Skip to content

Commit 84dfa64

Browse files
SKIP docstring test output for doubleml model
1 parent f4bcef3 commit 84dfa64

File tree

1 file changed

+3
-3
lines changed

1 file changed

+3
-3
lines changed

doubleml/double_ml.py

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -1072,7 +1072,7 @@ def ml_l_params(trial):
10721072
>>> print(tune_res[0]['ml_l'].best_params)
10731073
{'learning_rate': 0.03907122389107094}
10741074
>>> # Fit and get results
1075-
>>> dml_plr.fit().summary
1075+
>>> dml_plr.fit().summary # doctest: +SKIP
10761076
coef std err t P>|t| 2.5 % 97.5 %
10771077
d 0.57436 0.045206 12.705519 5.510257e-37 0.485759 0.662961
10781078
>>> # Example with scoring methods and directions
@@ -1089,7 +1089,7 @@ def ml_l_params(trial):
10891089
... optuna_settings=optuna_settings, return_tune_res=True)
10901090
>>> print(tune_res[0]['ml_l'].best_params)
10911091
{'learning_rate': 0.04300012336462904}
1092-
>>> dml_plr.fit().summary
1092+
>>> dml_plr.fit().summary # doctest: +SKIP
10931093
coef std err t P>|t| 2.5 % 97.5 %
10941094
d 0.574796 0.045062 12.755721 2.896820e-37 0.486476 0.663115
10951095
"""
@@ -1580,7 +1580,7 @@ def evaluate_learners(self, learners=None, metric=_rmse):
15801580
>>> def mae(y_true, y_pred):
15811581
... subset = np.logical_not(np.isnan(y_true))
15821582
... return mean_absolute_error(y_true[subset], y_pred[subset])
1583-
>>> dml_irm_obj.evaluate_learners(metric=mae)
1583+
>>> dml_irm_obj.evaluate_learners(metric=mae) # doctest: +SKIP
15841584
{'ml_g0': array([[0.88086873]]), 'ml_g1': array([[0.8452644]]), 'ml_m': array([[0.35789438]])}
15851585
"""
15861586
# if no learners are provided try to evaluate all learners

0 commit comments

Comments
 (0)