Skip to content

Commit 856b2a2

Browse files
committed
added content
1 parent bcf8ee4 commit 856b2a2

File tree

1 file changed

+21
-4
lines changed

1 file changed

+21
-4
lines changed

toolbox/+otp/+quasigeostrophic/QuasiGeostrophicProblem.m

Lines changed: 21 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -4,26 +4,43 @@
44
% The governing partial differential equation that is discretized is,
55
%
66
% $$
7-
% Δψ_t = -J(ψ,ω) - {Ro}^{-1} ψ_x -{Re}^{-1} Δω - {Ro}^{-1} F, \\
7+
% Δψ_t = -J(ψ,ω) - {Ro}^{-1} \partial_x ψ -{Re}^{-1} Δω - {Ro}^{-1} F,
88
% $$
99
% where the Jacobian term is a quadratic function,
1010
% $$
11-
% J(ψ,ω) \equiv ψ_x ω_y - ψ_y ω_x,
11+
% J(ψ,ω) \equiv \partial_x ψ \partial_x ω - \partial_x ψ \partial_x ω,
1212
% $$
1313
% the relationship between the vorticity $ω$ and the stream function $ψ$ is
1414
% $$
1515
% ω = -Δψ,
1616
% $$
1717
% the term $Δ$ is the two dimensional Laplacian over the
18-
% discretization, $Ro$ is the Rossby number, $Re$ is the Reynolds
18+
% discretization, the terms $\partial_x$ and $\partial_y$ are the first derivatives
19+
% in the $x$ and $y$ directions respectively, $Ro$ is the Rossby number, $Re$ is the Reynolds
1920
% number, and $F$ is a forcing term.
2021
% The spatial domain is fixed to $x ∈ [0, 1]$ and $y ∈ [0, 2]$, and
2122
% the boundary conditions of the PDE are assumed to be zero dirichlet
2223
% everywhere.
2324
%
2425
% A second order finite difference approximation is performed on the
2526
% grid to create the first derivative operators and the Laplacian
26-
% operator. The Jacobian is discretized using the Arakawa approximation
27+
% operator.
28+
%
29+
% The Laplacian is defined using the 5-point stencil
30+
% $$
31+
% Δ = \begin{bmatrix} & 1 & \\ 1 & -4 & 1\\ & 1 & \end{bmatrix},
32+
% $$
33+
% which is scaled with respect to the square of the step size in each
34+
% respective direction.
35+
% The first derivatives,
36+
% $$
37+
% \partial_x &= \begin{bmatrix} & 0 & \\ 1/2 & 0 & 1/2\\ & 0 & \end{bmatrix},\\
38+
% \partial_y &= \begin{bmatrix} & 1/2 & \\ 0 & 0 & 0\\ & 1/2 & \end{bmatrix},
39+
% $$
40+
% are the standard second order central finite difference operators in
41+
% the $x$ and $y$ directions.
42+
%
43+
% The Jacobian is discretized using the Arakawa approximation
2744
% CITEME
2845
% $$
2946
% J(ψ,ω) = \frac{1}{3}[ψ_x ω_y - ψ_y ω_x + (ψ ω_y)_x - (ψ ω_x)_y + (ψ_x ω)_y - (ψ_y ω)_x],

0 commit comments

Comments
 (0)