxFLdE5Qxmj0dehCCgCikCgIsA+z2SmMAg3DG1LWkPkzZcHA6afgrXCIObhEyekMISCyGphVvOB4cM9tvQPf/hBps23BDpZYvLM3XdLC2QvXRmk77IMhEKDNw8c4HCWmr1Tn/3gAwgCBklSSjKc0TBXDq/7KAKKgCKQqwioQ+pF+BlFZa0kBRrOpzk1+fAeDT97nbHdiFH381C9pjtOla1aJv7+O+o9D8rJ8HDTFoB1lncNuR495Tq64xCXzfHLPzPkh+nTDT2KLV7G3DLc5WN9OXmyfD9tumlz88w9dzsseNTmhqGGwnzZ4vQNRUARUAQCBIEgBOlokyKhwG4dxYsWNeUONZC5u65Xb+Pk2dJDrdv5wnNySop8gd94agcweEqxmerIIrZq1Fgev+MOqVS+nNuXyTZqdAhXbtho+nuy7zdV9Kmm7+zg+hk4XQ+6bVuovn/6wvNSCHTh7Mbjb79j2rexnYwORUARUAT8EQGl7HrxqlFdtwfoonfCeWPGjrTQJBggGpFjp06bdiWsS/lnyWIT6aXqK6mivjRYT3ndlVfKVd26GyovW8eQHkQpeir/MXtKOq87Bym3I669xtwkMQJOWhPrhlo1bAQH37Esp3U9bO1CUYil/643VNzwyCjp2qa19eNMn6fMmm1qfM4rTTdTfPRNRUARCAwEyB4ZPWyYhe4K7hQdT/7Gh8NG0cGjyizr6uehbQnfpz1wtN+zNxAqQC0E/L4PuwpaCDWqm2zjSZTIUJH2H7TzoghQiAkAV3Tbcli6wr6g3dq2MYq2a5CxnL5gocTEx0n7Zs2cOg7XT/X5c+fPGd0GCguyhKYqhAXtjR+n/2VEAe1to58pAoqAIuDLCGiG1ItXh4I6C7799pIjUs12yqxZpgn3yTPhps+YlUPN1ig0nqQeUWTHUxnISxbkwh/fT5tmDHAYblji4ZBWrxKC6G5TeeyO2+328nThUHImMlJe+OgjCEFsk6JFCqOvW0d5+cEHXZlKHnr9DaNySIf3U9Byixcretk8VOi958WXjKN92Yf6hiKgCCgCAYJAPjifrzz0kBG2s55SKoTbZi5dZpy5QxAQYhstBh056KwyYFoZ5ScMDt4EmimFenxtUIV3wk8/y+Zdu+QgzoEONOtLb4RGwM2gI7t7UIX3c6iw7z10WOqDPTRm5AiXhI+43uc/+tjcE1AF/6FbR2a61MfeetsECTL9UN9UBBQBRcBPEFCH1IsXiiqy48eOyfKIzJRSLXDhmtVGOIjGnxQeDkraM8NarVIl6QslPrY1ocPqS2Mtaj6/nPKbkcY/fvq0VIIqYqM6tU0NT6tGjdy6VEa834baLbOzFHa4ffBgc4Ph7EFIBybFizcpz957j3Rr0yZ9iuPIWg8eM8YIZqS/qS8UAUVAEQhABPh7PX/ixEwDc9bTZT3/pJmzTF3/yfAzcJYioHhrCaGyXQzLT+iUspUXheh8aXCdX//2m3Gwme1NAp2XPav5m//wbbcKqcnuHJ/8/DNYOPMMA4rMnFdg+9lCzdnx4CuvmtZlbVDHy8CprQovFd+/mDTJUIWdnVe3VwQUAUXAlxBQh9RLV4P1JJPef0/YU83RsQwiB1PnzJV9hw8Js6cUO+BgZJo3D3RQSQm6cUB/Q51ydF5Pb0fH+qMff5Q1m7eYHnFFIeJUBzcppFEx0+vOMRnZ5e/+/FOOoEdcM9DNWBfqbLP0Q8eOyxPvvGOi51zfU6NGmSX2H3U3JP4PunO5OpcioAgoAj6JAIOdS3/60eG1sc6UAdQFaAl29NRJOX76YgCV6rEU7qsO4T6qplNV3lN9Qh1esM2GVMed+IdFC4GB36o4d9qNh5GFpCaCuwYDys+gvpQq7wUL5DfK9a4weqih8BWCvXT6X3pgtNDBnQlF4UfffCs9aO2uNes8ioAioAjkBgLqkHoJdWeNfcZlUTmQ7UeoqEfDfxJG1Np6pAxayZA21YCKiHD63F3DmXEtzvw9GdH0qVg327iwnUAtRKR7oW/bWNCYKN/vrvHal1+aGtZkRL07t24lr4J65mzE++n33kd2eo00Qa/VuPgEU6fqrvXpPIqAIqAI+DICg6EN8P7TT7m8xJUbN8qU2bNlH6iqFLyzCuxQK4GZU9ZBdmnd2gQlGVD1hUEmz8c//SQb0AOU1F4qr9MhvX3wdYaJ5K417oP9G//pZ8ISHTrqd15/vWkr5sz8zOo+8c67cP5PGcGkBNhT4qxDEVAEFIFAQEAdUi9dRYpFTPv0E7ccjeI6rFOh4AGNKCO8sfHxZu5iaYqINatAEbG37ygibt61Wz5DXQ17tx2DQWVEugUweeT22wxtyh3AMIP8/IcfyVo0Gi8NNWP2i7t/2M1OTU3hi/GffS7hqFW1UtGcmkA3VgQUAUXAzxCgMM/nL70EnYIOblk5e1X/Pm+urNq4SY7B6bMNoFYoW8Y4qE3r1pObrxroFGvILYvLYhJmISlGRC2EFNTO1oZ2A3t73nfzTVns4fzbFIUilXf/kaMIfNaV5+671zw7M9Mdzz4HDYWtJsDrzH66rSKgCCgCvoyAOqReujoPjRxp6lQ8cTg6eRRG2rJ7j3FOT509a5ypAqAIhZSvAOevovRq30EG97lSmE3NzUHHmQaZlKkDR49KCdTB1q9ZQ0bdcIPDLViyW//GnTvlra+/kZ3795seqczGdoe6sSODaxo8ZqxpzePI9rqNIqAIKAL+jgBrG+f+7xuPKOayb/Oc5Svg7C2QAwig0jmNSQugMiPJjGHtaqGm5VmPdu1yHcq1W7aaWlPaDwZ7a0BJmH1YH0PbGHep3n/+6yT5bc4ciY6LlW6t25g2MY72ImfQ9ed//sl1nHQBioAioAi4EwF1SN2JZhZzUXxo8gfvS8NatbLYwn1vR8fFyT+LFhl5/iMnT8oJ0HvZi42jYrmyxkFt2aihaXbOus7cHIxG/zpjBmpkD5s11gmtJoPQ545tcdwxWH/LOiHW37LmZtyYB01k3t7cA++51ziy9rbRzxQBRUARCCQE6JAu//knr5zSLjh6bKW1CSqyJ0A5PYUH2Sgs4TDCfZUrSf8uXeXanj0gsOR8L093nQRZMp/8/Ispk2GgksFc9sEeDdYN7UlOx7lz5+SZ9z9AC7J/TXnJ0P795P6b7TN6VqDX6V3PP691ozkFX/dXBBQBn0NAHVIvXJLQypVlyY8/eOFIlx+CwkKTZ8+SvQchjATDTyPLQUor606piHjTgIG5qoi4+8ABI8tPBUfSedk2pn2z5vIY6LxlSpe+/KScfOdNZEtnLl0i589fkAHoF/f8/fdlOsOLEyYI+7npUAQUAUUgLyFA1fYPn3nG66dMxgzLJJhBNQHUM6clMSlZ8uXLZ4T7qkC4r0OL5jK0X3+pBkc1twYd6Klz5yB4egR25HyaknB/l5TdM54Dy25e/uQTw3CqgVIbKv7aqr3bbt/r9tvBLDpm+5a+VgQUAUUgIBBQh9QLl7E+xIZmf/2VF45k/xDMlrKp+fINGyCMdNrQkVIRpSVViJFpNjm/GmqIVEXMDUVEKhKyznTBqtWGzhsEp5mqxA+OuEVYg5uTERUTi55ulvrSCmXKyF1DhhgKs3VOOsVDIIQUn5BofUufFQFFQBEIeATo/H324ovSr0vnXD9X1kZSOX33gYOXBFDLITBphPvAMqJwX8uGDXNlrRQl+gJ02+0ok2Fml21jerRrKyzJobJwTgYF9T6GOv3h4ycMRfjVsWPBaroo/kTRPWKjQxFQBBSBQERAHVIvXNWRg9B/FP0sfW3MXbFCps1HXQ/oSKRORcfGSn5GptMUEbu2aS03QBjI1ih66xwYMafIxN5Dh4zABDO5I665Gv1Xe+doCVtwQ/HGV1+beUmhfvbee0HDqiXXPTjGNE7P0eS6syKgCCgCfoYA6yIXfMv+o7lHj80MMjJ6/pw3X5b9ux7MmYsBVLZQYwC1ZtUqQmXgfl26ZLa7R9+LQWkMg6dWLYRyZYKlWb36JrtZJzQ0R8dmr1T2eqWKLtvlPH/ffei3HSZDH35YEpKScjS37qwIKAKKgK8ioA6ph68M1Qsnvvaqkbv38KFyND0dP9KSNu7cYTKnJ8PPCsUoyiObSMl+9mgbDkXERk70Uc3RgtJ2pgjGxz/8aOTyKTBB9eArO3WUMSNGoK9bAZcP8ef8+fLN1KkSHhEpvLlIhqqiquq6DKfuqAgoAn6KAJkxi3/43udXPx/9Tumg7j96BDbKEkClDaBzStX2K6EQTGX50ujV6c3BXqxWLQTaEDKi7rx+MBSLO7q8DM7z9Pvvy9J1603vUar+Uv1XhyKgCCgCgYqAOqQevrI0lou+/y5XKLCunhojszOWLDGtZQ6fgDASHEG+R3Emng/l8CnA4E1FRBroLyZPRq/RZUYyvywoXM0bNJBHUWfKGypXx/VQ1KXIhlX4ydV5dD9FQBFQBPwRgRYNG8ifqJ/3p0EhvN/Q8/Rf9A+lfWI2lTbCKtzXBqq4Nw0YILVgq7w1WPZBESRqIZyOOGuUg6+BMNPdQ4e6vIQj6D8+5KGH5UxEhMtz6I6KgCKgCPgDAuqQevgq5aagkbtObcOOHaAQzZTd+w8Yw38axpE1pnROeX79u3aRa3v1MkqB7jqmvXmWrFsnE3//Q/YcPCisgSXl9p6hNwopxs6OlyZ8YqjBzu6n2ysCioAiEAgIPDB8mDx+551+eyqksc5cslRmLV0qh+HAHU8LoAYjU1oZNqpejepy88CBEMpr5pVzTIIWwheTJhktBAoWkRLdtmkTBE9vN4wjZxfRfeSt5ryc3U+3VwQUAUXAnxBQh9TDV4uGaMoHH3j4KN6bnpHaaegnt3jtOqOIy+g05etZZ8rWAR2bN5cbB/Q3FCpPr4rCTB/+8INs2LFTTqP3ai0ITLCm6LbB1zl0aAodUbUwMibGoe11I0VAEVAEAgkBBha/f/MN6YDf7UAZ7EM9GTWYO/eHmZZfDKAWg+AQA6hk01zTq6dc1b27FMif3+OnTJ2GH6DcvvfQQbkC/zWpW1dGIwDQqlEjh45N+/YRSlZ0KAKKgCIQ6AioQ+rhK3zvjTfK0/fc7eGj5N70i9euld/nzjX1Lez3SeeubOkg1J1WkAYQDbrl6qukhRcUEb/9809hLQ8j0lRk7NiihaHz2qsneuytt43qcO6hp0dWBBQBRSD3EAhB66+ZX30lQSVK5N4iPHjkM2hzNt0EUNfK0ZOnDL33PLQRQqCLwABqdyjkDunTx6XMpTPLpnDghJ9+hhbCLjkbFW3axgxD1vb6vn3sTtN5+C1GEd/uRvqhIqAIKAIBgIA6pB68iFdccYWZfdonE4xzlhutVDx4epdNTWfwt9lzZC2k+01dD7Kn1pYylMcf3OdKNDz3rCLimi1b5MvJU9A24IARZaIY09iRI0xk2nbBrIntcssIzY7agqKvFQFFIE8hQMG6dk2bmuBdaA5q8f0FNJZ7/D5nruyDQNBJ2CcGUCuAUksHtVmD+kInkYFUT40LqHP9esoU0IuXySHQiyuBWdSrfXuI9N1ibKXtcd/79jvUpP5s+5a+VgQUAUUgYBFQh9QLl5Z0oeCgIBOFphgPnbNOLVtKs/r1jIKtF5bg9UNQFXAmanpmLF4ih44fNw4qa2to+KtRERFKudeBXlsavUY9McIRGf8IPd3WbtkqfE0p/hHXXiPX9OxpDqc93TyBus6pCCgC/oYAA6est2TfZ/4eVyhbRprWrScdWjQXtsYqVrSov52SQ+tlAHUqnNO1W7cgCwlhJDiobCnDulPaixsh3Ne1TRuH5nJlo6Xr16drIbDdWkvQeB++9VYIMVU103UdMRJZ3ZOuTK37KAKKgCLgdwioQ+rBS0bjVrhQIYmIjr6spQibkZdJc1JJK61UrqyhtlJ4gRHanLQ08eApuTz11j17TF3Ptn37LMJIqPk0kWlQxto0bmJEJ6yG2OWDZLEjBZl440HHuALa2BQqVNDcgLDuVIcioAgoAnkVASqns71XPBgjGQfZLVYbVQZlGKGVQxBIbSHN69eXahCzC6TBAOosKLj/s3ixHDpmCaBSMM8q3Deweze5pkcPKYrgsrsHtRAYPKV4IHUNGqBtzBbYS7Yj06EIKAKKQF5BQB1SD15pZkLvuXGo6Yu2ZvMWYR0JnVMammg+QBf6L8PxGY0uAwe1FCLVrIXkHJ2RTW2KbCrpPYEwSJP6a+FCo0J49NRJ4xwWxc0PjX+9GjXkZvQ79YQi4qZdu+RzNDNft227ROI66FAEFAFFIC8j0LpxY3npgdGmfcqmXTuNCFBUbKzExscbW5WUnHwJPMymWp1UZlTZZoVlER2bt0AgtaZHHLZLFuClPxhAZV9utnA5gZYyFPOrDPsbgrpT2mO2PaO9cvf4fto0mQ7buGNfmCSDUaRDEVAEFIG8goA6pB680v1QL/nFyy9leoT9cE637t5j6EJH0OvzoqMaC4c1/pJ9mE0ti2wqnVRSquiYtmrUUNoxm4poagE0B/fnsWLDRtNTjr3l2E8uPiHBCE5Ur1IF7WR6ytVQRMzvRkXEXrffYYID/oyZrl0RUAQUgZwgwOzo1I8+NEHAjPPQId178BCCd1tl6x701QSbxNZRZUbRdjCgSEeVNorPNVCP2jEtm1oVJRr+PCKjEUBdtAgB1FVy9BSEkZDRLFEc1F4I9zWuU1uGXXUVym/qu+0UX/x4gvz8zz8mc+22SXUiRUARUAR8HAF1SD14gR6743Z58JZbHD4CqVN7Dx0WRqrXb9tm1PWYTaSDGoXnjLSq4sim2tam1g6tZmpTm0Janm1Y/HGwZmbq3HmyatMmc/68ESLNljc13dtCEbFfXykfHOzyqbGmdNjjj6uxdxlB3VERUAQCAQFm+Jb+9KOwftHRQWbJbvR/XgvxuJ1h+4UtVcj4iWFGNSpKzp0/nz5VejY1LZDKfpwUDmKLGQZSSQn2x2ECqHPmyL5Dh0wAlVlkKvay5GRIn75GHyEn53XrU0/Lsn//zckUuq8ioAgoAn6HgDqkHrpkNPITX39NurlBFIHUnb0wfhu27xD2WDsRfsbUmmRGq+Jxy4DqSxl/S20qsqmNGxklRd4EuDPT6CHo0qelgz57+XLI9i807VwoOsH6zyoVKkrzBg1kOFrK1Mc5OTPuev55Wbh6jTO76LaKgCKgCAQcAuzJufiH791yXgwc7tx/wDiqe+CwhkdFWhxVBFPJ/uFvuXWwDtNK+2Vtag0wYYzIH6i/dOz8aTCA+vs8BFA3WgKobDNDx5s1tn07dZJBvXtJKSda6jDz3PHmYQYzf8JB16oIKAKKQE4RUIc0pwhmsT/VdP/54nOP1n3Ggdq6F8Z/HbKprHk5hZuCaNT/WKLV0WJLq6LAkkVJsQT6hAYLs6mshWGjbooL+cPYtX+/TJ41Szbv2m0i03TIeQNjFBEH9HfI+W93402mHsgfzlfXqAgoAoqApxCoXa2azP92oqemN/MeA8WV9ZBsx8UylbPIopqMKrKqZP/8hzYoHPlYm5oWSGVtKstSmttkUwtBHNDXB/ubzkEAlfoIB48eM7WnpDKT3dMWrXVugo2i821vTPzjD3nls8/tbaKfKQKKgCIQkAioQ+qhy8oI6dIff/DQ7PanpaHfc+CgrNlKWlWYccCiY+OMUAVvCKy0qvz5WZta2kRw6axWQkuW1sim0ngym8raVV8ddEapiDhn+Qo5gig1RScYBGDUf2C3bqb2NCMlbAqc2afee99XT0nXpQgoAoqA1xDo1aG9/O/VV712PNsDseUKBYPoqB4+fsKioRAP6i/sFGtVrSO9ZVpJBFJhqywt01oYISVPiApZj+uO550IoP4GYaRNu3cZsaiEpCSpigAqWT3DINzXpkmTyw5z7egHTHD5sg/0DUVAEVAEAhwBdUg9dIHZa5P1Ob40SKvadeCAuQlgZvVMpCVaHYto9VkbWtXFbCqUfoNLIwNZ3cj9M5taHvWcvjjWbd0qk2bOEtLFmClGwN04p6SC3di/v1FEvOnRxwylzBfXr2tSBBQBRcCbCNw1ZIg8f/993jxktseikNLm3buFv+fHIB7E4Crtk1VQiRNc3jKtHFqmNTDK7A1qomVaQd8T+WNWeMaSJekBVNbbWnuSD+rdW65CWxkynjoOGwZRv8tb8GQLnG6gCCgCioCfI6AOqYcuYC3QoRZ4mA7lrqUbWhUyqYZWdSRzWhVrT2lALbWpJaEwaOkf2qZpE5NNpYCFrwwq9f6Juh4KQxw7ddqIQXG97EPKzKoORUARUATyOgIfPPO0XAdnyNdHauo5aCgchH7CLvTq3C4nzoQbkT+WpkTGREtCYpI5BWvLNFJ+rc5e51ZomYZAKtk/vjQorjdltjWAGmGEpQrAxpLto0MRUAQUgbyIgDqkHrrqVBL89b13PTS7d6a10qpoPA+dOA4VxWjj0LFO1UqrYusAiieVJqUKtal1q1c3tamN69ZBdtV1NVx3nuF8yPU/8sabJgLtznl1LkVAEVAE/BEBljP8/vFH0qh2bX9cvllzQmKi7IHY37/bt8sW6gqkaSgYsT9kIJMgBmhapiGQSmEhtkyrXL6ctGwIkb9mlrIUX2iZdgJifdPmLzCtXhgc1qEIKAKKQF5EQB1SD131oaCJvv34Yx6aPXenJa1qy57d6KG6VY4jA2lpTXORVsVILyPUvAlgbWrlCsimol6mTWNkU9E8PTfGg6iVmrF4SW4cWo+pCCgCioBPIcDSi5lffuEzQUN3gsOAKUs3KPa3fe8+05qG79FRZWlKKpRsL2mZhrIUCjxZRP7qoWVa7oj8tb/pJvR7jXAnFDqXIqAIKAJ+g4A6pB66VM/ee4/cPXSoh2b3vWlp5NmaxkKr2gFaFVvToP4HNwEReGY0u1RaNpWUKmZP69VgbWpLNBevYxxYT55V79vvMCqPnjyGzq0IKAKKgD8gQOXXZT6mceBp3MLRkmU3NBQYSN2FFjX8Oxq1ncZRRUaVir8Xy1IQSIXSr7VlWv1atZzq1+rsubBu9voxYy9pj+PsHLq9IqAIKAL+jIA6pB66ej++9aZ0ad3aQ7P7z7SX0KpgdE+GW1rTGEcV0epz585JWUSoLbWpQRKCWh+q/FLt19keo1mhwpuOzsOGm1rSrLbR9xUBRUARyCsIuLMHqb9jxuApW4pRQ2Hf4cNyNk3sz7RPg41i6xbTNzWtNpVtxhhItbRMc4/I38uffCLfT5vu71Dq+hUBRUARcBkB35Ojc/lUfGdH0oHYU02HCIUmWjRoYB62eLAG1fRQ3Qpa1T4LrSoSxv8walVnLl0qhdF3LjgItaklkE0tEyz1a9SUji1bSOPadYBtkO1U2b5euXGjOqPZoqQbKAKKQF5B4Pz583nlVLM9Twre8dGzfftLtj184gR6qO4zjurBY9BQiI4ywnjs+f3dtGlpTirKUkoim4r9WzdpLG1RmsJsKvuqOjM27tzpzOa6rSKgCCgCAYeAOqQeuKRG7S/IOafJA8vw6SkpMMFMKB+2I51WtWWroVedAa2Kfeq2oRaITcMtmdRSpjaVfegoTtGqUSPQf2vYTnPJ69nLll3yt/6hCCgCikBeRqB4sWJ5+fQdOvdQ9BLno3/XrpdsH3b4iGzdu8e0pqEqbmR0jGzatUuWrF8vqWT8wPZby1LqVA9Nq02ta7del8whHYqAIqAI5GUE1CH1wNUvVLCgVEL9iQ7nEWBtKR+dW7W6ZOfj6ElnoVVtlbAjFlrVZjQcZ2uXFKgp8gYgGDcC5bFvfQgndWrRwihI8j2KMOlQBBQBRUARsCDAwJ4O1xCoHVpN+LBtmcOMMzUUWAu6fhta08Bese83KcBTZs2WggUKmIwqFelZltIG2VQK/TVANvXoyVNwaqNdW4zupQgoAopAgCCgNaQeuJBan+MBULOYkr1Fd+wLg1DFFrHQqqKFTcjjExMgUiEmk3rqbDje0/6jWUCobysCikAeQ+Canj3l4+eezWNn7f3TTUpOtoj97dgJwb+d0FBAD9U0xd/EpCRTmsLWNNruxfvXRo+oCCgCvoWAOqQeuB50SEdce42MuuEGD8yuUzqCACPT2/bslXcnTjSy/6RS6VAEFAFFQBEQaVi7Ftq+fKlQ5BICFPVjRpXZ1C8nT0Z9qmZIc+lS6GEVAUXARxBQh9QDF4KiRqSdkqZTsGABKVSgoBQqVBDR0MJGsY+fly4FsZ7SwVKhbBk8yppMHvt2Wh/s5akj5wis3LhJRjz5pJH0z/lsOoMioAgoAv6PAGv4Wc5gbBTsFMtMKCRXpHAhKVqkiJRAjWnZoNJGUK4i7BP7lpLma7VP/FyHexC46dHHZC0UfnUoAoqAIpCXEdAaUg9c/Xj03OTD0XEFFPl4M0B5+UJ4tt4kWJ8vuVkoXEQoSFEWSrN0ejO7WSiJfp86LAhsQU0P+8vpUAQUAUVAEbAgQNooH46O/KCV0lGlw1oQAVZrsJWvC9k6tEUKS7EiRY3zynZe5YPLQE+hrKmftDqzfKa902FB4CyE+3QoAoqAIpDXEVCH1APfgGAIF/Tv2kXiEhIkMSlZkiG6k5yaKql8gDrK3pupEEHg8zk8UxCB73M77uMsvfTizQIcWmRkC+S3ZGYvu1mAw0sF4FIlipsG4Ix606E1PdZsot9FsF2gjF0H9gfKqeh5KAKKgCLgNgSG9O0jCahjTEqGfYLtSbHaqPO0UbBP6c8WW5UCGxWfmIRtY+TChQtOrcOSfS1sHFFroNXq1FoZREXIIIJDa2EQUaCutGEPVShT1ojWBcFuWZ1a1l0GyqDN16EIKAKKQF5HQB1SD3wDqMD3+iOPODxzIoQP4mGUaJj4iEbkmu1PzqKuhOp7UTGxwibdFEEwzi1vHs7RwaVDa7l5MI5umnMbn5IoKTGpuNFIdsi5tb1ZYLS7AKnGfNjQjXmzQEeVNwt0uJmdtTq0QSUvUrlI68rvQ3TjE6fPOHwddENFQBFQBAIdAf4+//T2W9KheXOHTpUME6ttop2KxSMiKlrCoyJN7SPbntBmkRWUmAwbBQeXzi0dWGsA1mqnGIBlYDYB29KWJeGRnXPLnp5F0rKzhQsWgn3KfzFLa5udRfaW2VlDN0YfcPavZsCVpTEMwtKZpX3ypZY31iC0QxdCN1IEFAFFIIARUIfUAxe3ZDHnKLOk6vJBJy+ng07oxZuHRImOszi3FE2IwI1DVGyMUZylc5uUkoyWKbhxMJlba/YWNwxwchk5Px9vydzyc2sEPeP6Lr9ZSHNm05zaS+jGrE0qSrpxxpsFOrSWGwZ3042doaVlPDf9WxFQBBSBQEOAv8l0zhwdLCnh77I7fputzq0lAJsIWxVvnNqzUVEW5zbG4tzShjFQS+fWll1kDbySXURbZ9hGZBfRRuHv85lkbhlcJd2YgVeeO/UZGGy9jEHE7Cwc2lIIsBp9BzCIKoBuzACsNTMbBBxYVuOucSYi0thWd82n8ygCioAi4K8IqEPqgSuXmxlCZjH5cKdzG5+AGwe0UYmOjZOziIqfRXQ8MiYtc4sWK4yKX0L7SouMW51j25uIjM4tbw6sNwu8YcjyZgHnZKUbZ3qzUNzi1GakG/N4OhQBRUARUAQsCPA3thR+L3NjeMS5RbbVGoQloyjduTUB2FjzGW3RpQFYMovOSSwytNbSGatzS5vBzC1LaTholxgwLoyHPQaRhW5czDiw5ZGdJdXYiEHZMIjo2DKIax0x8XGZOtHWz/VZEVAEFIG8goA6pB640u6IJHtgWU5P6W7n1urY8uaBvUJ543DRubVkbi01TcjcplpoX7wx4PbM2pq6JtxEkPbFmwdSwqyCRYx821KMTTQcghuRiLjrUAQUAUVAEbAgwIxhIAx3O7ekHFsdW2ZwaTvCIy2Z2yi8JtuGGd2LuhC0UefMPiyrMQ5tmm0y1GTaqjQbxSC1sVE2FOPCsFnhsIFWGxYI10TPQRFQBBQBVxEIDMvk6tl7aL9AElxwF0RW55bKizkddFKtNbd8Zn2txbmNQs2thZbMbC6bjfOGQIcioAgoAoqABQHaJ9Zh6riIAJ1b1p66q52NrWPL13RY6XxGRMNGpdGSY+MT5ER4+MVF6CtFQBFQBPIwAuqQeuDiU/VWh+cQKAIKFR+sRc1uNL9ucHab6OeKgCKgCOQZBOh8FUNNpQ7PIeCoczvhp5/k/e++99xCdGZFQBFQBPwEAfWcPHChSBfV4RsIWOuAfGM1ugpFQBFQBHIXATqkOnwDgWiUruhQBBQBRUAREFGH1APfAtaK6PANBP6T/3xjIboKRUARUAR8AAH1R33gIqQtIbuWN76zUl2JIqAIKAKeRUAdUs/iq7MrAoqAIqAIKAKKgCKgCCgCioAioAhkgYA6pFkAk5O3k6EQq8M3ELhClJ7mG1dCV6EIKAK+gMB/Shrxhctg1qACiD5zKXQhioAikMsIqEPqgQuQkqK9Lz0Aq0tT5mZPWJcWrDspAoqAIuBBBLTNiAfBdXLqIPQl1aEIKAKKgCIgoiq7HvgWnL9wwQOz6pRWBNjk3Cqrz+fYtLYvEVHREhETbST22eeUbV9U1MiKmj4rAoqAIiCm72UCem6WUmfIY1+HONikWNgm2ie2JmMPU7Ymo41i2xdLT9MEWb15s8fWoBMrAoqAIuBPCKhD6oGrpUIFl4Nq60TSgaTDyKbjZ9mXDb1Do2Gw+X5icpIkJadIMnqNppxLlVQ0Hmcv0fRG4+f593nzd0pqqmU7PGvU/3LM9R3nEChdtoKUDCot5/F9O4/vmfX5HL5fqSnJkoLvpv7bdg5T3dr3EOB3+Nx5DZraXhnaD9sgJx3KCDiOZyMjYaMY5KSNipN4OPK0UcY+gQmVQtuER2raM+0U7RL/5jP/vuKK/JK/QAH0fi0g+fPjGQ/r3xeu0Fsw2+ugr7NGoFjxklI+pKrFLuHeiN+7C+Z+CN9BlImlIFBPO6VDEfBXBPTX0ANXjo5VIAyrE8nzobGmQQ6PgoFGpJdOZFRsDJzIBDiQFieSBthqjI2RTnce05xIGmn8kCbT4cS2OhQBn0EA0qOjnnxFqlSvnb4k3qQmxsdZHglxkhCPoElUhERHRkhsdITE4/ufjBtUOqq8IUjFwzixaTcLVqdWbxbSIdUXPoAAnaVAGJc4kbBRzEhGwHk8aw100omMiZWEpCQ4kcnpwcvUNIeRzqI12Gl9poNJZzMZ21uZToXQxq1gwcJ4FLQ4lFbH0jiZBS2fwVkoUbiIFClSVEqWDJJSpUpL6aBgKYVH8WIlpGjR4lKsmOVhi/2RIwdk3PiHbd/S14pApggUL1lKHn5lwiWf0QE1NioBwXzYqvi4GImJDMcDNiomyryXkgQbhe1ohxhc5XfdEmxNxfN5PBhwpUObZAKxlxxA/1AEvIiAOqQeADs3aaI0vIzuWqO9pAaFI8prS2fl51YDTePLGxTr41y6E8ksJN5HhpJOpokIqxPpgW+LTukLCFBcpChuGG0H+zUWK1HSPGzfd/Q1bwAS+W8Nzqy5WYADG82bBTi1cWAGJMLBTcZNACPb51L5sLlZwE0Cf0f0ZsFRtHU7RxGgIxaDm1eRio7u4rbt0p1IBDJjcRNNO8UA56V01hjjRDIgarU7tEO0UVb7lMp/G2m2yhoI5fZWJ9LRBZcFK6JMmXJSomAhKWR1KEuUMg5lEJzJ0qXLSHE4m1Znko6lO/u48jcnX778YF6cd3TJul0eRSB/gcvbCRYshEAJHqWCy7qEShId2TT7RBsVC7sUHXXWBF7j4NBaA65Wh/Y8bRT+3VkCr3jmv0G8Z2UQ8d+3DkXAVQTUIXUVOTv70dA6MxIRwbU6kMw4MvNoorysOUmrieTnmWYibaO8fG3jRCbR2VQn0plLodvmUQQK4oa0FG4+3TkKYM6SpfkIdmna5MQEc7OQgBsF3izQiY2OxM0CsrO8ceDnjGrzZoDZWd4YWGnG1me9WXAJ+oDeiQ4cSyYcHbzJtLJkaIf4+ixqIc+CLcOMpIUtEyu0Y9ZA5yVMGeNIWmzTeVCFmaGxBjlpo3KTBt+yRXu5+eZRjkLh9u2CSgWbzGtysjqkbgc3wCZkcNTdowgCInwEl3M+OHUB95u2ziwZRGQPxcChjYuOtDCImJ01AVfaJzzwb59B1nT7xN8GvG/dxt3np/P5FwLqkHrgeoUdPiLPfvCBcTITkyxRXraCSY/yphnoVBNpoqE+b6K/hiqUlrH0wLJ0SkVAEcgCgSJFiwkdSF8ahbEmPljb6uz4778Lxom1OrO8WSCNK8Y4tLhZALWL0e/UFDq0erPgLL7+vD0z78Mee1yG9O1jk4lMK7dgtoNZD1Onb3222CiTicR3JbedSHdiXwA03NwcpAGT5kumhA5FwB4CweWctwP25svpZ/ny55fioKfz4cq4SDdOC7gi+WICrmAQMeBKZ5d048sCrub+2ZZurPoOruDvi/uoQ+qBq0IVvV9nzPTAzDqlIqAIeAIBOn6BNK64Ih+oxqXMw5XzYtTa6szyxiDe3CyQbhxpot/M2PImOpUPRr7TsrMmAn4+LQKOGwcrlSs3s2CunH9e2Of3ufPywmnaPcdoZHJye9Ah9YV15DYOenz7CFQOrWl/Az/71C10Y9ihhDTKMUthrAFXsomSk8ggsgg9WfQdbEtirHRjqxhUCtBTunFuf4XUIc3tK6DHVwQUgVxHoCTqxXRcRIDZYlKYXaUxJ5FuTKpxxpsFRr/h3GakG5PGZRXbiI+NloS42IuL0VeKgIcQCA8/5aGZHZ+2VMnScurUccd30C3zIAJXSGjt+nnwvLM+5XS6sQu18KQbm4Brmn1KAGOI2VmLQxsF+wMGkTU7mwmDKBaBLH6uw70IqEPqXjx1NkVAEfBDBE4ePSSL/p4iNes3kUpVq5u6Gj88DZ9ZMinQfASL8zSzd566Vx1Sn7mSgb2QeFDZc2MkImBz/PgR2bdvh5zxAac4NzDQYzqOQP4C+eXXz9+Rq26+U6rWrCcVq4Q6vrNueRkCpBuXKBVkHpd9mM0bi2dMlRVz/1KHNBucXPlYHVJXUNN9fB4B9nyj/H4xSO5HRJwR3gDoUASyQqBQkSKydPafsvDvyVAtLGIUdykiEVSmvNSo20Cq121kHFXSjHR4FoFKuNk6fijMswfR2RUBIJCC7Icnxzlk/o8fPyxhYbslbP9uiYTKdjyYA7EQLqSybhH87hQsqLdhnrwGgTA3RfcKg9o9/ccvBTLPpu64SPESUgL3OOUqVZHaDZtKlRp1pFzFkEA4XZ8+hx5X3SAr5v3l02v018XpL6G/XjlddzoCdDqL48eZ8vxBQaWlatUa0qB+M6lWraaUgFMxbtxDcuTowfTt9YUiYIsAm9Q/+OJ7UqZ8JTl+eL8c2LVN9u/eJlFnz8ixg3tl95b1Rt6+KPsJFi8uxVGbSaGhmg2aGBoVM6ps3aDDPQiwNY4ORcArCLixTQUdzwMH9sqevTtMEDQOtD86n4lQ3WdLmeJQMy0Oe1SlSnWpW6eh1EGQqypeh589Lc89d59p8+SVc9aD+B0CtE1PvP0VlGuj5RiCdXu3bZITsFWkjp7G92790rlGlK8o7oPYSqgESlAqhlSDo9pMKlevJcEuCOP5HUheXHButnb04ml6/VDqkHodcj2gqwjkz8+sJ4Ra4BiUhFNQpmx5qQ+KZe3aDaRypapZThsSEqoOaZbo6AdUCaTB5wgJrWUenftemw5MLIR8jsIx3bNto5wCtZc3AeGnT8jmNUuF38miJXgTgIBI2jyMVletVRc3BEqrSgfRiRcJTrQkcWJa3VQRuAwB9lekQ1jOiRv20/i3fwhOwe492+TMmZMSh2xnQiJ6qsIB5WBglAFS9jBt3KiFNGjYXKrjd4WMncwGj10C9kyFjTJDR98jAgx6ctDG1GvSyjzMG2n/O4mA+8E9OyRs5xaJDD8tZ/EdPYKs/LLZ02CfShonlc4qtRIqI1BvHFU8u9qSzPbYee11dES4EfHLa+ftjfNVh9QbKOsxnEaAjcithp0NyqtVrQnD3kxC8SNKh9SZ0bx5O1mzdqkzu+i2eQiBoOByds+WRrthi3bmYd2QvRkZod6PbOoBZlNBC2dGle+tWTQLmVRmUy2OKmtVyoNWVQvf36qgVZWtWNk6jT5nggDVEXUoAt5AIA41pHQwM3NII5CpP4J/z7vx7/vEyaOg2UJsC9lOZj2T8B2lE0lbRBZOpcpVpC4ynnXrNpYqLgSi6LyqQ+qNK+6fx2jarovdhVcCK4yPDr0Gpm/HbOrRg/ss2dQjByQWgnLHDx+Qvds3ycK/JqN+sjS0EorBTpWUUsFljG2q1aCpmccTPU/TF+bnL+KAK9vR6HA/AuqQuh9TndEJBPKjuNxa60nDzhuD+vWbSh1Qmiq6qR6iSZOWUgi1f4yG61AEMiJQo27DjG9l+/cVqOMJqV7bPLr0G5S+PVX6jpK2h2wqqVTsp3YKz/t3bZVlc6YbEQVSquisWmhVoVK7UTOTlS2NjL8OEQpO6FAEvIEA2xF9990Euf22Mch4bpVjYEBEx0BlE+qbdD6Z9SwMuq3V+axYIQSU21BpiKxnKP79k6njjlETQjXMuupQBDIiQN2C+k1bZ3w727+ZTeV+GfdlNvXA7u0SBpsUhWxqPDL8EQjKbF23wjB+GEAtUrQ4WoZRQ6GcKUupUa+xydKyjjWvD0tLGXVIPfE9UIfUE6jqnJkiYM16MqrMWs/QarWkYSMYdjwX9WAfSB6PEWhGwnUoArYIsF9nm259bN/K0etSwWWlER+tOqTPw5teZk7Ddm6Vg3u3I5MabmTlSa3auXGNLJ451USrrY6qoVWB4lcb0Wr2nstrLWkunL+Qjp2+UAQ8jQCVdj/8aBwO819acLS4ea5evY7Uw414PWQ9Q1CP58nRqWMvWbJktpB5oUMRsEUgqExZE8C0fS8nr63Z1I69r0qfJg6tuI6ZbOpGOcFsKspSyPihuNyGFQuNoFJxlEux1Qo1FIIQPK0JRkB1BHNJJ85foGD6XIH+gjoTOjyDgDqknsFVZ01DgGq3RRFtG3L9rca4V6iQO3RFChypQ6pfy4wIkI7r6f5u+fLlMwqIVEHsNmBw+hIo3nN0vzWbekTicBMQExkB5/WAJVoNI89otcVRzUCrqlZDioFqFWiDN0JsYq5DEfAWAlQw7d69nzRq1FJqwAklU8fbo1ateiYLS1qwDkXAFoEq+E56etDO1G+GbCoetuPEEWZTIfKHbGokaq0TkE09hXZFzK6uXzovzUEtiWdqKJSS4HIVTSC1Wu16hvprO1egvKaOhA7PIKAOqWdw1VnTEGCz+0GDhkuXLlfmGiabNq+VnSj216EIZESAAZP503+VNvh+epsyy9rVoNblpHHrjunLOn/+nHFIKU5xcO9OiUZtakJcrISfOo6/d8jm1UvRlqYQjH9p46gaWhUysqF1Gkgg0KrokCeBKqlDEfAWAkVBQ7xx6J3eOtxlx2Gt6urVi1FWUuiyz/QNRWDPtg2y7d+V0qR1J6+DURmBTz46XXl1+rHjQGk3talbNwrpv7HREbBRcUZIac/WDUZDgXaJAVNmVFmrSt0ECilVrVnX6CmkT+aHLygYpcMzCFwRHBysHBHPYKuzpiHQpk1nue/eJ72GR2TUWVm1apHsQPH+WdzQR0AVjTf6OhSBjAiUqVBJLpw/j56AFyQIjh3pTO179jfGM+O2ufk3RZMs2dQNcuYEBFZQm5oIqiHrf5LTBBZY31MMUWpmVIuBVlWaPVTrNUIfVf+hVf27fIH89MkbuQm1HjuPIVAc2Z2nn35TKlf2LC3XFtY9e7bL8hXz5dixQxIFh7R0KUtt3qGjJ20309d5HAH+lpeFlgbps4WLFjUZSNaEtumGACp+331pkOprRP5MNvWMsU2JqMWmA0sbS90FZlEt7dOgoQBHtUJaa5oqNWqbc/Ol88lqLW88egf0IY5k9bG+nwME1CHNAXi6q2MIlIVQ0Vtvfu3Yxi5utRfZo2XL5soxCMhEQlgmBj+COhQBewgURt3yy5/+CkNfDJnHJUJn6DScPRpQE9WFs9q0bRdp0bG7MaL25sqNz86fSzWqicymHjLZ1HCJhwhLIlRAWRP033+WWkxGqRmxtrSmIa2qglBNkVRlOuC+NKb9+LksmfG7Ly1J15IHEBg+/F7p1fOiQqm7T5kCSevWL5eNG1ebVjGJCbFSqXxpqVU9RIZc3UOu7ddF4uITpVnPWyU+Icndh9f5/BQBZhUffOl908plzeLZUMzdALYMMnSoNaZeAbOX7XsO8LkAqhVuk01NE/k7CfovSzISEEgl9Tcp0aKmzpIWCjBZVelZRkO7xHMPgYYCz9OXxqtjRyAbrIEjT1wTdUg9garOeQkC5VBX8OYbX13yXk7/SMSP2bp1y2QDDHx4+CmTBVUV3Zyimrf2r4a6rUdf/+yyk2bNzKoFM4yzF3nmlBQqUsREo0Pr1Jf2PQZAWbfWZfv40htRqPU5HLYH8v4bTTaVzilvAuLxnJJ88WbXOKmgVTEKzxoiRuJzm1b19dvPy44Nq30JTl1LHkCgWbM2MnbMC2490yOgMy5fPl8OHthjep0WyHdBQiqVk4Z1q8vIof2lfatGlx2v9w0PydadYZe9r2/kTQRuvvcx43Dann1KcrJsWLnQlG+wlCMeAdSSEG1kL+2mbTtLy4493CqCZHtsd7022dSdW2U/W6bBXpHpYwmkIpsKthIHOzAURxY1XUMB51gFyta10OebvVSZbc2N8erYkYaenBvHDvRjqkMa6FfYB86PLVeeeOI1qVmjbo5WcxQGftnyeXIAEbdI0Jyi0FdLVQlzBGme3vm6W0dL94HX28Ug/OQxWY2+ovthPM+eOSmpaB1UGlL45SpVldZdepkMKiO8vj7OQSiIPejCdmyWQ2G7UJtKpd/Y9JsA67+jzGhV5StXNa1pKK5RpnxFj56q0qE8Cq9OngUC5RE0fSOHQVPeSG/YuErWrlkqp1BnFgGafXCpYlKlcnnp2Kax3DKkn9QMtS/q99m3f8jL707MYpX6dl5CgE7m+C+mZHvKuzavE2ZPTx0DOwwBVDJiTLuWWgig9hpgnLhsJ/GBDdhO5QiCN3vRMs1Sm4r2S7BRZP0kp2VTucwCBSH2Bw0FK/OHGdRQBJdrNmhiMqtFPNixgXbz3afvMywqH4As4JagDmnAXVLfPKG+fQc5LRzBm+QNG1bJ6jVLoJB7HAb+rCQmquCJb15h/1oVKUIvfzbJGDdHV856GNJ6t61bCef0BJy6s4hMB0swKOl10eu2bdc+wppUfxqRYBeYbCpuAuh8k2KVAMovm6rbZlOvgNNdwpZWhbZNhlaV1kPVXbSq1x661Qg4+ROGulb/RyAYN7XjXp4gbE3mzCA7ZyX0Cnahbo4OaFxslFSuWEZCq1aSgb06GDpuqZKOz5mckipNu4+UqJg4Z5ah2wYgAmwddveTrzp1ZscP7Qe75x/8pu82NN9zqakQ62MAtYq06tRTmrXr6nd9nqk6z7KU+dN+kWiUY2U12K/V9FA1JSrUUChn2tLUTOuhWgBq2jkduzavl6/fejY9i5vT+XT/SxFQh/RSPPQvDyFQJSRUxo2bkO3sZ0HfWAE6yq5dWwwNl5nQ8yiI16EIuBMBytvf9+xbOZpy2/qVsg7S96dPHDGRaRpERqbZl61dj35Sr0mrHM2fWzszC2zNph5mNhU3AYxUW2m/1mwq13cpraqElEJUPwS0KlJ/Wd9Ex9/RwQwT63PYn1WHIuBNBNiPeNRdD0v79t2zPezOnZtlxYoFchz/7imYd4WckyqVykudmlXkpkG9pV/P9tnOYW+DoXe/IEtWbrS3iX4W4AgwAPjAC+/mqDY0Br/ba5fOld1woiKQOY2B2CMDhwyg1kYgsW23vlIOZRr+Ml5/+DY5g6Cps+Oi2F9aaxqcP7Op1aFMT1vNf/uOjnl//Cwzp3zr6Oa6nZMIaNsXJwHTzV1DIBk3uVkNtmSh4uAJ3tjjR1R7sWWFlL7vDgRogMojYpzT0aRNJ+GD48j+3bJy/gzTXJzS91vWLkNkuoKhuLKtC6PTzjhnOV1bTvanY01jzYftiABlmZF3UqpYu8TaVCr98pk3P9axZe1yKZDWQ9WWVlWtZj2IKYFWBUe1SNHLs0aknCVqyxcrjPrsRQQoAEYmTmYOaRwog2vx73kz2oeFI2DKTGjpUsVNPWi3dh3l1hv7S4vGOStHsT3V2hA6WrZ6E7Iw2gDBFpe89JqOIoN6ORl0Pq8cNMw8zqP93qZVi2UDHmTCLPr7N1k57x8TQK1YJVTade+LHqRtcnI4j+5LqqxVBMnZA1GFno9IOZW+69olc4zIX7ESJSxif9RQqFDZiP1Vg9hfBZSpZDaOHtyb2dv6npsQ0Aypm4DUaewjUBC8/7FjX5SGDZpJPG5i16DOhv1BmRFllDkVNW7eGqyTs83yeOu4ehzfQKAgqDtVatSRVp17Sdf+17l9UczwrUVNzx44bqTE0piyHogUIvZhoyoiBZUCYZDWe/zwftm3fTOc8j1wTC21qVbab8Z/Z4ZWhayp1VFl71c6vuyh+uf3n6IJ+/ZAgEXPwQ8RKA9RmDde/9Ks/OChfbJ82Tw5hO+2CZLGRIKKW1aqhlSQbh1ayLDBV5raUHef5v9+/lt+n7FEtkDYKAX0XR15EwEGL2vVbyK9rxt2WWDQHYjsRUu8NQtnmVrNyLNnoI2QZAmgopa6Yct2xjaWDAp2x6HcMsfGlYvkxwlvpCvHu2XSLCZhy7RixeGo4kEKsNFQaNjc1LIu+nuKEQrMYld9O4cIqEOaQwB1d8cRIL0vNLR2uiCR43u6Z8sihQuBVlUVDcgLyuFjpxDt1tYw7kHWv2Zh+5NqtesJa1NofNirs9+QkaYdirvPhA7bxpWLZTOyL5Trp7NaoEABGP/yoEtVkZadepi6Hgo1BNJg83BrNvUszpu1dRYVxWgjDJXxXEmrojiUZkgzIqN/ewuBEmiNVAK/B/weUq9A/gMVF4JENapVMm1ZrhvQTYoWKez25Rw7eUbe/exXWbNhh8TGJUiDOqGyffdBCY9Q++R2sP1gQiut9ty5FAT4IlD/GYIMZj/p0MszbYlOoRfuajinB/fskEgkCMh24RpYflIltJYRRqpep2GuIvfrF+8gyDsn19ZgEfsLMokTW4GlXFtQgB5YHdKn94qeAABAAElEQVQAvbB6WhcRKFO6lNSrXU3uGHaVDMZNBccjL3wsP/8x9+JG+ipPIEBp/Bcm/GTOlT1H5/z2vRxED1vWL1Kkp/vAIdKgueeoS7u2rJe1i9IUEWH8adyC0OCcvUFrN2wqbXHj4Q46sS9eTNKmLNnUTXJ0/16JRk2TRekXSoqQ/c+YTfXFc9A1BTYCJYoXldAqFWEvQmX49X2kR6eWHjvhxagT/eL7abJt134pVrSwtGxaX558YLjUrmEpJ2jR+3Y5fjLcY8fXiX0TATJo2O6Fg5nB5XP/Mgq6zFiy9rP/kFulBETlPDEoard+2QLZgXZ6rDuNQgC1YKFCJoBKSmvzDt2keftuUqhwEU8cPss5VX09S2gC6gN1SAPqcurJ2CLA6HazhrXlsftvlmaN6th+hObjidK81+0SE6uqvZcAE+B/9Bl8iwy86Y5LzjI1JUXm/vGT6X9Jem3ZijC8MLo9r7kRggdXXLKtO/+gc7Z6wUxkEnchMn3GRKbZW40OasUq1SA60U8atmjrzkP65FysR5015TvZD6XSKOCgQxHILQSYDV07+xuPHv5TtHb5a85yOXDouITARvXr0U4eve9mKQzmju147cPv5aOvf7N9S18HOAL8/X9hws9CxojtOIJWd3N//9GURVADISS0pvS69qYc15naHiPjawYIN6O0isryrDslu8e0PQO7pzRsFJlFFO+rWKV6xl3d/verD6H3J5g2OgIbAXVIA/v65rmzK1Agv9QKDZHO7ZvJ02NGSHBQySwxGP30ezL170VZfq4fBBYCFBl66dNf7J4UVXNXLZghp44eMlHoUAgc9L1+hKkjsbtjDj+MQU/d9Tj2zk1rJQJ1p3TMSB0ktbdMuUqmrqd1596mzUwOD+WTu5PO+/aT95gm6T65QF1UnkAgpFI5WTrtU3GmVYsjwBw8csLQcv/dslsiomKkXq1qEEMaIEOv6Wl392Y9b5OTpy8KhtndWD/0ewTadusjw0c/leV5JEBgi8E71oDGom8n2TSt0A+7W//BWe7jrg8O7N4mqxbONKUutE/MploDqBQBat2ld7rIn7uOyXmOHQqTCS8/ckkvUnfOr3P5DgLqkPrOtdCV5AABUq3qwsjTwI+65RqHZoqKjpN2A0YJn3UEPgL9brhV+uPhyCCNd/6fv8hRRKapdUl5+C7opdu0bWdHds/RNhfQ5mjT6iWyYcVCo2bLyDRrUdlSJQgOqqWuZ6DUqJu7dT05OskMO+/bsVm+fP1pOXdOhVwyQKN/ehEBMiLGPXmX3Here8TO5ixaI99AqGj7noNSEMFSMnYeQTa0VVPHRM3e+uRnee/zX72IgB4qtxAojvrlZz/8zugaOLKGZbOngV7LtmNHJQg1nzXqNpL+Q28zQUxH9s/JNmy/sgalJxZWy2kTQM1vtBEqmPKTek1bCQOoLEXJ6fj7569kIcSEdAQ+AuqQBv41DugzrFAuWBrWrSEP3Hm9S/U+T73yuXw7aUZAY6QnJ0bS/fmPf3QailhkLhmRDgOdlGIPbDDONi69r73Z1NY4PaELO7Ap+GpGpo8cNBlE1luS0sXsqbWup0WH7l6v63HhVLLcZcakiabxeZYb6AeKgJcQYGBzxd+fu3y01NRz8vH/psqsBask7OBxo87buW1Tw9gpWybI6Xnb9hslh46edHo/3cG/EOjSb5AMuWOM04veDV0CtnE5fjhM8uUvYPo/dx94g0e1EGwXydZfG1Yskq3oyx1xxiLcdy411SKMFIy+3NWqS/se/V2mF78D5gzLW3QEPgLqkAb+NQ64M2QUu3rVStKqWT15ZsxIqY66H1fHwOGPG1GJpGTvtZ1xda26n+sIMLs4dvxHxoFzdZbF//wmGyAycer4YWQry0o1tHBhTWpl1PN4a5w+fkRWL5qF9ijbIDhxRqLRZkXkCqOIGAwHtUb9xsb4s7ecP40Pnx8jh/bt9Kcl61oDFIFKFcrKsumfSlCpEk6d4Z6wI/LeF7/Kpm175QwU3GvXqArGTg+5Z+Qgp+ax3ZiO6DUjn1Lari0oAfi6EHo/h1SvJQ+9MsHlszuLWvyZCJ4e3rfL0GnLV64GEaKuJnjq8qQu7LgNjqk1c0tRJCqnWwOoFBVk724GUItB1dqR8erYEXL2tAZkHMHK37dRh9Tfr2AeWj9FH9i2pX/P9vL46GHCNjKujt/+WiifQ+GQ9TxxkNqPjU9UlU9XwfTx/SqEVBO2VWFmkQq6N93zKMSK8rm86u0bVsuSmb+bWhoGR+j8dex9lend5vKkLuwYj3oiCk5s/3eVRMBgU7KfDdCLFS9pqL2s62mDmqQmyOj6+njtoVsNPdnX16nryxsIPHzPjfIsvpOODAoUkWWza99hhIZEGtWrIaPvuF56dWntyO6ZbkPV70dfmiDzl64XsoCSETDde+Boptvqm/6NAG0I7RPbkbFfdY+rbpA2Xa90+aRY8jEHAkjb/l2JnpnHDJOGWggsVyHDx5uDgn2rINx3HHWgrDulVgJtb+my5Yx4Xyj6cVMYiX3BMxsMvH6BUg6WrOgIfATUIQ38a+z3Z1g6qITUhwz/7TcPlCFX9cjR+WzcukfGv/et7EY0u3H9GvLyE3fhuab0vfER2bR9b47m1p19DwHK048d96ExeNN//EI2rlpsorUdIK1PFd2cjFPHDsvsqT/IERjdmKhIoQNYHw7vlWhmzpsLb48ta5cjMj3fNO6OgnOahJYylroetpWpKA2atZbWXftAIbGct5dm93jJSQny+iN3GEq03Q31Q0XASwiQgbNuTtZquwmJSfLhV1Nk3tJ1EnbgmHEaWzerL0+PHSk1QyvnaJVU4f1p6hxJSUmVq/p0kvFPjpKtO8NMppTH1RFYCITWaSCPvPqJcdqm//QlnvcbzYJrbrlbQms3yNHJMmC5ct7fchIifXR6K0ILoWu/67yihZBx4RFnTsq6JXONIBN1EWijGHhhppSqvey32rJjT6ytE+yWRXF60hfvyprFszNOpX8HKALqkAbohQ2E0wqpWE6aNrK0bWnRuG6OTikyKlaeGP+prFy3FTU95eTeWwfJjdf2Sp9zB0QnSN9Vg58OSUC8oON5U1pPN54Q27pM/d/HcmDPdkPf7TtkhDRu1SFH58rorWkbs3GNnDkOgQk2FK9RW3oPGoYbivo5mtvVnQ/t3SkroRZ8ArU3NPxUZORgLzuur3K1mmi0PkBqNWjq6iHctt/WdcgwfTBe/sPNiQ5FwBcQoMru5K/GC51M28Geoe9/MVm27Ngnp85ESK3qIdK/Vwd5/P5hUrBgAdtNnX49d8laCBhNkiPHTkub5vXlrRdHS2XQh63jkRfRO/t37Z1txSMQngsXLSYPjfvokrIP0l0Xz/jdZBNr4/f5hrseMmq2OTnfw2G7jY06dnCf6f1cIaSq0UK48rrhUiDN+cvJ/M7uy57UDA5vWbMMdNwTpt9pSkryxQAqFPHLI8C7Z+sG87mz8+v2/omAOqT+ed0CdtX58+dDhDlEurRrJs8g2hxc2rE6A3uAjHt3ovw9d4XZZEDvDvLKU3dnuvkzr30h//vln0w/0zf9DwEatGc/+C7The/avB7Zze9Nf7VqterL4NsfMBnOTDd24s21S+aY3qInjx1C25b8hs7brntfYbPz3Bo0+GsXz5F9OzaZXnJRZ8NBT79gRJBMW5kKlaRZ2y6ITveQIsWKe32ZP33yhqEee/3AekBFwA4Cvbq0kklfjjdbsMTjR2QtWSd6HpTIenVC5Q4wdm64uqedGRz7KOzgMXn2jS9l09a9xsF98sFbpGfnVpnu3GHgPbIf/Ut1BAYCVG4fcmfmQkZk9LAPKO0I+2IzY5rTER8bLTMnfwtbsNmUSJQBc6ZqrbpobTbSiCHldH5X99+5aZ2sWzpHTh87Ynpys70NB1ufMYuqI28goA5p3rjOPn+WxYsVsbRtgYG/e+S1blnvr3/Ok69+/MtEstu0aChvPHevVKlU3u7cPa8fI9t3H7C7jX7o+wgUKFhI7n7qVanXJPMbO+sZLJg+yVCCGLGtD0rrjXc/4paI8YHd241q7LGDYRIfF22ivXUaNTciSMxS5tZIBo2Xwkyk99JRJXXqXGoK6nogjARFRNb2kEJGBzoktJZXlvnKmFugznjKK8fSgygCjiJQtXJ5YTsx/tug01gmuJRp2/L46OHSoknOGDtcQwqUSB976RNZuPxf0/d02OA+MnbUDXaXt3TVJrnlgfGmptTuhvqhzyNAEaMn3vrK7jqjIs7I7xMnyIFd24wuQPcB15uaS7s7Ofjhkpl/mEDgaYj0FYSoErUQOvW5Wlp1usgcc3Aqt27GLO7qhbOg2rvCMJrcOrlO5tMIqEPq05cn8BdXDjL4jerVNG1bsooKO4vC+s275JX3v5MdcCwp4f8Y6FS9uzomMLEPwhH9bn5UYiF0pMN/Eeh05dUydNTDDp1AKqhCk796X3Zv+VeKFi8hzGiSyuSOwVYxM6d8a24ozkAFkbUyvBHpefVQl2Xw3bEu6xw7N64VZnWp3ktRpMR4S0/eosiUMntKEQw2PG/WrkuOhKCsx8v4TLrzm4/dBcdYHdKM2OjfuY8AMzSsCWXblucevs0tjB2e1UeoP500fYGxM906NJf3xo2RokUKO3TCT4z7VL6fMsuhbXUj30SAwnMPvzrBBCodWSEZPXOgV0CFdwYKrx42SmrUa+TIrtluw+wkFeRPHDkA3YF4s6YGzdoia3qLkFKcW+O9p++To3BOdeQdBNQhzTvX2ufOtBBqblirs2PZz25Z29mIaEud6PptUrZ0KblxUG956O6hTs09bdZSef7Nr41s/3///efUvrqxbyBAiXnWRt7z9OtOLejogb1CmtTRA/uMUe4zeBgEFro4NYe9jRf+PVk2rlxsnD/W7VSoUs00D2f/OV8YjEyvQt3pkf17hZF5OtMc+aBmTUeaTc7rNmkpbaHcS/l+dwwqBH/7wTijDuyO+XQORcCdCFQLqSD/zpvotilnzl8lH349xdBumzasJeOeGCXNoJPgzBh+/8vQQtimegfOgOZj27IN2XW3jTZlEs4sjYweBhAT4mIR0GwKuu9YowvgzBxZbRt+8lh62xgKEFEIj+q3fQYPl2pQw/X2UOaMtxHP/eOpQ5r71yBPr6A+anGWTf8sxxi8+PY3QmOfDGXCru2by9sQhCDdyplB0Yh5S9aZG4TYuERZs2G7M7vrtj6AAAV76JBSYbZM+Yoy7L4nhG1fnBlU9VsKOhMzhhQluu7W+6F6WMOZKexuyz5tS2f9YSLSifGMSFdBtLsxItIjjNNnd2cvfUjxp3VL55qsMem0lOy/cOG8OXqJUqWNMFIlKDay4TmdVFfHz5++aZSBXd1f91MEPIkAg6ZvPn+/jLihX44OsxstYV5462v5d8tuoZPL3qTDr+/j1Jxk74x9/kM5ceqsyabGJySa105NohvnOgK1GzYzNooB0EYt218iuufI4sgq+e2bD81vM6m2ZK8MGnmfI7s6tA1bh1E9fvuGVUaxnfa0Qkio+a1v37O/Q3PkdCMGRik+aLU5OZ1P9/cPBNQh9Y/rFLCrZEuXX78Yd5maoaMnTHn8b37+W44cPy3NG9eRFx+9w+n6noOHT8iY5z6Uw8dOQaSiu7yAOTi6XfeA7Np7yNGl6Ha5jADrRkc88DSagXeT/ehf9ud3n5reo73Q3sWVLOQf336COpaVcuH8OanXtJWhALONjLsGpfgprHQECoh0+kiRpfpt94HXo561jbsOk+N5zqHWbdPqxUYV8exJ1J3CUbf2hStYqBDWXcE4/43R77RV515SvEQph4/5Cpqes4eqDkXAVxGoXg0tYGZn3QLG3roTEpPliXGfyBLUfhYsUACKvO2hZeC880CxvQn/myoscXn9mXulXatGRqhv9NPvop401d4S9DMfQqBStRry1DuW79I/v3xjgn5sd8LAqbM9QunQ/oU2MVTQLVuhsnTpf5107DXQrWdLxd+V8/8xbWNSk5NN8LROoxbS74aRUP4NcuuxbCf7+KWHhDoMOvIWAvmLFi36ct46ZT1bX0IgCQ2/2VB8xJC+Ti1rzYYdMvqpd2XStPkSHFTS1Im+9sw9UslGJt+RCX9ALc5jL38C1dH/5E3cKNx208Uf9D7d2wkpvPEJ2vvNESxzcxsKj9Dx7Np/sFkG6aWM5rKxNo3qkbA90qJDd6eW2LBlOxN9JpWV8vPs8ZmAGkuKE7ljMNPINfEmgsqdzEIe2b9btq5bYR6s52SdEM8tNwcpuyHVa6fTi2vUawgn/TyovPkkNSXFrPvsqRPCWqR/ly2QjXBej+FmqWRwWQglXWxbkfEc2H906aw/hUJLOhQBX0UgNfWcsC9pw7rVnVriu5//Kk+98pls33VAWqF9zP8+fEauv8q53yAe8O7H3oSdWyCt0Qrmt69fkWpVKpp1sDd3UlKKrIUt1OISpy5NrmxcEjTdB198N71HNYOcIaE1Zdv6VUZYjwFVZ6ixpfDb2hZ6B6VKl5VD+3aiHGSR+Q0uj7p/0m3dMfi7T4G7Oo2bo4wjHIHTk7Jn2wYTnNy7baMJRtLWunOcRwB4/p+/SmKCRc/AnXPrXL6NgGZIffv65InVUb1w6jevSpMG2at6ng6PlCfHfwY67Q4pWrSw9O3e1lCqXAHqviffkSUrNyKzWle+ef/pTCm+y9dskdvGvqoiR64A7MV9WNc4fPRTmR6RYhCM8tKADx31kEvNxrdvWC1zf/8RNNuDpmk5nd8WaJPi7rF60SxZA4VBto1JSUoyzcKrQ/W2D+i8vNHwtcEs7+qFM4V9T5k5jWbdaVrtdREIYjDrW7YiGp536iEt0LrA2vCc57FqwT+gnn1kgkG+dl66HkXAFoEa1SrL2tlf276V5evps5fJJxN/Ny1iGtSpjmDpzdK3R7sst8/qg41b90AT4TMJPxslI4b2M71OM9v2wWfelyloS6PDdxEg7fXOx8dlqvqeAoX37z4cj2DkHjBxWsvIMc+6dCJ/gBG0Dcq0FOmrWb+JqS+1FxB05SBxMVEyY9JE2b9rq2mZRtGjiiiJad3lSpdYSJmtgUHKaT9+rn2pMwMnwN9ThzTAL7C/nF57UpB+fNvucp974yuZvXC1xMUnSpsWDQx1iXQqZwebmzMreuJkuAxGxHrcE3fZneKXP+bJU69+rlL7dlHKvQ8Zab7/OfvfnbAdW+TPHz6TuOgo6dz3GtN+xZUVz/39J1mHjGtcdKRxbK8dgVZCNZwTJXHkuDT486f9KscOhRlxITrTlVHHSupxkzadHJnC69vwZoVZ5B0b10gkKMh0UFmPxEG10iAjjFQeglPNUJNUVdbA+Q7budXr69QDKgLOIkA9go9fe0Su7pP1vz3alZffmSgbtu6W8mWD5cZrexln1NljcfsPvpwsE0HTrVAuWF4F86djmyZ2pxk66nlDC7a7kX6YKwjkB1V7yB1jpGPvq+we/6+fv5L1qNsPLlfJBE6r1nS+tRDVyk2bGNBdixQrJo1bd5Lr0WPbE2PxjKlpbWPQm/dcqqEc14QWQv+htxmNAVeP+dbjo0ARPujq7rqfHyOgDqkfX7xAWnpw6ZLyy+cvZ1pL+v3kWTLx1xmy//BxaVyvxv/Zuwr4KJLmW7gmIQR3d3d3h8M53N3d3d3d3Tn0cLfDnWDBIXgguHNfvc4tXxJ2Znp2F4h0/X/8s5np7pmpvS81Vf3qPerQrLroxbHl+VG5Rs+pc+RI3CvagIrzDquMpSlQR1SqZcaqMb/OA4C9tug1QrABGl0VvZALuRJ9kzXdEqdMSw069iPApMwaCJNWzR5HHu5nKWSIkAxnykTVGrfnF4BIZpcyHA9yIQiZA3r8jGGxYcOFEyRN6NcsUr46hbHh/g0v6oABgMBD1P30oT309NF9oXcKrVeLRXJyFoLnFpkZy3H1U3kgoHogQbyYdHL73B9u7xVLhHUbNJWApvnG/93ny5GBxg5oQ06RI/4w1ujAR25hadxpBB0/c5lycZEWyJ2wYcMYTWMOhPGCkO/5i1eGY9WAX+sBEO0NmLZC6qJoe0BfKORXUHwsWr6G1Dz/g1AUBKIHBc3oseJxEbY85S3+h/9hDvkd1/KRjblNKEriecGFAGkzFIvNGBLqCX3bfWd4NzNXjQ38HlA9pIH/OwwST4BemAuXb1K9P0t9fx5Q27dk0gb0z0SKGJ4a1ChD00d2oWSJ430fY+ZDg3ZDac2mvZSWocHLZw5k/dNEUtPrshD5M5aUCRs2tGDxVXIwUm776YNASe/ECSl2LGNzL46RFAl6IUG6A0KeSwzBPXVoN0VjhttoDCk1Y6HDhKGMDD8F7T4kYtBLc5r7d7D7ag/jrLV7AOw1ffa8ojc2NDN+vvZ+To8974prnuVr3rp2SSSoTi6u1qb/tmPoewUzceY8hSlfiQpCc/Xbv9/ETum3b9+YbOolffn86bfdn7qw8oBZD3z69IVixohK6VP/HxExYtJi6jVsJp11Z8ZUjicTh7Sn5sygG04iifR/fbSPNOo4nO7cf8xcBqVFUhuK/2YZGeIkiqzxYkUntL+grUXZ7/dACEaFOP/3d/nG5fMi9hjdFdoysucvRtcvnaOzR/aL3tAMOfKLv5tGc32fjx47HuVibgL8HQb50bmjB0R/adQYsZgAyTyqzPfa/j/jWuhlTc/IndeMHHrt/ULAjwEfvnDiEH1491YUgP3Ps/b71lULRGyzdk4dC/oeUAlp0P+OA80Tvnv/QZBHRGGSIrAHTluwjl69fkuF82ahhZP6UNH8WW16lqOn3Kle2yHkwbT5VcoVEklt+HByO2OAQl25fof6d2lEU4d3otdv3xF6e1RSatNX4bBJEAfvyMLi2Th4Q0YFSakba2PKSLwk5x3NeJzMXr1wiiFSO0UQtYXVFtqcOQqVFGyDCPrQ1AQhEfqFcH+ONmir5ilWTvSwIjFFNRkMi+ePH6JLZ4/zbmkYUZl29HUdsR6IL5BY4/4z8M/DOzep/w05wrFqjV/mgS9fvjLr+l1qWqc8rfl7H7XjXcnNLDUGeC76RCEPEydmNJvuZ8CYeTRqylKxqzp2YBuqVUlOEmbbnmPUqf9kisdSMquY8KhutVK0fe8xoaNt042oSQ7xAJLRgqUrU4veI1nDOZpg073Mf6PBdWBkKHgirmG38dLpY4KsKDr3adqSSEJiJgcni88eP6D73KOKJPfWNXcCtDaCgxE9QL2ApA87sSC9e/PqhWDnvcZx9jQXfxGr0N4SMZKTpgsAN1aoGU33BPkTCrIb5L/iwPWA6JmB9ttz79eUiWVcenWoTzkyp7b5IYZzBXvZ2h0UxdmJevNaoN2XsU+sZ1qVk1HPh09pWK/mVLLw/+eNnLKEJs1eQ5//64+TWU+NcZwHwETYadj/tWv/5R23GcN60JOH96j0nw1FAJa5GsgfFkwYTDe5ep2AiYPqtettF5U9tOFAfgRIbwK+x3K1mgodU5l7sWXMw3u3aNvqRYKZ98WzJwRNOiTkqTJmo6IVajr8hcOWe9SaM6RdXfJ68lDrtDquPBAgPRCadyxdnCMJpAwguWj5GNO/jc336sUQ2xZdR3GR04NyZUtLc8b2oPDh5YqlKzfspiHjFxLYdlfNHuRnF634nx3pHO/aKvv1HgASp3DZavz3v8n3i6NYiWTLlbWxW3KSKtsqAjjsxiWzBONsjgIlqGzNxt/XNPvh7o0rtHHpbCEzhuQxTeZcVLVxO7PLmBp/fP92Jq/bTI+Z/O4975Q6M9MwpG8KMBs+2k58GwrLiycP+y4p5vuc+hw8PKB2SIPH9xxonhISK+F497JX+7o0sm8rihs7uk33Dv23um0G0987DguI1VLuT02fWm7XCn04VRr3ZpiuN40b1JZ3Zv1qQqJHKEyYUHTi7BVC1VzZr/MAdjfbDZro54KAJaHyDGmW04d3Uwh+IUiU3LiIESpUaJYyKUKQH7l6/hSdOryHIVYcMOOZk3ew3EzaLLkoHZNIIFGEtujZY/uF3Ax6TNH76WgDTDczM/3mYlr+L0wq8e7NK3rieU8wIJ49sk/8jMr6dOjpCUj25ME93iHdKNggA9J9qXtRHjDyAHpEw3DBNHum1KK/s3qFokZTNM9v2n5ISJc9eOwlILrjB7Wj0KGNIbpYcPaSjTSSd1QBH0Yy6l8aqh7vlP5z8iLdY21tZb/OA9jdLFmlLhdGG/i5KAqFsRMmETuFZ/hvc/rs+TgmhPczxtovgMNit/QGQ3gBfwX0N03mnKL4aG283jHEgRwFS1Jklyj04PYNunLuBOtL72c226+UMJlxvNRbW+sc2moQn5KyVBpQPa8Y0vvgzk26ePoInT92UJADghEYO8orZo4lL97JVRZ8PaAS0uD73QfYJ3fjPphR/Vrb1IeDh9p14IQghrhz/xFVKlOQZo3pRhHCyyUEd+49opotBxDgw1OHd9ZkN8yZJS0lTRRXMBuCiELZz/UAXrgQxJv1GKZ5oaz5itINZqeFHttH7hOV1QtNkQ56cEn+6wUFCY8nJ5Z+q7eaF/V3ImJkJ/ECET12fPLkoI9eIPTvvHrxTFD6+xvukF/xEoRdUfRqOkVxFb2sgPPi+oAQu585SlAyxctBQLBtLMMD1mNlygOByQNIFtOnSkoDuzXmgmk9oX9t6/0DZjt13lqK4hKZd1hbU52qJaWXGjNtOU2bv5aZ5lPT0mn9NOfVqFiU3K/eouu3PTXHqBOO8wBI7ao36yT+Dltb1Y2Lg0DinPlnH3MO7KGUGbIS4oWRYTc1GxdcAYG9ev6k0AB1cY1GMeMmMJpq9Xx8Zu8FyRESxId3b9FF3r29dOY4ubrFMM2nYPUCVg5C/gvxGcn1uzevBSwXXAiIj6e4iHxo+wYBUVaa1FacF4wOqYQ0GH3ZgeVR0Td67cZdkUyavWcQTIAyPzwnoIO6NaFWDStJL3Hh8g1q2GGY6G2bPbY7ZUqXXHcuoMUgXIrAEKv3Hz7qjlUnbfcAdjLDR4jE/ZGJKEOOfLoLZWESnTsMTTrHld+Xz70odSY5FmUQG4FM4pbHJUF4hOoxElq9fhe9G8HLAvolv7HI9wMO+mBPRHKI5PFnJoaAM4PMAizCr/iFA31IgEtdOXdS+OTJg7sUP3EKChveuDqv93z2nFu7YIrqE7LHgWruL/dAwnixqGGNsqK4mSJJfJuvjyJpPUbu7D9ylnJkSU0rZw0yRdLXd+RsWrxmG+XLmZHmT+xleB8795+gB4+fCSTPt2//Go5XA2zzQCQnFyY9DEvFKtWmSJGdNRdBYoa+TvRynmZETkJG8shqhabKmJ01PxPQNUbzYGfzObc8pGFUjq2GuejrR3zwvH2dLjAXAeTGEiZPw3Evsq3L6s4DvwJky/KXqsi7vGGZ3O4VPX/6SBAhqWRU13XB4qRKSIPF1xz4HvK59yvKmDa5IDmSuXuw4NZuNVBQ32fg3lNUjo0SSt/rHj5+nomUxhHIjhYwgRL6cvTsKzftV23Sl7Cbu2PVBDp47Bw9euKlN0Wds8EDCPSV6rciBPIL3GOCgIakS89ArABYEAIs4KGyup2hQocRVVywAl6/dJZfGPYKWJUtenCW+0ueNjNXhYsLEfGH924K4iPAg2MwFCsKV6R/lkXlXiVUowHpPbxjo4D0ggHxzvUr4mUGlWmQbbhGi/mzbsHquo/u3aZ/dm1WcF2r3lEHA5oH3FxdqFiBbLR4aj8qXkCuuKX1DEvWbKfO/aeIVhCQD00c0kHAf7XG+z/eoe9EWr/1IBVjcr+ZjPoxsoWrttLSv3ZQ9YrFqFblEnT89CVVODVymg3nEyRNSZ2Z0wA7jWc4yRTstgxB1TKgWIBoOceQVSSlKLRi91TGAP0VSKDL54TeMwiD0MYSIaJtCSQKrlgPBdQHd2+yvJg739d+ETeRsPqHgsvco+wYQHVRtEWrzccPH1RMkHVcEB6nEtIg/OUG5kd7zzIwR0+7UzOm0DeydVv2cy/OWHrw6BlVLFNA9PZEjCC/A7Rl9xHqMnAqQ7Ai05Kp/Ql6c0ZWtXEfevHyNY/vR9HcolBdhlzd5uq3x417Ql/RaL46b+wByIa07DNKaJmBBfeOx2XRIxo3YVLDAA6q/Me8G3jxxD9Ciw0yLbIGKBVeEgTcll8aAGvKkDO/7PQfxoFsKFPugtzXmob7S28LEqILfF9IDlEtR5L9swwwsuP7tvnZkUTCjUQdJBLuJ4/QZ9ZnxUvVrzAB1+U+KGXKAwHZAyhMZsmQksYPbMsom8rSLR9az9Sy2xihpY0CJrgR6v9ZWmuo1ePNu46mnfuOU5liuWnysE5Wx/g+CE3U3sNnUU7WMkVvKvgTyhbPTQePniOvFy99D1WfbfRAyJA+MmLNew4XJEWIUUf3buWi4z9CBkVv2Yi8i4q2kPPcFwr4LoqTstwF2FnMzgRHr18+p+ushY3d1nAsD2YP8gaJbu6iZVlH95vYMYWUGVBG0O5OlCKN3qPYfQ6suvCZUi6w25WBfgGVkAb6rzDoPsDrN+85yXzqh+HW/9O26z2BZizaQJEjRRDSLG0bV/U/RPf35et2Uv9Rcyg20/WvYG1SsPwaWdPOI1kz9QbrxLWlDGmSfh9ell8W4seNQafOX6W3795/P64+mPMAWAqxy9m63xg/8CckddA2A2EPGPoiGMCK0mfLK+BASLxuMxQXcF5Zi8Z6cFl5hxHzAN9F9RtJG1gCbTXsRuYsXErAjx/dv80EFRdYsuUgy7c8ERVzW9fVm7dl5XzB/GttzOdPn8jb6ylXqE+JvlvsKuOlBknszzIF1/1ZnlXrOsID2BECJLd9sz9pzIA2Qk7FnnUvXmFtbYboHmGCISSHK2cNNETf+L9efZYsQyJZqWxBoU3q/7z/3+8/eEKIUfFixxB625bzriyn1qhmWbp28x7duOXJyYeC8Fp8Y/YnCOUqN2zth7wIMioxObE7smezkDhBDNMzaExjzEUuCiKmhY8YkcygcVJnysFIm/hihxHtIIDegmfBHkObipCJefJASLZcYakaMP26RHUjaKT+DFs8aRi9e/v6Zyyt1gxkHlAJaSD7woLT7aJi9pBhsBkZgpsgrt9dS/Ti1GbyIfTiZGZo7+KpfSlrxlSm3DNj4XrWfltGSRLGoTVzhpCzk/GL+KCx8wk7qm0bVaWqf/yY4KRNmZj+LF9EJKWQjFFmzgNOnPBVadiWylRvaHUiYEQnD+3inc/D34W/rQ787yCYb9FHiaQUMFzAWGUN/Z4WEoZbVy8KMglIzKA/0x5LyMQWIJXw9nrCu7j3BJkS4MVgGjSCI5u9LpgLjXTd8ExvXr30EVA/dkDcT2TnKA4nuIAPsYOAqrsy5YGA5oGY0aNS+ZL5RF9nVt4dtdemMvFQ3xGzyPvVG6pTpQRNYR3rsGHDmFq2erN+dPLcFarN84f0aCY1t1rTvozS+ZeWzRhA1pBCeEbolp46h8LpB6k11aD/ewB60G36j+U4kO7/B//7BC6CECFC0qkDu+jN65eCuOiHQb4OAD0DyOwlJp4D+R3MTHwREN78RYV02WUunELrFPEFCbOtBhIlJMpJ+Pkeed6h+9xfCtmam1xABSmTXo+s2WuePLiLi6F7hG6p2blqfNDzgEpIg953GqSeCGy3qC77hu6iN6ZTv8n05Jk3VSyVn+ZN6CV2SM08+IjJS2jagnWUNmUiWjd/mNSLwrK1O2nK/L+odJFc1Kdjfc3L4SVg7+Ez5Pn0lZD7+PRRER5pOuu/E6F4VzRq9FgC+lSpXktB/mNtDqjywYgLfTP0nsgkmOjX+fjxvUhKLzObIHZaQ4UObW15q8cwH2QSIHy4yNCiezeuUcZcBezqr8FODHpbQeEP+CykYkA8hH9uMWOzL/wWYKzemMHBfZvXiB1YM1AoaKiCZRg7woA7f3j/VpBcOKKXaP2iaYL51+C21WnlgV/qAadIESl39nSCsAiJn73/rX/lAk8jJsdbzvEC7Rwj+7SkhrwzacZAkleN20LAktuk9h+sx11PanqN5v3pLku9TBraQez0ak1KFD82LV+3i7y57USZnAciO7swEU94RpEkEZBZrVmAuD55eF/06oNF12jXE6R9kGPBbiQQM9DrTJEus9byPxxHUpu9IEN4vV/4oG64qEjMqy4jffbDYr4OgLchZ6FSzATsTI85MQVaCIXTR7wTmzpzDj+6t76mmfo4b1x/UQw1NUkNDrIeUAlpkP1qg86DvXrzjq543KEKnHw2YyjSgpVbxG5m304NqANDq8wamHgXM8FElvQpxM6ozAvIMSaE6DZoKmVMk5zAwKtnG7cfojnLNlPh8jWpVqvu4iUcTHJmEgO99YPaOWit1WjeRQiJH92zRVR7s7A+qJa5RovBfZfh6eTB3fSQoa8ZJGBKIBf6l3cN3Fn/zP3UUQH5NdO7iXuEZin6Pq9dPCUCc0zWK7U3ccRLDij9kYSCBv/ezWuiWo7gj0o52IVttSVTGArFFPu2GHYxXz5/Rh7cowTijfs3PURfLV5ObLUtK+YpaJatzlPzHO6BUKFCUrpUiQlxpF+nhkxQ52L3NVA8bdBuKO9qXqVcWdOKNpDUyROZWveZlzf/PexPN+88oDaNqlCH5tWl5rfpOY6OnnKnbq1riV5TvUlNOo0QO696Y9Q5Hw+ghQRFyXYDJ4q4c/rQHvF3X6/nE8VG9HdCcxStHkbkcXgHQVLp4X6GyfsOizaONFlymvoKUNxEqwmQQJdOH+WdTQ8Cd4LM+43ehXD/kBRDPHjKiTYKs9jN/cTSatZ2ifXW8n0Ou64nD+ykr1+++D6sPgdjD6iENBh/+YHp0R89eU7zl2+hs+4elJkTyUWT+zBtvvlm+7a9xhNIkHJnS0fLGdIkY0+evaCG/JLhFtWFNiwcoTvlC7PvgsAinGtsrnC3Z6FzH+ZWVE3v3/JQ1UBf3gODboHSlahxl0EE6BEgsti5PHVot6jKxkuczNdovx8BbfXmAAlx7c+fPkppjgJqFTp0WJHwgbE3OVehzcCPQCaBHVlQ1YNgCdcGHBbr2GsgUQLjIIL804eePtVohiVDKBy9QmZN7I4yYQbguPYYiih4Xs87NwQrJBiC0SuF78uMYUf7FBcQ/mXSDGXKA7/bA/G5BaRu1VI0d3xPSpU8oUNuZ/ikxTRs4mJ68/Yds9oWp2kjOlM4JkcyY7fuPqS63HP68LEXdW5Zk5rXMyb1w/qjpy2jNZv2UpVyhaijQQILpA9QRp8+Kei80XeDpLN26+5Usko9EctBTAdY7BWW8QIJkF6yh6IqNEfP8Y5lRibZA/GQkSG+oLUBhVNIdJntCQVbbpa8DOHlpPHa+dMCagtyQBRx7TXwNiDRBqIHxVMUZi+dPibgwWbjAe5l1oheTMz0wt7bUvODkAdUQhqEvsyg/CgfOXiGYd3PCiXzsyxLb3KKbPzH3b8/UBXevvcYFcqbRSS0/s9r/V65UW9Bl7+I5WCiMDGEnrXgZPTijYfUqPMgP6Q76C1BlRG9HYC/GPX16V0jsJ/DziQIh1r1HcWQVb86akg0sSuHnhqQKyCh1zIkancAI+LEy4UlTGInSKw19Ptx6L5BYw1EDehDTZhMXgfOsgi0TaNzQgaK/Mtnj4kXiLRZcgu4sWWMrT9Tps8qdmKfPfakZ5yY4sUCiS8SQzNMuEumDBeJpK33YW3exw/vRYLsztX38wzdQm8u+pWwg2BkS6eOFLqoRuPUeeWBn+kB1yhOVCRvVlo8pY9ovXDEtaCbXb/9UFq3eT/FZFK84b1bCJit2bXPX7pBiFEvXr6i3h3qE6RhZGwtF1jHTlvOO7LpmIG3o+6UN2/fU9ve45VEma6XiFncYzGPQSOq1bLbD730SVNnFFJaQLPosbcjWYUky8mDO0ULRG7Wh5YxJLICKYNdzlvXRYuJzDzLmLDhwgkI8OFdm8Tfa/SWQuMThEX2GhAySJpjxIknElPPO9cJbTA3WIYmHutbA/EjY0jSgbxRu6My3go+Y1RCGny+60D9pCAe6tW+HleNa9j0HHVaDWICpDNUolAOIQsju0jNFv3pOjMSog/IiDRp047DNHvJ35SjSDkhOG3tGkgq0Pv4nlnlIju7cr/IG2vDguQxaKU5uUQRSXnrfmM1EzgEcTAVIuEzYsbNzMy5gDidP35YwIeQmBoZenogRo7qLlh7UUGW1YGzrI2KcJa8hQWE98al8yIpBnW/LZViy5qWn2EZjoznis//rYj+0vu3BNEQ2H5R6Ta61z2bVvH9HP5pu5F4iXj1wouus3zLmX/2Ch/guUGEZM0AVz+wdZ3Y/bV2Xh1THvjZHgjHZEKZ06WgMf3bULum1ayS/dhyDyhwtmBJFiSTFohu2lRJTC91iHWw2/QcTx9Yj3Fw96Zip1NmkbMXPajzgClCr3vV7MGGU5DwHj9z2XBccB0QlRPREPx/KIxWZC4DawZ2d/TaA7aKv8Vo3dAyJHBuzI1wgpPS6wzHzZpPjlQP+tGQG0PhFO0baBcxa4e2bxAtEkhG7964Koq3IPkDEsleixk3oUD0IBY8fXRf8CogDuOeU2XMTuCE0LPZI3uLgqbeGHUu+HlAJaTB7zsPVE8cOnQoypE5De+K9qE8DLO1xao27k3HOAiXK56Xpo3sIr1EO64kg26/ZYNKQlhcb+LXr1+pRfcxFMYpGtXmvlEt+/r1C+1Yu0ToT7YdMF7s1uGF3dZeP63rBKTj2BVOnz0vNe85gskQctKRXZuZHCKcYOyzdp+ANn3lHkbAnSJxxTUeS5HoGQIgEiMQ8WRmwiIQHxlZ7PiJud8mDl3iHU4w8CLRQ5A1Y4JMgvs/37z0FtqioO9/8eyxICoys47WWFTpcxUpLYixnj16ICDfgIrd5kQdO71asjdLp46gt29eaS3ruOO8a4v/bvESgl1cVOLhEyT4vm0dkxmhuKBMeeB3eCBZ4niiF3PC4PZSGtOy99hz6AyaOHu1QM/UqFiMZozuSuHDh5Od/n0cWNu7DZomUBDQKC1TNPf3c3ofXni/JkjChOaX/yXT+jGxnz5qSEF1rXsTO5koqJWsWo/qtu0lCOYe3btDuYuV1STuwW4jCO7QwoBWCz3oLtb+xu8H6CcF1BWxUMaw+4pk7zInpUhmoT0qa3PH9OMk9Mr34XjvQP+nOyOPQB7oKAkXtKtkz1+cEJ/QXnL72iUBUUYSjBYZa3Z833YxBvekTHnAtwdUQurbG+pzgPIA4FXlS+SjRVP6kouEJIv/mwdTYaUGvVgz9KbQcMMLiayNn7mSlv21k0oxo+7Aro0Np6Fv9PzV+1SvfR+xA6g1YdPSWQS9xyZdB4mXdyQW+UtWpGS8K/j8mU9i+uVL4O/tAYwTGmnoEW3SbQhl4B4aJCvQ8bzGwfUWQ1ERyLUMZAk+rLMnBPxID7oLPbeY8RIwBGgvXWWWWmh9yhheFOIwzPcSQ45AsIDeSCNGRGvrgnEQyS0q2dj9BuQ4RfosTEik/4JobS1rxxKlSCt8hWTX68kjAedCEv3k4T2R/Pp+Gdq0bLboceK3W2tL/bRj6H19zveGl6dznJx6P39K8RnCBQmBjUtmKjKjn+Z5tbCWB6ApXbZYHkEslJMJhhxlDx4/o3qcCCKRjB3DjYb2ai7d6+n/Hlas30X9R88j7OAiPhXKK9+P/ifLu4DfYPzgdpQmhX67AnSxwZ/wiGXUlPl4AH+fwe1Qq1U3Kl+nuWg/wBkkm/u2/CVYa0FmpGVAO/2z629RKNSD7mI+kjMko0hisauYNE0GrWX9HEfyCnmwy1yIRJzKnKeQIUP8znVLGSa8i6y9R6B4ihj1khEuKOQ6whDXsaMLXz59cF88541L5wR5YCQnZy70JvBzmQXjB6neUT8eUb9YPKASUosn1M8A5YHECWJTj7Z1mDGwtk339ZSZCqs26cMC4PepRqViAnIruxCgtyMmL6ZM6ZLT/Im9DKdh/MwlmyhTnqJcxSyuOR7kO+sXTRd07Nm4qujbwNYK6vdCZauIYAJ21c+fP9pNSuP7Gr/iMxJOGFhw+01dJnaC/V83Fu9EHt65iavPoUQQ83/e8jsSsaN7t4hEzwi6C+gU6PPPHN0nCIcAeZUxzEMfJPpgsFsKuBaua9YQdDNxUAY0CqQUgMyiVzVOwqRml7I6PmTIkILgImWGrCLoP2NpFkGsxDIBeMFBYQM9nn/Nn0zvbWTWtXphkweBFHjt/ZwLDqzbyt/F5uVzORl989PgwyZvTw0PBh6IFDEC5cqSlqaP6kL1q5fmvwshHfbUqzbuoQ59JzLr+20B0V0+YyBlSGPb/8ZnLtpAo/lvJPSvgdzJaYKkDzuj59yvU6cWNYT0mdEDKqiuj4dAmufiGo0iOTlRP9YgBwLFP1M6Eqz73B96g1sScB5xxZoB+QPmWRQHwRHhP/HyPwfJJVh0LzJhUVRG5MRiIjsZA8wWxHJo2UDhFORCWgzx6M3ctmaRLuIKxUNP1hbF86XkwqkM2ZLMfYJJOGfh0lzYjSikwx7cvck7yCcF629cRjmhXQfoMDyDIreT8WjwG6MS0uD3nQfoJ0bvQY7MqYW2aP6ctjXhgy6/dsuB5PnwKTWoUYb6d2kk/czQfWvfZwKhur6W9UmNXma+fv1GLRmqGyKCKzXs2F/3OhsWzRAyJY26DNSElSJIAH7aqPMAKlG5tkhIP3JfEYJIQIS4IFFC32bS1BmoAleZ/2zWSfRzoq9GS7rFmfs3PS6eFtDTPMX/0PQZqqvvGHoKAh0nhu4iqOkZEkvAnwHdxW4iArmMRYkanZIxUYVgT+Qd1g8f3jEZhfxOheUagAoDVoX+SgR8rGcGomVZR+8nXoIgD4B+VRAfQRMOhBKooGP3HRXwgGIg7kKCql4+Aso3ErTvA3+L0qRIJDQ7B3ZrTNHdrPc02+oF7DDO5sLjp89fqHqFoqxb2p0iRDAP0cX1R01dStNZBzu6mwvNHtedMqSWT2oB79229yhVLlOQurcxLtguX8esuiuDL6su/i5DtgvF4jptejFreXY6wXIjiBda/fiIZwe2ruWE00tobmr9N4NdRiSBHrzrmFcnllnmZ8pVSPSeIinDTqylgGs5r/UTO7WfWc8cCR4SYMQnsNT7NrDygjwOSbKRfWP2da8nD0WPKpjmZQgBjda0nAdRIFBfiMEvnj4WDO24ZzCt32EYMWK6MuUBax5QCak1r6hjv8UDYLD9o3geWjK1nyGbrdYNguShMRM3eL14SS3qV6CuJnZYwUBYq+UAfon+JhJiJKVG1rL7aDpz+S7VbNFVl1odPRWALibgP9Zgj9WyjYtn0rdvX5nhryGFZwgpmGTzlSgv/rnFis1see8Z7uLNiXIo0Zeitc7POo6XvpBcMUaFFzu6fzbpKPRDkXwCAgtDr8qNK+cpf6mKmr01YOk7vPNvTlb+ZTiTdm8welQQvK9eOGUI3cW1kYQCOotkENVwwIhkDIkegj56NNEXBMgpdN1ssTR8D+j/hGYpoEuobCfm+9Ai/bHlGnESJhEvQEj6EPgf3rulGAttcaSaEyQ8EDd2dKpVqTgtZDmwtCn14atmH/jajXsCorv70EmKEzOaIB1qxbwCtlqfEbNYdmUbxYsTnRZM7EPJk/j83ZRZb8bC9TR3+d+UJ3t6mi7Bh/D23QdqE8ygupDnwq5mEm77KF65DtVo1pkKlatKKTNkE20ZUdyi02mWFgPKBBBYa4Yk9h6jXW5wa0lOjnN6REBA/Bzdu1UUITPmzG9tue/H0MqCeAd+BGiFZs1XVJPc7/uk/z6A7I+4E+Max0IkeAmSpqIoXAyGAR0zqX8HkQD+N1zqB3ZeUQR/wjEbki6ONDDpIx6DmA/9pYipwVldwJG+DaprqYQ0qH6zgey5EsaPRd05eezRrq7Nd37gyFkRfNEv056ZFCEqbsaqNO5DDx49pSE9mwqdUqO5fwOqu3gjpc6ShyuCFXSHr10wReyWYedTC26D5GzzinmULF2mH5IhBFn05CFQAvaTMFkaqsAsgFgLiVdo/gdDMot17DX0JeJaoHEHFAeQUMjWJE2dnoPfO3LlHTrosyGR829ITA/t2MAafBE0pUqwq3oNu6ScPOYtXt7/En5+j5soKR3ft00keEbQXUxEcgzGP8BwcS8xuDouYxEjO4mgfIUTUuzgQg9UloDC//rQr8uUqyDdZejXneuXRVINiDKq8o40VOgz5S4odtXxUqJMeSC4eSBWjKi0fcU4+qNkPoc/+pylm6jHkOl0/bangAEvmz6A2XqT23yd9n0m0uqNeylZoniCiCheHHl9yJ37T9CQ8QsocYI49NfcoVL34APVvSQ1NrANQnKHoq2La1TBV5Ca/xaWrFZfaH1jFw4kRZAoQez0bw+4gIe/y/k4bvvuwfc9LjEnjge3rfdB2zBMVstAiIekC/EGO7FG0F0UJgEbPntsv9jxzFlIjvMA10cyGyZMOFE0RaEWRHyAC4/q0oSTvodat6h7HK1EKGiitzRxyrQ/7LzqTjY4iV1c7EzDj9iVBbmTMuUBLQ+ohFTLM+r4L/EAILHZMqWiueN6UqE85mGSlptEH2e3wdO4kf8LdWtThxrVLGs5JfWzQbuhdPLcFWpWp7yA+RpNwh9XaI5+C+NEzXoM0x3+jiVe/l42R7DK6gWfo3u2iABVnWGvoIu3Zsf2bhOQnA6DJ4tkKx0Hylysb1agdGUqWqEGs9y5i34TEPQIaCcHPsCC8C8SB8LIDINFAAIVPSrF+IeABtZZJJ3oa3n/7q2oxPZnbbvilWqL3VkkeTgPcoably+IXVAtiBLkXdyZvOHhvduk97zRYsUVjLtfmFFXj+QBEF9Af1BRdoriagjdhd9AKgQoFV4S0Hcpq4+GfhokkkiW8e8BM8hmylXA2ldheAzFAuyGe3s9ZSZa9NOcFlV0rO9IO899pBe4Yv41CJBhOdIvaq3g44EkCeNS+tTm5Vb0PNS08whavHq7eJGuWq4wzRnfgyJFNGbw1lqzWZdRtGn7IUrH97li5kCKZgJSfJ25EFr3GEcRwoelxZP7ir5TretYji9ft4uhulvoE2t4BzRDkRMIFBQbEYOcOD4hUXPif4hdaE+JHjuuaAdxY34FxAq0bAAx4/3siUgysQPaffQcEfsQA7HDhwIkklDEUvSCahH3oEh5kGVR0OcPiRdrhr/fdxnlcotjarYCSGy14dm49mlutbnOhHZacdH3NVCw/PTxPV1guTLwDshyHmANFDUjchwHksed+1H3sszXC/aJPYYiNtbwQRaF0Swk23oNtCHZe4+2XlvNCzweUAlp4PmugtydujhHprIM0V02rT9FjWI9AZN56CVrttOgsfOZJCcE9evUkEDBb8ZA34+EtnTRXDSMGRNlrEW30XTK/TZVadTWkEIdRDOAxDTgHlM95tWN3AOIIFikfHXNW9i1fpkgIdCC/YJt9tzR/dRp+HSh4YlAB2gtAjZYbfMy/Pcfll3BT+xw5i5aViSNgA5lyJGPhb7zc8/mAbGrCIICa4aK8lmmsMdYLekRyIEggQT7HqrY1gwvIoDiiko134+egcn2/IlDQo8TSS52hfUM9wVqe8iRoO8GVVotcgr/66Cino314sCWC3gUXhi0+mH9z7X2O0go8AJmITxyZ7/ESZBEvIhZG2/22PxxAxVroVmnqfFBxgPo6bzicYeacjHREXbq3FWq324IHWDJL0CBB3VrQm0am0Pb+L+Pem0G0/a9x4WW9WrWC3WKLM/A/ZETypotBtCr129oNOuoZkybzP/yP/z+7j1DdXuOC7CsurG58Nms+zARcxB78DcdsQicAmCHRe99z3HzRcxC7EIMQyxDEou/xUd2/001WnYVetI/PDwfQKxAL3+OQiWtnRYFX4zBVtPAawAAQABJREFUzqZWLMXExExwd2j7esFNYARpxU4p+iTBom8E3cXaydJkIsjLQGv0JVpEJDkPMBdSaCC1g58Au3WUAVKLBByERDLPIHNd9OuC9VcVTGW8FbzHOI5+Lnj7UT29SQ8kiBuTeneoR9NGdDY50+/wqfPW0rCJiyhsmNA0vFcLaUFxyyqAZK3etFfs0sr05GDe3zv/oX2Hz4idN/R46tmbV96cRJ3lqmbq7/0e1sZ7P39Gj5mgJo3BeujDQDKjZdCERL+LpbdEa5werBcJpF6vB6rUmI9qqpbl4ZcLQFT3bV6jNUQcB6wKLw5bVs3XHYeTf9RqKtgDF0/W35G2LITqeKGyVQWUafaoPpbDUj/hwzb9x1FS3hHGc84Y1l1qntYgJOZt+o2lJEyW8eDODZo/fqBgHNQaL3t8xYwx4mVJdrwapzwQFD1w5/4j6sBwWHtt7IwV1KjjMAK5XW7Wvd6wcCSVtxMKDHmWXQdOUu7s6Wj9guG8y6m902bt/sFrcJefr1WDylQ4bxZrQ344Bhky7KoGVNMqUuJ+EVvwf1qGdg/wGDy8e1trCMVhxM8rZvvWM8TaZ9yWgdirZbgWYLIoTiKW6xneBRBzsHOJHk8Zq9O2p0AeYXd1P0vNmLH3jLwC2aGjDbEfPa4T+rQRfbT2rr+dWX/BoaFMecDIAyohNfKQOu9QD4AUJ1vGVIRenAbVy9i1NhLRiXNWCUHwsQPbih1OMwvuPXxaCJvH5z6exax1KmPfvv1LY6cvp3DObkJE22gOiIxQGaxYt4XuUDD6oScGPS1ahqrl+zdvKIOOsDYgpnrQIp+1Odwz5FjLAJ3S60fELq4Lw2ih+allgL5it/Y6k/roGWBXgGJdYCZdIwMrYZosOZko6LyoRBuNx/lC5apRBhYYB5R50aQhMlP8jGnZZ7SgxkdRYfKAjqJ/1s8AE78AeoykFFDqL58/0e4NK2jO6L42v1TcZyZfVNf1igsmbk8NVR4ItB7A/wZ2HTzJmtM3bHoGaFbXaT2IJs9ZQx8/fhYoGySPMaP/2CMvewFwGZSv150OHTtPBbkdZc2cIZr9ilprNmeY74mzl6lcibxM0ldRa5if49A2PXz8vJ9jAe2XyE7aDMgiNmnno+JREIMQD7UsHcfId7xzCLZzLUOs/frti2DT1RqD4xXqthQMt4jlRla3bS/RVrJ19QKjod/PN+48UCBo9mxcqVvk/T6BP0wf2o3JiC78tJ5MMKODlG8eo28Qp2y1RZOGkhcz3ytTHpDxgEpIZbykxjjEAy6st1axdH7asmwMpUga3641uw+eTnOX/U1uri40ZXhH0/2nt+89EmQVYVmQfPKwjhQxglxvECRebt5/SiW4t9LIsPN3nZOnBNzz4cp9MHqG3hNATLV6RzH3LENxAUVNzEmclr3gP/4gIzIyPSkO9Nd85P4WPQM86blB3wpgspBhuXXVXW8pKlmlrhDq3rRstu44nASbcVRmsEWQlK0O12jemZIxQ6H7qaNCGsXwIv4GNOsxnKFiOQREatqQbmJH198QU79WZ9bHSg1aExJUEFNM6NuWmXi1k3utxRcqgXEt16jjwdADT569oMYdR5h+chQmS9fsTDv2HRcJ6PDeLWgcFzjtscdPn1PlRr3pFPMSFC+YnZbPGGB6ObShbNt3jPLlyEDjB7WTmg+o7iROql+9Cdg7UiD/0TK92GSZg9YXxDotA7IlbPjwImZqjUGsjRmHi6Yce/UMsQ7QXcRyxHQjw7vBc+Y8WDJ5uNFQcR7F25otugi23bXzpwgNT72J04Z0Feztv0IGztvrCe1ct5TmjR0giqh69+X/3E1mKPa4eAZb3v5Pqd+VB6x6QCWkVt2iDjraA9iFBIPujFFd7V4avTGoAoOCf9aYbqxbmsbUmpB1adJpuAjavdvXo3SptCGwvhfeDKjuP6eFfpgMCQF6QhE0KtRp4XuZHz6DafbZoweGfYq3r12iyCwujZ1ULUM/CarHRqa3qxYrXiJO9j4KdkGtdVIwUdCbly90A3RW7sPEbqsRFAmab9gldT8pJ5hd+j8mRdmAj2do2nUIgUjiGLP1gvDCrDXuOliQZgBuO3NEL9F7ZHYN3+Oz5i1KrfuNESRR6ANaNn0kbVg8w/cQ3c/4b+sFvywoUx5QHvi/BzyZJX3gmHn/P2Dwqf/ouQR9UUi75MqaliG1I6hSGdtIzCyXusGMvDWa9xew39JFcwspGss52Z9L/9pBy9bupFTJEtJS5liQtYAO1bU8B3pItcwIsot5iHF6vZOIkSj4YZdPz9CP6vXkkWB71xtXvm5zkZDh766R4d0AEi1Xzp8QBUej8TgfL3FyKv1nA/rA0NZFE4eI9wZr8yYP6CAQQtB3/lUGtNQF7red0LcdE/1xgilpS6eOMIQ5Sy6lhgUTD6iENJh80b/rMUE0lDVDSkFx37hWObtvo3HH4bR+20FBfT9/Yi9mVpQXFLdcvHqzftxf40l1qpakymULWg7r/kSQHMNQ3TARXFhcu6fuWJwEoxz0vRIkTUluMWPrjj+wdR3vjDox8ZB1EiHLZAhegxFXzxDQsJauccESLMFahvv98umTqPJqjQG5xGeGnV5hwiA9i83JrR60yjK3BOvFvfL2kkrKQBKUMkMW8rh0lk7s32FZQvdnCIaK43uLGMmJtv+1WHw3uhOsnGzQsR+TcOQXDMPzxvY3fNmxsoSfQ1GiRqe2A8ZT9vzFGdb9VUjlzBja3ZCg6BH3Gp9iHb2vzCitTHlAeeD/HvjMBEdr/t5HV2/c/f9BK5+eenlTtSZ9aB6jbDDnzwpFaOOikRQ7ppuV0fKHzrAOdr22Q+jGHU8qXyIfzRnXQ37yfyOPnnKn0dOWsRZ3ZC7gdpGG+a7csDvAQ3XxiNjd1IuJIjYZbKohxiHW6ZlbjNi6BVPMRcwFqy9isJ5hLbDMI6bLsMUi1kTiHVgZbgTLdcEOnLNwKVHsnDW8l+Ww+Ak00MiuTQTaCNJuv8MAf0aSuXn5XMPLg9sA7PLKlAfMeEAlpGa8pcaa8oAzMwlWKJmfti4fS6mTJzI119pgkDts2X1UVI2XTOtHyRJrw36szcexFl1H05FTF6kEw6iwOyprqDzfuPtYCGzLQGI3cSUVmlvlaxuz9mLXDdplIUJo/88RbIAgaUAypmeoZoK9Vs8EZYQOjAaJEkh9QJCkZVFZNgZSMuhh1LM8Jf4Q933y4E69YaKijF1SyLSAZdHI6rTuKZ5z14bl0tBdwMTKcy8vvpfVsyfYFDDRIwQxdQTbJUyuBAILe60Gw7Uq1W/JRFQ+rMNTBnYSLMZa6yIZloGOac1Xx5UHgrIHAJdt0FZbp3MDFzQr1O9B+1m3OjajbIb0bEYTBre32yXQwUbPJ7SsK5cpSNNGmifse/jEizr3n8w7ZF8Fuy80R2Xs3fuPNGn26gAP1cWzAKKKv3Va5oPe0c9IEeM+Gegug7X2NaN4Hnne0bqUiLmIvYjBRla+Du+ScmxCbDcyvCMUKudDqLdkihx0F2uWq9nEhyfhynlazP2XMCTAo7o2ZUbe27+dLwBxZz/zXcwa0ZN3qF+K+/P//xAT8V6gV/T2P0f9rjwAD2i/ASv/KA/Y4YF4sWMIPdCZDKl1hFVu1It2HzxFmZjyHhpu8ZiO36yBBGnb3qOUPVNqmjVWnjV1864jDNU9I0Sjcxc13uWFQPXNqxcpPu+OQktNz04d3i2SG1De69l5Jv0Jx0EOUCAtg9QK2Owglm1keqRG6FMFJApi2XrmHMWNnjPcSc9Sps9KUbl/9rjETmbxSrU4eX1B6xdN11tSnAMkq1iFmiLZNRPwoduav1Qlesm7sQsmDDK8jrUB6GPNytXsNxyQV84ay8njfmvDTB3LxrukrfqOEf3BgG+vmTeZ1x73wxqQEHr+5OEPx9UB5QHlgf974I7nI4Kcl3/r1G+y4A64dfcB5cyShtbNH0bV/ijsf5jp3yEb1qHvRPJ68ZKqVyhmc4LbqP0wQkLdtE4FKlEoh/R9tOw+mjwCMKuu7wcJy3qeWnJhGKcXmyzrIMZh1xAxT8tSMBt8qNBh6PzRg1pDxHHEXhQYEYv1DBwPYMtHbEeMNzK8K4Ch98q5E0ICzWi85Xz99n1Fz+pF5hfo2bACTRnYkWHFxtezzP/ZP6FjfvnsCb6vTkJex//1Vs+daIjy8T9H/a48AA+ohFT9d+BQD0CjMnP6FLRoSh9qVre83WuDqbBs7a4MRbrAvaKpaTUzFUaL6mJ6XcCZFq3eRgnjxaaFk3pLzxdQXYZPhQgbiWq2lEuuQc4DWA1kSowMkFNUe400zm5cPif6MdGTqWUvnj0WQVqvP8cy16cKbfntx58ghHhpQOAQP2kKEXjevdHXQUN/DHZ43xqMS8HJK4TSr3GFVYawCPp1YN4FJf+JA3LQXTxpsYo1KT2zMN6/5UGzR8r/t+DbS9Uatxfarh/fv+cEehrr4m32fdqmzyDPaDdwAie7RbkS/o3hyNsFs++zxw/Eeqg6g9jqV/YP2fQgapLywG/2wBeGwG/YfkgQFeFWbt19KBhvV2xgPURuV0ASumnxKKEzau+tot+z17CZ9Prte6r/Z2ka0UefM0DrekAAnWeW4DLFclO7JlW1hv1w3Aeqe+GH4wH1QJhw4XRvDbFJB8Aj5sZmWZcPvEOKmKdlTi6ujOJxFQmk1hgcR+xFDJZp/yhfu5lolZAh4MPaeGcIHyESbV4p39eMedAsR9IOxBMIkgKioXUESKM18yZ9vz2QH6mC6Xd3qA8mPaASUpMOU8O1PQCxb2i2bV8xTpooSHs1YlHv5wyt6kknmakwb470opodOVIEvSlWz4E2f/ikxRSR9d/GD25HLs6RrY6zdhCsuh63HwjBbgQ4I0PiBYmR+IlTCBiu3niQMjzxvEdxEhr3waKCG4UTFj1DgAgdJqygkNcbh3NGTIbYIYXOmZ6hnxIV6msXTusNo4KlKzO86gMd2LJWdxxOIlkEzGrdwmmGYzGgVqvu5Mzfy671zLrLlVtZq8UvCthtvnrhFC2fPlp2mp9xFRjClb9URYZxfaGtqxYQaPsdYbi3CgwtjuIWg8BUCA3Ucb1aE3ZH37z0dsQl1BrKA0HeA8+4TxSJYonqHal6s76E3sy4saILKOykoR0d8vzT5q+joRMW0qfPn6l53QrUr3NDm9Zt32eCgBCDUdfMvUGuRkB1X7+16bq/Y5IR6Z5PbNKH7KJ4Bwk5xDw9AzQY3AtGhhgsiqYck/UsRpz4gjUfMR7jjQzvDHmK/8G8A55kBsmz/a9FTKL02TBOG13/Z5+HNitIAqcO7kKD29URjMVGxe6ffU9q/cDrAZWQBt7vLkDdOQJ9l1Y1abYJKKzeA3jcvEcQFL945aaQdFk7bxiFDh1ab4rVc09ZCqBD30n04eMn6tq6NmXh3VtZ28JQ3f0M1QVMp8gff0pN+3v5HNE7Ua5WE8Pxh7avp/fv31KB0pV0xwKug91K7Abq2YM7NxlqG15Ue/XGofz8L+up6hmEy7H7p2cgbEIf6QUDEXD0hkZj6DJgPkYGYXG8HICK//27N0bDBSFFAU54vZ8/ET2dhhN8DWjcZTCh0n7++EHasXaJrzPyH0sx46/lv43dnJBuXmFM+CCzeo6CJakVa6BCbuAFV8gfe942hEfLrKvGKA8EJw/c9XxMV6/fpXueT0Srxl/zhgqNUUf4AEXOibNXiaXaN6km4p8t646fuZL+Zgb3NMkT0ZKp/Uwt0YK5DQILVNfyYIgteiZik354EjEOiS1inp4lYQZ3FDjRBqFniMEoriImG9kfHNuBUkGslzHEh0RMiAToLjgSjGw6y7ogydPq0TSa/6vPg1wP8foNt9vIxOxffX/qeoHHAyohDTzfVYC9U0BoF07uTS3r6ydWsg9w6vxVwVR4/fZ9KpY/G/fSDZKd+sO4eu2G0P0HT7ivpyjVrFTsh/NaB1DlA9Ph15DhOTHupDXMz/GH924Lrcp4SZKLRMfPSSu/XOYA5caamomS68vWXGQ5FEChwWyrZ0hcw3B/jp4JOBQPMNohhXD5R+7RMTLI0FggpXpjkUw/e+xJnhLkEUUr1BAvETK9pLhm3hLlKUnK9P9Bd3fq3YafcyBuqt26u4BCH9q+QZdIyM9Ef78UKV+dSlSpI4igDu3YSGvm/h/C5G+oqV+ht9pu0ETeCQjFEGb53V9TF1GDlQeCuAewixiKe843Lx1NCeLGdMjToj91ztJNFCZMaFHobNWwsk3rbmRYMdaBnvbUEZ3FerILrdq4J1Cw6vp/HsQWPUNsMiLew3wkpEa9lWmZ2AgkdhdOHtK7pIjB0WLFIcRkI4MsGoqxdzwuM8/CbaPh4jzeIcKEDU9/r9BOYu+yRM2gNrWFtMpnZrkPbGYGoRTYnk3d76/xgEpIf42fg/RVXrx8TTMXbXDIM0KkHEyF97iyXbJQTiEXY+vCtVsNpDMXPKgoJ7UDuzY2tQyguldv3qfsBYoTApWMYXcMzHJlaxhfC6x+gPEYJaO47rWLpwnQH8CF9AwVVSMGYAuc5ptBkw4YadHHacTmGj1WPHrN7L9GjIf5S1bkl62wtHeTz46C3nMg8cYu6Y1L56SrxDWadxY0+7vXLyeQLsgaXi7EbnYIok3L5oi+Utm5vsflK1GByvH3Hj58RNHPumzaKN+nbf4MyG4kJ2eb56uJygPKA0RuUZ3p+JlLDnFF297jafm6XRQpYnjq26kBNaxRxqZ1gf4ZNHY+Ef/t6c9Q3xRJ9f+++74Ikmzszr4KRFBdy/0bEf1ZYpMlVlnm+f+JWGe0iwgGXWfXqKJY6X++/98Ri7GTKsO4ixiPWC+LiME7BN4l0KID6RT/tnvDCgJ7ul5PrP856nflgaDmAZWQBrVv9Dc8z9ev3wR5xLzl9hG7rN96gDoyvPYJw2zLFMtD0Bm11cB4CGZcECHNm9DT1DJbdvtAdeMnSUFlqsv1BEGjCxVOEPjElegJ3bf5L975CkEFyxiTVyBIARprZNBlM+7P8cFCGTEZghjp/ds39FyHNAL3kyFHPt7N9DYM+Oj5icYshSASkrGivOv45tVLKcZdrOcSNRrlKlqG7/cRLWY5FjOWMWcBylvsD0G6hH7Sdwa9s1prZy9YgiqyfAsSyDNH9tHCCYO1hkodR0Fg2fRRhuRSUoupQcoDwdgDDx97UZue4+jde2PUh56bmnYaQeu3HCBXFyca2rO5QN7ojdc6h0QS9/Pc+xU1qlGWyhbPozXU6nHIkHlwwTQwmhHpniU2GSWkiHVGWqTwjxPHThlNTEssRmw2sjgJk1B8RkIh5iP2yxjeJUAEePns8e/tKyAtmsYQXbSMGJEIylxDjVEeCMweUAlpYP72AtC9v+QAi4otiCNssYUrt1KfEbPJ+9UbQYw0yw65mElzVhNo+JOwhpvZZBT3PnrqMvpMYahyw7bSj7Jl5XyGwf7Lu6ONpOYgMXOLGcdQFgaBFPqjcTnRNTIQB0EwXNcYDgUzCvYQLgdM+NG9O7rLJU+XiSI7udA57sM0MjDbPn/6iC6c0IdPYR3orSLo3+AdQjy/jEEGJiFXucG6e/KAPHQXa5esWo8gCQPNunlj+stczuoYJLfVmnQgF67K4znnjOpjdZzMwamDOkvJC8ispcYoDwR3D9y+94gqNbC9yFmn9SDazMXKmNGj0pgBremPEnltdmndNoPpGvMklCqSizq3rGlqHUB1Dx0/b2pOQBkcjjVIEff0TMQmIHj+i1VaYxHrEPOMLE6CJIIMDnqeeoadW+xkyhZNy1RvJFpfEPtlDe8UkKL5e/lskYiO6tqEPC6ekWKVl72GGqc8EFg9oBLSwPrNBcD7RhW6ba/x9PadcZDwfftIIEdMXiyq15XLFqQpwzv5Pm3q8+Zd/wj4MBh/R/dvzRIx+v0q/hdH5fmyx13e5XKheEzGI2N3b1wl/IuXOJnYITWac5FJgNBPmTpTDqOhQmAaQTcDJ3N6BjKBjx/f805hdL1hPokoB3ujHlKwE4J84uE9fdKIcAxRjeziwvBj42o99N6cXKLSP7vkdtILl/uTIVmvaMPiGbrP5Psk5FhAs79rgznoLtao06anII66eeUizR83wPeypj7jewXdv2v0WPz9HafpQ7sJeJeZRbAz6nn7hpkpaqzygPKAgQcAk0WMMmOAZlZr0od2HThJ8ePEYBbcDqINxMwavsc27DCMjp12pzzZ09M07hs1YyDnmzh7daCE6uI5w3NCitiiZz49pMZFU6wDFIkRkU7GnPl5zFtyP31E77LiHP52ez15QIjRRgY0FP5Z4r/ReJzHOwXeLR7du033+J0hoEq6yDyLGqM84GgPqITU0R4N5uvduf+IytXpKu2FweMW0OS5f7F0xldBOjRuoPyupP+LXLp2m/qPmivW6ti8OuXKmtb/EN3ft+4+yjDf05w8fGX9r3d0mAlqZAySH6jqlq7WQGa40KyMFNmZ8jEZj5GBmQ9w3cQp0+kOBRPrBw66seIl0B1n2Rm1/NQaDA009OgYVZUx39Utpugj/fr1i9Zy4jggVuhNfcy7kDIECNhRjZMgMd3iBFHmPnAR9NlmzVdEEC2Zhe5ifqPOA8XOLGBVf82bjEM2WVJmd6zXrrfYAYcsztRBncRLkcxi6LO9eOIfZnLU96fMWmqM8oDywP898JkZQbftOUpT5xnDMjHr1Zu3LD3Wgw4cOUtJEsahGaO7ikTy/yua+wQZmt2c2KZJkZgWT+lrbjKPbtF1NEN175meF1AmgHQPsUXPLLHJ8lNrbMx4CRmy+1awkGuNwfEkqdIzYsWNrp47pTdMnENMjhjJSVpXuvSfDUXsxzuAjIH07iO31qDIIQM3lllTjVEeCCoeUAlpUPkmA9BzXLl+h1lyjfvnugycQvNXbKaQDA2tX72M6Mmx9THesCh5KyYiQv9p5XIFhUC52bVGT1tKXi9eiWnPnzyijUtn0dieLXX1xm6xHtm9m9fE7miCZKkML4mK7mPPuyyDEk9USo0m4D7AZGtk0ET7/PmTIbsvgjy6SI1kX3C9sCxgDip8I0uRIQv3vzxnEiJjGBmIHQDBPbTNmF4f1y1Utpro7dy4ZKbRbXw/X65mE0qQJKUPdPegOegukuaaLbqIIsDpw3vowFZj7dTvF/b3AT3ISHBjxU/EeqIXxU6pUS+T+6kjtG/LX4ZVf3+XUr8qDygPSHoA7SXTF64XvAd6Ux4+fkZVG/fh3cxLlDJZAtH+kTmdvGyY/7XBprtm016KEc2VJg/rSBFYF9uMrQ7EUF3LcyKmGJmP7AtQPIhU2oZeVMRTGT1QxNAXXo+1F/vvDHYvEZsRo7G2kYFtF8govAPgXUDLnjCCaFyvVrSJ3ynQtqJMeUB54EcPqIT0R5+oI3Z6ACRHB46c82EQ1FgLyePqjXspXLiw1LxeBerTsb7GSLnDdZhR97LHHSqcNwsN79VCbpKvUWDVdb9629cREgEJ/SQQfV4xc4wQqvYzgH/ZvmYR//9/qRT3IMrY4Z2bBMFC5tyFDIdDPw3/ojMZkJF5sh5bhIiRyTWagazBf0HeCLKL64ULJ0caAVZc6J+eO3bA6DZ597IoS93E5v7Kw4ZjMQBwK+yS3va4ZKqfslKDVnz/4WmXYN39JHUtyyDoppZmAoqQoUPRHtYWxW6prQaWx2bdhwqiK0C0Zo/srSnm/uj+bbEra8RsbOu9qHnKA8oDPh5A4RLSLUDVWLNrN+5xYWoAnb3oQelSJeHdzH6UKllCa0OljoE9HlBbaGn37lCf0qZMLDXPMghQ3QmBGKpreQ7EFCOzQHY5I9UdiliHthLEPiOLxn2rIN+T4SNAbEbhELFaxqBFjXcAn3cBvzO+fP4siOnAB4CkVSbJ9buC+k15IPh4QCWkwee7/qVPCjbDpWt30NT5P+4wNWw/jKC/hj5PCIp3alHDrntr1GE4HeUqdraMqVgPtY/ptbYyhGvf4TOaFVkkCMf2bqMRnRvRznVLv68PWZJ7Nz0ICUyiFHLwYCRiUZhxNleR0t/X0fpw5dxJwTSbLlterSHfj0MLFElhFDej/hwO8tglNQj2WBjBXiaARuVeScjSIKGSsVgMtXr6yFP8kxkP9kPs1GLHWtbi8w5pOob8orfVFuhu1rxFKVfhMgJWtW7BVKkeWa17w4tTi94jmZUxJT24e1P0pyLB9m0oPMwd3Y+r+PrEG77nqM/KA8oDtnvgHutTN2w/lJ56eftZ5NS5q9SAjyNZzZQuOS2fMYASxo/lZ4yZX27feyiS3zdv31HdaiWpUpkCZqaLsS26BW6oruWBEVOMzBKbLD+1xiPWoSdVRgc7XdY8gthIpriI2IwYLVs0hVwM3gHwLoB3Aouh9QLvDCf27zCUT7PMUT+VB4KzB1RCGpy//Z/87C+8X9MMhkZt2Hbw+5VqtuhP2/YepaiuztStdS1qUb/i93O2fOg9fBaTTZygpIni0Oxx3W1ZQrDqer14aTgXItzb/1pMg9vWobULptB2pmqHlaxS13AuBiA5QvCMyX2OIUOGMpwDEganKK4EJlsjgx4b+nOMzAewi5xUv/qMdSI7RxEJqZHWG8Y6R3HjoCvHhpu3eHmhFYrdRxnLlLuggCLfuX5ZCp5lWbNqo3aCdMLD/QydPLjLclj6JxiT02TJKcTXkdSi2m2rwZet+43hwkUa8QxLJg8n9AdbbFL/9lIvVpbx6qfygPKA/R64dfehH84D7GQi+bt+6z5ly5SKVs8eLFh1bb3Sl69fqWnnkQRuhRKFclDPdnKxwvf1VjPM99Ax43YI33MC6ufIzi6GtyZiE4qmorlEfzhinkx8SpE+C8coV7p85pj+gnwWsRkxGrFahqwPC4KlHYZ3Arwb4B1h84p5InaIE+r/KQ8oDxh6QCWkhi5SA+zxwOOnzwXRUJnaXahSw56059BpEeD7dmpI9f403iXUuzZ0T1dv2kNRWBNueO8WFCdmNL3hVs/5QHVvWT1n7eBXJsVAD8jRPVvo9rVLAoIF0gQZ27d5DX1gbU/oZcqY1+OHnBS6CJIFo/EgNAIJkZEh2CMVlYHsggYfWqQyhELQVwMc6tbVi0a3QHg5AITqjsdlw7GWAQXKVOJ7eU2bls22HJL6Wa5WUwoTJixDd5dxQmkOuosL1GvXR5BiAG41Z7T53XffN4n+1LYDxhMIj7z4v6GVs8YLWZjxvVuzIPtD30PVZ+UB5YFf5AHsYJas3pEg69Kp32S66/mYcmdLR2vnDSMXZ30CHqNbrMWw33Pu15lgLx3NHN3NaPgP5z8CqjtrVaBl1fX/QCC1MzILZFemaIqYh9hnZJCIicSx1Is5GWQMMRqxDzFbxpIw6SDg2HcY+YJ3A7wjKFI6Gc+pMcoD//eASkj/7wv16Sd54AGTQ0DE+/DxCxQvdnQmL2pG1f4obNfV9v9zhgM177BxdtW2cRUqkMt4F9H/BbftOaYL1fU/3vfvnz99Ert8oJwfwlXvQ9s3+D5t9TMSsKjcP5leAoILiCpgnFHcYlhdy/9BQGuR8BjZ9+qzxA4pyHiwLggejCxDjnxiyLlj/98N15sDunzQ6189b8x8iHWy5CnC5ECJhRD5w3vyBYTkaTNRqozZxa6kLdBdXLtR5wHcx5pEkCTZugbWgaH63qb/OEqRLjO9fP6Ublw+/5/uHcoEypQHlAd+tQfwp/D8pRt05ORFevjkGeXPlZE2LBxB4ZnfwB5DsRM7m2lSJLKplQTXDipQXYsfY8VLZPmo+dNMjELMk2krwcUQS99wH+m7Nz7EhZo3wCcQo8F1IFM0RezHjijeBT59/MjvBeYLn3r3os4pDwQXD6iENLh807/5OV++ekOJ4semMf3bUNlieey6G8Cfug+ZToAE/1EyHzWtYyyfYu2Co6aCVdcYqmttruUYgg+gvOsXTxdBCZqZ1iqjkP4ABChOQjkyi2sXT4sdxxTpslgupfkT9PEIyqCrN7T/ElGZ6nO0GHFEkvvgzg3DZRMkTSWYaT1vXzcciwEFylTmnctwdHD7eqnxYk6pikI6ZfPyudJzMLBWq24+CSULkJ86tMvUXAyOwH79s1kn1niNRmDBNXt9axds2XuU6LvFdwcJAGXKA8oDv88DX/l/g+A9KJw3K62ZM8TuGxk2cbGQl4kV040mDGlPzsyXYNbAyHswiEB18ezhuN8TyBgj+x6bJIqmiHmIfTISKsnSZOSY6sWtEieNbkGcR6x+xrEdsdu/IcZvYOZ3JKKI/dgRVYmofy+p35UHzHlAJaTm/KVG2+iBpIniCkHxwvmMEyy9S+DFoUmnkYTen4K5M9PYAW30hmueA8uv+1X5nTbNhf47YYHyAuIztH09mjWiFwtmX/k+7dCODRQiZEgqUKrS92N6H0CoANZc9DAamdAg5cTGxc0YsoxgL0C7EsEe64WPEEnAS43uAecjM7HRSyaAkrG4CZOSW8zYQiBcbHNLTMqarxj3kiYSQuRgPzZj6PHB7uTOdbZBdxOypA+YlMOEDUtH926h4/u2m7n8D2MXThhM7xiCrEx5QHng93sgDMMtSxTMIQiM7L2blRt20+LVW3mHNRz1aFOHMqVNbnrJj58+BymoLhwAAiKZGCVI9xClpGJUdJGMIgYaWbqsuZmoL7IoKhqNxXnE6hAsSYfYbTHEdDClI8bv+3uNDzSX23iUKQ8oD9jvAZWQ2u9DtYKBB1ImTUAzRnXlPho5Jlq95Wo27889OR6UOX0KWjKtn95QzXPb9x6jvTqsupoTJU+g5xJsfjOH9xQVVBDWPLx7S0CAZNl4nzELrRNrp8lUlMFY+577aGLGTWh4hyLIM0RNJtij+hyGX6revjaGOOHCkKd5zX2k6LeUsWQMp33+7DHT6/8tM1yMyVeiAr+AvKUtK+dLz8HA9My4mzx9ZgE/thV2m6NgScpeoISAZW1bs5BuSvTLWrvJJVOGi5cie0iSrK2rjikPKA+Y90DYsGGodNFcNsNqfV/x5NkrNGLyEnr/4SPVrFSM/qxQxPdp6c8tuo6mazfvSY8PDANBQCSD4jETo2KxrBZ6SBEDjSwaxyfEVBlWXqyFWA3YLmI3Yjh2QxHTLzExkg+vAgdSZcoDygMO84BKSB3mSrWQNQ+kYb21ueN7Usa0yaydNnUMu5qHjp9nRt24TBDR1dRc34NHTrEfqut7Pa3P6AMFlAfkR4D14p8M2+vHD+9F/6hzlKhaS/s5DkhtyBAhBROtnxNWfvFJRFF9tnLSyiEImcuQRmAq+kgBnzp//JCVlX48lL9kRXLmXdXTh/f8eFLjSPaCJQh9SEh6wbprxuq07sFzE5KHgO7uNjP1+9jydZpT6kw5yPv5M2bgHC+9I2xZYAmz9Z4/fpA+20CwZFlD/VQeUB5wjAcihA9H5bntY864HnYvCPmYDv0m0cPHXlSsQHbq17mhTWuu+XsfQ3XP2TQ3IE9CLJExn9gkt0MaizWqsYsp01aCayOmgpvh44d3hreCWG2J24jhiOWI6cqUB5QHfo4HVEL6c/yqVmUPZEiTjBaxLmiKpPHt9sfwSYtpK5MQubm60ODuTSlhPNt04Vp1H+tQqK7MgyEJxD8kdstnjOZKa21RcYW2KXY2/dt197NCtwzEPzKG6nCESJEpavSYhsN97gXD5DJSCJnLkkaAQMjZ1Y2Jh+QSRejIuXFPEaj1X3KCJ2uQjfnIEOVtqxbKThHjQoUOQ0XK1xCfoSdr6w5lg479KHHKtKy7eocWjB8ofQ/zxzHjJifrqtdI2mVqoPLAT/NApIjhWRO0IE0b0dkh12jQbihdu3GXcmRObXOC+wlQ3Zkrgwyrrm/HIpbImU/B1Kd4qj8jKms8o8dfZocUK8XlmAp5Mo+LZ39YGLEYMdmyG4pYjZhtid8/TFAHlAeUBxzqAZWQOtSdajGLB7JmSEnLpvenBHGNkyTLHK2fqzbuoUWrt1GoUCGpRb0KXH3OpjVU97gPVPe0FFxVdyE7Tn5jXbrn3O9y66o7y36Mo1Fdm9KwjvVp/aJp36GuYKoNGSo0ZcxZQOpKb169ZPKh8MwiGN14vCg/y1WfsRiEzH1II35MnP1fDKQV0NuU7SPFfOyqvnnlTXv/Xu1/Oc3fcxYuRTF5p/Me95HevHJBc5y1E9kLFKckLLsC5mBbobtYt2HH/sz6m0iwMM4Z1cfapfwcA9TL/fRRm6Rn/CykflEeUB6w2wNOTDJUo2IxmjC4nd1rYYG6LBlz8twVSpUsIS2Y1NvmNZsHQaiuxRmIJTLmk4hywdRnq1R3CmIeYh9ioIxlzJmfY2uo7yieuzeuitiLGDy6W1MRkxGbsRuKWK1MeUB54Nd5QCWkv87XweZKObOk5T/sgyhGNFe7nxlBHrujr16/Fey8rRtVsXnNXwXVlb1B6K15ez3hHUJP2r9lLU0d3IWGtK/LUignmTwnHGtnLpdaCj2VGC9jlh1Smeoz1oMOKqrEMlqkGO/K1PqvvV/Qw3u38auh5S5Shly5yn390o8Va73JeYqVE7Cr7X8t1htm9RxYd6Gx6sFMxqcO2QbdReJdrXEHZt6NLqRrVswca/VaODhlYCfB1AjiK2XKA8oDv9cD0BZtUL200K52xJ10ZJjuXpYhgw722IFtKGoUZ5uW/SuIQnUtzkAskTGzMQqxDzFQxnavX0FheTxiLOTapnHMRexFDEaMk9HnlrmOGqM8oDxg3gOhzU9RM5QHrHsAvRx5c6SnFTMG8h/9MNYHmTiKnpyOfSeR58OnVDR/VprI9Pm2Wqsevx6qa/ZeAUPFP4tdvXBKwHtDcH9otFhxKCnv7CVJlZ6lY5IIBl7LuE/ccwqBcBkzU33GehAyB6X+kwf3pXpUU2TIQhdOHqaL/A+MuEYWlnXkYsSJR7e4Rwd9OolSpDGaIs7nLlqW/tn1N3neui56QpOzrqesgVgjf8lKtHnFXGbdXUoZcxVgUXPz/70mSZWOileqxQRL8+j8sQOCgKpYxZrfbwO9wON7txYaqLIFgO+T1QflAeUBh3sAyWKTOn9Ql5b//9+pPReZPHcNbdpxmCJHjECdW9ag7JlS27QcoLrjgyhU1+KQaLHiWT7q/zSJ4kHsQwz0bdAERWy47XGJUTQXub3itmC5R7H086ePvoeqz8oDygMBxAMqIQ0gX0Rgv42QLGlSMHcmsTPqqGdBT85V7snJlC45LZ5iG6Mu7mXHvuPMqvt7obq2+ASBE/BeGMgVrp4/JRKnSFxpDh0mDEOKvlEkJ2cBkQ3FsgUgE4KUCnbvXLiX05qdY0IdtI8yaNfaaXEMwfwtQ6Be8O6thc0WpBGAOxlZmkw5abvzIvESYDTWch7MtdfdzxEkcxqkkP+esbu6buE0kVSaSUhx3fylKgoILSrliycNo4ad+ltux9RP7NSil/Toni10cNs6kcDDT69Y/mZS/w7iezO1oBqsPKA88FM8EC2qC7VpXJVaNajkkPW37j5CMxdtoE+fP1NNhv/WqVrS5nWbdwt6rLr+nbF11XzuvU8jUDSIYZA1s2YiNnF4QqwqWLqytSEi5qHV49mjByJOAX0ytmdLwQgfklt7wA8AGO/XL5+tzlcHlQeUBwKeB0K4urpqv5kGvPtVdxQAPRA6dCgqwoLitsqwWHukuq0H0479xylR/Fi0dFp/SpZYsrpqZbEiVdrRxSs3rZwJeodQLcY/JKzQ3aQQRKH45zeGB2MHG4EbLIPQFxU9PVyN/sbariFChuChIfjzV/rCY5AMY7cW52CZ8xSmeu3keqNGdmnM1w1B3UfPkXbw8E4N6V++Vq8J5oiKxvRoQdCgq9u2F6XKlF36ehjo7fWUJg/oSO9ZD7Rq4/aUJW8RU/N9D543tj/vCv/DxFKxmKjqjdDcsxQTfI9Tn5UHlAd+vQfQPtKlVU2G6pZxyMWveNyhum0G0z3Px1SKJWMWTJT722jt4ms376fug6fRS25LCeqGwjW4BgCzDc1FVMQoJKD/fvuXP3MHGccNtIgAguvEDOwotAJdAhb5rxybUEcVMYoTTnAbyBLuBXW/qudTHggKHggVIUKEAUHhQdQz/B4PhA3DguKFctKiKX0cdgOd+k2mzbv/YUZdZxrasxmhJ9VWa81Q3f1HzPUn2nqtgDDv69cv/5EQvROJ0fu3bwRVveUngj2STARyUNi/42QMCZQ4Lz6/5d7M94J8xzfM1NklKmtwFpd6xAsnDpPX4wes/ZmPIkWW66fCDinYeaOy7hsgybIG4gn300dYz/QJQSfUjPkQNr3n3dmz9ODuTcpdtIxPEm9mkf/GImEHxBrrAGItS7Jhw6XUFOUB5QETHogVw436dmpAtauUMDFLe+i7dx+oVuuB5HHzPmVnRt1VswdrDzY48/nzF2rBu6MPHsmzjBssGaBPI6Z8YckrxBiw2or4wzEKMQifEZMQmxCjEKvwuyV24SfGoYUEYxDrlCkPKA8EHQ8oUqOg813+8icJHy4slSmWh+ZP7OWwa0+Z+xdt3HGIwnEPaqNa5ahM0dw2rw2o7p5ACNW1+YF/4sT3kqQRuIX4SVKIhMz91BHpO8pXojzv6oal4/u2Sc/BwHwlK1CsuAnpwe3rdNHE9SwXKV6pNiVIntpu1l2sB5guKvqqam/xrvqpPPB7PRA3dnQa1qsZ/VnedvSD/yeozcmo+5VblCJJfJo3wb7Y17zrKJaKuef/Eup35QHlAeWBYOcBlZAGu6/cMQ8cMUJ4Kl8qH80a080xC/IqW3cfpRmL1tO79x+odJFc1Kl5dbvWHjF5CXk9f2nXGmqyjwf8k0bo+QVSLoANe/DOo6yhB9SNd0efsCapWfHxHIVK0SeGGO/dtEr2cn7GVWO4LuQDrl04Taf/2ePnnOwv04Z05b6m5wISLTtHjVMeUB74eR6A5NjYAW2oXPG8DrtIk04j6OhJd4rNjLqj+rWyi0keUN2DR8857N7UQsoDygPKA4HZAyohDczf3m+698iRIlDlsgVpyrBODruDy9yT0497Dp88e0H5cmSgKcPtWxtQXfertxx2f8F9oU8fPnBf6ScpNyRImoqco0Qlb4bRmrF4LFr+8vkzpuH/y8w0KlC6EsWMm4BAvHSO2W7NGuZmyVNEJLU7/lpiKqn05J3ZwW3rCKZfQNGUKQ8oD/x+DyROEJsmD+tIRfJlddjN9Bs1h3buP0FOTpGoQ9NqlCd7epvXBlR33MwVwaJv1GYnqYnKA8oDwcoDKiENVl+3/Q/rzMG4ZqViNG5gW/sX+2+Ft+/eExLIO/ceUYbUSWnhZPv6UfHSEBhZdR3m0J+w0IcP71inzYfxV2b5yExI8ZpZEGX1S7FmwbJVBGvw5bPHZS7hZ0z2AiVFwmw2mbUs8kftpgJq/NjzLi2ePNRyWPfnwW3rac7ofkJEXXegOqk8oDzwyzwAAryZjNzJnS2dw665cOVWWrl+N5PD/UuVSheghjXL2rW2gura5T41WXlAeSAIekAlpEHwS/1Zj+Tq4iRYCof2bO7QS9RhRl2w4CaMF4smDe1AEcKHs2v9EZMX0zMF1bXLh/4ng2Di2SNP/4c1f48eKy699n5OZpLLOAmSCNjuMyZEAjmQGSvEyazPLulNOn3YNthtxXqtxM4uoLtn/tmre/mFEwfT1lULmKnX3C6w7qLqpPKA8oBdHkiVLKHgNMiUNrld6/iefPDYORo3YwV5v3pDhfJkppF9W/o+bfrzui0KqmvaaWqC8oDyQJD3gEpIg/xX7JgHdHN1oeb1KlCfjvUds+B/q/j05Fyk6G5RqHeHepQmZWK71m/dcywntwqqa5cTrUwGO6InQ2JlDX2kIUOFoivnTshOEePQSwo2xT0bV5qah8HZ8hejzwybxc6lLZYwWSpKly2PYIDcDuiuFRZHwIIB0T139KBgfLTlOmqO8oDygOM9kC5VEloytR+lTJrAYYvff/CEug2aRg+feFGWDClYD7uvXWt/hl4mJ7fBQeLFLkepycoDygPBzgMqIQ12X7n5B4aGW3vumenUoob5yToz+o6cLXpyIkQIR3WrlaKKDIWyxwRU99BpoVtmzzpqrnUPPHkgzwaZLG0msdtoVoszX8mK5OLqRvdveVi/CZ2jhf/4k2LG4V5S3l09cWCHzkjtU9WadKC4iZIx6+4dWjxpmJ+BO9Yuodkj+wiI7r+s66pMeUB5IGB4IFO65LRi5kBKEC+mQ2+oMZMY3bjtyTrYcWnOuB52r928y2jFqmu3F9UCygPKA0HRAyohDYrfqgOfKVaMqNS1dS1qUb+iA1clWrBiC63auId3tL6wjmkO6sG7Tvaagura60H9+a9feusP8HU2PIufR3aOwvIv3vT65QtfZ/Q/RokajaLFikNeTx4S9EzNWtZ8RVnn7jMd3rHR7NTv48vVbCLu/Rrrip45sk8QLY3t2ZJ2rV9O3s+ffh+nPigPKA/8fg9kz5SK1swZYhfjrbWnqNG8P525cI2gYzq8dwuKGyu6tWHSx9ZtOUAHj8kzj0svrAYqDygPKA8EAQ+ohDQIfIk/6xHixIrGguINqf6fpR16iQNHz9L4WSvphfdrQTwxY1RXu9dv3XOc0IazeyG1gKYHIEpuxlyjxRDanFfPnTQzjdJnz89Mt1/pn52bTM3D4KIVanAvaXzeJb1FR/dsMT0fE1Kkz0KpMmYTAuzrFk6jyQM6ih3bzywto0x5QHkgYHggRIgQIn6smz+cQLbnSGvD8QSSLC7Okal1w8pUMHdmu5b/wn/PBFT31Vu71lGTlQeUB5QHgqoHVEIaVL9ZO58rfpwYNLRHM6r2R2E7V/I7/a7nY+oxZAY9fOxFablfdP5E+4TFsfquA8yqe+iUYED0ezX1myM9YEaLFNdNkS6LgE+7nz5q6jZyFy1DrtFj0OMHd6WlZnxfIDNLuHz98pn+2b3Z92FTn0OGDMWMvy6CmAm7tcqUB5QHAo4HQoYMQflzZaQNC0dQ2LBhHHpjo6cuoy27jxAS3nLF8wjuBHsv4MOqe9feZdR85QHlAeWBIOsBlZAG2a/W9gdLFD82je7fmspyMHakffv2jZp2HknXb90niJaPH9TOIZXt4ZOWKFZdR35RGmt9ZC1SfIeyljpzToa+ugj4rewcjAsbLjzFiB2fXng9pYPb15mZKsYWr1SLYsSJT494l9QW6O72vxaTh/sZATc2fXE1QXlAeeCneiBUqJBUOG9WAdN19IXWbt5P81dspjdv31OB3BlFjLL3Guu3HqADvNuqTHlAeUB5QHlA2wMqIdX2TbA8kzRRXJo4pINDBcUtjqzVcqDoyYkW1YW6talNIKKw1wCtcmfJGGU/3wMfP7w3pUXqFiOW6MVE7ymYc81YjoIlKHSo0HT++CEz076PzZy7sGDJPbp36/djRh9uXD5PQzvUp13rlpnSTzVaV51XHlAecIwHQocORcUL5qDlMwY4ZkFfq5y96EFDJiwUxc3M6VLQsun2X+PLV4bqTmdWXZaMUaY8oDygPKA8oO0BlZBq+ybYnQkTOjS9fvOO+3LSOvzZLT05ESOEpxoVi9Gf5YvYfY1dB07SHgXVtduPsgugh9TrsTn4qjMz5r564UXXLp6WvYwYlzlPYYrKCe2zRw8IuqRmrUSVOhQdu6T3b9OBrWt1p7959ZLmju5LC8YPElqrXxjuq0x5QHkg4HkAWthjB7Rx+I2Bz6Bd7wkEmZckCePQrLHdHHKN5l1G0dUbdx2yllpEeUB5QHkgKHtAJaRB+ds1+WzQSAMkc/5y23vvrF1y5JSloicHaxcvmI36dW5obZjpY8MnLVZQXdNes33Cv/z9mdEixZXiJ0nB/019pQs27HTGjp+I3r5+SbuZ3dYWy5SzAO+SfqXj+7UlYLatWUjje7eii6eOKIiuLU5Wc5QHfqEHnnp5U6kanQg/HWn12g6mK9fvUMzoUWlIj6aUMF4su5dfv/Wggura7UW1gPKA8kBw8YBKSIPLNy35nM+ev6Qx05cLWRbJKbrD1vy9lxat2ip6cnJmTUuzx9qv5YYLKqiurtt/2slH9++YWjtD9nwUNnx4emrDLmfeEhUoXPgIdOf6ZVPXtAwuVa0+96LGE7ukezetshwWP48xlBfw3J0MzzWrlepnIfWL8oDywC/1wD3exSzJSenbdx8cct36bYfQ8TOXBZ9Bs7rlqViB7Havi0LYWI6jCqprtyvVAsoDygPBxAMqIQ0mX7SZx0T1GUnpfNYKtcdOn79KwycuFtXs1MkT0dzxjklGdx9UUF17vhd75r72fm5qeoJkqcjZJSq9YS1Ss7IpydNmIreYsQVMGJqgtliGHPnpG78cnjy0S0y/fPY4DWlfl9YumCrguTinTHlAeSBweQDQ2iJV2tLL1/bJqHQdNFW0faA3tXTRXNS2cVWHOKKZguo6xI9qEeUB5YHg4wGVkAaf79rUkz559oJAfz/PRvgudlo79ptEqGbHix1DsPa6ubqYugetwcM4ycX6yn69B8ySE+EOnVxc6SX3kXq4mxeFj584BX1i/c8DW82z7eLaZao3pOhil/QO9W1WlRZPGioS3E8fHbO7gmsoUx5QHvj1Hrh19yEVqtTGZvjujIXraf2WA/Tx02fKlyMDTR7a0SEPsWGbguo6xJFqEeUB5YFg5QGVkAarr9vcwz57zjul05bRpDlrzE3k0Q3bD6XLHnfIzdWZOrWoTjkypza9hrUJbXoxq+5VxaprzTe/4tiHD+9MXyZarLisC/qFzh3db3puwTJVWA/UmWG35qDClgtd5Z3Vd29fi13SN6+Y7fedfTsqlnXVT+UB5YHf74H/tXcncDpVfQDH/5aZIfuSJLyUV4UWrWQJKWtEets3rxaKCi9KSXnLvlMpEUUqFG2WIpWtQnhTlGzZd8aMMWO853/qYYx7H88znjPxzO98PszMec49997vPc9zn/895567cfN2aXBnB9ELqOGkmXO+l+GjJ9ke1ksrlDMz6j4fzuK+ZQ8fTjXnTIbq+gLxAgIIIOAjQEDqA0P2nwLaE6kn7l5D3wmZRO/J+d7ck5M7V5zc2ri23NOiXsjLBiv45TeLZJb5l5p6JFgxXnMocMg8izTcdOk11SV7jhyybfMf4S4q55YuK0WKlbD3eX47Y0rIy/84f470bP+gjDEz58abx86QEEAgOgXWb9xqg9LVazeGtIP6HOyuPV+Xrdt3iz5z+7U+HSWH+XyKRGKobiQUqQMBBLKiAAFpVjzqYe6zTok/ctzH9iR+skU7dB8ms+aaR3xkE/ssU52xMFLp5cFjGaobKcwM1nMoKVH27Noe1tLlKl4m+QsWkf17dttZnMNa2BQuX6myHDmSKkvmzj7ponM+myw92t1jnlPYV7Zt2kCP6EnFKIDAmS+gt4bc/nA3Wbh4RdCd0eG5j/ynr6zdsFmKFS0kz3d8UMqVLRl0mVBf/HOobvi3JYRaP+UQQACBaBYgII3moxvBfdtnJo8YN2mGtOncz7fW4aMny9Tp30pS0iG5+vIKMnrwM75lw32h7TMDGaobLpqD8gkH4mXXti1h1Zwrdx7Jm7+A7NuzU1avWBrWslq4er2mUqBQUdm+ZaO9FzV9BTvNDL4TRvSzgejUd0bY7eMe0fRK/I1AdAtoT+mjnfrK9K++893Ru1p3l+U/r5a8ec6SB+5oKI3qXudbNpwX9JFmOhEgs+qGo0ZZBBBA4JgAAekxC347iUBC4kETcM4VPamnT9NmLZQRZpIIPSFfWK60ebxLZB4sruuZ9e0i0Zl1GaqbXj3z/9ZZaTetC/8e3kJFi5lZdg/Jjxm4j7RA4aJStHgJ2W9m6p01ZcLRnV5mnm06sOtjMrT7U7Jw9jQbiOozT0kIIJA1BfSe0o5mlM77U748AUCH0877frnojLr1a18jHVvfeUKZjGbYoZQhFE8AACVfSURBVLq/rc/o4iyHAAIIZHmBHLlz5+6e5RUACFngsLkSvHbDFtsTevstN0hMTE5ZaU7ETzw7SP4wXwZKFC8qA15oKxXKlw25zpMVfKh9b1ljhliRTg8BDS4rXlElrI05sH+f6CNXYmLj5Npa9cNaVgsfTEyQlcv+nKBoxZIFMn3iWPn+6+mye8c2STqYGHZ9LIAAAtEpcCAh0Qzd/Vn27U+QGlUuszv5Yv/RMvGTr8yM3Tqj7mUyZuizEdt5HRX0+jtT7cigiFVKRQgggEAWE8iZxfaX3Y2AgA5P+uW3dVLt5tZyycUXyKYt20Wn4C9UMJ99jptOoR+ppEN1/8esupHijEg9e3ftCLueiytfI3knFTT3kYb3HFNd0T6zzA/fzJTYuDjZbiZG0n8kBBBAwE9g5+69Zt6DqfbclGJGdXw1d4noCJ9KF50v417p5rdY2Pl6LuxrZqJnqG7YdCyAAAIIHCdAQHocB3+EI6DDoxITk2TXnn2SKy5WmtarIf++q3E4VQQtO+vbxWaoLrPqBkX6G17Ux6iEm4oUO9feR7pr+1ZZs+onKVu+YtAqtEd1waxPTS/oF6YHNEH27AxvIqWglfMiAghEvUD8gUT58POvJbc5N+2LT5DSJc+RYT3bS5z5O1KJobqRkqQeBBDI6gIEpFm9BZzi/mswqik2Nkb6dGtzirUdv/jLg8eYWXV5ZMfxKn//Xzp8NiMpf6Ei9nmi+jxSr4B007rVssDcC/rTovnmuaXJnhMYZWS9LIMAAllTIDk5RfRfIAitUL5MxCB0qO6c+cyqGzFQKkIAgSwtQECapQ9/ZHf+qeeGyMAe7SJSqR2q+0v4k+dEZOVUElQgI88i1QpLnV9eVi1fLBvXrrb1B+4rXfTtl7Jj60ZJ2L9fMtL7GnRjeREBBLK8gM78rpPizTAz8N5U65pT9jhy5AhDdU9ZkQoQQACBYwLZChUqdOTYn/yGQMYFYnLmlPLlSsn0CQMkNiYmwxXNNs8xfazLAHpHMyzodsF8BQpJpz5vSN4CBcNaUb8uj9png8bExkrus/JKiukF3bd7p3nGKB9BYUFSGAEEMiRwdpGCcu9t9aRL23sztHxgoVbte9mJ/QJ/8xMBBBBA4NQE6CE9NT+WTiOQnJIiP/2yRqo1bi1DXnpSql5VKc2rof/60iCG6oaulfkltRdz144tQQPSxIR42bB6laxYslDW/rpC4vftleSkg5KSfMg8/iVJEuLDvw818/eUNSKAQDQJbN+5R0aMnWrPU28Pz9jkRh/PmCtfM1Q3mpoF+4IAAqeBAD2kp8FBiMZNOOfswnbG3YfvbRLW7rXrOlDenzqLZ46GpZb5havd1ERatGwnGnhu/WO9naho/W+/mHtE15qezxRJMc8c1eeGHj6ckvkbxxoRQACBIALZsmWTkiWKydvm8S8VLgz9EWU6muP6Wx4zs8zzzNEgvLyEAAIIhC1AQBo2GQuEKpDnrNyml7SijH+1e0iL2KG6T5uhuuYqNun0FihQqKjkNBNZJSf92dupw29JCCCAwJkkcJ55bnanx++RO5vVDWmzH+rQW6ZM+yakshRCAAEEEAhdgIA0dCtKZkBAr0SXPu8cGTXoafvM0mBV1L3tCVm24s8Jb4KV4zUEEEAAAQQiIVAgfx6pXe1Keb1fp6DV6VDdDs8PlT374oOW40UEEEAAgfAFcuTOnbt7+IuxBAKhC+hDw2d+9b0kHkzyva+0XddBoj2kzG8TuislEUAAAQROTSApKVlW/b5exk/+QqpcWVGKFyt8QoU6VFd7R/8wz94mIYAAAghEXoCANPKm1OghoA8pX7RspUybvVAa1L5Wzjor19FSX81bIsNGTZIDCQeP5vELAggggAACmSGgF0L3xR+QmXO+l/iERKl29SXHrfbhjn1k7nfLjsvjDwQQQACByAkQkEbOkppOIpCScli2bNtpp8svWCCvVLrofLtEq/a9Zc36TSdZmpcRQAABBBBwJ6AXThebC6effTlfbqhxpeTPm0c+mTlXXh87RQ6aZ5mSEEAAAQTcCHAPqRtXaj2JQP58eeSayhfLxi07ZKWZsTA1NfUkS/AyAggggAACmSNQ6rxiUqxoITlw4KCZVXdd5qyUtSCAAAJZVICANIse+NNlt+PMTK1Jh5ih9XQ5HmwHAggggMCfArlzxdm5D/BAAAEEEHArkN1t9dSOQHABgtHgPryKAAIIIPD3COhEfCQEEEAAAfcCBKTujVkDAggggAACCCCAAAIIIICAhwABqQcKWQgggAACCCCAAAIIIIAAAu4FCEjdG7MGBBBAAAEEEEAAAQQQQAABDwECUg8UshBAAAEEEEAAAQQQQAABBNwLEJC6N2YNCCCAAAIIIIAAAggggAACHgIEpB4oZCGAAAIIIIAAAggggAACCLgXICB1b8waEEAAAQQQQAABBBBAAAEEPAQISD1QyEIAAQQQQAABBBBAAAEEEHAvQEDq3pg1IIAAAggggAACCCCAAAIIeAgQkHqgkIUAAggggAACCCCAAAIIIOBegIDUvTFrQAABBBBAAAEEEEAAAQQQ8BAgIPVAIQsBBBBAAAEEEEAAAQQQQMC9AAGpe2PWgAACCCCAAAIIIIAAAggg4CFAQOqBQhYCCCCAAAIIIIAAAggggIB7AQJS98asAQEEEEAAAQQQQAABBBBAwEOAgNQDhSwEEEAAAQQQQAABBBBAAAH3AgSk7o1ZAwIIIIAAAggggAACCCCAgIcAAakHClkIIIAAAggggAACCCCAAALuBQhI3RuzBgQQQAABBBBAAAEEEEAAAQ8BAlIPFLIQQAABBBBAAAEEEEAAAQTcCxCQujdmDQgggAACCCCAAAIIIIAAAh4CBKQeKGQhgAACCCCAAAIIIIAAAgi4FyAgdW/MGhBAAAEEEEAAAQQQQAABBDwECEg9UMhCAAEEEEAAAQQQQAABBBBwL0BA6t6YNSCAAAIIIIAAAggggAACCHgIEJB6oJCFAAIIIIAAAggggAACCCDgXoCA1L0xa0AAAQQQQAABBBBAAAEEEPAQICD1QCELAQQQQAABBBBAAAEEEEDAvQABqXtj1oAAAggggAACCCCAAAIIIOAhQEDqgUIWAggggAACCCCAAAIIIICAewECUvfGrAEBBBBAAAEEEEAAAQQQQMBDgIDUA4UsBBBAAAEEEEAAAQQQQAAB9wIEpO6NWQMCCCCAAAIIIIAAAggggICHAAGpBwpZCCCAAAIIIIAAAggggAAC7gUISN0bswYEEEAAAQQQQAABBBBAAAEPAQJSDxSyEEAAAQQQQAABBBBAAAEE3AsQkLo3Zg0IIIAAAggggAACCCCAAAIeAgSkHihkIYAAAggggAACCCCAAAIIuBcgIHVvzBoQQAABBBBAAAEEEEAAAQQ8BAhIPVDIQgABBBBAAAEEEEAAAQQQcC9AQOremDUggAACCCCAAAIIIIAAAgh4CBCQeqCQhQACCCCAAAIIIIAAAggg4F6AgNS9MWtAAAEEEEAAAQQQQAABBBDwECAg9UAhCwEEEEAAAQQQQAABBBBAwL0AAal7Y9aAAAIIIIAAAggggAACCCDgIUBA6oFCFgIIIIAAAggggAACCCCAgHsBAlL3xqwBAQQQQAABBBBAAAEEEEDAQ4CA1AOFLAQQQAABBBBAAAEEEEAAAfcCBKTujVkDAggggAACCCCAAAIIIICAhwABqQcKWQgggAACCCCAAAIIIIAAAu4FCEjdG7MGBBBAAAEEEEAAAQQQQAABDwECUg8UshBAAAEEEEAAAQQQQAABBNwLEJC6N2YNCCCAAAIIIIAAAggggAACHgIEpB4oZCGAAAIIIIAAAggggAACCLgXICB1b8waEEAAAQQQQAABBBBAAAEEPAQISD1QyEIAAQQQQAABBBBAAAEEEHAvQEDq3pg1IIAAAggggAACCCCAAAIIeAgQkHqgkIUAAggggAACCCCAAAIIIOBegIDUvTFrQAABBBBAAAEEEEAAAQQQ8BAgIPVAIQsBBBBAAAEEEEAAAQQQQMC9AAGpe2PWgAACCCCAAAIIIIAAAggg4CFAQOqBQhYCCCCAAAIIIIAAAggggIB7AQJS98asAQEEEEAAAQQQQAABBBBAwEOAgNQDhSwEEEAAAQQQQAABBBBAAAH3AgSk7o1ZAwIIIIAAAggggAACCCCAgIcAAakHClkIIIAAAggggAACCCCAAALuBQhI3RuzBgQQQAABBBBAAAEEEEAAAQ8BAlIPFLIQQAABBBBAAAEEEEAAAQTcCxCQujdmDQgggAACCCCAAAIIIIAAAh4CBKQeKGQhgAACCCCAAAIIIIAAAgi4FyAgdW/MGhBAAAEEEEAAAQQQQAABBDwECEg9UMhCAAEEEEAAAQQQQAABBBBwL0BA6t6YNSCAAAIIIIAAAggggAACCHgIEJB6oJCFAAIIIIAAAggggAACCCDgXoCA1L0xa0AAAQQQQAABBBBAAAEEEPAQICD1QCELAQQQQAABBBBAAAEEEEDAvQABqXtj1oAAAggggAACCCCAAAIIIOAhQEDqgUIWAggggAACCCCAAAIIIICAewECUvfGrAEBBBBAAAEEEEAAAQQQQMBDgIDUA4UsBBBAAAEEEEAAAQQQQAAB9wIEpO6NWQMCCCCAAAIIIIAAAggggICHAAGpBwpZCCCAAAIIIIAAAggggAAC7gUISN0bswYEEEAAAQQQQAABBBBAAAEPAQJSDxSyEEAAAQQQQAABBBBAAAEE3AsQkLo3Zg0IIIAAAggggAACCCCAAAIeAgSkHihkIYAAAggggAACCCCAAAIIuBcgIHVvzBoQQAABBBBAAAEEEEAAAQQ8BAhIPVDIQgABBBBAAAEEEEAAAQQQcC9AQOremDUggAACCCCAAAIIIIAAAgh4COT0yCMrEwRicuaU7NlDux6QmpoqySkpmbBVrCKzBHLkyCHZsmUz/0JvA4cP0wYy6/icbuvJbtpKTGxMyJuVfChZUo8cCbk8Bc9sgezZc0h285kSaoqNjZOEA/tDLU45BBBAAAEEnAoQkDrl9a98bO9eUuWyy/wLpHllwdKlcmeHjmly+PVMF9AvkJ079ZQyZcqFtCuLFs2TV1/rHVJZCkWfgAajGxZPDnnHSl3RXJKSDoVcnoJntkD1ek2l2f1tQtqJpIOJ0qtDSwLSkLQohAACCCCQGQKhdc9kxpawDgQQQAABBBBAAAEEEEAAgSwlQA9plB/uGjWv99zDRT98LwkJCZ6vRTLz4goVpWjRonLw4EHZtnWrrFu3NmLVn312Mbno4otFhzRv37ZNVq1aGbTuwBBpLR9OypM3rzz08KMyaEC/cBY7LcoWPftsufjiCidsy4EDB2Txoh9OyHeVkTdfPrn88spyzjnFZdOmjfL9d99JSkpyyKvTdqRDnFf89L+jy5Qvf6GcddZZ8uOPS47mhfqLLnf1NVVkzlezJC4uTtq2e0r69e0V6uJRW07biraZ9Gnd2rWyfv269NkR/zvc93TEN+CvCgPbccQMe05KSpJVK1fK3r177KvnX1BOYmNi5Jdffj7p6rs+111e6tH9pOXOlAJ/5/kkWNs8r2RJyZUrt8ye9UXEKTN6DAsXLiyXV75C8uXLLz+v+Omk56ec5jaeFG7Nifjxo0IEEDgzBAhIz4zjlOGtvPHGenbZCy+6SAoUKCjfLVxg//755xWZEpC279BJjhxJlc2bN0mhQkWk+LnFZUDfPrJgwbwM71NgwWrVa0ibx9vJ3G+/kSJFiphg5xx5uFXLo18cA+UCP+++5z7RL5oD+vcJZIX0M1euXNKocZMzMiDVADDQBm6q30B+XLLYXhjYtm1rpgWkdW6oawM+/QK/du0aqXzFldLxP13kjn81l+Tk0IJSbUdXXnW11Ln+OtmzZ48NIkePGSfbd2yXW25uENJxTFsotwlIq153nQ1IY2JjpcktzQhIDdAll10ulSpWklgTpDe9pbl88N67lm3WrC8zJSAN9z2d9phG8vfAdnzz9RyJNe2jatVq0qVzB/nh+++kdOl/SJ48eUIKSG9t8a+oCkgDnyV/x/kkWNssW7as6EUvFwFpRo5hk6a3iJ5v9MJb0qEkadCwkSwzt968MnyIZzMtVKiQTPrwY6lTq7rn62QigAAC0S5AQBrlR7jbc8/YPbzr7nvln+UvlBeef/boHjdsdLMJDDqL9pZNnvSBjB410vZCfT5jlgleC9irtaNGvm7z9WrvkGGvyfbt26R2nbqiX9Smff6pXf6QCSq6dX1aFi6cf7TutL+88/YY+XrOVzbr3HNLyNRPp8nNDevJli2b5V933CVPPNHeTvA08o3X5E2zPk36JaBTl2ds74T2rA4ZPOBoHbbAX//9uGTR0X0aOnyE6BX8nTt3SN/+gyS7mTBoz57d0qVTB9EA/IknO0gOcxVa93vggL72i2ZJc2W9xHklpYL5Et60cX3f7Um7zjPp95/+t1y6mX+ayv2zvIx8Y4T9Uh3YB9dtQHsuhr3yutSsfq3s2L49sNrjfvq1geMKmT+mT/tMWpme6n59esntd94tc+bMtsdNy2nvqVe71de82tKypT9KuXLl9eXjkvaWajvStqgTT6VvR8uWLZVmzVtI2nbz4H132X3csWOH1Kpd2wb6bR59KFMu+By38RH44/0J4+V9U49evNILCYHPD626VOnS0m/AYDm76Nkyf/48GdCvt3mv7ZTOT3e1JqmHU2XZsh/lyXaP2RERg4YMt+9xDWwTzGfMC92fk0cefcx8DpWXt0a96fvl3Os9PXPGNHm5V1/7/t61a5d06vCkWddSGfHGKPv+37Rpk/Ts3U8+mjzJfg61feIpWWp6zvVzx6uN6+dZn36D5NtvvpZmt7aQl3u8cMLnl25Hjxe6WVVdd8mSpex7p0CB/NZHX9B91CCoxW132H0f2L+f/PflXlKvfkPZbEYCaOCq6cILL5Le/QaKrnevuaDS7vHWsmbN7/a1M+m/QHvwOp94tQ89Vl7vy4ycT4K1zbJlW0mFChXlwymf2lEYw4cNlnHvjJUSJUrI012fl7aPPWKZ773vAdm3b59M+WiyPXY6WqNp0+ayzZzXuj7dyY7AyJkzxvMYag9mt+dflJq1atuRPsOGDDIB58ITPg+eeuJx+U/nZ6Ru7Rr2/JX2+Pp9Tmn50v8oI1/M+kaWLP5BnjHbop89evFOk67rg/cnpK2K3xFAAIGoEuAe0qg6nKHvjJ50H23zuPzrtmbSonkT+wVKT946RK3NI62k6jVXSIN6N8gjrR8THbKaI0dOueTSS2X8uLflqsqV7Im+dp0bpEnjBvKi+aL5QMt/h7Ry7SnVoaKXmeGb2vPY2tR/x+3NpVnTRjbI0C8qZcqUlY6dush9d98h11evYoZ4bjJf7PIGrV+3UbdPe+B06G7DenXluipXSp/ePaV9x062J27woP7y9pjRUrdODfn0k6lSsGBBaX7rbfLlFzOkc8enfLcn6IrP4Bczow1UrnylaFDsF4z6tQEvVr1o0qBBIylW7BwTANwu7//Ve6dl/dqtX1vSCxP/KFPmuNXokO4hw16VeXO/tSMJvNqRLpC+3eh7Q4cUjx71htS47lq7LTWvr31c3dHwh17QeWXoENuLs9YEU/re0TRh/DipVuUqqVb1Ktm/f7/c3OQWm68B3L69++x7eIIJdF948SXp/nxXqVWjqrnwc6ft5bYFff5L+56ue2M90YBAPw96/vdFEwT/eWFtmxmqf8WVV9u6atWuIw0bN7a11apVxw6z9WvjesxqXl9LYmJy2ve+1/Dba6tcJwMHD5Mxb4+3w831M0NTgYKFpHCRIvZ33ccb6taT/iY4f3f8O3LPvffb9lm3dnW5rcUtcsj0jmnSgGPEq8OlZrVr5aknH5dDydE34ZRX+/B7X0bqfGJx//qvoDkurc256+ZGN8nDj7axF6n0+GugHEh63Aqa3khNeuz0QkmdWtVkzOg3bY+m5vsdwxo1a9mZjOvWrinPPdNFOpljqin950GlSpXMSJQlJwSjWtbPo2/vl2W9uZ1Fz03/Meeixjc3PdreG9avK7//vloXJyGAAAJRK0APadQe2uA7dl21arbAww+3tj9jzD1RtWrfYAPOMmb4U7sn29uhadpToj0i2ou6ZcsWe0VYF9Aex4Vm2O3+/ftk+bJl9gu5rSiE/+Lj4yWvCSB1WJwOgduwfr1das7sWXYbdEZRHYa7cuUvNl/X4Zfq1LlRPpz6me2x0l6X/y1fZr5kxpgA2QTVZpjdueeea78E+C0/efJE+WLmDPvyDXVv9Nwe7YmLxpQZbUDv1dQeiUCa/NEnor2mmjS48GsDGnymT8mHDtkv/eMnTJSJE9+TpIMHjyvi1W6vrVo15Lb0Qo+XbRDz1uiRtt59e/f6tqO07UaHgesQ6CWLF9nlPp46RaqY9eoIgmhJGgzq+2mX6RHVY6ZDDHVkwRuvv2Z38emu3aRSpUtEj8HaNWuO7vY006t9yBy35aY3c+WVV8mvq1bZ1zb+8YdcUO6fx90THFjI6z3d8t8PmVEcEyUxMdH2jL/4Uk87RHPhgvm2F0k/n8a+Ndr0hja2X+R1+KaOwNCgU1P6z7mZM6bbHsrA9ttC6f77ffVv8t67482oihxS0wQjb7z5ljxw393pSple0oH9RMtq0h5y7ZnTnmNNyckp9ufq336VBx5saUdl6H3LOuw8mlKw9uH1vozk+STgOG/et/aY69/x5sJIifPOC7zk+/Ozzz61gaNeJG3Z6mFbzu8Y1m/Q0F746NT5aVvuAnMvsQajmtJ+HlxqLrYmJR3/2WQL/fWfl0fg/uRAOe09v+rqa6TVQ4/Y9q5zPpAQQACBaBYgII3moxtk3woXLiIrzT19n//1pVl/btq40XyRvs5e+dWrtKtMQPjue5M8a0k9fPhofqq5RzQwYdDRTJ9fdMjSpeY+teFDB9te0v0mOA2k+APxdqiwDvM6YH4PJekw4Zf++4JsNcHy4b+2qVv3HnbRZ7t21kvSMnLU2KNV6fr9Uv78BcRre/zKn+n5mdEGVpsv6tVr1JTcuXPbYOL225rZnouFPyy1P8M11x567Zl7e+xbUrrUsZ4Pv3Z7MPFgSG1J7wvU++J0cixtI9qTEawdBTv2OmmWXsiJphRnRjMkm169wOeF7luimRRN3/fvTfzQjJLoZoYVDrTDo3VymfTpSOrxz0Q9nHrY9zPD6z2tnvHxx56bqZOk5Tkrj7koNl80WNWh1iNNcHxBuXLSpGkzc7/ej3YT/Np4+u3z+ltvTwjc664XyJYs+9kGwV5lA3nadnbs2BH48+jPXj3/a3qOm5re1Jvk2W7dzf3Tt4oGqdGS/NqH3/sy/X5n9HySvp7A3ynmXBA4JwX7zD9WPsXc4vHnucHvGGpb0l7ydaYnU5O+F7wmBtTRA/ff/6Atk/6/UD30Xv9/P3if/ax7a8x4cyvLCBn15hvpq+NvBBBAIGoEskfNnrAjYQl8YYap6hVe7VHUnh0dVqkn4rJlz7f3h2mPhp7QA1eAw6rcp7D2lj3/Qg8bCOsQJO0pqGoCYB1WpeuqXr2mGT47U+bO/UZq1LjeDrWys11edLFPjWKDDQ2kA8GoFtR9+OjDSTbALmYm9QkkHS6s98b6Jb/t8St/pudnRhvQL1a//bpKHmz5kOXSSYy0xyyQwjXXL4A6hO1AmgsZWpdfuw21LW3YsF5ub9HMzNh8RJ5+5jm7eX7tKLDtXj/1vtOb6tXPtAmjvLbBRZ5667BWDUL180L/aW9l/vz5RYPNzz/7xPb6FTf3iJ9q0otR6d/TOqz++r+GQet96IfMzLdbt26x97Tr58o/zP13Olx/xvTP5cn2HW2gqtvh18bD3caKpvf3iLnQoEM8gyW9t7a66UHWVMTMLh5nJkTSpDPzTp3ykTzRto1MM71yFStWtPnR8p9f+/B7X2bWfmsveQHTRvX8ouc3vfB0suR3DDUY1WH+gfavFyy8ZsXV3la9FUFvKwgknVxOh+H6eezfH2+HA+s2atLtXPnLL/Ye5g5PtbMXigN18RMBBBCIRgF6SKPxqIawTzqkaeIH78krr42UuFxx9gSokzroF0sd7qpDK7WnR2cjPdXUq3d/OZBwQHKYLwVffTVb9ASrSXtCPzKTS0z8cKr9sqcTjAQeLfGaud/qVbNtOtwz5XCKHRoc6na8PXa0vfdLe7vS9qrMnzfXTmykQz61hy198tse/WIZjSkz2oBeKND7unqYiV5ubXGbvR/4nOLFzX2a39jhjImJ/m0gHHO/dqv3robSlrRHVP91eKqtjHv3A7nP9HD4tSOv7dIvkDpLZvHi58oK84iHCe+O8yp2Rue9MmyIPNb2SfuonZKlStkJg/SRJrNnfynTZs62Exmp4czp0yK+n3p8dUj1+5M+spOV9e93bKbsJeaix65dfw6R1UmM9B5j7WXV5NfG9TEuJ0v1zf3Kl5t7oHVytMTEBNGJqvQzMVj65OMpMmDQUGlkgo+dpqc0m/nM06T3V5Yxw5l1JIcGHdM+/yxYNWfka17tY/jQQRE/n4SDoxe/vjAXOT/9fKY9dvq3ToYVLPkdQ51Yq4u5WKUjbvRCbT4T6DYyF8fSJw1S9TOvV5/+tvdeJ/3TWeD79+3te37VR2DpxVj9DFm+fKm9oDV23ARzMe9XG9yGOzN8+m3ibwQQQOB0F8hm7gU6fizV6b7FUbJ975rZGKtcdllIe7Ng6VK5s0PHkMpmpJDeD7bX3C+X9suWfrHWHgj9guk6aQ9pjhzZj5sEQu8D1d407XEaPXactDLDl9L2rJ1sm/QKtQ4T3b179wlFdfhf+nt20hby2p60r0fi95iYWOncqaeUKVMupOoWLZpnAvTeIZXNSKHMaAN6THXYm/YspG1rur2RMvdqt6fSloK1o4Cz9uK/8+775svpjfbijvYWRTrFxcXKhsWTQ6621BXNzfvpWE90yAuGUFAnG0ox7019Pmcg6WRk2nutQ2ldJl13Rn292rirbVUPvcCVNgVm3D1wkl7WtMuE+nvNBmZiuPvbhFQ86WCi9OrQUvbs3B5S+XALebUPr/dluPWeSnn9zNeed68eTb96vY6hltX7ZfPkyRv0HBKoU89BefPms595gTz96eehbUTftxqg6np0BEL6dpS2Hn5HAAEEokWAgPRvOpIx5mQTuMflZJugX96TzVXXrJQ+/nS6DUY3b95sJh2abieziab910Bbe0qymd6XUJK2gcOmp5gUvoDrthQISOvVrRX+xoW4hN7fppN9hZqSDyVLaiZcTAp1eyjnViB79hx2yGeoa4mNjTPDj4/dkxvqcpRDAAEEEEDAhQABqQtV6oyIgPZOue5xiciGUslpL+C6LenFpfS9vqc9ChuIAAIIIIAAAgicBgIEpKfBQWATEEAAAQQQQAABBBBAAIGsKBDaeMGsKMM+I4AAAggggAACCCCAAAIIOBUgIHXKS+UIIIAAAggggAACCCCAAAJ+AgSkfjLkI4AAAggggAACCCCAAAIIOBUgIHXKS+UIIIAAAggggAACCCCAAAJ+AgSkfjLkI4AAAggggAACCCCAAAIIOBUgIHXKS+UIIIAAAggggAACCCCAAAJ+AgSkfjLkI4AAAggggAACCCCAAAIIOBUgIHXKS+UIIIAAAggggAACCCCAAAJ+AgSkfjLkI4AAAggggAACCCCAAAIIOBUgIHXKS+UIIIAAAggggAACCCCAAAJ+AgSkfjLkI4AAAggggAACCCCAAAIIOBUgIHXKS+UIIIAAAggggAACCCCAAAJ+AgSkfjLkI4AAAggggAACCCCAAAIIOBUgIHXKS+UIIIAAAggggAACCCCAAAJ+AgSkfjLkI4AAAggggAACCCCAAAIIOBUgIHXKS+UIIIAAAggggAACCCCAAAJ+AgSkfjLkI4AAAggggAACCCCAAAIIOBUgIHXKS+UIIIAAAggggAACCCCAAAJ+AgSkfjLkI4AAAggggAACCCCAAAIIOBUgIHXKS+UIIIAAAggggAACCCCAAAJ+AgSkfjLkI4AAAggggAACCCCAAAIIOBUgIHXKS+UIIIAAAggggAACCCCAAAJ+AgSkfjLkI4AAAggggAACCCCAAAIIOBUgIHXKS+UIIIAAAggggAACCCCAAAJ+AgSkfjLkI4AAAggggAACCCCAAAIIOBUgIHXKS+UIIIAAAggggAACCCCAAAJ+AgSkfjLkI4AAAggggAACCCCAAAIIOBUgIHXKS+UIIIAAAggggAACCCCAAAJ+AgSkfjLkI4AAAggggAACCCCAAAIIOBUgIHXKS+UIIIAAAggggAACCCCAAAJ+AgSkfjLkI4AAAggggAACCCCAAAIIOBUgIHXKS+UIIIAAAggggAACCCCAAAJ+AgSkfjLkI4AAAggggAACCCCAAAIIOBUgIHXKS+UIIIAAAggggAACCCCAAAJ+AgSkfjLkI4AAAggggAACCCCAAAIIOBUgIHXKS+UIIIAAAggggAACCCCAAAJ+AgSkfjLkI4AAAggggAACCCCAAAIIOBUgIHXKS+UIIIAAAggggAACCCCAAAJ+AgSkfjLkI4AAAggggAACCCCAAAIIOBUgIHXKS+UIIIAAAggggAACCCCAAAJ+AgSkfjLkI4AAAggggAACCCCAAAIIOBUgIHXKS+UIIIAAAggggAACCCCAAAJ+AgSkfjLkI4AAAggggAACCCCAAAIIOBUgIHXKS+UIIIAAAggggAACCCCAAAJ+Av8HWh5JfrN47HAAAAAASUVORK5CYII=", "text/html": [ - "
\n", + " " + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.plotly.v1+json": { + "config": { + "plotlyServerURL": "https://plot.ly" + }, + "data": [ + { + "customdata": [ + [ + 42, + "bronze" + ], + [ + 38, + "silver" + ], + [ + 50, + "gold" + ] + ], + "hovertemplate": "
Total medals: %{customdata[0]} %{customdata[1]}", + "marker": { + "color": [ + "rgb(194, 144, 80)", + "rgb(169, 180, 195)", + "rgb(255, 222, 94)", + "rgb(0, 0, 0)" + ] + }, + "name": "Event A", + "opacity": 0.8, + "text": [ + 42, + 38, + 50 + ], + "textangle": 0, + "textfont": { + "color": "black" + }, + "textposition": "inside", + "type": "bar", + "x": [ + "Bronze", + "Silver", + "Gold" + ], + "xaxis": "x", + "y": [ + 42, + 38, + 50 + ], + "yaxis": "y" + }, + { + "customdata": [ + [ + 32, + 70.65, + 184, + 268 + ], + [ + 29, + 70.65, + 184, + 268 + ], + [ + 38, + 70.65, + 184, + 268 + ] + ], + "hovertemplate": "
Medal distribution: %{customdata[0]}%
Participation: %{customdata[1]}%
Team players: %{customdata[2]}

Team Score: %{customdata[3]}", + "marker": { + "color": [ + "rgb(194, 144, 80)", + "rgb(169, 180, 195)", + "rgb(255, 222, 94)" + ], + "line": { + "color": "white" + }, + "size": [ + 38.285714285714285, + 38.285714285714285, + 38.285714285714285 + ] + }, + "mode": "markers", + "name": "Team metrics", + "opacity": 0.5, + "type": "scatter", + "x": [ + "Bronze", + "Silver", + "Gold" + ], + "xaxis": "x", + "y": [ + 42, + 76, + 150 + ], + "yaxis": "y2" + }, + { + "customdata": [ + [ + 63, + "bronze" + ], + [ + 49, + "silver" + ], + [ + 58, + "gold" + ] + ], + "hovertemplate": "
Total medals: %{customdata[0]} %{customdata[1]}", + "marker": { + "color": [ + "rgb(194, 144, 80)", + "rgb(169, 180, 195)", + "rgb(255, 222, 94)", + "rgb(0, 0, 0)" + ] + }, + "name": "Event A", + "opacity": 0.8, + "text": [ + 63, + 49, + 58 + ], + "textangle": 0, + "textfont": { + "color": "black" + }, + "textposition": "inside", + "type": "bar", + "x": [ + "Bronze", + "Silver", + "Gold" + ], + "xaxis": "x2", + "y": [ + 63, + 49, + 58 + ], + "yaxis": "y3" + }, + { + "customdata": [ + [ + 37, + 72.03, + 236, + 335 + ], + [ + 28, + 72.03, + 236, + 335 + ], + [ + 34, + 72.03, + 236, + 335 + ] + ], + "hovertemplate": "
Medal distribution: %{customdata[0]}%
Participation: %{customdata[1]}%
Team players: %{customdata[2]}

Team Score: %{customdata[3]}", + "marker": { + "color": [ + "rgb(194, 144, 80)", + "rgb(169, 180, 195)", + "rgb(255, 222, 94)" + ], + "line": { + "color": "white" + }, + "size": [ + 47.857142857142854, + 47.857142857142854, + 47.857142857142854 + ] + }, + "mode": "markers", + "name": "Team metrics", + "opacity": 0.5, + "type": "scatter", + "x": [ + "Bronze", + "Silver", + "Gold" + ], + "xaxis": "x2", + "y": [ + 42, + 76, + 150 + ], + "yaxis": "y4" + }, + { + "customdata": [ + [ + 15, + "bronze" + ], + [ + 25, + "silver" + ], + [ + 23, + "gold" + ] + ], + "hovertemplate": "
Total medals: %{customdata[0]} %{customdata[1]}", + "marker": { + "color": [ + "rgb(194, 144, 80)", + "rgb(169, 180, 195)", + "rgb(255, 222, 94)", + "rgb(0, 0, 0)" + ] + }, + "name": "Event A", + "opacity": 0.8, + "text": [ + 15, + 25, + 23 + ], + "textangle": 0, + "textfont": { + "color": "black" + }, + "textposition": "inside", + "type": "bar", + "x": [ + "Bronze", + "Silver", + "Gold" + ], + "xaxis": "x3", + "y": [ + 15, + 25, + 23 + ], + "yaxis": "y5" + }, + { + "customdata": [ + [ + 23, + 77.78, + 81, + 134 + ], + [ + 39, + 77.78, + 81, + 134 + ], + [ + 36, + 77.78, + 81, + 134 + ] + ], + "hovertemplate": "
Medal distribution: %{customdata[0]}%
Participation: %{customdata[1]}%
Team players: %{customdata[2]}

Team Score: %{customdata[3]}", + "marker": { + "color": [ + "rgb(194, 144, 80)", + "rgb(169, 180, 195)", + "rgb(255, 222, 94)" + ], + "line": { + "color": "white" + }, + "size": [ + 19.142857142857142, + 19.142857142857142, + 19.142857142857142 + ] + }, + "mode": "markers", + "name": "Team metrics", + "opacity": 0.5, + "type": "scatter", + "x": [ + "Bronze", + "Silver", + "Gold" + ], + "xaxis": "x3", + "y": [ + 42, + 76, + 150 + ], + "yaxis": "y6" + }, + { + "customdata": [ + [ + 49, + "bronze" + ], + [ + 40, + "silver" + ], + [ + 50, + "gold" + ] + ], + "hovertemplate": "
Total medals: %{customdata[0]} %{customdata[1]}", + "marker": { + "color": [ + "rgb(194, 144, 80)", + "rgb(169, 180, 195)", + "rgb(255, 222, 94)", + "rgb(0, 0, 0)" + ] + }, + "name": "Event B", + "opacity": 0.8, + "text": [ + 49, + 40, + 50 + ], + "textangle": 0, + "textfont": { + "color": "black" + }, + "textposition": "inside", + "type": "bar", + "x": [ + "Bronze", + "Silver", + "Gold" + ], + "xaxis": "x4", + "y": [ + 49, + 40, + 50 + ], + "yaxis": "y7" + }, + { + "customdata": [ + [ + 35, + 75.54, + 184, + 279 + ], + [ + 28, + 75.54, + 184, + 279 + ], + [ + 35, + 75.54, + 184, + 279 + ] + ], + "hovertemplate": "
Medal distribution: %{customdata[0]}%
Participation: %{customdata[1]}%
Team players: %{customdata[2]}

Team Score: %{customdata[3]}", + "marker": { + "color": [ + "rgb(194, 144, 80)", + "rgb(169, 180, 195)", + "rgb(255, 222, 94)" + ], + "line": { + "color": "white" + }, + "size": [ + 39.857142857142854, + 39.857142857142854, + 39.857142857142854 + ] + }, + "mode": "markers", + "name": "Team metrics", + "opacity": 0.5, + "type": "scatter", + "x": [ + "Bronze", + "Silver", + "Gold" + ], + "xaxis": "x4", + "y": [ + 49, + 80, + 150 + ], + "yaxis": "y8" + }, + { + "customdata": [ + [ + 54, + "bronze" + ], + [ + 64, + "silver" + ], + [ + 60, + "gold" + ] + ], + "hovertemplate": "
Total medals: %{customdata[0]} %{customdata[1]}", + "marker": { + "color": [ + "rgb(194, 144, 80)", + "rgb(169, 180, 195)", + "rgb(255, 222, 94)", + "rgb(0, 0, 0)" + ] + }, + "name": "Event B", + "opacity": 0.8, + "text": [ + 54, + 64, + 60 + ], + "textangle": 0, + "textfont": { + "color": "black" + }, + "textposition": "inside", + "type": "bar", + "x": [ + "Bronze", + "Silver", + "Gold" + ], + "xaxis": "x5", + "y": [ + 54, + 64, + 60 + ], + "yaxis": "y9" + }, + { + "customdata": [ + [ + 30, + 75.42, + 236, + 362 + ], + [ + 35, + 75.42, + 236, + 362 + ], + [ + 33, + 75.42, + 236, + 362 + ] + ], + "hovertemplate": "
Medal distribution: %{customdata[0]}%
Participation: %{customdata[1]}%
Team players: %{customdata[2]}

Team Score: %{customdata[3]}", + "marker": { + "color": [ + "rgb(194, 144, 80)", + "rgb(169, 180, 195)", + "rgb(255, 222, 94)" + ], + "line": { + "color": "white" + }, + "size": [ + 51.714285714285715, + 51.714285714285715, + 51.714285714285715 + ] + }, + "mode": "markers", + "name": "Team metrics", + "opacity": 0.5, + "type": "scatter", + "x": [ + "Bronze", + "Silver", + "Gold" + ], + "xaxis": "x5", + "y": [ + 49, + 80, + 150 + ], + "yaxis": "y10" + }, + { + "customdata": [ + [ + 18, + "bronze" + ], + [ + 26, + "silver" + ], + [ + 23, + "gold" + ] + ], + "hovertemplate": "
Total medals: %{customdata[0]} %{customdata[1]}", + "marker": { + "color": [ + "rgb(194, 144, 80)", + "rgb(169, 180, 195)", + "rgb(255, 222, 94)", + "rgb(0, 0, 0)" + ] + }, + "name": "Event B", + "opacity": 0.8, + "text": [ + 18, + 26, + 23 + ], + "textangle": 0, + "textfont": { + "color": "black" + }, + "textposition": "inside", + "type": "bar", + "x": [ + "Bronze", + "Silver", + "Gold" + ], + "xaxis": "x6", + "y": [ + 18, + 26, + 23 + ], + "yaxis": "y11" + }, + { + "customdata": [ + [ + 26, + 82.72, + 81, + 139 + ], + [ + 38, + 82.72, + 81, + 139 + ], + [ + 34, + 82.72, + 81, + 139 + ] + ], + "hovertemplate": "
Medal distribution: %{customdata[0]}%
Participation: %{customdata[1]}%
Team players: %{customdata[2]}

Team Score: %{customdata[3]}", + "marker": { + "color": [ + "rgb(194, 144, 80)", + "rgb(169, 180, 195)", + "rgb(255, 222, 94)" + ], + "line": { + "color": "white" + }, + "size": [ + 19.857142857142858, + 19.857142857142858, + 19.857142857142858 + ] + }, + "mode": "markers", + "name": "Team metrics", + "opacity": 0.5, + "type": "scatter", + "x": [ + "Bronze", + "Silver", + "Gold" + ], + "xaxis": "x6", + "y": [ + 49, + 80, + 150 + ], + "yaxis": "y12" + } + ], + "layout": { + "annotations": [ + { + "font": { + "size": 16 + }, + "showarrow": false, + "text": "ThunderCats", + "x": 0.11222222222222222, + "xanchor": "center", + "xref": "paper", + "y": 1, + "yanchor": "bottom", + "yref": "paper" + }, + { + "font": { + "size": 16 + }, + "showarrow": false, + "text": "Dog Patrol", + "x": 0.47, + "xanchor": "center", + "xref": "paper", + "y": 1, + "yanchor": "bottom", + "yref": "paper" + }, + { + "font": { + "size": 16 + }, + "showarrow": false, + "text": "Power Birds", + "x": 0.8277777777777777, + "xanchor": "center", + "xref": "paper", + "y": 1, + "yanchor": "bottom", + "yref": "paper" + } + ], + "barcornerradius": "50%", + "barmode": "group", + "height": 400, + "hoverlabel": { + "align": "right" + }, + "hovermode": "x unified", + "showlegend": false, + "template": { + "data": { + "bar": [ + { + "error_x": { + "color": "#f2f5fa" + }, + "error_y": { + "color": "#f2f5fa" + }, + "marker": { + "line": { + "color": "rgb(17,17,17)", + "width": 0.5 + }, + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "bar" + } + ], + "barpolar": [ + { + "marker": { + "line": { + "color": "rgb(17,17,17)", + "width": 0.5 + }, + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "barpolar" + } + ], + "carpet": [ + { + "aaxis": { + "endlinecolor": "#A2B1C6", + "gridcolor": "#506784", + "linecolor": "#506784", + "minorgridcolor": "#506784", + "startlinecolor": "#A2B1C6" + }, + "baxis": { + "endlinecolor": "#A2B1C6", + "gridcolor": "#506784", + "linecolor": "#506784", + "minorgridcolor": "#506784", + "startlinecolor": "#A2B1C6" + }, + "type": "carpet" + } + ], + "choropleth": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "choropleth" + } + ], + "contour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "contour" + } + ], + "contourcarpet": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "contourcarpet" + } + ], + "heatmap": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmap" + } + ], + "heatmapgl": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmapgl" + } + ], + "histogram": [ + { + "marker": { + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "histogram" + } + ], + "histogram2d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2d" + } + ], + "histogram2dcontour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2dcontour" + } + ], + "mesh3d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "mesh3d" + } + ], + "parcoords": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "parcoords" + } + ], + "pie": [ + { + "automargin": true, + "type": "pie" + } + ], + "scatter": [ + { + "marker": { + "line": { + "color": "#283442" + } + }, + "type": "scatter" + } + ], + "scatter3d": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatter3d" + } + ], + "scattercarpet": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattercarpet" + } + ], + "scattergeo": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergeo" + } + ], + "scattergl": [ + { + "marker": { + "line": { + "color": "#283442" + } + }, + "type": "scattergl" + } + ], + "scattermapbox": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattermapbox" + } + ], + "scatterpolar": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolar" + } + ], + "scatterpolargl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolargl" + } + ], + "scatterternary": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterternary" + } + ], + "surface": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "surface" + } + ], + "table": [ + { + "cells": { + "fill": { + "color": "#506784" + }, + "line": { + "color": "rgb(17,17,17)" + } + }, + "header": { + "fill": { + "color": "#2a3f5f" + }, + "line": { + "color": "rgb(17,17,17)" + } + }, + "type": "table" + } + ] + }, + "layout": { + "annotationdefaults": { + "arrowcolor": "#f2f5fa", + "arrowhead": 0, + "arrowwidth": 1 + }, + "autotypenumbers": "strict", + "coloraxis": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "colorscale": { + "diverging": [ + [ + 0, + "#8e0152" + ], + [ + 0.1, + "#c51b7d" + ], + [ + 0.2, + "#de77ae" + ], + [ + 0.3, + "#f1b6da" + ], + [ + 0.4, + "#fde0ef" + ], + [ + 0.5, + "#f7f7f7" + ], + [ + 0.6, + "#e6f5d0" + ], + [ + 0.7, + "#b8e186" + ], + [ + 0.8, + "#7fbc41" + ], + [ + 0.9, + "#4d9221" + ], + [ + 1, + "#276419" + ] + ], + "sequential": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "sequentialminus": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ] + }, + "colorway": [ + "#636efa", + "#EF553B", + "#00cc96", + "#ab63fa", + "#FFA15A", + "#19d3f3", + "#FF6692", + "#B6E880", + "#FF97FF", + "#FECB52" + ], + "font": { + "color": "#f2f5fa" + }, + "geo": { + "bgcolor": "rgb(17,17,17)", + "lakecolor": "rgb(17,17,17)", + "landcolor": "rgb(17,17,17)", + "showlakes": true, + "showland": true, + "subunitcolor": "#506784" + }, + "hoverlabel": { + "align": "left" + }, + "hovermode": "closest", + "mapbox": { + "style": "dark" + }, + "paper_bgcolor": "rgb(17,17,17)", + "plot_bgcolor": "rgb(17,17,17)", + "polar": { + "angularaxis": { + "gridcolor": "#506784", + "linecolor": "#506784", + "ticks": "" + }, + "bgcolor": "rgb(17,17,17)", + "radialaxis": { + "gridcolor": "#506784", + "linecolor": "#506784", + "ticks": "" + } + }, + "scene": { + "xaxis": { + "backgroundcolor": "rgb(17,17,17)", + "gridcolor": "#506784", + "gridwidth": 2, + "linecolor": "#506784", + "showbackground": true, + "ticks": "", + "zerolinecolor": "#C8D4E3" + }, + "yaxis": { + "backgroundcolor": "rgb(17,17,17)", + "gridcolor": "#506784", + "gridwidth": 2, + "linecolor": "#506784", + "showbackground": true, + "ticks": "", + "zerolinecolor": "#C8D4E3" + }, + "zaxis": { + "backgroundcolor": "rgb(17,17,17)", + "gridcolor": "#506784", + "gridwidth": 2, + "linecolor": "#506784", + "showbackground": true, + "ticks": "", + "zerolinecolor": "#C8D4E3" + } + }, + "shapedefaults": { + "line": { + "color": "#f2f5fa" + } + }, + "sliderdefaults": { + "bgcolor": "#C8D4E3", + "bordercolor": "rgb(17,17,17)", + "borderwidth": 1, + "tickwidth": 0 + }, + "ternary": { + "aaxis": { + "gridcolor": "#506784", + "linecolor": "#506784", + "ticks": "" + }, + "baxis": { + "gridcolor": "#506784", + "linecolor": "#506784", + "ticks": "" + }, + "bgcolor": "rgb(17,17,17)", + "caxis": { + "gridcolor": "#506784", + "linecolor": "#506784", + "ticks": "" + } + }, + "title": { + "x": 0.05 + }, + "updatemenudefaults": { + "bgcolor": "#506784", + "borderwidth": 0 + }, + "xaxis": { + "automargin": true, + "gridcolor": "#283442", + "linecolor": "#506784", + "ticks": "", + "title": { + "standoff": 15 + }, + "zerolinecolor": "#283442", + "zerolinewidth": 2 + }, + "yaxis": { + "automargin": true, + "gridcolor": "#283442", + "linecolor": "#506784", + "ticks": "", + "title": { + "standoff": 15 + }, + "zerolinecolor": "#283442", + "zerolinewidth": 2 + } + } + }, + "title": { + "text": "Event Accumulative scores, by teams, date 2024-08-15" + }, + "width": 900, + "xaxis": { + "anchor": "y", + "autorange": true, + "categoryarray": [ + "gold", + "silver", + "bronze" + ], + "categoryorder": "array", + "domain": [ + 0, + 0.22444444444444445 + ], + "matches": "x4", + "range": [ + 2.333420934014389, + 5.666579065985611 + ], + "showspikes": false, + "showticklabels": false, + "type": "category" + }, + "xaxis2": { + "anchor": "y3", + "autorange": true, + "categoryarray": [ + "gold", + "silver", + "bronze" + ], + "categoryorder": "array", + "domain": [ + 0.35777777777777775, + 0.5822222222222222 + ], + "matches": "x5", + "range": [ + 2.042262111908157, + 5.9577378880918435 + ], + "showspikes": false, + "showticklabels": false, + "type": "category" + }, + "xaxis3": { + "anchor": "y5", + "autorange": true, + "categoryarray": [ + "gold", + "silver", + "bronze" + ], + "categoryorder": "array", + "domain": [ + 0.7155555555555555, + 0.94 + ], + "matches": "x6", + "range": [ + 2.5, + 5.5 + ], + "showspikes": false, + "showticklabels": false, + "type": "category" + }, + "xaxis4": { + "anchor": "y7", + "autorange": true, + "categoryarray": [ + "gold", + "silver", + "bronze" + ], + "categoryorder": "array", + "domain": [ + 0, + 0.22444444444444445 + ], + "range": [ + 2.333420934014389, + 5.666579065985611 + ], + "showspikes": false, + "showticklabels": false, + "type": "category" + }, + "xaxis5": { + "anchor": "y9", + "autorange": true, + "categoryarray": [ + "gold", + "silver", + "bronze" + ], + "categoryorder": "array", + "domain": [ + 0.35777777777777775, + 0.5822222222222222 + ], + "range": [ + 2.042262111908157, + 5.9577378880918435 + ], + "showspikes": false, + "showticklabels": false, + "type": "category" + }, + "xaxis6": { + "anchor": "y11", + "autorange": true, + "categoryarray": [ + "gold", + "silver", + "bronze" + ], + "categoryorder": "array", + "domain": [ + 0.7155555555555555, + 0.94 + ], + "range": [ + 2.5, + 5.5 + ], + "showspikes": false, + "showticklabels": false, + "type": "category" + }, + "yaxis": { + "anchor": "x", + "autorange": true, + "domain": [ + 0.575, + 1 + ], + "range": [ + 0, + 66.3157894736842 + ], + "type": "linear" + }, + "yaxis10": { + "anchor": "x5", + "autorange": true, + "overlaying": "y9", + "range": [ + -142.55236177224447, + 341.55236177224447 + ], + "side": "right", + "type": "linear" + }, + "yaxis11": { + "anchor": "x6", + "autorange": true, + "domain": [ + 0, + 0.425 + ], + "matches": "y7", + "range": [ + 0, + 67.36842105263158 + ], + "showticklabels": false, + "type": "linear" + }, + "yaxis12": { + "anchor": "x6", + "autorange": true, + "overlaying": "y11", + "range": [ + 19.913556465205872, + 179.0864435347941 + ], + "side": "right", + "type": "linear" + }, + "yaxis2": { + "anchor": "x", + "autorange": true, + "overlaying": "y", + "range": [ + -43.11828380240105, + 235.11828380240104 + ], + "side": "right", + "type": "linear" + }, + "yaxis3": { + "anchor": "x2", + "autorange": true, + "domain": [ + 0.575, + 1 + ], + "matches": "y", + "range": [ + 0, + 66.3157894736842 + ], + "showticklabels": false, + "type": "linear" + }, + "yaxis4": { + "anchor": "x2", + "autorange": true, + "overlaying": "y3", + "range": [ + -111.53376394597754, + 303.5337639459775 + ], + "side": "right", + "type": "linear" + }, + "yaxis5": { + "anchor": "x3", + "autorange": true, + "domain": [ + 0.575, + 1 + ], + "matches": "y", + "range": [ + 0, + 66.3157894736842 + ], + "showticklabels": false, + "type": "linear" + }, + "yaxis6": { + "anchor": "x3", + "autorange": true, + "overlaying": "y5", + "range": [ + 12.159411694935368, + 179.84058830506464 + ], + "side": "right", + "type": "linear" + }, + "yaxis7": { + "anchor": "x4", + "autorange": true, + "domain": [ + 0, + 0.425 + ], + "range": [ + 0, + 67.36842105263158 + ], + "type": "linear" + }, + "yaxis8": { + "anchor": "x4", + "autorange": true, + "overlaying": "y7", + "range": [ + -38.04577611319182, + 237.04577611319183 + ], + "side": "right", + "type": "linear" + }, + "yaxis9": { + "anchor": "x5", + "autorange": true, + "domain": [ + 0, + 0.425 + ], + "matches": "y7", + "range": [ + 0, + 67.36842105263158 + ], + "showticklabels": false, + "type": "linear" + } + } + }, + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6QAAAGQCAYAAAC5y61PAAAAAXNSR0IArs4c6QAAAERlWElmTU0AKgAAAAgAAYdpAAQAAAABAAAAGgAAAAAAA6ABAAMAAAABAAEAAKACAAQAAAABAAADpKADAAQAAAABAAABkAAAAABUH4gHAABAAElEQVR4AeydBXwUxxfHX5y4EmIQ3K04xaEULdAChULx2p96CxXqLS2lUC81irZoS3G34u7uLkFC3OX/fhP2cne55O4gRvLm87ncyuzs7Hf3NvPmmY23t3c6SRECQkAICAEhIASEgBAQAkJACAgBIZDPBGzz+XxyOiEgBISAEBACQkAICAEhIASEgBAQAoqACKTyIAgBISAEhIAQEAJCQAgIASEgBIRAgRAQgbRAsMtJhYAQEAJCQAgIASEgBISAEBACQkAEUnkGhIAQEAJCQAgIASEgBISAEBACQqBACIhAWiDY5aRCQAgIASEgBISAEBACQkAICAEhIAKpPANCQAgIASEgBISAEBACQkAICAEhUCAERCAtEOxyUiEgBISAEBACQkAICAEhIASEgBAQgVSeASEgBISAEBACQkAICAEhIASEgBAoEAIikBYIdjmpEBACQkAICAEhIASEgBAQAkJACIhAKs+AEBACQkAICAEhIASEgBAQAkJACBQIARFICwS7nFQICAEhIASEgBAQAkJACAgBISAERCCVZ0AICAEhIASEgBAQAkJACAgBISAECoSACKQFgl1OKgSEgBAQAkJACAgBISAEhIAQEAIikMozIASEgBAQAkJACAgBISAEhIAQEAIFQkAE0gLBLicVAkJACAgBISAEhIAQEAJCQAgIARFI5RkQAkJACAgBISAEhIAQEAJCQAgIgQIhIAJpgWCXkwoBISAEhIAQEAJCQAgIASEgBISACKTyDAgBISAEhIAQEAJCQAgIASEgBIRAgRAQgbRAsMtJhYAQEAJCQAgIASEgBISAEBACQkAEUnkGhIAQEAJCQAgIASEgBISAEBACQqBACIhAWiDY5aRCQAgIASEgBISAEBACQkAICAEhIAKpPANCQAgIASEgBISAEBACQkAICAEhUCAERCAtEOxyUiEgBISAEBACQkAICAEhIASEgBAQgVSeASEgBISAEBACQkAICAEhIASEgBAoEAIikBYIdjmpEBACQkAICAEhIASEgBAQAkJACIhAKs+AEBACQkAICAEhIASEgBAQAkJACBQIARFICwS7nFQICAEhIASEgBAQAkJACAgBISAERCCVZ0AICAEhIASEgBAQAkJACAgBISAECoSACKQFgl1OKgSEgBAQAkJACAgBISAEhIAQEAIikMozIASEgBAQAkJACAgBISAEhIAQEAIFQkAE0gLBLicVAkJACAgBISAEhIAQEAJCQAgIARFI5RkQAkJACAgBISAEhIAQEAJCQAgIgQIhIAJpgWCXkwoBISAEhIAQEAJCQAgIASEgBISACKTyDAgBISAEhIAQEAJCQAgIASEgBIRAgRAQgbRAsMtJhYAQEAJCQAgIASEgBISAEBACQkAEUnkGhIAQEAJCQAgIASEgBISAEBACQqBACNgXyFlz8aSPtH+U3N09sm1x29YtdP36tWz3Pwg72j/agdzc3OnI4UN08uSJB6HLudrHpwcMojdGvE2dHm1LYWHXc6Vte3sHGjxkKF26dJFWrlieK21KI9YTGDRkGL362pvUvl1Lun3rlvUNyBH3TeCF4S/Rc88PpxbNGlFsTMx9t5ebDZQpE0otW7Wm0qXLkKOTE50/f44WL5xP4eHhWU7j4OBAbdu1p9p16lBCQgLt37eXNm3cYLJei5atqFq1GhQQGEi3b9+iPbt3maxrfHCNmrWocuUqtGrVCqtZWdo/nBP/057o1ZsqVqxEKSkpdOL4MVowf566LuM+WbrevcfjdOrUKTp65LDJQzp3eYycmLGpcpzPf+zoEVO7ZJsQEAJCQAgIgfsm8MALpO+O+oAqVqqcLYhhQwYUuEDa/+mB9M6o96kjC1RXLl/Otq+mdgQGBtHvf0wlW1tb2rBhPQ3s39dUtSK9zdnZmXx9fRUDay80O/ZOTo70wUef0n/r14pAai3UXKyvu7c2eW+ssWXbblrP9/v9UW/n4hU8+E25OLuo35eNjY3VF5Pd78vqhkwc0LFTF/pt4mS159bNm2RrZ0c+Pj701lvv0vD/PUcb/lunOwoC3MRJU6npw83owoXzhGsaMfIdmj1rBo16ZySlpqbq6i5ZvpqqVq1GycnJdO3aVQoJKa3eLevWrqbnnhmitusq6y1AGJ37zwKeHHSjNi0fprNWCO/W9K9Jk4fptz8mk4ODI23dspk8PD1o0KAhPCn3Fg3o14dOnDiu1yvLFuvUqUvf/fAzjf/qy2wF0tFfjFXPgakWf/rxOxFITYGRbUJACAgBIZArBB54gRQUMHvbr09Pk0CioqJMbs/PjY6OjuTh4XlPAlX3x58gDBShxYM2uGRJf7p580Z+dv+BPld27OPi4qjFw40oPj7+gb4+6bzlBNw93MnFxcXyA6SmWQLZ/b7MHmhBhWtXr9Cbr79C69etYS3mbfUerFa9BguF8+mnn3+lh2rXYO1hsmppxFtvU9Vq1al71460f/8+ta1T5670868Tad/ePUow1U45h4XUvbzt0MEDSlCFsDjyrXcI2vohw56l33/9Wauq+w4pXZqmTZ+ptKkQSK0tlvYPlhsQRsPCwqjHY50I7ykUaIqXrVxD47/5nh7r0sHi02Mi9NFHO1LZsuUs+v8D1m+89nKW9uU9mQWJbBACQkAICIFcJJD3aolc7Gx2TaXwTDcGLKY+mAXHrPlfM+dS48ZNszRRvkJFta/dI+11+0qUKEHvffAxrV63kY6eOEvLVqyhvk/11+3XFiZP/YuG8gAG7f45Yw4dOnqSNmzeTgMGDtaqUPceT9BAnt1G+fa7n9S50Bf0yZLyRM/eBLPjn374luxYQ9CDBdTsSr36DeiPydNp6/Y9tHnbLtasTqHWbdrpqmPwCK3BwiUraO/+I7Ro6Up64823yNfPT9V5sm8/1T8MivQLZuzR54qVKuk2d32su9oWFBysNI0bt+ygHbv30+djviIcD03Gl199rfqx/9Bx+vb7n8hVbyCHOmgT5zQuX43/ht56Z5TxZoP1KlWq0qQpf9J/m7Yp7tt27qXpM2bTw82a6+rlxD49PV31W58nBntjx32jO15/YeTb79KEX35Xg2JtO7jMmPU34fpw7Rj8BgQEartz/A4NLcsaiwkEbvsOHqPFfC9wDmiC9Yu5ewrOX3/7g+J84PBx1R8cY1y0ZxUayWefe4F+/X2Sun6tniXPPLT0T/V7mhYsXq6uGX2fOGka6f92tPas/fby9qLPPv9S/X72HjhKP/z0i4Ep/rivv6Nx47812ezb775HP074zeQ+beO0v2aRm6sbwVQTzx0+aFO/WHI/X339TfW72bX3IB08coLWrNuk7huEGv2i8W7WvAXNnvuvekb/+XcRNW/RUlWDeeTceQvoyPEz6j3Ttt0j+ocr4SEvWLu5u9OYseMJv5fDx07RrDnzqG69egbnxool15nT70tr0BKmWl3j7wMH9tM/f89R73Xsw28W5qZLlyxWE3zB/O5BwXvlyT79aDWb0WrCKLYvX7aEDh86SEOfeQ6rujJ50kRlzqtpTaOjo+jnCT+q/dVZ4DUuXl5eNP3PWbRp0waaPjVDY2tcJ6d1a/qH3yeepfPnzuqEUbR98eIFOnnihDJbzulcxvu+/GI0tW3dnJqzObYlJSkpWZlDwyRa/yMCqSX0pI4QEAJCQAjcK4EiIZCau/jDhw5Rw0aNqT/7IhqX3k/2oYdZODx44IDahYE5BLahw56hs2dOsyD4nTIVg6Dy3AvDDQ7HYPPFl16lmXP+JgwkVq9aqXxwYPoEvycU+DJp/8wx8ImIuKM+EJTNleo1ahIELwzKDvJs/qmTJwkCqqnSq3cfwoC3XLlytHTpYjb12kS1atVhAetrVR39gwA6/MWX6eKFCzR37iyKjIigl199ndq3z5hxx7EYsNvaGpru+ZUsqbbrD7qhMUDdRYtXUOcuXWnvnt106eJFgr/nxElTaOWa/6hVqza0e9dOxRH9HsIaCK3gHDge5zQu9es3pJq1ahtvNlgvy8c9VK8+azkO0p/Tp9KK5cuoQnmeXOCJAWxHMccewmulypnm3vBPxcQDJin0C6772ef+R+E86YFBMQp4z5zzD5UJDaUpkyfS5k0blf/a4mUrDQRv/Xa0ZX//UjR/0TJq0vRhpf2Z8ec0Hvzdpv8Nf5nq1H1Iq6bOkdM99fb2pqU8WdKhYydatXIF9+MPwr36mwUdYwEHzyqEoOWr1tH7H36iJkTw3KNY+sxj8gKTDHe4r5Mn/a4mSjCAf+31Ebo+3+vCvPmLqR37/x1g7Rb85SDsYIJBK9euXlWTF9VYC6ZfMJny3PP/M2uWHxkRSWl875ISk3S/wejoaF1Tlt7PDh06ESbAVixbStOnTaGzZ0+rd8D3Pxpq1bR3wzQWZFDWrlmtXAt++32ymtj4ccIvlJaaRmtWryR/f3/eNlFN5GgdygvWuM+LeDKhD08CHWRhb9aMvyiGzU6bNs06OWbJdZr7fVnKVLtmS7/xG0llv0rNn7w0m9xC832YfeyNyyEWSCuxSwcm83Iq2u/uyhVDlwr4VGLi6+atm/TWiNdzaiLbfdb0D/8jdu3aQY888qia7NTMqIOCgtQ7Ec9dXhdMXJrjldd9kPaFgBAQAkKgeBEoEia7VapWo01bd5q8c++89SZt2bxJzZbDhAsagpi7A1FofHo83pPWrVurM4N9lge3EAI7tm+jTIHR6M8TfiBoWF5+5TWaNmUSJSYm6s6FAcSggf3UTDw2BgYG0Zbtu+nxJ3rRxg3/santMsJgAv5HH34wSgltuoPNLECIg8kWZvpR5v0zV/miVuXrhZmyVjCD/+HHn6qBDHxMtf5hMNWHBSwUCDsYzA8a0E/5TWrHwreoRAlnbdXq71kz/6Lvv/taBd7AwdD6ILDI+HFf0s8//aBM4jCogsDRvEUr+unH760+h6kDwLZhvVoGvmE/fv8Na3720RPMHmZ61rL/e85seunl11jo76V8rbTzdumaEexj9uyZahPMryHUof3hLzyrE1IhGC/kAf+gQUPVM6Mdb/zd9bFuShP6ZM8etGPHNt1uCMcpySlq3ZJ7OpwnQ6CR7dyhHR07dlQd9+vPPykN5ofsHwtGCIiilXosqE/gewJBCmbfmibc0md+4OAhSggdMuhprUnVBiYW7rdAQzXxt1909xOmhnhmMWkAP7rZs2eoyZO+/frTRx+8pztd7yf78uDZniDU51ReeekFthY4oXgbmyRacz979+qRJZjNe+9/pCaroK3WD7aDd8PT/Z7U3RtcCzSSlfn90unRdroAZZi8goVFfdZsa89DXrB+5tnnqQIHyXl22CA1gaHxgvALjah+seQ6c/p9WcNU/7zmlmGlgffYMp50g0CMgkkYFO29rlbu/kGQJrznvfnewA81u9Ktew+1a+H8f3VVcNyPE35V1h49unXJ1rdUd0A2C9b2D++UiX9MpY8+GU3w0Z0zZxb1Y8sETEz+wO+4vCyY3Dp19hKlpaWpd8SSxYuUdY7+c52X55e2hYAQEAJCoHgSKBIa0vj4OGXKBXMu40/0XR/SOSxMQEMA4UIr0FAFBQXT3DkZgga2Q3uA4EH6Ah+2r2QNHAZZMLXUL1vZnBZmYVpBkIxzZ89QcEiItumevpV5LmuJIIxqfkTz//1HDRSMtaSPstbG09OLvvtmvE4YxUkhmGomZhi4Y7CLID76BWZx2iBYf7ulyxBu9IUeRKtEmT51ik64gFYR2+s3aMiBOgzNgS09j3E9aJ01kzvcEwz2oZWKjIygsuXKG1e3aB0RPMGiZ88nDUxze/Z6UkU4RpRjFEQ9hnbyN/Y10zSm2A7tHrQ2tWrnrN3VNOZlyxtqh6EBP8emeiiW3FMMojfys6oJozgOg3RMmpQrX4FqsIZdv/zNA9qvx4/VTb5o/neWPPOYVEC/fXx9DUxp0Qb8zu63zPt7ru5+oq1pUzJMI3FfUa5euUIIYoOJHv1IoNBoI5Iq7t29FmvuJwQcFGjk6j5UT5kr472CYvzc4d2gf29gLYCyZfNGnTCKdW1702YZmsq8Yg128J2ENt1cseY6TbVlDVNTx5vaBuY/sWk2tLowRdUKfosomoCqbdffptXR36ctY1ISLgh4l+lHMf+YBcKGjZrQ4IH91XtFq2/qu0PHzkqjCRcO7aNZeWjntrR/EKyvsv8sfFxvcQTgUe99yJYYZZVWW3vnoQ+wtNDOpX3ru4uY6mdO21atXE4/fv8tjf70I/UNi5dhbO48edoMg99cTm3IPiEgBISAEBAC90KgSGhIYYL6/LNDc7z+7du2qhQfEC7mzMoQQCHY3bxxg9atzRhQQ1gKDg5h7ZUfwY9Nvzg4ZKAKZAFWf9CiX0dbjuIBhZNTxiBV22btN7SJJdmUb8XypUqri+NjYmNo587thEBHX44ZrYRTbC9XPkMAyy4sPwbwgaylXbUq79ObaMKznZ3hXAe2wxTMmaNfJidHotv3VSCwv/7mSGXWCq00Csz4bFirceb06Xtue+7sWconE5MV21iggGkyzL0/+jBTK1fursALP0Hj4unpwayDjTcbrK9mM82Rt96lr8Z9y2bMz9A2fjahzdQX7Cy5p6VKBSh/OoPGeeXsmTNqU2jZsoQJB63oD2a1bdY887NnzqDX3hih/GUhCEO4+Xfe3zlqnrTzWPuNiZ2kpCRlcaAdO3PGn9Sm7SOE6KsLF/yrTJ5xL8Z8/qlW5Z6+rbmfMKP/6JPPWJuZObmimd/b2+f8OsX14B7Y2Rqaj2q/GUwqoWCSI7dZ4/cSyoFtMDFnSbmf60T71jC1pD/Q5v86cbJKufLsM4NVJF3tuKioDNNrvF+MizZ5ERVpOrgdfHrhO759+1b67JMPdYfD5L0vayX79e1lcC5dBZ6g0S8QBI0tBUZ/9rGarLS2f/A5Rr81LTVcCD5nNxC4jVSrXl1nIVC6TBmlRdXvR2xsrHJh0N9m6TKsifTLN19/RZr2vx2bEEMrLUUICAEhIASEQF4QyHkElRdnLKA2Mciby6ZPME+DkIGchzDh/Wv6VJ2Gz9XVVZl3QeOydMlCkz09ftc00uTOuxvT2dyJG8qpitl9PTkHHQqCxpgq0BzBbxHF1cVVfWuaN7Wi9weaBU3rorc5TxbVtZtoOS2dmeRi+ZIDs/RirS9MhqE5PnP6FN25c0cFoLqf02DQ9clnXxAmLiCQQqsEQWLBv/N0zSJaKwo0CampKbrt2kLEnQht0eQ3TAdbtmjC5sGvKuFK025Aizx08NPs4xhh9p7CJxj3NDExw2xR/0QJCRmRg535vpsr1jzz334zTmmQh7/4CvtIt1G/H/iPfvrxBwZRTM2d09L90LzDbFIrmDiCBrpf/6eVQNqv/wCVtmPN6lValXv6tvR+wtwVpucwd4Y/IfJcXr58iU2B22b7OzXuUHo2vwN9TTuOyW3Wrq5uyjrBlFmrcR9z4zotZWp8blPrmDRBQLHmzVvS66++pPxx9eshjygKfhPGxYXf6SgIeGdcMOmE9yv8TIcNGah+51odTA5AKMT9NlXWb9iiJhfKh2ZMho188zUy/r1peXWt6R9cOxCU7IP33tGZhiOWQf+netPM2f+wj/vTSjuMdz0sNtq0ytCqa33M7v2r7bf2ew5bDyF2Qo2aNUUgtRae1BcCQkAICAGLCRQbgRRE4IPz+hsjVWCgC+fPq3xy8M/RCgQBmHzC1HXhgvna5lz7trUw1yKiMsJkE6bDG9avMzg/hJB3OPcqtLuaQKqZK4Zw8ngIZsYFglpUVKTKt2e8T38dfkMo8CmFEJaXJS0tIzjQvfivQtvTiQMpIVAMcgxaUixlD23VksULlQkfBoU9mTNS7uC50Mr5cxnmoYjoicHivRQIBjA7xAepfBD59vn/vagCD0ETaO6e4llFG5p2WL8PmoYWJnfmirXPPPw58YGgCBNpRMaFphqTPdrzY+6cluyHDy0mUjQTZhwDARUa7JfYl7suB7bBhNKPHH3alOY3u3PoC7haHUvvJ7Rm6NP/nn9GCQPa8Xn1nZus8fuHEONfqpTZ7t7LdRr/vixlaq4zMIdGLlJoMl9+8QWeKFyU5RBo01EqV6mSZR+2QTDUzNO1Cq1at1VRyBHcafCg/jrhT9uPyYZ3384arAv96NK1G0F7eCMsTKuuJkZ0K0YL1vSvYcPG6uhLly4ZtILf1rZtW1QwMgitMPOGCfC9vn8MGs9hRbuvmm97DlVllxAQAkJACAiBeyaQqX645yYenAPhhwYhDsJcz95P6iLA6l/Bju3blY8gzKGMC3yBNH8x4305rUMgRNHSq+RUF/s6sUkiZvvhzzPpj98NPn9M/I02/LdeadY0jcA+Hjyh9OnzlPrW/6MJLKgDsyvjtCIYoMP0EwW571DK3zUBViv8pzQLurldMEBEoAzjc0EQcffwyPF0HrwfkW8RsVi/QKOhn1oG+6xlj2Ng1ohcgwisA1/MORxQR7/s4sEgNFrwrzJVNOam9mEbfF4xsaAVaNx+YMEKg06YSqJYck93796poulCy6lfHuvWXfkdZ2fCrV8Xy5Y88zCH1L8u9BWWBIgsjcBKCBqjFQRnGjh4KGsO22mbrP7u8XgvdcxO/j3qFwQ3AvtffpvEQrGNMm3V35/TMp4FmOMbF0vvJ6Klohg/d6baND6HNet5xfoYW3cg8rWxH7fxe8ma68zu92Up05y4QEuJtEqNOb3SsCGDTAqjOB4CJwQ0XJsWqAvb8a6rW7ceLVu2BKu6Ap/RyVM5PdaWTTTw6b5ZhFFUxEQIJoaMP4gmjrJ44QJlnaFWzPyxpn8XLpxXrT3+RM8srbZmIRolL4RQBF4yNVnTsXMXdc4DB/apb/kjBISAEBACQiAvCBQJDSn+mb4w/CWTfJYvXWLgA4QARj/9/LvycYKZlXH5/LOPadXaDZx8fQGbzY1XQZKQlgFmVMgniui7VzkFhTXlyJFDahAN7ewEjjLrxLP+V65cotOnsmoz0S4EZsyqa8FOjM+1eNECeqT9o5zuozMtmD9PRZSFqSmipaampSqNHvzZkBC9Q6fO1Kp5Exoz+lOVImTO3wto3FdjVF67ypWrqBx9s3jgNZuTxe/cvk3185PRY1RkRWiDunTtrtKKGPchN9Z3sN8WNMFInYPAUAgGNHTYc0pwNw4qpX8+DIKhCUYaE/jzIvhHlSrVaPDQYUrYu3L5sq66texxIAadaH8w+3deZk0FojTrF/QVzxFS3EAIhh8ltJXQXEB7co0DkozMIUUE7hMCniD4EMzuEPm571P91IBQCzqFKMHm7unX48aqVD6Tp/5JY7/8QmnB8eygD0hXpAkL+n03tWzJM5/IGvP1G7eqFDcQRK9fu0ZVOdopgmWBh2aeiPYHDBhMg4YMI1O/L1Pnx7YXX36Fr3cJwQcO5ujIlwu/Wvj26RfcD+SDhPABbdmNG5laKv16ppbxnMD/FIGQ8NxgIgZBwyy9n0jHgev64stxNPOv6XwKGzUh8KSJiSBT57d0GyZk8oL1FE7Vg3ytUzhIzfRpk3nSxZ3T6zyeZeLAmuvM7vdlKdOcmMBXt0HDRsokH+mVMMmhXy5fuqjz/5/B9wO5jsd/8x1N41yhmKyDv7M9W1Po+82WKROq8v/iecVz3NvEvVvKFhKmTHz1z23tsqX9Q8ArBOaD9v/V108rqx4H9p/txvcJ/4P+nD7VIJKzuX4gIjECkfndzTUdWjZUWTZgUgcaeK08zkI6TOBn8f8BTGQhPRLyCyMyM/4PrV9nGAxPO06+hYAQEAJCQAjkBoEiIZBCQ/Mum7GaKqdPnTQQSGF+CQ2Hg4OjMs00Pgamkt26dKBPRn9BYznnojZrjIEycgZGRpkOjmHcjv46oqciKM4gFmjn/JNhCozQ/qYEUmihmj7cTGlFjf3KtDYRFAdmxU+wnykEUpQRb7zKQu4V1to9z7lGX1HbYGaKgRAKtCP9+vRS1/X7H1PUNvzBYAM+VCgQAseNHUNvjnyb/pg8XQmn8Nv74vNPVaRHVSkX/3w++hOV8/Otd0apViFAjfniU3r++eFmz/LKy8MJOR0RdAMFJom//jxBBXzSP9ga9vrHwZQb0S3ncr5WU/dh1DtvczTlc/S/F19SQpl2LBjCrzWnAgG3GQtd3/0wQVcNA+D3R73Nz1imP6S5e4rctEjjg0H4/IVLVVvQPP/w3TcqFY+ucTMLljzzaRyMZ+2aVQbPF5pFIKZR775lcAaYNUL7jcBDlpaaNWvTkKHP6qojpciIN7JOGKECIl5DIMXg3JryFQvt0EzDRxiWDng2IJCiWHI/Fy9aSDCpVNrfu9oqCMww34QAnVsljt81ecEa/a9YsbJKn4MAPHiucf3QAkIY0Yo115nT78sSpto5TX1jsgcFftz4GJd1a1frBFJMCiEK+tvvvqeri2dwyOABasJKO9bRyVE9A5jERFoVU2U/TwbltkBqaf/gKjFs6ED65NMvVLwDTGJm+IonqlRS3349zlSXs932Jj+XiHislT59+3Mk+f5qNTQk03wb7y08D9r7FBVgBYH/Lwj2ZOodqLUp30JACAgBISAE7peADZuhZjjz3W9LRfB4DIgwMw+/QmiErPFVyw4HTIGhTbNUe5VdO9lthwANE1toSq+xJtdUn2HuGhgYSFdZC4u+GBeYzcKs9Bz7SkLQy8sCf1Atoiyiw2IQZGmB6WGlylVUdUw8mPN7zSv28AH1ZS3E5SuXTfLM7nowgEZ6oJiYaHWv9NPn6B9j7p5iwIp7Dk2rJRz02zZeNvfM434hYjOeIWiijZ8PaB137jmgBs9jx3xu3HyO6+AIHhd4Uiin3wdydgYHB1Pb1s1zbC+7nTDr9vP14wmcy7qAZvp1zd1PpNtAYDT8vjT/QP3jc2s5r1jj+iuUr6B+38iVml2x9jpz+n2ZY5pdH6zdDmYVKlRUE3aa+au1beRlfWv6h7y2SCUEX1GkEssuaF1u9hfvsQCeFIUACtNgU6lqcvN80pYQEAJCQAgIARAQgVSeAyEgBHKNAEyGkUajedMGVpu2W9KJKlWqKpP6j9niYMrkPyw5pMjWyWvWRRacXJgQEAJCQAgIASFQqAjYFqreSGeEgBB4oAnAXHf1qhV5IowCDHzaoCma98/fDzSn3Oh8XrPOjT5KG0JACAgBISAEhIAQMEdANKTmCMl+ISAELCYAs+Fk9oODj3NeFAQkQl5HRPct7iWvWRd3vnL9QkAICAEhIASEQP4QEIE0fzjLWYSAEBACQkAICAEhIASEgBAQAkLAiICY7BoBkVUhIASEgBAQAkJACAgBISAEhIAQyB8CIpDmD2c5ixAQAkJACAgBISAEhIAQEAJCQAgYERCB1AiIrAoBISAEhIAQEAJCQAgIASEgBIRA/hAQgTR/OMtZhIAQEAJCQAgIASEgBISAEBACQsCIgAikRkBkVQgIASEgBISAEBACQkAICAEhIATyh4AIpPnDWc4iBISAEBACQkAICAEhIASEgBAQAkYERCA1AiKrQkAICAEhIASEgBAQAkJACAgBIZA/BEQgzR/OchYhIASEgBAQAkJACAgBISAEhIAQMCIgAqkREFkVAkJACAgBISAEhIAQEAJCQAgIgfwhIAJp/nCWswgBISAEhIAQEAJCQAgIASEgBISAEQERSI2AyKoQEAJCQAgIASEgBISAEBACQkAI5A8BEUjzh7OcRQgIASEgBISAEBACQkAICAEhIASMCIhAagREVoWAEBACQkAICAEhIASEgBAQAkIgfwiIQJo/nOUsQkAICAEhIASEgBAQAkJACAgBIWBEQARSIyCyKgSEgBAQAkJACAgBISAEhIAQEAL5Q0AE0vzhLGcRAkJACAgBISAEhIAQEAJCQAgIASMCIpAaAZFVISAEhIAQEAJCQAgIASEgBISAEMgfAiKQ5g9nOYsQEAJCQAgIASEgBISAEBACQkAIGBEQgdQIiKwKASEgBISAEBACQkAICAEhIASEQP4QEIE0fzjLWYSAEBACQkAICAEhIASEgBAQAkLAiIAIpEZAZFUICAEhIASEgBAQAkJACAgBISAE8oeACKT5w1nOIgSEgBAQAkJACAgBISAEhIAQEAJGBEQgNQIiq0JACAgBISAEhIAQEAJCQAgIASGQPwREIM0fznIWISAEhIAQEAJCQAgIASEgBISAEDAiIAKpERBZFQJCQAgIASEgBISAEBACQkAICIH8ISACaf5wlrMIASEgBISAEBACQkAICAEhIASEgBEBEUiNgMiqEBACQkAICAEhIASEgBAQAkJACOQPARFI84dzoTzLoCHDqFWrNoWmb8+9MJyaNH04z/pjY2NDwSEhVLpMGXJwcMiz80jDQkAICAFrCAwcPJRat2lnzSFSVwgIgSJCwN7egby8vO5rXNK23SM0YODgIkJELqM4EhCBtIjd9QuXw8jcZ8Pm7eqq/zf8JXqk/aOFhsCrr75BLVq2yvX+hIaWpanTZ9DRE2dp6/Y9tHnrLjp55iJN+2sWdejYyarzBQUF0ZdffU2VKle26jipLASKMoGhw57VvXfOXrhKu/ceohWr1tG4r7+jevUbFMillyoVoOsT3onHTp6j/zZupXdHfUAeHp5W92nEyHeoZ68nrT7OkgOef344PdqhoyVVpY4QKFIE9N8d5y9dp/2HjtOCxcupV+8+D/R1Gr9/zl28RkeOnVbvRWPBsVXr1nTg8Anq0rXbPV9zx06d6ZnnXrjn4+VAIVDQBOwLugNy/twlMHLE6wYNvvXWu3Tr9i2aPGmibntMdLRuuagvNGnysBI84+Li6KMPRtHBA/vJ09OLatepQy/87yX6+JPPaeWK5RZj8PL2oaf6PU3Lly6hUydPWnycVBQCxYHAu2+PoKioKPL186NKlSrTEz1705N9nqKXhj9HixctLBAE//w9h9asXkXuHh7UqFFjgiVG7Tp1aUD/PpSSkmJxnx7r3oN2bN9K8/6Za/ExUlEICAHLCODdERkZSX4lS6qJn6+//YFc3dxo2pRJljVQSGvNnTNLvX/s7OzI29ubnuzbj0Z/MZZiYmJo/r//qF6fOX2avvryCzp65HAhvQrplhDIewIikOY943w9w9zZMw3O9wIPvq5euULG2w0qFeGVd9//kBITE+iJ7l3o3LmzuivdsWMbLVwwn0bxfilCQAjkDoF1a9fQ9evXdI19Pe5LmjVnHmtKv6fTp07RsWNHdfvya+HY0SO0fNkSdTq8B8Nv36bn//ci1a/fkPAekCIEhEDBE9B/d8ye+RctX7mWYDX1oAukJ44f40nvZTrAS5csUlrghjw5pgmk58+fowk/fa+rIwtCoDgSEJPd4njX9a+Z/Soff6KXMpGBSSvM7Jo+3Ey/Bk2fMZv6PtXfYBtmMefOW0DNmrfQbYcf1B+Tp1OVKlVp4qRp6qW7fdc+evX1N3V1tIXKlauodg8fO0V79h0mzIY6ODpqu3XfoWxu+/sfU2jnngNs0nKc/po5l6pVr6Hbj4Vff59Ew555jgIDg2jUex+qOuhvq9ZtqW7dh+jnCT8aCKPawTduhNFrr7yordLLr7ymrn/vgaPqXCtWr1cDV1vbjJ8J+jJu/Leq/nsffqyuHwzwjwWlx+M9af6iZeq6YRo8Zdpf4hemyMif4krgzp07NHhgf4qOjqLPx3xlgKF27To0c/Y/6re2bcde9Q6ABsG44Pf+54w5ytwNpsAwA8Y7CZYK91K0QWD1GhnvEfit43e8bededY5NW3fSV+O/Ue8Trf3vf/xZrbdt2173u3/51QxrFO29Bz+wwUOe4ffVVPruhwnaoWTpdeoOkAUhUMwJJCYm0jKeRIKlhb9/KUUDZvZjx31Dm7ftokNHT9Kcv/+l+g0aGpD6beJkevGlVw224RjjMQh+36+9MUJXz5HHHm+/+x6tWbdJmfbjfz80mfolu3GGfh1LlqEZTU1Nodu3bumql69QUb1XataqrduW0/lcXFzo08++ILw3jxw/Q3P+mU/Vq9fUHastyJhEIyHfDwIBEUgfhLuUh32EOd1INuvdtWM7Tfjxe3Jzd1cvff1TNmjQiEJKl9bfRE5OTtS4cVPy9fXVbS9TJpTatm1H/y5cqgagP0/4gTA7+Mabb1GNmrV09SpWqkSLl60i+Fh89814+ubrjIEqAg0h8JBWUG85C8glS/qremPHfK7M7v5dsEQdq9Wr+1A96suD0zXrNiqf2PT0dPLw9GQNSIbv2t9sMmNJKVuuPO3auYOg1fn4w/cVE/ibvfjSK+rwmNgY2rtnt1o+dPAAbdrwn/rgHwt8yzBohTbm/VFv08TffyFbNtHp0/cpS04tdYRAkSUAjSm0AnXq1lXvDVwo/ErnL1pKySnJ9MF779CPP3xLjZs0Ve8FZ2dnHYvqNWrS4qUryZMDfnw5ZjSNGzeGMEHUokUrFZxMV9GKBQw+UWLZjB8lODiE7oSH06SJv9God9+iGX9N5/dYezWhpCrwH7wXYPaPa9F+93i3oeC9h4m5pStW0yuvvUGurq46H1VLr1M1JH+EgBDQEXBydCL8L4+Lj1PBfhbw+6JV6zb02y8T6N23R/IYI4b+/mcBPdysue6Y1NRUNcGubcDYAWOcIUOfJXv7DINA/P6f6PkkRdyJUNXwPpk991/lXrBy5TI1SY3f9pdjxxtMxGc3ztDOZck33IXeensU3eIxA1wJtOLG7wyMpzx53KKV7M6H/s5kq5NeT/alefPm0icfvU97du+igIBA7VD1LWMSAxyy8gAQEJPdB+Am5WUXYbL23LDBlJCQoE6zZ88unnmcTxAGYWJnbUngmc3OHdrRhQvn1aF//P4r7dpzUAmKRw4fUttGvfeR8t3q8Vgnio+PV9swCOzYsbP6B6Q28J8PP/6Mrl29Qk/06KrbvmzpYtq7/wgNHDyExo0do1VV/7D69e1FB9hHVCsTfvldCca32UTPkvLm6xmCp1YXmpRSAQHUvkMnHjB/p2Y0Z82aweceSovY3HfDhvVaVXr/w08IZjej3hmp2zZl8h/KH0a3QRaEQDElcGD/fh4UOijfTQh3sGQ4eeIEDR7QT/fb3rjxP9q4aTsNHfacznzto48/ZUEwlnryOyA5OVnRmzNrZpZ3haVYMeH25lvvqPfO5k0b1GHwCTX2C7165TL9OOE3FZX7yuXL9Nef0+jZ5/9HR48eVu8C4/M5OjrQn9OmKGEWg2itWHqdWn35FgJCgKhq1WrU56l+ymcbMS+GDH2GypWvQI+0bUlnTmeMS5YsXkiYnH7/g4+pc8dHFLYtmzdR5y6PKV9NWGcgaOHZM6cptGw5Zfm1aeMGghYSk99bt2xSx0Cwg6a1Y/s2OpcCmNh6sbXG/158mWbz/3yt4DjjcYa2L7vvUe9/RO/wxDYESfiRomCy/gq7Upkrps4HQfMhnoR//tmhtGL5Ul0TfqxNbswxM7SCAEkyJtFoyPeDQEAE0gfhLuVhHy+cO6cTRnGa03df9tCK3pNAygKmJoyivbS0NDp79gw1bJhh1goNKGY0N7J2URNGUc+4YDazGddbtnQpdev+uMHuyzxYRMAU/QKthb4win1uHBABWg1rSh0OdtKUzwuTYh8fH6XZxTWYK4cPHSSEXYcZEIRV+KtiYHrr5k1zh8p+IVDkCURFRapr1FIbQHP49bixOmEUOy9fukR79+6hxk2bKoEUg7f6/B5avow1qXeF0XsBhQEnzOq9+feMgS5Ma98e+Ybyrdfag7l/8xYt6aF69cnPrySVvmsRAisOCKTmSmREpBJa9ethMGnJdeofI8tCoLgS+PKr8TxRncrWT6XU/92zZ87QWyPeUDhgVg/rI00Y1RgtWriAPvnsc2XZBcEVAinGGA0aNqLVq1ZSx05dWBM5lxo1bqwEVQiksJy6eeMGnTx5QjXTqlVr9e6pzK5G+GglMiJCWT/gd6y9f0yNM7T62X1jYhv+sSjQzsLabNCgodSpc1fq0qk9xbIJb3bF1PnwnkJ/NupNiJs6XsYkpqjItsJMQATSwnx3CqBviQmJ6qyaeUtudAHaV7zUUWBWApO8bVs359h0QGCgGjjWql07i7kwNJ5hYWE5Ho+dZ/gfGnL7IVJfTi991MUgFf8Qe/PgFeYvR44cVjOrzuyrUZZnV82VyZN+V9rQVzgIw+tvjORIo5E8szqTfuGZ0HA2B5QiBIozgerVayjhE78tCH8QNm/eyjpZExZ2nX2hMnw7YZ2A98bu3TvvC10am/ElJibR8aNHVXRsaD+uXr2qa7MbR89F0CWY3sNi5Pixo7z/MsFcWN+FQHeAhQuWXqeFzUk1IVCkCSQnpyhriM2bTxCsixYvWqATBGFWb+p9gTgQKCG8/zib2UIjiAkkTIDv3LGDtaIP03tshn/z5g0OYPiRcqeBNnTr1i06ljC5d3N3o8GshTUu+/fv4/GKC/cjY0LNeL8l6xCk4bKgX9awsAw/1Ucf7agLbKS/P6dluBYd4H6Zm2yXMUlOFGVfYSQgAmlhvCuFsE/3K6BqZmxw6EcJ4n8gORVEwsQxf02fSn9M/C2nqtnuO3V3BrQ5+3eZS+3ShLUyEEbfGvk6wSRQKwjeZFIg5VlY/RLBs6kw14U/bD3WsrRp+wgNHDSEB9+BnPLief2qsiwEihUBvDvwe4DFBSZnELAEpSYLfMYJVLy8vJV/FfbDrxPF2BpCbbTiz7/z/s72HQIzuk9Hf0mbN22kF54bqhsAQ8MCvzPtvaWdzoYMf/fadlPft29nBC0xd52mjpVtQqC4EYAvOXy0TRX8lmrUyIxDodWBxQUKUttpZcvmjcoiAjnWTxw/riy2YL6L/OHwU1dWC+PHatUJbafA97RbZ922vF6A8JyakqL6Aw2qNQWa4IoVK5k9RMYkZhFJhUJGQIIaFbIbUhi7Awd/zPbrF/3AI/rbzS0j2ibMWLWAQ1p9aExseHCoFcz+nWNTX/hBYNBoXLTAJMbb9dcX8Qwr/sFhZtTd3UN/l1qG9kWL1FmrVh21bf3atQb1oDnVL3GxsWoV5sD6ReOBa1u1cgUHXRihZj5bt2mrX02WhUCxIoDf7hdffkUI0PHV2M/Vtcfybwhm/TA90y/w70TgI/hposCk//Spk9SUzfUQVVIrwSEhJiNya/ut+UZbiOyLQaxmlofjTU3A4bePPlpaLL1OS9uTekKguBI4ylrGkv7+KoK/PgO8Q2B+q+8as5nNdmtxBG9kD0DMCRRYLMFn/NnnXlABEbduybTQOnTwINXkoIvlWPNoXCwZZxgfY8k6XAjseKLu5InjllQ3qINxUVBwsEFgR1QwHqvImMQAm6w8AASyjvQfgE5LF/OXwMqVy+lRDuzTvccTKo0Kgnv8Pc/QBMWaHv3551Tlq4WIlPDZRGhyRNJEdEp9E7lPP/lIzWb++vtk9Y3BIzQtYzj6HYIEmCsw08Wsa+mQ0rRq7X8qYh6i/SKaHdIzLF+5jmBii4J/eCjvvveBOhf+0X3x5Tjq//RAtV37c4X9VzFDOXDQYJV+Bv0PCgpSaSlGcLAUrMP3tEmTh6ndI+1p39692qHyLQSKPAH4UXd9rDs9PWCQSqOwZdtujjTdn97hCRpM1GgF0bUr8Cw/3gFI64C0Bz9N+JVNdB3p158naNXY4mAcB1irTEgf9dnnX9Ivv/1Bq9duVKa8+u8K3QFWLly7eo0iIu6o33n7RzuoFC3PPPs8n2eSakn/HNBqtGjZSqWTQtA3pHMxVyy9TnPtyH4hUJwJwEoK1lUff/q5iu8AyyXkEoYf5nffjjdAA2ETk834rS5bukS3b+mSxRznoT1dunSRLl28qNv++2+/0J074TT1z5nKzxQ+ntCiov1FPC6531KF/dbhy4pgS0gl88FHn9KkKdOVP+zcubOtbh4B1mC5gdQ1GMsgvR3S5j3Rs7dBW0iVJWMSAySyUsgJiMluIb9BhaF7C+f/S71796EffvpFdQd+GmPHjM6SHsbSvv7CeUHLl69Ib454W32gSfiGTWjgG6Ff1q9bQ8OGDFBR9OZzKhmtILDBeA6IYknBIBgR+PCPbPQXY9U/KhyXwukmtm/bRtOmZgw8N/y3jr7mPiDYAF7sCGSECHaYYYX5nlagRRnx5mu6nKXYPmRQf47Yt5l9UIbx9ozchPBjQVCFb3lALUUIFBcCmCzCbwcmcjCF27TpP5rx5/QsAcdgRou8gu+Mel+9A8AHA8X+T/Wma9cy/Tvhe/XcM8nUjyeGGrDvFwKRPNG9i8r3Gxl5735d2v3Ae+DF/z1H77z7vsqhjO2nTp5kH7aJun5pdfFbdnV1U4NJDHiRtsE4MrdWV/u29Dq1+vItBIRAVgLw7+7Xp6dKrbaa07uhwPQfqaAQoV+/wF8U7wmkgEFARa1gLIDfuxZdV9sOq61ej3dTY4Sffv5NFwk3MjLCav9OrU39b6SdwQcFQvV1fr/N/OtP+vWXn9Tktn5dS5ZxbSN5DIIJc8TIgHCKiMNrVq+iSpUr65qQMYkOhSw8IARs2FwpM0b9A9Jp6Wb+E4BJbbny5VVEXkTDzI2CHKbIE4bIvinsT5FTgcltQGAAhV0PU+Y3OdXNbh+uoXTpMmTvYK8CH5iK8guzl6rVqnEEzstmgxHBjDmec6TBVwMF2hRoe0qUKGEQaTi7/sh2IVDcCcA0tnz5CpwTNNaiaLbgBe3Inn2H2edzGEfgzdSA3C9LaGxTeMIJ5sQ5FQjSbm6uLDhfy+Jjmt1x93Kd2bVVmLfDRBvvdDt7O35XX1dCgXF/fTk9BaxXtFRj+vtxPCIbI7iVJdHN9Y+V5eJBABZJ+A2ePn1aCZi5edWYaCrNQY5gno9n0NiHPDfPdb9tIRc83lnQ9kKoNlVkTGKKimwrrAREIC2sd0b6JQSEgBAo5gQQARP+Vvv27WUB55rynXr/g49VBNzWLZoSrCukFA4CMHke/833LISmKUEBg/mXX3yBo51uVx2EKeQfk6eTJwsTrizQL+T0WB9/+J5OaEW8APgbQ7uO4FZvjXjNwMy7cFyl9EIICAEhIATygoAIpHlBVdoUAkJACAiB+yYAc/l58zMCk2iNIccvTNZ27dyhbZLvQkAAfnfxHIzuGKfNQXmX/fwbcVRTLXrp739M4UB1Z2nMF5+peAFLl6/m5dEcAX2ZSs21a89BZZaJVBuYhJg6bQY1qFcrx3zVheCypQtCQAgIASGQCwTEhzQXIEoTQkAICAEhkPsEdu/aSfXq1qAKHPQIpvBwF7h48YJZE//c74m0aI7A3j27DaqkpKao+4WNMIVEkLf27VqrOtBsL1m8iAO9dFUCaRv2hYMPMYRRFEw2IMckAtPoB8NSO+WPEBACQkAIFDkCIpAWuVsqFyQEhIAQKDoEENAEHykPBgEt0jJ8RT96f5TqtJ9fSZWWAr75WkHE8oaNG6vVgIAA5bev7cP3lStXOG6AYbox/f2yLASEgBAQAkWHgG3RuRS5EiEgBISAEBACQqAgCQQEBBJyIPp4++hyJXp4ZOSBRmRUrSCoEfxJUTw9vbIEOUJdz7vHacfItxAQAkJACBRNAiKQFs37KlclBISAEBACQiDfCcyc8Sf97/lnOK3FBPr+p5/V+aOiMqKAOjo66voDE2yk1kDBt5NTCd0+LGTsv//UPgaNyooQEAJCQAgUSgIikBbK2yKdEgJCQAgIASHw4BJADkikcEEqrVu3bhJyOAeHlNZdEKLuXufUMChIoRMcEqLbhwXs189Ja7BTVoSAEBACQqBIERCBtEjdTrkYISAEhIAQEAL5T+Cxbt0JOSJRkHd14KAhtJ/T9aSkJCthdN3a1dS3bz+139XVlbo+1p3zyC5V6//9t46Q4qfuQ/XUeqPGTQh+p5s3bVTr8kcICAEhIASKNgEJamR0f5HUG/9AkQtNv8AnxsXFhW7fvq2/WZaFgBAQAkWegIO9LTnyB992NjaUlJrKQkY6JaakcvL4In/5coEWEKhcuSp9/e2PFBFxR/mQXjh/nl55ebjuyNGffkxTpv2lBFF3D3daumQxrV61Qu2PjYmht0e+TjNmzqWbN28QAiKNeONVSfmioycLQkAICIGiTUDykPL9tbOzo9ffHEn9+g8kjK5gatTriW7qzmOm9/MxX1HHTp0pjnOshbNA+szQQWJKVLR/F3J1QqBYE4Dg6eJkRyF+LlSvgg+FlnIlH/dM/z/AiUtIpbCIBNp35g6duBxJcYmpFJuQUqy5FfeLh3luYFCgEiRv3bxpEgeCHkXHRBOEUOOC/7eBrGW9yhF2U3nSQ4oQEAJCQAgUDwIikPJ9Hv3FWKpevQZ9PX4sbd2yWQmoKSkZA6tu3XvQy6++Qd26dFD/ZD/+dDT5+pakl198vng8IXKVRZoAAodAG4EBYLoJVZetra3yAwsLu05paWlZWIjlQBYkD/QGJwdbCvB2pq6NgqlCkJtV1xLDwujSHVfo6MUoio5PtupYqSwEhIAQEAJCQAgUXwLFXiCFz8umrTupZ4/HdEm59R+HX377g44dO0o/fPeN2lytWnVauGQFVa1U1uQAXf9YWRYChZnAjxN+o06duygTOQie//w9h8aNHaPrcpeu3eiLL79S5uteXt701ojXdEnqxXJAh6lILNjb2pCXmyP1bRVK5QOtE0SNAaTyvMXM9efo1NVoiokXjakxH1kXAkJACBRGAlWrVqWKFcuTLbF1QnoCsXMGd9OO0siR7B092ELwFh0/cYrCwsIKY/elTw84gWLvQ9qwURPlF9qRB+bvjPqAYmNjaeqUP2jTxg3q1iIx95rVq3S3+fLlyxye3om8fXxUsnYP/1DdPlkQAg8Cgbg7YZSSnMDP9Up65+03lelc2bLlaNXaDbRg/jw6dfIkubq50bivv6N+fXqqiZqGjRrT1GkzqEG9WspSoHOXrlSvfgNq0vAhneXAqPc/EsuB+3wA3HwCydbe0DT2Pps0e7htajw1KOfCWtFAs3UtqYBIeYM6VKUz12No9oYrlGjLAi77nUopmgQSYyMoMVbSsxTGu1vCzZscXTJywBbG/kmfCgcBf/+SVKdmVXKwjSOHNBY207Ka0xPdJteQkhRY5lG6eTuSdu05kCedT0mMo7hI0+b+eXJCabTQECj2AmlwcIjyVTl/7hytX7uWatepQ5Om/ElP9uqhIgQiMbd+Mu/ExAR185DQ+/atW5QcH11obqZ0pHAQcHBwIP+SJcnf35eTw3upAB/2Dk6qc+nprD5i09gEfo6iIqMo7OZtTolwm7Q8fflxBWlpGb5ZCxf8qzvd+fOs0Tp5gpo3b6kE0jZt2tGlSxd1VgO7du6gGzfCqEXLVkpL2qlzV1q8aIESRtHInFkzleUANK2mTHt1J5KFHAkk8z9j2+TEHOvk5k5nuxTqWM+fGlb2ofS7z0VutV/e35lefaws/bDwJEUnO4hQmltgC1k7qSnQokgpjARS+V0iY5TCeGcKT59CgoOpfu2qZJN4hig1nHK0aUm6xFrTS+TrGkrNG9WmTVu2cxDQ3PX1TuWgolKKJ4FiL5DCb+7QwYM0e9YM9QTs2LFNhZ7v1KmLEkgjIyPJMJm3s6qnJfSOjw4vnk+OXHUWAqVKlaIK5ctyUI5gSk64TQ42sWSTeoPSoxIoOV1v0GZjR/Y2JciH/Tc9SntQxdAalJCQSGfOnueAWmcLRKDzYwG6GvtR79+/T11XQEAA+5VeNrjGK+xnCosBFHOWAwYHyorFBPJT0+TmbE+PPxxKNUI9WBjNcRhicf+NK7qwsved3pVpzJyjdDMyYzLPuI6sk5q08vb2JnzcOCWKs0sJZYnj7u5J0dGRalI0Li6BYjgQUEREhDKjj4+PF3RCIEcCmODCR4oQMEWgJP/fr1W9EqVE7mFhNMpUlWy2HSEn+9JKkP1vw6Zs6shmIWAdgWIvkF68eIEQUIImBgAAQABJREFUuMi4lHAuoTYhMTcSdGsFy9CYamlhvALKa7vku5gS8PHxphrVKpEbj74d0m8QpVzkRHzarCGeo4xnyTSeWN4cS57uXuRb8iFq+HArOnn6nBJOTde//60x4VcpJSlTOEBkzAk//0Yrli+lfXv5HxMXT08vFpIz62AbnntYDKCYsxxQleRPoSXgxFF02z8UyMKoZ7708fXHq9LYv49QZKzMfmvA3d3dKZi1E2XKhCiBND0lhr21+GObRA52ceRoh3fINTafT6UkZ1tKdneg1JJu7N3lTzb27hTH7iWXLl8lTBRFR4uljsZVvoWAELCMQL16dckm6YyVwmhG23Ypl3jcUoUqV65MJ9nNJy8LYlYg6rapwIs5nddcUMacjpV9+U+g2AukWzZvVGldWrVqQxs2rFfCZ+vWbenll15Qd2PlimX0CkfZ/f3Xn9UAvU/fp2jliuU6LVZ8tOQlzf/HtvCcsVbN6lSubBmyTbnMmtAwFQLg3noHnw3WSNo6U9nAECrpVY327j9E0NDndklLzdSG4YX91fhvOJG9A735+iu6U8ECwMnJUJBGRF6tP+YsB3QNyUKhIwB3zhplvahFzZL51rcSjrY0pH0FmrzqDEXFFW+h1N/fnypXqkB+fr6UnhxODvy7d2XfLVdPe6oQ6kYVyriRn7cDubpk/nuOjUuhW3eS6czFGDp94RbFcrAoByfWpJb3oapVKxNSrJw8dYbN6nlCTIoQEAJCwAyB0NBQ1nKmkE3KLTM1s9/tkHaZqlWrQufY5S05OW/e64hnsXT5ahr55msE1yGtvP3uezT8xcwxC7ZjDD+wf19VJaegjFob8l24CGT+xytc/cq33sD8aeSbr9K33/9E4eHhFFq2LP34w7e0bu0a1Qck727JwupOduCOiY5R+dOGDOqv619+mtjpTioLBU4Aga2aNmlEnhyvJT1qB6Wm59bLOI59NG6Ti30ANW/SgHbu3EkIpJUXBbOOX3/7A8E8d+DTfXX+oDjXtWvXKDgkxOC0sA6AxUDG/pwtBwwOlJVCRcCDNflPty1rcZ+Q7Sc8OoE8YQHAaWG0kpKSTndiEqmEox25u7CPqJlSxt9FaWS3Hbv3AZCZUxTq3Z6enlSzZg3y9fYk+/Qwsk3cT+5u9lSvuic1qRvIk0KZbI0vBMIpPqHBztS2aUlKTEqjnQfv0L4jVyk69iL5e/mTT+MGFH4ngg4dYk10HkxkGfdJ1oWAEHhwCcC9yJHuM3hQWiylJUcSslVcuHAh12F8NnoMPdHrSXJjodRUmTN7Br337tu6XZoG1VxQRt0BslCoCBR7gRR3Y/WqlbR+XR3+UQWrwC36porIRwrNkRubV7m5utH169cK1Q2UzuQ/AVf28WrZohmVsIsgu9QredIB25TrLOly9NMG9cjJ0ZFNeM/m6nns7Oxo0tQ/KZHNcgc+/ZRB4C6c6L//1tH4b75X/tT79+2lRo2bsEanJG3etFH1w5zlQK52VhrLNQJ2nN6lY33LoulGxCTRtJUn6OTlCHIp4UDt6gVTx4YZ7gsz1pyiTYeuqVQxSO1SLtCdhnerQc5OOf9L6d2iDB25EFnstKSVK1diYbQWpSVeIvuUg+Tuak91qvlSq0Z+93RvnVjj3KKBr/qs23aTDp8MZ8E0jPw8Aqldu3Z0+PAhNqM7dU9ty0FCQAgUfQJeXj5E8afv+0IdbaN4Uts/TwTSD95/l/DZvisjtoVxZ1M5x5gpzay5oIzG7ch64SCQ8+ihcPQxX3oBwRP+pNmVGPbRwUdK8SYAQQ7CqLN9OJvp5vHkRGoka1KOUa1a1SmVI6CeP5/982ntXXF2cSGYpqOcPHNRd/i5s2eodcuHVSqYt0e+TjNmzlV5Sn39/GjEG6/qtKjmLAd0DcpCoSLg6epIjav6mu1TUnIafTFjL9Wr5EdPtavEGrgS/AxmHla5tBd1b16O3ErYU6Kqu4c2H7pO7RsYatUzj8hcaljZl9YduI5g00W+2LB9dKNGDcnfz5VsEw6SbVo8lfRxogE9ypBzCbtcuX5oTJs+5EN/LbhIN8L5nZQQQVUqhZKXlxft2rXbar+rXOmUNCIEhEChJpCcFEMZsf/vr5s2aXH8rimY9IeNeaIcE+fIeLF48UI6fOiguhhzQRnv74rl6LwiIAJpXpGVdoskgWbNmlIJ+6i8F0Y1evyyt08+RfXr1+fAJTEqZ662636+MbkSGlIqxyYWLVxAy5Yu4ajBQRxx94oKKqAdIJYDGokH67tZdcv8RqH9ZPdi6tOmoi6FqB2va6Vhlcx2HNjUNDUtnXw9DX2OtbrG310aBdGuk5zqqIj7ksKsv0XzZuTiyAGKUk+SnZ0NVSjnRr07mRfajZmZW4dw+2zfcjRn6WU6dzmWnFKPU4BvGWrbtg1t3rwliwWEufZkf9Eg4OodQM4e5iegisbVylVYQ8AnqDLZxFsTWTeb1m1LcEDH6uQXmuHOk00tizcnxUVR1M1LZuvv3rVTRRyHRWN1zhAwf+FSgjsdrLjMBWU027hUKBACIpAWCHY56YNIAP5f3h4OZJdyLn+7jyTVnCOsUcP6tHzFqnw9NwTPSxczNajGJxfLAWMihXfdlbWZLWpkCpI59fT4xTsUwhFdJy0/Trc5bVGgjws91jSUvN0N59SX77hIxy5FUM1yPlS7vOUDX09XhyItkMKsv1XL5uRke0eZ9UNTWqOSBz3W1jJz6ZzuTU77+nQJoUVrr7IJbzQ5pl8kuxLB1KZNK9q4cTPFxUn6j5zYFcV98ZE3KUFS0xXFW3vf1xRxPYQnytg16H6LnQvF3jpJd67kjouAytVuQZ/WrllN+GglISGe+vTNEEjNBWXUjpHvwkVABNLCdT+kN4WUAMzfKleqpMzuCqKLiITnaOdGdevW4VyhBwqiC3LOB5wAgg/Z29tYdBXh0Ynk7uxADWr6cdAie/pv/xX6dt5B+nBAA7JnTZ9WbkTEc8TxdLrFOUYTklIJuU0tKXXKedOlm0VTQEKwsKZNG7MwepuF0Qyz/tKBznkujGrcu7ULooioi3TpWpwShp3t0lV/1q/foIsOr9XN7W+4NCAfMwIE6sdi0D8PzP9jOZ+qqf2SpkGf1P0vp7GrB+EjRQgYE7B14CjfKcZbrV/ndqKjIik1RS/XuvWt3PcRYdfDKDS0rGrHXFDG+z6ZNJAnBPSMsPKkfWlUCBQJAjU5vQslsxlJemKBXY9D2hWqUKFCthHnCqxjcuIHgkC5UqYjFWbX+aY1A6huRT+qWsaLnulSnSB8Xr4Za1B9UIcqNOLJOiyk2tKyHZb7ONer6MMBkHLHh9KgQ4VgBT6jLg4QBjOEUQ83B+Uzmp9dG/h4GcJ5UexSr5KrUwI1adI4T7vwRM/edPDwCVq4ZAXt2L2fJk/9iyB8agVRulesXk9Llq5SUes/+/xLNmPOfAaQpmHfwaM0a+482nvgKD3aoaN2qHwLASGQywRSIIzaWvc/wVQXktM52GfYfUbrNdWwmW29evchF46FgeJXsiT17NVbF3QRQRnLlAlVQRmx3zgoI7ZJKXwERCAtfPdEelTICPjxoMrP14f9RnPBvOV+ro1Ty6QlXqaqVSrfTytybDElEOTrbPGVl/Ryptus9dQKtKC2nJAoOcW0tiXA20WZ9mr1zX17sbDkoO+Uau6AB2R/1apVOa1LCTaXzfCBcuQ0OV3aBORK7xFREvlHLS2dWwUQzo/imHaR++XMOUurWnq41fWuXr1Cj3XtSA3r1aamjeoR8hYPGDhY186HH31KG9avo6aN66n9LVq0pEfad1D7tTQNgzjid+sWTenZYYPo2+9+Imdny59Z3YlkQQgIAbMELly8RCk2lrtZmG7QjmwdS9IVjjGRFwVp6TC55e9fin6bOEUtwwIFpSengzl89BRt2babNm/dRXv27KKpUyapfbDA0IIy/rdxK02aMt0gKKOqJH8KHQHL7KsKXbelQ0Ig/whUKF+ObFPD8u+EOZzJLvUGlQmtR/sPHCT4d0oRApYSKOlp6P+Z03ENKpekfzaeoZZ1glQk3W1Hw1S+0dL+bmz2SbTx4FVqViNA5SVFephdJ25Qa65rTbHlFDRFqXh7e3NwjWoGZv2lfJ2ofGlXs5f5zR9H6XaEofXFEx3KUP1avhTHQuiiNZcoPDJJCfFpHJ64c5tgKh2Yc7sVQl3Jn89/+Xq8Or9T+gXuX21OXXZdBQMx2ykrK2zftlV3BPxVEVykbbtH6LtvxvNzwmmDHmlP7du1VnViY2NpyeJF1LlLV0IKKUnToEMnC0IgXwicOnWaKlbkCaF0zgvN+UTvpaTah9DFCxfzzD8dKRezK0/16Unu7h5UkrWjyI8eH5/xntPq5xSUUasj34WLgAikhet+SG8KIYGg4GAeZBYSv03WkqYmhlNISAingTlfCGlJl+6HgJ2DE9kgvG0eFC/3EsSNW9Ryg6ql6PTVKHp/8k7lQwoh6IXuNamEE/sdsbZ08+Ewmv3fWZWHNCouiZpUK0Xt6pfm9i0XMu3t7Mm+CJnt1q5blyeuEJ2YJXZbRzZJtqEuCGJkCROuM7hnRSof6q67P0pgZ5zrt4eplDvDB2RoN3cfvEWrNl2nYX0q6upmt9CpVSDNXHKF4hORYyeN0rl/dR56iLZs3Z7dIVZvT+OJsbTU5CzHtWzVmv3dM/IHIoexvb0DR+u+rKt3hZcbNs4wI5Y0DTossiAE8oVAYmIiHTx4mGpWr8gWFMf5nKlWnTfd3o81rN50+Mgeq47LzcrR0VGcfSD7SMHmgjLmZl+krfsnIALp/TOUFoowAQyUUpOiyS7dcod9RNR0dbEnFydb8uWcgz6ejpx70JGQHoOnI1nTkUy37yTRnYgkCo9O5pQMqYS8j5YWB5tICgosJQKppcAeoHpuPoFk78CCYx6UlDQ7srN3tLjl/o/WoJ5tqlIMp2fx9ShhIFd9NKQpJSSnUhRrR73cnHSmoRY3zhXtHJ3J092yqL/WtFsQdf1L+lFQ6VBySjnCp8/wm3RzjKWSnH/UkmIL4dyRzZj5Y1zS0u3I0dGRUAfF38+NomM5D/LddeP6+usBpezJw92ZbJwyfK0w6HTyKk+VIpLpxk3WjORCiYu6RfH80S/DnnmOKlWqTC+9+Lza7OHhob4xCNYKghp5eniqVUnToFGRbyGQfwTOnj3L7wd3KlO6EkfcPcvDE8vGOel2vpTuWIG2b9okKaXy73YV+TOJQFrkb7Fc4P0Q8PHxIXsbTrtiQfF0d6DAkiWoYW0fKhNkue9TVEwy7T8WSQf4k5CYxsKpmZnK1Eh24ucgS1KKHIHIsPN5dk32japRanKmX6glJ4J4xO6hlJaS9Tjs83WDRjSJ27WkNcM6DukJFHYZM/O5X+Bn5OyCgB3pPBHEqZoc7Fmzy3HJkhOVhjedt8fwzHo6a35zo9St3IYSb++h5NRwXXNNmvkzN8vAoN7GHVdo/xEH8vNyonpsqut6N2JxozpeNPWf0/TnvCRqWtePNuwMo7ZN/Sxuu3KoA23YkZkjMM0ukfzZ1O3Yvrxh36FjZ3rltTfo6X596NbNjGAnUVEZWgwI1ppQCh9TpGdAkTQNusdGFoRAvhLYf+AAxwaozhNINcku+SLZpBpOLhl0xsaJUmyDKJncafuGDbmWF93gHLJSbAmIQFpsb71cuCUE/Pw4mBFF5ljVjbWhD9XwopYNMyNK5niA0U5Ew8Sx+Fy4EkfLN7CPF2tOU1OzGSxzpN8i5n5nRERWhYD1BCDslHB2pbIVKlH9Rs0pICgk20ZgynXm1DHau2ML3Qm/RVGRd+5ZOEVKKDc3Z7JNyhRGEUG4dpUM7V+2ndDb0bC2L2vG7VRalqOnImnXwds0fEAVNpG2Iy93R57ociF3V3tasPoSa6ptKKiU5RNe9ap70c794Wy2mzHRZZt6m7y8SxP6HRGRIRDqdeW+Frt170EffTxaCaOHDma6Ody6dZMnA5IpOKQ0nT1zWp0DUXfhz4oiaRoUBvkjBAqEwJEjR+nGjZtUi7MJuHuEkE3KHZ6I57Rc6RnvjHQWRJPS3MjR2YfOse/pkaPbJYZFgdypon1SEUiL9v2Vq7tPAi7ObD6ZdsNkK67OdlSOA5Z0f8S6YC4mG7u7MTTYhV7oV56On42m1ZtvsEmkaQ2LKY1VTu3KPiFQVAnYsTbUy8uHHu3ak8qWr2TRZUKDWqVaLfXBAds2raPd2zZSTEz2/kjZNVy2bFkewGVoArU6jo625FwiM6WJtj277xaNSul2NX2oJH098SidvRhD1St50pJ1l5QA+kizQBaaidZsuUoTZ5+id16oZWBGrWvAaMGF31NO7D6gCaTYbZNym9MilMlVgbT/0wPpxZdepb59nqBTJ08a9ALC6Lq1q6lv3370xeefkqurK3V9rDuN+fwzVQ9pGsZ/871K07B/315J02BAT1aEQN4TuMnWDOs4VzHM65FL2NvbiyNluyqLkuiYWNaGnuGJo80iiOb9rSi2ZxCBtNjeerlwSwiUKMH2iklZ/SrgI9qjfRCVZQEyL0rV8u6Ez/T5F1WUzKymhRJhNy+4S5sPFgEPL29q2bYj1arbkHNa2rLvtgu5ODuxAMafu/6YCMiEQEwoCBSE3JepqfDbTqbYuASOEBlPTVu0VZ8Vi/6mE8cOUVysZWb6aDMkOIjs009hUVecWCC914I+uvD7JeGuRvPMhWjq2ra0ao6Vo9S6cQCb4IZR2K14CihpmaZUS/+i9ck+PZxKl67IQU0Oapvu+7tjpy6sAQ2hNes2GbTVsX0bOnbsKI3+9GOaMu0vJYi6e7jT0iWLafWqFaqufpqGmzdvqPylI954NUvkTIOGZUUICIFcJwDzes3EPtcblwaFQA4ERCDNAY7sEgL2DhwExkge9WJf0SG9yvLA13INyL2SRIL7VZtu0P7jEWzylhn4yM7BsmAp93peOU4IFGYCMFstFRBMA597lbw8PTg4jhu5ubpQfEIiJSalcNCfBAqPiOHotJm/Gf3rcbC3Y99Sew7G5Eju/i5qOTI6hnr07k8njh+hRf/MUD6m+seYWvb09GQhl/cks3mbXtH8P/U2ZbsYzulewjnAWQWOsAuB8zQLoLfCE6hsSMZv3N/PmfYfDaeqFTyUQH38bCQL23YcLM3yND4uxtpaTvNgx07A0Ibk1uBzQP8+2V4jdly8eIHatWlBAQGBFB0TTRBC9YukadCnIctCQAgIgeJFQATS4nW/5WqtJJDCwUY4HIruKF8OOPJCv3K69fxYeLSFvxJ+t+67rRNKU5PvLW9YfvRXziEE8pIA0odUqFyVhj7/Cvl4eyoz1tj4BLp87RZBG2pJSU5J5UAeqRTHAixFEzmycArNaungAI6M60OhZcvThG8/pygzPpZ+fuw3nprVD9PVxfLJqhT2Ff9nxQU2xEhTZr6IuN390dLkw+8alG7tQnhS6ip9N/kYa07Z/JZ9Tft3K8eRdy3XwsKiw7jYpEUT+p9bAqlx+9mtX79+Lbtdyhzw0sWL2e6XHUJACAgBIVA0CWT9L1U0r1OuSgjcE4GkxHh27ueBYXoKa2Ds810Y1TrdvIEvp99Iob1HIlTwlXSyfMCrtSHfQuBBJwDNaKMmD9PgZ4crQTQyKo59I41MGO7hIpM4yFFSdAoHE4vl4EHOVLFCOfrki29ozCej6EZYRuAdU80iMJCDLQu1RorYmFjLTer9fUvQ28/XpJjYZBaS08ibNZ/QlGoFgmnfx8qpfRBaTQmXWt3svvHuMC4IWgINrxQhIASEgBAQAgVNwPIp1oLuqZxfCBQAgbj4eI4A4qBSMAzpWTbXegBFDgIWWajQUeft2LIUhQRk+IzZ2uVNrspcu0BpSAjkAYGHm7WgZ154mSdnEunG7chcEUaNuxkdG09Xw8I56q0TffjZl1SxUvaBkjzYVNgmnd8RRgUpoKwpEEDdOdo2hE99YVS/DeQxvhdhFG2Y6g/67eWVkR9U/zyyLASEgBAQAkIgvwmIhtRC4s7Ozmwu5SJ5lyzkVVSqhYdHUICXK7V72Jk83Cz7ucC8DkFH9Eulch40uGcFtenwyQhayOkbXErYs89bCj3eoQxVq2iZpuLpHmVowl8X6E4K+7ZKEQLFhACi4rZr15469+hD129FcFAiI5WkFRzS2K80MT6OnDnSK882ZXtkRFQsOTs50lNPD6VF/86hAwf2Z6mL/wuWJpPPcnBBb0hPItX/gu6HnF8ICAEhIASKPQHLRtjFBFO5cuVp4ZLlNH7cWJo+dbK6agyEPh/zFXXs1JmjMcZR+O3b9MzQQRz+OjPReDHBUywvMzz8DnnWD6FaVawzC2zAie27PZIRGRPgNK1HIpvc/bviIg3tXZFCAl0472gsTf/3DKdwqEkODuYNFpB/tHmj8vTn0hySVxfLOyUXXVQJIEXIww83o8o161JUnKW/w3TasHaFiqbb9tGuOjSHD+6h44cPkKubOyWxqW+jpi0oMKSMbr/xAsyBnT1LUtUatcieAyHt2bPHoAoi9hL7oj6QhXMMqv4/kJ2XTgsBISAEhEBRIiAC6d276eHhSb9OnEzRURzhQq907tKV6tVvQE0aPqRC0H/86Wga9f5H9PKLz+vVyr9FRzbbcnO25+iR6eRWwoG1bHbK7JMzHlACCzuRcclky9JPXGIKrxf+gZK3tzcFBQWp4BrwZ8IAKYUHeE6smUjggCNI5WBjY8v5AaMpPDycrly5QmFhhtrHvKQfFXmTenWpwadAknfLtTIZ6SWyal9OnotkHzFHJYyi36HBrspUD5E1LdWS1q1dlqbM34bDpQiBPCVgy6FYnZzdOCKrE38cOcprpu9ySnIipfInmf2skxMNo8zmVqeQvqVZs2bk4ORK/kHlLG52365tHMU1mko4Z6ZlunLxHJ06fpQ6d3+SXFzd6PrVy7Rt83rq0r03OTplbwIPbWy5ynW4vSh6iLWr+/bt0/XDyYk1pCmWBVLSHVRoFtLJqQT3X4oQEAJCQAgIgQImIAIp3wAIQT//OpEm/fE7dWJNqH7p1LkrLV60QJcPbc6smaxFXcEDM1uC6Vd+FBcO8Y8w/zXKelLjKn4U7Gt+EHEzMpF2nbxN+8/coYTkVIqJzxrUIj/6nt05ypUrR5XYN8vR0YkF52TOCZhKN8OjWNmQlakdqwWhqfbyKUn+/qVYk2hP586fp9OnTrHQmpDdKXJle+lSTuTpgvQEHE0z5YbFbZ67HEPzVl7gyQMH1q6y0F0q457Bb9TT3dDcFmlksN3iYu9Dj7V0ol177fj6C/+kg8XXJRULBQFndx9yZa2gs5u3EkJTEmIpNSWR0lJYO8laNZT0dBsWZjjlib0T2Ts6k42tPSXGRVJs5C3+3OS6VjzPOVx106ZNKTXdlqPeZu/HaXz4mZPH1ARWNdaonj9zUrf7+rUrFBRcRgmj2BgQFMKRdV3o5o3rFFy6rK6eqQVXdw9KIUfyLxVANWrUoCNHjqhqSUkJvPXBLei/FCEgBISAEBACBU1ABFK+Ax99/BmdPHmC5s6emUUgDQgMojWrV+nu0+XLl1XSdW8fH7p96xZh8JZXxZ6SKcjbgXo0DaEA7+xn8E2d39/bnro0duVPGYqOT6aF26/S6WtxlJTGt1yzHzV1YB5vK1M6hGpUr05JrAWNT0imO7EwwYOpqi3ZOjhwXkDTHYAOAnni8bHnT5lyVahmnXoslJ6mI0ePmT7oPrfa26bQy4Mrs/bnFjm4lyabNMvMZMuGeHDwEUcWom3o+s0EmjjnNA14vLzKM4iAoI6O9jyAzzTPhYCdkJRusC3brjuUYuEgihrVcSdvLxeKiM0GWLYNMMO4aEpLzR2BIYfTyK57IODkiryWmVrIe2gi20NseeINgqOpAg2oh28QfwIphYWUpJjbFH39JKUmWZZeyIY1qY6u3uTm6Ud+IVUpPuo2Rd2+SvExd0ydTm1D0CBnd45gnU2pW6c2uXr4UmxCEpUtXyWbWoabw65foTOnT1C7Do/RlUvn1W9K44nzpaTEGfCFoBkXF2uwzbDFzLUq1WvT3p1bCd9JabZ0+fIVFtg5h6kdBwZK50i7egWc9X/jersKZNGW++NQws3w3Bw9PNXW5b7/hyUnxVMKa8mlFD4CDk4uPGFk3dih8F2F9Kg4EUjlycykeENLxeJ0/cX5Wk2PTooRkQEDB/NgpzwNGdjf5FV7cuLwxMTMwUZiYsaMsieb+EIgdXB2N3nc/Wy042AT7g7J1LdlBQryMa8NNXcuD1c7GtCuPA/sUuiv/y5SWBQr+2zz959UiRIlqHatGpzA3oMjZCawMMpSJQuhdvfwzxLCaUxiGiWEx1FQmfJUumwFOnDwMN1i/97cLK52MKP14sEWp1pxL8MCc0kGZ/4cVfmYqnodceC8gXsO36GKrOF2VubWmBPIFEjhgubCmlT9bXqHGyymO5amxDsnuK4dNa5bktbuTuKBr3UCTHJCnAikBlQLzwoGkLb2eaNzw3Ni/KzY2rHlgX8Z8ixZmuLuXKXIK0f5edcTQvWe05wopaelUmL0LfWJuXGaXLwCya90FUpm4TbixkVKjI3Mcrgt5xN1cDb9HiodEkxBrLW8dSea3NxY4IPztJkSHRVFu3dspdaPdGQTX0SrzTD3144NLVeR1q5aTMeOHCRvH1+KioygO3fCKSC4tEXt+wcG8+DeiWJ58qhBwyYUFbuRtaa2ZM+aYkrll6pegcm+Jb9nvUPydBHCcRbBxM6dJx9s7/t/WBrfexFI8/T23XPjmGjKizHKPXdIDhQCZgjYsPuHCKRmIBXR3cVeIP3f8Jdp1arl9Oprb6pbXK58BWWOi8HN/H//ocjISNZoZQ4QS9z1uYnkwQxK1I0L6ju3/iDyarOa/tS+XkagjTQ2lcutwrIQPftIMO07fYc1ppc5QEj+aMl8fX2pQc0alJgURxfPW6ZltPSao1kB48KD2rrVyrJv1x06d+6cpYearVebc3+mwkyRS+ydM+TqVZFsUmG2a53PmKuzDQvLbPKYmkLuLrYUfgcCYaYJ9W1ed3fxNtimTmr0B8JoSvxt1nBmMOzW2puWr9vHXLOaORsdKqsPCIGY8Gt51tPUZBc2pc2cvHDzKkU+wZU4/+ZNunVqizLLza2Tx96+QPiU8Awk/5BKFH0njMKvnuHmM387SfExFHUrLMsp4TdarlFtCrt6iZ/tZKpYvhH3O/P3kuWAuxtOHzvEkdCd6cypDIuJiHDW8kZF0MG9O6hGrYfo/+ydB3xb5bn/f9be8t4rceLsvYEsQkIWuwVKW2ih/be3A1oo7aW0hUKB3g7ovt3AbRnl3rZsQsIKZTQhmyRkOct7D0mWNf1/3uPIlmxZOrIlW46fJx9F0jnved/3fCUfned9VirFq69YtRYnjh1GQ10VMrKypX5Fplk5/Yth1MoUtDTUwOPQo6wwA7VnjkObS39/3tDrms9rjfr3PNh5JGK7uI45O/otClCSptq643H/DUvE/LnPoRHoIg8F8WBhAkyACSQ7gT4zTbLPNEHz++1vf00xRI2SFVRYQrspLlQk1fGei4ES2XQLi2gF/ZyI16Jda2v8L/IWgxo3r51IymhuYLiEPM+blIY7rpmGVGPs7p6xTig7OxsrVqyQrLMddvmJT3qyP0a3ioj5dDq7UN/UjhkzZ6K8vDzWKYZtr6Qbz/XLc3r3eVytZO1pR7empHfbYC/2HmyBx9OjJNpJ6d93qEVy1xXtJ5da0NLuRiW5Tws5U+WAw+FFWXEUSztZM6DOQ2d7n8JdWmhEqqVvsUTqkP9jAjIIZBZNRVpuCex1R2BvrIirMho8fFd7LVpP7yFXfDUKpyyCRoZHydSpU+lv2iUpo2o6Ljs3P7jLQV/nkaUzJycPKrIEi4dw1RVXEPE6IFm0f9nyNVi++lKKB82nv1MXJVTr+zsPtBvsOT0zW9olapUKBVeM4e0Ob+UdrI9k2e7t1tOCa6hlN1nmxvNgAkyACQQIiBwiKYOEmmVkZkJ44IUTkeslj8LuxDNL8hMY9xbSQHmXwEe1cNEibN/+JiUyek7a9OqWl3Hrbbfj97/9jZRA57rrP4FXt7wS94RGaSYNvnL5FKRRcfSREDOZS799/Uw88s8jqG1JTPyPhdxzRYbM5jY7ueiGt/QqyW1PQ4GjFksqRDxXWloGDFSSQaQOFjd7DocNdlsH2tta0U7udV5a6Xe7e6yWwZzcHo80jlBIfT4fKiqENWboYjaoKBkRueIFiaPtBLk2zkOKmm5KPYMnONp7uAX/3HoWFkpW5HD6MHtKKpbNI3dfEq1GgavWFeGx/zsBMy0ICIX16vXFkUu+kHtut6YMnW3HyOoSylHURq0PNc4EzVjeS3GxFhd7wa2/iH05lMilvr4u7Hee6/P2J5bc75XkDpxdQlmj6XvUemYvTbbPYpmomfv9HtgbjkNnyUVB+UI0nDkER1v4vx9R4mUihVDUNvQs+Im4V5ERV44IxTVYeT1z6jhcXU5MpeRGAemm64r4rrsoGdqHez/ApPLplJwp/M1M4JjgZ4s1tfetw+mG8P7wpfgxFn9IfSkmqqvdY03uPSl+wQSYABNIIgJGkwkvvbINd97xNXywc0fvzIRx6I9//h8KA7NSGS8jnnv2n7j3e3f33sds2nw5HvzhjyTjUWpqGr75ja9h66tbeo/nF8lHYCz+jo4oxZdefAErVq7Gzt37STGyw0alBD57U/h406FOTFhGv3RZ+Ygpo4F5qsgKeOfHpuG+Jz6k5Djxdd8VFs5lyy5AW0fnAGVUKJpanRZ5BSUomzwFesPgN5zWtNCkUSKz8ZmTx3Dm9Al0UV3YYOVUWLZbabzZs2ejg1yuGxsbA6ca87OC2Jj7Lw50+2Gn+E1z5hxKcEQuhL6WsP3efO0kdFH2JaFsWmmhoX990dlT0zCzPBXtNo9k4Rxk4e9c36SMaqfA5WyiuIqB55OXpcPx0yIL8NDlnu/fLx18z3fvDukk0gWd6/OGoBoTb0RSn9yyOeRu2ozO5rMjPueujjoqE9OFrMLp5+Irjw6Yw6RJk9Bh66SyVj0eBvFODPT6q8+jy+kki7AHZVOmY+bs+QPmEGmDWDgLiLDiGvUa6frlt5FS2z2GMtam6GjBTyOV0gqcTzyfhWXbQ4uE4URYNBx2e9gM6dEWwML1x9uYABM4Pwnc/4OHcPXHrqU8AgPvEb93z33Y/uYbeOjB+yEWMoXSesnaS8lg9DIpqCb8+Kc/ww3XXYN9+/Zi0eIleOzxJ7Bw/qzeihnnJ7GxfVZsx+73+X32pk8h2GrqpdilO75+Ky5YuhBXX7kZl16yCjVUCzNeYqSY0U+uLkVGv1IgQ+lf3MO12FxUQqXnZk5uH7deMRVmSqoTT1m4cCGVa6DkQ5191ldhmRB1AectXIq1G6+mLLkLIiqj4eYjblgmTJpKiUs244IVa8ltLoPK9vStq7g9XrSQRXbRosXDctMQpWbCic9jh73lMLr1k8kXkErBDCI6rRKZlBm5vzIaaC6Snoh6pBGV0RQ1unVT4e7qoPivPlfdQB/iOT9bvnUn+Djx+pK166SFlps+c0v/Xb0X9Js+9QmsWr4Mn7/lJjzys19RUqaeJFvB9XmXLZ6PDz7YIdXnHdARb0gKAiIus3TqfHjsTaOijAYgeJxtlDjpIDLyKWFbQWFgc++zKAfVGeRNQbm3e/fF+qJkwmSsXrc55LDlq9ZJGXiv+PinSRldQPvC/52HHBT0RtQrVZGyFRAnJYrzU01onyLUmyKwP1mffYp0qulck5DpLV6yFO/v2DOgb2HR2LLtTbz40lbpunP/Az+USq4FGooFsL0HDuOpZ/6OPfsPY92l6wO7+JkJMIFxSOC737kLM6aWQYTOBYtY8FpzyVr87W9PSZsdDgdefOF5iPsSIatXr0Fl5VlJGRXvhWW1oaEey1esFG9ZkpTA0H/tk/SEEjUtu82Gurr4JhwRCTKWUwKjyQVR4gf7nVR9qxO3/eodvLmvTzF+/3A9bvv1O3jwiT345u/exy//eVB20qJUsgRefVER9No+xa7fkDG9zcujDJtZWWQB7IsZFYqoKJewbtPVKCieEFN/gzW2kBvGijUbsHjZihC3PnFDK8rKCEvpUCWSouileFJ70wH4KclQt3rgTfVQxww5TplKSu9MsgK3oHMQZVS0z0zXhhwWyxtRzmjxgjn44x9+Rx7Soa6b0S7o4erzXrp+w7AWAWKZO7eNjcDixYvgFd+llsrYDkxAaw8tsHTUHsGceQsofrNvUaegoECKBw+uRawarA7UEOelpaR0eoNxiEf3HEb5c3uPd5Lrr7g58it6Ykt7dyT5C58iA2fOxtdKLpL/vbn9XTz9zD/Cnn3AorFsyXyIRazly1dIFg3ROGDRGGwBLGyHvJEJMIFxSSAzM4vK6qnJOFTVe/7V9DqX7j2F5ObmhuwT26rJkCTKOLIkL4H4aCDJe34Jn1n/MgqxDJhGVtF183v+gOQe1+ny4r+fP0TKo1ilFzdGPTdH6WYd7v7kAuSmG+AiC+mvnv0Qb+2rweUXlMrqes6ENOw40oyj1cNz/xSDzZo1h2InPefc8ihukmK0LiLLhFHEhiZARDmGtXlX4b23X6NSPA2UmKqbLLNulJVNwsmTp8jNOvZzUikjr9V43R2wNe6HwVpGZR9mIMVDF0ZfvyyWQzrXFIoXpSRaqixKYFQR1k03uFu3R9Qv7UvaErxvsNfd5HosYnQjSbQLerT6vJH65n0jS2DWrFkwaFLIMnoGWoprTgbxONvRUdOMhQsXYMuWV6UpiYUsjzc2747RPhcfXWuaW1phMZHngJ+spHG5BiT4rGixy0m1XYcT0hBuhiJ8YvXKCzFv/gL84Y+PhTQJWDTWrlklbQ+2aAgXu0gLYBz3FYIypjfmzEL6jerJXxDTgdyYCYwSAVEirK3uZMTRRX4SIcElGbtocVDEkwqxUqy/eB8soq0oO8iSvARYIR3mZ5MlEoQMQfxdbfj0ikyqDdfjAimnCz8pEU9sO4HrN1+IM01eTJkskoTkQ2tMped2qcyAVNS+y4Elc5zYebAypv5vunQafvZSJbmJZsiZTtg2udlZSM+fiMaWDpgMPug1Kly0ck3YtvHeuPziDTj04T5y7yBLtkK4uxqweOV6HDgYe+KO/LR2qmUY/bNxOU6RJTMHOvN06WY0xVNPz0Mo6kyJi6DOJYtrHtX0a4GzndyCKRlMtDnk5qYiq2RgfEUktq21FfDQdySSRLugR6vPG6lv3jc4AVN6XlzrkGZlZmDGnNlopwRGCiW5iNPfRbKIjzwN9GkF5OWwEfs+PISJU2ZLdUf1qr7vs3CPVVCGxWQRUbdVYzBD1d1nJVUZdfCQC77GMhM631FpqkpVCvFOnnmLZFZ6S481uktRjppj1bBkl8QFq8vRFrbObHDng1k0Fi1ZIjWLtgAW3Be/lk/A1lQF8WBhAucTAZEjRIjwyggopSLTbqAco3jWUnhFsPTsj4fRILhXfh1PAsnzixnPsxrBvhpOHRjSaKU5RhRYM6kweZ9b62AdiRsbU1oudp3xYuO6VVhcZsSL7xyBytOGrlYfPUiJpH8KhQpKtV7KVmvOmYSrJ0yl2plUQ5MyWgpFNZpoyShYZO7CrmNDOyfR/9SiFaitPEGB41ROITsXSy9YDq9nYFbcaHMZ6v4pU6dDQRbA40cpk2eLD3lZaWg+e6g385rcfrPVFnhcffGvkY7zuE4T49PQmgqgMxbSTT9ZH73NlPiIFFM/fb7dg9RQVJDCqzChW5lGmXszyBpaj67m3ZT4Rb5FVyiWDad6boIjzTHWfdEu6NHq88Y6HrfvIeChouAKKkUSL5laNg+2mo9oAcJGRvE0+i4mjwWy2++T5pZVPB+5mVS3kxIeuZyhCyXdZNkFWSGTRYR3gUiI5Pf1caQUSVBQLoBOiidVag1I8bZQXKmWePe1Ge35S+XM3FTWTJVBbtFunDx+JG5TCtRqjtQhWzQi0eF9TIAJxEKgqalRSppWUFiEkxUnpENFjHpdXZ30WhglCgpDw6nE/v6xqLGMyW0TT4AV0sQzHjCCVq3AFctC/1gGNKINIglQas4EKjVShL0Hj6Ot/gzmpRspKQjV3mysQpfCCFfqwJvXg6dacKqiGdetmw+9Lhvp05ZRAfoqtDdWRlVML19agONVNrSTy2usIhKnpFMZhOq6ZlisaVK9v1j7iEf7ydNmkktaJ2XjPS7FpBXShenMmTPx6DpiHy57NcRDpU2FhqzMKm0xWUkMpARQORU/8aQFA3SLzJNUU0uho5vWLkn5dDua4HEeoRvYgWVXIg6YwJ3RLugjWZ83gaeZdF0Ld6V4yeTJk+GljLrOxlNSl93kUppM3zGh2Llp4aqDFObyiSXoaG+hBF6hC3Q6HcVnkuKaLCIUOx8t7nmCFtk8rhSkmzLxr3+9T5nFF0HtqiK9n7Jjn8sUnAxz91NWcA+x9Wgn4YMd78NpaxnRabFFY0Rx82BM4LwmIDJ4v/H6Nlx//Q148IH7pCy7my+7Ag89cL903m+99QZ+8vDPMXfefOzbuwci0Zrw0njnX2+f11zG+smxQjoKn6BOrUJJduTEGsIimpE3kVyhWqle4B68+96HKMkxY8/xHqtdu4NWu+u7oaHyKpMK+/ziT9fZsPd4E9YvLoGaLHT2RhslMjkLfWoBCqcuRUtNBSmnlYOetYlW+o16JSmkgzYZdIeIAeukrLo6cpVdtXbToO367xClXJydDil7ZX83C9FW7BdWVpHhUq7MnrcYto52uDo7qI5mzogopIG5eV1t5HbbFng7Jp+jXdBHqj7vmISXJJOeOnUKHLWHk2Q2g0/DZatHekE5LdKIn6MhXHgG73pE9oiEYOIGqaGhga4zVSimclaU73xExo5lELeyFGdpfmKeIy1s0Rhp4jxePAmIsiIlpaUQi9sGyjTvoeoLooSziu7lXJREsbqmmkrRnZbKzcVz3PHe108f+QUuouRnWVnZ+N0fHpUWAi+kihei+sUP7rsXjz7+VwhF1GwxQ5Ro3LZ1i4RMlJX61p1fxxNPPkOx8g0Qpaa+cfttXPIlyb9QrJCOwgc0qaAvRirc8BmF5TCY02GrPw53Z0+B+Nll5NJJyYp6hTzZFGRBFeVDAlJR0wGRbVcoo1mpfdlX/T4PHM2n4bI1wkKuvHqTBfVn6EZ1kMQ2C8sz8Pz7VYFuZT+npacjRanGXEpUIld273wXp8h9TEeZL92uLqTTKtaFK9dS5koN1Rgl9+F/v0s162xUHkAhTVeUjEnPzJbV/QUr1uDtbS8hK1tee1mdnkeNNm66DKIGqdncs6AhMud+7zt3UR2vV6Q6gZEu6CNRn/c8Qj3ipzJhwgR4u+y0MCLf/XvEJxk8oMdBJYXIpXiMinSDSnPft28/3TxdAr8yN6nORMynk6I2xPxGQ9iiMRrUecx4EJg+YwamTZ1KVQMclKzRTbXOQ0N5NBTnnpObj7KJZTh16hT2798Xj2G5DyIgSi4OJmfPnsGa1cspo24eJa60SfcswW2ff+5ZvPzSi8jLz5dKNfp8yeNpEzxPft1HgBXSPhYj8kpFpV6WTulJLhFuwJwJs6nyng+tp3fT7r7YqekloTdr9S1OFJKVdWJ+T+baj860YX9FEzYtKYHI3htOvG4H2ir3w5g5AQWT5qPu1IcUDzXQNXfBpHS8vrcODoqJikUySCE1mFORTRdnuZKdk4fZcxdCrdFSnKcX2156FqdOHEM5ud0e2r9Hctdbu/FKqbsKUlz37dmJi/vVFhxsrJQUBUonTUFz7cnBmozr7S+/9AJdsF8YlEGkC3qgPq/JbIbJaIp7SaRBJ8U7ZBGYQKv5XsfIW8JkTS5MIz9dm9SmbKgplb+HXHnHmojM3gHZsWMnLlxA1ywVaYAUSz7a0k0Zu/0qJf6947mETkWEbLz97g5pMTEtjbK279qH7eQ6981v3C6NyxaNhOLnzhNA4IILLqTwIytq6psRXI4qeCg3eUeIh83hJMU0DytTU/Huu+9IVrzgdvw6MQQilWMU9ymVcS5vlZiz4F4FAVZIR/h7YNKrUZYf3kKaO3EOZWh1wdZwIuZZCVddW6cH/7e9IuTYq1dMRIalz1oqdjqaTsGQXoy8sjmordg/QCk161XQqZUxK6Tiwj1v0YUh40d7U1QysbeJktyPu+GneIAePsJVV2wLiMj86nTEZvEpmVhOsbOxW3sDY47352gXdFGfVzxYkoeAwWCQXJhaTx5KnklFmYnIpNtNnhxanRYe+9hTSFVBmYBFvOSRw7tw+dorqCgXZYrzNkY5+wTuVtHip6aE5vMC7EMofxXLzES2yyUL5w56CFs0BkXDO5KQwLILLqAEkWY0t8m75/DTolRrhwMWox4XXngRtm9/KwnPiqfEBJKXACukI/3ZDOImm1U0FSmU8EauMnrp4tCkSBuWFMV0JiKuVEhO6QzUnNg74Fi1im6kYpTCQoqdIqvkUOTIwf2or68h94oi5BcVS11MnjoDb732Mt55ayvKp87E4YN7MXv+4pi7nzFnAZ7959+lOK+YD+YDmMAYIyBipp0do2+ZiwWbX1hFvS7oyMqWaMUplnnJbRtw2Q20b29rhr35Q5jSp9MmBWXepXJQIyzdVEYK6gLYWw5Rwqjk+T6wRWOEvwg8XMwEppKLroVqWra0h2b9ltNRB1lKrWYDZs+ejQMHhl6xQM5Y3IYJnE8EhqY9nE8ERvhcVBQL2V9Ss4uhNZhgqzvWf1dC30tKKWVfzCiYNGAcizG2eoU6nR4z58qPHe0/oM3eQTGifroZtfVmsDSQpTQtPZNiywz44N//QqfDQe8z+h8a9X0pxXYYiC8LExgPBHKoFnBKDKWDkoGJSFqWQtciNdWVE9nFx5qogjw5AnP3ujuoBuQBiifNQrdmQmDziDx3a8rgT8mgBHYHKLN6x4iMyYMwgfOBgPB2mDZtGuwi6HqIYieltKysTMr+OsQu+DAmMO4IDNSOxh2CkT1hvbbPBVWMrNLokZZXBltt/GtJyjkzW91RGK3ZMFhCFT2RbTcW0VJRYp3eSDeTsRzV13bR0uVYdckmStKkxOEDPUkB9ux8T1JAFyy5CJuuvBbCvff1LS/QQX3xWn09DP7K5fKgqHTi4A14DxM4jwikUyy3qDs6lsRLtVcV9Gsk4sjVlCRkrIlaE37OPm8nOhr3UlwsXbUM8+iCn57YU6P+u/Vz4fb6SBndBz+Nz8IEmIB8AqUUfy8USrdn6ElwfOS+K2JKhVLKwgSYgDwCrJDK4xS3Vup+FtL0vAkU03ma6lGGZm6L24BROhJWyc7mM0jNJnfbINHE6LI7acoMKYhfRQrlcMRMbjKOzp6YjfraaqSlUQyUJCmYPnMuXJSJt72tJ/Ow3HGUdKe7kBTe4HhUucdyOyYw1ggIz4Ixk133HFxRf1QtxZF6ERyPORbYC68XnygDEUEcbcfgaKuAT1UIv3YqoOwr1RXhMPm7qD+/tpz6L4Kj/SQ6247LP5ZbMgEm0EugoKBwWMpooCNnlwcFBQWBt/zMBJhAFAKskEYBFO/dWk2fwqY1WKgESxrVCa2M9zAx9dfVUU+WzW6I2qcB0WnkfzVEiRZR99NNZgAVZXOUL92oOP4R/L6ecjZdzk5UnjlJZRN65mFNTcPpU8fJlbfHIlpTfZb6V8NEZWtiETUlaMorKIbpXHmTWI7ltkxgrBHocsYe9zTa5+h0dEBkaRXeD2Nt4UiUfWhra4uK0NPVjI6G3ejqbIGfXHi7ddPRrc6h42K5ZgYNk0KJoFQ51M8M+NUTqN826n8XWceTJ140aLb8kgmMCQIWqmnpcg8/sZrIvKunmqUsTIAJyCMQm1+mvD65lUwC1swCONtqZLZObLOutlpYMvNhb62LeSCtXofc/EJ0UYFoFSl/cMnvouLYEQjXXD3VIRUKacnEyRDJjIQIV939VObl5eeeoeybOslyctGqtVAGZbSMNpKG2nrJfU2IUGZZmMD5TsA/JuutdcPZaYOelNKQestj4MMSpbyqa+Vn0nU5qiEeGn0W1LpMqI2l6PZ2UFI7O1J8tJjQTRfQbirHRUnueiWFrl0pVM6LHt1KM7pTKDxCbYXH2QiPrRpuemZhAkxg+ATEwpjP3z78jqgHoZSyMAEmII8AK6TyOMW9lUjcYUjNQcupnXHveygduuxNMGaVQa3Vw+OK0X24x8CJLkr7n2q1wAa5x6dg3aarSGH0kDLqlJIXBSubRpMZF6xYQxZUn1SbUKvVxXxqOp2GXIB7khOYLalobho7tRljPlk+gAkQgW5KDjQWxd7WCD2Vo0oRwaRjSHRaNWpra2OesVAiJUWSfgvU2jQo1WbKKZAJhVJH8bSU3EnRt4DW7fdQTWY3XQtd5I5toxCPKrpOf0gfdmzx9DFPkg9gAuOcgFKpkhbERXiTTmeAhu5DRMy4SJchFrtdXU5pMR2KFLhpUV7czwREMdSkGoEO+JkJjCMCrJCO0odtsGbB09lKSSdoJTxJxONooeRGmVS3MzYX4sANpM3eidzsTClLZsDNVs6pSW645r6br/7HKCiDpTZMFsv+7cK9FzeLLa097nRWKtbOwgSYQHISsLc2UMbvyUB7DC4Wo3wqWroxFbV629uHYVEhpdLT1SI9Rvl0eHgmMO4JdHV1Sa62KVTCLpfK0BVPmAQL1UCXI3ZbB86eOYGaqrO0aOSNyZtLTv/chgmczwRYIT336aaRsiIUn+amprCft4gFEAXnm5vjE58jYkc9ncO4iQk7y+FtdJOCbDDnxKyQBiyXfj8lSHJ2wUguvPZOuVbS4c050tGiFIO4YRSKshCTyRqpOe9jAucFAQWt6I9FcXU5pORAukEy1ibjOYkFrzNnTifj1HhOTIAJxEhA5JnQ6U1YtHwZFKrY4z/F8dNnzpcePncXTh7dD5Go0daRXPd6MWLh5kxgRAiMzTuXOKLJz8/H0//7T2RmZkluozU11fjpT36EN994TRpFZHx84KEfYf2Gjejs7EQLKaSfu/kmctEaXuynqDva2ZhccT9eKhVhyp4UM11RqiEgrW0dyMnKSAqF1GTUoa3D1psUqYtueFmYwPlOQKEc3Nsg2c+9taWJEr0FMmsn92zVlMDNYjKgoqIiuSfKs2MCTCAiAZGjIienAJd97AYUFRVT6JEZjS3Dq9+bTfWgTaYLkUGVFF569mlUnj4JJ+XJSEbRUhLLVIuaMp0rUJxvQFGeHqnktSa2eX3daLd7UdfYhTM1nWhsdklx/q3tbo4YSMYPcwzPadwrpCIG4L57v4vXX9smfYw33/J5fPs73+tVSDdu2oz5CxZi6aJ5dDFx4t77fkD778FXv/yFYX3sov6ozz36VsTgk/B5XUMqSm+hbLgBsTs6kZmRBqNB1xu7Gdg3ks/COirdLJ7qcz+2WPvmOZJz4bGYwEgS0GhEtloR4TT24gs7ybNCoXVDT7Hfzq7kCWcI9/nptRocP34cHk5cEg4Pb2MCY4KAuH9Zs+4yTKWyckLaaRE7i+5hhnMN0qhV0vHVtfVkcTXgmk/cjLOnKvDCP55ER3tsZesSBVGtViAzVYOZ5VZsvjgXs6bI9yDzev14c0cjnt1Wg6YWNynvYyfMIlE8ud/hExhb2SOGf74DemhoqMdr27ZKVjQR9yhel5dPodIj2VLbDRs344Xnn5WUUbHhb089iUvXb6CkE8NDJ6wYfkpUkWziD7J2DnVujU0tsJoNFOMvbopHR8T4LWSt9USpDzg6s+NRmUDiCNgojkmtMydugAT2rCZ3ucOHD8OkF0p18ooIBRAeGGKuLKEERHhLRkZG6EZ+xwSSjIBILJmTV4DPfenOXmU0MMXG5hayDhrpHmZo93jPVvMAAEAASURBVHlpVhNZEilHCIUxBaR4Qhm+fMd3UUqVBER42GiJVqtEbpYWX/vMJDzxyGLc9R9TYlJGxbxVZElde2EOfn3vPPz5hwtw2cV5yM5I7mv2aPHmceUTGPcW0v6oVqxchZrqaooV7Yklzc3Ll5TUQLuqqiqpXl5aeroUb6qirLSxiEJBFyK6yHVLF6qhXexiGS/WtlIyIppfCs1TJWW1ja5UinMKJDYS43VSprlOymyblmpGS7st1ikMu72IYdXQDWMVrU4Gz0uck1Kjk2UFFj8Y4gcr2UWcX6zfQZ/Hde77l+xnN/7mp1RrQ76zQyHQTjHT6aYMSpjWk126tw/p+5w81xzx3VWqqJTJOUmhRTqd0YqK02eRTguCaalWdFObFMpemTRCDEWMbqpFj4+OHUUKzT9cFSpxrUmm60fP9Ty23yq5zP206Of3eaSyXIkIb5E7D243kICCSp2N1ZjygWcTvy3CoFBSOhEf/+QtYTvtoGuojtx4MzOslBSxAz7KsCtXMtOsVMfUTeFCVMaJxukvN9z8Zbzw9ydx/NhhKUtv//2Je9+NTIsC120qxJVr8+I2jMmoxu23lEv93fero9h3pAO2zqF753T7fZQQKrm9Y+IGjzsKIcAKaRCOyeXl+NZdd+Nbd97Ru7JltVjgonImAXG5em7yrBSoLhIgWbNKArtkPau0dukmTPxIJOMPhVDExE2icCm2ZJrppmrgBbX/iaq1xpAbS7G/geIvSovzYO1O6U0q1P+4RLwXlovMjFRUVtcPmJNKrYMlo1AWd7XWQWUYkn/FT0nnFOt3sKPxLJWMSM5YlkR8J8ZSn6b0PKrlG3t5o+Bz7PJpqYRTLlL8fdctsT/ZrjkqWhzSByUO0VLsqMunoutOMcUqtWPl8unktksuvIrk+ZkSDIX3jHAnbrb5B/3bU2k9SXX9UNP13JplCf6axO11Z0cTnPRIVHhL3CY6DjsSyRN1pvRxeOaDn7KfyrLk52Xh6utuHLwR7WlusyOLFslyczIl5TJaCIFIcJZqptwglKW3obljwP1H8GBXXvcZvPriPyj+/BToQhG8KyGvld2dKC8CHrx9akL6D3T6/a/PxgFSSH/0xwrYvamkkMduCXZTLhNbU3WgS34eRwSS55d+lKHn5OTi0cefwH//+ld46cXne2cj0vlrNH2r+Dpdzypze3tPKZHmqiO9beW8yC620uqPUGq7aVU5+VaBhIVUzM/TZUdLtbyanSbNZHgpo1x/OXOmkpTSAnjcyhGJJxVxG6kmHaqrayirnb3/dEgJc6C19sSA7eE25BksYc8pXNvR3OYlxbK56uhoToHHjiOB9vrTw+7N3ngKEws2wN5SS331rVT7vQV0zRl293HrwNPVCbu9L57KpzDixJEd9H3uSRL0ur0O6y7dACWdgztJXO/1GiW8znZse/lF+Kg+8mDimZiTVNcPN13Pm6vqB5tuXLaHC2957sUtUnhLsOtiXAbjTmQRcLQ1QDxY+ggUFJfi8quulfX3KeoL2ylxmVGnRapRS9chqjvq9tDffo/FVEkWUI2mJ15U3H80NjWiTaZX2Jp1G9H81z/i5PEjFDIm3wLbdybyXqVZ1fjYxkKyjBbJOmd5vQ7eavpEDR57cBpuvW8/Pqog6zIlRWJhAnIIsEJKlIqKi/HEU/+Lv/7lcfz2N78K4Say6RYW0dLSORGvhcW0tbXvRiqwL5ZnocApyBKZTHVIxfyV5OITL/FQHa6q6joUFeRK8aQ2R+KSOOkowUhGmhlNTa2UlGCgMhqvc+J+mEAiCQgLqbguDFfs7hSkF82Es10opT0irHspivj9fQf6HeqzZCG19MS6CitoRulM7KtogiW7ROrSSfcxJ89UY/X6NMni4BtlbVrclGrVKWQBOAEjeVpEEpU2JaKFJNKxidgnebyc4xrv/l2ONrgc7YgW3hLvcbm/0SegVqsxadIkFBUWwGA00qKvExqdgRa1hYeAGnV1dTh58hTq6xO7GCKXhDU1HTd+7la5zbF317/x/P89AbVWS5bSHCxcvAQbN18Ng8kk9bFn53vY/sZWiFCu06dPS9vKp87EZ7/4NVljXPupz+E3jzyA9tb4lBPsP2gWxXV+9cYyXLQgs/+uhL//xffm4J6fHcaOAy1wuxOncGdkZsJht0PUj2UZ2wTGvUJaNmkyKaPP4GcP/wRPP/XEgE/z1S0v49bbbsfvf/sb6Qt/3fWfwKtbXul16R1wgMwNwrKl0ppoxa1F5hGJb6bS0A8JubPEU5wUT3qmqhYFedkUY6REa3v8lUWzUQ+RRKCmrhEdtvj3H08e3BcTiERAa7DGHBMcrr/G1k5kTZ4In6svhlvENA43GVu4sYa6TUHBlxpVz42dLq2A4s3pb1dtgJ4eAamqqyeX/y7kZKZSNkcblSAY3CoZOCYRzwaKS8+kBa9DHx1DF91c6c2R3SCVKge5SMfurpaIuYs+RRiG3mxMSPciJl0opNHCWxIyOHc6agRKS0sxd+4cdNma4Gk/g5a60FqbYvHLTO7CC+bNIg+pcuzdtx8dHcMrpTKckzUaTbjsmhti6iKVMvB++fa7kZmdS55ebvzPH39JVtB2rFl/mdTPu+/9Gy5vCj731f/s7VdOmFNvY3oh4lif+cvvKftuj9dd8L7hvBaW0dtumoQL5o9egrHvf206vv+Lw3hnd/OQLKVvv7sDJSWlIRi+eefXpeSiwjj0xz//D113rDCajHju2X/i3u/dHdFzJaQjfpN0BMa9Qrpw0SLkUeKi//rxw9Ij8An98heP4Cc/+iG5776AFStXY+fu/bCTsmOz2/DZmz4ZaDbk565Om5QJ0+1IIoWUMnO6OuP/g+FyuXH6bI1UnzQvO42URicczuGvZmnohtZqMUjJQ05X1tCCQWjM3JA/HD6QCYwSAXtrLSmNw1dkOhrOoDjbJClwHkePN4ffn0Yuu9Fjwkfq1H1uF8Vi9vzNqtNKsX/3DnS0hF4PlZQgpIHqNXs9FmSlU9x+K62E0/VkJMVMLnsWkxanKASho6MNImZSlAuLJJ4SIy3ujew8I83HS5arjoaeRH2R2g1ln+dc+bJo4S1D6ZuPSU4Cc+fMRkF+LjqqDsIbtOgVPNtuqiLQ1UGWUXroUwuwevUqvP/+v9HQMAouxLQYVzZlOopKJgZPMerrCZOm9LZRU+jWpPLpOHL4QK9CKnaKRT4leZ8MVbJI2Z01bxHef/v1YRs6AnOwGFW45eMTYlJGXW4fWtvcdJ+mp3uqQE99zzaHh7zP3LQwp6WET/LP955bp+Or9+3DoWNDu7e86dM34N133u6dSCBU4nv33Iftb76Bhx68H0ayzr/0yjZcsvZSMhi93NuWX4wtAvK/VWPrvGTPVpRxEY/BxEuxS3d8/VaYzGZK828iF5Q+F7jBjpGz3UmxU3oqmIzmM3Kaj0gbtSENjo7huSIPNlERQ1Rb30grpgZkZWZQnVIt7JSJt9MZuxKpJVcgUXLBQKUhmlra0EwPFiZwPhAQlqZ4yb49H2DmtHK4myulLrv9lLW2O7IiFa+x5fQjvDHcpJDqUgtRV1OJ6jMD47vN9HcuSlE1URkGESqRRwlG7A4F2mwOOUMMq42oZZxm7bEqnqTMvyIEwU8WWo9TuIdFDj/we6ms1yhZc8OdtI/yFThtocp+uHbD2Zao8JbhzImPjT+BmTNn0t9hBmxV+2R37myrlrJ+L1u2FNu3v422tpH9zRauupuuvF72fAdrePzoIRQW031bkJysOIa/P/UoWenMmD1vMfILi4P2ynu54uINOLR/N9pah/83qqSs5CsWZ2Hjqlx5g1Oru3+yB2+8V4eMVC38lEdk88WF+NKnexIg2ewe3PKf76Km3knKqI6SPblw09Vl+Nz1k2X3//Bds3HTN3ehrjF2Q4SXfif613oWruJrLlmLtWtWSXNwOBx48YXnpcRqrJDK/liSruG4V0jlfiJ2m40spH3ub3KPG6yduDlQFk2hbLYGCjQf/Yynws1ER6UiGioTmyDHRunUxcNC7mOirEM6udoKpdRFN3vihk9YHsQFMVjU5OqrFu5954pNi+W7trZ2VNfW0YpiaNvg4/g1ExjPBM6ePYvS0hLJOiFuCJNRFCodxWMWY8ebb0adns3uoGtFF/JzsyQXXlGaIVrmy6idDtLAbKIwAKpDKEo+NFBdZZboBBIV3hJ9ZG4xGIGekmzD97gI9J9DcZSTysrQTsporNmvPZ3tcFNM+8KFC/HmW30Wr0DfiXyeNXeh5Ek1nDHe3f4aGurr8ImbvtDbl6gpaiBDhVCQamlR7bc//yFu+n+3kiV1WsxDLVuxFq+9/OyA+59YO8rJUOGOz/WUYZF77IrFufjOV+bQIr8KlbUOXPfVt7FhVREmFpvoc07BF26YiouXUi4QZQoOn2jHjbe/gyvWFiM7U15GeA0lg7v95nI89Lvj6LBHXhQVCZ7EImRAPv+F/8Bll1+JU6dO4pmnn0QLedFkZmZRCJiaSjRWBZpRMssqLFqypPc9vxh7BFghHcXPzNHWCK01D97GilGcRc/QOksOOklJjncM6WAn1kEWDvEQ9UJNBooboxgtK90EqkjxFJl+hRuMcM0IPIvMdsIlt6aurdfNb7C+eTsTYAI9BA4c+BAXX3wx3J0ja5GQy1+fUYpjx49DuHvKEXFNqKREaRYqr5CdmQ6j3itl8HbGyY3XZNBBxKSLFXkRZjDS7sFyGCRrm0SFtyTr+Y6FeemtWdBb4hdDuGTZQsBRSx5OJihThMeAFypSUjQqBYUH+GGg0idCxGuxVOyjBWOPt+c1KKbU4+tCRsE0zF6yEpVVNVLbRP+n6nZTYrQrhzXMoQN7yD10G275yjdhzcju7WsGWURn9L4DdAYz9u7+AFNmzgvaKu/lwgtWYe+eXfAq5Cl54XrVpdhx9+fzYy45temSPlfm0mItJk/MwO7DHZhclgErWU0vXdUT6y/G1FJ9Vit5jqSl0XdALX+xY+mCXCyeZ8euE5qI5WDcFDbW0djj1fPkE39BFy1CqskYcen6jbjhk5/GpvVrYaFyjEKCSzKKpEYinpRl7BJghXQUP7v2pioUTVsGZ8tZurDHN5lQrKelS8tHU9XxWA8bdns3KZotbroZJYsnCxNgAvElIFzjDhw4gPIyccORXJY+XVohWu3dOHToUMwnLZKXiUc6eVmkpppBaS2khaquLg95W8i/lirI20LUD9RSlm4jhQA4yS24vrGZ3IJH32slZiijfECiwltG+bTG9PCO1jqIRzykmLLl6ygJY2r3aZROJoUkxiRZwoO9ptmJ6o6DKLKk4cPKj+ClUJ5ESxlZK0UM9VDlwN4P8MI/nsZnvnArcrKzI/ZlIGWtgSylQx0vNycb+3a9P9SpYsmcdEwpUQ+rvEtLWxc+OtaAO26eFNJPFVlO//HqWew/3IK7vlgOlcJD++Vfa8VJffWGXHL/3Y36ZnmhWsFVLx798x/xr/d24sKLlmP/vr0SI1GSMaCU6oh9oBzjkAHygaNKgBXSUcQvSr90NFXCkFECe8PA+KmRmpqBbgzdFBOV6BijkTofHic2Apw2PTZeY631iRMnyKJIMfDzyY2r81RSTF9nySbvEC12vjm8BBQttJAlHgaDniybBlJQhYuZgqwyXrgpBEDUCxTx64EoAOF+JvarlAoKA1BKimgXKaEijKCxqZnKE8R2g5UUMJNsEvEOb0my0xt307Ea1SjMNOCWaxYhJ80AR1PqkBiIpNNF2Xp6gDKAz4a56yS27KKa4bSI5PYkRjEVHleLyfI4VNn53na89dor+PyXv4Hs3LwB3ez54D3MmrMQIuGRw9aBPbvew+KlKwe0k7th/uILcOTgvqgx6uH6E1l1v3hDaHxruHaRtgnL9rd/vA+rl1GipSlpIU1tnWQ8aBfhVX6qnDC0GH7hEjx/Zhpe2R77IolY8GppboaZfsuaqN6r8GIpKCzCyYqee2eRdVeUGWIZuwRYIR3lz66l5iSKpi+DxkE3Q+eyYY7klFQaI4xZE1B9bNdIDstjJQEBTpueBB/CCE1hz969+Mz6qUjLmQx7/ch7QgSfps6cDXNOOXY//QyczqFbLoL77Ox0QjyEdVO4d4m6xBq1RnqtIbeyFFJCU+gA4fLrJTdDh8srFbgXYQBCYWVhAkwglICO4v4KMvS4YXUp0kwa5Galw2NvDG00xHdupw0LJqdJjx1HmrFtby1abPHPSm00miHiPIcqBw/sRWtLEx754XdDurjtW/dS3d1C7CWF9B9PPw4LlYdxUI6ROfMXY9mKi0PaxvImJ7cAOr1hSAppbpYOJQVDL+3UTe7VP/jlAcrj4ce9t80ZMO1pZam0fS6FSHix6ebXsGhOxgCldcBBYTZ85upi7PqwBY0tkT/v4uISlE6YgH+9vV0K41q+YiUmTS7Hjn+/Lymjb7y+DddffwMefOA+Kcvu5suuwEMP3B9mRN40VgiwQjrKn5QI4G6uOkZxFeVoO7uXXHcj/5HGe7qmnElorj4O8QPBMr4IcNr08fV5nzm6DxkLF8GcOwW2usQmLxuMrI5i5o2Zpag9uY8ySiYmo7dIjiYeZA4ebBq8nQkwgQgEUk1qbFxUgIWT03tbKai0SXCymd4dQ3ghatcGZMnUDIjHo1tP4li1jSxwkZPeBI6T8ywsl8ORm7/4tYiH3/Klb1CMI5Wxs3dISqmaFsGGK2aKg2xrbY6pG7UqBddtLIzpmODGwpPk3p/vRyO50v7y3sW0oDe4amA0qMgTRYe6BueQFNKsDB1SLZqoCqlwwf3pI78gZdOEdgo9MZAHzLfuvB1nz56Rpv6D++7Fo4//FUIRNVvMUonGbVu3BJ8Wvx5jBAb/1o2xExnL03W0N0KtJZezvHLKXndwxE7FnFsOl5OSC1EsK8v4IsBp08fX5x042/rTB5FZNBWpRXNIKT0Gnyc+FspA/5GejZTASEOZvGsr9vECWCRQvI8JjCIBYQ39yuVTyCrak6AoEVMRbvP95bPrJuKN/fXYfqABNmd8XOezc/P7DxP39zq9nqya+rj1W1hcisozJ2PqL4Nqg4pSL0MRUang6z/YBa1agV/cs4gSTYYmKvqoghJJOn2YNyNDqk/6zq56Kt/ixIzyobluizluopI0P3sscpjasWNHsXjBHGRlZVPdUx2qqipDvFmEYrpm9XLkkiu1zW6jRQH7UE6fj0kiAqyQDvPDyCmLLZuaTtsCldYwYFR7exO0xlSklS6AreYjdPvjt0o4YDDaIJRRP5RorTkcdj5agxXZE3IjZkML9KujGBN1mHMK7E+WZ43egqySmVBQuvBooje3SosE0dqN9n61zoRYv4OtNcep3piF06aP9oc3SuM3VR6BNbuYrjXz4WiogLM9sXE3Kq0JpuwyeCnmp4pCAxJ9bRslrDwsExjzBHLI8vWta6eHPQ+f1y1lb43HGpZCpQ07xsVzcpBq0OD5HZXoINfQ4UpeQfFwuxjx43PyY7d0mo1Dv5V3dvnw3u4G6Twv+NgrvedbUmDC3/97FbkP+/Dtn+wlpdRLcfpqSvzmw3dvnYX8nIH3sb0HR3mxakkW/ufZsxT/H9kjUFRcaGioj9hbXV1txP28c+wQGPq3eOyc45iZaXPNCWTkl8FaNBu22qPwJaA+aQopYxZy2RMB4Y2Vh8cMG55ofAlw2vT48hxrvbU3nEWXrZVCBSZBbcpEV1sNxbDHNwuvkm46RSZdvTUHLbUn2RNjrH1JeL7jikCGWYs7Px5eGRUgnPZ2GE1WdHWEKggiBJuSVUsPOcBEzXOVbvBYx/kUW+qmWO+XdtbA0TU8pTQzO1fOlJKqTVp6JsW+a+geLbKyFjzpxbNDExAF74v2Wrjg7np+86DNhGX0lUcvQWt7F2Uy9yEv20CJ4URE/tDFYlZDpxloJR96j3zk+UCAFdJhfor1FT3pp+V2k15spZTgg9cFqz/1IaxZhcgomkXJRyrQGceC9lpzlmSp6GiqRmtd5GybLipi3XBKXvITHSUN8LiSP17L7exA4xl5LtFZ5RY6p5FzZ5T7/enfztNlR31F7PGAHR0dUlecNr0/0fHz3kVx4zUn9sKUlkvJjiZCn1ZAimktXPamYUEQFlFR11j0J7KIVx7ZQa7BfTFjw+qcD2YCTCDuBNLNGnz1iimIpGd0djQhPXcCVQRQUpKZHg+uLsq4+sJ7p3Hx3AJkUNbsgLy5pwan620hisuVF02AyNgrrg3OjsgxkkunZpKF1IPX99ZT7dKhJR0Tiq9OFz9X2sC5JfpZrzdCSSmJ5VavEosBInNtIkWMIeJG4ylCKa1p6Ipnl9zXGCfACmkSfoDtjVXootXIdLKWppoz4WytopvEyBfwSKeh1qfSzWE+uapSjawzh7m8SyRY42Qfp00fJx+0jNO0t9ZBPEypOTBn5Enu/C57CzxkMfV02aLGmaYoVFDrzFAbUqEx0o0R3QjaW+vReOgdCDc/FibABJKXgIES2FyxrAgWspRFElGmTiilYqGpk2qnH61sx6HTLaQ4hv8bXzYzF1OLrAO61JPXRAOFDUSTdfPzcKzKhpN1Q4sNVFFZJ3+CQ5+incNQ9nu9HikruNxjLRTrW5w39hTvkgIDjlRwMk25n/N4aBf5CjQeCCTpOQrrhUj+YUzNRirFexkzJ8JFrjJdtsaoN4jilIS7nIaUWVFiASlKtDWeha25JknPlqc10gSEyzanTR9p6sk9nr2tHuKhVGthtGZCb0qHIbMECqWarjlu+L2uXssIXVRogUsjXWdSFEpKUtQhufS1nT0CV2eP9T25z5ZnxwSYgCBQlmfCrNKBimM4Oi11p1E4ZRG8XR2YUgR6WPHMdvkJeES5p057Ky24t4brfsC2z60vw4//7yO02sMrvQMOCN5AZj21ps9qG7wrmV+rKKxKQddUuaKhZEQiqdFYkwzr8DMSj7Vz5vlGJsAKaWQ+o77X0dYA8dBRwiNTWg4s+dPpBlFFbr92yQ2u2ydW03pWAhVkqVDQzaSoLUpXNMktponqnDptQ7eujjoAnkDCCHDa9IShHdMdC/da4dYvHixMgAmcvwRERt0bVpfKPkGv24nGsx8hq2g6OmoPw93ZNuixOz6qxwf0MBvUWDQ1B1OmzkCKWoem03sGPab/DlELdQm5727dXQs/JbhhGUhguPGcA3scmS3CZZeFCQQTYIU0mEYSv+5ytEE8hKg0Omj0Jqjo4q6k1TStwQRPp41qhHXC29FK1gr7mIjpTGLc42JqnDZ9XHzMfJJMgAkwgbAEplFOC1HuIxYRZepEfGZWySw4GkUuioEW0uWz8yiLe0/im8pmyuJaqULZdAOaK/bHMpTUdt38XOw82oQW2xCspDGPNvYOcMexbutInr3PxwsMI8l7LIzFCulY+JT6zVHEcogHCxOIBwFOmx4PitwHE2ACTGDsEEg1arB+Yd6QJixc+92UUC8tbyJSSxZAn6Gh+pUu8trqQjdlyNWRVVSpMVBMeQbmTcrE0+/9Awd2tyM/c2ilQuZMTMObVKOUZSABg16+e+/Ao0dvS7qVLaSjRz85R45taSw5z4FnxQSYABNgAkyACYwhAgoKKxHZRMOJ2JeXR4n46Dmc6PV6ZGQMnq0+3DG8LZRAKmXWNemGbpNwdzkgqgK899776HL7qcRTMayFs5E5eRlsmhIqJ5UFh70Nb2x9GUePHEGWdehZWi+akQ2znhWY0E+Q3zGB84vA0K9G5xcHPhsmwASYABNgAkxghAjc8/37pZHu+e7dISNu2nw5Hvzhj9Da2orU1DR88xtfw9ZXt0htVCoVHnjoR1i/YSM6OzvR0tyMz918E2prOWFfCMQob0QZj8Xlw1Po39pXg7f216CutRP3/eY5FGYZ8cXLZ0gj3/2nnXCRK6mFyrx0ODy4ZdM0qq0ZfnEhylSl3WmUSVYk70HyV2KTczrchgkwgTAEWCENAyXcJrEiazBQDAT9ALIwASbABJgAE2ACsRO4ZO06Ujh/jOzsHDz+2J9COjCaTPjxT3+GG667Bvv27cWixUvw2ONPYOH8WXA6ndi4aTPmL1iIpYvmSe/vve8H+PZ37sFXv/yFkH74TWQCwtq4cFJ65EZR9q6amw/xCCcP3LIYdqdXUkrTzNqI9U3DHR9u29RCC9493BhuF29jAkzgPCAw9CWr8+Dk5ZyCWJH9rx8/jH9/sBcvvrINL9FDuBKxMAEmwASYABNgArEReG3bVixeMAd//MPvqIxQaGKT1avXoLLyrKSMil4/2LkDDQ31WL5ipTTIho2b8cLzz0rKqNjwt6eexKXrNwzq2isdxP8NIKBSpvQmHRqwM04bTHoVMizxUUbFlOZSHOlYzSgbJ6TcDRM4rwmwhTTKx8srslEA8W4mwATiRsCUnifV94xbh0EdKdUa6jt56tWJTOGW7MygGQ58qdFTJnGad7KImIuearRqLJHXclXaFMqAnjzzVmn0xLokIRhdlP3d5WiPS9+5ubmoqa4K6au6uhq55xaBxbNQaANSVVUFrVaLtPR0NDc1BTbzcxQCBu3Yu/XLStXBoFVKltcop8e7mQATGIMExt5VaYQhh1uRfe7FLdKKrN/vH+HZ8HBMgAmczwQ8rk4oqA5oIqTbb0a335eIrofUp9/rgcfpiXisX6egOSfPdVbwk7KceyNz9PuMZP2L3Cbiicd5p8h86nE64txrT3c+b085jvLyKVi5anXYMdo7OvDM00+G3Re80WpNRVdXaAZ5l8sFq8UiNRPP4n1AXK6etlaLlRXSABQZz+mU0GisicWgglZFCim8Y23qPF8mwARkEGCFNAqkaCuyxrTcKD2E7lZpuqFQJn+2OCVZUgypOVRvrKeWWOhZhL4L1EMN3Zp875RqOidrFlIU4TM7Bs9YfE5KZfL/eSjIChPrd7DL1oLATWTwOfPr0Scgrg2KRH3vqHagnL/nEaNAGVQVFBIRUVKUSTVnwU+hUNG8I19DRDvxL2lEQfNOkMVWcU4h1ep0yMzMCnvKymif87mj2tvbyOIZmo1VR/22t/dYYMWzRtOnTOl0eulIcRzLQAIagwVq7cBSK6kW+g6PgfuQ/mek1OphVKX13xz2PX3l6Tecys9QrfaxJOJvRWu0AuqBn1u481DrvGPiXqX/3IW3Sbh7Fx8tyHbZW/s35/fjgECUu4FxQCDKKUZbkRUudrFIA4XMPLS1Z0U5luNGvm0mzDKT8NlpwfIPf/rzyE9xCCOaMwtlHVVL2fyu/c5YuCiqEOt30EP141ghlfU1GPFGBksmVHTTlQj5n92i1yS69uiKqOxE5DMVNsZku7boUqMvQn5wOtmuHxl0nYjMeqh77S21cDvt+PDAfukx1H7EcbW1tSgoDL1GFxYV9WbRFdl0xfuAiNfCYioy8rIMJKAlhVQswvaXo/axch8SOvMU6wSYQjdFfPf8y1si7k/WnWpTJuSq0SLx8Ni4V+lPWx323kW4/7NC2p/V+HjPCmmUzznaiqz4MWZhAmOJgM+TRErJWAI3AnPt7GhKnIV0BObPQ4w/AmKBK17y1ltv4CcP/xxz583Hvr17sHjJUsnq+s6/3paGeHXLy7j1ttvx+9/+RnLtve76T+DVLa+Aw2fCfwKuzg74feziGp4Ob01GAsJCyjI+CbBCGuVzj7Yi62iti9ID72YCTIAJyCPgJIWUhQmczwQ2broMogap2dwTFyryNHzvO3dJiqXDbse37vw6nnjyGTQ2NiAjMxPfuP223qy6L734AlasXI2du/fDbrPDZrfhszd98nzGNaxzc5NCKh4sTIAJMIFkJ5CSlpYWmnc92Wc8wvO74sqrpBXZTRvWSiuy37//AaSnZ3LdsxH+HHg4JsAEmAATGB8ERLm1vPx8yrhbDR8lZOovJrMZJqMJdXXsodSfDb9nAkyACYxFAqyQRvnUAnVI1667NGRFVvxQsjABJsAEmAATYAJMgAkwASbABJjA0AmwQiqTHa/IygTFzZgAE2ACTIAJMAEmwASYABNgAjIJsEIqExQ3YwJMgAkwASbABJgAE2ACTIAJMIH4ElDEtzvujQkwASbABJgAE2ACTIAJMAEmwASYgDwCrJDK48StmAATYAJMgAkwASbABJgAE2ACTCDOBFghjTNQ7o4JMAEmwASYABNgAkyACTABJsAE5BFghVQeJ27FBJgAE2ACTIAJMAEmwASYABNgAnEmwAppnIFyd0yACTABJsAEmAATYAJMgAkwASYgjwArpPI4cSsmwASYABNgAkyACTABJsAEmAATiDMBVkjjDJS7YwJMgAkwASbABJgAE2ACTIAJMAF5BFghlceJWzEBJsAEmAATYAJMgAkwASbABJhAnAmwQhpnoNwdE2ACTIAJMAEmwASYABNgAkyACcgjwAqpPE7cigkwASbABJgAE2ACTIAJMAEmwATiTIAV0jgD5e6YABNgAkyACTABJsAEmAATYAJMQB4BVkjlceJWTIAJMAEmwASYABNgAkyACTABJhBnAqyQxhkod8cEmAATYAJMgAkwASbABJgAE2AC8giwQiqPE7diAkyACTABJsAEmAATYAJMgAkwgTgTYIU0zkC5OybABJgAE2ACTIAJMAEmwASYABOQR4AVUnmcuBUTYAJMgAkwASbABJgAE2ACTIAJxJkAK6RxBsrdMQEmwASYABNgAkyACTABJsAEmIA8AqyQyuPErZgAE2ACTIAJMAEmwASYABNgAkwgzgRYIY0zUO6OCTABJsAEmAATYAJMgAkwASbABOQRYIVUHiduxQSYABNgAkyACTABJsAEmAATYAJxJsAKaZyBcndMgAkwASbABJgAE2ACTIAJMAEmII8AK6TyOHErJsAEmAATYAJMgAkwASbABJgAE4gzAVZI4wyUu2MCTIAJMAEmwASYABNgAkyACTABeQRYIZXHiVsxASbABJgAE2ACTIAJMAEmwASYQJwJsEIaZ6DcHRNgAkyACTABJsAEmAATYAJMgAnII8AKqTxO3IoJMAEmwASYABNgAkyACTABJsAE4kyAFdI4A+XumAATYAJMgAkwASbABJgAE2ACTEAeAVZI5XHiVkyACTABJsAEmAATYAJMgAkwASYQZwKskMYZKHfHBJgAE2ACTIAJMAEmwASYABNgAvIIsEIqjxO3YgJMgAkwASbABCIQUCgUyMnJRX5BAZRKZdiWGZmZ0Ol0YfeJ4/Py8iGeWZgAE2ACTGD8EOCr/vj5rPlMmQATYAJMgAkkhMDadZdi74HDeGXrG3j2+Zfx3o7dWLxkae9YhUVF2LLtTbz40lbs3L0f9z/wwxClddPmy6Xjn3rm79iz/zDWXbq+91h+wQSYABNgAuc3gZS0tLTu8/sUYzu7rKxseL0etLa2hhyo1+thMBjQ3Nwcsp3fMAEmwASYQPIQSElRwGyxSlY2a1o6TCYLjCYT/H4/7LYO2Dra6bkdHo8bnQ5H8kx8jM9k/oKFcHZ24qOPDktncte3v4vFS5fhqss3Su9//8dHcerkSTz04P0wGo146ZVt9PoHeHXLy9Ln88HuA7jhumuwb99eLFq8BI89/gQWzp8Fp9M5xsnw9JkAE2ACTCAaAVW0BuNhv3At+vodd+KGT94IdHfj5MkKfOzqy6VTV6lUeOChH2H9ho3opB/bFlJIP3fzTaitrRkPaPgcmQATYAJjgoAlNQ0ZmdlYfMFKTJw0NeqcvR4v9nzwLvbv2QEHKapOZ2fUY7jB4AT27N4VstPr86KqslLaplarseaStVi7ZpX03kELAS++8Dw2btosKaSrV69BZeVZSRkVDT7YuQMNDfVYvmIltr66RTqG/2MCTIAJMIHzlwArpPTZfv/+BzF9+gx89ctfwHvvvhPiRiR+MMXK79JF86SV2nvv+wG+/Z17pLbn79eCz4wJMAEmMDYIGI0mlJVPx6Wbr4GKFB+5olKrJOVVKLBNjfV48e9PoqmpHh63W24X3C4MgYvXXILNl11BiwOZuOc735ZaZGZmQaVSo6a6qveIanq9aMkS6X1ubm7IPrGxuroauRRPysIEmMDIEcjPz6c47lykplogFpJAPpTCS6GxqQU1NTVoa2sbucnwSOOKwLhXSMUf3ydu+CSuufKy3tVZr9fb+yXYsHEzXnj+2V63ob899SSee3GL5A4mXMBYmMBYJiCSi4gbxxq6+esm74D+EkhSUl9fJ7k89t/Pruz9iQzvfUbhVKi0+uF1Mk6O9rqdsBg0uOraT5NbrnlYZ51XOAGfv+1uHD92GK9veQHQWiBcf1miE7C31MLRWtfbMDc3D+K6kE7u0iLB0enTp2CxWKT9Lpert11XVxes5FotxGpNhXgfLKKt9dxxwdv5NRNgAvEnMGHCBMyYPhUpcEGd0gFFdz0poz5pIJNFizSzFZMnlaK5pQ2HDn00IKwt/jPiHscbgXGvkC5avFSKC12/cRP+k2JehCvRY4/+Ef96e7v0XRArtK9t29r7vaiqqoJWS3+c6elobmrq3c4vmMBYI/DLX/8OG+h739jYIC2w/N///g0//q+Hek9DJBl58Ic/kn54Uskd8pvf+Fqv+xy7svdiiuuL5qojce3vfO1Mo9Fixuz5WH/5x6VT9Lji425bWlKKz9zyH3js94+ggRZhwi3SnK9M43VeTz7xF4iHuH78/Fe/kbyLOjo6pO41Gg0CSqlYDGtv77G2iGetNjTzbs/+9nhNi/thAkwgDAHxW75k8SJkpBug6T4N+Hr+VkOa+h1QoYX2nUV2ah6yV6/C/v0HUFFREdKM3zCB4RAY9wppQUEhfD4fTp86hTdffx2z58zBnx79C6792JXYt3ePtEIb+AEVoF2unlVcsbIrFNK0/MnD4c/HnmcE1OQGmJuTjYK8bFDCMFpt7IbfR9+Zbi8UKi29JgtBdwpSlDpyhzGgw9aG2vom1NOjrX1kbr5szVXwupy00PIq/vNbd8Bht6O0dAK2vr4dz/7z72QlOiYlGfnxT382aJIRdmVPzBfXklUMpVqbmM7Pk14V9Lckkt4sWrYiIWek0gBf+Np38b9PPoq6+kb6W5XvBjzcCXX7ffB53VArfdAKbzm/FykKFVyeFHh8CihpcimK8OVUhjv2UI/vsjXDaaOb1X4icjEIC6lw1W1qaqQkUh4UFBbhZMUJqaXIultX12NZra2tpX2FIT2I/ZyrIQRJzG8M1ixojakxH8cHjB8CKy5cDJPWCZX3DJ204dwj0vmTJ5WiEUsuWom0vAmoOCmOi594uuwQXhcs44/AuFdIxQr4hwcO4OmnnpA+/R073sfcefOxYcMmSSFtJyVBrOoGRKfrcacLrOw6WvkPJ8BmPD8L17IpUyahIL8QXncLrSaeha/1IODvi0fr7+DtS1FCozCiKN2KgswidDpzcPz4SZw9lwgkUTx9lF1UyHPP/qN3COFWd/zYUVx00QpJIY2WZIRd2XvRxfWFs6OJFA52FR0MqlKRgkVLl2PBomXwUzb0RMo1134Kj/7uYfIgqCH33ZSEDdXd7UdxfhotYqVj6fwCzJ2RhYIcC7kh62gRy0Dn2Qm7vQvV9Tbs+bABO/ZWo7quBZU1rUnhVhy4nlx2+RXYvesDKc5MWF1uvOmz0m+oyFov5I3Xt+H662/Agw/cJ2XZFXGmDz1wv7TvrbfewE8e/rn02ysWgkW5GBF3+s6/3pb2839DI+Dq7KDfI85SPDR65/9RixfOh9pXD2/7KfQFqsk5b/JsUDShJG8mGqpP0cISuffGSfyUDI1lfBIY9wrp2bNncPkVVw749HX6HvchsUIrVmoDIl4Li2mgLIxKw/FeATbj8Vmr1WDmjGnIpyQAKZ4aKNwfQkkWHEmEXqHoW8wIz6eL2pMFlX4UtIZUzJtTjukzpuPg4aNxvcgHj+3zuOAjS0ywZGZlYRol9hIlF4RESzLCruzB9OL3Ol6up/GbUfL0JJTCshlzcOHKSyieOfT7m6hZ3vT52/Crn3xfKhUT7zEKCgowrbwIG9ZMw/IFVqhSyO2424mUbvKi8FN2WhctYdFLcRmxqBWwFOswtSQLN1xeDJdXj3f3tOOVN47iyLEzlABo9LO+l5dPxU8f+SUlPWmVYkjPnD6NW7/6pV5sP7jvXjz6+F+lhEdmixkvvfgCtm3dIu0XXhrfuvPreOLJZ6QQAhHX/o3bb+vN3dDbCb+IiYB0rafrPQsT6E+gkDwS0q10/9p5EEO7mnYhxXsUM6dNxtlTFf27j+t7scAlPBljDaGIlgMjrpPkzoZNYNwrpO++87ZU1mXlytXYvv1NSflctepifPUrX5Tgihppt952O37/299ISReuu/4TlKb+ld4EL+xeN+zv4JjtoCA/D3Nnz0CKrwFKz4fCv67n7pHso0OSbju0oIc2A4sXzUdNbQP27icra7ylX7IW4VL369/8DlteeQl79+yWRouWZERYhCO5ssd7ytwfE7BQ4psrr71RNgg3LRw6Ox0QtUiHIx//5C14+vHfUdmv4dcsFTdWkyZNwoJ5UzB3qg5rFqvopo6sC56z0adIcVwBO61YLl0zV4uLF07E1veLcOBYF/bsO0YeFselG7foncW/xU9/8l/4+c8eRh5dF0VWzqbGxpBBxOLvmtXLabErDza7TQoVCG7w/HPP4uWXXqTj86Uka+IGlIUJMIHEEJg+bQrFjA5zIctH3mDKNJSVlSUsnlTUkBY1i++842tSOagAjW/ddTe+9OVbA2+lZ3EPf+Mnr5deR8qBEXIQv0kaAkO8c06a+Q97IiKF9Z133IZHfv4rtLS0oKS0FL/8xSPkXvSa1LdYxV1ByurO3fupmLpd+iH97E2f7B3X1lTV+5pfjB8CM2fOQFlpJrytO8m62Y74Og+KeKzjSNeXYfHsSXjn3fdDlL94UhYriD/6ycNSnNcdX++7uEdLMhLNlT2ec+S+mIAoP7Bu49WyQJw4cgjP//Mp2ChRjkKpwlfu+A4locsMOba5qQG/fvgB6vNKLL1odci+/m9y8gpRXFqGI4cP9N8V0/vJkydjBnk/ZJgd+MxmN0x6OymiMXUR2pgsqSmeOly6ELhghgaPqwspbGAyPvroKI5RHPhoiHDPrTwbWbmuqxs8zEVkuI92/GicF4/JBM4nAiLrtU5H3lseca8xPNFQsqPS0uKEKKT3/+AhXP2xayl8wRR2kn97+gncfde3evcFLKhCiY2UA6P3AH6RVATGvUIqPo1tW1/Fm2/MQX5+gVSMOzj9vPiBFDfqJrMZJqp3F+nHNKk+WZ5MwggsmD8PhfkZUHuOkFW0L0Y03gOqvBVU1qIAa9aswttvv0txZHQDG0cR1pqfPvILyT33xk9dH+IeFy3JSDRX9jhOk7tiAkjPzMakqTOikqg4fgRP//UPWE81SWfPWwwNZUSnP9KQ47rIevfXP/8GOipNIlcu+9inUPXw/fQ3aJN7SG87kdxsEcVqGXV+TM0/i2vXC4ttfK8bZr0bX6GEw397pZLKNRSipLgQu/fskxZZeyfCL5gAE2ACRCAnJwcp/tivZWHh+dqoZumUsLuGu/G737kL4vHvD3pCifr35/P5pWRp/bdHy4HRvz2/Tw4CIjyFhQgIxVO4FAUro8Fg7DYbK6PBQMbp67lz51DykVSovR8lVBkN4FV6q6Gj5AHLl18olRsKbB/us1KpxJ8e+4sU63Xjpz4hlTsK7lMkGSkuLpGSjIjt/ZOMCFf2K664ilZZe2Kt+7uyB/fFr5nAcAioyDp6yYaBcf7h+nztleewYPFFWEiJj3qUUdEq4OhKf7KUxO7Jx3+LiygONSc3P1wXYbeJxZuSibFnVBdW0dVUIsGqa8Gs0rpzymjYIeKy8boNGZhVUgurvhWrVq2EGJ+FCTABJhBMwGg0QKWg3BVxkW54XMMPZxjKVJZQ8jORDO2ub38XM2fN7u0iWg6M3ob8IqkIsIU0qT4OnkwyExCFo0uK86B2Hx7RaSq8ddCplLhg2RK8+dbbcRlbbzDQDevFUl/HKvpc7E5RqYZVKy6Q4rsiJRmJ5soel0lyJ0yACOj1BsllNhoMH2VnPHPqhNT28T/8Ah63G5OnzsSKiy/tzZL74j+elhTRBUsuwsEDe6J1GbL/wpVrcfTwh7R4Kc/PdtGihcjNToXCuR+FOQpctbYkpL9EvblqbT7a/0GJjur3Y8rkUlitFuza1RMbnqgxud/kJGBKz4fBGuqunpwz5VmNJIGyGQtpkYwy5bqptlQcpNtQjuwJw4xHPTcPkRm6vf501Fnt+mAnJVBrk4xI0ykh4z+fewkinE5k5o6WAyNq59xgVAiwQjoq2HnQsUbAarViPrnqpjgP0tRHPtmGsJRajJMwa9ZMfPihmMPwRFj8SwpzInYSKckIu7JHRMc740ggv6BYVm/tlN1VWEBFvOlFq9bRjYoTrzz3DLqcnbh089XY8e5blGinHp/5wm2y+uvfKCMrB3qDkTLu0o1cFFmx/CJYzSnQ+j6CxaTGjVdPiHJEfHd/5uoS/OovlPnSdhR52RNxwQVL8d57/47vINxb0hNwtNbB0UZJs1iYQBCBMxlalAoHEYpBj4d41KloPHMoHl1RH6EhFoN1+vpr2yAeARHX++uu71FIo+XACBzDz8lFgBXS5Po8eDZJSmD+/DlUguEMlWMYHdcUgUXtP4tJZbOpzl8tmpubR4RUtCQjQrEVD5bzj4CCyqyYDWqKfVQiJ1WHTKsWaSYtRC3QdocbrXYPGtqcaLa54XR54fJQluk4SwplhJ45d6HsXkVpmIvXbaZkRkrpmG6/H688/7+SQrr99S2YPmsuXn/1eWlfU0O9pMCK2tJzFy6VNUYG1caMppAuv+hCKqcAKjR/Ehoq17Jpda6svgON7A4PFMTYoA/9efYQXzc9jIbQ7YHj+j9vWJGLv2+tppvOk8hOn0A1hi/AO++8178Zvz+PCYgatzLv789jCnxq/QmI0kze3GyoxPcjDqJU6ajIwMgv1AdPvZ5qoZaUlEqbouXACD6OXycPAXm/bMkzX54JExhxAkVUe9Zi1FJ5BrI4jKZQAiWFt1Kqe7r97XdGcyY89nlMwEJKaH66HhfOyMKMEtKsZEhHpxev7a3DR2fbSVF1w0+WyniIlmKUCwpLZXWVmpZBipyCakQ3I4OSIAXE4+lxsRWuuy5aRQ9ICil9CoWyV3kNbI/0XFBUitMnjw/aZOHCBUi1KCRlVDTKJkvExCLjoO0DOwSu19+twc4DzeReDGSm6fD563viP/3+bjz3WiUOH2+HRqWAgRTST181UbK8Bo4P91xWYpTGr65z0nxOId1SBpGQbfeeveGa8zYmwATGCQGxoO3DxKEWqAulpLRSDgp76LYRePexj19HZaJeoHJcnRB11K/52Mfx1JN/lUYWOTBEbOncefOxb++eATkwRmB6PMQQCLBCOgRofMj4IjBjxjSoh1uvK07IRM3CVOssZFLh+Kampjj1yt0wAcCgVWFCrhGfXjNBUnxiYWIhJenqCwsBeryxrx7/OtRAVlR5sZaRxlFR7LSRMpzLEaGMTp81D2+TJfSq626UYkj3fPA+yimOVEj/8i6nKd60nDL3zp63SE73UptIiZBEAqHcbCu0/qNSWwNZluVaR194vQp1DZ24flMpJhSbQwrAHzzWhsoaB775/2aQO7ICL71RhVe2V+M6ahtNNqzIwRPPVZIF2weNvwL5edPQQfMU9UpZmAATGJ8EWltb4fNTTlNSJkXZuuGINyUDlZXkiZEAEVUALlq+AllZ2fjdHx6ljLpuXLh0oZSE9BoqB/OjHz8MYQ3NoPuh55/7Bx579E/SLBxUkSBSDowETJW7jAMBVkjjAJG7OH8JZGdn0805nZ+3NWlOUtXdiPLJZayQJs0nMvYnkmrS4KZLKGlXdnRrXrSzvXhuDsTj8W0n8VFVh+RmGu2YwfYrFbH9RG2+6jr85U+/xo/v/090OhwoKp2IjVd+fLDuY96emt5jhfWTK3CwZGRkQNQmVnb11SoVlszMNFF2JrK0k8vzrg+b8P+uL0dhnkFqLFyPA3L4eBtmTUmTlFGxbcGsDPz2iWOktFL+4L5mgeYhzzmZOipXppIUUrFD6z9JcehzpGuHuCllYQJMYHwSOHr0OGZMLYYGw1BIFbRYqEzDkSPvJgRicG30/gN84rprYDZbSFnNIqW0JqRsnWgbKQdG/774fXIQiO3XPjnmzLNgAiNGYOLEUqgxMvGack8qxduAvPzFUKl2SyuFco/jdkygPwERDzox14T/2NzjHtp//3De37R2IrYfaMBr+yixSpd3SF2lkNUzFrFY0/Dl278jxXkqSJkVBdIHk5s+f+tguwbdrtZooVJr4HaFlkwQMeYKD8WYd7t6j507jawPMuR0tUOKCz10og2v/qsGWrKCLp2fhUklPZbhdpsHUyb29ZVq0cDj9aPT6ZUVTzptkgWNOxt7ZkLzS3GfxsIF87DttTdkzC62JqKclKhx2NLSMmgJNWHNEBaMcCXWhJU7JycX9fV16K/0xzYTbs0EmEAkAhUVFSgtKYKSap2LpIlDEY+yGAcPHhy1v1WbrQPiMZhEy4Ex2HG8fXQIxPZrPzpz5FGZwKgRyMvNQ4qvZcjjq0XMl14pWSlSLWop7stIyUq0GkVU68bgg/rhdbUgLy9v8Ca8hwlEIaBUpmDOxLSEKKOBoVfOzsZ1K0pgNaoDm2J67qslGtNhMFtSIyqjsfXW11qpVEEkewqW8vJy6NQ+ijFv6N2s1yoxq7xPiezdEeZFWwfFhlOt1IxULdZckEsuuyb89Z8nUVnbKbUW7rYqVd+Y6nOvRSIpOTJvuhViPgER89Rp/HGvUXr1NR/HgYNH8dyLW7Bj1z78+bG/Sq50gXELKRZ/y7Y38eJLW7Fz937c/8APIRTYgGzafDn2HjiMp575O/bsP4x1l64P7OJnJsAEEkDg3zs+gDclC35VbInXxFQ8qnJUVjeiouJkAmbGXY5HAmwhHY+fOp+zLALp6enwebugpGRCckVFCqiObv4Kc/WY/f/bew/ANs7z/v8hiUVM7j1Fau8tL8myZFuW5ZVlZzjOapL+0jg7adPEdu2sZjX/NE3SNG3iNLYTp0k85D3iLctLkq29KFHcEyAxCYD8P89RIAEuHECABKTvY0M43L333nufAw/3vM+ax+4knNREFNGxIhkzO7p9dKTBScdOO8nFSWE83uDYZpN+1mT0U1FRAcdunJm0DTaAwFQE6krN9KHLaqZqkpBtS2ps5PaV0QO7msg7oP47HsvBxcXVbMrmhD/84kRIer2OgsEgBYKDHCs1yOresMi7KEESmyolYjxezhDs9XJSDje/j1o31R5bo9HQwgXzSRs4HLGLjiecZCJKjciYykqMtIZdcUVqKswcM+rmJEZ2qmQXXlEmg8HRJFEDgeHlbI75VSNmdh3W6zNH3HZlHz010+JFi6ihoSFhXhYtLc10zY5tdPLEcb4ORvr1//yObv7wR+gnP/6hMszbbr+Tnv/bs/Td79xFJpOJHnnsKdp6+ZX0xOOPKpMHP/jRT+gD7Ia3d+8eWrtuPf327ntozaql41zx1Jwz2oAACEQn4OKwhueff5E2bFhHRp2BNEG2lA5Fif3nuNOBzEpqbGylvftGQxSiHw0tQGBqAup+0abuA1tniICWLRqmbC2XXtBRHr8KbQYqzjMoad2z2NbdbvdRl8NHnQ6vkulS3OQG2LULEh8BqT2aOaQue5yUYqitMNIFK/OVzJbRjijJScpZaZXXZRfwDCU/Y+7a001v7bdTvysQkdRkor4ygv1UWFA10SasA4GoBOQe8untc6O2S1SDdfPzqYPvTS+806EoiYnq18QKqNVqJqvFzG60Un7GTw6nmwZ6+6O6kWlYMdVpNaTT6bhmqLjZE19sAABAAElEQVTHDlG/00W9jj5OnqHO+lhfX0+DfvagGBq2ZobOSzwg1EoeW0bfOTy+tmng7L3bZtHymEYnxey8POx5of7nW7LzRsigm4I8bhn/4cORynREuxg+vLprtKSMZL6UAvWXbdmqKKRSG3bL1svp8i2XKj3Kg/DOhx+i7VfvUBTSzZu38ORao6KMSoPXX9tNHVyW55KNm+jJJx5X9sE/IAACiSfQ19dHTz75NK1Yvpzm1K2kQV87Z9/l+5GUuBs6ex/MzKahTDP5h/IoMKSj/ezB0NjYmPjBoMfzmoD6X7TzGtPsnbzEeNlMOqovM9MlS4qoPD970sEM55Ic3dzDyTJeOtBJ+072kpOVU4k7gqgnkMMKaVYmW02mMOqI9aK2ykRXbyrhB9sxD33qD8VugJygdFW+8nprfy+9+GYPOVkxVWYbJuqHfyyMpsnj4ybaBetSn4ClgON5NNET4UznTLRBJ33i8uQfZ+wYr7uwlo53BKhv0Dp206SfdUYdx2yO5yGKaH6uTbF0Ot1e9jboi1B0M7icSxa/phKxM/r4nugLDFC/e0BRTk3ZJppbkE99/S7q7nWMU0xlLMacIjLQcN/L11zAiYI4Y21wtMyMHNNqDXA5GXU/r3Nrc2nns6108oyH6mssJArniTNuJYuu9LFkfgH97dU22rihnBXRDNp7yMHJSPL5e6Kuf2U8NhM5g5EuxEae4Fy2ej212UeVXWkbq3idvSSvsbJx06UjCmYB12/VaLTU0tw00qyZl9euX698LikpidgmK5ubm6mktGykPRZAAASSR2Dvvn107PhxkjJ3lRVl7LVgUf5m5Yg+r5t6OAnamTPHoYgm7xKc9z2r/0U771HNLABx4zKzNfTK1aV04aKCuA6eZ9HRtfwQI693TtnpoVebh2sEijkOEpWA2WKijKHJA+bFFfe9V1WosohGPVhYg1VLckleDz/TSkdOOsnnn0gjHmIrKiYYwrCdE4s+l4NEmUqWyHdmZQ3Xp7Rq2II4uRWwsd1Jd/3+jXHD+PfPXsLxh6Pjk2SzP/nL24oy+NUbV4xrP3bF+zeW0i8eaSDf4GgfY9uEf87W5kaMU8/WzML8HI7B5tyQbAl1e2J3sw3vP3zZx7GaPp+P7H397P5roNrKEurqtVNX96j1UpgNeJ2KolpaWkIDri7KGGwP70ZZztZLoXh1f58GXQZdf0UF3f/ISXbz1VAPK4iXbiimuTVmpY/Fc610tMFO3/vFPoW9nvl/+F1zVPcvAzLoSBl35ECdFNDkkcWQSR2dZ5MeRTZQ9Sk4MP4afPwTn+QY1Xn0D5/5lNKH1To8CSF8QyJJjWzWYSXZZssZl+RI2trO7hfaB+8gAALJIyCeC+IxkSivieSNFD2fiwSgkKbgVZUEIGvm5dPVaxM3O7y0Jofk9crBLnqGs15K8XrI1AS07M5HQ+OVQbFa13Kx+xuvrpi6g2luvWZLKVWWOei5VzvI5Rk/jsHg5ArFNA+N3WeJwIBHnYt4vMOzsavujRfPZWVm/PcpvM9B3m7QZtCP//6i8NXEoZcR+973zHG2JLrIyl4c0fqUjop5Eqc8J5MOnVFXaiDIk0KDHAsqkptjpeLCfFYYXawoJi/ztWR3tTucnL3RzfHfJqqpLKO29k5Wfr3KWAJsLfB5PVSQU8+mg2YKsPvrWOnvZ04xTBgtmGPhOqOL+NwGyGLWKi65of0lh9K7rqxkZblcmZyy8naR0Paxx57oc7/Ty4nQxo9z0N/IE2o2OnPq+ES7xbXuym3b6dbPf5E+9IEbqeusoitugSLiHh1SSg0c6+twDCv78q5nJT5chrer+56E74dlEAABEACB9CMQv49h+p1rWozYatTSp66am1BlNPzExdr61fcuotLc7JFEH+HbsTxKIEMhFGlNloRF65bnJV0ZDY1CSke8b0el8pAaWod3EIiXQD2XeIlFNOzWGf4K3/e5vS0cs+6lbeurYsoYffW6ioisr+F9TrZcXlrEyqGV2jp6qY8tozMhkgyp297PcaUeqiwvURTi8OOWsptp1tCo9TR8m8R9xiqZPNEl8aQSHzqRSGKikDI60fap1k02Hg31cbbu4ql2jWnbtdddT9/57vcVZfSdt/eN7NvV1clWZT+VV1SOrJOsu21tbcpnKW5fXhE5wSfbpb4gBARAAARA4NwnMPEv37l/3il3hpIlsrLQSHd8aCmVSKKiJIrUufvKexfSstocftjEV2Ay1PIARRzeHxIpk7FqcY6ShCi0bibeywoN9KFrK0myZYZLMl07w4+D5XODgCg6ly6PrnzojVYqqqijjZs2U0NwDp0Zqie3cS6V1C6j0ppFVFKzmAYtdZSVv4C+84+foA2brqbNW66ggsoFZLIVsnI69T2lLJ+z4E6idI0lLRY1sVBKn+3sOjsQmHmvABdbRts6eynHZqXS4kJliDk5OfzOltuwuqNjx54Wnwc9HL8+RMPnM70Rf/BDH6Z//Kdv0k03vovClVHpVe6lzz7zFN100weUg0iW3R3XXEePPfqI8vm5556lqqpqWrFylfJ53foNJHGnkhgJAgIgAAIgcO4TiHzCPffPNyXPUFyy5pZZ6NNXswvYDIoUrv/Ti430+pFudjuLtATO4DBS9lAut4cohy0dZ70b59daaPOG4QfS6Q6aK05wNl0/Wdg9W65/NMnL0dF1W8voz080k5dj3UQykxhrGG082J5+BIxs3Z8sKZpWn02WvDIy5xazW2qAsrrbaXWZnzT2Q1wSxUNvneml6hILXbykhBz8vX38tUa6al0VOc+8QV3NTvJ2erkO5wqyFZRRce1Sctk7qa+7mTz9E9fwXcLhA5JwbSrR6/VcjmCD4qbq4CRDsyn+QJC6evo40YeJVqxYQe3tbRxfnlz36hk7X87YLQqp3T6xtVftOLZddbVi5Xz62Rcjdtl2+WY6dOggfevOO+g3d/9eUUQtVgs9svNheurJ4Qy6LqeTvvaVL9A9995PnZ0dSv3SL3/xcyj5EkESH0AABEDg3CUAhVTltc3Olhp3RuruTnzskrjPzrQyGjrt915SpTxgHmyc3VgdmTGXMivCWKwi8oAkcUcysy4lBJz8wNLLWd5mUvo4uUmglLND8kELcvV0wxXqYnqffLGFnt8dmehkbq2VPvLuOmX4+4/a6cGnznC9RA3XPgzQDVdW0cL6yAyYE51nDZeVuXh1Pj3/Gru/DRo5FosVZggIqCQg95mxojPw311RFZmsBeRxtFFf834KDLhJbJxLK+SbLy8TVRRy3cjdpznBWgkdOt1LFs5+e6xp+J7R3e/l2EcvvbR7L62cW6DU+TTYiim/tJYGi2uor6uZnPbIv4eV9Xm0+3A3+blO6GRy8cUXK+WQZlsZDY1PXHi7elxUWFREeXm5pMnoCG1K6/esDE4uxPfe6crNH7xxyi4aG0/Tls2XUElJKbtB95MooeHy0IMP0KOP7KTSsjLOuNus1JEN345lEAABEACBc5cAFNKwa1tbO4ce3PkY/fAH/0q/++3/KFuk8Pm3OSZm21XbFcWohxXST3zsloTFtkgCo1uvnx82iuktSnmXQbZ2SiyqWvnEtjr67v0HqdPuVbtLQtoVFhZSbW0tFfEDXkZmJg0M+JWxD3HspsRTGc3DmRmlJIoUstdxLTuZEJD6V2fOnOG2kz/MJmKAYjEYpGqu/aqh918TGd8UrX8pcn/t1tF4qZAV1DcwSH95vJE+9t56quCi96ebXfS7v5ygf/z0EpLapNFk/Yo8Oni8j1p6TNTdmfjJkWjHx/b0JVDBIQHhkltSSzlF1eTqbqTuk69xkpyzrgDhjc4um/QaTlo0REF+VRWZIzLtZsmXm/8Xl3YR6cdjb1FeenMhK7wVZM4rod7Wk+TzcLYflipWcKVWp98z8d/wunXr2QVAw5l0U2/Sxd7nprqachp0d5F78iTcynmmwz9ZGQMkE64zJW1trZMeKsAu2Wf4/g4BARAAARA4vwhAIT17va2cfv6X//U/1M9WsXCRwt2rVq+hDWtXKu5Dd9z5Lfr6N26nz55NZx/eNtZlE1vIbtxYTeOKlkfpqL3XQ9+55026/uJa2ryiXGnd5/bTrx89RA2t7FbG/dpMevr0tYspl7NqqpFPXVVPP3voCNnZHS/ZUldXR/Vz53LsUqbijtfjcHGN1MkfhkPjyeJ4Vz27Fi5YuIjd5lbSqdOn6OCBA4oVNdQmke9dXV2k1VtpwRxbzMlERKEOPaCHj+log4NybTpFGZX11eUmJWHR8dP9qqykso9Yan/1gIYzfzbIRwgIqCJQnj+skBpMNiqomEdBtoT2NLxOwcBoKY5QR02dLrKxFVRcyiVZ7NsNPVSUY1TqYJYVGEleITnW1EeegQCtqM8PrRp59zk7SV7ZORVUNm8N9bQcJ0fnGa4RyvpmaJZmpPXwwsKFCyk3L4/kvmDNSW48/ZhDq/ooSvkQ+9xbzQbye3XkH0jzjOVDfvZMyVN17mgEAiAAAiAAAskgAIWUqWZlZdHPf/lf9N+//hVdxZbQcLlq+w56+KEHRmJZ/njfvWxFfZwteJnTttDVFJtoQaX6IvEyLjdbQH/x4AHOUhl56e579hhlc326H376QkXB/d2TR+gPvO7vWSlVI1KzdNXcfHqWS8IkS4qLi2n58hVcMD6LXFyI3hvjg1yQ3fvcbi9Jjk2txsuucyV0dU0N7d+/n45zQedEizx0Dnh6aNvmhUSBrpi6b2hycrznaaWW7NL5uVRWPGyB6HP6ycaswyWHM3LKerWSY9VRbXUpPfDIq2p3QTsQIPkbtxZUUF5pHTk7TpC3b/K/dbvTR0++cYb02izFa0FqIl+2KjYvgXDkHnsT+d09ZC6sI73JSp2nD06okObn59OCBQuUJELh+6faskTcD/gHlDqakkE2rYUVUgPH60JAAARAAARAYLYIRPcRnK2RzeBxb7/jLjp69Ajd/4d7xx21pLSMmpuaRtY38bIk25AZ/OmIPODdvKU2pi7EQ/WXOw/SljVsbciPLN9w4FQPXbi4hB8gM5UkOVesqaR9J7qVGCy1B9mxrowtq+pdfdX2K+2WLVtG4obn8w9xKQVOghKjMjr2WGJRdXCdwE5ONFJfP48u2bhRuS5j2033c0mek4Y0BTF1I1bP1UvyqbzIpEwg/Od9R+kEW0BFPJyQSMf1HcNFMh17vNEtxCP78HiuvMjMkxIx7DOyMxbOVwJ5pXPIll9G9sY9UyqjwmdJbR595MoFdO0FNfSeTXV0wyW1k94b5lZYaccF1VGxSmyqo/kdyhgMUGn9KtIbxitBcp/oZctoYIrY0qgHmoEGWq1ecV8WV2WzOfJePAOHT/ghjCZLwvtEhyAAAiAAAiCglkCkmU3tXudQu5s//BGqmTOHPvrhD054VjaufRcq5C0NfL7hOEsbu/h2s0tncd3KCfebaqVksZxrc5LRFNuDzH3PHKPqsgLavHoO7T/tIo3eqLzkWGazhbJ02SOfi7lUSIbGQE5/FltGxj/4TTa+y9fX0/PHhyhTm5iYIrE+r1m5lAyGbOrlgvZa2xAn0Ig8uvDI4GjNDGJXOH5YlVi1DHZ5HX7nORN27ZWyD0FukZU1XmGWQhCF+ZX0nrnL6Y09b3NR+8QEdmkCPfS+bbnM1cYZNXkCIhiZhCPyLEY/LZpXSItGP/K5N9Gew/00ry6f3XON1NEdpCzNqJV0MEPD1y87Yl3Y7uMWh7IrSB9o4YyWRaTNjz3rb2/LMbb8qjuXcQfHiqQSyK9YwH/DifnbCx/okoVctqXESv0dR/nvSr5/0e8JWdxBji56u/DjqFn29jaRMb+atu+4lp578yS5uayKSEVZCRVXz6Eurv3JFVYU0WYOkoaVv1SRLG2AjFzaxsBJoLRGLkcz5OU4XIlt72UFdTQeVqP3qf57nolz0+qMZC3KnfhQmQbyZhbF9VsmHTp7WsnVO7m1feKDYu1MELCwR4R8XyEgkC4EfC4H2dtOpstwMc4EEjjvFdK//3+fpSeffIw+9/kvKVhr59Qp7rj9nOH1r3/5P3I4HErW1xBzUaxEHI7hFPntJ/aENql+N3OSnKs2LqKAT32BdylC39zWTbe+a5myn58zrMr+oT7W1Fnp90+8zZkL5yhudocbe8nP24MD0k69Je3C+mx65rX91OucflyUJITatGkTuXtbqZWtmWNFb+B6hHoDVVTW8KuWsjnT7mTi83qpo72Fmk43cJyvnXwDPn6wHn0AlHyfJqOBFlbl0ssvc4Kmzum70VWVGSmLkxo5e0/x2Aq4rMXEJSwmG3NovdEwRJ1dHo7VG+D4XrYQ9ziV5dD2rm4nmZfaItaFto171+TzNQ1yMpVmnpgw0E/vjv37N65PrEgZAt1NhxM+lsWLF5Pe3029p09Sjjk1nGL624+St0tDc9iV/fnnXydJZrOi/kpqbjgS4T1hzcmlgH98jGvCIansMMhjcTs6OQ5WS/rBVuLMRkot5yDfjyQreEgCeSr/nkM7JPndz9bpvg4e70SSZaMeT5Di+S2bqDusSx0C/V1NJC8ICIAACKQ6gfNeIf3lL/+DrVaj7kqi5ATYHTQQGI7pa21tYWWpcuQ6yrJYTKdTgkRiPSXxUCzy+OuNtKKugB7edUrZrb3XTUMnhjhuVEMbFhXT9RfVKpl1dx/qYAU6k0o4AYm4guaYRi1xao9XYNMnRCG96KKLOHOJVnGtDR07gxOZ6Fmpr5u3kObUL2DLZ6T7aqjd2HdRXivZeiIvkY62Zjrw9h5yu/pHygO4OL5U6ntecOGF9PxzzymTCWP7ieXzhhXDFgWfq4kMpmLKyBIraXSldM/+HloyP0fJmuvkZFN7D/TQmmXDCV/m1ljpz5xl90yrmyoly26Ti+s8BqiuavQ7ONUYh7QVXJ7jlNJk28Ziuvsvp5mv+vjTqfrGtnOPgGSxrqmqIGfrfhoqL+ITTA2FVEh7eji5kbaU1q9bR6clsyp7QXh5Ai0dxM8KtD5L7q086ce/GVKuSspEcY7hdBh+5BjZQ8PrTR2lP3Jw+AQCIAACIHA+EIhNKzoHiYTKu4RObc3atTxj/zdOZPSgsuqJxx+lWz/3RfrVL3/OP9peuvGm99MTjz82rYRGy2oncZ0KDWKC9yvXVirxh6FNosdlSSZXTq4kIm9bV1coL/n8h2ePc8KkHCWeVD7HIhcuKqTjLf2KchfLfuFtV62SGDGj4qYbWm/INipKaP38cIfW0NbY3otKyklenWw13ffmbr42HuWaiPsfY6H16zfQU089qWTDjK3n4dbZhiy64uLikV3djgYy5c6lDClbwUlAppI9B3vor082kpWTFbnY8rCMldMLVg67TUmpixuuqKTf/t9xJYOpKKzv2lalquTLkK6GM3r2c2bP4QRLBn0WJyPJgkI61cU4j7dJLV/5O+w59RYNBaf+zs4WJi97H1iKF3J8+Trq7k0fN3Kvz08mUzYHEdiV+2QgGFSUUrfbNVso4z5ucEjHk2LjPVji7hA7ggAIgAAIgECMBM57hTQar0d2PkwbN22m197cR85+p1LQ+6O3fDDabpNuN7B1dN28YWvZpI0m2BAq7xLadLy5jxazYrt2wbCiI96roqTKSwrWv3qonT5z3ZJQ85jel1TnsLVVRw5XfG67FRUVVFJaSl1nHzAzM7M4I24xrbvoUh5fYi00hcVltHX7DXTwnT3U2HCca5n6yMmW0hyrkVauXEVvvfVmTOceaiwK6Zyq0Rhfv6+HfO42VrLrKMM7tVvlx95XT152kxZl08Zld8bWF122IJeWzMtRFEnJmCvXLKpoi2go08o1I9+KaFpSqKf2ruEYvIgNMXyQjNFiqQ7yQ/VYkW3FxSXU3t424SSM1C8U65DUh4WkFoFVK1dQf/sJdvFObSVp0NVGxXMXcWy1WBjTQ2RycojjwUN/ulL7Wf4O0lIhpWz2Jhme5EoUfS3XjPb7J54EyS8o4NASTmzHDMdKtPvN2Pb4DAIgcO4TkPAveT6RygdjBfeTsUTS93NitYP05TAy8o/e8iEKt5pKbNOXvnArXbhhDb3r+h105dZLqaW5eaR9rAsGLqNQmJP4JB3tdg998RevKK+7nzhCn9qxmOZWjMkepHKwUiNQlZI0QX+SxGjlypXU7+IYT755aLU6ds9dQOsvvizhymj44RctXUkr117ICYQMyuo+p4fKysuolBXjRImn7zTHs3HSJf2cqF2K5bIg1zBOGQ3tKHVKpR6pKs4cNyrWUZf9KFtnI2/IJQXD5xvqN5732//lLrrtjjvH7Xo1J53Z8/ZBuu/+P9Nb+w7SFVduG2kjPxD/+oMf06uv76Gdjz1Fj/CrlDNSQ1KDgJRO0WUNkdfRkhoDmmIURqOF+u3dZLGqc1ufoqsZ2+RhF9ehzNEJK6lNKnWS5f6XdpJlIbt9OCdCIsa+jr1Tdu2OnDiTfiXc5fGn/kY7H3lSmeC969vfi+A11f0mEeNCHyAAAulHwMRZzJ/+24u0Zu26iMHjfhKB45z4AAupysvo7O9nC+n0Z/DlwSVe0egMZLTkK3X8/vVrq0lrMHFNz+FLWMPd/nbNZaQd8nHmR67xyZnKPP09NOCNzzpi5hhXexyJjaSovW8gwBbCARIX3cVLV1F5VU28pxzTfsWl5XTRpVfSKy88TR52nXO6fUpNw9bWSZJ5TNF71iSaorP3EFnyl1CWni2lvhNT9JCgTaKMGurJ2b2fAuyuO1aK8uNXSLdefgV953s/oCK2Xt/92/+O6Fp+BH7wo5/QB258N+3du4fWcsme3959D61ZtVSpybv96h20avUa2rB2pfL5jju/RV//xu302c98KqIffJh5AjIps2jRIk5iNF4pmPnRRD+iycYWM/57zSAdu8Ga2H00vntW9CMlroVHMgNz7CVlcBwp329FpFSNjkuCedxp5P6amc2eD+x4nACFVKfT0ROscFbX1FLPBB4Tt91+Jz3/t2fpu9+5S7nOMom19fIrOQTmUYp2v0nclUNPIAAC6ULgrm99l971nvdNWFoL95N0uYrqxwkLqXpWCWkpLruxiiWvlMrqV1LFvHVksrDVc8BJ7q6T1NPwOnUceZFfL1DX0Rco2L6HBnpPUtBrZ/cxE5XMWU7l89aQlVO/xyrx1CMV68DcuXMVl1ktP5wsXjZzymjo/EycoGrjlquUMjOS5Eg4FBePxoKG2kV7Zy/jSaWflUM2lLKldD4/kMavEE56gLMbhnTlNKTlLL9db3Om5IktGEX5klglPnmaY2zXrV5Ov/6v/xznCrN58xY6c6ZRUUal99df200dHe1c73WTcrCrtu/gOOsHFGVUVvzxvnvpym1XKRmqlQb4Z9YIzK3nCYyeFnbVTQ/FyGCysqs9ex4EvIqiMmvgYjywo99FQ5LoLEz0fN9LJwmQldra2hIy5AGuLb1500X07huuGdefuPBu2Xo5/fGP9ynbZNJh58MPkUxsiUS73yiN8A8IgMB5ReCb3/gnWrygjiS5aLjgfhJO49xZhoV0mtcy1hpfFjNX05ygluZEwxBFNKe4moI+J/n6O6m/9dC4ZhlhmpPYXoN+r/Ly9XNMUNcp0plyycR1yPLK6rlUwRmydzSO62OiFTlWE9cvk5qfoSipiVpFrquprqYAWzmkhqm46VZW10U2iPNTkOuUiuu0lIhRI9nZJtpwyRbavYuVdK6xt2TFWup/dbeaXUfaWK3BEevzyMqwBU/fcY4hq+Tsu8uJ/MzU3xG2dZqLmSZ20S0nLhfJJXMO8DsnajprCR/bM1dpjLnOnM9l5xIzE8d3hfovKSlh1/Sm0EflvZld1UvOuuXKuyi0IWlqauLro6fcvDylPm9oPd5jI6A32Vipn2I2JEp3Mim0ePlK6jn5BukMoy6lsluGEiscf99RDh3z5iyNloxWM2m4fnKmxqfk/83iuqe2vEK2Mg5n281i1/Dp8Ih5UFF2EIZZ7KmSwRl2vWwYzcyrJM3AcLmXTPaq0LPXisvLdZUzNQrvKN3N2OZMHo92zPdBDj6kqaHOngOUbYlUrGMZmF8pLTZ8vSbbr6CgkDR8vcPvKc18f1m7fr2yS7T7zWT9Yv3UBOR+ostOH1f4qc8GW88HAgG+n3j6ps5JgfvJuflNgEI6zeuaFWPRdp/fqSSQmeqw8oBWUDGXM+hmkZPr9fndUmUzPhlw9ZK8vHoTmbgYvTl3LXU1HeUEPcMPUZP16vYNshLEMY78AKZW5tTVkS8wSPn88DFvwRK1uyntJN70hWcfUwLXL7tieIZ9aGiQ3tj9EjU1nuISNhp+2DPQJZuvpGy2ekaTnLwCZQzHjx2mco4jzTaZ2QoztRIW3qfZxA+Vk7jthtpJOZigv48f5mooM5vrlPrZ0qCiLExo/3HvGXq2iHIcpraQJyDOkPQvMtU4TEYtl87Qj+tqyhUqEkvZbDnjko5IuSOb1ap0Le/yOSQ+33CCEpvVBoU0BCWOd63eyMpZ/Fa2ObXV5POw+6tk4GbFKVyUhGIqrn34Pslclsk0o6WABnlMmWe/w/Jdt1hzaCAg02vy3eefKEmbnSIiDEWRzsjKIJcvwK77VsrK4KzpXI9URKvXsYJtYCU6g8eu/t6Z7NOT+7iMK0I4djSQYeISX17STkNpGeSZswDXxZ5KrGfvG+H3DElqJPcLkWj3m6n6xrbJCQzxtZHauRAQSBcCg2yAiCa4n0QjlJ7boZBO87rFWnS6ospGg4HhmKOJDm3OLaaCygXk7m6kPq7Tlyjxexxkb3qbDNYSKqlZTD2tJxWL6WT92wyD7PbHCpZKEeuYhmOp+lweuuTSy9mqF/2mEt71ntdfoX6HXYk7De175vRJ6mRXjR3Xv4+TX2hozxu76K3XXqYLLrksfNdJl6tr5tCZhmPcxxkyawfpdMuwgjfpDmEb/HnWqFZEaR4MdLNy382z0IVksFSyEs8KJa/LEMX07ENqWLfjF+WBOytn2PVPk8NKaDN5O1+locHJvyPhncjDRqzfwfD9J1t28LUYa5GW2ESHY3hyRN4lZiwkBq4tKyL7QeIn4OxpjX9n3jNvcS31txxQJqHGdjQY5AkPjhdMFQkMeGkw00lOexf5WCkKidaYw5NwdsUrQpuTy/fL2O4loX6S8S73pgE3l17yD/99Np8eogKbgbICZxPdDWh4dr+L7wt8n4/xHpiM8Yb6DPJvjqcvcmLTx1m7j554jfo6ToeaJe29r294AlTuGSGldPh+Mny/iHa/SdrAzvGOBzxOkhdk+gQko7wkSSzgLNE69uSQSSeZVOnp6WGX0ta0iH2fPoXU6AH3k9S4DokeBRTSRBOdRn/WgkrKLaoiRxPHKLICmQzx9rVRwNtH1tKFPNOvY8U0MYl55CbtZYtZ/YLFMQ/7xNFD5HT208IlK+jUiaMj+5853UBVtXWKMior59TPp6cefYCXxHqi7sF69fqL6K1Xn1N+RE6fTt6D14Cnk3/4O9kKYVWUU61+HltR+M8ryAlahvhhe0gsrhqO1RQrLa/PYHdods2lTB0nK3KwAtHFD7oHz54bv82yyA9sOZfvCRfJaheK5ZB3+RwSWZYHzd7e3tAqvM8wAZkUsrLFqadLvkfpIRrOwi0lU8JFlCc5F3HTT3Xp7O6hwoJ6nnziGKdBroU8Jgt2yo4/UyzxOXTixK4ZGWJXV6dSBqa8opJOnjiuHFPuGaH41Wj3mxkZJA4CAhMQEGucJImTXBRuj48CfL8a5ARmctcyWgxkzcmjhbxdEoMdPHAAJdAmYJjoVbifJJpoavSXOj5FqcFj1kYhiYdyCisUK2aylNHQyQU42Ym9cS+7muZQXmli4jytNhtptAaqrZsfOoyq9462Fjp+9CBdwGVhZMYxXKSmn2RfDImR3W6lFpWPSy6olWyjmX8w8ik3l93qZkACHE/mdpwgR8frbHnYQ05Ho5Lx18vufb6BQVbaBzkRkJvcTo4J7jlI9taXlQy6A1zjdFjRnoFBqjjEc889S1VV1bSCa7mKSCkHidt46cUXlM+SGfO6624YKbNz403v52yZj01Yq1TZAf8knYDE4XmcaTYhIG7xY11bBwMj36ukQ5vmAUSZbu/spkBW9TR7mtndfVROhw4fmTGlX2qSPvvMU3TTTR9QTlSyKe+45jp67NFHlM/R7jczSwdHA4FhAnUchrR161Yymm3U2mkne7+bnOwF5uZnECn9JIkTHbyujbdpOHfGRRdfTAsXLgK+JBPA/STJgGepe1hIZwl8+GGNXPYgt7iGHM3vcLzH1LE44ftNZ3loKMiufQfJWrFEiTFxdDVNpzvKzcmhuvmxxY06+/vojVdfok2cFVfDWRjHin+AE51wnFlIxG1XxM9uqhJPqlYWLFlNRwIzwzV8TJKMSF6TZcgNbzsby9uvvoakBqnFMhwXKplzb+OsdqJYSuH6r33lC3TPvfdTZ2cHxwUX0Je/+LmRrLqP7HyYNm7arNQTdPY7qZ8t3B+95YOzcRo45lkChYUFNORLjmdFciFHTkQNBv0cixk9Tjy5Y1Lfe2dXD9//qjlpTyHvxK76KS5DmiJ2Ncyko0dHvVESMWSxar/w8m6l9rRMAO5+Yy89zxNbX/3yF5Xuv3XnHfSbu3+vKKJSc1buIU89+biyLdr9JhHjQx8gEAsBsYrW1NRSe5edBiStfhRxciI28RKrrqlhl14t7du3L8oe2ByNwI/+7ad08SUbqbCwiP7zv36jhEpctGGNMpGG+0k0eum3HQrpLF8zSTRRVLWI+loPs+Iys/X35MHP2XaMcquWk5eTHEVLdDQVqpzcfM6qO4c8XH9UrYirrslioYaG4Qcje083x2E4af/bb3L90pVKnMbg4OBId5JtV0TL8RuxiJSgMfKMPCSSwKOPPEzymkweevAB3r6TSsvKODtms2KdDrUVd8ovfeFWMvP1M7Pluq1terGPoX7xHj+B3BwbBeyn4u9gNvYUF1eeHIsQXicJzTScYTddpKm5g+pqazh+fGbv4THzkcRpuhp685XnY9412g7isr9+zYpJmzU2nqYtmy+hkpJSZQJLlNBwmep+E94OyyCQbAJVVVVUO2cOddud/Ls3+gwS7bhSi7jH4eLfzHIlpvT48WH39Gj7YfvEBOQZYzLB/WQyMum7Hi67s3zt8svmkruniWMIZ2dmPcAlZZztJzir77xpkZByH8Ew5VFNZ6XllRyXUUoatoLKS6yhYiuRZRHJputiy1tIZFnKWshMfKySqBI0sR433duL4nmmsTFCGQ0/J2d/P5TRcCCzuGwycyIuLvuUThLg5EBjXfVl/IPsmh/yiEiH83F7PNTW3j1cmziFB+zLnEPvvLNfScQyW8OUyauxymhoLNHuN6F2eAeBZBGQGpcrV65kV1xPTMpoaDxSMaDP6aHly5ez9xFK7oS4JOsd95NkkZ35fqGQzjzzkSOKq66OXU/dPY0j62ZjQRIdDQUHyMZxrPGKWEe50EFMuxeVlNECTmQUepVXVrEl06x8lpIJFVU1dLrhuPJwKh03HD9C5ZU1vBTbcWTfyupays42yiIEBM5JAlLiYYjjL9NJRCHNmqi0FFtNZfIpnaSrh0tsBTLJl1mbksMWZbS1rZeOHTuWkuPDoEAgFQjMmzePXJy8yBdDmbix4/YHgmR3OEn6goAACKgjAIVUHaektMotruXyLmeS0nesnXq4xExOSU2suyntJfFQWXn1hJaOuDo8u5MoufkFRfTg/91DO//6B+pob6UVq9bF3KXUNpSYU51efdxpzAfBDiAwywSGYvRQmOXhKof3efojygeFj2lCRTW8QYotazVZ1NLSRr19gzSoTS2lVMbT2xekN958M8WoYTggkFoEJG7U61Nfs3yy0bs46VFlWCb6ydphPQiAwDCB9AnSOceuWLYljxU44vp7XSlxZn4v19bjUjOS7bcvxgRHiqstWzOma8+orp1L8gqJKJLrLtxEAc7Q6OdSENnZ8cWBiktggGcsjewC7LDPjmt06JzwDgLJIhDkmPB0Ez/XIs3kG2FWVmakexy7vcl6Ka2QLiKJTKQm4Wuv7aYNy69h9916yvDNfgzZkH4uOZyN9NJLr6QLSowTBGaNgNx3pmMdDQ1cYk99A+pzaoT2wzsInK8EYCGdpStvyS0hr6N9lo4+8WG99lay5pdOvHGKtZJ4yMczilrtdFXSiQ8iGXjjVUalR51Wo2TJs3AmYAgIgEBqEfC4HGwlTf+50cyMIa5BODzBeOCd1/ieE6RB/QKOMIg95j0hV4iPO2hYzOPw06EDsIwmhCk6OecJJFKJDATUJ0Q658HiBEEgCoH0fwqIcoIpuZktf6bcIuo+fjKlhjfgtpNFoyONLjumcek4662kO7dY4rNgxnSwOBrrWKH1svuMhZO+QEDgXCWQmZmet3OXo4uyc0q5pFD4lcngmrZBLlGaPnOmRg4L6OjoGDkJt/0o6U0VlG1dQRkDDVyvanTbSKNkLWiLlGy63r7T5HM1Jeso6BcEzjkC4bHr8myj0fCEOGfpz+FSRrl5BUqyxVDCtUGxgno9PBHVwd5XvUoSxiAnAvT5hpPLiZcXBARAQB2B9HyCUXduKdsq25RDfq+TH7hSLwGJuO1mm2OzJEpWOrfHS9kGHWVyMqJBLtmQSqJn60tndx+ZrbZUGhbGAgIJJZDFD07pKC5HN+WVSoxjWIZgfpALskKq4f/SQbL1OqVGbz9nnQ4XUQYDfgeZbOy+a+AwjYFGTiHsDm+S2OVMI8evVrKrs4ZcXW9z1uXI8ST2YOgNBM49AlKJSsJ7yiqrqWbOPCXRYrSzLC6rGGni9bip8dQJamw4QZlplpht5CSwAAKzQCA9fu1nAUwyD6k32cjP1shUFL87doVUb8jmuoFD5HR5yJitJykQnSqikTIxHNvl4rGlVUBaqgDEONKGgPwNZrCVNN0y7fq8LhrwuJR7h5uzWyrCE1sSg5UuP1Dicnzq5MTxosGBfurr3EMGcwW/FhEF7ZTh57q9gwmsWZppoiEth1tk5ZK3vxFW0bT5q8VAU4WAjuuVW6w5dNGmLVzs3Bz3sAyczX/ewqXKKyPgob1791Av11gXSyoEBEBgcgLp4w81+TkkZEsuu2PkFxRM2ld2djbl5+dPuj2WDXqDiYIDqXlzCgy4SauPrTxKaBbQ7ujnmcVZipea5AKYTAbq6x8uwJ7JiVMgIHCuEnC7XZSlTc9M0vaOM2TKHrXwyj0lGEw9D5KJvjsavq9YzUY6ffr0RJtH1nmdTeRof428HvaO0c/j+M5FrESWxB9jyjGisr/0I/1Jv/b2V2ddGU3kb+UIPCyAQBIJ5OTm05U73kOfvPUfqYpLxGUmyNW2vKKCPvrpL9I173o/u/zmEVx4k3gR0XXaE0iXCeikgS4rK6M//OmvVFBQyD/oHk7b30w/+uH36W/PPq0cU6PR0Le/+33adtV2crvd1NPdTZ/42C3U2toS95g0OgMN9Ie5p8XdU+J3HPR7KYvHF4/0O11UXJhHivuaLzWyy5mzDdTYzNYICAic4wR67XbKM1go4BuegEmn0+3rbafCirmKN4PPH+AHwizOjJ0eCqnc7xoaGsjPyYOiyRDXV/U6zygvrSGfhl9lXFk5yJZTvm5DHsoY4t+GQbEUh4c+8GRapoGGJEFSBsf4Z7EFJ4OTtXm7yc9uwX5+n21Jxm/lbJ8Tjn9uE9CyVVRqm7/3A58gDSc/FJHnGLMpm/qc03OtN/GzRyhb79wFS0heD97/Ozpx/DBbS1Pr+U+ny6Rci5aznWdQdbmRKkuNZLNqKdeq4/vwIDn6/dTW5aXGFjd19w5wzpBB6nUMwOns3P7zmPGzO+8VUikHcucd36Rnnn5Kgf+xj/8dff0bt40opNuv3kGrVq+hDWtXKjFCd9z5Ld5+O332M5+K+2JlZLFbXYrO/gcDPr4xx2/l7O5xkM1mIU8KKKQ2i5GvmZcTDKSGchz3FwY7goAKAp2dXZRfX8Ut03MCpqvlBOWWzKGuvgzODJsef7OSWTzHZqZXXn5BxRWKbCJKZEiRzGIXwSytiV/8npXPuibH4/PvRGYWx4QG3IobdpCV1EEufxX02/nVxK/UmnhIxm9lJDF8AoHEEcjmONE1Gy6hiy+9IqLTXnsflZcWT1shtZqzqaMrcqLouvd9mN587SV6+bmnOQFSX8RxZ/qDVptBhbl6WlhvpWsvK6WlC9Tn2OhjBfWVPd301ydbyM6KaScrqRAQmC6B814h7ehop6efenKEoyzfdsddVFhYRJ2dHXTV9h308EMPKMqoNPrjfffSgzsfV2rkSbmTeETHLrvnakBjr6OPZ9bMygyjxJTOlkipF5vVRA2nm2drCDguCMwogba2Nlq5YgV5ZjCZayJP0NHdSjlFlWTijJadvemRjMfI1tGDhw5xFu/pWTxEuRxWMFOrFFgs1zcZv5WxHB9tQUAtAZPZQpdefjUtW7lu3C6SoNHpclEeTzT1OOKb9MnhZyApH9M/gZV19bqLycqxqo8//Gdy9jvGHT/ZK/RsDc1h6+fN11fT9ktL4jqcla2p2zaWKC+XO0C/uPckvflOL7V3n80BEFev2Ol8J3DeK6RjvwAbN11KLc3NI/XkSkrLIhTWpqYm0uv1nP47j7q7ukiXHVvwu8x6+73sCsLJRzIoBWMaldgJHhmPT1GcVcRSKDP5maM1SDu6eqm6spRd2ILknyW3u1y20nZ125UxZJ4dm5yTlicD1MRxSFr3dCg5kcHnFut30O/zsMWFXQQhKUfAnFfGt4bRWMpYB+jP1JOtdC4NuHrH7Sp/pxmZ8fc9rsNprpDQhWyrJaIXp6OHqpcuJbuvgbKzstlbQ8s8UudnShjqjBbSDHHpLnbJM+izqGXfYbIWVUech0afQVls5UwVkVJeY8eYqLENuPvYBbmXov1WJup46Ec9gSz2dkrX7NvqzzK2lpK86NIt22j5qvWT7tjeKc8wZay4mcne7yIvx+fruaxTqNzLRDv6OdRgYMDLYUuFSoK202da+Dlq9LkofJ/5i5bzvU1Hjz38f4oXV/i25C0PUqEti95zVSldf3lZwg5jNuvoK59cwJUWgvT9Xx2ld465yDkNW8Qgew8GmCPk/COQOr/0KcB+7rx59LV/+mf62le+xCVZhq2fNquVXT5HZ31C9aVsXEJEFFJTLmc2jEE0Ona/kqT8nHxE4jVTTSQpitwQ5IfMmFvCylt0pVkedsIfogeCXCDe7qSC/Bxq77IrGXhn8jzzWBkNcsZRe78nYlxZ/ANgtBUprnDRxqPRe/jHJ3Ue3icbrzz0xvod7O/mUhSslEJSj0C2NV/V93OykXfZPVRTOofjEY+MayITMZkpVNdTFE2dJnJCLyvbRv3uAcrlBCBincjMHFTiScedzCytkAkguXdr9QYq4vvb62/upWxL3rjRZGlcfB0nfhgd13gGVsh9IjtJdaLloVsU0mi/lTNwmjjEGAJ6o5Vr4cZWxm1MF6o+WsxcpzPHxopYNonCJ/k2nC43dbLLauhZSlVHyW406Kfly1fQSrZSRpOWjh5yOTpoz+u7yO0TZdNPBUXFtO6CjWTgygIhaWtpore4jWTRtXKY0DXXv4+a27s53juLnz8mvwfMXbiMnByvuuuVl2iQ48GTKVkclz6foznu+vx80mQmpzaqxaylu764jPYd6aN//dUJcgZtqp4fx563lER09qRn2MnYc8Hn2Agk968gtrHMauvi4hL6zd330C/+42f0yM6HRsbicDiUG2xoRehG5HAMl23pbTkW2qTqvaTKRjKjLA82g8HU87vX6E1cgqGf/D4X2VvV+f5ZDXPHzWh1dHjZ/hukPCvHUXTPnFtKDrvpZgwFSGYnx4rf5+Ysl1ygXoX4zFauHzg6EaFil1lpEuBszbF+B2dloDioKgLyQyxWuHjlkKOd5pRfSX7+XgTHfH8HB638cJg6lvEgx4l6ByLLX2WaS+iVl56n0tISfugz8t/gUErVa5aSOgG+j1iyM2nvm7vp9ImTE16qwICO4z2jJzmacOckrAzw5KezJzkxa/IAKRLttzIJp4UuoxBwOzpJXsmS6upqmje3jv9WDeTn54YhfxdlDfLkhzbIYU/ZtKR+KZ1pPE2HDh+hvr7kfP9iObfauvl0wUUbxz2vTNSHpFQ709hEF2/cQnPq5lCvvZ8ef/QhOnrwbVq8bJWyS0dbC72x63nacOHFtHjxEnJ7B6i1XZ6b1Cl9S5evpIZjB+jgO3t54j6+ELCJxh6+Ttxzb7iqgt5/TSVPVA4Qp01Jqiyeo6fffmchfe6ufXT4RD/Xk+bCrhAQUEEg/icfFZ2nS5PKqiq6574/0e//92765c9/FjFsyaZbUcl/yGdFlsVi2ts73iUu1Cbau49r7mVzrapUlCydkTM3JqY+XltHN5UUFbAlga3JHBMWjDPmVi2nXI75kBIMZ1rSNw5L7bmi3blJwNPXNe0Te2fv61RWwDFM9si/g6FBrlXJClWqiCikPtfopI82O4cVUD8devsNOnogizZv3kzmnAKeuEvyE1QMQGQs7KFGJ4/sp3379k26Z9BfnFJla2RywsWZjJMpyfitTOZ40Xf8BKS0z9o1q8nMZd4GHFLOaOLnIXeHhpN+ldBll22mI0eO0iGOt54tsdpy6KZbYktGWVs/n3x8+znecIZsFgvNr6/nmqIdVFacp5zGsbd30aqVK6mqpo6a2zo5+6wYGdQpoyEO177nQ9TU2EAO+8QMQ+3ieS/I09OtH66ji9cUxLN73PtkshX2329fQbf95AC9tq+Xk9QlR9mOe4DYMSUJRPfHTMlhJ25QdfVz6U9/fpB+/rOfjlNG5ShPPP4oXXfdDcoMoHy+8ab387rHpuWG4nU5SGu0SXcpJzIurzPSajGdQbZ1dJGLXXeKC3KUcjDT6WuyfbNYCS3Ms7Jr3xA1NrXyg2DqPMBONmasB4FkETh+/Ljixp2lk+Rp6SMaaykd5odWEfkb3rVrF+m4DIEtSa6m8ZCR+0x3d+eUymg8/Z4L+yTjt/Jc4HKunYPNZqOtl11GeXoOOeo5THk6Dy1mz68NCwpo05Ji2sivCxcW0ur6PKot4jhxfycFO/fT/NpSRXmbDR5S3mXjlqviPrTEh3b19NI99/yO9rx9kI6fbKQjx07Sf/Bz48u7XqUffPcO+tmPv0PPP/N4XCFKV137vgg34LgHGrajWEY/f8vMK6NhQ6A7P7+YNqzIU8rJhK/HMghMROC8t5CuWbuW3cPK6F9/8GPlFYL07z/9N/rh97/H7rsP08ZNm+m1N/dxRjQnZ03rp4/e8sFQs7jefW4HxxZIsgEDBQOpFUeqM+WR5/ThuM5rsp06u3uVjHNiLXV5fFzTyj0thT78OFIvLIcfWHvtDpLjQEDgfCcgGV/FElFTUUnu9sT+LSeLrcFaTP5gJp04cWLkEC7OdPkKK6WXbbuO6+Hx33hfYjw3Rg4Qw4KWY8HycizU3t5Oe/bsiWHP86dpMn4rzx966XGm+TYj7dh+KdVanFSkzSSNplz1wPvddmovr+ZJpkHau28/eTnp4UyJhXN+LF2xdlqHe/n5p6m9rZXe/+FPKv2IRXOIc1VoOfGalI7xcgzpYw/ez/Xs3XTljnfFdCyxxOYXFlPzmVMx7TdZY4tJQx9/by1duFq9ZdQ3EOTnqAFOypTNsZ/je+53+cnRN0AFXCrGYFCvOtzxuUX02X/ZSweOzb7L9vizwppUIqD+W5VKo07gWKSMi7wmEynO/qUv3Epmdtcwm8zUxjekRIiL3en0lkJy955JRHcJ6UPGM+DiGndc6y7R0seZ6qQMTElxAZUV5VI/Lztd3rjdeE1GA1n4FQwO0pnmVvJ4R13/Ej129AcC6Ubg8OHDVF5WStk5ZeSxj4+nTqXzyeSJOWNBLb38yq5xwxrg0gni9VBaUqh4QdhZKfUnOwhqzCiMBp2ijEqN5dY2dXH1Y7o4Lz4m67fyvICX4ieZZ9HTgkorffLGyxWF0tkZ+3OQxcil2LI6af3NG+nVeQa678l3qKfPR25WhJIpWk5muPGy+K2jMrYD7+yhZ5/cSR/7+y+QyWIdGa4kirvsih0jCcyGOCzpsYf+FLNCKh1u3X4d/fHuXymK7cgB4lgQd9lL2EX36s0lqvf+5x++Rc++0kb5OXoaZCV7x2UV9P9uXqDs3+/008f/8WVqafewMmrghJU+uuVddfSJm+aq7v/HX19Gt3z1DWrrTLwBJr+ADR1O57RLb6k+GTRMGoHzXiFVS9bZ388W0sTVxuvnmnvFtUtTSiGVh1d7Z5NaJDG3k2x7LZwoSc+1+/I4I195Sb6iSHp8fo7L9U9ZIiaLs4MaeD+9XqO8DwwEFItoP2epg4AACIwn8OZbe2jLli2cRM3BuSxS9+/EkF9LR44e47rPEydfESuE3Dfy83KolCez7H3uaRetH09r/Bq550iSNL1eSy0cHyZZQyHRCST6tzL6EdEiWQRMbAmrL7PQjRurycquuhaO6e4+uTvuww0G/eTqbqSVyxZSqZnjxRv76E8vNlKf268oQnF3PMWOJjYmLFyyYooWU296e8/r9PBf/qAoo+UVo+WdcnI5IzrfI3p7uym/oGikEz/HwccjZWw9NprN01ZIC/N09OW/mxfTEC5ZV0z//JllnCVZQ02tLrrxsy/QVZsqqLbKzAk4iT75/vl02QUlfL4ZdOi4nW7+4kt07eWVnB/EoOo4Wramf/4j9fTdXx5hDzn1fF54eTdVV9dEHOOrX/mCYkSSfC6//p/fcXZvG5k4y/ODD/yV7rjtnxGyFUErvT6c9zGks3W5fEomWzdl28pmawgRxxVXXZ7mI2eSE1/IQX0c+N/a3knHTp5mF5B+TkSUwTc2K1WWFlBpYS4VcZyWJA2QeK2SwhyqYMVVPhtYGfW4PYrFpLGphd2nU/chOwIuPoDALBCw2+305ptvkrFoHmVk6WZhBNEPacir4Zp1AVXJTrp77NTQ2EI6bZYSk27M1kc/QJwtrGYjK795XOrBRyc4oQmU0ThBYre0JZDL2btu3lpLt/DLoMska34peRzibTG9rKleRyvXODcrdc4XVlnptg8uoYsWFZIov8mQ+nmL4u72tVeep8cf/jP93We+TOHKqHQoyuiipSvpBY4bFfGzN4eUf5m3YInyOZ5/VqzewO6yE/jLquzMZtHSNz6zUGXr0WbbNpYryqisqSg1UW2lmXbvG54gNBu1tPWiUkUZle1ZrJSa2dptZbfgWGTd8jxauSgnll2Utrfc/AGqr60Yef3pj39Q1t92+530/N+epQvWr6IL1q2iSy7ZSFsvvzLm/rFD6hCI7RuVOuM+J0bS03qSSthK6u1rS1rKb7WgjPnVZG9vVNs8Ie3E3dbu6FdeCekQnYAACEQQOHXqFBmNRqqpnM8POjNXfiliEJN8yM6rJKfXQLteen6SFuNXy2SWuPBaOW48Py+XRHGUuHSX2zvtuHSJE5VQADO/XMrEV8vZrJnjx4E1IHCuEmB9g0rzjPQP184jPVu2QmK0FlBf8/7Qx2m9D7h6lfq9oYz+N1xUQVVFJtr5ejM5nIkLGTJwNYM1G6LXHJ3sZPa/vYez6nbRv33vmxFNPve1O6iktIJ23HAj/e9//wf94K5/JDfHvFfWzKHt1783om0sH1asvoBeZyW4vz++eMuFdRZaPHfUpTiWY4fa9ti9dOxUHy2eF6k8iuX0L0800r6DPfTNW5fHFEca6vvLn5jLFtY+au9WH2IV4PJZY63OEre7ZevldPmWS5WuJd/Azocfou1X71ASkYaOh/f0IgCFdBavl4/rkTq5RpipcA45O47P2kiM+VVcl8vH1tG2WRsDDgwCIJAcAgcPHiS9TkuW9cso03mSy6io//NqMQAAGyBJREFUd5lKzoiITDwBltnspV3PPRuXi5XEpMvLxEnNcm1WxYvC7fFyeYGgokQOcFbMaCIWDp1Ww2yGwwCkZJSjz8k1jHs4CdvsM4o2fmwHgWgEMjXamOoas7MS1ZcY6ONX1o3rWhIxBgYkBnBUSR3XSOWKINc512VbuELKaF+r5+VTcV423f3MKXJ4pmeFDQ0j22imvILi0MeY3z/+/7445T42dtv9hy/fRv1clz4ziye0zHxO0xADTx7KNdPos2PuxWbKZNfaumlZWAPBIfr6j/bRZReW0bIF7DUXJk4PJz3q8xNHS1Fjizuu45jY2rpqaT499UoPX3v+sk0gQ1wrW0qCheTvPvX3dM2111NDw0m6/w/3Uk9PDxUUFHJCLQ6laG4KNaNmXl67fv3IZyykHwEopLN8zbqbjlLFgvVk4FpdXsfMK4TiqmvMraAzh+OPC5llhDj8NAkgKcA0AabB7nv27qP+TVUcE7SU+toOc0zp7MVDmgrrKEtvold3PcMloabndu/i5GjyEuXSwtbS7GwDx6ebFQVc4szFCyO8/rE8A0lbDVtDJUZULK5iDe3g/ADSDwQEziUC2eZcMpgjFYvJzm8wOEBVVh99bOtonGR42wwajEm5Dd93/DJnp9UbudJAZChBdYmOPrFtPt39t2bya9WNe3zfo2usHBM59hijWxO3lJM/GkM63V4ra+dRa0fsFQMqcvrYrTU37sMPDg7Rd/5jHztka+muL62lLJ6sC5clC4pIXi53gLZ/7GnasKqMli6I/Xgfv7GeDpw6Sa6AObz7keUBbz/1dzUrn++95385a7GXMxlr6Mpt2+kDH7yZrt52OVmtw1Zgn2/U0irZ5SWeFJK+BCK/cel7Hmk98o7TB6l83moaDPg4y23sN6J4T16jN5O1ZD51NB7kGanRP+x4+8N+6UUASQHS63pNd7TtZ45TnimD8qpWskfGCSVUYLp9xrK/Rmdkb5A6dr/iGPLje1gZTNw9RxKmiXVTXhAQAIFhAi57B8lLjVQUGOmWTQv4WWDiTKhBdp0UpXWs8J8eT/KMXTv82esLko4nfzg9RYSIl0aQn3cmOlaxNYOuX2uje545Tv0cXz4dqd1wyVmr7nR6mdl9C/Lzaf9bu2I6qEaTQf9ww4K4z1Um7u74//Zxokgf/eQba0iTGeC+JmbPqTyIq/9QU3MvLZwTuyU3j43IerJz6EVT1HP85c9/NtLmN//za3rxldfooosvoX17h0tv6bi+bOh3xGAwkIMt1ZD0JTDJbSR9TygdRz7ACY7aT+0nW/li0hljn3GK55w1bKGwli+inrYGcju64ukC+6Q5ASQFSPMLGMfw+7qaqPXEXjLklJKFJ6Oy2A1vJkS8MHKrV3GIQhd1nD4QV/H4mRgnjgEC5yOBPIuOPnPN1JlZs7Tj7xVtPR6679lj45C1dLlp567T9PRbTfTXlxroqTeaWAEddcMVt9SpJsHncWbfixYVsTI7vUfUopKycWNL9RXFpeUxu8NKbdBN6wvjOjWxjH7hW29wdt8g/fT2texlEmmnOnTCTm/t7+Z79nD3L73RzuVbPONiTGM5+PZLS2JprrSVslI93d1k4azJXV2dSlxpOdfaDolMsLe1zbyXYej4eJ8+gchv3vT7Qw9xEhClsL3hHaUUTH/78aS67+rM+YpltIvdhRE3GucFS/PdkBQgzS/gNIbv4zIwTUdep9ySWsqtWcOlp5rI09PEDxyJrwcotY0NXE5qkB8mWo69SZJdHAICIJA6BAy6LLpuQ0VEAqOJRufnuE+twUp+bx9bSon+78UTSrmWbN5/rPxtbzOtX1hM9eXDrpWP7m6kw012WlwzPOGu0Vu5jN7U3mBXrC7hfRx0qj1+t/6cnOm7/Y49t2R/tuXksouqTsnwrfZYlhgz3ob362FF9JU3h63oF77nsZFN1eVm+vMvLlUU1a//cA952FptMWnJw1bvb966lCsfsJk0TtnMyvP/PtBIPfbxFvdQl1VV1VRTW0svvvC8MoF5ycZNVD93Hu1+dZeijD77zFN0000foO98+07OJWCiHddcR9/99l2h3fGehgSgkE7zohXVLoupB73BTuK6NpEMeDmW6dQhKqiYS3qO7XR2NnCGdfaHSaCYCmpIby0mUUa9rr5Jx6LLtlJhdRHnHIg+Q2kw6TkeJHbXjQSelqquJIlCQdVCdh/SRm1vMDvS4py0BhPF+h3sbT3BBa5tSAoQ9VtwbjfoZe8IJ7vz5RRVUf6cdezC265MhAWmGV+akZHFMfHFfJ8p4gdXdqXl2sYzUU7q3L5a597ZSSyvlLgIBsdPhMi24uISam9vmzB7cnZ2tpI9upstJpDpEajm7LZLayMzqk7Uo9vRTTLBJAqpuOC+79I6au/10NNvRrpeiiVNrG5SHiQkOfyM4PIMJwqT+4PeUkAdzcdDmyd9v3nLHPrpg4fJ4Yo9yVgWJxkyGE2T9p2qGyRZT5aGH8050aRaWbssfs86E5dweeOhHZMeauXifHrsN1up1+HluvFBLofFiZfCru2kO06xwcrlaaSU0FQiLrg/+refsrJpJgeXMDOajPS1r3yRGhtPK7t968476Dd3/15RRC1WCz2y82F66snhEjxT9YttqUsACuk0r03G2OCIKP0pNaZG79PjWvs4oLuFXerySmv5IXEtubmItMfeOq5drCv01kIy5lXxPc5NLcffYvcZnpmaYhwyTlFGVZ2fki1tis5iHWzS2vM58Y+hmnNSrlPSxpHIjuU6jZ+hnuoIcm5ICjAVofNnm9/ros7GQ2TnCSVLXhlZK5Yo1ky/u5fkFeD7xURxY+GEMjhTZpYum7TZPLNvtJHBkq/ErXW3NJCnHwpDOCssjxK4/V+GrRm3f/OfR1fy0tU7rqXvfO/71NvbSzlsLfrqlz9PTz4x/KCp4Qf1b3/3+7Ttqu3kdrsVF75PfOwWam2V+piQWAnY2OL1wc01qnbr626myoUXsEfFGb5HTG7ZkseB1fOL6Ll9LdTdx5lzc7Opw+6mLasqlONk55aTy9ExpctuaEC5Zi0tqsqhXYeGa2KG1qt5l+cXr2f2krepGeNEbfxKJuNR9+aJ2oSvU3gviV8hDe9rsmU5Rl6OYbLNca0XpbSlY+J4Zenw6NEjtG71ciosLOISMwZqauLvnQQsnxVRTLdsvoRKSkq5Jj0npXMif0CITbq+QyGd5pXraHg7ph7yKy38kFcQdZ/2hv1kMOWwW101PyQuo4H+TvLxKxbrhaRpN7AiqrcUKQqoJE9y96l7QJSSNJ2nT0YdpzTIrqnjcaV+hkqJ1e06c0jVORXNNZPfl/rnJApFR8P4GJ6pTnKIre59fX1KEyQFmIrU+bNNvus9bDmXl95oJaM1n7Jzq9hFTywMQ0qyjKHBAA3xg+gQz2Rl8iSITISIIpqlNfA9zUUel50cXS3UevIddrEafXA4fyjiTNUQ2Hr5Faxw/oCKiorp7t/+d8QuJrOZfvCjn9AHbnw37eXEJWvXraff3n0PrVm1lF0GPUqdwVWr19CGtSuVz3fc+S36+jdup89+5lMR/eCDOgLl+UYyj4kZnGxPKfni6GgkM5ep62s9PFkzZX1xDpdjMuvJ7fXTM2/1UE2JhYxcXkkSKZoKqqnp8KtT7h++8YYLKujwGQf1xlifVCZepQ5puolWZ+D7q/pHcysr7ZWlqe+hNvY6VJcb6fCJqUM4htjc3tHRPnbXiM9tbdM32ER0iA+zRkD9t37WhpjaB5aaSbGI/IHJA54a8XLG3dYTvaRnV1NLXinZKpYqimWArahBn5NnGD1svQgoD4YyDuUBkR8O5aavMVj43aRYKjrFPdc5dbzG+PEMsbewunPjloqP//g+Um1NDOekXKdUG/9E41F/TuF7hycFOHli2HUKSQHCCZ2/yzIZJa9eajh/IeDMk0bg6aeeJHl947Z/UcrvhB9o8+YtdOZMo6KMyvrXX9utPJBK/JhYSa/avoMefugBRRmV7X+87156cOfj/ACfGWE9kW2QqQmYDRq6ZkP51I3GbJUJq9I5y8lcUEvOronvD2LE2rn7NO3YUE35Vj2t4VIh4tb72gkHbb9yLXU3H4tpslcyyFYWGmNWSMcM/Zz9KImfJKlRukmeLbLkT7qNH+NNPIGpnbgTfzz0GAcBSQTS1XyUTh94iWM/j5DHza4JOjMZ2IJhLp5HuVX8A8Hv2XlcbN6Qw0HoXupuOUGn3nmeOtkiGLsyGscgsUtaEfD7/RRKCiADDyUFeOzRR9LqPDBYEACBc4dASUlJRLF7ObPm5mYqKR3OlirvzWHlIpp4Wa/XU25e+iWvme2rJsmMiuNww2zjigCZep4kL5mnhMCMPY9Oh0ep/ysWUhGjPouWLZhD/dpa6uP6kpLpO1a5dFkxxxzGFpoS6zHStX1mVjqES42na2OXXQgIhBOAhTScRhose10OTkbkSIORYoipTgBJAVLvClkLq9gFNjmz3Vk6veJemypnLa7BuWXDisZkY9KzO6GGXdhSRTTM0JRbQtkZU/90ag1B0iTpOsbDQsveMrllc+PZNeo+Xo4T9vT30Lx582nTpZsnbO/gEIH7/3DvhNvCV9pswxOq4eukzqDNOpytVd5DdQeljc83HINms9qouwvly8K5RVteWRefEi+eU5KHoqBiHuVxngvDiSBlanQjcaU2o07xATvR0keL6jl7r62Uurq5tF3z2+QojZ48aaJx1xSbWLHVkHdAndfWRH2cq+t8acrE70dYx7n6nYz3vKb+VY23V+wHAiCQ8gSQFCD1LpGnr4td75PjuDIYqOaHxtizVSaLkp+z+bocU8cQ6TPzU2rMws/HsbID7GEwlQT9NrYSTd1mqv0TvU1qPrp6kzORGfQPJ7jRc+KRgoLCCYeuZA2dcEvkSilsr9dHTkAMF7wfHrvD4SCJew+JwTAcOyf7QdQTEGvj+gX56ncY01KUiY98426y8ARCVfUcevR4DpXkZNLGRXmUyxMxNxjr6ECThxoO+ehkw24asDfRuzfWjeklto8luQbq6VefeTa23tO3tcmYnpbjgtzRv+P0pY+RJ5IAFNJE0kRfIJCGBJAUIHUump+z2iZLhji4Kxm1RuMdr9QmHfC4ptx9MGDl2MDUsYpIlkdJ7iIluqaSwaCJY/BTxwIwyAmpBjzJzUL5ztv7SF7TkdbWViqvGM7GGupHYttDWXTlXT6HRJbFYioZeSHqCZg4fjTPEr9CoNVm0g8/fUHYAVuU5ZYTTcq79LySjaFSrmXdWhPHCi8Iaxvf4pIaGx1sTM6kSnwjwl4gAAKJJJCcqfhEjhB9gQAIgAAIgAAInPMEnnvuWaqqqqYVK1cp57pu/QbF6vrSiy8on594/FG67roblDIQsuLGm95PTzz+GBIaKXTU/5MpdTxmQKSsjCQlSoTUlVpIz4owBARA4NwkAAupyuuKQtwqQaEZCIAACIAACExCYPvV15DUILVYhuNCJXPubd/4J0WxlFqCX/vKF+iee++nzs4Oyi8ooC9/8XMjWXUf2fkwbdy0mV57cx85+51K/cGP3vLBSY6E1ZMRkPqe6SY5Jp0SR+o76yKebuPHeEEABKYmAIV0aj48u4dC3FEQYTMIgAAIgAAIqCLw6CMPk7wmk4cefIC376RSTnjVwhl2g8FRl+0Au3l/6Qu3ktliIbPJTAg3mIzi1OstnHgo3UTLltYZMuymGxqMFwTOCQLwf4hyGbdfvYNChbgvWLeKXn99t1KIO8pu2AwCIAACIAACIBAHAVE8zzQ2Riij4d04+/uhjIYDiXHZbEjPRDgZ0EhjvNJoDgLpQwAKaZRrNVEh7iu3XaUU4o6yKzaDAAiAAAiAAAiAQEoR6HUOZ0ZOqUGpGIw/kDqJwlQMF01AAARiIACX3SiwpBD30089OdIqvBC31D0rrls5sk3NQlvPSTrdPeqCpGaf2Wjz8hEnFdUu4xIU0WdSXa7OkSyIszFWtcd86flnqbB6CddMix4/4xxopgMnU/9H+4e/ORPzd7C35VjSM26qvSZoF0kgv2IBafTDpSwit0z/06+eOk4fu2LO9DtKQA/vnOZsmToLf3fnTdlbxkA/PffskzR/4ZIp283Uxp1/uY+sRdVk0059jZ7efYS2b02d+8czu/tjvk+oZersaeWSMm1qm6PdDBKwFFSQ0Ta+FM+hpiNp8RwSjuq1oz1kzS2g7NKS8NWTLg/5vXT/Pb+h93zgo5O2ScUNyj2msILMxerqUeuGOunOnzfQu7eVp+LpTDqmH9/dNOE9yedykL3t5KT7YcO5SyAjNzd36Nw9vemf2bPPvUQ//tEPaOfDDyqdSQ20YyfP0OaNF9LJkycm/IOa/lHRAwgkjwAU0uSxnW7PyVRIpzs27A8CExGAQjoRldRYN5lCmhqjwyhAYDwBKKTjmZwva2AhjXKloxXibj+xJ0oP2AwCIAAC6gh0Nx1W1xCtQAAEQCAKgf6uJpIXBARAAARSnQBiSKNcIRTijgIIm0EABEAABEAABEAABEAABEAgTgJQSKOAQyHuKICwGQRAAARAAARAAARAAARAAATiJACX3SjgUIg7CiBsBgEQAAEQAAEQAAEQAAEQAIE4CSCpkUpwKMStEhSagQAIgAAIgAAIgAAIgAAIgIBKAlBIVYJCMxAAARAAARAAARAAARAAARAAgcQSQAxpYnmiNxAAARAAARAAARAAARAAARAAAZUEoJCqBIVmIAACIAACIAACIAACIAACIAACiSUAhTSxPNEbCIAACIAACIAACIAACIAACICASgJQSFWCQjMQAAEQAAEQAAEQAAEQAAEQAIHEEoBCmlie6A0EQAAEQAAEQAAEQAAEQAAEQEAlASikKkGhGQiAAAiAAAiAAAiAAAiAAAiAQGIJQCFNLE/0BgIgAAIgAAIgAAIgAAIgAAIgoJIAFFKVoNAMBEAABEAABEAABEAABEAABEAgsQSgkCaWJ3oDARAAARAAARAAARAAARAAARBQSQAKqUpQaAYCIAACIAACIAACIAACIAACIJBYAlBIE8sTvYEACIAACIAACIAACIAACIAACKgkAIVUJSg0AwEQAAEQAAEQAAEQAAEQAAEQSCwBKKSJ5YneQAAEQAAEQAAEQAAEQAAEQAAEVBKAQqoSFJqBAAiAAAiAAAiAAAiAAAiAAAgklgAU0sTyRG8gAAIgAAIgAAIgAAIgAAIgAAIqCUAhVQkKzUAABEAABEAABEAABEAABEAABBJLAAppYnmiNxAAARAAARAAARAAARAAARAAAZUEoJCqBIVmIAACIAACIAACIAACIAACIAACiSUAhTSxPNEbCIAACIAACIAACIAACIAACICASgJQSFWCQjMQAAEQAAEQAAEQAAEQAAEQAIHEEoBCmlie6A0EQAAEQAAEQAAEQAAEQAAEQEAlASikKkGhGQiAAAiAAAiAAAiAAAiAAAiAQGIJQCFNLE/0BgIgAAIgAAIgAAIgAAIgAAIgoJIAFFKVoNAMBEAABEAABEAABEAABEAABEAgsQSgkCaWJ3oDARAAARAAARAAARAAARAAARBQSQAKqUpQaAYCIAACIAACIAACIAACIAACIJBYAlBIE8sTvYEACIAACIAACIAACIAACIAACKgkAIVUJSg0AwEQAAEQAAEQAAEQAAEQAAEQSCwBKKSJ5YneQAAEQAAEQAAEQAAEQAAEQAAEVBKAQqoSFJqBAAiAAAiAAAiAAAiAAAiAAAgklgAU0sTyRG8gAAIgAAIgAAIgAAIgAAIgAAIqCUAhVQkKzUAABEAABEAABEAABEAABEAABBJLAAppYnmiNxAAARAAARAAARAAARAAARAAAZUEoJCqBIVmIAACIAACIAACIAACIAACIAACiSUAhTSxPNEbCIAACIAACIAACIAACIAACICASgJQSFWCQjMQAAEQAAEQAAEQAAEQAAEQAIHEEoBCmlie6A0EQAAEQAAEQAAEQAAEQAAEQEAlASikKkGhGQiAAAiAAAiAAAiAAAiAAAiAQGIJQCFNLE/0BgIgAAIgAAIgAAIgAAIgAAIgoJIAFFKVoNAMBEAABEAABEAABEAABEAABEAgsQSgkCaWJ3oDARAAARAAARAAARAAARAAARBQSQAKqUpQaAYCIAACIAACIAACIAACIAACIJBYAlBIE8sTvYEACIAACIAACIAACIAACIAACKgkAIVUJSg0AwEQAAEQAAEQAAEQAAEQAAEQSCwBKKSJ5YneQAAEQAAEQAAEQAAEQAAEQAAEVBKAQqoSFJqBAAiAAAiAAAiAAAiAAAiAAAgklgAU0sTyRG8gAAIgAAIgAAIgAAIgAAIgAAIqCUAhVQkKzUAABEAABEAABEAABEAABEAABBJLAAppYnmiNxAAARAAARAAARAAARAAARAAAZUEoJCqBIVmIAACIAACIAACIAACIAACIAACiSUAhTSxPNEbCIAACIAACIAACIAACIAACICASgJQSFWCQjMQAAEQAAEQAAEQAAEQAAEQAIHEEoBCmlie6A0EQAAEQAAEQAAEQAAEQAAEQEAlASikKkGhGQiAAAiAAAiAAAiAAAiAAAiAQGIJQCFNLE/0BgIgAAIgAAIgAAIgAAIgAAIgoJIAFFKVoNAMBEAABEAABEAABEAABEAABEAgsQSgkCaWJ3oDARAAARAAARAAARAAARAAARBQSQAKqUpQaAYCIAACIAACIAACIAACIAACIJBYAlBIE8sTvYEACIAACIAACIAACIAACIAACKgkAIVUJSg0AwEQAAEQAAEQAAEQAAEQAAEQSCwBKKSJ5YneQAAEQAAEQAAEQAAEQAAEQAAEVBKAQqoSFJqBAAiAAAiAAAiAAAiAAAiAAAgklgAU0sTyRG8gAAIgAAIgAAIgAAIgAAIgAAIqCUAhVQkKzUAABEAABEAABEAABEAABEAABBJLAAppYnmiNxAAARAAARAAARAAARAAARAAAZUEoJCqBIVmIAACIAACIAACIAACIAACIAACiSUAhTSxPNEbCIAACIAACIAACIAACIAACICASgJQSFWCQjMQAAEQAAEQAAEQAAEQAAEQAIHEEoBCmlie6A0EQAAEQAAEQAAEQAAEQAAEQEAlASikKkGhGQiAAAiAAAiAAAiAAAiAAAiAQGIJQCFNLE/0BgIgAAIgAAIgAAIgAAIgAAIgoJIAFFKVoNAMBEAABEAABEAABEAABEAABEAgsQSgkCaWJ3oDARAAARAAARAAARAAARAAARBQSeD/B1iFAZdJOOx5AAAAAElFTkSuQmCC", + "text/html": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# scatter bubbles at 70% of its size\n", + "score_figure(df_eventteams_scores, 'accumulative', 7, scatter_opacity = 0.5)" + ] + }, + { + "cell_type": "code", + "execution_count": 45, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.plotly.v1+json": { + "config": { + "plotlyServerURL": "https://plot.ly" + }, + "data": [ + { + "customdata": [ + [ + 42, + "bronze" + ], + [ + 38, + "silver" + ], + [ + 50, + "gold" + ] + ], + "hovertemplate": "
Total medals: %{customdata[0]} %{customdata[1]}", + "marker": { + "color": [ + "rgb(194, 144, 80)", + "rgb(169, 180, 195)", + "rgb(255, 222, 94)", + "rgb(0, 0, 0)" + ] + }, + "name": "Event A", + "opacity": 0.8, + "text": [ + 32, + 29, + 38 + ], + "textangle": 0, + "textfont": { + "color": "black" + }, + "textposition": "inside", + "type": "bar", + "x": [ + "Bronze", + "Silver", + "Gold" + ], + "xaxis": "x", + "y": [ + 32, + 29, + 38 + ], + "yaxis": "y" + }, + { + "customdata": [ + [ + 32, + 70.65, + 184, + 206.15 + ], + [ + 29, + 70.65, + 184, + 206.15 + ], + [ + 38, + 70.65, + 184, + 206.15 + ] + ], + "hovertemplate": "
Medal distribution: %{customdata[0]}%
Participation: %{customdata[1]}%
Team players: %{customdata[2]}

Team Score: %{customdata[3]}", + "marker": { + "color": [ + "rgb(194, 144, 80)", + "rgb(169, 180, 195)", + "rgb(255, 222, 94)" + ], + "line": { + "color": "white" + }, + "size": [ + 26.8, + 26.8, + 26.8 + ] + }, + "mode": "markers", + "name": "Team metrics", + "opacity": 0.5, + "type": "scatter", + "x": [ + "Bronze", + "Silver", + "Gold" + ], + "xaxis": "x", + "y": [ + 32.31, + 58.46, + 115.38 + ], + "yaxis": "y2" + }, + { + "customdata": [ + [ + 63, + "bronze" + ], + [ + 49, + "silver" + ], + [ + 58, + "gold" + ] + ], + "hovertemplate": "
Total medals: %{customdata[0]} %{customdata[1]}", + "marker": { + "color": [ + "rgb(194, 144, 80)", + "rgb(169, 180, 195)", + "rgb(255, 222, 94)", + "rgb(0, 0, 0)" + ] + }, + "name": "Event A", + "opacity": 0.8, + "text": [ + 37, + 28, + 34 + ], + "textangle": 0, + "textfont": { + "color": "black" + }, + "textposition": "inside", + "type": "bar", + "x": [ + "Bronze", + "Silver", + "Gold" + ], + "xaxis": "x2", + "y": [ + 37, + 28, + 34 + ], + "yaxis": "y3" + }, + { + "customdata": [ + [ + 37, + 72.03, + 236, + 197.06 + ], + [ + 28, + 72.03, + 236, + 197.06 + ], + [ + 34, + 72.03, + 236, + 197.06 + ] + ], + "hovertemplate": "
Medal distribution: %{customdata[0]}%
Participation: %{customdata[1]}%
Team players: %{customdata[2]}

Team Score: %{customdata[3]}", + "marker": { + "color": [ + "rgb(194, 144, 80)", + "rgb(169, 180, 195)", + "rgb(255, 222, 94)" + ], + "line": { + "color": "white" + }, + "size": [ + 33.5, + 33.5, + 33.5 + ] + }, + "mode": "markers", + "name": "Team metrics", + "opacity": 0.5, + "type": "scatter", + "x": [ + "Bronze", + "Silver", + "Gold" + ], + "xaxis": "x2", + "y": [ + 32.31, + 58.46, + 115.38 + ], + "yaxis": "y4" + }, + { + "customdata": [ + [ + 15, + "bronze" + ], + [ + 25, + "silver" + ], + [ + 23, + "gold" + ] + ], + "hovertemplate": "
Total medals: %{customdata[0]} %{customdata[1]}", + "marker": { + "color": [ + "rgb(194, 144, 80)", + "rgb(169, 180, 195)", + "rgb(255, 222, 94)", + "rgb(0, 0, 0)" + ] + }, + "name": "Event A", + "opacity": 0.8, + "text": [ + 23, + 39, + 36 + ], + "textangle": 0, + "textfont": { + "color": "black" + }, + "textposition": "inside", + "type": "bar", + "x": [ + "Bronze", + "Silver", + "Gold" + ], + "xaxis": "x3", + "y": [ + 23, + 39, + 36 + ], + "yaxis": "y5" + }, + { + "customdata": [ + [ + 23, + 77.78, + 81, + 212.7 + ], + [ + 39, + 77.78, + 81, + 212.7 + ], + [ + 36, + 77.78, + 81, + 212.7 + ] + ], + "hovertemplate": "
Medal distribution: %{customdata[0]}%
Participation: %{customdata[1]}%
Team players: %{customdata[2]}

Team Score: %{customdata[3]}", + "marker": { + "color": [ + "rgb(194, 144, 80)", + "rgb(169, 180, 195)", + "rgb(255, 222, 94)" + ], + "line": { + "color": "white" + }, + "size": [ + 13.4, + 13.4, + 13.4 + ] + }, + "mode": "markers", + "name": "Team metrics", + "opacity": 0.5, + "type": "scatter", + "x": [ + "Bronze", + "Silver", + "Gold" + ], + "xaxis": "x3", + "y": [ + 32.31, + 58.46, + 115.38 + ], + "yaxis": "y6" + }, + { + "customdata": [ + [ + 49, + "bronze" + ], + [ + 40, + "silver" + ], + [ + 50, + "gold" + ] + ], + "hovertemplate": "
Total medals: %{customdata[0]} %{customdata[1]}", + "marker": { + "color": [ + "rgb(194, 144, 80)", + "rgb(169, 180, 195)", + "rgb(255, 222, 94)", + "rgb(0, 0, 0)" + ] + }, + "name": "Event B", + "opacity": 0.8, + "text": [ + 35, + 28, + 35 + ], + "textangle": 0, + "textfont": { + "color": "black" + }, + "textposition": "inside", + "type": "bar", + "x": [ + "Bronze", + "Silver", + "Gold" + ], + "xaxis": "x4", + "y": [ + 35, + 28, + 35 + ], + "yaxis": "y7" + }, + { + "customdata": [ + [ + 35, + 75.54, + 184, + 200.72 + ], + [ + 28, + 75.54, + 184, + 200.72 + ], + [ + 35, + 75.54, + 184, + 200.72 + ] + ], + "hovertemplate": "
Medal distribution: %{customdata[0]}%
Participation: %{customdata[1]}%
Team players: %{customdata[2]}

Team Score: %{customdata[3]}", + "marker": { + "color": [ + "rgb(194, 144, 80)", + "rgb(169, 180, 195)", + "rgb(255, 222, 94)" + ], + "line": { + "color": "white" + }, + "size": [ + 27.9, + 27.9, + 27.9 + ] + }, + "mode": "markers", + "name": "Team metrics", + "opacity": 0.5, + "type": "scatter", + "x": [ + "Bronze", + "Silver", + "Gold" + ], + "xaxis": "x4", + "y": [ + 35.25, + 57.56, + 107.91 + ], + "yaxis": "y8" + }, + { + "customdata": [ + [ + 54, + "bronze" + ], + [ + 64, + "silver" + ], + [ + 60, + "gold" + ] + ], + "hovertemplate": "
Total medals: %{customdata[0]} %{customdata[1]}", + "marker": { + "color": [ + "rgb(194, 144, 80)", + "rgb(169, 180, 195)", + "rgb(255, 222, 94)", + "rgb(0, 0, 0)" + ] + }, + "name": "Event B", + "opacity": 0.8, + "text": [ + 30, + 35, + 33 + ], + "textangle": 0, + "textfont": { + "color": "black" + }, + "textposition": "inside", + "type": "bar", + "x": [ + "Bronze", + "Silver", + "Gold" + ], + "xaxis": "x5", + "y": [ + 30, + 35, + 33 + ], + "yaxis": "y9" + }, + { + "customdata": [ + [ + 30, + 75.42, + 236, + 203.39 + ], + [ + 35, + 75.42, + 236, + 203.39 + ], + [ + 33, + 75.42, + 236, + 203.39 + ] + ], + "hovertemplate": "
Medal distribution: %{customdata[0]}%
Participation: %{customdata[1]}%
Team players: %{customdata[2]}

Team Score: %{customdata[3]}", + "marker": { + "color": [ + "rgb(194, 144, 80)", + "rgb(169, 180, 195)", + "rgb(255, 222, 94)" + ], + "line": { + "color": "white" + }, + "size": [ + 36.2, + 36.2, + 36.2 + ] + }, + "mode": "markers", + "name": "Team metrics", + "opacity": 0.5, + "type": "scatter", + "x": [ + "Bronze", + "Silver", + "Gold" + ], + "xaxis": "x5", + "y": [ + 35.25, + 57.56, + 107.91 + ], + "yaxis": "y10" + }, + { + "customdata": [ + [ + 18, + "bronze" + ], + [ + 26, + "silver" + ], + [ + 23, + "gold" + ] + ], + "hovertemplate": "
Total medals: %{customdata[0]} %{customdata[1]}", + "marker": { + "color": [ + "rgb(194, 144, 80)", + "rgb(169, 180, 195)", + "rgb(255, 222, 94)", + "rgb(0, 0, 0)" + ] + }, + "name": "Event B", + "opacity": 0.8, + "text": [ + 26, + 38, + 34 + ], + "textangle": 0, + "textfont": { + "color": "black" + }, + "textposition": "inside", + "type": "bar", + "x": [ + "Bronze", + "Silver", + "Gold" + ], + "xaxis": "x6", + "y": [ + 26, + 38, + 34 + ], + "yaxis": "y11" + }, + { + "customdata": [ + [ + 26, + 82.72, + 81, + 207.48000000000002 + ], + [ + 38, + 82.72, + 81, + 207.48000000000002 + ], + [ + 34, + 82.72, + 81, + 207.48000000000002 + ] + ], + "hovertemplate": "
Medal distribution: %{customdata[0]}%
Participation: %{customdata[1]}%
Team players: %{customdata[2]}

Team Score: %{customdata[3]}", + "marker": { + "color": [ + "rgb(194, 144, 80)", + "rgb(169, 180, 195)", + "rgb(255, 222, 94)" + ], + "line": { + "color": "white" + }, + "size": [ + 13.9, + 13.9, + 13.9 + ] + }, + "mode": "markers", + "name": "Team metrics", + "opacity": 0.5, + "type": "scatter", + "x": [ + "Bronze", + "Silver", + "Gold" + ], + "xaxis": "x6", + "y": [ + 35.25, + 57.56, + 107.91 + ], + "yaxis": "y12" + } + ], + "layout": { + "annotations": [ + { + "font": { + "size": 16 + }, + "showarrow": false, + "text": "ThunderCats", + "x": 0.11222222222222222, + "xanchor": "center", + "xref": "paper", + "y": 1, + "yanchor": "bottom", + "yref": "paper" + }, + { + "font": { + "size": 16 + }, + "showarrow": false, + "text": "Dog Patrol", + "x": 0.47, + "xanchor": "center", + "xref": "paper", + "y": 1, + "yanchor": "bottom", + "yref": "paper" + }, + { + "font": { + "size": 16 + }, + "showarrow": false, + "text": "Power Birds", + "x": 0.8277777777777777, + "xanchor": "center", + "xref": "paper", + "y": 1, + "yanchor": "bottom", + "yref": "paper" + } + ], + "barcornerradius": "50%", + "barmode": "group", + "height": 400, + "hoverlabel": { + "align": "right" + }, + "hovermode": "x unified", + "showlegend": false, + "template": { + "data": { + "bar": [ + { + "error_x": { + "color": "#f2f5fa" + }, + "error_y": { + "color": "#f2f5fa" + }, + "marker": { + "line": { + "color": "rgb(17,17,17)", + "width": 0.5 + }, + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "bar" + } + ], + "barpolar": [ + { + "marker": { + "line": { + "color": "rgb(17,17,17)", + "width": 0.5 + }, + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "barpolar" + } + ], + "carpet": [ + { + "aaxis": { + "endlinecolor": "#A2B1C6", + "gridcolor": "#506784", + "linecolor": "#506784", + "minorgridcolor": "#506784", + "startlinecolor": "#A2B1C6" + }, + "baxis": { + "endlinecolor": "#A2B1C6", + "gridcolor": "#506784", + "linecolor": "#506784", + "minorgridcolor": "#506784", + "startlinecolor": "#A2B1C6" + }, + "type": "carpet" + } + ], + "choropleth": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "choropleth" + } + ], + "contour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "contour" + } + ], + "contourcarpet": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "contourcarpet" + } + ], + "heatmap": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmap" + } + ], + "heatmapgl": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmapgl" + } + ], + "histogram": [ + { + "marker": { + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "histogram" + } + ], + "histogram2d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2d" + } + ], + "histogram2dcontour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2dcontour" + } + ], + "mesh3d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "mesh3d" + } + ], + "parcoords": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "parcoords" + } + ], + "pie": [ + { + "automargin": true, + "type": "pie" + } + ], + "scatter": [ + { + "marker": { + "line": { + "color": "#283442" + } + }, + "type": "scatter" + } + ], + "scatter3d": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatter3d" + } + ], + "scattercarpet": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattercarpet" + } + ], + "scattergeo": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergeo" + } + ], + "scattergl": [ + { + "marker": { + "line": { + "color": "#283442" + } + }, + "type": "scattergl" + } + ], + "scattermapbox": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattermapbox" + } + ], + "scatterpolar": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolar" + } + ], + "scatterpolargl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolargl" + } + ], + "scatterternary": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterternary" + } + ], + "surface": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "surface" + } + ], + "table": [ + { + "cells": { + "fill": { + "color": "#506784" + }, + "line": { + "color": "rgb(17,17,17)" + } + }, + "header": { + "fill": { + "color": "#2a3f5f" + }, + "line": { + "color": "rgb(17,17,17)" + } + }, + "type": "table" + } + ] + }, + "layout": { + "annotationdefaults": { + "arrowcolor": "#f2f5fa", + "arrowhead": 0, + "arrowwidth": 1 + }, + "autotypenumbers": "strict", + "coloraxis": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "colorscale": { + "diverging": [ + [ + 0, + "#8e0152" + ], + [ + 0.1, + "#c51b7d" + ], + [ + 0.2, + "#de77ae" + ], + [ + 0.3, + "#f1b6da" + ], + [ + 0.4, + "#fde0ef" + ], + [ + 0.5, + "#f7f7f7" + ], + [ + 0.6, + "#e6f5d0" + ], + [ + 0.7, + "#b8e186" + ], + [ + 0.8, + "#7fbc41" + ], + [ + 0.9, + "#4d9221" + ], + [ + 1, + "#276419" + ] + ], + "sequential": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "sequentialminus": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ] + }, + "colorway": [ + "#636efa", + "#EF553B", + "#00cc96", + "#ab63fa", + "#FFA15A", + "#19d3f3", + "#FF6692", + "#B6E880", + "#FF97FF", + "#FECB52" + ], + "font": { + "color": "#f2f5fa" + }, + "geo": { + "bgcolor": "rgb(17,17,17)", + "lakecolor": "rgb(17,17,17)", + "landcolor": "rgb(17,17,17)", + "showlakes": true, + "showland": true, + "subunitcolor": "#506784" + }, + "hoverlabel": { + "align": "left" + }, + "hovermode": "closest", + "mapbox": { + "style": "dark" + }, + "paper_bgcolor": "rgb(17,17,17)", + "plot_bgcolor": "rgb(17,17,17)", + "polar": { + "angularaxis": { + "gridcolor": "#506784", + "linecolor": "#506784", + "ticks": "" + }, + "bgcolor": "rgb(17,17,17)", + "radialaxis": { + "gridcolor": "#506784", + "linecolor": "#506784", + "ticks": "" + } + }, + "scene": { + "xaxis": { + "backgroundcolor": "rgb(17,17,17)", + "gridcolor": "#506784", + "gridwidth": 2, + "linecolor": "#506784", + "showbackground": true, + "ticks": "", + "zerolinecolor": "#C8D4E3" + }, + "yaxis": { + "backgroundcolor": "rgb(17,17,17)", + "gridcolor": "#506784", + "gridwidth": 2, + "linecolor": "#506784", + "showbackground": true, + "ticks": "", + "zerolinecolor": "#C8D4E3" + }, + "zaxis": { + "backgroundcolor": "rgb(17,17,17)", + "gridcolor": "#506784", + "gridwidth": 2, + "linecolor": "#506784", + "showbackground": true, + "ticks": "", + "zerolinecolor": "#C8D4E3" + } + }, + "shapedefaults": { + "line": { + "color": "#f2f5fa" + } + }, + "sliderdefaults": { + "bgcolor": "#C8D4E3", + "bordercolor": "rgb(17,17,17)", + "borderwidth": 1, + "tickwidth": 0 + }, + "ternary": { + "aaxis": { + "gridcolor": "#506784", + "linecolor": "#506784", + "ticks": "" + }, + "baxis": { + "gridcolor": "#506784", + "linecolor": "#506784", + "ticks": "" + }, + "bgcolor": "rgb(17,17,17)", + "caxis": { + "gridcolor": "#506784", + "linecolor": "#506784", + "ticks": "" + } + }, + "title": { + "x": 0.05 + }, + "updatemenudefaults": { + "bgcolor": "#506784", + "borderwidth": 0 + }, + "xaxis": { + "automargin": true, + "gridcolor": "#283442", + "linecolor": "#506784", + "ticks": "", + "title": { + "standoff": 15 + }, + "zerolinecolor": "#283442", + "zerolinewidth": 2 + }, + "yaxis": { + "automargin": true, + "gridcolor": "#283442", + "linecolor": "#506784", + "ticks": "", + "title": { + "standoff": 15 + }, + "zerolinecolor": "#283442", + "zerolinewidth": 2 + } + } + }, + "title": { + "text": "Event Performance scores, by teams, date 2024-08-15" + }, + "width": 900, + "xaxis": { + "anchor": "y", + "autorange": true, + "categoryarray": [ + "gold", + "silver", + "bronze" + ], + "categoryorder": "array", + "domain": [ + 0, + 0.22444444444444445 + ], + "matches": "x4", + "range": [ + 2.5, + 5.5 + ], + "showspikes": false, + "showticklabels": false, + "type": "category" + }, + "xaxis2": { + "anchor": "y3", + "autorange": true, + "categoryarray": [ + "gold", + "silver", + "bronze" + ], + "categoryorder": "array", + "domain": [ + 0.35777777777777775, + 0.5822222222222222 + ], + "matches": "x5", + "range": [ + 2.406515505239481, + 5.593484494760519 + ], + "showspikes": false, + "showticklabels": false, + "type": "category" + }, + "xaxis3": { + "anchor": "y5", + "autorange": true, + "categoryarray": [ + "gold", + "silver", + "bronze" + ], + "categoryorder": "array", + "domain": [ + 0.7155555555555555, + 0.94 + ], + "matches": "x6", + "range": [ + 2.5, + 5.5 + ], + "showspikes": false, + "showticklabels": false, + "type": "category" + }, + "xaxis4": { + "anchor": "y7", + "autorange": true, + "categoryarray": [ + "gold", + "silver", + "bronze" + ], + "categoryorder": "array", + "domain": [ + 0, + 0.22444444444444445 + ], + "range": [ + 2.5, + 5.5 + ], + "showspikes": false, + "showticklabels": false, + "type": "category" + }, + "xaxis5": { + "anchor": "y9", + "autorange": true, + "categoryarray": [ + "gold", + "silver", + "bronze" + ], + "categoryorder": "array", + "domain": [ + 0.35777777777777775, + 0.5822222222222222 + ], + "range": [ + 2.406515505239481, + 5.593484494760519 + ], + "showspikes": false, + "showticklabels": false, + "type": "category" + }, + "xaxis6": { + "anchor": "y11", + "autorange": true, + "categoryarray": [ + "gold", + "silver", + "bronze" + ], + "categoryorder": "array", + "domain": [ + 0.7155555555555555, + 0.94 + ], + "range": [ + 2.5, + 5.5 + ], + "showspikes": false, + "showticklabels": false, + "type": "category" + }, + "yaxis": { + "anchor": "x", + "autorange": true, + "domain": [ + 0.575, + 1 + ], + "range": [ + 0, + 41.05263157894737 + ], + "type": "linear" + }, + "yaxis10": { + "anchor": "x5", + "autorange": true, + "overlaying": "y9", + "range": [ + -15.742750642673514, + 158.9027506426735 + ], + "side": "right", + "type": "linear" + }, + "yaxis11": { + "anchor": "x6", + "autorange": true, + "domain": [ + 0, + 0.425 + ], + "matches": "y7", + "range": [ + 0, + 40 + ], + "showticklabels": false, + "type": "linear" + }, + "yaxis12": { + "anchor": "x6", + "autorange": true, + "overlaying": "y11", + "range": [ + 20.709839011606142, + 122.45016098839386 + ], + "side": "right", + "type": "linear" + }, + "yaxis2": { + "anchor": "x", + "autorange": true, + "overlaying": "y", + "range": [ + -2.828692003948653, + 150.51869200394864 + ], + "side": "right", + "type": "linear" + }, + "yaxis3": { + "anchor": "x2", + "autorange": true, + "domain": [ + 0.575, + 1 + ], + "matches": "y", + "range": [ + 0, + 41.05263157894737 + ], + "showticklabels": false, + "type": "linear" + }, + "yaxis4": { + "anchor": "x2", + "autorange": true, + "overlaying": "y3", + "range": [ + -18.01833530455349, + 165.7083353045535 + ], + "side": "right", + "type": "linear" + }, + "yaxis5": { + "anchor": "x3", + "autorange": true, + "domain": [ + 0.575, + 1 + ], + "matches": "y", + "range": [ + 0, + 41.05263157894737 + ], + "showticklabels": false, + "type": "linear" + }, + "yaxis6": { + "anchor": "x3", + "autorange": true, + "overlaying": "y5", + "range": [ + 16.22597181008903, + 131.46402818991098 + ], + "side": "right", + "type": "linear" + }, + "yaxis7": { + "anchor": "x4", + "autorange": true, + "domain": [ + 0, + 0.425 + ], + "range": [ + 0, + 40 + ], + "type": "linear" + }, + "yaxis8": { + "anchor": "x4", + "autorange": true, + "overlaying": "y7", + "range": [ + 2.643318112633189, + 140.51668188736681 + ], + "side": "right", + "type": "linear" + }, + "yaxis9": { + "anchor": "x5", + "autorange": true, + "domain": [ + 0, + 0.425 + ], + "matches": "y7", + "range": [ + 0, + 40 + ], + "showticklabels": false, + "type": "linear" + } + } + }, + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6QAAAGQCAYAAAC5y61PAAAAAXNSR0IArs4c6QAAAERlWElmTU0AKgAAAAgAAYdpAAQAAAABAAAAGgAAAAAAA6ABAAMAAAABAAEAAKACAAQAAAABAAADpKADAAQAAAABAAABkAAAAABUH4gHAABAAElEQVR4AeydBZxU1RfHz7LdwS5s0d3dXZKCioSgtKDYEgoG2ISKfwMJBURakW5B6e4O6Vpqm+3d//nd5Q0zs7O7MxtsncNnmZn37rv3vu978+aee+JaeXp6JpGIEBACQkAICAEhIASEgBAQAkJACAiBJ0yg0BNuT5oTAkJACAgBISAEhIAQEAJCQAgIASGgCIhCKjeCEBACQkAICAEhIASEgBAQAkJACOQIAVFIcwS7NCoEhIAQEAJCQAgIASEgBISAEBACopDKPSAEhIAQEAJCQAgIASEgBISAEBACOUJAFNIcwS6NCgEhIASEgBAQAkJACAgBISAEhIAopHIPCAEhIASEgBAQAkJACAgBISAEhECOEBCFNEewS6NCQAgIASEgBISAEBACQkAICAEhIAqp3ANCQAgIASEgBISAEBACQkAICAEhkCMERCHNEezSqBAQAkJACAgBISAEhIAQEAJCQAiIQir3gBAQAkJACAgBISAEhIAQEAJCQAjkCAFRSHMEuzQqBISAEBACQkAICAEhIASEgBAQAqKQyj0gBISAEBACQkAICAEhIASEgBAQAjlCQBTSHMEujQoBISAEhIAQEAJCQAgIASEgBISAKKRyDwgBISAEhIAQEAJCQAgIASEgBIRAjhAQhTRHsEujQkAICAEhIASEgBAQAkJACAgBISAKqdwDQkAICAEhIASEgBAQAkJACAgBIZAjBEQhzRHs0qgQEAJCQAgIASEgBISAEBACQkAIiEIq94AQEAJCQAgIASEgBISAEBACQkAI5AgBUUhzBLs0KgSEgBAQAkJACAgBISAEhIAQEAKikMo9IASEgBAQAkJACAgBISAEhIAQEAI5QkAU0hzBLo0KASEgBISAEBACQkAICAEhIASEgCikcg8IASEgBISAEBACQkAICAEhIASEQI4QEIU0R7BLo0JACAgBISAEhIAQEAJCQAgIASEgCqncA0JACAgBISAEhIAQEAJCQAgIASGQIwREIc0R7NKoEBACQkAICAEhIASEgBAQAkJACIhCKveAEBACQkAICAEhIASEgBAQAkJACOQIAVFIcwS7NCoEhIAQEAJCQAgIASEgBISAEBACopDKPSAEhIAQEAJCQAgIASEgBISAEBACOUJAFNIcwS6NCgEhIASEgBAQAkJACAgBISAEhIAopHIPCAEhIASEgBAQAkJACAgBISAEhECOEBCFNEewS6NCQAgIASEgBISAEBACQkAICAEhIAqp3ANCQAgIASEgBISAEBACQkAICAEhkCMERCHNEezSqBAQAkJACAgBISAEhIAQEAJCQAiIQir3gBAQAkJACAgBISAEhIAQEAJCQAjkCAFRSHMEuzQqBISAEBACQkAICAEhIASEgBAQAqKQyj0gBISAEBACQkAICAEhIASEgBAQAjlCwCZHWs3CRtu2e4pcXd1SrXH3rp10+/atVPfn1h3655WYmED37t2ji//9R7du3cyWLltbW9Pw196gXi/0JT8/PwoJDqEG9WpRfHxctrQnlRYsAv0HDqa33h5B7do0p/t8L4s8eQKvDH+dhg4bTs2a1KfIiIgn34FUWrS1taVmzVtQpUpVyJefPffv36ODB/bT9m1bTR6B8q3btKPqNWpQdHQ0HTl8yGTZ4sVLUPMWLalYseJkZ29Ply9folUrltGDBw9M1qu/sUrValS+fAXauHG9xazM7R/aw2/Xc8/3oLJly/GzNp7OnjlNy5ctVeel3x9L3nd75lk6f/48nTp5IsVhpUuXoRo1a6XYrm1A20lJSdpHeRUCQkAICAEh8EQI5HmFdMzYj6hsufKpwho88KUcV0j7vtiP3h/7IXV4qjXduH491b7q7zB1XomJifT3po00euTbFBwcrF880+8HDX6ZRo4eQxvWr6MZ038mLy8vHpgkZrpeqUAIgICjoyMVLlyYClllv1PGzt0H6J9/NtOHY98T+HoEnByd1DWwsrLS22re24w8w8yrmWj1uk1UsWIliouLUxNugYHFqFChQrRl8yYaOmSg2q7VBQVu5q9zqFHjJnTlymXCOY0c9T4tWjifxr4/ihISElTRDh070/SZs9T7e3fvUiGecMMzbTQ/44a/OpS2/rtFqzLFK5TRJX8uJxcXF2rVvDFdtEB5N7d/aLRhw8Y0/ZdZZGtrR7t27iA3dzfq338gvTtyNL3UpxedPXsmRd/S21CjRk367vup9PWkCSYV0qbNmtNnX0xItZpVK1fIJGSqdGSHEBACQkAIZBeBPK+QAswZnlXu06u7SUZhYWEmtz/JjXZ2duTm5q4GWZa0e/rUSer+XFc1iMdgpVGjJvTRuE9owaI/qWP7NpZUlW7Zrt2eVQOYoUMGpFtWCgiB3EzA1c2VnJyccnMX81zfMvoMM+dEF7MyeejQQTp+7KhSKKHUjRr9PsGqPpAnymZMm6qrZuTo96hipcrUrUsHOnLksNresVMXmjptJh3mOqCYQm7dvEEj3nmT/tnyN1tc7xOU8EqVq7CiuYx+nDqNalWvYlLxCixWjH6bu0BZaaGQWirm9s/GxlYpo0FBQfTM0x3p4cOHqilYdddu+Ju+/vZ/9HTn9mY3jwnPp57qQCVLljLrd6ZXj2fpnAmFVzxizEYuBYWAEBACQiALCWS/uSILO5taVfE8s45Bh6k/zLpjNn3egiXUoEGjFFWULlNW7WvTtp1un4ODA33w0XjatGUbnTp7kdau/5t6syurscyaM49gWUS9v89fTMdPnaOtO/bQS/0G6Ip2e+Y56sez3pAp3/2o2kJf0Kf0BLP9cK0LDw9TltU//1hMfy39kypXqUrFihfXHW5Of7s83U217e7uQXXq1qNPPvuC5sydT5hRn/HLbKrAFgpvHx9d/2Bh0KRrt2for+Wr6eTpC/T3lu0E6y3c0vRFYwFL2MtDX6FpM35l5flTVURr2z8gQG3btnMv7T1whL74ahJhYAbLxYRJ39CO3fvpyPEzNOV/P5Kz0WDwrXdG0Mo1G2j/oWN07ORZ1Y9R741J4a6t9SOta6Lf79p16tIvs+bSrj0HVftg0bKVobIPS8b8hX+ovqHfGPz6+vrpV5Pq+xIlSrLF4ifCOR8+dppW8Tmg37AWaoLBPqw8K1avp0NHTqrzfHfEaCrs7a0VUYy+mfK96uPRE2dUf9B3Y9HO39R1QFlzzgXWqRf6vEjLV61T54y+z/z1N9L/jhi3a+5nD08PZaHB9+TQ0VP0/Y8/G1zDyd98R5O/nmKyuvfGfEA//DTd5D5t42/zFpKLs4tyAcX3DH+oUxNzvisoa+n91qRpM1q05C/1DPjzr5UESxSkU+enacnS5XTyzH/qedK6TVu1Xfsvu1i7uLrSVxO/pt37DtGJ0+dp4eKlVLN2ba1Z3as552nOM8yc+0rXqNGbWb/OVG63mnUTz7upP/2gSlVmJVITPBN69upDm9iNVlNGsW/d2tV04vgxGjRkqFaUjh49Qnhe4jcBAjdUuLCuWb1KTQ4G8LPIWDw8PGju7wtp+/atNHfOLOPd6X62pH/4fkLxvnzpok4ZRQNXr15hRfGscjFOt0G9AhO+/Jxat2xKTdkd2xwJDQ1VrstwX9b/M+dYKSMEhIAQEAJCIKsJ5AuFND0oJ44fp3r1G1Dfl/qnKNqjZy9qzMrhsaNH1T4MWKEYDBo8hGM2L9CP33+n3L0mTv6Whr4y3OB4DEJfe/0tWrD4D+WSuGnjBrLnWKXPv5yoYpdQGDFOUVFR6jgMtEJCgtUfFOWMSFxsrDrMlhU5iLn9xcw/4rQ+Hv8pLV22ihXsF6kBK1p+/gEUGhJCcAfGn9a/mJgYVf+wV19TSkAst/vz1B/YkrFfKZwY4GIwrQlYYPC9buMW+vDjT5TCDa4Qre2Vq9ZzmS506OABunb1Kr3I12Pmr7Npw9//UosWrejA/n2K+XPde9BAto7oS/v2HQkTD+vXrqG5v82mixcvKPb/++Gx9QTlzbkmWr3P9+hFUB5KlSpFa9asYre57VStWg2aOPkbrQihzILFf1LxEiVo9qyZtGP7NhW/tmrthhRKs+6gR2+KFClKy1aupYaNGitLzfzff+PB3316dfgbujguDEyhaCN+9+qVK7RkyUJ1Pd546x1q1y7ZQuLp6UlreFKkfYeOtHHDeu7HL2ry4A9WdIwVnLSug7nnAmUYEwTB3NdZv84gxGFDMXj7nZHGp2jxZ9x7bTj+7yhbtxAvB2Vn7vxFunpu3bxJPXv34XjCyrpteAPlfOiwV9N1vw8NCaVEVj5iY2J193J4eLiqy9zvCgpber/9xooMZPPfm1QIwfQZs+inn2fwd+dnSkyAq/0GKlKkCG+bqSZhVGH+LztY4zxX8mRCL+Z4jBWzhfPnUQRPbMHDwljMOc/0nmHm3lfGbaf1WYtzvHHjcYhDMXblheX7xInjKQ49zgppOQ7dQCx8WoJ6EzhWMyjotkExPLd/nf073b13l0Mi3jHYZ+4HS/qH34L9+/dS27ZPqUlNzY3a39+fqlarrp5z5rabkXLghPtERAgIASEgBIRAbiCQL1x2Yd3bvmufSZ7vjx5BO3dsV7PocO2C5SDi0QAVCtUzz3anLVs20927d9TxL/Ogt0KFitShXSvlCoyNU3/6nmB5eePNt+m32b+SpqxhHwYW/fv1UTP0+Ozn50879xygZ597nrZt/ZdjMtcSBhmIS/r4o7FKEUO5jAiUl05dnlYz2kjQAbG0v+hH757PKeUPSTRsbGxo/bo1bNFpQceOHaHXhw/TdQ0WUygha1avpNc47kpLdrFr506CIgh2fy39Q1e+du069NOP3yuFETxh/dSXhQvm0f+++0Yl78B2WI6QnOTryRNoKh8HCwkGZlBa0J8ff/if7vAezz+TIrnIBx+OU5MEsLDqJypJ75qgUlhDoJxjUNivb2/dNcXAFImdIHCzhnKNazj8lZd15//73Dm0ggf8/fsPUveGKmzivy5Pd1WW0J7dn6G9e3frSpQrX56V63j1GcoplK/+L/WhfznuURNYrh0cHNXH4TzpAYtsJ3bTPn36lNo2beqPyoL5MVuhcZ/hWmpi6jpYci79BgxUSujA/i9qVapriQmNzAosXzM5RlmzhsHVEAwaN2mq4ugWLZpPUMZ79+lL4z76QNdcj569WdmwISj1acmbr7/CFu6zive7b79hUNSS74ql99uLfXrqrg3OBRM25fk50vGpNnTu3FnVDyTYgSdFHbZsa/dDdrAe8vIwKsNJcl4e3F9NYGgQoPzCIqov5pxnWs8wS+4r/XbTew+vDMiKZX/piuJ5BNGe37od/AaeJHiee/KzADGjpqRsuXLqu7aWJ5+gZGuC4374aZryQnima2eDmFWtjDmvlvYPz5SZv8yhcZ98TojRXbx4IfVhzwRYdr//37fmNJnhMms4bhcCV2GEhuA3DvkJRISAEBACQkAI5ASBfKGQRkU9NJnAAUDDH8WQLl60QCmJnVmhW7xwgWINy5U/WwjHsaKoCawKW7f+o1NGte0b1q2lli1bE1wwtQEm9u1i6xHcxTRBFtxLF/+jgMBAbVOGX6E8YxALRRSJPuAKjIyRiI2CNRNiaX8HsOKjn3VYX5Ex7ihm72GRQAyXpoyizIrlf6kkTcqVV08h/YMHUt98PVFXjXE8Eiyb+u0hkyZca+fOma1TUNAOtg8YNES5BWuWZC0rKPqDgT5cXrUZ/pKlShsopOZck6fY4gr35e++/VqnjKLjmGzQ3PXaPdWeYJ2cbnT+sO7BwlKtenXduZp6o1nGS5YupVNAUO78uXO64lC0oJzoK6PYCZdDTcB5G9+TmjKK7RhQY3IElswq7MKtX97UdTD3XDAhgH57MV+4FEK5h+BaIh4vs7L0jyW6a426fps9y0AhvXnjBiHhDCZ0vvz8U921gcs8sq5qEzEZ6Ycl3xVL7zf9awNLP2Tnjm0Gzwpte6MmTdQ1zy7WYIeYTFjT0xNLztNUXebeV6aOTW0bJrrg5o/nhf6zFt9FiL4yqdWhbUMZUwopnhs/srs3LMVwb9WX8awQ1qvfUMVyhoaG6O9K8b59h04UEBBgsH3fvr3qN8DS/kGxvsmxrnbH7CjyYSSN/eBj9Vyf9vNPBt+RtNo06IgZH65du6aeb7dv36b4hHj1e4bnC8IWXhk6WE1OmlGNFBECQkAICAEhkKUE8oVCClfHYS8PShPMnt276Nq1q9T9+Z46hRSuoXfv3OFsjskDbcRFBgQEsrLjreLb9Cu0tU1GBRdX/UGSfhntfRgPNOztM+8OVZITVMCioskVzio5aMCLyi0Q2zLSX80ypdWZ1muJkiXV7v94uRl9gdJ4+dIlNZjR325J3TgOs/MQa+vHrr/4jO2Iq3TkDJpxcaHYpOJmx33yGVuX6uniVzVlFVbe9MT4mpQqXVodAutAalKKFV0I4jKNxd3dTbk7G2/X/7yJ3TRH3RtDkyZPYRfkIbSb70FYMzXFDtZYP7aeb9y4Tv8wg/coU7Sor4p9M9jBH7AMEATXSV8hNXUdzD0XXNtFC+bT2++OVHG+UISh3MASbmqgrzqQif8wgQN3cHgWaLJg/u/UqnVbQhwzJj8wcYT+f/XFp1oRi18t/a4gTjuj9xvOB9fAupCh+6h2v2MiBJIdrOGKWYKfG5iAM0cyc56o39z7ypy+oAxib5HQZ8+eXfTZJx8bHBYWlux6jWeDseB7AgkLTZnEDp4a02bOUsu4vDxkgMrOqx0Pl/febJXs0/t5g+3afnbZ0L3FG0wKGnsKfP7ZeKWQWto/xByj35qVGvkMvuBwD4SHVKpcWechkFabBp0z4wOePdrzRyv+4/dTVKjFiFHviUKqQZFXISAEhIAQeKIE0h/JP9HuZF9jGPwtYZcouK0hphFrIcKFd97cOTqrnbOzs3L7giVmzeoVJjtz5pHLpMmdjzYmwXrJbmCZFcSwvv3maxTLsZNXWRmNjIw0qDKr+mtQqd4HWBUgMTGP3du03dHRUeT4aL+2zdJXxcnEQYlGy83A/RBuvHADRnwX1h28fv0au2a2Vsl2TFSRYpPxNXF2clZlNCtmigN4A7K1Qj7/dBwrGPHqvf5/WKs1LYEC17xZQ3r9jbeUcoUEWPiDBRgTC7CQaVay1OqBdRxlUrsGOM6c62DJuUz5drKy4A1/7U220LdS3xO4bn86/iNdFtPU+puR7bCaw21SE0wQwQLdp++LSiHt0/cltRxIZlwKLfmuZMn9ZnQPa+eG55C+ZDVrZ07oBOXblFurfrt4nxXnacl9Zdy+8WdMPCB5FuJBBw/spyYq9MtgfVIIvhPG4sTPboiWxEjbDxaI5W3atDm989brusk8bT8mB6AU4vliSv7ZulNNLpQukTxhMmrE2ym+b9q6upb0D6ETSEr20Qfv60IR8Lzv+0IPlUW99wsvKksunk9ptWmqz5Zuu8lx24iNx+8hvE40a7Ol9Uh5ISAEhIAQEAIZJVBgFFIAQmzOO++OIlhGr1y+rNaZQ9yOJiGc3AcuW3DbXLF8mbY5y14tXYMRFhV9y5dxR7K7v0g8BIH1CtZZfYGlWNuvvz073sOKAeX41WFD6KSJhCYZaVNz/QxkF+j/Lpw3WQWswBBk9MRgMSMCxQAugvjz8SmiEkIhURQSQMESGBYWqtyxU6sb1xh16FsQtbK4BhBzroOl54J1EfEHRRGJkrB24TsjRqlJHc1dXOtHZl4Ry4tre+nSRV01UFCXLFpIr3PMds2atdRA+Qe24piy/OoOMnqjr+BilyXfley434y6Z/AxK1njfoISU6RoUYM2TH3IyHkaP8Msva9M9QPbWrRsrbJ9IwnTgP59dUqafnlY0yHlK1TQ36zbBsVQP0wAyhXWIoXV9Y3XXlGx8MYHYnJrzHspk3XhmM5dutK330yiO0FBusO0Pug26L3R9pnTv3r1Gqgj4UKrL/hu7d69UyWFg9IKN2+tXv1yWf0e3xesOx0fn5DVVUt9QkAICAEhIATSJfDYLJFu0bxfAPFpmAmGQtq9R09dVlf9M9u7Zw8hLkp/WRVtP2KEtLhFbZs5r8HBwaqY/jIe5hxnTpns6K/W7gG25EGe7tpN26RekZQHiZ8OHDCdSMqgcBZ8QPZKCDIA6wtcqzMqh3kgCunV64UUVWjK334eDMKiNXjI0BRlsEErZ3Inb0S8MaybmsDC+z0rVhh0wlUSgn60afuUwTIw2I4BIlx1IeAM5QFWPn3BdcGkRVpux1p5c88F7pD654W+wmMAGaSRWAlJYzRB/Gu/AYNUnK22zdLXZ559Xh2yj793+oLkRmD/8/RfmYWVciPW35/We3zfTN0b5n5XsuN+M9VfS1jjOwfWxksSmar3NHtxIGs1rIP6Yvz8seQ8U3uGmXtf6ffD+D1iRmfN4aWXdm6nfi/2NqmM4hgonFDQcG76CdMQT16zZm1au3a1rmpYPrFUEzKJDx7Y36QyisKYCMHEkPEfMoFDVq1YTkjGZo5Y0j9tgu/Z57qnqLolK+eQjE6CpahQbwMyfxsLWDVq3JTzMJw0UOiNy8lnISAEhIAQEALZRSBfWEiR3fCV4a+bZLRuzWoD696SxQt4YfQZKvYJrlDG8sVn42nj5q28gPpymvLt1ypZEpZrgHsV1hNF9l24OFkiJ08eV4NrWGd/4syx9jxzf+PGNbpw3rRlzpK6s6O/WvuwHmAZizffHkGIwdy+9V+lqH/62ZecHCTcYMF67ZjseEUm3P68DMyXEybTgnlzuQkrpaD1NKFMmtv+YY6LRLZNZF5NSEzgTLrreJBroxaXb9+xE7Vo2lDFheF+wfI0cOtDHCWslbBcwHpyixOSjEpjiQjUjSUckHwIll0kqer9Qh+lbGpJjL7ixD1Y0mXxH8tp8qSv1DqE5ctXUGsqLuSB8qKF8+mbyRPV0jCz5vxOEyd8qayqmFRBH7AskaYspHXuSLxlzrm4urnRP9t2qSVuoIjevnWLKnIWYCifqENzT4QSgPU94ToNt3dz5bU33mTuq5X7ObLRYv1VxNUiZlBfrrPlCOtBQvlAluc7dx5bqfTLmXp//NhR5SKNREiI94Ziv46VFXO/K9lxv5nqp7mscexLLw1Q3wFTzyzjumf/iuVmptPs3+ZzYqBZ7AniysvrPJtCmbXkPFN7hpl7Xxn3UftcvHgJtU4v7ivcbz1MfKfXrFqhc8Wdz99/rFP89bff0W+8VijcdxHvbMOxs/pxs4j/rVuvPi37K3nJJijz+nKd8wlouQP0t2f2vbn9Q8IrrIsKN9m33rmgvHewlFdXvk74rfmdv1P6mcPT6xcydSMRmfejtYtLlCyhPBswqQMLvCabtiRPLmFiFkoxcia8+fa7alLpjdeGacXkVQgIASEgBITAEyWQLxRSWG7GjP3IJLgL588ZKKRQPGBps7W1o9U80DEWuHJ27dyePvn8S5rIGUw11z/Eb2ItwdCwlEkzjOsw/oysquM+/oCXCRlIi/9MdgVGyv+sUEizo7/6/X+Dl9FAog0ooZq17wyvH/n8s13NUoT068ro+1UrVxBc3JSF6JH1AAoM3Omg0GRURr77Fk8M3GAL6DBeB/RNVQ1ctjGo1GTs++9x1uRL9OprryulTNsOBulZTrDcUBNWur77/iftMDWw/nDse7olFmDN6tPreXW/zfhltq4cLEGIpYMcYwULy8JgEL5sxRq1Da6J33/3rVpGR20w4z9zzuUh3+eb/95owARVIxHK2DGjda1AmcT9gEyosKKaK1WrVqeBg17WFceSIiPfTTkxhALIbA2FFINzS2QSK+3o2yd8z8KjAd8/KKTmfley634zPgdzWeM4uJBCQUGSp/QE/S9btrxaPgcJeKCU4PxhBUQ8riaWnGdazzBz7iutTeNXO3s7da0wqYjlT0zJEZ480mJDMSmEpWbeG/OBysSM8uAycMBLhIkITTCBBEHGYfwZy5bNm7JFITW3f0h8NXhQP/rk0y9VXgNMVuKeRbgIlmCZ8s1k4y6n+XkEPwfh2aNJr959OQN7X/WxROBjq+jWf/9VGYwxwaQJMv0OHTJQTQho2+RVCAgBISAEhMCTJGDFbqiGWTaeZOu5vC0MaoqXKKHcImEpsiSGLbVTgyswrGzmWLVSqyO17dnRX60tuIuW4SyQWC7AEmuVdnxWvMLdDAmpbrGFOivjqjDpgOV0YClF3aldZ8SAwjJ4/cZ1s5LGaOeMATSWAYJVGfUjRtKUYJkVPz8/usmxcrhHjAUDVvQTllZMtGBQm1FJ71yQrRUZgNGnG9evK6usfltYbgaulg3q1lRx1/r70nuPtsHjCk/+pPU9QIZpLLHRumXT9Ko0ud/ZxYW8C3vzpMP1FMzN+a5k1/1m3Nn0WMPCu+/gUaWoTPzqC+PDU/2M8y9Tugy7pV7SLd9jqrCl55nWMyy9+8pU+xnZBmZ4HkGB09xfM1JPdh1jSf+wjjKWrkIyISwZllaitazoL1y5sdwZXLgRxqK/DFhW1C91CAEhIASEgBCwlIAopJYSk/JCQAjQ9l37eJ3N7fT+6BHZQgMxynCdH8+eBbNn/ZItbeSVSuGejaVQmjaqa3G4QF45R+mnEBACQkAICAEhUHAJFCq4py5nLgSEQEYIwEKG2L852agoDnl5mLIULf3zj4x0MV8dA3fdTRvXizKar66qnIwQEAJCQAgIASGgERALqUZCXoWAEDCLAJI/Yb1LxNtmlyAhEdZ1RHbfgi5w0Y5j92y4p4oIASEgBISAEBACQiC/ERCFNL9dUTkfISAEhIAQEAJCQAgIASEgBIRAHiEgLrt55EJJN4WAEBACQkAICAEhIASEgBAQAvmNgCik+e2KyvkIASEgBISAEBACQkAICAEhIATyCAFRSPPIhZJuCgEhIASEgBAQAkJACAgBISAE8hsBUUjz2xWV8xECQkAICAEhIASEgBAQAkJACOQRAqKQ5pELJd0UAkJACAgBISAEhIAQEAJCQAjkNwKikOa3KyrnIwSEgBAQAkJACAgBISAEhIAQyCMERCHNIxdKuikEhIAQEAJCQAgIASEgBISAEMhvBEQhzW9XVM5HCAgBISAEhIAQEAJCQAgIASGQRwiIQppHLpR0UwgIASEgBISAEBACQkAICAEhkN8IiEKa366onI8QEAJCQAgIASEgBISAEBACQiCPEBCFNI9cKOmmEBACQkAICAEhIASEgBAQAkIgvxEQhTS/XVE5HyEgBISAEBACQkAICAEhIASEQB4hIAppHrlQ0k0hIASEgBAQAkJACAgBISAEhEB+IyAKaX67onI+QkAICAEhIASEgBAQAkJACAiBPEJAFNI8cqGkm0JACAgBISAEhIAQEAJCQAgIgfxGQBTS/HZF5XyEgBAQAkJACAgBISAEhIAQEAJ5hIAopHnkQkk3hYAQEAJCQAgIASEgBISAEBAC+Y2AKKT57YrK+QgBISAEhIAQEAJCQAgIASEgBPIIAVFI88iFkm4KASEgBISAEBACQkAICAEhIATyGwFRSPPbFZXzEQJCQAgIASEgBISAEBACQkAI5BECopDmkQsl3RQCQkAICAEhIASEgBAQAkJACOQ3AqKQ5rcrKucjBISAEBACQkAICAEhIASEgBDIIwREIc0jF0q6KQSEgBAQAkJACAgBISAEhIAQyG8ERCHNb1dUzkcICAEhIASEgBAQAkJACAgBIZBHCIhCmkculHRTCAgBISAEhIAQEAJCQAgIASGQ3wiIQprfrqicjxAQAkJACAgBISAEhIAQEAJCII8QEIU0j1wo6aYQEAJCQAgIASEgBISAEBACQiC/ERCFNL9dUQvOp//AwdSiRSsLjsjeokNfGU4NGzXOtkasrKwoIDCQihUvTra2ttnWjlQsBISAELCEQL8Bg6hlqzaWHCJlhYAQyCcEbGxsycPDI1PjktZt2tJL/QbkEyJyGgWRgCik+eyqX7keROn9bd2xR531q8Nfp7btnso1BN56611q1rxFlvenRImSNGfufDp19iLt2nOQduzaT+f+u0q/zVtI7Tt0tKg9f39/mjDpGypXvrxFx0lhIZCfCQwa/LLuuXPxyk06cOg4rd+4hSZ/8x3VrlM3R069aFFfXZ/wTDx97hL9u20XjRn7Ebm5uVvcp5Gj3qfuz/e0+DhzDhg2bDg91b6DOUWljBDIVwT0nx2Xr92mI8fP0PJV6+j5Hr3y9HkaP38uXb1FJ09fUM9FY8WxRcuWdPTEWercpWuGz7lDx040ZOgrGT5eDhQCOU3AJqc7IO1nLYFRI98xqHD06DF07/49mvXrTN32iPBw3fv8/qZhw8ZK8Xz48CGN+2gsHTt6hNzdPah6jRr0yquv0/hPvqAN69eZjcHD04te6PMirVuzms6fO2f2cVJQCBQEAmPeG0lhYWFU2NubypUrT89170E9e71Arw8fSqtWrsgRBH/+sZj+3rSRXN3cqH79BgRPjOo1atJLfXtRfHy82X16utsztHfPLlr65xKzj5GCQkAImEcAz47Q0FDy9vFREz/fTPmenF1c6LfZv5pXQS4ttWTxQvX8sba2Jk9PT+rZuw99/uVEioiIoGV//al6/d+FCzRpwpd06uSJXHoW0i0hkP0ERCHNfsZPtIUlixYYtPcKD75u3rhBxtsNCuXjD2M+/JhiYqLpuW6d6dKli7oz3bt3N61YvozG8n4RISAEsobAls1/0+3bt3SVfTN5Ai1cvJQtpf+jC+fP0+nTp3T7ntSb06dO0rq1q1VzeA4+uH+fhr36GtWpU4/wHBARAkIg5wnoPzsWLZhH6zZsJnhN5XWF9OyZ0zzpvVYHeM3qlcoKXI8nxzSF9PLlS/TTj//TlZE3QqAgEhCX3YJ41fXPmeMqn33ueeUiA5dWuNk1atxEvwTNnb+Ier/Q12AbZjGXLF1OTZo2021HHNQvs+ZShQoVaeavv6mH7p79h+mtd0boymhvypevoOo9cfo8HTx8gjAbamtnp+3WvZZgd9sZv8ymfQePskvLGZq3YAlVqlxFtx9vps34lQYPGUp+fv409oOPVRn0t0XL1lSzZi2a+tMPBsqodvCdO0H09puvaR/pjTffVud/6Ogp1db6Tf+ogWuhQslfE/Rl8tdTVPkPPh6vzh8M8MMCeebZ7rRs5Vp13nANnv3bPIkLU2Tkv4JKIDg4mAb060vh4WH0xVeTDDBUr16DFiz6U33Xdu89pJ4BsCAYC77vv89frNzd4AoMN2A8k+CpkBHRBoGVqyQ/RxC3ju/x7n2HVBvbd+2jSV9/q54nWv3/+2Gq+ty6dTvd9/6Nt5K9UbTnHuLABgwcws+rOfTd9z9ph5K556k7QN4IgQJOICYmhtbyJBI8LYoUKapowM1+4uRvacfu/XT81Dla/MdfVKduPQNS02fOotdef8tgG44xHoPg+/32uyN15ex47PHemA/o7y3blWs/fvthydSX1MYZ+mXMeQ/LaEJCPN2/d09XvHSZsuq5UrVadd22tNpzcnKiTz/7kvDcPHnmP1r85zKqXLmq7ljtjYxJNBLymhcIiEKaF65SNvYR7nSj2K13/9499NMP/yMXV1f10Ndvsm7d+hRYrJj+JrK3t6cGDRpR4cKFdduLFy9BrVu3ob9WrFED0Kk/fU+YHXx3xGiqUrWarlzZcuVo1dqNhBiL7779mr79JnmgikRDSDykCcqtYwXZx6eIKjfxqy+U291fy1erY7VyNWvVpt48OP17yzYVE5uUlERu7u5sAUmOXfuDXWbMkZKlStP+fXsJVp3xH3+omCDe7LXX31SHR0RG0KGDB9T748eO0vat/6o//LAgtgyDVlhjPhz7Hs2c8TMVYhedXr1fMKdpKSME8i0BWExhFahRs6Z6buBEEVe6bOUaiouPo48+eJ9++H4KNWjYSD0XHB0ddSwqV6lKq9ZsIHdO+DHhq89p8uSvCBNEzZq1UMnJdAUteIPBJySS3fghAQGBFPzgAf06czqNHTOa5s+by8+xdmpCSRXg//BcgNs/zkX73uPZBsFzDxNza9ZvojfffpecnZ11MarmnqeqSP4TAkJAR8Dezp7wW/4w6qFK9rOcnxctWrai6T//RGPeG8VjjAj648/l1LhJU90xCQkJaoJd24CxA8Y4Awe9TDY2yQ6B+P4/170nhQSHqGJ4nixa8pcKL9iwYa2apMZ3e8LErw0m4lMbZ2htmfOKcKHR742lezxmQCiBJi78zMB4yp3HLZqk1h76u4C9Tp7v2ZuWLl1Cn4z7kA4e2E++vn7aoepVxiQGOORDHiAgLrt54CJlZxfhsjZ08ACKjo5WzRw8uJ9nHpcRlEG42Fkq0Tyz2al9G7py5bI69JcZ02j/wWNKUTx54rjaNvaDcSp265mnO1JUVJTahkFghw6d1A+Q2sD/fTz+M7p18wY990wX3fa1a1bRoSMnqd+AgTR54ldaUfWD1af383SUY0Q1+ennGUoxvs8ueubIiHeSFU+tLCwpRX19qV37jjxg/k7NaC5cOJ/bHkQr2d1369Z/tKL04cefENxuxr4/Srdt9qxfVDyMboO8EQIFlMDRI0d4UGirYjeh3MGT4dzZszTgpT667/a2bf/Stu17aNDgoTr3tXHjP2VFMJK68zMgLi5O0Vu8cEGKZ4W5WDHhNmL0++q5s2P7VnUYYkKN40Jv3rhOP/w0XWXlvnH9Os37/Td6edirdOrUCfUsMG7Pzs6Wfv9ttlJmMYjWxNzz1MrLqxAQAkQVK1aiXi/0UTHbyHkxcNAQKlW6DLVt3Zz+u5A8Llm9agVhcvrDj8ZTpw5tFbadO7ZTp85Pq1hNeGcgaeHF/y5QiZKllOfX9m1bCVZITH7v2rldHQPFDpbWDu1a6UIK4GLrwd4ar772Bi3i33xNcJzxOEPbl9rr2A/H0fs8sQ1FEnGkEEzW3+BQqvTEVHtQNGvxJPywlwfR+nVrdFV4szW5AefM0AQJkmRMotGQ17xAQBTSvHCVsrGPVy5d0imjaObCo4c9rKIZUkhZwdSUUdSXmJhIFy/+R/XqJbu1wgKKGc1tbF3UlFGUMxbMZjbhcmvXrKGu3Z412H2dB4tImKIvsFroK6PY58IJEWDVsERqcLKTRtwuXIq9vLyUZRfnkJ6cOH6MkHYdbkBQVhGvioHpvbt30ztU9guBfE8gLCxUnaO2tAEsh99MnqhTRrHz+rVrdOjQQWrQqJFSSDF4q8PPoXVr2ZL6SBnNCCgMOOFW78nfZwx04Vr73qh3VWy9Vh/c/Zs2a061atchb28fKvbIIwReHFBI05PQkFCltOqXw2DSnPPUP0beC4GCSmDCpK95ojqBvZ+Kqt/di//9R6NHvqtwwK0e3keaMqoxWrliOX3y2RfKswuKKxRSjDHq1qtPmzZuoA4dO7MlcgnVb9BAKapQSOE5dffOHTp37qyqpkWLlurZU55DjfCnSWhIiPJ+wPdYe/6YGmdo5VN7xcQ24mMhsM7C26x//0HUsVMX6tyxHUWyC29qYqo9PKfQn216E+KmjpcxiSkqsi03ExCFNDdfnRzoW0x0jGpVc2/Jii7A+oqHOgRuJXDJ271rR5pV+/r5qYFjterVU7gLw+IZFBSU5vHY+R//oGFtP2TqS+uhj7IYpOIHsQcPXuH+cvLkCTWz6sixGiV5djU9mfXrDGUNfZOTMLzz7ijONBrKM6sL6GeeCX3A7oAiQqAgE6hcuYpSPvHdgvIHZfPuvZSTNUFBtzkWKjm2E94JeG4cOLAvU+gS2Y0vJiaWzpw6pbJjw/px8+ZNXZ1dOXsuki7B9R4eI2dOn+L91wnuwvohBLoDzHxj7nmaWZ0UEwL5mkBcXLzyhtix4yzBu2jVyuU6RRBu9aaeF8gDAQnk/WfYzRYWQUwgYQJ83969bBVtTB+wG/7du3c4geE4FU4Da+iuXTt1LOFy7+LqQgPYCmssR44c5vGKE/cjeULNeL85n6FII2RBX/5mZRlxqk891UGX2Eh/f1rvEVp0lPuV3mS7jEnSoij7ciMBUUhz41XJhX3KrIKqubEhoB/izz8gaQkyYeKYeXPn0C8zp6dVNNV95x/NgDbl+K70lnZpyFYZKKOjR71DcAnUBMmbTCqkPAurLyE8mwp3XcTD1mYrS6vWbalf/4E8+PbjJS+G6ReV90KgQBHAswPfB3hcYHIGCUsgVVnhM15AxcPDU8VXYT/iOiHG3hBqowX//bX0j1SfIXCj+/TzCbRj+zZ6Zegg3QAYFhbEnWnPLa05KzL83mvbTb3ev5+ctCS98zR1rGwTAgWNAGLJEaNtSvBdqlLlcR4KrQw8LiBY2k6TnTu2KY8IrLF+9swZ5bEF912sH444deW18PVErTih7njEnnbtpNuW3W+gPCfEx6v+wIJqicASXLZsuXQPkTFJuoikQC4jIEmNctkFyY3dQYA/Zvv1RT/xiP729N4j2ybcWLWEQ1p5WEyseHCoCWb/LrGrL+IgMGg0Fi0xifF2/c8reYYVP3CYGXV1ddPfpd7D+qJl6qxWrYba9s/mzQblYDnVl4eRkeoj3IH1ReOBc9u4YT0nXRipZj5btmqtX0zeC4ECRQDf3S8nTCIk6Jg08Qt17pH8HYJbP1zP9AXxnUh8hDhNCFz6L5w/R43YXQ9ZJTUJCAw0mZFb22/JK+pCZl8MYjW3PBxvagIO33300Vwx9zzNrU/KCYGCSuAUWxl9ihRRGfz1GeAZAvdb/dCYHey2W40zeGP1AOScgMBjCTHjLw99RSVE3LXzsYfW8WPHqConXSzFlkdjMWecYXyMOZ8RQmDNE3Xnzp4xp7hBGYyL/AMCDBI7ooDxWEXGJAbY5EMeIJBypJ8HOi1dfLIENmxYR09xYp9uzzynllFBco8/lhq6oFjSo99/n6NitZCREjGbSE2OTJrITqnvIvfpJ+PUbOa0GbPUKwaPsLR8xdnvkCQgPYGbLmZdiwUWo42b/1UZ85DtF9nssDzDug1bCC62EPzgQcZ88JFqCz90X06YTH1f7Ke2a//d4PhVzFD26z9ALT+D/vv7+6tlKUZyshR8Ruxpw4aNqU3bdnT40CHtUHkVAvmeAOKouzzdjV58qb9aRmHn7gOcabovvc8TNJio0QTZtcvwLD+eAVjWAcse/PjTNHbRtaNpU3/SirHHwWROsFaesHzUZ19MoJ+n/0KbNm9Trrz6zwrdARa+uXXzFoWEBKvvebun2qslWoa8PIzb+VXVpN8GrBrNmrdQy0kh6RuWc0lPzD3P9OqR/UKgIBOAlxS8q8Z/+oXK7wDPJawljDjM76Z8bYAGyiYmm/FdXbtmtW7fmtWrOM9DO7p27Spdu3pVt33G9J8pOPgBzfl9gYozRYwnrKiofyWPSzIrFThuHbGsSLaEpWQ+Gvcp/Tp7roqHXbJkkcXVI8EaPDewdA3GMljeDsvmPde9h0FdWCpLxiQGSORDLicgLru5/ALlhu6tWPYX9ejRi77/8WfVHcRpTPzq8xTLw5jb1595XdDSpcvSiJHvqT9YEr5lFxrERujLP1v+psEDX1JZ9JbxUjKaILHB15wQxRzBIBgZ+PBD9vmXE9UPFY6L5+Um9uzeTb/NSR54bv13C33DfUCyATzYkcgIGewwwwr3PU1gRRk54m3dmqXYPrB/X87Yt4NjUAbz9uS1CRHHgqQKU3hALSIECgoBTBbhuwMXObjCbd/+L83/fW6KhGNwo8W6gu+P/VA9A8AHA8W+L/SgW7cex3ci9mrokDjqwxNDdTn2C4lInuvWWa33Gxqa8bgu7XrgOfDaq0Pp/TEfqjWUsf38uXMcwzZT1y+tLL7Lzs4uajCJAS+WbTDOzK2V1V7NPU+tvLwKASGQkgDiu/v06q6WVtvEy7tB4PqPpaCQoV9fEC+K5wSWgEFCRU0wFsD3Xcuuq22H19bzz3ZVY4Qfp07XZcINDQ2xOL5Tq1P/FcvO4A8Cpfo2P98WzPudpv38o5rc1i9rznuc2ygeg2DCHDkyoJwi4/DfmzZSufLldVXImESHQt7kEQJW7K70OEd9Hum0dPPJE4BLbanSpVVGXmTDzArBGqZYJwyZfeM5niItgcutr58vBd0OUu43aZVNbR/OoVix4mRja6MSH5jK8gu3l4qVKnEGzuvpJiOCG3MUr5GGWA0IrCmw9jg4OBhkGk6tP7llO9wq0Xf8gFsqcAuCO6W5S+tYWr+Uz98E4BpbunQZXhM00qxstqAB68jBwyc45nMwZ+B9bAHJLClYbON5wgnuxGkJFGkXF2dWnG+liDFN7biMnGdqdcl2IVCQCcAjCd/BCxcuKAUzK1lgoqkYJzmCez4SrBnHkGdlW5mtC2vB45kFay+UalOSV8ckps5FtuV/AqKQ5v9rLGcoBNIkgLT5kHEffWBQbtvOvVSiREmDbVrSJwywv/hqErsidVLZ/pCEasig/gbWLYMD5YMQyAABZMBEvNXhw4d4MuqWip368KPxKgNuy2aNCN4VIkJACAgBISAEhEDeJiAuu2ZeP7EEmQlKiuUZAshCCLcfWHU112Xjzvd/qY9K+KJt16yonTp3UXE2DevVUslnxn/6uUoe9cZrklFYYyWvmSdQpGhR+va7Hwwqwhq/w195WZRRAyryQQgIASEgBIRA3iUgCqnetUOWtRWr16n4xLlzZqk9YgnSAyRv8xUBxJzg78OPP+EMfdYmzw0xN/rZR7VCSCaBdeI0t2cslbNi9XqVERkxhCJCICsIHNi/j2rXrEJlOOkRXOERLnD16pV0Xfyzom2pQwgIASEgBISAEHgyBAo9mWZyfyuISZg2cxaFh4UbdFbfEtSofm3av3+vsgQZFJIPQiCfEkBG5YmTv6VXhr+usgdrp+nL8bNI3KTJdX6PmBZPzjAsIgSykgASmuzbu4e2bf1XJSlJL948K9uWuoSAEBACQkAICIHsJyAKKTNGspup02bSr7/M4OxshutCmbIEte/Q0eTamNl/uaQFIfDkCCyY/zthXVasBdm27VO0fNU63Xqu7m5uKsuh1puYmGj11p0ndkSEgBAQAkJACAgBISAEhIC5BMRll0mNG/+ZShO+ZNEC6shJWvQFliC4NWqibwnCzL21jZ22S16FQJ4gkJgQz9kD03ernTb1R935zJ71C23ftY+aNG2mlsPBkhv6i4Y7ODiqskiVL5JxAoU4y7MV/xMRAnmFQGJiAiXxn0juI1CokDVZ8Z+IEMgrBDA2wRhFpOARKPAK6Uv9BlBJXs5kYL++Jq9+WpYgKKSeAeVMHicbhUBuJRAadJnioi3LTgo3SWTSdXV1VaeFtSKxgLgmeI914bD+pEjGCbj58LJEdg4Zr0COFAJPmMDDkDv0MPTuE25VmjOHgKO7Dzm6FTanqJQRArmCQOzDMAq7mzVLC+aKE5JOmE2gwCukrw5/gzZuXEdvvT1CQSvFa+JhXcbwsDC1KHJ6lqB7V06aDVsKCoG8QgDLbZQsVYq2b9uq1mJr1rwFlS1Xnvbu2a1OYcP6tfTmW+/SjGlT1dq0vXq/QBvWryNJaJS5Kxxy67/MVSBHC4FcQADrOZpKhpZe1/DbW7QorzfNa0DKsyQ9Wunvjwy+TfgTEQJCQAjkdgIFXiGdNu0ncnVJtvrgYiVxhtD4+ATdgstiCcrtt7D0L6MEOnV+msZ98pkuLhTx0h9/OEYplsho+s2U78nZ2YVCQ0LIydmJ3hv1rspwivbWrF5FzVu0on0Hj1JEeASFR4TTwP6mvQwy2j85TggIgbxHoH6DhjT155lUt3Y1g86/N+YDGv7amwbbtm79h/r17a22de7SlZehmqS8LDw8PGn0yLdp44b1BuXlgxDISQK2dnZka8t/HFpBVlY86RKb/Bcbm5PdkraFQL4gYOXp6ZmUL84ki05i9m/z6J9/tpC27Eu3Z55VlqDOHdspS9Ann33B2Ua9SdZbzCLgUk2uJWDFP7g+PkWSl9u4fs2kxcKFXXhdWGm9fftWrj0P6ZgQEALZTwAx5Rs2/UMlSpZS7v2mFNLChQvTB2Pe03UmKSlJLeHj7OJC+w8eoz69utORI4epXv0GNOe3+Uqp1ZaW0h0kb4TAEyCA+FtHJ2ce7xWmshWrUPESZciD718nJxeD1qOiIinkwQPOOn+Zzp06Qffv3aaohw9JW7PboLB8EAJCIFUCBd5CmiqZRzvEEpQeIdmfXwlgsHjnTlCapxcRHs4WUsOlktI8QHYKASGQLwnEspWoVYsmVKt2HZr5yxyT55iQkGjSlbdVqzZ07dpVpYziwP379qpnD0IFxEpqEqVszCYCmGQtUjSA6jduTqXKVky3FUdHZ3IMcCa/gGJUt0EzVf7a1Yu0b8e/dOvmNQ7/Ck23jtxUoHjx4lS+XFnCUogJCbEEi5WVlTXdvnWLTp85S2EcziYiBLKDgCikRlQH9n/RYAuSuYx4500SS5ABFvlgAQHkTPVwtyNnR2sK9HOkMsWcqZi/ExUtbM/xylYUFZVAdx7E0NWbD+ny9Ui6ciuKrfGJFB4ZZ0ErUjQ/EHB086ZC1vJYzg/XsqCcQ1x0BMVGRZh1ug3Ynffrb//HVqR7tGrVCjpx/Jg6ztfXl27euG5Qx40bNwhZ7kWEwJMg4OjoRCVKl6Onu/clG5vMPYOLFS9NxfqUVt1et3IJnT11nK2mliUSfBLnbNxGk8aNyNPTiRzoDlHUWdKtC2llR/4+PhQQ2IaOHjlK/128aHyofBYCmSaQuW9dppvPOxWIJSjvXKvc0lMfL3vy87Gnbu38qU3TUuTg4k92DpzxMIkVzcSo5FeeeeTAZaJC9vznxAmEEnhwd59C7l+lVZuu0Lpttyk4LI5C+E9ECAgBIQACXl6e5OnhwTHeTrz8ko1aKig2Lo4nsmIplC0YIcEhFM1Zr3OTHNi/j0I4Hj06OpoqV65Cy1asUXHnO7ZvI3d3D7Vdv7/I2o0s9yJCIDsJ2HA8qA8n0urWox95sntuVkvHrj2pRZtOtOKP3+nm9asUG5u7vpfa+TZv3pS8XBPJJuGMtunxa1IsWSfcIIp+QFWqVFDxs//9Jwn4HgOSd1lBQBTSrKAodQgBPQLurrbUtE5herN/WbKzdyAn99Jka+9OFBdEVlEnWAFN/QfJqpAL2dv7kG+JJvRSr2L0fKfLFHQvmr6ddZ5OXQijyIcJei3J2/xGICrs3hM5JRcHG07MUYis2ULv6mRLbvwXFRtPjqzchLFlPjwqjuITOb6PXSwjomRNuCdyUdJpxN/fn0qVLE5Fff0oPjacrRdRZGPF6/7yJJYS9sBI5GdPvLcXWduVosiIMLp46QpduXLVpJtsOs1l+e7Nf28i/GkSHR1FvXr3JSikWL/Ynp+V+oLEashyLyIEsouAPa+fXbdBU2repmN2NaHqdeI8Cy8MeJX2795GO7duynXW0ooVK5K7izUro5fS5sAT6XZ0gWrWrEnwYMDkkogQyCoCopBmFUmpp8ATcHexpSrl3WjcGxU5E5812bI11NmD16mNv0tWDw+Zxycxgqxi2P0t9gbZOxTnOmqRte05mjjagS5ei6RJM84p197oGFFMzQMqpTQCUDrdnW2pTtnC1KBiYbK31TlkaUVSvOI+23vuPh268IDCHsapPw4tFnmCBBDTValiebK3I7KlezypdYjskkxPEuCKcjF2tyNys3OnqhX9qVrVqnT+/AU6cTJ3LVEWdDuISpQoid7SLY5PCwgMVO+1/7C2MbLciwiB7CDg7OJGnZ/pRWXKV8qO6k3WWa9RcypWvCT9sWAW517IPbGY5cvz5Hn8OZN9TrExkRM2Rd+gsmXL0okTPMEuIgSyiIBk2c0ikFJNwSbg5WFHY1+tQLWreCoQ9k6+5Oheiqyi2a0lITjDcJJsfXkUGkgRD06yVST5B2zJ2uu0cNU1Cg0XN94Mgy1AB0IRrV+hMHWodXE7jwAAQABJREFU609sEM2wQBFdu/8m7WcFFcqpSPYSwFqedevWJh9vD7JLZHe5jD5HrOwprlAAJZAr7T9wkNf4TDtRWWbPSktqZJxl9/kevWjtmlX0kDOQenM82uIlf9HCBfPol5nTCVl2Dxw6Ti8gy+7hQ4SlY2Yjy26tqhxjz9q1iBDIQgLuHl7Uu/9Q8ipcJAtrNb+qyIhwmj1tCic8Yg+HXCBdOrUlh8TTZGNtxZPphVRuC+S3wM8FO8qwF0aSWo88nqOLYmMTKcnKhSISS9D69RtyQe+lC/mFgCik+eVKynnkGIFSgc704/ga5MhukBA7Rx920y3Lyugpfpo/zHy/bApTkl1JCrt3lBLjkwdncN/9aMopCg6V9c8yDzh/1gBX3BqlPei5xsWy/ASXbLtKJ6+EsGuvaUtdljdYwCp0d3enJo0bkp11GNnEX82as7f2ogTb0mwpPcUW0/NZU6deLfb29rRt5161TiMvJ6ey5G79dwuvJ/quKrVw8VJCUiNYQwt7e9PKFX/R2PdHq2VfUKBrt2foqwlf0927d9R+HLdu7Wq9FuStEMg8AbjP9nppKPn6G1rkU685SWXKTeTwBTdeHxfLoRlLaEgwr9XtrO59432pfQ4LeUC/zfw+Ry2lOBd3Fxt6/tnmVL3EPapU1pW8PTmfRSoSE5NItzmE6MiZMLocXJUnlf6kqGjx1koFl2y2kIAopBYCk+JCQCNgzbOJVdlFd8oHNbRNnCHVntx8arPbLbu/JGSdS06SrT8lWHlQOCulmkSxMjDw/YN0537qMalaWXktWAS83expaMey5O2e+uAis0TuhsTQzPUX6F6Y3H+ZZal/vJeXFzVr1oTjuW6QVXwWWzMLOVKcdRk6d+EKnT5tInmJfkey4b2rqxuvbeyjXHFNWT6R3dSPY2VvcnyarOOYDReggFeJSZMOT/egytVrm0Xi9Ikj9OfCOexZYsW/7dZKGe3dbyiV5Gy8kP/On6E/5/9KVrxmKWKi69RvrNyAzaqcC127cpGWLpz9xGNK7dgK6uNlR893CFRJFz18KvKYhb25LBGXRnT66EZawN5ae488oLu8UoCIEMgMAWtHR8fxmalAjhUCBZVA5bJu9L+PahqcvrNHeU42EsoDybsG2/EhiuPxwiPi2C2Gk8mwMmssWKMPZfBjYSxWieFkZePFrjJ2lBCXrOjCtaZLa1/OxBsks5TGwAroZ9xXVUp40JvdKpDTI4t9dqFw5vqbVS1C1+89pOCI2GTXruxqrIDU6+TkRC2aNyPbJCijvPRCVgvHnlonhZKnT1lOdJRIwcEZDyfISNeQYRRtYjk1U5KYmEhhnMgIayCLCIGsJGDNy2nVqteYGjRpZXa1WKoF65F26taTmrV6Slkz9+/ZQfUaNqNodiWf/v1Eav90d+rRZxDV5/jQ1csWkyuv31nUL8CsNtzZ4prEPrE3rl+hxITstzQiiZ03Z/8fM6wCJ10sRxXLuKp+2rsEmhyzpHoSvCJAopUbx7TfoUa1ClOPjoFqDHIjiJesYyuqiBDICAFRSDNCTY4p8ASKetvTrxPqGnCwsXPlpV0CeKbxrMF2uLRMnXeWNu/khaUvhNLm3bfVj1CpYi6q3EO2dC5df4V2HLhLp86F0oHj96motwO5u6r0JLq6rJI4q6ZzWYqOuK7bZsOZUpvX9abNu+5QNMd2iBRcAg521tSokje90LLEE4VQu6wXRfI9HhQSxVl5RZHIDPxmzRqTs20IFYq/nZlq0jk2gZXSCPItVp3u8XqgiOkUEQL5nQCWFurJrrqWCGJNXdiqr8nFC/htT6KqNerQlUsX6OihfdTrxSFsIS2k3HWRdfYqb8d+c6VYidJ05sRRzoodbu4hGSoHV9wXugbSp29V4fXQnQzqcHQrTVaIUU8lWZpBYf6QZFuUYmP4eR/zOAa2bjVP6tTSjy5cDqcHHEokvwXG1ORzegREIU2PkOwXAkYE8GD//qMa5OJsmKTa0bUEWVMYwZqpLwk8SPdws6MenUpS4zo+VK6kKy1efZnqVffmzJnWtHH7TbaMJtLgnmWpTjWOF2XrwM6Dd6l21cL61fCvACeSKeTMVlJbtpI+bgP98CvqSAdOBFMsWz1ECh4BzHzXL1+YnmuS9fGi5tCsWMyNQtj6f/N+FPJfiGSAQCVeesG/qCvHjF5J9Wh7e2tydrRRVo5iPKgsX8qVqnHYQAW2dAT6OvK6nXbkyGXgf4HJqlSfB3iW8J+ndwm6ePFSqu3JDiGQHwjY2rF7Klsx3VgpzYicOXWc/tm4hh7cu0Mdu/UgJydnigwPp4P7d1FLXjIGCikkJPgeXTh7WllQLWmnZJnydOLIgVQ9Byypy1RZrIn+3YfVqXFtb1O7uf82VMiO42PNSZzGSdLIoRw9DD3PE+uGng72doWoXdOiysvrzMXw1J8/JnshGws6AcMRdUGnIecvBNIhAHfafs/xWoA+hmvm4TBbTmZk9fBxjKdWlQMPEKuWf/xDiHgUbMPAEYKZRCgUmvh48fp74aaTFVnF3+ekSUUpJtJwOYTm9bxp9+H7tIHdd0UKHoHyAa7Uvan5yujD6HiK4D93Zzuzln8xhyjaRzzp2etZFzttTrv5oQyHzlDlypV5SZcjKU7HiRVQB/tCSvGsXdWTXbGTnxspCprYcO5SBHtcBNP9kFgK4wkDfYFLsKO9m1q+4cKFC/q75L0QyFcEihT1p4BiJTN8TmGhweziHkuRkREUzi7lhb2LkF9gcfL09KYFc6ZRPXbrjWb33v27t6sMtZY25OnlTbCUnj+btUszIVNu1XKu9J1RaJFx/6LCLpGNdw2y4oz+VnGPPbCMy3EBSrJnL63wa7oEiynK8IYenQKpQmkX+uzHM+rZY6qMbBMCxgQkqZExEfksBNIgULqYM/3yVZ0UJaxtncnVixMDRB1LsU/b8ICTwOw7dp+uXo+gxnWL6JTUoPvRNOfPC2zhcKZGNb1p674gZSmtXjF5CRnt+ORXHoy61KPgm9sNNz/61OP1PfIDYJJM/t3o6WJHH/WpatYJRrISOnHRYboXEk0efFxoZCx1qF+Mnm5UUh0/cdEROn/9sRuWVumHL9alkr7JLubattReP11wgq2lpidUUjumoG+vXr0alS5uaB2157WMA9jq2b55EfJyN3TfzwivrXvv0eFTIRSpnxnZ2pWirUrT6tVrM1KlHCMEcj0BR0cndtV9mfwDMx/KACvmmuWL6b3xk9V5Y9mWrZvX092g27yEjDeF8Wc7O3vO4vuyxVweRkTQL1O/ZtfdrJnQQzLgBjUK05cjq5jVF6tCtuTiVYUTOMVSoTie8E6MNDguyaYILyEQSNGRt1ghNS/z9/XbD2nUV8cpSBIvGrCUD6YJiIXUNBfZKgRSEHBytKZRQ5Kz6xnvtLblwbrRA9y4DBIWRfL6jXFsEb2nl5HOg2NF/XycyJVdb5dvuqYy+fmzC65pSaCkhGjTu3grkgtMX3RR3CZTJZS/diBx0aD2Zcw+KRjiu7LyWbucD8/kE12+HUGfzztATav6kaerPY3sWdMgoUzYw1gaN2c/Lw1gvkI0mPszbc15jis1dOcyu5MFsGCpUiXJJu60OnNbdrX1ZAW0e3t/wvrGWSUtGngT/tb8c5vOX4ngZxFfn4RwKmQTS4GBgXT9ehqWkazqhNQjBJ4wATt7hyxRRtFt7yJFKZQtpEhAhKy7rm4e1OXZ3o/OKIkmjB9N7Tp2y9AZOvFavG4eHlmmkFYs7Wq2MooOx8ZEcyzrTvIpUpJ8fHnZOs4cnJSIsUYhsrJ25nXQgykm+Bzdvn1LJWZEeEB6EujrxH2oSiO+OkYhYYYeGukdK/sLHgFRSB9dczfOjIa107AGmqkkD3CpQgbE+/fvP/G7BO6c9uwqiuys+EOMYRxnZEVsYkxcgmS3fEJXpAxbRyuUeZzgQL/ZQoX44ZyYtlUooKgTde9QgrCW16QZJ6hMCRcq5udMq7dc49gxR2rbxE8pkn/vvEkzF52n91+pxsqpfivJ75OSUm+nZ+dAVmpvqrXCUh4pW/IbgUocuxlQOLXJi5Rn62hvQ3Ur+Oh2QCnFNicHW7WNHy8sj2+6DfuvUYNKRQlWWHMF/akQ6EaHLjww95ACXc7X15dzibA1IjFKufHXr+FFTesaxY9nIaHOrXzV82HxmusUERnPmTLvU/HiopBmIWKpKhcRsCTBkHG3jx3eTyVKliV3HhsiA/SeHf9ScXathTIKwbZC/BDFmGwLx5ha8/aadRsaV2P25xq16tOt61fNLp9awcI8kfXTJ7VS251i+8RpJ2j5xqvkU5jDhcK2UxUOMZo0pg658FrWkETOBDx9wVn6awMmzImK+7On2ITGKeoxtaEUj5te7VOavptzIcOrAWA5KCwDBc7GgjWNI9m6jIRSxoJrU7SoLwWxBRvXSiR3EyjwCikyry1dtoqKFS+ublofnyI07ecf6X9TvlFXDl+EL76aRB06dlKK6gNWSIcM6q/WUcuuS4s4RUc7GyrFLpzVSnpQyaIu5OFsm0I5iYtnS1t4DF28FUHHL4fQ7QdRyiqRwA8PkawlgGD9wT1LpVqptY0TzyLyaN6MSUB7jgfDgz6EM9FBIf3vSjgv35Ic/4eHfcsGvrR1bxAF3YsiX5+UyoZVobTXlmzVyIcW8tpgIvmbgCvHFr7QsmSGTjKIXXa3H71JF26GUv/2FU3Gkd4LjaZdJ2/TpwPqWdxGH+7XuRthFKHvHmpxLQXjAD8/X7ItFE7O/Mx/jq2ixf0NM2BmBwVfzuL9Vv+yNPevq3T9TigVKWKey3d29EXqFALZRcCeraN1GjTJcPV3bt+kPxbMUkmM4mJjVexor5eG6OrbunmdihvFGqQlSpah4W+PZaU048NqLEuzbcs6ehhp6C6ra9CMN1BGJ4y27Ptcu6oXvdq3PLmxt1Z0TDz1H7GTVv59jfp0La1anDT9JJ2/FMrWzlpUl5MxWqrcIdHRyXNhtPpfKIaWjU+d2XK8Zt0mGjXibdq/b6+OQGCxYvTLrLmcyM2dnF2cacXyZTT+4w906xd37tKVvpwwSS0z5cHL64we+TZt3LBed7y8yX0EMv7NyX3nkqEe4Ys15dvJtH7dGnUjV69eg1at3UhLFi1USmenzl2odp261LBeLcJC3uM//ZzGfjiO3nhtWIbaS+0gKCKwQlRky0LLGkUJC9unJ7Y2VuTn6aD+mlROzp4G5XTL0SC6cf8hx4eZoR2l14jsVwRcXWypekX3VGnEs4XD1sZez7b0uOiNoIcUy0uylAx0UZMKZy+GUggnLQpkZRRSxNuRjpx6wGuCuamECGd4P7LvermbvgeS0rHE9mIr6aott5T143Ev5F1+I1C5uAfH+2TsrKLYnTYsKpbi4hN5IguDn5TZF1fuvkxNqvgqV15LW4HltXJxd9p39sl7lFja15wu7+PtRe5Od6l/t5Lk5vJkf5KRoO2vDTfpxI3sXwMxpzlL+wWPgL2DIysrpr2azKHRlt1vWz/Vhd10gzlzrB056y0Bg+ObtmxH1WvVIyQlgjUuK8TBwSnDCinGka0b+1CZ4ubF+2v9bdfUX3vLk5PWBKMGwoggmBhfvukqL3PXWFlOsc062ZUGb82WtweVo91HHtBdvXCl9A7+7POv6Lnne5ILK6XG8vG4T2nrP1voqy8/I2dnZ6W0tm3XnjasX8vX3IUmf/Md9enVnY4cOUz16jegOb/Np7q1q6lxvHFd8jl3EHiyv36545wNehEeHkZrVq/UbYtnt4AITucdGpqc2KNjpy60auVy3U28eOECWrF6vXr4WDpLpGvE6I2roy01qexDT9XxNdpj+cfSfi6Ev1geaC7ZdoXOXA8nZNQUyRyBymWTF5BOrZakhBj2dDT9w4cF6BevuUxxrJQiuy6uzbPti6k4MdTXtU2gWvrlu1mneSbWWv0g9O1aipMjmP6BS89C6sbKs6uTjSikqV2sfLAdsaNdGwZk+EyQoGhQh4q83FACjZ6xmyoV96Qy/o/v35v3HtKhc/foi0H1M9xG+zr+dII9Nx5yGyKpEyhaxIv6dSZWRjM4u5B61WbtgVU2fJ1ZRaWQEMhTBDw8M+/6DvdcKJymxJaVVGTczUrxCyhGD+7fzVCVnhzX+Wof83MKGDcyZ+kFOnD0HjWq7UPN6ief12GeLEdM+5Y9t+mHuWdUlu9eXUpRA07AaKkMe6EUTZx+lidCzbOSfvThGMLfnv2HDZqytbWlNm3bUbs2LdX2SLYor161kmBAgkLaqlUbunbtqlJGUQCW1Tt3gqhZ8xZiJVXEcud/BV4h1S5LyZKlqE/fl6huvfo0auQ7ujhSXz9/+nvTRq2YSvxgb2/PDygvus+Lits7p2410x2UyhsH6wSqEOBML7QonkqJjG+Ghe2ltmUpmC1xc/+5QkGhHGvKwekilhOwogR6mpXGQhzkn5okJkSxy64rW0BTMi7FcX7vv1pdJTTCuoAebP3Wt2wV9nTkBavLKGsV9mOdwVSFM+FZWdul2Rcc26x+UVrxTzArySkHuXHRkZyUQSYpUmWcgzvsHNmKnsZ9pnXNxT6BnBzNj+vUjjN+RaIudxdHCuZYQv12V+y+Sq1qFeN7NaXLuHEdqX32cuM1M50cKIHDHkRME3CyT+QlEoqTh2uo6QJGWzGMi2DPF7i9ubJHjf5zxKioRR/7PxtIS1e60Z2QlM+L9CpKiI2h+LiU8VvpHSf7s5+AjZ0jWbPSVCCF4w39Aorr4j3zCgNf7vP5C+dNjiXSOgeMU158NiDdsUFaddwMiiFehI5jzGPpYRTWT7emO/djeU1jGyrBS4s1q+dLpy+E0ogvD9GMLxvpVgpIq079fciTMW/lTbr1IPXnDMYmGKOkJd7ePtwnW7p547qu2A1+X69BA/UZcfn6+7Dxxo0bhPG8SO4lICOFR9fG1c2NZ7q8CcpmmTKPZ5jceXtMDFu/HkkMZyKDwG8dCqmjq+UzcAjMto4LpecbB1KV4o+tEo+ayNKXwu429M4zlWj9oSDacz6CkpANVsQiAq62kVS3GrvkpK6P8iLzsawo2pAVx5KSykxn2AQev64upl1wtZKwiPL63WmLrRdnuwtN90e2TRNf2rQ/npJMxJsmxMUYKKRwNbJixRVJA4wlvaQAOZnsy7iv+eEzJris2fU7LcEPdrUS1jzwsPzxfSUonKI5EVr5QA/lXn7s0n0KYWW0jL+nrr7Lt8PVWqIDOlbWbUurP2ntq16mCO2/goyUlvc1rXrzwz7rpGh6vp07leAwDYpIOZFlfI5neCC4dMNV9V21trZS169X55J8fLLrv1YeuTvm/nWB1zcmGtKrrLY5zVcra3v6cXwtGj7+FEUmpO0NYlxRdESwKKTGUHLJZ1fvAF632rLrmUu6nuluJPAkSZGAEuk+TzPdUBZX4Mt9dvHyJ1t7y2LJHRJuUQ9+HmRGxr1TVx3+/qRDNHfFNXpnUCWysbWnqhV9qHun5GdJvZp+dPpiFG098IBqVLHcOvxav4r0zbxgSrIxPRaNj42m+9eSM46ndi5uPC6H6I/NkdQI43IIcsMYJzlCWYznRXIvARklPLo2x48dpRHvvEkurq60d99h2rFjOx0+dFCl+LbT0xIcOCYBorn0hty++KgG81/cOaHNq90qUGEOIE+If6zsml+D5SXbVfcgP/4u/rH9GoVHSWypJQRtvew5/XkssadtmhIVfpNjPz3JKuFamuUyszPJ1oOiIm7zADA2zWpK+dlSfGQQhbOykZ6M++QzVWTcRx8YFE0rKUBOJPsy6Fw+/RB+70a6Z4YEWw3KVMrQs+Mhx8HPWH2KomPZwsrZdWNZOX2xTVnydOYJiUfPoj/+OU0tqxUhRxvO5J3J51ON4g6cPOkst5POlyfds85/Bcpylu1eHcoy42h+ZqT/PXXkeYqB3UvqEp1t2HaT1rL3y7A+5Q3grN5ynR4ER5ELLyNlridEUlwkuTom0TMt3dSyUfGcwV0k7xMIvnkh759EJs7AoVkTiot5mIkanvyhbq4uFHLzvMWJg7q19edzjcqSDvsXtqLL1+6r+op4WtHVaw8M6gbTyDC2ZGagvTqV2Gsm4irdzcTapGFhyWu1YmyuKaUODpwh+FGoHV6R0Epfkveb54mif5y8f3IE0p+WfXJ9yRUtIX707r27al02dOjWrZuEbF6a4D2+AMHB7A6ZASni7kAf962mlNEMHJ6pQ6pyxt4hHcqQhwVLOGSqQTMPhnXO0cmZA9FdVQICN57d8vYpSoj/wDYX/nPioHUoQTkhNrwuoDkS8/A2ka0fu8lmUz+t3SnJyo5io+6k2x0bztSM9QzTkrbtnqJ9B49S/wGDUxTTkgL0f/EFatmsEb08uD9N+e5HgkUUop/sq1H92rR//16V7CtFRbIhywk4cNIJ71QSXqXXWPlAd5o8rBF9MbgBjepVk74d3oQa8rIu+vJujxr0TNOS+psy/D6QE3Y5cfZYEUMCzhzj/cGrFZI3Kjf/tNwvkosV46UW9LNuI4eKB8d26cveI/foQUgsNef4r9Sd4vSPePTeKnl5h+4dA7gNw4GcidKySQjkegJYgsXVPeMhVTl1glYcWoVkTJYIclP07fp4nGrJsXD/X7ruCideZJcKlnsPomnTjttUo7Kn+ly/emEKuhtFew4lx7XeuvOQdh+6Qw05zjSjUiONBJHm1HmPx+hxcXEUEPj4nDE2v32bx2Ast27d4n2BBlVhP8bzIrmXQIEfKVTjrLrOrAzt3btbrXHUuk1bCggI1AVDI0D6zbfepRnTpioXgF69X+Cg6XUWz17hFnBjy+j7vSqbfTfEc+B3cEQMOXA8qOuj9aD0D8aSCons/ot6zZVinDmtf9vS9Mv6Czm6cD1+LBwdnaiofzGqUbs+FS9ZmpVS0y4cOLf4+Hi6ffMaHT6wm65eusDXIooXcn4y1mVPd/P4JsZzn1gptbMNJKvYy+ZeErPLJdkVo6iwq2aXL5ROgBlio/H34cefsLJvOCBOLynAk0j2ZfaJSkGLCCCs2J2XkeLZE4uOy3hhsbYZs8Oi9ZqrbRI/N6wKsRKYmHbclFYHsnSfOBuiltR5uvXjQddFXj5qHyckGdq7PJ26kJyUTzsm3ddCjwfAbw8sRx9+e4KXf8i4VRtJRzBgNCWybqApKrItqwkg50OiiTCUrG4nq+tLSuIQh3R+u43bdHXmSUr25MqoLOM1SCfPPElFeB3S+8Ex1LFlACEcAIKlYD5+qzp9/N0Rjim1peu3omhQz7K8VrLhRKYqbOZ/z7Tzp3/33uVxXcZ+G/Bs2bJ5E/Xu3Ye+/OJTlWW3y9Pd6Ksvkr29/v13C3397f+oZq3adOTwIarfoCEh7nTH9m1m9lCK5QSBAq+QOrFS9MPUaWqdqbCwUH51UusdXbuaPPBfs3oVNW/RSlmSIsIjKDwinAb272vxtcKagW90NXStSquS+X+fp+3HbylrJhTPUn6uNLxrFbWI/QNee/TrxUco7GEc2bEVzIuT5HRrXIqqlfZKq0rdvhJFnKhz/QBasfsaxTxhVzqlhPoFUNNW7akYLzBtrsA6Gli8lPrDMaHB92n39i104dwpCufrlp3iwplvzZWosMtk61OLyMaHrOIzlinPVFtJdiXZTTfGLOuodryJfEbarnRf00sKkF6yr3QbkAIZJmCTgZT7GW4sCw60zqLlEDLSFUx82drZc2y2HbvdJ7LrcCxPZMXy5GPGla2M9EP/GE8e1L0zsKxuU3xcBNkV4sk4MxXSsIg4lQDt4UNeuoffe3nY8yAympbzuoEDupdhV7VCurrNemPFzzfrxwpp7SoeVJjrvBGUMfc/DP6m/jxTLbGg3z4sFLJuoD4ReZ+tBHjiLS/Gricnl7PsO1ylfMYtwVB+501pxkmM4tVzxMfLgRw4i7u+NK/vS+tmF6HbbCn15v1ImpkZqVyWc7bweqlB99I2Knwz5Xtq2qw5+fgUoekzZ/MkVyw1aVhXGSg+/3Q8zf5tHkERdXVz5dUyVtGmjcnrjEZGRNB7o96h+QuW0N27d1R+mJHvvqVbLSMzfZdjs4+A4V2Xfe3k2pphGa1fp4a6YaGcIlOXfnIXWOa02FIXZxd2CbhlcC4evukrVTac5OaZeh5UxMv8gOpKpYtS95YVyNnBlmI4ePHLeQdp95lgalcnkAdXVtTnqSpUvXRyQqXNh67Tsl3XqWZ5dhc1U5pU9afbYUl09Eaiytpq5mEZL5YYR4W9PKnLs73Izc0j4/U8OrJwEX/q0v1FZdXetH4lK6ZnKD7JWiX8yHTlRhVE84DRxoJMhTGRl8nZqyoR8l/FZ8y126ALdn6UWMiLYu4ftagfDmz597ALMKgKHyIe3OTESGlnxUwvKUB6yb5SNCobsoyAE7tn5SVxcrCm++HZ32O4/js5J7v4ly5fiUMtSijXfzdeFF3LkI1EF2G8puBdXvD+yqXzdPnieQ7BiKZojq19UuLKa436F32sAMZFB5OtizdPYAWZ1YV6vDA9/k6cC6Elay7T6GFV2TJ6n9cttiMs0QC5fTeagsNiafOuW9SygS+vG5iGA28hN0qIMXxOPcsWjB/n/WdWf7RCUPo3bPqHSpQsxctWpFx/VtYN1EjJqxDIWgK1Kmd+TOXERhMnzvKemmDt0QBfwwRqqZU1Z7sdhxWlJxh7pyZXr16hNq2aka+vnzIUQQnVl5UrltPaNavJz9+fM+7eMBjX65eT97mHQIFXSHEpkPX23t20rVmILcWfsUSFp/zh1S+DussWsaUqxZzZzTf9xBXasXXKJvvv4xiMJeLj48iTBzL47OpYiKqV5HjCR/UhNnTh5jMUEv6Q3JwNY4q0+ky9PtuwKJ1cdIoiHmbfbQBLhBPHHXZ8ujuVLldRdcMSDqb6bbytbfvO1LBRM1r+x+8UFBTEacuzVrxLO1nk+hMbxRnk7p8iZ08+36TLRHHmDTRN9TrJrjjHjbpTxL0T3AfTLnCmjsM2d17X8A4nJjAWcxKdpJcUIDQ0VFmdtLqNk31p2+U16wnwIyVPSXb3F/HlXoWLUJ0GTalyNfZOSEOQ2MLBwY+KFPWjKjXqqJKYdNyzYwsdO7SPIiPD2RPBsu9ZGs2Z3NWhua/B9rgYViI92Xsmlica2F3PXPH2tFdJy7CIfYVSbvycffwchxEdHhLKmp6GLoq2kmy8OdTA0MX3uQ4BnGXzKoWFm88iNjaWWrVoQrVq16GZv8wxOA1ZN9AAh3wQAllGAN/zquXMN3ZkWcOZrMiHn1/X2P03s2JsJNKvD892zdtRf7u8z50EHv+C5c7+5fpexUSm7S7q4mhL/VqXYeXR/IGG/kmv23uVTv+fvfOAc6O69v9vV71v77vede+4F8A2xoArJaFDwIEkLy/JPxBKwiMFCARIaCF5SR7pkIQeCGAMxqZ324ANGDA27tu7VtJq1f/nzqL1FpWRVtJK3nP9kTWauXPvne+sRvfc0450YuoYCwmhOSHb+WR/C0XJVJE2VRHyeP/2Bm+fQaYY/3xpP6UISPwsV6QMqSCz3Isv+67UbTL9OcSk9KKv/zde2fwsPtj+VkL9S/0+FS0ExHb/XN3NNLF1SEJpttqALE89meTFEO1PBDBSV9BChBuO1h20aBJb/wK4j8510QQ7nhItKECig33FM8Zj8Zwsybw1sgRh1otFp8h10omN8H/vn+M0UWMTGrlS8kE//eyLyWQr/gmZEJaWkAuBeO35bBe2PP8f2CmKo/DPT3QxUt7X1csGCqRiYdHjbKEgZCX0nKgL2+XH5DdaVaaHhXy6RGoXEcCootQABZncjR1jkl7Bk4Wm1EEmeMsWRvHzyiLfVVU+uQLsCZ7a9y40rjaHDNNm4hTNBJrzBvZh5Q0mkFACIsZIaRF9jzOslIgxf5phg+bhJpUAC6RJxQtJk6lWxj95bO500uSDNLhWMiujKGjGfqvgYuj1rd144o39WH/apLiSpAtNa55JQwnRI5twxopJTX5bM2bPx2lrvxrrqcOqv/y0dZQMuxKbN/4HDnvXsNoa7sk+Eki7mt+HzlwNjXEGaUrbyCyvlSRFsYgRYrIrovMKQZT8TwM0UeyxkY+viNw7AiVaUIBEBvsagctL2y5zSseRz+NRc85QA9VoOiES3mdK0egtKBwzJmHDFb7USsr7u+6s88mnPHHtigFOPW6e9Nr2DqX9en8bfRcF5/if34MvWhdoouAaQ4Vnn7sN2twp1BNZNITxb23r9JGf6D7oyL/LQ+l6hO/oeWvHU57FoVYxYl82vUId6z+mgLaGomu2kCvA0CBXxy+ogv09ivkZJYeso6MJjs7IViCcN7A/dd5mAokjoNVmQ0TZzbRSOIwgTJl2rTxeeQRYIJXHKa5aOWQ+e+6SqrjODZ60fmVvaoD7NnyK57YewnknjQseogi8bvz2qY+wmiYO8ybFH4L7qydU4u+b9yUswJHQXCxecjKOX3Zq31hTuTF5GkVOJn/fp//9r6QHPJJzXSLQUY+9jhKUF9GrDErdFLLM6yatgkuKrhnw03sWRcjLptyh7i64bU0xBS+SM4ZQddasPR0iB6nJ1DtBFpFzb/jp9VIU6WhBARIV7CvUuEbzvo66vVEvP7/SQn8nMWjbo7aY3AouRyeZjh9OSCciuNmEydNx1nnfltqLJw+enIHMnjMP48aOw7/+/nsKoNYu5xRZdWZMNIfM3SeuI1vVQEHqhJb0YMi2TlqYjyXz8yQzWpUqC8Yvo6sLS4jBZeZEI8Qr1LG+ugozuQFoYWvbFVIInj1RiYee/Liv+nA2OG/gcOjxuUwgPAE5vpjhzx65IwW5QxfSRm403HM6EGCBNIl3oZxy8CWqlOTq0dB+NC1AC2k0f/3vD3HSzHKsWlA5rG4mlpsoeq8iIQKpMNOdQn5csQijwmfLTtpMkXc0VHF2O2ji5IfBZAp1OOS+yupxWHX6OdjwxINSup6QlVK4M0BBnVyOOumVwm4jdvXcxg3k9L8hbJ1IQQGiBfsK2ygfYAJxEtBS0LmFJ5yE45eeEmcLsZ0mgiF996qf4l9/+x3qDh8kSxUZ5qtRuijKp4WnMMXZdUiK0J2lpOAcwpIiRBHmublkSjvsQtYYAXUNpZE6GFIYFe1XluoohVU2RSYe/nX3zxu4f98X0vA5b6CEgf9jAsMioByGBd6wOh7mycpIgdaG2TafnpkEooe5yszrGvFRizRSJ82M4r8TZpRi3vPqznoyy+qdCHSSJnT7580YX9Yb2ruhrRt3UNqX1QvHDFsYDQ5hauXwo7SJtsopsuWaM88PNhv1/ZF//Ak/v/77+ONvfoVf3vRDydQ2eJKDgkj97b5f445b/ge///Wt+L97byeN58DgG8G6od7HT5pGE9iTKccmr7uE4iNnXzAoQP/I0/3PE4G+IgUV6F+Xt5lAvAR0FBhtxaozUiaM9h/n1y7/fxg3gcxpRfSQYZbyEn3YFsSilaNjNwKaGrKWkL/4FrbBCAcC6nFwOdsiWmKInISJMgXsnzdQDMtAPv8iXcPzz22URilcBKrI/FrkDRSF8wZKGPg/JsAEmMCoIcAz9STdahHMaFxp+BDa0boVOUgfeeULKQ+p1eHGoinFOHlObxL0L+q70GHrwQMv7JZewbbWLarGWSdWBz/G9H7i9EJs39MKzzCCG1ly8iiwUG8AI7mdTyHz2q+cfynlzqOEzK3NuPdXN2LW3EUoolDeG558CBqKivnjm++GitKuPPnoA3jmyYdx8de/I7d50tSegtrD+7Fv727Z53BFJsAE0oeAWFCat/gkzJy9QNaghMWF2+2kdABlFAlaRVo+FflBZkvR1MXCitvtoWcN+U2qtZQKQJ7275yLv4H7//hrNNQdkTWGcJUK8yJrN4XJfrd1H/TmichykSZR8jcP11p8+wOaiVIeP2fXgagNaNTy16w1Gg1ef2ur9KzOzc3F1vd24jUSNH907dVSP5w3MCpursAEmAATGLUEWCBN0q0X/qPxFhFo82eXzJWCGAlhNMeogaZfzqYlM0ogXoksJblamCh6Z7vNFVezKvIbPXXNWTTxi825/ri5C/v6yy8oQnFxGeUU/VQSSPfs/gTnfe2b0gRHVFqy/DT89o6f05YICCRfW3HW+evxx3tvI7Pg+CLOir65MAEmkHoCQis5ccoMnHhSdH90JT173n5tE7zkj5mTk4PdH25D1dgJlApmHvwkpIq2dn+6E/VHKE+wXk9PkADyCopROXYS+WUedYcId5Vf//ZV+N87b6L0X/EHS3N0R4+W7e6mAEEU2MiQO5VyGZNPcRjz3XDjDLs/W0dmumNJILeju7PXbDZs3S8PxBJ93eVyYeG8WWGb5LyBYdHwASbABJjAqCfAAmmS/gTGl8WvHQ0OSYTz1qYwmqZOQ5JwnDJbAU3sRLCR4RQHTfQa6o+gsopM1qiIFff+6QSEj6kwIbV2dMJCK/Byi4j4O2v+Yrz5yma5p3A9JsAE0oCA2ZKLM8+9JOJIhKBZkJeDgvwcikq9GLmFpVIaKyE4btrwb+QUlMNsyaFc003Y9u67lCbmAtKcauHqceK1zc9Iz62imkq0tHXA2jUwufrgjs++4DI88cjfQuakHlw31OfCfHkLlW5KA+Pz9sCQM54W+XKQ5a4lITX+SOgBVSlAOY2Fz6jLQW3JLEa9Ah2RM5vJbOlotUgm/kEXgaO1eYsJMAEmwARGAwH59jijgUYCr7GywJDA1lLTVL45vlxWGq0Oq888b1iDFDlKH3rgT5g2cw4qq8dKbc2atxjP/ucRfPj+Vny2aydeePZJaX92HM7wS5avgokmpVyYABPIDALCjF+Y80cqer0O46oroCXT/vqmdpjySvpyKhsperQQaJsa6qQmxDMmi5z7s7N6rTjEc8vposTp9Y3o6HIgj4TairJiKMi8N1wpIx/5iZNnhjuc0P0+jw1dLTvgIo0vDLNIu1lNvqUx/K5kqSjHaAkCuuPghRG21p0xCaMJvRhujAkwASbABJhABAKsIY0AZziHyhIYYXc444jl3CJL+AiQkdqRTG1LyyNViXIsQFqHByiKpRfnXnx5X93T1n4FYlK584OtpNHQIL+wWApQZDLHJ1jOXXACXt3SG0SjrxPeYAJMIC0JlJRVUk7hqrBjy7GYUFSYj45OOxzOodpDoQHt7GhDfkGh1EZhcQkK6Bmy+bn/0MLXbDgcdhSXliE3rwDOHrf0yjEbMHZMBQmpTRSdO7T7wsrTz8ae3btIS5pg1WGYK+3VajZAoy+BWj9eMjWGz4YsP5mzBDxfvsgUWOQxziINbLYeAYWJPubA09MCV+c+SjXTEaZ13s0E4iOgVmaTm48KIvJzjlGNPHqZ6bOP8qaL0tblQie5HHU5PBChKbq63WTxFF9ffBYTYALHPgEWSJN0jw2azEObY6AV9RiLMJc7YRhpGEQqhccf+hv8ZIp79XU3wmIxS0KnVqOGi4KPlF9wEdwuMVl04dEH/46x4yfHOMKj1ReduBzb33kdDvYlPQqFt5hAGhLQUx7hM8/9WtiRFeTnIsdsQnNrJ6Ul8Q6pJ0z93379ZVSQ+X8e+aaLkpWVjZLSCjShDgf27UFLU6OURqb/yZ2kKfWSJnVMRSlqSSh1dJN2MkSZM/94vPHKJilQUojDCd/l97ngtB2SXko1PSPppVBZSJurJa2vEERJq0sLeqKe19MNb3cD+dJ+Rq6oQ9kkfHDc4KghoNcqpXgWx9Xk4vipBSgwy1/E/uhAJ7Z+3or6th7Ye0hIHUYAxVEDnC+UCYwiApknNSXp5oiogCIgT1tr6PxvIu2AngJhtLW1yRpBJiYrzqXgSbEWg9GE8ZOnxXqaVD9Ay6WvbHoS8+fOwSkrz6AIvxQBkyaXLqcL3U63lPdPQfdEmOP1OG0oL8nHylVr4+pLnCQmpBYy4WOBNG6EfCITSAmBwqISiGdLqJKbY4bFZERzWycJj6Gi5Aaw7e03SFj0kcC5rK8JESF3P0XbXnXG2bQviwTSBhIqN0M82wspmFqw2B09JNgFUE7mu4cOU+5gWhgbXE6gIEsffvAurJ2p1zyKSLzixYUJpIqAjuJZVBcbcObiChTlxOfaM7MmB+IlyjuftWHzB/WkNfWw1jRVN5H7YQJpTmDUC6RlZWV45PH/oIDMunqcTtTX1+Huu+7AKy+/KN06kXLg1tvvwKrVa9Dd3Y12Eki/efl6NDTUR7y1mZj0l5SdMRcRaCieotNqKMG7CeJ9/4GD+M29d/Y1YzJbKJfpeZRz1IqXX3iG9mdDRekbjicNZ824sdBpVKQZaY8agKSvwX4bU2bMRn3d4X57eJMJMIF0IiCsLhaccFLIIYnnRXFhHhpbQgujYpFr69uvwunoxrIVa0iDePQnTviSWnLzqN3eB11hcSkJoiVoaqwfIJCKjrvJIkNpU6C0pAgHSSgNVQpIaB4JgTTUWHgfE0gGAY1SgcIcDS49ZSxpQ+UF5JIzjsVT8iFeb+xqwSsfNkmmvXLO4zpMgAkcuwSO/lofu9cY8cq8Xh9uvulneOnFLVK9y7/xLfz4pzf0CaRr1q7DnLnzsGj+bDhJYL3p5l/Q8Rvx/e99O2K7mXgwm3xBYi2Tpx8X6ykQvl8lRQUUvdGOU06/MOz5JrMZp6w6C2qahIo8pKK0d9pIIFVTVM1cStquRVNLaI12uEZnzlmId15/kRYXoqd5CNcG72cCTCB5BAxGI8ZPpJQnIUpJcQHarY6QZrrkTCmZ0QohdNmK1WTxMjA4kYVSwez/4nOKrtsj5Tf2eNyS2e7YcRND9EQ+b/ZuymFqRiGZB4sIvIOL8EkXGlchBHNhAscaAeEPunpeGRZOjm/RWQ6PJZT/XLz+tnk/dh+x9gUkk3Mu12ECTODYIjDqBdLm5ia8uOVoOhCxfcNNt6CwsAgtLc1YvWYdNjzzlCSMilv/6MMP4elnNyGbkoUK/8fRXFSUcH7ipNjMdfNyLMjNtZAg2QkX5QaMXLJgMA0123OST6mr1Yu8HCPKSgpR39gSuZl+R4X5r8iZChZI+1HhTSaQPgTMOUKLObSIhSxyDYXdEdqv00vm/g11tdKJjz/0174GghYXNeMnwWaz4SWyutDq9PC43Zg6fRbKv0wz1XdCvw0r5SctK86jxTOblHKq3yGMI6HZYDSnLLhR/755mwkkk4AQRq84cxLyTInTikYa7+WnjSUT3ka89lETnO7ouXojtcXHmAATyEwCo14gHXzbli47iUw668hXtFfzVkJRGPsLrLW1tVJ+zNy8PMnf1FRQMbgJ6XO2MjUP8pCdx7lTQWPW5xRBvMspiiw/8ijnn9xiNOhJ0M8nbYMVHorEl93PnE5uG/3rtXd1ozDPguKiIrS2d/Y/FHFbpTHAFENaHqU6i5jEHvAp4iBScLD3Oi1Deuq2Uo5DT+gIokMq846UEpDz/VNpvMik54tSo6fvm1kWx4Dfh8nT5oR8BhUWCO2oPexzQ03Pkwu//p2I/YhUUuLl7LZDpzdGrCsOirgrNooUWlRYQIto7UPqGyjid5Zm6KLZkIq0w+/z0nVpMupZotaZ6N5F1pC5urvgpheX9COgMVgg7qHsQn7X+Ro3fnDWBNmnJKriqgVVKCuyYMP2ZvQEdMNuNgt+6bsmdz4z7A4T1ICYa2hNFNNEK++Zqda5MuqZEsSkoMwJoebPXreT8iW3Bavx+ygiwAJpv5s9YeJEXHf9T3DdD6/p035ayGzU5To6eXe5etMLWMjPUQRACjexz0QzLhGZ0u8VaQTkmaApVQqqKk9LLDTKxYW5aOugyUtUzWi/mxJls72zC8UFORQEyRk2IubgJvQGA7rbhk4uB9cLfg741Rlplicm9z5PiNVmmfcseP38njoCcr5/AX9WRv09hv07DIFVCG2VY6qHPFdMRj2lk/DTs9gd4qzYd+l0BtnPORv5owotaVNL2xDuuXn5sB0+ImsAfvo+iudlJv029N67o79/oS5U1OGSngTk3L/gyMXfZpHBjyvPnDhif6MzxlAE6awAHn+rAa6AvIXx4PgHvwsPJPFdkztHGXz+SH2WxkxZB3zkUiCn9D5X5M3Z5LSXsjqklAg1fxa/AVxGJwEWSL+878UU3OLvDzyI//v977DxWRFIp7dYrVbKgXn0wailZOqiWK29GjmhbQpVAr7KULvTep94EPTYh/pKhRu00pIjrfqHO95/fyFN3EQKBSE4JrKIh7EQSoWmVJjjySkq8i0Ld99Cne/zFsi+zlDnj9Q+r6eHrlMek5EaI/c7kICc75+XFsMCvmjm7gPbHclPYtLRbZWnQVOSdiCXAg8NnpQY9Vp6fnTTQmHqhR/RZ3d3Dww6Dbps9gEoxYJlLM8Sv69oyLUNaDDNPnhc3XR9iX1mp9klHtPDcTvtEC85xaRT4crTZ8h+tgiPpU6HC0atinytB/pri/683gA67C5oKUKvyFcqt0wu12PlrFw8+dZhWryWt+Adqm3hmiOeI4OfJaHqptM+MV4XZRXotst7Znp12oy7RsHb53XH9OxMp3vEY0kOARZIiWtlVRUefPhx/OufD+C+P/xuAGkRTbei8qhwKbaFxrSjQ77gNqDBUfhBRZGKhf9XQ3NymHVTmhgxYRV5CTu7ogtgak3s6W1G4W3jS2YCKSegpoBlOj1pLwcVPU26mtvkTdAGnZqQj8Jv3aDXDRFIzTm5CWmfG2ECI0lACIxXnDFJ9hDe+bQJD720l3KSKkjw9GNcuQXrV06C8D0V5cEX9+KNjxuQY1TD7vSiptSE754xjQISyptyLpiYhyMtDkoP00KLULKHxRWZABPIYALyng4ZfIHRhj5u/AQSRh/DvffchUcefnBI9Rc2PYcrrrwaf7rvD+ih6IznX3AhXtj0fJ9J75ATRtEOEdBDTjGbjXA4e6SE83Lqx1NH5A60kNArRyAVWhguTGC0EtCZ8mDMKYbORP6PlJvX63GSVoT8G1UayYRK+KcqlFoydfPBaeuEvZMCjdjkm7gPh2u476YwY/OQGdtIFY/bS8yGCspGQwz+eSM1eO6XCUQgoFJmY+WcUuTHkNYl16TBjy+ei9I8HQUn9ON3T32MV3fW4Yzjq6WeJlbm4MwTa0h7qpSO3/bg+3jz40acOi90zI1Qwzv7hEp8UWdDU2evm1SoOryPCTCBY4fAqBdI582fj1IKXPSrO++RXsFb+7+//TXuuuOXZL67AUuXLce29z+kaIp22Ow2XLb+4mA1fpdBQAQzEgJjMovIG1iQZ+Lox8mEzG1nNAELBWAzF1ZIJnkuexusFKDNR8JouKJQ6aA25iO/dCyyKiais/kwbG314aonZH8493Uf+RuNZPH6fBCWHoNLtkIxeBd/ZgIZRaDIosXxUwtiGvNkEjiDRUPmulOrcvHRgXYSSHv3zp9UGDxM35ts8v8OIJ/6ibVcfHI1/vDsXvSkQeRdJeVkzbWYJUsJNeVFF/mMvbSQZ6f0UJ3kGpPI2BixcuL6TOBYIDD0F/ZYuKoYrkGkcRGvcMVLq/LXXHUFjJR+xGgworGxIVxV3h+GgEhm39YR3ZQ2zOmyd/f0uCFM++wUhIQLE2ACvQQ0egsKKsZThA8f7E1fwOOUF5FaCKvOjlrppdLlwJxfCXNeKVrr9kJEVk1GUYYQ+kQ/Il/0SBYRUClUUVOkSC5MIFMJaMi/88LlY4Y9/E8OtaOmZKi1wPNbD+OzI52YXpOHmWPzY+6nokCPmmIjtWGN+dxEnmAhKy+RO91BvuRddidZa/T65SopHoWe3IXGVlegmaJwt3eO7DgTec3cFhNINYGhnuipHkGG9GengDksjMZ3s4SpnT+c6iO+JkOe5SFfFjXlRuXCBJhALwGhFS0dPwsuayNpRHfJFkYH8xNCrLX2Y7i6Gqm92TAXHPWrH1w3GZ9VqpFfOxWRwrkMn0A+pe8R+aC5jDyBMjK5Fa/hlBffr0V9WzdWzq8a0kxzp5PcmwJotfbEreW8eHk1RMClkSoi/kVhQZ6Urk6knepxe6SI31LUb8p93EH7Gik+hqhXkM8+5SN1n7jfzCfAv7CZfw/T/gr8IplfCgolVICCViy5MAEmAOQWV5PgWI7OwzvR09WUECSinc5DO2EpKENuSU1C2pTTiIcmfiNd/GG0pCM9rnTpf/qMmThU2zTkZTD25nsVAQE3bXkFz27cLLnA3HLrL+l5zSbPI3X/tBSQ6Cvkpzmc8sHeVjz7ziFc8ZWZsBiGCo0i0NG15x0HoUl8buuhuLrSaxUozx+e0BxXx3SShoKslRYXUp7zLkkQDdeOmxbdW8kKLC+HTHoNIzPWcGPj/UwgUwjw7D1T7lQmj5PyiqWiBGgllrUYiSUteAofa+aaWK7Jbi2HhFGDJV/SanpdjoR253U7qN2PYMgpQE7x8M395AxupBeasrOyKAAUJTbkEpFAV5cV42sqBrwc9l7zxhtuvBmvvfIyFi+cg8UL5mDJkqU45dSVEdvjg8kjIFK1VAxD0Nu2uxn/enEPfnDOcagu6V10CDfaklw92rrijyOxdEYx/Qal/vuXl2uhQIkO8g+NviAm/Mw7u7oloTQcB97PBJhAeAIskIZnw0cSRCCbInmmoogJo/D55SKPwHXX/2SINuMfDz7Sd/LadWdgx0ef4uHHnsAHH36K01au6jvGG+lLQETQzSmsRFf9Z5SfTl5y9Vivxk95UG31u6mfKujNsQVEibUvUX+kBVIlafJGMspvPMxG6hyPx4P+LzEOFblSrDjlVDz66MPSsBwOB57d8AzWrF03UsMc9f1OrbLEzeC1Dxvw5Bv7ce25s4YIo8KQ4NWd9fQ30Ot33Wl3Y/vnzRhfFn9/kysphgdF7E11MRsNkt+o3H7tlGvdaBgajVvu+VyPCYxmAqn/ho9m2nFcu0qjp/QMuVDrjFDTdrai1yzG53HD3WOn4CKUQNnWltaJkUV0ulQUFfXjcLBAGgvrRx95ED+5/rq+U0R6DVGEmd2dd9+Li84/Gzt37sD8BQtx/wMPYt6cGXA6w0dm7WuIN+IiYKSgQSLtSqSi0rqpTuhgOlnZChSOmQorCYviXmZlDzWji9R2LMdEAndby34UjZmOI59vQ8AfOvCQUmuAuUieb5UIsqJQDb1+FQUPEvmDhRZiJIqGgqW5aYI9eGwiVY4ht3TI/lBjFEK8gu6bIsr9DXXuSO1T681074oidu9ydMLl6A3motPpcdc9v0E3CZzvv79dEjp9dM8KCgohUvrU19X2tVVH2/MXLuz7zBupI6BUZOGEaUcj4cba8wd7WyS/0Bvu3zbg1BvXzyfzWoOUg/SRV76Q8pBaHW4smlKMk+dUDKgb64dCitLb1e2J9bRh1Rdm+rE+c1zkY8qFCTCB2AmwQBo7s5ScoTfnI6eoCiqazLkoB6DPZUNP91HBU0yEFGo9Rb0skiagjs5mdDYdkoTUlAwwhk5EhEw1BSWRY/YSQ7NDqmo0KsoVmxyN0JDOjpEdPp9f0mYMvpzly1fgyJHDkjAqjm3fthXNzU1YsnQZNr+waXB1/pwgAh5XN7I9roit+Y2KsMJfHvl19lib4HGkJm+o29YKtz6XnlWVaK/fF3LcARLEPM7I1xQ80Z+tp2sbGtG2mzQPGvJ588ownQu2lch3rVpJKb8cQ8YmhHBhEu33Rr8+P9UNBPKk/K6JHFsy2/J73XTvIk+wfVRHlPa2Vvzuf++l9zYUFhbhpzf8nBayFuGnP74OZnNvzmqX6ygnkdfbYo5fa5bM6z7W2zbrVcPyy7zqnJkREf3skrlSECMhjOYYNfTdHb6V1PRqC/Y1JD9af/8LY1eV/jR4mwkklwALpMPkq9SEcWCP00xVSYJmfvkEqLV6dLcfRldda8gRemniCnRIx7Kb90NrKULphLNsnmkAAEAASURBVDmwtzeirf6LkOdE25lFYxaCbpbMaJJZZMYmp66DNGoiNLrHllhftv7XoyGTMK8Qrmg1PtqYhBYp7H3r3+iX26J+JvqPZWcrQ16njwSe4KR/4cJFkkajrbUVGzY8jV0ffyRddUlJyQBththZV1eHEvIn5ZI8AkFNU6QefDkWun9DLQFU9Cwy5ZWgbd+7KRV67K37kV+zAFbKU+p1D9WeC2sOp01emhgtTVyF5nVwsVqtFMXSQkKheO6ltohJqY4Wu2rrumhsAzW0YqyxpMDx+0qHtJHaq4mtN6+7h+7d0HsaqpX6+nrce89dfYdef/1VPPTIv3HTDT9BV1fv/Ver1QgKpSLSrtUqLwVRX6O8kRACqUjrqyVrB606zPwojquYVGGG8OVORcT+4PDicRsfCV/X4Hj5nQlkMgEWSId59yyFoYN6xGOWpTPmoqBqEno66mE90itUZivk3KKApBVx29thKKhBxaQFaD70KYIr13IvUZiTGcn8TKmWF5JfrVXJMj+zO90oL6HJpOPo6rjcMcmtZzYZ0U1aGDncxcQ93H0L1Z9KTe2SoJ5pRWjXLYXFQ4bd1XIYQhP33vZt6OzsJK1yD6ZOnYb/PL0Rl62/GG++8Toslhxpf/+TxUTS8qWmo/9+3k4PAqa8Mjg7GyjNwlCBLpkjFFo0Z2c9CcOl6Gjcn5SurF12FBXmQ5jle1Kck9RIi2ldNjuE6SkX+QSaGhsl31ENmVq3trZIlhjlFZXYv6/3t01E3W2kOlxST8BCGtJMK3lGtaRpdbpT9z2UcptTHvXuHnlzF7EwLoIrckkdAZFGSgROE/MYLplNQI60k9lXmOTRt9XuDtmDzzMn5P5wO3WmPPLFmoLOuk/htofWioY7N7hfBDCx1u+CIb9Kaqtx/4eksZD/JfV6nKTlOBhsLuq7urxKVvt2GkO3SQ89BSWwUVLpRBfxIyBMgg4faZZynkVr3+20I9x9C3Wuu7xA1nWGOnck97m6rXSdtWGH8NKLWyBewdLT48T5F/QKpEJzodEMXJjo1Whw4u8gr3R7N+YWk0XFrhEZVg/lOTWXT0+aQCouqqOjC2YjRevsTJ3ZntDImCiNw5F6Fpyi/WEtW7YcBw7sx+HDh6R0Lt/6r//Gjg/eJ7/+XsuYl1/aggsuuAi33XozpcYwYN3pZ+L2W2+J1iwfTwIBYbKbaUVEBRbpY4DUCaQd1i6KmmuRLZCajFrKSyrPGiTT+I/EeF9/ayvGjKke0PWPfngVHn34IYgFrb/87R+S2b+Bgk89/dR/JGsMXjgcgCujPgzfsD+jLjc9B6smTVbxmGnorP0kbmG0/5U52kgDZm9BYdWU/rtHdLu1rQO5ZgP9oCQ+wJHFrEdLa7ssYXREIaR5502NTTCRplmUhoYGlFdUDBix+AFoaKgfsI8/pAcBtc5EZroUgMOdepNWQUD0K/oX40hWaevogEatgkGXOmsFCz2zbCRQ9cjUkCTr2jOh3XHjx+PFV97A9g8+wvs7P8GcufNwzVVX9A39FzffJEXaffvd9/Hu9h145+23sGUz+6P3AUrhhkmXmboIEYwplUVYZoigRjn0HIhWxGKZgsz72zt40TYaq1iOr7/kogFppB5/9BHpdE4jFQvFzKjLAmka3KeC8okQQqTb0Zaw0Yj2QBrTvNJxCWtzOA05aULX0tpJq429As9w2up/rhByRaqX9k5elezPRc72OeeeT769eqlqQWEhzj7nXMlcV+x49dWXUVU1BrNm92r6F5CvqYiUKcx5uaQfAa3BTMFnRnYi5HF2QUNRWZNVRADoppZWmhwapYlfsvoJtqsnUz3hO9rc0h7cxe8RCPztr3/GtMnjcPZZp2PF8hOxdvWp2L9/X98ZQnO6YvkSfPWsdVhEeUj/50fXsBl0H53UbnSn0Ow1kVeWSv/R4LjrGpokV4GCXJP0HtwffBeL7HkWE3RaNWqpLpfEEvB6B6aREpGPOY1UYhmnS2uZuUyWJHpKpVL6gQymvujfjU6nkybvbRRBMJFF+F2JGELOzrpENiu15aCUDHk182HvaKTou8kLKCR34G0dnfQgUaAgz4zW9uELkBYyAxbRew/VstZO7j3oX+/sc87DHXfeI2lDhR/GM08/ifv//tfevx3yybiOTGMefOgxtLQ0Qxy/9uorOeVLf4BptC3SQvko2utIFp/LTgKpEZSFKmlFBDXSaW3Ip8lhc1vyBHAtaWLFc0qY6ooJEBd5BET+USF4RiqNjQ2RDvOxBBIQaeNCxYTIt+gp+F/mTf9MJgPcMoMuiuBC2RSQUF4cjsjQj9Q3ozA/F6VF+XBRpG+ROUDME0VKOyGIdpAbQX1Ti9TIcPvLJgFXWM35s+TdH6U6QNeYeMuzyESGfzSb0kAJV7XBxUcCqNt51C3jW9/+Dk4/4yzJHeCxRx5Ce3s7p5EaDO0Y+SzvL/4YudhIlyHyLm58fgt+eM0PpBQXwbpCSL319juwavUadHd3SyHtv3n5+oSZLorULvbmo6vIwX4T8S7y3nW31cJSUIGW2s8T0eSw22hsbkNJcQFKCnPJtMUGN2k3Yy3CryvHIrQkWThSJyaMHEQgVoai/oWUY9RkMlOKhkLp73lwftFnnn4Kz218FqVlZRRxt461GfFATtE5Sspt6elJnoAm5zJEcCOVNkdO1WHVaSbz/JKiAhTlW6SFrURrTbSkFS3Ms6CBJpgOR+J93od18XwyE4iBgAjGpwphRp9Npq8ienymlWyFmq5HXuTeLHIhkCLkyxRgo7FoJVNc8QpXokX3D3fe4P1izAoKLKnKHpqPeXBd8Tlb2UNZADLwXtJ1hvrbzKKAi0GB9KEH/4keZw8pMpRYuWoNLrr4EqxddSqnkQr1h3AM7GOBlG7iLb+4HV8lbZGRhNLBZc3adZIvzKL5syXt0E03/wI//umN+P73vj24asyfRVRdIECmdskLfd9jrUfe2IVordsjrejFPMgknNDY1IrcHDNNKvPRRRoPEejIJ1MLYdTrYDbppJyAtSTcchkeARul4xCvcEWYQx85TObfXNKaQLZCFTJdSioHLVKgDFc7IHe8jc2tFHU3D8UFOWSubyetReRcmXLbNVIAo/wcE2rrm6RnjNzzuB4TSEcCPfYOiNfg4i0plpU7d/B5I/3ZQ5qzrvZmWcNQUYohkWlApJ3KpCKlyepqo8ix4X+X+1+PKVsbc0aF/ueP1LYIuNnVHNma4r4//K5veH//21/wxtvbcMKJS/Dhzh3Sfk4j1YfnmNggY1EuP/vp9ZLvS6iALavXrMOGZ57qM1UU0b1WrlpNpiDDR6e3FMBFieWTWUQKCDf5lunM+cnsJua2O8jnc9/BI6Td9KGitADCP8NA6RWECa7QgAaL8M8Qvlx5pBEtL86DVqNEQ2MLmlgYDSLidyaQRgRSZ60gfDuFG0BxYQ6E+f5winjOiGeQkQImHTxcx8LocGDyuUyACTCBBBOQYoWQy5zJZBqQRirYDaeRCpLI3PfhS1WZe+2yRl5SWoa6fqkzamlb5FXLzRtq+y6rwX6VtAYLvBQIJNnF12OD6Cvdiod8MYS29PMvDkh5/jQkjIpJoRBQx5QXSa8Smmzqdb3J1A/VNuAwvRzdbEaXbveSxzOyBHxknp8q7WS4KxX9x5r7OFxbcvd3Wm04cKhOMt8vL84nwVRE8pb/syZSRolAa2UleRCB1/YfqpXe5fbP9ZgAE2ACTCDxBERQxaXLTiJz5F4FxZKlyzB+wkRsffcdKadxMI2U6DmYRur55zYmfiDcYsoIsMluFNQWsxku19GkyC5Xb15Pi9mCtlYyPS2bELIFhWpgDsdQldRaExxkUiL8IpJZhG+X1lSMaGNSqjwwFVZCKWPsYrxqvSZkwIR4rsXu9MAe1XRZQf0N31dCRQEDwt23UGNXaT3EJHWpJkKNIZ59IuJpblnJkFNt5FfsdbFQPwRMGuwwF1bR9zTy35pa1z3kuyySsat0ItJu8he4wmES/fsCWUPGJvyEcsuKw502YD+lKo75meKjFhpbrWQ94ZRcASrKLXC7PXDRy0PBRzweUaNXcyssW1QUiEQEIxG+oqJ02Rw4cKSJfKT9MfctAsbIfWYKYV2p0mXUs0RLbiW5ZQPTP0nQ+v3XQ1GsnDaORNwPSdps6i2F0BiG+nUrtb4h39O0GXSEgWhoYT1XG/nvse90sg4Tv9uhgjr11UnDDaVaA0NOMdRmmc9MvSOjnilB5EoKuBVqHubpscPe3gCR9/zuX/+WhE0jrJ2d0Bv0FGjx6r6gaSKN1N8f+JeUz9hkNmHjsxs4jVQQboa+s0Aa5cZZrVYIO/Vg0Wp7Heqt1l6/T0dH6IiBfu/QH4FgG8F34bzu8/QKuMF9yXj3eVwQV+Cn6GWRiohu1tPVKjvYgV5VFLXNSP2N1DHBI9x9CzUmn5simJIGKtOKEDodIYIwZJpPTaZxH854ndL3L7KGz0sTlsHfZaetA0ZLHgLkxzlSJVuphaOzbcjYfO7Qf4ehxqkgc6zB1xaqXqh93fT86qacoaIYyNdcryMXAIqWqzdq+lbZ/SR0ikBqTkcPWluc6HENz78slmdmgPzkfb7MepZ4KDq7oyPyIgc/T0L9NabHPld3F+UIHrr46Cs2x/09G8kr81DAG4fNLmsICjLDF9/PeJ8nsjpJQiUxXld3Z5+bWLQuTLTIlonzE7839DxMxCIQZc+ez7Fg7nEUdLFIEk5ra4WL19GI58E0UiUlpeRiYSOfW3l/F9F48vGRI8ACaRT2wq9U2KYHi9gWGtMOStIuitsZ+ksQCIhV+WjFT+v2R79g0WrHe1wkrO99RR6TGLMnBs2Z35sn+YDGO66ROk888MLdt1Bj8vu1EJPJTCviRyqW68y06zsWxysmXNGK36eg7/PA77LT3kY5h2tS8jwJNz4VaeSdtSJ42sCxxfJ985EQKfzKh1tsNDkRr2SXAI01lmemqJ9JzxKh1XU7hwo0yebK7SeGgFh8Fa/BJeAzDPmeDq6Tjp+FsCb371EENRLznkQ8T1LJQghdXrdL9m+3z5uZ8xO/zxf1GkVqnebmyLldOY1UKv86k9tX5KX45PadEa2/sOk5nHnmV6QVGjHg8y+4EC9sen7ASk28F+KnlfrsFOQCE75dIgUMFybABI5NAiJioRAeVLqR8RVX6XKkaJZiHFyYABMYXQQ0wiy/ZCxKamaiaurxKBwzDSLHeiamlhldd46vlgmkDwHWkNK9EHbqJy5ZKpkG/PHPfyefIzdOWDSPkh97Jbv0pcuWY9v7H8JOpiLCNOCy9Rcn5A56yVxXodbD3xPZJGq4nSnIb4knisOlyOczgfQm0EV+NwbyO/JQVO1UF62lBDbqnwsTYAKjh4BY7C6snAwRr6DH2gSPvRluWyMUFBfDmFOAvLLxaG/YB1tb/eiBwlfKBJhAXARYICVs11x1RVh4QigVx43k22Qk5+pEmgf0OKxQUmAjT5IFUqXWKDt3V1gQfIAJMIG0JmBrrUNu8QlQduhpASq66W+iLkalNVPglDw0Hvw0UU1yO0yACaQ5AYVShZKxs+Dp7kD7gd1DR9vVCKXGAEvxRKg0OrTX7xtah/cwASbABL4kwCa7Mv8U7DZbQoVR0W03RSdUG5ObHzQrKxsaUwH1xVEQZd5qrsYEMpKA8JfqpETj+vwxKR2/Pr8SHU0HJH+tlHbMnTEBJjBiBAqrppIw2o7utoNhx+B1OWCt/RgGivYrXlyYABNgAuEIsEAajkwK9ndbW3vTAGiMSetNmNJ1W5vZhzRphLlhJpA+BKzNh5Gl1ECXU5qSQelzyimQkgLWliMp6Y87YQJMYOQJ6C0FNHdRkTB6KOpgApR+xdGyn4KujY1alyswASYwegmwQDrC976z5TBpNCqTNgp9biVNFmuT1j43zASYQHoRaDnyOYxF45Me4EhNZrr6wmq01H6eXgB4NEyACSSVgDGnCC7yGZVb3I52tqCQC4vrMYFRSoAF0hG+8UKzkKXQQGsuSvhIDAVjKWdXK4SvKhcmwARGBwG304bmg7uQUz4dwr8zGUW0ay6biuZDn5APfG/uz2T0w21mHgGdTof8/OS6omQelWNrxBq9BW7KlRlL8TiTG7wxlrFwXSbABNKPAAukaXBPhLO/sWgCBQBInOmuzlwCocHgQAJpcIN5CEwgxQQc1hZJc5lTNRNaU2IXu0R7ot2Ww5+RO0Briq+Mu0tXAkqlEr+68x68u30Hnn1+CzbSq7S0LF2Hy+MaBgERpEiY4sZSFBSRlwsTYAJMIBwBFkjDkUnhfqe9A61k9mYpm5YQjYaWhFFDYY2kvRBJ6bkwASYw+gjYOxrRsG8n9AXVMBaOJQBZw4IgAqQJU2ARNEm06+iUb7I3rI755IwgsGbtOsyZOw+L5s/G4gVzsH37Vvz4pzdmxNh5kLERcJNVRDb5qsdS/BR0jQsTYAJMIBwBFkjDkUnxfjF5bG/cT5qH48h8tzju3g00+dTlV6Fh/0dwkekeFybABEYvgR57J2o/3wavPwt5NQugz6tEVpYiJiBZ2UrpPHG+1x9A7Z7tEO1yYQL9Caxesw4bnnkKTqdT2v3oww9h5arVyM7maUZ/TsfCtnADUuksMV2KShtb/Zga58pMgAlkPAG2oUijWygSy3tcTuSXj5fMbZ0ddbJzlGqMBZIgKvy56ve8B5/XnUZXxkNhAkxADgFTQTkUUTQPam1P1DqD++poPIjurnaYC8pQNHk8erpaKGVDJ7y0aBUqZ6lCracJpwkqfU5v2igyzW0mE1230y4JtAqlfKFWRXmQc0oKBg8p5GetKpuid8ameQnZUIp2KtUamPLpnskYs8/roWvT0kudotENvxuNIYfuXeSIzT1k4SNeJWSe++KWzX2d1tbWQqPRIDcvD22tbNrdB+YY2HB0NqOgfAKcnXWyrkbMT/wxmvjKapgrMQEmcMwQYIE0zW5lj6MTdSRQmgsqYCmdjIDXBRGhztNthc/tlB7qWbTinK1Q0SRIRxNGC+UyLZAEUDHpFD8UXJgAE8hMAmqtiXzJdREHn630USA0+QJhsDE35QRsrdtLOUMpV6k5Hzp6bujJtF9JCe6FsCSEKrGQJZ4tPg89d0hY7RbuBA0H+xa44uk3m9rXGORpRxQBN7KyY7+24DWm+l1oj1U6I1QafdSuvZ4e6doy6fqE8Bzt3nlc3dK1W8xmuFyuPg4uV8+X+y0skPZROTY2nJTX3EWLU8bCcbC37It4UWKeYiwaJy1oRazIB5kAExjVBFggTdPb39VaC/GSJo4mSq9QQBNHtY78NtQUTMAn5RUV2lSxMm0lzQVH0k3TG8nDYgIxELC11UYVyAqLegXGGJodUDUobHY2HRywP1kfPD12dDbLM/E1G40k/B4VapI1pkS16yMh09ZWR2ap0YXogN9Pgv4YemWO9Yr4Xelsi3zvfO7e+2W1WqFWH9X+arW9CytWa+TzE3UvuJ3UEmg5shsl1dNhKp4IR+uBkLnO1fpcGIsn0Pf/MIQQy4UJMAEmEI4AC6ThyKTJ/u6uNjK1a0uT0fAwjkUC+QUFcNjt6Onp1Wgci9eYKdckTGKjFZ/XIi1KRauXLsf9pH11OeSlfPBqVDSx9aXL0KOOQ4zVI+OeBRsSZot+WlDMlCIWL1yOXp/QaGNuaKhHReXRnNpiW2hMOzo6op3KxzOQgFgYb9j/IbkYTUD+uEVkvtsIr8smLc4EKICa2pBL1hZqtNV/wZZbGXh/echMINUEONpAqolzf0wgTQiICeOmLa/g2Y2bse39D3HLrb+EIg5T0DS5HB4GE2ACI0jghU3P4cwzvwKtViuN4vwLLsQLm54nAZyjq47gbUl6123kBnDks3dpUZPynauMUOhy4QsoSCtaiyO7t7IwmvQ7wB0wgWODAGtIZd5Hkexbr9ejrY21lTKRcbU0J3DDjTfjtVdexu233QKDwSDlDTzl1JU0iXwuzUfOw2MCTCDdCGx8dgOWLlsuLW7ZbXbY7DZctv7idBsmjycJBLwU38LWJl71SWidm2QCTGA0EGCBNMpdFsm+b739DqxavQbd3d1oJ4H0m5evhzBP4sIEMpWASqXCilNOxakrTpIuweFw4NkNz0DkEmSBNFPvKo+bCYwcAa/Xi2uuugJGkwlGgxGNjQ0jNxjumQkwASbABDKKAAukUW5X/2TfIr/aTTf/Qkr2/f3vfVs6U00RFkOVWHP9hWoj1fvEmFUU4VNuFMhsEtblBPNI9XVE6y9boUS4+xbq3GyKpCkiG2daUVC01FDXKYJhFRQUStFV6+tq+y6rjrbnL1zY95k3mAATYAKxErDbbBAvLkyACTABJsAE5BJggTQKqVDJvp9+dpOU7Fv4xuSWTQjZgoLy02VaUardMBVWyUphIK5Now7Iyr+XbhxUWkPY+xZqrCptV0blRgxeg1pvpuvMDX7se++o3wszpWgQpX+aBhHUyGKWl56jrzHeYAJMgAkwASbABJgAE2ACwyDAAmkUeNGSfYu8faFKIBA9L12o80ZyXyAQkEK3h7umwWPzKxUI0L9MK4EApV8Ic99CXYvgIl6ZVqQ0EyGuMysrG11dvVFPRZqGoFAqgpFwioaRvcs6cwFFpoz8WFbSQpDIFZopRaHWwpAr73mo0mqgoLylmVJEjlWdKZ/ScUUfs9/npaBhanpFvr/pdO1i8c6QG3mRSqT1kRMdOp2ua7SMRSxKhsqRq6D8spn0DAneLyXl+4329xism50F+q5RvnYZ383gOenwriDLMyn3r0ruM1M8VzLnmRJkLP4GDbklwY997yKyt0hnyGX0EcjKzc3NvJl2Cu/Ty6++iXvuvpP8656WehUT+L37j2D50uOxf/8+FI+bncLRcFdMYPgEhIY0QLkeP9tzAKedchL27/tCavSH112PiopKXPn97w6/E24hLgL5FZOhJLN5LkwgUwjY2xvg6GjMlOGOqnGaCiqgtxSOqmvmi81sAi6R+7hxf2ZfBI8+LgKZt6wS12XGf1K0ZN/ix5gLE8gkAj6PmzTEHrz80hZccMFFuO3Wm6Uou+tOPxO333pLJl3KMTfW7q7WqBrSY+6i+YIymoDQkHJJTwKu7i6yevKm5+B4VEwgBAGhIeUyOgmwQBrlvkdL9s0rw1EA8uG0JfCLm2/C3x/4F4QgajKbINI2bNm8KW3HOxoG5iSBlAsTYAJMIBEE3CSQihcXJsAEmEC6E2CT3Sh36MyzvoIrrrwaa1efChH05ee33Iq8vAIEo+xGOZ0PM4G0J1BSUirlDHTYWdOR9jeLB8gEmAATYAJMgAkwgWOMAGtIo9xQTvYdBRAfzngCnC8w428hXwATYAJMgAkwASbABDKWAGtIZd46TvYtExRXYwJMgAkwASbABJgAE2ACTIAJyCTAAqlMUFyNCTABJsAEmAATYAJMgAkwASbABBJLIDuxzXFrTIAJMAEmwASYABNgAkyACTABJsAE5BFggVQeJ67FBJgAE2ACTIAJMAEmwASYABNgAgkmwAJpgoFyc0yACTABJsAEmAATYAJMgAkwASYgjwALpPI4cS0mwASYABNgAkyACTABJsAEmAATSDABFkgTDJSbYwJMgAkwASbABJgAE2ACTIAJMAF5BFgglceJazEBJsAEmAATYAJMgAkwASbABJhAggmwQJpgoNwcE2ACTIAJMAEmwASYABNgAkyACcgjwAKpPE5ciwkwASbABJgAE2ACTIAJMAEmwAQSTIAF0gQD5eaYABNgAkyACTABJsAEmAATYAJMQB4BFkjlceJaTIAJMAEmwASYABNgAkyACTABJpBgAiyQJhgoN8cEmAATYAJMgAkwASbABJgAE2AC8giwQCqPE9diAkyACTABJsAEmAATYAJMgAkwgQQTYIE0wUC5OSbABJgAE2ACTIAJMAEmwASYABOQR4AFUnmcuBYTYAJMgAkwASbABJgAE2ACTIAJJJgAC6QJBsrNMQEmwASYABNgAkyACTABJsAEmIA8AiyQyuPEtZgAE2ACTIAJMAEmwASYABNgAkwgwQRYIE0wUG6OCTABJsAEmAATYAJMgAkwASbABOQRYIFUHieuxQSYABNgAkyACTABJsAEmAATYAIJJsACaYKBcnNMgAkwASbABJgAE2ACTIAJMAEmII8AC6TyOHEtJsAEmAATYAJMgAkwASbABJgAE0gwARZIEwyUm2MCTIAJMAEmwASYABNgAkyACTABeQRYIJXHCTqdDvn5+TJrczUmwASYABNgAkyACTABJsAEmAATiEaABdJ+hGpqxuKjTz7HpV+/vG+vUqnEr+68B+9u34Fnn9+CjfQqLS3rO84bTIAJMAEmwASYABNgAkyACTABJhAfARZIv+RmNltw35//BluXbQDJNWvXYc7ceVg0fzYWL5iD7du34sc/vXFAHf7ABJgAE2ACTIAJMAEmwASYABNgArETYIGUmCkUCvzhvj/jr3/5E/bs2T2A4uo167DhmafgdDql/Y8+/BBWrlqN7GxGNwAUf2ACTIAJMAEmwASYABNgAkyACcRIgKUqAnbjTbeQIPo5HnvkoSH4Ssg8t662tm9/LW1rNBrk5uX17eMNJsAEmAATYAJMgAkwASbABJgAE4idwKgXSC+59OuoHjsWt95yU0h6FrMZLper75jL1SNtW8jElwsTYAJMgAkwASYwkIBKpRq4Q+YnYXkkYjSwBZJMYFyNCTABJnCMEBj1Aul3vvt97N/3Ba78wTW4+pofoWbsOKxYcQq+8tVzpFtstVqhVqv7brdWq/tyf2ffPt5gAkyACTABJsAEgAULF+GdrR8MQXHd9T/BodqmAa9/PPhIX721687Ajo8+xcOPPYEPPvwUp61c1XeMN5gAE2ACTODYJqA8ti8v+tXdd9/vYTKa+ioG/H54vT56eaR9DQ31qKis7DsutoXGtKOjo28fbzABJsAEmAATGM0ExMLtC1tewZjqGrS3tYVE8egjD+In11/XdywQCEjbBqMRd959Ly46/2zs3LkD8xcsxP0PPIh5c2b0xW/oO4k3mAATYAJM4JgjMOoF0n/c/7cBN3Xe/Pl47bVXKJDR09L+FzY9hyuuvBp/uu8P6OnpwfkXXIgXNj0PPwmuXJgAE2ACTIAJMAHA7XZj+bITMHvOXPz5L/eHROLz+eHx9C729q+wfPkKHDlyWBJGxf7t27aiubkJS5Yuw+YXNvWvyttMgAkwASZwDBIY9QJptHu68dkNWLpsOba9/yHsNjtsdhsuW39xtNP4OBNgAkwgZgIqjR5ZHME7Zm58wsgR8Hnc8HndsgawkMx577rnN2hrbcWGDU9j18cfSeeVlJSgvu5o8ECxs66uDiKoIBcmwASYABM49gmwQDroHl+2/msD9ni9Xlxz1RUwmkwwGoxobGwYcJw/MAEmwAQSRUBnLoBCpUlUc9wOE0g6gR5bG5y29qj9vLd9Gzo7OyVLo6lTp+E/T2+UFnfffON1WCw50v7+jQjXGBFUkAsTGEkCGo0WOr2eAm0pYCT3LpMlF3qDAVlZgLPbCau1HQ6bTXLzEkEve75METiSY+a+mUAmEmCBVOZds9MDR7y4MAEmwASSRaCr5XCymuZ2mcCIEnjpxS0Qr2Dp6XGSC8zFEAKp1dpJ6dS0wUPSu1arpf3WAfv4AxNIBQE9KR/E3+O0GbNx3LzFMNOCiZwiBNOPdm7Drp3vke9zNxxkUZeJpbCwEHmU2lCn00K4eXd1dZEJfTMcDkcmXg6POUMIsECaITeKh8kEmAATYAJM4Fgh0NTYhDFjqqXLaWhoQHlFxYBLEwEERVBBLkwgVQSE5nPchKlYdsoamOJI7WcgS7rFS1ZIL4fdjrde24zduz4kQS4zBNPi4mLMmD6VBFFK2+TthFrpp3gpAXjKKjB79iwcOiT8vHfC5/Ol6pZwP6OIAAuko+hm86WOLAGFQgHxwC8qKiRTNBO0Oh1MJgtsNqsUSbK1tQ0tLa30ahnZgXLvTIAJMIEEEzjn3PPx3MYN6O7uRgFpYM4+51w8/NC/pF5effVlybd01uw52LnjAyl1TEFBoaQ9TfAwuDkmMISASOdXXlmNM8/9GjRfpvYbUinGHSJy9Glrv4pTVp+FZ598CAf27UG3wx5jK6mrPm7cOEwnYVThOYhs75cm+F5AQUMQLzgPoayoHPknL8dbb7/D2tLU3ZpR01NWbm5ub9z1UXPJfKFMILUETLRqOn78ONRQOgSPuxOqLDuyA91AgKJNZlEq4ABFbM7WwAcDvAFKQZSlxr59+7Fn717yS6FfBC5MgAkwgS8JCFO6/Px85FjM5NOmh0qlJv+2bHgoVZnwaeu02iRfTWFil8rnh0ajwetvbZXGQ/MKKUruayRo/ujaq6WRP/zoExBBjYQ2NL+gAM88/SR+/D8/6hvjGWeehdt/eRctyDVLx8V5zz/3LN93JpBUAsIcd+1ZF6B63MSk9tPcVI/H//UXdJF5eroVEVRs4cL5UHk+A/zOiMPzKUph6zHjxZdejliPDzKBWAmwQBorMa7PBGIgMH36NEycOBF+Vx2UftJ8BmREo8w2wI1CWpbMxce7PsGBAwdi6JGrMgEmcKwRyMnJQXX1GFSSWWt2lg9ZARuUIH+uAC1YiYUt0LpyFukxslTwZ+nh9ZOgqs1FE02CDx48gtra2rRAYjKZIfzThCmuM0TwF6VSidKyMoq4W8dmgWlxx47dQWRRVKLS8ipc+l9XIIv+pao8+s8/4eC+vWQKmz5mrytPOxUGZSOy/dGDkwlOruxx2L23AXtp0ZwLE0gUARZIE0WS22EC/QiIJPGLFi1ArkkJlf8IzRd7+h2VuZltgkdRjcO1jdixY6fMk7gaE2ACxwoBYV0xbdoUlBQXIdvX0jth9JN1hZwiBFRFHtyBfLg8WbS49Snq69knUw46rnNsExBWBRMmTyMT3UtG5EI3bfg3PvnoA7gpKu9Il9LSUsybMxUa3275Q6FFc4e/Gs9v2iz/HK7JBKIQYB/SKIBG8rBOo4RWnQ0lmWOZDSoYtUqY9SqKehZAV7dHelkdHgo/ngWb00MmW2T6yWXECQjTtWXLlkCvIi2Gr1e7Ke6RydD7ddPrFNK2nu6nSBQvFmedTh9sDi963BREgO6vnbbht5Ew+wkqS6sp4t8CvPvuthG/Nh4AE0h3Auov0zQIn22j0QwDpWowkmZOBOIQUS9tXZ2S33YWmcs7bF1pq4kbP348Zs6cAbgbkO3aETv2AGlgvC1Qg16qHMybOwNtpGXd/t77cLtlWGrE3iOfwQTSnoAwb584dQbOOPviERvrqtPPgVqtwXvvvkHPn5F1yxEuAFk014ip+B00fnVMp3BlJhCNAAuk0Qil+LiJBE4heM4am4vjpxbAQNtySovVhTc+acYnB620Gu5Dtyt9zEHkjP9YqnPCCYthUHVBgwZoaSGhokSLOVNzUFNpkHWZIsz6J3ut2PmZFW2dbji6D6Aor0aKcseaUlkIudIoIyClaaBgJJOnzsTs+YthycmTRaD28AG8v/VNHDm0X8qD6XG7ZJ2X7ErCn6uk0ILsnl20MCVTIxppUD6KmEmvorwqnHbaKXj77XfR3i7PPC9Ss3yMCWQagfKKMTEKowFaxLLCT4vH5pxcSQEw+JpFRF0NpSkSJudyy8krT0dneys+/+xjuackpZ7RoIdaQQtUMcrFfl9kX9OkDJYbPaYJsMlumtxeE4XZnlGTgzXzyqDXSjHN4h5ZU2cPnn67FodaHHCyYBo3x3hOFKHRa6rMKDbUYsXiIowbI08IjdTXjk868fr2NnT6puDDj3azT2kkWHxsVBHQ6fSoqhknRbI0U8L64RQRBfOl559CR3ublOR+OG0N59xlS09ErhlQenutK4bTVqhzA8pCBNQ1ePPNt6TcgqHq8D4mcCwSEKlc/t+1N8q+tM927cS/H76f/LazkE0WF8LS6YJL/wvVYydIbezbuxsvvfCMtO0U0aMLinD+Jf8FpUq+YPqn//0l2iiQ10iV+fPno6qILO3IJUCRnUXWFNkUJI2ul150uZJ3rY8WyQMi/QtZ4Xk8fuGxDpdiKjZs3DJSw+Z+j0ECLJCO8E0VGtCpVRZceNKYhI9EmPP+86UDqGtzSlrThHfADQ4gUFiQj9WrlmHtggZMrNYPOJaID+985MZbn+Tj8X9vhNsjAplwYQKjk4BIzVBUXIKzL7wcOv3wF336U9y35zM8v+FxyZzX70+tG8RSEkbzzH4SRg/1H1Lit8m31K8Zj9deex1tbW2Jb59bZAJpRsBI/tgXXfZdiuBcLHtkhw/ug5pccEpKK6RzhO/nAQpI9J0fXC99vu2Ga7D2zHNx3NxF0ue//t89mDpjFhafeLLsPoTbwP1/unfEou/OmzMNx00txLSqdkwZZ0J+rhoqJUX/D1Ec3V7UNTmxa48NBzum4PEnnkYPKz1CkOJd8RBQ6HS6m+I5kc8ZPoFCiwbfWTcRCyfnD7+xEC1o1QosmJSPohwtDjTZSShN7eQqxJCO2V0mowpXfOsUfP0MHQrMyfHPqixWYPHccrTZlPhifz35noh1Si5MYHQREBPLVevOxsmrzpRSjCT66vPyC7Hg+GWSQNrW2pwyH9PZs44jM10dVDFqRsXkUUVajZiCdgbI3C7gQkn5JCnZPSe6T/RfEbeXbgSmzZyLmbMXxDQsYfov/M+DZf8Xn9NmANOPmyu9v/bi85g2YzaKSsqkKnWHD5IG0Y3xk6YGT4n6LgReDy0wHz74RdS6iaognhnFBRpcdnY1rr58PE5cTJZdxV0wUpwLoSUNV4T2ND9XgymTx2D+rBKceJwf3RT/orPLg+6e5LmJCVNoETslVBEppAK0cBgqxZXwFy4pKaXcx46w54dqk/eNDAEWSEeAu5K+8FOrcnDFmZNk+4gOZ5jFuVosmlyAjw9Y4XDF6CgwnI5Hybk5ZhVuvWYOTj15LrJcyQ2DnkUpHo5fPJvSyNTj8wN20pTyIsMo+TPjyyQCYoJ42X9fhTLyA0t2EZNKYeJ35NABeJNskVBeXo4pU8ZTHsA9dFmhJ15iomjQK1FUoMWU8SbMmmzBiXPzsWh2PuZMy8Hc6TkYU65HIU0YteT24XIHJBPDcAtXWeSbmq3QwGQpprQwdcnGye0zgREjIAKbXXz59+Luf/enH+OVzRvRTgtUq0kjqpesMrIo2KAWTz3xIHyUL1zkAd6x/R2sOeMcaMmVIJZSVT0WH2x/m/KUJ2cxOzgWks+QZ1HjqsvG45pvTpQ0on6fG0pNDj0LtLKDG/k1E+C01UKv8eCEuQU4d00F2jpcaG5zU2DGxAqmBqMRL2x5BZ/s+lhKBxW8lorKSjxGGtrLL/8Wvvf9K1BWXoHXX3ulT/Bcu+4M0uA+hbWnn4Err7oW+/d/QfndUyf0B8fJ7/IJyDd0l98m14xAQKdRYNGkApy+qDxCrcQfEtrS/zl/Ku57bi/21dvhI38ALsMnUJinwe9vmoWKqvEUFCAFpm8U3U7kHbzoK9MxpsKAu/6yV/ohGP6VcAtMIH0JCN+tkrIKfP3bV6V0kDNmzZeE4A1PPoiuzuQltJ913AyofMJMd+gCk1jwKi3UYvGcfOk9EoC8HDUmjzX1VRELVu/sbMfHu62SBkP4f/UvCu8RFBdOR5nI/ckpYfqj4e1jhkAW5sw/flhX02XtkDSfDocdNquVzH6LpPYqq8ehmLSjVjr+5v1/xLSZs0mjmhNXX8tWrMELz/47aRYZBXlqrDupFJd+dehiXnfnPpgLjyNhjnxJvZH9WQNk6u912eDpaR1wnVd/YyK+eb4HN/z6U1ost9GC2MBnzYDKMj/c8ovb8dVzzqNo6cYhZ9xw48147ZWXcfttt8BgMGDj81twyqkr8cKm5yiyuhF33n0vLjr/bOzcuQPzFyzE/Q88SOltZoTMfzykcd4xIgRYQ/oldjOthAvVvjC3EOYTgwuZNsNisQzrj1lNZhLLjyvGmvm95h2D+0jF53kT8nGw0YHWrvSIJpmKa05WHwXka/GPu+bDbFJBZxoDhZ8E0njyjcY6wGwtTVvVKMl1S5PPrR+2kx/H8B/+sQ6D6zOBVBEoKCrBN757baq6G9CP0MpWVNXgi88/SYoGY9KkiSjKV0HhaxzQr0GnxOLZeThndQVpRM19aaMGVIryQaHIQjVpTRccl4cS0qw2trok143+1m+KbB9y8qtJe7A/Smt8mAlkHgELRcY9+6LLhzXw8soxmDFrHvSk+fzPY//AiSedJqVr+c2vbsTXvvE9LFi8FPMXnYh333oNDXWHMXnazJj7EwtuH36wDa6exEevzaeFql9eOx3LKdBiqBIIeOF1d0FlqAGydcgic37QvgFFmQO/moRRjwuOTmHJMbRoSPGxalkJCbbAF4eGb8H1yssv4Q+/+y0uuPBiPP/cs30aUpVKhXvu/S2u+9G16Ohol+bsBQWFmEcBmjY9vxErV67G5ClTcdcdv5QGWV9Xh3PPOx+HDx9iLenQ25Y2e0a9htRiycET/9mAyqoqNDU1orCwCPf93+/wm1/fLd0kYbt+6+13YNXqNWSH3o12CgDxzcvXo6EhtgTjYoV/Zk0uTptTKvvme70BdNhdlIuU8lZSOphElf9aMx6/fOxTNFM0Xi7xEcglrcWvf3IctKTxFkWhosAqTnvExkTEY6fTSxNLleTzFbFyhINZpCVVqnv9jmeS2d73LxmPu/66R/LliHAaH2ICGUlAmNtd/p2rZY9d+BIJjYZGo5NWymWfGKFiWXkVVqw8Ay9sfIImjIl9bgqBVOU9auov8hSPrzLi9BXyfysiDL3vkIj4PW5MDT79ogsvvd2CLvuXC69k2aFRF6GiooJMd2v76vNG5hNQafT0W6HN/AuJ+woCKC6rInPUxEx1i0rLYbOTlRLFnm2sr4OPJK+S0kopAq+JFq4WUTCjV17cGHd/4ydPJ9PUj8jUPnRQoVgxZAX8GFehxP/eOCPqqX5fN+xtH0JrqoJaT/VJWwo/PeuyaI4jFsG9PXB1N8DtbJGuN1KD68+uweTxObj7r/th64mNvY9Mn91OW6TmKZpxIaXYUZGAevR5VUfb8xculM4rKSkZcEzsrCOhtKR05JRBES+ID0oEYvtLOQahiSiKv77nTmlVRQR2mDnzOGx4bjMee+RhSehcs3Yd5sydh0XzZ0va0Ztu/gV+/NMb8f3vfTsmGhUFOly0fKipRLhGHnxxL974uAE5RjXsJMTUlJrw3TOmQafpvWU//stWEigHrqStXzkZS2aUhGtywP4fnDWZhNJP0NU9VBs8oCJ/GELARI7/V10+AeUlur5jWdmUJFo8wEMUJzn7/+mRPei0uiVh1EaR6pbOL6LVyt57VU9R637/z91DzrzhiuNoohjih4l+JLIpqXawnLSoEF8ctuOx52rJsZ9NsYNc+D3zCRiMZkqj8C0oZE4on/73g1KyeRMtNDrJvE5oNi+myJpasnAR5a5f/BgiUFH/cvYF6zFv0ZL+u0JuT6NAJo2NdXhfSmafGD8p4TsKPz3H/b2LWUZaeDx9RQnGysxZHHKgUXZOJW3r5HFm/PM/hyhiZo/kc6VCC6rHVLJAGoVdph1WqDRQ6UyZNuyEjddP2rz5i5chSzhPxlE+2rEdY6rHw5KbK+Uh3frW6xhTM54WoFXILyqVBMePdr4n5T4WWsHPd3+C8srquPubu3AJ9uzZiywlzSeGWQI+L2aOA267ekpMLfXYDkO8wpUsIaDKKItmFdCivQE/unM3bJ6hJrfhmshydUcVSM3m3kBTLtdRS78eWii0kKWjKELRJD73L6Ku5cvz+u/n7fQhMOoFUhuF3N74bG8eKXFbvCSU2m028gno9RdavWYdNjzzVJ+p7qMPP4Snn91EOZooqqHMlAC5JFSKaLqxlImVOTjzxBoYKS2MiI5724Pv482PG3HqvIq+Zq48eyamVB3NvSfyRsktWhJ0LlpejX+8uB/dHLZbLjYpL9eK4wtx4ryCGM8pxbQJOdL5dU3d+MM/P8fcGfkwU3ReUXQUhOT67wxcxRTmdiELrZ4qlAMf8N88rwY7P7VK2o+Q5/BOJpBhBIRVyYxZc1FMWgm5Zey4SThtzVlSKhjhfvH7u2/F+1vfwgknndLXxGXfvhLjJh6dpCkov6DcIrSkwnS3vbVF7ikR61VWlkOFDqlOjlmNb51XDXWoRaiIrcR+UPxUrCdfsk2vN+Kjz7soIEsH+cKNJ62DMmS0yth74DPSgUCPvQPiNVqLiJBbNaYaPnoWxFMajhzEIw/cJwUxEgGHhO/o+Zd8U2pPq1Hj3Iu+jjdefgGvv/ic5PtZVlGFNaefE3d/+flk+eRzoqu9IZ7hDjhnYo0Rt1wxhwIuybt2j8dHQYl6IFwFcigDRCJKaQHNa75ViZ/c/QmsttAL9vH009XVJZ2mVqsRFEq1Wm3fvF3M30XAqf6l97i1/y7eTjMCo14gDd6P6uoaXHTxJWSDvgA/vPYqyTxXHBMq/he3bA5Wk1aQNRSmOzcvj1baW2Euiqz1DHhdOG2WmXwPjmrT+hqLsLFw2lHBU6ugpbdsFfkZmZGt7H1QKFRqyo+llV4Rmol4aPIYDSaMsWN/OyV8zpY/KYvY6DF+0JDdhau+MW3IVYoV2KwwWhw9RcacOeXoA15M+vR6Df1NaMj0hZJQ04RYmBSp1DLNsqkvH/mqKgatot5y7Sx89+efwemLHOGvu6OJ/ECOrh6KxRUx+Q+V+kEcK6Z8j8KcPdQCjPCt1uv1nMtwyF9EfDuMeaX0HR/+6ri83gO06u+jkPk+ZFNk1+wsH/wBBfknU0J0eh4kysxN3liG1lIG3Dhl7dlDD0TYM2vB8X1Hs8mkS3wn88n/VDwvRRHvwoxRrY38HelrJMTG6edciqf+/TAC9EwebqmeOB3Kno+QbzDj8nOqhttczOevWV5BWoN2bNvlgJOeS2OnzEZj00ANcrRGXY5OuBw80YvGaSSOa425ZH55NG3JSIxhJPs00kJv8LsfzzhWnnEuTl37VVgpoJn4fe6fAka0N3POQullJ8WGiKwrftuHW4pKq5Cl6dX0xduWLsuKP91GUf/pd11O+dV9u/DUlsMozCOhjgRHsXh+x/VzICw2+pfDDQ58/do38Z2LJ1Nk3chz3+B5MyjDw/cunYL7Hqd5BwYKicE6/d+9pCHttkZe8GulBUER66W8ohL7v4ycK6LuNjY2Sk01NDTQsaNzaLFTHI/V1a7/uHg7+QSG/+1J/hhT0oOJVPkin5EQNseNIzuHL4tQ8QdXYMQul6t3Ii9MA4RA6oli665XuLFoYpU06Qu2Gcv7pm2H8dnhTkwdk4MZNTl97Yi8Sy9sO4htnzagKFeHE6eXwqgb+PCQ08/5J5Thjic/h8ufqkmwnFGlZ51sepxefindy8BQc72A30uDJrOgwYEA+l1KW6cb733UikO1DnzltAryI6Xq5OMh8mu5KVT6E88fhMjzVVVmwIxJuSQU9Dt5wCYJDT5hajdwHPkWBeZP1eHFd60RTYb8JID0Lzf+/Bbp440/+0n/3RBh02/75R0UNKADORQY4kfX/gCbX9gk1UmUb/WADvkDPPRjnE1mZskqQvjUKv0Qlv/VRQaU5OlQSmmhzLRoItKKiOjbVjIpb+zokV4HmyhaojcLTi8tnKRy0Yr+tpeuPF3KLxcPi1dJY7F/725MIE3o5Kkz+toRz803Xn6egoe8i4LCYsxbeCL0hoHWBtH6q6AAJ7kWM5qaYxPcQrXrd3dDl91J+QBrpGdBqDr99wmzQLvDQ4tDAbKuUA95RngpN7GNJpRCyypSxMgpx8/JgZ1cNz74opnSkCmi/qYNblOuBmbwefw5+QR89CyJNkdJ/ihGroe88vF93/14RyGEuhwy2RVFPD9CFcOXz5Bwx0OdE25fcXEp6muPkO+mPGFycDtmnQ+3/mAS7RZzi8FHQ3+eTWmj/vui8VKAxh5yMVp/7Vt4evMhXHRmTd8JNvI5/+Gt26VnhPgdGTz/6KsYYuO0E/Oxa08nttDcRJonhagT3CV8SKMVIYy+/NIWXHDBRbjt1pulKLvrTj8Tt9/aO5d59dWXcdc9v8Gs2XOwc8cHWLBwkeR3+uYbr0drmo+PIAF5v1gjOMBUdf3xRx/imquuoBUwE7Zu24E333wDOz54n0wArPTjflRY02p7NZ1Bk16nrT3sEFWk/TpzRTU9xISwEl9pbLORCZUHLR12ClrjJqGz95adOK0IIrmxmEDu2NuM13Ycwc8umdvnYyq3Ny0JRZNKtdi6u1XuKaO2XnmxDisW50lapcEQfB47FCAtqD+8eYyT7p+NglS5PV40tzohfLlE0WuzyKe0UJpA2mhiuPGVIzhwxIYzThm4whfsM6DQUdh1R8hxXH1ZNd75YKusVDCnnHoaCZx3oqioGA/c/9dg89J7tLDpifKtHtApf0iapkkERcs1qLFkeiHmTsiLSLokR4VJZUGLjt7AOu/tacfru5phJWHI5ow+YYjYgYyDIjLmjOPm0N94fM/O1uYGyVStrbWRrF1spMXvFTrnLTyeFoLUkjXAJx++j3ffeBn/75qf9fmYyhiaVGXFyrV46P774KSE68MpqkAHLv1KediJbv+2d++z4olNh6V5qjDnF9PV89fWSOmfRL0NL9VKC14mcgNwUrL6ilI9Ljyjpi/wWv+2Bm+fenw+mmgR4lCtn/ILhv9NG3wef05vAmKBS7xGa8mVfD/je4aMFLOcXPJ/j9PMWsiwqxeXkQ86BSEi6xe5ZcWX0XfFOSqyyBMCX3G+uq8NsQB23e3bcMG6Srz8trCW8vYdk9vHD9bT3OT9d9HSHn6ONLitu3/9W5y4ZKkUbPSPf/47jcuNExbNk9wKfnHzTfj7A/+CEERNZhO53m3Als29C+YOux3X/fAqPPjQY2hpaZaUTddefWWf693gfvhzehBggXTQfRD+oy1kDiAiDgqBVKj4hao/WMS20JgKrVG0IoTH6dXx5aQKtr1+pVjpAu7b8Cme23oI553Uq71dteDomFbMqcD1f35X0qTOmSDftzHYx9nHV2L3Eas02Qzu4/eBBMQE8NKvhjep87isZFVtRpYvfHS48mI9zl41hv5+/LjjT7so4qURlaUGWExqnHx8SV+HE8aY8bfHv8C6k8tJKzV0lTSQbaRJRkNf/cEbc2m1c/ObTYN3D/ksTNHF66c3/JxMjRQDji9fvgJHjhyWcniJA9u3URCt5iYsWbpM0pImwrd6QIf8ISkERITummIDLlhWTZG643/cz5uYB/ESAumjrx/CoSYy8SStfrLKtJlzh9X0V89fL50vhMZXNj+HtWedJ31eevKqvnaPX7oCd978P9i39zPKHzinb7+cjaKScojFyeEIpCajEmuW5pJZXGTztOB4hG/XN84bj5LC3sWCF16vJx/QOnz7oolSlWrKS3zKCSXkj66kiZsf//fg53h/Vxslrg+d6iHYbvD9a2cU4WBT5Ejhwbr8zgQygUB+QXEmDHPAGAtJQxpvEX7o/+/S8fGejvuf+ALvfdhKOY8LsWTB0efG3X/5BGOrTLRI3iuQxtvB/2/vPODjqq98fyRN7+qSJfeGwRh3m2KIYxzAQEgChBbCJptN9r3NI5v+ScISlvSQtrt52WxIQkjo4dFs00xPAtgOxfTibvU2kqY36Z1z5ZFG0mjmzsyd0Yz9O/6M5869//sv3ztzdc//f8pnL5/Lzz7vsc+6uqVbWSSaSiSFy6aNG5R0jR6vh0QJTZSHHnyAHt6+jRolxzJH2E3mkpRYHtvTTyD7J5Tp77smPTiZo+paLVbaufMFNkEYpg9uOpuamppHH8Qlye61X/gS/ebXv1Kidl12+RWcePeRUX86a+V09A/iAABAAElEQVSYIpHYITGLXLvYyn5YmZvRJtYT355R46D2PjbnS1KfWNI57RYKxcqSHo/XMdU7P7NSlctBUbU+jFNVdAzvd5hCdO6ZTVOOMBZ2U7l1ESukIz4MUxbkA2ZO62C3GWnAO0Szk5hBOu1GxY8vNlTOiuIEu90yNtMz8Cpt9L0pI49+8uJ5tPPNMBsY84ptEgnyCkg6M7t0YdPT+VYnaRa7CkhAJlDqnCb65Ka5VM8muVqJk1MWffa8BdTa46fbnz6o5DMWM1EtxciK3qmsLGohkr+0m1dLk4n4R0tKmYnRGJOVTbZv2Yo19OyTjyQ7pGrfskVOWjLfShRWp5DOZFP+ROHuc/CRMesdMfOPi9w3eFGDKh3J7wHxcuPe+e/fx8+fTQ8/Uk4BnjTLRSRPoKyyJBNxjZGHx2Tc0/msJ6sP+0AgGQExtXU6x34TycoU4z6r1a5YcchqYCbCBnl05YfHFioyOTdetqXdz1Z3RO1dAfL5ouxfbqB7Hz5Ih9t89B/Xr40Xy/p902lsjXXfYWrp4MjiGklHR/L7u1QvKcCOHD6sUUuoJt8EJjzt5ru54qtfEh3/169+TW+8vZde2PUy/fw/fklf/fK/jn6JxQzg1VdfoV0v7aHnX3yJ1p96Ov3g+zemHYie1YHTl3DEtCxEzCOe3dPGs0gjDwUDvjDtfq+bFjSNOLp3DwTozYPuUf+ANw+5FWV1UXP2jvAr53PS4yzN47IY4rhTFL8LNgHRlQ+zuUgZv1hpYy3ZqCsjUZZFJytjn7KJvo/jKsnzhxl1Yw9+yZoSk12lf7rJ5pASVffAEe/o9Xp3/6ASOKC5YSSwyvsHPdTXP+I3KA+Rf3upi2bxymmylC/D+joK+1npZd/TqWQmp6Mx6nJbvUoXNj2Vb/VU/cL+whCQCNpnskn/Vy9Zoqkymtj7phoLfe3SE2kDtyPJ0LUUI0dLNCSkNVJbt0wo7nz+GQ7YNWKi5xkcoNc5bcOcOQuVKvp6u2kvp2WIy953ORdzZzvNnT9yPL5f7fvqU8/MOqicy67nqNqLs/ITe3c/m+4+coja+KFx8+mTV1Oe3dVJt/JKx8I5dlrM6V1UCz/Az59ppgVsuZGLiL/WCztfnlSFWBc9uuNp2rb9ceXv6Xe+90OeVBv77ojP+iuvvUV33vP/6OU9b9GHzhlbzZ5UGXaAQBoCkioqosIfMU01BT8cCYd4IjrzhYyaKiNdfM7Uk+ZqBnLd55fRf393PbdfRrfcu1c55db79tHsJhvdzKnr/ueOdxXl9K9/76JHnmlRU+WkMv98xTx2IzjuVY9JXLCDn/WPdwiyMrp21SmKjbkop5JcN3FpX2ZY4r6lNnZcnzgb43MnXxFz8UqCzShRLJPPEqfiLn7zz7xymG7f8baSh1QU0vVL6ukDy+qV+oLBEP1u++sUZJM5q6SF4fdPbFpA1WwClk170pc1/ODy6K5D5AsWxt9CZi8tVis5eAZz4eKltPikk6mysoYjxyb/Sno4jPf+ve/QO2/uUR4i/ey7lYmPRCreao6dfdli/l6kZuMfPEwWB0fIm7DiEQpF6K5tBykSHlL8ucI80XDR5iZy2Tk4Ea+kd3X76E/3vc8mgBKsaFiZlbzsgtmTFfAyEw3rGsjf9xKXS92XkxcY6ckXkn831Yw3Xdj0dL7VatpAGe0J2Dmw2UWnNdPK+YVZGbhwfRPNrLXS/c8f0cy3VPL+ZSu7n/8Lbb3vLr6vuEgU0hWr1/Nq6weV6mTF7p47b6Ew56czs1VMmB/8Lr78k1RVXZtVc6I0m/lvRvhooLtMKjltZTVH2ZZ7XfL7Xaq6Bjm4iExW+jn4lGxXucavgsrklvwN6R+MsHtA7Gg7qWqMH6vgSbMh+so/LaLP37CHPGyenYlIrIXHWOGcPWcu9fX2Tjr1+m/fSM8+/RRP6H5HCUKy/ZEddPbmc9ji6GFeqbbRTT/9BV152cXKBPCatevoD7feTqtXngy/r0kksUMNgTJ2d5HIt6Umer6vSOT9TGX9KZMnwzOtI15+NltjHOTgiyKf/Nh88vG9Ji5imSEB8HSyJJuFnLZqJN1dMCGHaBbV4JRjkEDmfw2PQQgys97TndpsSnxL5aVW5CEtW5EfvAQoEoVTlFEXm3caOfpqXJpqrHTT505VjsmDSTWb5iVxNYwXV/Vu0JcpbfiCqopnXUhuthKwZC2vLpyyar3qeiTRvZSPn3Ng33u0869PUycnqvf7xvsOqK5UZcFqNos7bUX61e5woJtD7NeRztDESmnraO1zmm309c8tJR8HgwmzUlrJOb5YHx+VU1fV0lpOIj3gCSurTVNFxxw2zKKQt4XNddObu5x9ej09s7NHCXo12lAGG+nCpufiW51BN1A0AwIyCXb12fMUn9EMTsu56HK2rnBw0KTbnjpA/Xy/ylXmZLliKZNcn//KvymR0CUNg8Ph4lQNY5YN9Q0z6Jv//hNFURVzuKpq8bdP+CFm0XG73ckpITILAlTjMrDf57yR1niSKVNZs6yG5CVRK+/ZfpC+xveWRPnoh2YpH+/aeoCe3dlJ531A5apJuYkn3QLs126h5gYTvb0vM4U0zHkaN551Oq1YuYpu/u0fErvEJoh62nT2Ztq86QPKfp/PR9u2PkQSHE0U0nQ+6+MqwwcQAIFxBIzGCrrqopHf/bgDKj6IRd79jx2mCzc1s2VKBfX0BWnHXzvoki0j9V26Zc64Wl59y634mG7eMGPc/kw+LFvspCeezz1KeSZtomzxE4BCmqdrNKchN7Mn6ZYEJDEZ4tEux3dUFBoXh/3XUkTx7WOlKB8iplmuqmo694JLaNbcBTk3MXf+Ija1W8S+SB7a9sBd1Hr4AIV45SMfIuYrdqu6n4rP/R456zhAikTbjY5Ncsj1UnJ6TTFhKz5/E1c6EscybJjJyiWn3xg8mLh7yu0T5tkVX1Uv+4FkI+nCpqfzrc6mTZzDpuqOGp4dV/ddS+SlpyBdyQ8I82fYE3dPue0PRcnLEyRO6/jJrvgJIQ6KE+ZE6RKdV40saHbRlWylcQcH2olkoWTF2xjiJO4z2cS2IguTtXgdFj7Xwn5YU4mrShRRbaS+aRbfM308wTQ2YZiu5oaGGLkcI4poucHOk1eZr4ZIG7XVFr6Gw5JBVlmxmNhubbWVI1oGVafrGa6w0nDYo/imX3HRPPrhb1s4j2v66x8JeikcSD0pWFNTq5ghtrEFUlzEGmnNunXKx3Q+6/Fz8A4CIDCZgN1aQWKym63c//hhuunmNznXvUmJ0C+TWJedPyfb6tKe95HNM3jCvJu0jj+QtmEUKGoCmT/5FPVwiqdzkuOv1KTBZaL97epXgdWOTwILbNh0Lp28fI3aU1SXk6Akl33in6i99TA9dO9t5O7rVYJTqa5ARcFMQrYMD0XI636XbFUnjay9JCilKppKWmTY0ExD5ZwrsOe1pMeT7XQ69JwWKPXqz5bzLyTJQWq3j/iZSeTc66/7hhK0K13YdPGtPvOsjYovmNfj5XQ2HvrUNVcl6wr25ZlA+VCIzl5eTYuaplbC4l0Qk/wf3fUK9QwER90Bzl0zky48dY5SRNJI3fbEe5xKqkfJiWs3c9TGjyylSg60lU6k/Q+eXE07XnPz9zW7yTKJ9uxyaWd6lq7PuR53VbLlBFvYqF1oFZeKizaNrVgORXysAPJ1SxGdO97H197tV3IUi/+pXKedr/Yoq5liPie+57s5x/HKpdWKH76Y277+rpvWseWFaqlwUCzSrhQ/a001/fI2duGIpFdI1dTv4HzeIok5vSWokeTzFknns64Uwn8gAAJJCSxdmH38EInkf9vPN3BawSgro0GqrTKx+9DUqsEvrs/9Oe7EhQ6egDdQV+9I7Iykg8LO447A1N+64w6FtgOWaJSlJjUcUU1LERO62rpG+sQ/fp4kUEk+pZFXKj73hW+y/9gd9C77mU4V4TGbPrhYuctEoqF+8va9SVbXYk5cz1FxE8x3M6mHlydo2DCXHz51rIy+nnE+23JZlk0hD2/fymHRt05ZIlXY9HS+1VNWigMpCQQGe1IeT3ZwxfwqOo1NoFT5j3PwsAvWNtHKhbW8ckZ0sMNL373t73TakhpF6dz9ThftPdJLP/jH1YoJ/11P7aW7n3qXPnvBkmRNT9p3xhIn7Wvtoz37s/NftvHkiCRcj0VzC8o1qWN52mEy6sk/MGYJka4ZuZecuWrJqD96KNDLZvqcLmqoP92p1NHtpXu371csHySti1hUfHzLiK+56MS7Xu2irU8cIgfnIRXLiFNOrKR17FemKhhcuUUpFw6O9aPKxv7tWV7HiYMZHBxUdomfaVwpNfHfhHg+73Q+6xPrw+fpJyCKjIN91mWNXqy5ZFtSE0U5pYfcW/p5UkSsMETE4qJQ8Smmn0zhe3AK33dzFfFpt5hzt+xT2w9Dghua2nNQ7tgmAIU0T9dXosSWmjg1NAHWcXCieQtPoIuv+HRBMVz4sSupjvN4vfDcUxwMY8QpP9cOOPkBL1MRpXSw+2VWSheSzryMyiKtbMLbq7qaYV09Ea+MhgNd/MD7turzEgvKhECuki5seqa+1bn2B+ePJyATX1dvmjN+Z4pPZqOOVi+uHS0hD46yz2Ia+Y6/zNG81yzmyLlHHxZOP7mRvn87B9EaXqLaT/2as+fSDbd5adCfmQ+idEr8+UtJdOwbmYlI5Gx9woOY/L6NlpM49cvhtNWcfVojbVzfQIOeCNdRNuICcPQs+an/y9WLOcDdECujYVZKDePaSVf5sK6G7zXjJ0PWr6iid/ZrYzHTw7m9ZZKwqXkm7d+3V+mORN3t6BiZuEjns56u/zheGAJ6DmRjZn/FWWwBdtqJNbS4iSdTVPyZ8XBQnJf29nG2gF5FSfXwahxEGwLCX3wyS03q2MRYy/QvpTZ+9HcyAX4cgeSDgNy0j1eRSLknr1hbcGU0znvd6Rtp8/kf5UiO6U0Y4+ekevdl+cdTMd/te4sk+m6sooGGzctpWN/MIeq4X2UT5oLK+MG2opJXROfQsGUVJw1ykIdXWf0D+1N1LeUxeWiFHLsEZAX87BUNWQ2wsz9I9z67n+548n265pwTRhVQtzdM1Uf9G6XiGs5jKYHT4isdahvbtLyBH1Qz//5lk+5FbZ/yUc5iyWxFYUbd+JgAMTbZjUXZbI0VQjUi5rmVHGRN8UdPcoIovNWcdzZR6U1SbPIufQMrpONXelee5FKlbEyubPIeUUafenIHXX75lcpBK0dYv+DCi+iRh7crn8Vnfdas2bR8Bfvfs0jqGPE7/etfnlM+47/pJaDn3Gsz2Gf5HzbPoxs+cTJ9+kPz6IRmdcqo9Nxu0XGWgJFUVN+4bCltXtHI/uuZTeZML4HibV1Wpxvr8muBlo/RN5Rgn/PBAXWOEZjwVDx2AFvHHwFJIaOFLFi4hM698BLVVUX5YcXrHSTFHyvJWbJKJ6kVLJx2R62ctGylcs6Tjz7EM/O5BWoSR/9cRB705FWht5PBXEN64ywOXMMPphwIpYzNckWGOQhSLOqjCJvMhQOvsvll7gGaxDywvSv3enIZO87NHwF5yDv9xLHVzkxaCrAv6WAgrCibHX1iSTCiEPk42JFOEv8eFf3R9AMSBEki6aqVDUtr6ak9HRwJPPNVUrVtTFVOx322Ws2cYsnIUXb1ZJBUUkd1Y4koGeE8pZJyQNJn+QMBxQV0qrq03l9fM9kXN+g5wpYUc6ksOn6FUuu2p6pPondHgr3sPyrfgzFpqud8xvywG+TUMWrEyLyf+9tOVoYNnMKrknb+/VV6lhXNr33lS8rp373xBrrl1tsURdTusJP4oe94/FHlWDqfdTXto4z2BGQCRAKbXXrGLFoya8QPONdWJE/yeWsaldcDz7fQq/vdWVlT5NqPY+V8k6lcSSdXauOpzSEIU6mNFf1VR0AbDURdWyh1HBCorWugj13xKdUjveuPv6E3X3uZbDb2HeN/K9ecRh/i1U0Rv99LD9zDgYp6e0in17HSRnT+Rz7OUTjnqap/BdfV3dVOr+x+gf2j+ORplljEQwF5TXM/0HzpE5DFx7OXN2Y9EIkC/ulzT6AAKxtf+80L/LBZyRF6HWRl891obOy3Ej7qyyn7M5UPntJAD7xwpGAKn91moUqXk30sjWyuL8p2lP0VebIrIZeVrCpL4CRRnhx2Kwf+0nG+TT+53QOseOU2caWGT1PD+BVSOScS6qNomNNFsfVEWaRFTTXalWHfUdI3kt+9a1KdshIryoNahVR8Q9etXj6pnviOw4cP0aaNG6ihoVEJgiZKaKKk8llPLIftwhCQCepT2bd8y5oZeWvwI5wzeeMp9fT7x/dRa0+AXQNKy2Q/b2AyqLhUfTGrOagRBAQSCWT+lJF4NrZBIIGA5Be9+jPXJuxJv7nkpFPoo5d9kh8QOdx4Txf94kffpuWcb7SOH1qefHSrEvzjX758nVLRrheeo0e23Uuf/fzX0ld8tMSHzr+YOtpaqfXIQdXnoCAIFDsBWa08/SR1Zp6pxiKuBQ6LgfoGQ6yQkhLYqJcj8MalZzDISls5BytRvzoaP1dWSZ98tSPvqx9Oh42qq1yK4uv1B6m335NaCQ6Prdoqq6kWE81sYqUswOf2ufOqmFZzIKJk4hvcT87aVZwuipW02FhgoWRltdwnQdMC3PZwLLkyLvkNiX1WtZSOjpFIvsnqTOeznuwc7NOegJ1/71ezL/iCRvVWSdn2Qkx3v/jRE+juZw/RK/vcFGYXAYh6ApKWrhQlXRaAUhwT+pwbgTHbrNzqwdnHOQHxGz3trM0ZR9M9ZdU6RRkVfNU1dVRfP4P2vveWQjPGKxy6hHyEdRyxd8DdlzHpj3z8arLa8v+HNeOO4QQQyJJAtYo0LMmqlqi677b0jypsr+3vpV5PkOY0jPhbr1hYQzs50m6Yo2KK/O2NDlqxgCPyZvnMU23P3yy45DZuaqxXlNFBT4A6e/rJxwppJoss0ViMBjiPaGsnm6yyOe+cWU2cz8+VDJ0m+wa9yZU7UQh9/e/TsJGtP3LI45pJJ4eN89l82U8hX9uUp8W/B1MWwIFjjkAV/2a/esmSgiijifAuO2s2nbd6BmnlOpRYN7ZBAASKnwBWSIv/GpVED8X/U1Y2cxGfZ5Da247QzFlzlWpOPfOD9Pv//jn96Xe/pNPOPJue2bGdzrng4oybcHAe1BOXrqTdLz6X8bk4AQSKkcDy+ZVZdUtMcG/e9jYFwzGysBluOBKjfzhnMdVyDmKR1Yvq6M2DffTV/3leib5rYlP5//Oxk7NqS05asaCKDnSO903MurKEE60WMzXW15Kf/UA7urVZURz0+nmVNERVThuZOSVJa0cnm/pra0JYWzW1gh4J9lDAYyCz7QQqC73Hq6X+hBFruxlPJ+Vzv5GyYpulgtiaGXKcEKji6MzXXbF02kZ7Fgc+EquNh15sIb9K3+Vp6ywaBgEQ0JQAFFJNcR6flRnYH2vLhy/NafBDvFJxx62/IQlGFPcRFSV3RvMscjhcdP/dt3IAoHJOGzArq3bO3vIRevutPeQdxNNVVgBxUtEQEHO65fOyU0gXNTvpps+dqpjRijIqEXUl9UtcOKvDqG9pkI9X5pgKaukcFz32UrumOQjFV1RWRnvcg4oCGe+7Fu+yYtrVN0Auh1Ux421p62S3AXVBfbRof2S1sozMdlFK9+fBfLecV2Hns5/wMOdKTq2MajEe1FE6BOS+8hVeGVUrEpah3xciG6eMSuXHKJNfkoO0iq061ATeXru4Wrk/Pf5yxzh/drX9QjkQAIHSJACF9Oh1k6iA5WwC1tuTPNKh2Wwmi8VCvb29pXml89hrURybZ7OpWdYyTNvuv4sa+SHzk//4v0kSppvNJnp8+4N01gc20vLVp3GQkgBtvf/P9Ov/+BF98zs/5T9smdsQnnzKanrhL09m3UucCALFQEAC39o4iXm2Ij+dkZQLU/uFyiqFFqmrXOwfpqvI/Lc61dgs7O/ZPKOeuntZGeXV0XxJ/6CPXBz0SNo6dGRqk9Z8tB/ytXKU7ZCSw5iiHVQWbtGmGV01p5WaxVG8ezmd1D5t6kQtxwQBMZP9x3PncxArdenqXnirU0kZZdRXUJR9Puc3OTl91OJxkbjfPOimO596n/o5lZSObf6/9YlVo5YY6aBJOqvWHj/tOaCN9UO69nAcBEBg+glk/1Qz/X3XpAczZsygu/58v5LzLMhKTxsHwPnpT35MTz/1hFK/jn0jv/eDH9O5523hqK9+6mOF9DOfvoba2wv7kKLJYPNRCT/dijlttmKzWuj1l5+nlcuX0dozPshR9sqU2XuPN0jd3d20ev0GjsBro5rqSvrMZ/8XdbYeoK7ONqpvaMq4yTM+cA699vJO8vk4cAgEBEqUQCY+kkUxRI2sXit4+bapoY56+jx5VUbjzPrZt1TMd2c01FJbx/gcnfEy+XoX893Bbg9ZnPNIx/mLy6L89ybSlV1z5XbOf9xIw2UW8vfvU1K8ZFcRzjoWCUhql43L6mlWLUdcVimVvNr5zatWUWOVmULsb/7LB16nZ15tpQ+fNkep4e1D/XTz9rfo4jPn05rFtZznuIJj6Gcm13DO0+/c8QZJbmQICIDAsU8gwVjr2B9sshFG2afqxhv+jU46YT6tWrGU7r/vXvrmddePFt1y/gW0ctVqWr9mBZ26lv0Qd+/k498ePX68b4iyuGTp8owxWHgFdHZzI735ygscWGOYFixdR/0cmET8uLz+gPLSGVlZfX0P9bJpXltnH7311tu0cNESWrdmDTntmQcpktQxNrs2udQyHjBOAAGNCJgNpTWPaJJIrRpIQ10t+djH08fRcAslfQNeJUWMyzkS9KlQ7Uo7skrq7XubvP17KUqVNGxZxSucs4kqVPSljKP56utp2HQSDbGJbsA/QANdu6GMFvIClkhbYpb/weX1GfX2hJkuRRmVk4z6cjqR00a9fXhsNfOhFw5yFPAG2nByg7LqKlYZ2QRGu5wDHUn9EBAAgWOfQGk92eThenR1ddITOx4frVm2r7/hO1RbW8crdF103pYLaOtDDygmo1Lo7jvvoAe3Pcp+V+VFkdtytOPTtGG3Z+7LVlXppFpe8ezp7afX3hiJqPvue++MjsDucNKWiz5Oq9adQXte3kUPP3iPEr1XVquXrjqdldaAElnTYjVTe4YrFyectJw6O7C6PQobGyVHQHJDlpKYeHUkV5GcoSajgdq73blWlfH5Ax4/1dVU0SCvmE5HPuNoyE0eflXorWQw15LeNJfK2YWEYhz0aEiUc3bmU4Sf+ssM/OQvAarKOL8pp9DwHYESepQO3iYTMHBKp0s38CRHjvLmoT6aezRSt/gn723tp3n8+T/ve4PTuETppDnVdM7qmeP81dU0ubDJTk3VFtrP0cEhIAACxzaB414hnXh5zzzrA9TW2sq+oiO+pA2NM8YprC0tLcqMeWVVleJvajAnX6krK8v9IWxi3/L9WfqsN5qprFxd34eHh2jJshX8R0Zdeel/bU0l2a1WTtEwoAQsuOKaz005LFFMz/jAZiUXaSQSVXxLpbBECu3qG6RKzj84e2YTHWntmLKOiQdWrD2dXtr9AkcXTZ5+YWJ5+VxermMmpaUESL8rKjjYRJLvZyQUoOGhwgVqkb5A1BHQs1VAuu8axwdhH2r1vzl1LeevFMc0Sfo9TNZiBad5SnY/qamuJo8vyMcK/zsM870nGIrwJFoV+66OV4jlXqn2njnMUWCkfLrrm4yL7BuKBSjoPay8piqTbH+27UldFToDX7vU37VYJEyxKMwqk7Gf7n0VeiNfw6l9xevtZSSBznKRJ15uoXZ3kD574cnKfanfF1DeDUY9fWhNLQX4BvDnZ/ZRgE17Lz5jXsZNXfnBefSfW/dRMJqZL7qkhZJAiMnuJxl3ooAnyD1OZzBmcM8sz/qeUsBhTWpKYrYkez4ZikUpGi6cFcykjmHHtBGAQpqAfuGiRfT1b3yLvv7VL4/OhDsdDgqFxoJnhEIjPxQnK0sSAMla2ZhQw9hmeYo/AmOlimtL/nCZHDWk04+kgEjXu6FoiBafdAqpHWuVy0F2NrXt4SiWPImqPJyla0OO6/ghTsd/WCdKP6+UVrIp3czmGZyiQZ2Pl51TwFhsTtLzP7VSYYgqyp3a8sVSTseTC1YOODVRPL0tFGWlFFJ8BMz8+5OHyFRSb/Or/s2lqqdQx2qrXRRkRVuNsFX9pLHZ2BJCHl4C4Yjqe4aatjIp4w2EqaG2ivoGvePynGZyzxSlraLCUFL3Er3JyvcQa0pUQU8vp6vJPD90ykpxUBMCRouDjFZX0rrKeILjo6dXTfq9JS08xc6X3++hh3e30RcvXcUTxCPfk3Id/73kZ4mLTl/A3/WRCaQyntS997l9dOkH1P/djTdZW6mnhmobdYczdLcZGumH2ueTeHvT/S79NVpcbOiQ/LpN7J/e5Cupe0q8/+U6Y9Ln50jQy64K7fFieD+OCEAhPXqx6+sb6JZbb6f//r+/pO3bHhr9CgwMDJDBwGZQR8VkYlMploGBEX8Jd9v7R4+Mf4tFVPj5jD9l2j9FI0HydB9R3Q+zxUoup0vVbJaVHypddjPnDOzllVHtVud6evuotspBlVz3xNWLqQYSEn+q/vErHVOVlf2RmbUUjYxNSqQqW0zHQv5BcnOQLkjpEBjsPpy2sw0znRTj32ouYrK5yGRx8oOPnfQGVvj4IUhnMCm/5Vg0wu8BCgW8FPT184rcmG9YNm1GAh7V38PKqppJ9xNrtZM8Hi+vwqm3asimn6nOkbb9Ph+J/+4g9yUuMpOfyT0zGjGX1L0k6HWTGwH84pe75N79A90cUTn5ZK1E2p5TU5f1vWTXO11019N76dqPLqPmKv1oPU5TGclkdSdbMdUfzW8sfz8lUn629631C6z0pyf38mQQz2SrFD0/t0m7pbbaFg2zn3x/J/m8g6pGamng+3YJPp9EQ37+u5D8+VnVwFHomCMAhZQv6cxZs+j2O/9Mt/3pVvr1r3457iJLNN3mmTNH98m2rJi63eoVmtGTj7EN8elUK+KD5R7waaqMxtuWehvrqtikz09BFakgrFZ7RgppvB28g0ApExCF01HdRLaqejb/ZLMonpiJBvooPBDkz2HFvE0e+MrZ1LuCy5qMdrJVLqIKXt0Y5BlrD7+m4+FO8o62tCdPx1XI6yEBlSSYWqJCWsj20RYIaElgfmP2k+bP7mmnR3Ydoq9cupxm1Iy3fpBF0RULa+mxXYfp6s2L2MVmiF58s4P9SDOPNxEf7/J5nIv8bzryBKZvUireF7yDAAjkh4B6jSI/7U97rfMXLGRl9B76xc9+Qnfdefuk/jz26MN07Re+RL/59a9Y2QnSZZdfQY89+sioSe+kE46nHSpzgUqESkmina/omLLiOsABR2oqXfzg2pn2Chg5nywEBI4XAqJgVtbPIUdNE/ndbTTY8gYrlhwQZwqJRQIcCEdm57uUEjqDhYzORpp5wnoa7G2lvvb9BfNBtljMFGZT3aEMVkamGFbOu0Pcj0pnavPVnBtBBSBQAALlHPL2tCU1Wbf08vvd1MMTWdf/Yde4Or59zRqaWWulyzYuoP/7wBv0jd+9yH/3ozS30UH/cNaCcWUz/VBpN0AhzRQayoNACRE47hXS1ZxCpJEDF/3opp8pr/i1+6///Dn95Mc/ZPPdrXTmWRtp10t7yMumWh6vhz51zVXxYsf1u0p9lKpcTlYYp34A1gKilwMpNDVUk56d0CQAUiqxsqkxBASOBwI2Vz1VNy2kkKeLevfv5JXQzFcYRHmNdnNQEvcRslTOVBTTvra9nI4k/eRProzNHFlXFMFiEJn4mo4ou8UwdvTh2CLgtOhpXmPygIxqRvrFS5alLCapZK77xEolh6iOlV87t5ernDzHRYe7fLlWg/NBAASKlMBxr5BKGhd5TSVRDln+5S9ey/kr2XzNaqOODjhbx1lZremDDBj5gVJmYwOh/EZhlBUUMalzcF7UXndqnzeJvAcBgWOdQFXjfLK56miw/W2KBAZyHu4QB+XxsmJq8PVRVeMCTj9iIXfHgZzrTVWB0WSkCJv8FYtEOMI3BARKnUAmvpi5jFUUU61kCfvOP7K7la0ltKoR9YAACBQTgeNeIVV7MbweD6+QetQWR7mjBGxscicpEwohwWCYrBYTK6SFaA1tgEDxEqhpXkRGs5X6j7ya1apoqpGF/W6lXvuME5VgSL0t76UqntMxHTukicluscgQnoZzvhTVNTUcsIUDZrELDGR6CNgt2imKhRpBFZvsGjincVDySE2DSP70Ss4UIMln4hNTep2kRCqj/oFBzh6QeiJ8GrqMJkGgpAhAIS2py1V6nZUVjlAaE1qtRiX5Aqtc2ZshadUP1AMC00lAVkaNvHo50PJ63rohpr+DXL+DlVJpr699X17aklyCw8P5ta7IpONYnJma1tKTl9H2R3ZMKnDiCfMVBVQCAv72938kSZlmtVnpwQfupxuu/xbnmZ4eBWNSR4+jHU5L6T36mQzlpOcJqiAV9vsiFl5NjfVKDmR3P0+kTJggM7CbkIMDr83h73Qrx7BI5zJ0HH3NMFQQyIgAbBczwoXCmRLQcyTeoVhhTO7Ex0v+eEBA4HglYK+eQVZnDQ22vZ13BMPDQ0o70p60mw8pthXJQpk65oNlIeocHBygBXObx71kNVTk+m/fSM8+/RSdum4lnbp2JW3YcCadvfmcQnQLbUwgYDPn7tM5ocqCfKyoKPzf96bGBoqxZUQ3p7GZqIzKoGUivMc9qPi6N89oKAgHNAICxyIBKKTH4lUtojGJSUshHyrhH1pEFx9dKSgBg8mqBDDydr7Pq4qFWUWQdqS9Gg6cpNMbNR+vrJ6VqY2epnnrkyuswITXZCgT9kQiEV4lGnvJYb1eT5vO3kx3332nUtrHOV23bX2Itpx/wYSz8bEQBIKRwtwftB5LoYNtV1e5lEnu/sH0wZQkcKOsjtbXVms9bNQHAscFgdKz2zguLsv4QRpMNjKYbaQ3cgL7ipFLJonaI0EfJ64f4ITxxWPSNr7nVFBlVNpGFMyJVyC3z+Xl5VRf30CdnR1gmxvKvJ/tqp9N/t4jR1O25L250QYkRYy/r4WqZsynrkNvje7XYiPCQeV0ip+WFrXlXkeFJFmETEnAbLbQT372H+RnhfOll3YrSqdMKtTU1PJ11FNba8voua28vWbdutHP2CgcgUpr6fmQCh2LsYI47XjBRDIE9PDKqFoRpbS5sYY6u3vVnoJyIAACRwlAIS3Sr4KsNkjeQCunbZAVgggnsY9FgzTMCezFq15nMJDF1ki1M0+gSMhPHncnDfa08miKy8tJHiiVh7gCxCURTkW0mFKk36yxbn39G9+i//0v147t4K1nn32aPnnV5cq+8y/4MH3/hz8mt9tNLlclfe0r/0qPP/bouPL4oC0BO//mK3SpVxoNpuCkMgaznSz2auo78Hee0S+8OV6gv4Oq5qwks72GwoHxwd/0PKHmalCX89CkLx+30ipBbe02E/mCBbiBqLiUJvbNTVwJ1hmMbK7M10zF6rBMIur0Jn6VjjJgtLr42jWmJBP0uklefb099Mv/+gW/91JtbR1dd/2/05q16+m6b36dHI6RiOyhUGi0LglqJP6kEBAoVgKxoRjHwFB/74lxwnV/AMG6ivV6ol/FTQAKaRFen8rGeeSqm00BXnXwcMqGaGjEB2eqrhqsVWS115GskLjbD5Cnr22qogXfHwqHFXMtDrWb97YluEC4RE2R8g5nigbuvut2+tY3vj56NO4jZ+X0OTf99Bd05WUX06uvvsIPluvoD7feTqtXnkyBQGC0PDa0JRBii4eyconcOLXE2P9raGh8rl1HzQwK9LcWzFR3Uu/YdDfQ30b2qnrqPjI+zHUsGqKAR92yhp6/d4lj8/q8VF1pp2F+MJxuMbDZaTgcGte/oViUgjxZWJ7mmknfh/lhdSjm5Nf0j0Uty2g4wNcudQ7pGDMRaWtro1/87CejVT/33DN0x133KoGLBgdHVpkMPJEaV0pNJhMNDCAy6SgwbBQdgUgWzxPxCLxFNxh0CASKnAAU0iK6QGKaWzd7CcVCPurbv4tXRNUpcWHOCygvvdlFjuqZZHFUUdfht4viIS7As4XVleaCUDYYdFCWMiQd44BT4u81UTZu3ERHjhxWlFE5tnvXTurq6qQNZ56FVdKJsDT8HA6knnySpmJR57jfdoWOrSUc1dTz/ruskBYmgFiyIYtCWj1/PSuk74zr3xCvDIZ86szeokZWthMUthBvx3iZ1MBmu8kCiiTrR772mYw68ni84/onfY2ouGbxPomyPVQEynW8P+neY5EQX7vsJqA6OzqUyUij0Ug9Pd3KfaapeSbt37dXaVai7nZwGQgIHEsE4pO6x9KYMBYQKAQBKKQ5UnbwSmYyKU9jdjfxHJPNRfVzlpK3ax8FBzqVw2UZmt5FWZEdbHuHrDVzqGnRGuo8+CY/zKn3L63QcR7PykY2P1NnUqZnf6F0ZQOcM8xiNZPOE+CE1vl9WLZaLdTbN5C2Tzr2xZ3quk28LvJZcMhDf6mJTHA46qomddvP5t3RyIhZ0bp16xWfr96eHtq69UF64/XXlPINDQ3j/L1kZ2trKzU05iea6qROYodqAmZ7FYW8vdO3Onq0p5IKRvphddaS162dojHA+Z/NZtO0K6QWs5Fa+sav/qq+SMdBwbPO2kgHDuynw4cPsZtGBf3TZ/+ZXnn5JZIARiJPPbmDLr/8Svr+924kq9VKF1x4Ef3ge985DshgiKVKQPIgZyrF5POead9RHgSmkwAU0hzpRyb4S8Wry8TETKJj1s8+ic1z36OQpyteRdbvvu79ZKmeRXWzTqC2va9yPer8SqXPotQOqVyZHbLoFTO0VB2VlgcGvWS3GEkc/vMlRoOeKtiBVFYw0skwm9lNdd2SnTs0ZJ72h/1k/Uq3TxSESGDyKnt8hebvu3dRf3+/kqD+xBNPovsf3E6fuuYq+utfniOn0zUpcb2Y2jmP+oKlaxvHC0dALCIivuJQlCK+fvYjrdRUIe0f8HAakUoa5PuH+GhNh9gsJiWCZjCkfoJvOvo5nW3OX7CAbv79rYoZrp5n8VpbjtD/+Zd/Hu3Sd2+8gW659TZFEbU77LR921ba8Th80kcBYaPoCJhMBqrgwH6Z3HfMbBEAKRyB6poaJc+x+KRDSpsAFNIcr1/A05e0huEJPl5JCx3dKYqjp+M9Cg5qt6rg6zlAtroFnI5hvmJCl6r9+DExJwv51ZnWyTkxB/t7sXKXTnp7+2j2rCZ+oPRldGNPV2/icZvFyqujblX9keAiU123xDrj27Fo7Tgzvfj+Yn+PsrldgFeXppInn9hB8opLMBigyy4fUUjFt8toNMUPKe8jPl8D4/bhw/QTkAjcPg3vHbmMKBry8AppQy5VTDo3yia7blZKHXYLv6efcJpUgQY77DYzdXYhcmYqlL//3c30pz/+gRrZisLn95FYXSSKrJxu2riBGjhIksfrUR4iE49jGwSKjUBfv4eDqplJTdoX6bvco/yIsaDZZXzubztp9uw54+r72le/SHffeQeJyf9vf/9HJTCa1WalBx+4X/FXl6jekNIkkLk9QmmOs2h7XdU4X/EZ1VIZjQ/W27WXjFYH2ThS73SKrCq4+wf4xmHJSzdsbBIs6Un63FCWcgHc2dFJdrtNqaK9vZ2ampvHVSd/ANrb28btw4fpJ6A3mCkWzp/1QSYjjHEQHElPpbX09rrJyquUZmPhTeddDiuFgmHy+oqDsdZstaxP/NFF8ZyojCa20dHRDmU0EQi2i5ZAj9x32FRf7j3pxMKrqS67lbq6ky9SpDsfx5MTuObqK9lCpnn09ee771IKXv/tG+nZp5+iU9etpFPXrqQNG86kszefk7wS7C0JAlBIEy6TTqebMgm72Wym6mptEx5L+gBn3Szydu9L6IW2m/7ewxy2P7mfq7Ytpa5NbtJ6DkzisGmrlJrYVLfaZaeOzu7UHcDRSQQuufQyslhGrkdNbS1dfMmlirmuFHzmmado1qzZtHzFSuW8texrKrkExZwXUlwEJIhGYmTa6eyd9CMfQT2iPOvdxbn9RDksL2BuJ1GAxVy3swero9P5vULbIDAdBGS1raWtU1E0nbz6OZXIc01NlZNa2zs50v/kIIFTnYf96QlE2aJNJrriL8k1r+eI55vO3kx3332nUoH4qW/b+hBtOf+C9BWiRNESgMnu0UsjaS62P7KDvvrlf1UiisavmCip3/vBj+nc87aQ3+9Xcqx95tPXaLJSJHlGA+5WNgfN3w0s7O0hS2Uz5zOtI19/V3xY0/Le1tFNs5oalQdWT5aRGxM7Lmle5I9AW0cXBQqQViax7WNh++JLPk4/vuln/F1uJ/HDeOjB++gPt/xOGZrP66Wvs2nM7XfcQ93dXcrxr3zpC4hiXIQXvryiuG7j+eqP+JJKxFZJA9OdQbL6bC+Zge/90lZ7Z4/iP5ptPTgPBKaLgJjz69iCYqKUs49vWUXh8xVP7Eemn3UGE1mcI1Y86c4t53ztci/K9X4U4tQvh1kpraupopkz6tgkN0QyQSYiOdZl0ioUjtCh1k5OaRTOuT3pr5HzSg9XqPNF1RljObeZjmU+jivR4TkA3kSRQJyS/iwu//S5/0UXfvgjSsC0e+66g/r6+pTJcZ1OPy7wYmtrC61Zty5+Gt5LkEBxPclME8DvfPcH9DF+OLexUjpRZMZl5arVtH7NCuVh/IYbv0vfvO7bHKzhcxOLZvzZWtmg5BnN+MQMT5BASRZ79bQrpHKzPtzaTs2N9cqNXK1fRrLhyqpFFa+MtvPKqARNgmRO4ArOMWq3OziJfa0ywTIxv+hDDz5AD2/fRo0zZvCNv5Xgm5E540KcIT7RxSRq/Mqz7W9nVw81z6inmkoH9bjV+7tn2p4y2SVtsMmex6suh2qmbaA8COSbgOQ0rmBLrIlSVlY+pTXYxLLF9LmMozcnG0+yPpbRkDJGGWuuEo0O8cR3D0+IcYotk5FX6Eas6YJsyu9mP9Pg0QlxLdoqYwuQMp4MqxhmjVqFlJeHSvJasqlL0muZmLrsjtv/REFOHSi8zzl3C1151dV0/rmbyXE0uGI8p7FgkqBGTodTBTEUKVYCUEj5yvzbdd9QXi/ufmXSdTpvywW09aEHRleGxJn6wW2PKj6LYjqQrRh4BoyXRikanDroTLZ1TzxPUjFUzmaz3SMTjxT+syilBw630Iz6OmqodSmRM/18U1crsmrhsHMaGf7DdLilnWcrEVlNLbtk5TyeQY5MPPWDfTQapSOHDyc7FfuKhECuKwBaD0MegvMpYkI3o6GW6qqd/DDopYjGQSwkvUslr8J09/SRrMpCQKBUCchKU+JqU3wcMZ7UGcogJVz8vOl+jwR85OnrUdUNvcHAae8iGaW+S1exn5n5ffmdAJc+Bz1u9rOe+u9yYj8dOpMyzsR9pbAdC4fI09OSsqu//tUvR4/f8vvf0l+e30Wnn7GB9rw68qxu4GscV0pHgi72j5bHRukRyH3qqPTGnFGPJe9ia8vYj6aFt8VsrLKqKqN6JhaWVC+SYqUQImlcMklDk+8+DQ0NUwv7WvT09rNyySlvalyKb6kom8lElE9ZEa1h87m6GifntfPT/kMtUEaTwcK+445AjHPKVugnm+VNBwjph/Qn3yLm/3IfqK+r5KAj6QOOqOmPrEyIj6oEJulgM10oo2qooQwIgAAI5J+ATI739fayVZedenq6FZ/SpuaZow1L0MWOjo7Rz9goPQLJNYDSG0feeix5F+MzMNJIKDTysCWmARJJsIbzhyaTiiR+G4nljLZKTg/Ktv+6wkSNFDOIdH3SGaLkapyX1Ockse/xbaOpgnQ5RNT0h9k3o72HlU0zm0tbqM5pVxKqS5oHo0HHfhlRXgkdmTMRvw2fP0DtPQOKD2ou7Ros9imvW3xsie8Gc4CZaPPQm1hvvrdN1koe56xJzQx0HqRIsDCTIZMax46UBFwcdTvdd81oHhz3W5Y/1Hqri4a9I35NKRvI80GjrYqkP4n3GoPVyd/DsQeHVF0wlsdU31Pc3iCF2UilpspFktfS4w1QMKze2iKxHxKp28Evsbho6exjH7EhVf2Q+5Dae2aM0zDpDZa01zexX9O9bXbUUI3BkbIbfo5N4B9AULmUkKbpoLgFmR2TgzHqzTyJleYZZZq6nLJZk72KauyulGXiB4djYeW3lsuzQryuQr7rjAGyVzeRuVrdPdNsHCipe0qcpZ4XZZI9P4c59eBg9xElqOKcuXPpL889qzzzbTjzLFqwcBHtfPEFRRl96skddPnlV9L3v3cjWa1WJb/xD773nXj1eC9BAlBI01y0gYEBErOAuJhMIysRkqdRxN36fvzQuPdYeNm4z5M+sLlvjFcuh/jhrRAi6RjERCKVxMJBGuw6otofwcCrx3JOrjLAdQz0u3OtRvX5YvYz1XVLVkmksZJXfVKzS3bedO+TnLLu1skzhvn08ZvuMZd6+4Pdh4k9iFIOo67JOu637O/vIRMHLwlGO1OeV4iD5TrOwzfQM65/kYCHv4fq+uZy8W8tg3vKoNyz+vvJxZNZVS4n2S16kjRTAXYDCEemvrfKaqhE6JbE95KuQc5pYT9pvz+z+5ncU9XeMyX6cDS8sKTuJUGvm9ydqa/dELueQIqTQIAnCoJJcqVHXNXjfqPF2fvJvQr5+tlMX93khwS9kd9nJveTyS0Wfo/02dffwabB6iaNTbU8zhJ8PomGAvx3Yf8kwHEfUjHB/enP/5OVTRs/H/aTxWrhQItfUtJKyUnfvfEGuuXW2xRFVCYkt2/bSjsef3RSfdhROgSgkKa5VpJ3UUwB4iLbsmLqdo8oUBIRLLmk8y8domH+x46kyU/XfG/6tqQ/mUT8HWalOh8pHjQf+oQK5YY39XWbUJg/SvnSHGcso3FOHjn2FJrAkIoARcNDMik2dt8IeHrIUb103L5C9zvenoEtP/q6XhvXF7lPqP29iXKTzW/N3c+TL/yysrWFna0tqtgHVK+voDBbW8T4JW4Cki1G8hVX8MvAyqishorVRXd3jxIlMz6GTN7l3pDRPZOvWzbjy6RPWpYVVw+1107LdlGXNgSUyYJkEwb8vU28h2jTWv5ryeRewj9z5RmrlH5vQlD6O8R+8Wp/d8PD5SV1T4l/S9I9h7333ru0dtUpHHSxjicOTdTScoTv42N/9yTf8aaNG6ihoZGtYzzIbRwHW8LvUEjTXLzHHn2Yrv3Cl+g3v/6VEsXrssuvoMcefWTcDyNNFUkPy81Gx76ohZLyEgzxXig2aAcESplAiFcgY5w6ysAm2mFf4SwNJjIzWNlcl/1Hw8H8Bv2Y2G7iZ1Ew5UWEvKGJXLANAvkkYGZTWiun8DCYLCQBG4McTCno7Scvm3NH2ToLAgLZEBDlvKsrtYVGR0d7NlXjnCIkAIWUL4qYBZyx4UxlJuZ/br6F7dPDdPr61YovlJgBnHnWRtr10h7yerzKTMynrrkq50sZCfrJYnPmXI/aCnTsuwQBARA4Ngl4+jrI5mycVoXU7JpBAz1txyZgjAoEQGASAYPJRtXNCxWrgzBH8w/08YtXXyU2hsniosqGtdTfdZjcHQcmnYsdIAACIJBIAAop0/jyF69NZDJuWwJ0yHEbR/aysS27VrMxYQ4qozelDhYxriM5fNAZbbyiCz+fHBDiVBAoagKDHD7fWdtMRls1SZqnQou0W64zktc92We50H1BeyAAAvknYLQ4qGHeKeTvO0Ied8ukBkPeHlZQj5C1bj7pOfhj16E3J5XBDhAAARCIE0DalziJNO9ej0czZVSaioT8iimLwcLRdvMs0oZ/sPAPqXkeFqoHARBIINDXvp8sVbMS9hRu01I9h/qwClI44GgJBKaZQO2sE8jffYACSZTReNckcONg21uk01VQZf2c+G68gwAIgMAkAlBIJyEp3A6Pu5OM9tq8N2h0NpCnF6Z0eQeNBkBgGgn42F8r6PeQrW5hQXsh7YnPmLQPAQEQOPYJOOtmUYwn1QOD6iwifKy4uhrmUkWB0twd+1cAIwSBY48AFNJpvKaDPa0ciKSKTXfteeuF+HXJaqwEPoGAAAgc2wS6j7xDFezXZalsKshALVUzqcJoIWkXAgIgcHwQcFQ1plwZnUghFuEcwQOdZKusn3gIn0EABEBAIQCFdFq/CMPU176PLDVz8tKLCr2JrFy3u+NgXupHpSAAAsVHoPPAG2R0zmCltDmvnZP6jfZ66jwI37C8gkblIFBkBCr0RoqGMoumHQkMcgReW5GNBN0BARAoFgJQSKf5Snj62jnfVJQVx3ma98RWv4AGOMJdyD+ged2oEARAoDgJSJqF9n2vksFWS7ba+XnppK12HhnY3aB9/6vsCx/MSxuotDQJmM1mqq6uLs3Oo9eqCJRXZB4Pc3goQhZHjar6UQgEQOD4IwCFtAiueechdvo3OzUNSGJvWEzhUIjcnQeLYIToAgiAQCEJiFLaxkrpcLmeXM3LNIvoLZHBpT6pt/X9l6GMFvKiFnlbOp2OfnTTz+jF3a/Qtkd20HZ+NTbOKPJeo3vZEMhuEqqMfc37s2kO54AACBwHBKCQFsFFHuaULB3795Ce/UltdQty6pGY6Tqbl1IsNkTdh9/OqS6cDAIgULoEhmIRNqd9gwbdXeSYsYRs9Qsp23zEcp7cm+xcj9QnZrpy34KAQJzAlvMvoJWrVtP6NSvo1LUraffunfTN674dP4z3Y4hAWXkFVejNGY1Ix7EywgFfRuegMAiAwPFDAAppkVzrWDRMbe+/RLHhMnLNWsHmdpmbPEkAo0o+1z/YT11QRovkyqIbIDC9BCRH6ZG3X2SLiTA5Zy5TVjjF/7OClcxUIsfNXM7ZfLLyCofD1ML1SH0QEJhI4LwtF9DWhx6gQCCgHLr7zjvonHPPo/JyPGZMZFXqn/0D3WR01GU0DJOjnnx8HgQEQAAEkhHI3BEgWS3YpwmB4eFhZVXT5qonV/1sfhhsorCnh0KebpLVjmQis5SSOkZu9uGgj326XoPPaDJQ2AcCJUDAZKukdP5ZOn0ZlVXoMxrNMJd2sz+5vKzOWjLbq1jJbKZynZ6GIiFe7Yzwton92YOsQOgUZVUmyYIeNw30do49SJaVc9uZKRgSAMXCbaoRvdGcdvxq6ilUGeGn5ppJf4Z4Rbmcr1u661uovqtpR88RlC3O1IFoJIp7hP/2NLB57hM7Hh+ttqWlhYxGI1VWVVFvT8/ofmyUPoH+7iPUvGgNhb29qoIbWWvmkt/bxyukiPZf+lcfIwCB/BCAQpofrjnV6u3vJHlZXXVk41dV9WxWSKPKw2LcTK6MHxrFjG54eIhXRHuVFVH4Z+SEHSeDwLQTsPJklI6VslSiM/RxPr/MFNLE+uQ+IS934s4027m0p2Olxl5TlaaFkcP64XBJ5SqUvIoWvkeL4pZOopGgMrZcWKZrQ+vjEhXVXpH62nk5MJ8opE6Hg0IctyAuodBIsCunwwmFNA7lGHmX693T+h5VzTiRBtvf4es/OOXILFWzSG+p4kBrL09ZBgdAAARAAAppEX8HJNE8ks0X8QVC10BAYwIBXkWoCBpS1hpzRZUJqpSFiuhgjFdgxcRPjViMvGLLk2+lImK5EvS6FYUsXZ9lXEMxQ0mNLxIK8IRn6msnK6QiAwMDZDCMfXdNppGJlYEBBLJJ990oxeOe3ja2rBiiGjbpD/S3Uoi/J9HwmI+o5FgXK68hNs9o3/cKT6gnt/IqxbGjzyAAAtoTgEKqPVPUCAIgAAJZEfDzJFQ6iXBE7iE2py0VibLC4umZegUlcRy6qhp+cC2dscUiYVJzzeJjjEVdLwtAqQAACx9JREFUJfVgLiaWnp4Rn9D4GKZ6b29vo+aZM0cPy7asmLrdmazFj56OjRIg4HV3KNYWjppmsjeewFZbJpKAR2K5FfIN0mBvO0lqOwgIgAAIpCMAhTQdIRwHARAAARAAARBISeCxRx+ma7/wJfrNr39FwWCQLrv8Cnrs0UfYd3Yo5Xk4WNoEJAVMX9te5VXaI0HvQQAEppMAFFKV9CXZt8Viod7eXpVnoBgIgAAIgAAIHB8Etm/bSmeetZF2vbSHvB4vebwe+tQ1Vx0fg8coQQAEQAAEciIAhTQNPkn2/b0f/JjOPW8L+f1+6mOF9DOfvobEPAkCAiAAAiAAAiBAFI1G6ctfvJZsdjvZrDbq6ICpJr4XIAACIAAC6ghkFr9fXZ3HVCkk+z6mLicGAwIgAAIgkEcCXo8Hymge+aJqEAABEDgWCUAhTXNVkew7DSAcBgEQAAEQAAEQAAEQAAEQAIEsCcBkNw24dMm+6+evSFrDb3a00jkrG5IeK9adv3uilaqaF6vKqSdjiAXcJWm6/M7bb9JU1y3ZtXnpnb305v7SifwpY9jz9gD5I2Ye54JJQ3K3vc8Jyr2T9mPH9BOobuZIlWnykHb07qdDvbHp76zKHrR7ylT/3soiXnrwvrtp7akbVNY+vcXuveuPqu+Zkof0hzcforo61/R2WmXr/+/RVtJbq/na1aY8Q/KQ+jjaKqT4CNg5+q3FOfn6/fXdd2nZwtK5hwjZXe9xSiyzi7+PJ6gCPcy/t3tuv4UuufJTqsoXS6Ft991JjtpmstUbVXXJMNxNN/7qAF18bpOq8sVS6Ge3tiT9uxDyDVB/x/5i6Sb6UUACZZWVlZwlCjIVgaee+Sv97Kc30batDypFJM/a+/uP0MYzT6P9+/cl/UFNVRf2g0AxEIBCWgxXIXkf1Cikyc/EXhCYHgJQSKeHu5pWp1JI1ZyLMiAwHQSgkE4H9eJoEyukaa5DumTfnZzwGQICIAACWhDobXlHi2pQBwiAAAhwDtkW5QUUIAACIFDsBOBDmuYKIdl3GkA4DAIgAAIgAAIgAAIgAAIgAAJZEoBCmgacJPu+6KKPkslkUkoi2XcaYDgMAiAAAiAAAiAAAiAAAiAAAioJwGQ3DSgk+04DCIdBAARAAARAAARAAARAAARAIEsCCGqkEhySfasEhWIgAAIgAAIgAAIgAAIgAAIgoJIAFFKVoFAMBEAABEAABEAABEAABEAABEBAWwLwIdWWJ2oDARAAARAAARAAARAAARAAARBQSQAKqUpQKAYCIAACIAACIAACIAACIAACIKAtASik2vJEbSAAAiAAAiAAAiAAAiAAAiAAAioJQCFVCQrFQAAEQAAEQAAEQAAEQAAEQAAEtCUAhVRbnqgNBEAABEAABEAABEAABEAABEBAJQEopCpBoRgIgAAIgAAIgAAIgAAIgAAIgIC2BKCQassTtYEACIAACIAACIAACIAACIAACKgkAIVUJSgUAwEQAAEQAAEQAAEQAAEQAAEQ0JYAFFJteaI2EAABEAABEAABEAABEAABEAABlQSgkKoEhWIgAAIgAAIgAAIgAAIgAAIgAALaEoBCqi1P1AYCIAACIAACIAACIAACIAACIKCSABRSlaBQDARAAARAAARAAARAAARAAARAQFsCUEi15YnaQAAEQAAEQAAEQAAEQAAEQAAEVBKAQqoSFIqBAAiAAAiAAAiAAAiAAAiAAAhoSwAKqbY8URsIgAAIgAAIgAAIgAAIgAAIgIBKAlBIVYJCMRAAARAAARAAARAAARAAARAAAW0JQCHVlidqAwEQAAEQAAEQAAEQAAEQAAEQUEkACqlKUCgGAiAAAiAAAiAAAiAAAiAAAiCgLQEopNryRG0gAAIgAAIgAAIgAAIgAAIgAAIqCUAhVQkKxUAABEAABEAABEAABEAABEAABLQlAIVUW56oDQRAAARAAARAAARAAARAAARAQCUBKKQqQaEYCIAACIAACIAACIAACIAACICAtgSgkGrLE7WBAAiAAAiAAAiAAAiAAAiAAAioJACFVCUoFAMBEAABEAABEAABEAABEAABENCWABRSbXmiNhAAARAAARAAARAAARAAARAAAZUEoJCqBIViIAACIAACIAACIAACIAACIAAC2hKAQqotT9QGAiAAAiAAAiAAAiAAAiAAAiCgkgAUUpWgUAwEQAAEQAAEQAAEQAAEQAAEQEBbAlBIteWJ2kAABEAABEAABEAABEAABEAABFQSgEKqEhSKgQAIgAAIgAAIgAAIgAAIgAAIaEsACqm2PFEbCIAACIAACIAACIAACIAACICASgJQSFWCQjEQAAEQAAEQAAEQAAEQAAEQAAFtCUAh1ZYnagMBEAABEAABEAABEAABEAABEFBJAAqpSlAoBgIgAAIgAAIgAAIgAAIgAAIgoC0BKKTa8kRtIAACIAACIAACIAACIAACIAACKglAIVUJCsVAAARAAARAAARAAARAAARAAAS0JQCFVFueqA0EQAAEQAAEQAAEQAAEQAAEQEAlASikKkGhGAiAAAiAAAiAAAiAAAiAAAiAgLYEoJBqyxO1gQAIgAAIgAAIgAAIgAAIgAAIqCQAhVQlKBQDARAAARAAARAAARAAARAAARDQlgAUUm15ojYQAAEQAAEQAAEQAAEQAAEQAAGVBKCQqgSFYiAAAiAAAiAAAiAAAiAAAiAAAtoSgEKqLU/UBgIgAAIgAAIgAAIgAAIgAAIgoJIAFFKVoFAMBEAABEAABEAABEAABEAABEBAWwJQSLXlidpAAARAAARAAARAAARAAARAAARUEoBCqhIUioEACIAACIAACIAACIAACIAACGhLAAqptjxRGwiAAAiAAAiAAAiAAAiAAAiAgEoCUEhVgkIxEAABEAABEAABEAABEAABEAABbQlAIdWWJ2oDARAAARAAARAAARAAARAAARBQSQAKqUpQKAYCIAACIAACIAACIAACIAACIKAtASik2vJEbSAAAiAAAiAAAiAAAiAAAiAAAioJQCFVCQrFQAAEQAAEQAAEQAAEQAAEQAAEtCUAhVRbnqgNBEAABEAABEAABEAABEAABEBAJQEopCpBoRgIgAAIgAAIgAAIgAAIgAAIgIC2BKCQassTtYEACIAACIAACIAACIAACIAACKgkAIVUJSgUAwEQAAEQAAEQAAEQAAEQAAEQ0JYAFFJteaI2EAABEAABEAABEAABEAABEAABlQSgkKoEhWIgAAIgAAIgAAIgAAIgAAIgAALaEoBCqi1P1AYCIAACIAACIAACIAACIAACIKCSABRSlaBQDARAAARAAARAAARAAARAAARAQFsCUEi15YnaQAAEQAAEQAAEQAAEQAAEQAAEVBKAQqoSFIqBAAiAAAiAAAiAAAiAAAiAAAhoSwAKqbY8URsIgAAIgAAIgAAIgAAIgAAIgIBKAlBIVYJCMRAAARAAARAAARAAARAAARAAAW0JQCHVlidqAwEQAAEQAAEQAAEQAAEQAAEQUEkACqlKUCgGAiAAAiAAAiAAAiAAAiAAAiCgLQEopNryRG0gAAIgAAIgAAIgAAIgAAIgAAIqCUAhVQkKxUAABEAABEAABEAABEAABEAABLQlAIVUW56oDQRAAARAAARAAARAAARAAARAQCUBKKQqQaEYCIAACIAACIAACIAACIAACICAtgSgkGrLE7WBAAiAAAiAAAiAAAiAAAiAAAioJACFVCUoFAMBEAABEAABEAABEAABEAABENCWABRSbXmiNhAAARAAARAAARAAARAAARAAAZUE/j/V93ItwulELwAAAABJRU5ErkJggg==", + "text/html": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "score_figure(df_eventteams_scores, 'performance', scatter_opacity=0.5)" + ] + }, + { + "cell_type": "code", + "execution_count": 47, + "metadata": {}, + "outputs": [], + "source": [ + "# TEST CODE (borrable)\n", + "\n", + "#acc_fig = make_subplots(rows=2, cols=4,\n", + "# shared_xaxes = True,\n", + "# shared_yaxes=True,\n", + "# column_titles= team_names,\n", + "# print_grid=False,\n", + "# specs = [[{\"secondary_y\" : True},{\"secondary_y\" : True},{\"secondary_y\" : True},{\"secondary_y\" : True}],\n", + "# [{\"secondary_y\" : True},{\"secondary_y\" : True},{\"secondary_y\" : True},{\"secondary_y\" : True}]]\n", + "# )\n", + "\n", + "#hover = ['
Medal distribution: %{customdata[0]}%
'+\n", + "# 'Participation: %{customdata[1]}%
'+\n", + "# 'Team players: %{customdata[2]}
'+\n", + "# '
Team Accumulative Score: %{customdata[3]}']\n", + "#---------------------------------------- build graphs\n", + "#------------------------ TEST CODE (2 ITERATIONS)\n", + "#for e in range(len(events)):\n", + "# for i in range(len(team_names)):\n", + "#------------------------------------------------------- accumulative sum values\n", + "# acc_fig.add_trace(\n", + "# go.Bar(\n", + "# x = df_eventteams_scores[df_eventteams_scores['event_game']==events[e]][df_eventteams_scores['team']==team_names[i]]['medal'].map(lambda x : x.capitalize()),\n", + "# y = df_eventteams_scores[df_eventteams_scores['event_game']==events[e]][df_eventteams_scores['team']==team_names[i]]['medal_frequence'].values,\n", + "# name = 'Event '+events[e]+'',\n", + "# marker_color = [medal_colors[2], medal_colors[1],medal_colors[0], medal_colors[3]],\n", + "# opacity = 0.8,\n", + "# text = df_eventteams_scores[df_eventteams_scores['event_game']=='A'][df_eventteams_scores['team']==team_names[i]]['medal_frequence'].values,\n", + "# textposition = 'inside',\n", + "# textangle = 0,\n", + "# textfont_color = 'black',\n", + "# customdata = ['bronze', 'silver', 'gold'],\n", + "# hovertemplate = '
Total medals: %{y} %{customdata}',\n", + "# ), row = e+1, col = i+1, secondary_y = False)\n", + "\n", + "#----------------------- NO DESCOMENTAR\n", + "# acc_fig.add_trace(\n", + "# go.Bar(\n", + "# x = df_eventteams_scores[df_eventteams_scores['event_game']=='B'][df_eventteams_scores['team']==team_names[i]]['medal'].map(lambda x : x.capitalize()),\n", + "# y = df_eventteams_scores[df_eventteams_scores['event_game']=='B'][df_eventteams_scores['team']==team_names[i]]['medal_frequence'].values,\n", + "# name = 'Event B',\n", + "# marker_color = [medal_colors[2], medal_colors[1],medal_colors[0], medal_colors[3]],\n", + "# opacity = 0.8,\n", + "# text = df_eventteams_scores[df_eventteams_scores['event_game']=='B'][df_eventteams_scores['team']==team_names[i]]['medal_frequence'].values,\n", + "# textposition = 'inside',\n", + "# textangle = 0,\n", + "# textfont_color = 'black',\n", + "# customdata = ['bronze', 'silver', 'gold'],\n", + "# hovertemplate = '
Total medals: %{y} %{customdata}',\n", + "# ), row = 2, col = i+1, secondary_y = False)\n", + "#----------------------- FIN BLOQUE \n", + "\n", + "#----------------------- traces: scatter accumulative score values\n", + "# acc_fig.add_trace(\n", + "# go.Scatter(\n", + "# x = df_eventteams_scores[df_eventteams_scores['event_game']=='A'][df_eventteams_scores['team']==team_names[i]]['medal'].map(lambda x : x.capitalize()),\n", + "# y = df_eventteams_scores[df_eventteams_scores['event_game']=='A'][df_eventteams_scores['team']==team_names[0]]['acc_w_score'],\n", + "# name = 'Team metrics',\n", + "# mode = 'markers',\n", + "# marker_size = l_marker_size[e][i],\n", + "# marker_color = [medal_colors[2], medal_colors[1],medal_colors[0]],\n", + "# marker_line_color = 'white',\n", + "# customdata = df_eventteams_scores[df_eventteams_scores['event_game']=='A'][df_eventteams_scores['team']==team_names[i]][['medal_relative','player_ratio', 'total_players', 'acc_w_score_total']],\n", + "# hovertemplate = '
Medal distribution: %{customdata[0]}%
'+\n", + "# 'Participation: %{customdata[1]}%
'+\n", + "# 'Team players: %{customdata[2]}
'+\n", + "# '
Team Accumulative Score: %{customdata[3]}'\n", + "# #hovertemplate = hover[0]\n", + "# ), row = e+1, col = i+1, secondary_y = True)\n", + "\n", + "#----------------------- NO DESCOMENTAR\n", + "# acc_fig.add_trace(\n", + "# go.Scatter(\n", + "# x = df_eventteams_scores[df_eventteams_scores['event_game']=='B'][df_eventteams_scores['team']==team_names[i]]['medal'].map(lambda x : x.capitalize()),\n", + "# y = df_eventteams_scores[df_eventteams_scores['event_game']=='B'][df_eventteams_scores['team']==team_names[0]]['acc_w_score'],\n", + "# name = 'Team metrics',\n", + "# mode = 'markers',\n", + "# marker_size = df_eventteams_scores[df_eventteams_scores['event_game']=='B'][df_eventteams_scores['team']==team_names[i]]['acc_w_score_total'],\n", + "# marker_color = [medal_colors[2], medal_colors[1],medal_colors[0]],\n", + "# marker_line_color = 'white',\n", + "# customdata = df_eventteams_scores[df_eventteams_scores['event_game']=='B'][df_eventteams_scores['team']==team_names[i]][['medal_relative','player_ratio', 'total_players', 'acc_w_score_total']],\n", + "# hovertemplate = '
Medal distribution: %{customdata[0]}%
'+\n", + "# 'Participation: %{customdata[1]}%
'+\n", + "# 'Team players: %{customdata[2]}
'+\n", + "# '
Team Accumulative Score: %{customdata[3]}'\n", + "# ), row = 2, col = i+1, secondary_y = True)\n", + "#----------------------- FIN BLOQUE \n", + " \n", + "#---------------------------------------- fix category orders for 0 values\n", + "#acc_fig.update_xaxes(\n", + "# categoryorder = 'array',\n", + "# categoryarray = ['gold', 'silver', 'bronze'],\n", + "# showticklabels= False,\n", + "# showspikes = False)\n", + "#---------------------------------------- applies secondary y axis for subplots\n", + "#acc_fig.update_yaxes(\n", + "## anchor = 'free',\n", + "## overlaying = 'y',\n", + "# #title = 'team inner-relative score',\n", + "# side = 'right',\n", + "# secondary_y = True)\n", + "#---------------------------------------- config: title, legend, hover, template, fig dimensions\n", + "#acc_fig.update_layout(\n", + "# title = 'Accumulated Event scores, by teams',\n", + "# barmode = 'group',\n", + "## yaxis2 = dict(\n", + "## anchor = 'free',\n", + "## overlaying = 'y',\n", + "## side = 'right'),\n", + "# showlegend = False,\n", + "# hovermode = 'x unified',\n", + "# hoverlabel_align = 'right',\n", + "# barcornerradius = \"50%\",\n", + "# template = 'plotly_dark',\n", + "# width = 900, height = 400)\n", + " \n", + "#----------------------- show line (return)\n", + "#acc_fig.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## \"Conclusions\" (and hipothesis)\n", + "\n", + "After reviewing the calculus and impact of accumulative score system in the escenario wich players are placed in teams with symbolic value, posible solutions are proposed, allowing players to choose freely and estimate winners based on performance, calculating scores by normalizing each team instead of considering all the players without data processing. It's expected to reduce negative impact on the perception from user experience and community perspectives.\n", + "\n", + "Since is not commonly applied or seen, is suggested to do a test event with any of these approaches and observe the impact on players." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.0" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +}