Skip to content

Commit 3b87d76

Browse files
author
Jan Oberst
committed
Fixing minor spelling issues
1 parent 3342800 commit 3b87d76

File tree

1 file changed

+14
-14
lines changed

1 file changed

+14
-14
lines changed

README.md

Lines changed: 14 additions & 14 deletions
Original file line numberDiff line numberDiff line change
@@ -7,12 +7,12 @@ The API is built with FastAPI and uses Celery for asynchronous task processing.
77
![hero doc extract](ocr-hero.webp)
88

99
## Features:
10-
- **No Cloud/external dependencies** all you need: PyTorch based OCR (EasyOCR) + Ollama are shipped and configured via `docker-compose` no data is sent outside your dev/server environment,
10+
- **No Cloud/external dependencies** all you need: PyTorch based OCR (EasyOCR) + Ollama are shipped and configured via `docker-compose`. No data is sent outside your dev/server environment.
1111
- **PDF/Office to Markdown** conversion with very high accuracy using different OCR strategies including [llama3.2-vision](https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/), [easyOCR](https://github.com/JaidedAI/EasyOCR), [minicpm-v](https://github.com/OpenBMB/MiniCPM-o?tab=readme-ov-file#minicpm-v-26)
1212
- **PDF/Office to JSON** conversion using Ollama supported models (eg. LLama 3.1)
1313
- **LLM Improving OCR results** LLama is pretty good with fixing spelling and text issues in the OCR text
1414
- **Removing PII** This tool can be used for removing Personally Identifiable Information out of document - see `examples`
15-
- **Distributed queue processing** using [Celery](https://docs.celeryq.dev/en/stable/getting-started/introduction.html))
15+
- **Distributed queue processing** using [Celery](https://docs.celeryq.dev/en/stable/getting-started/introduction.html)
1616
- **Caching** using Redis - the OCR results can be easily cached prior to LLM processing,
1717
- **Storage Strategies** switchable storage strategies (Google Drive, Local File System ...)
1818
- **CLI tool** for sending tasks and processing results
@@ -163,22 +163,22 @@ python client/cli.py ocr_upload --file examples/example-mri.pdf --ocr_cache --pr
163163
In case of any questions, help requests or just feedback - please [join us on Discord](https://discord.gg/NJzu47Ye3a)!
164164
165165
166-
## Text extract stratgies
166+
## Text extract strategies
167167
168168
### `easyocr`
169169
170-
Easy OCR is avaialble on Apache based license. It's general purpose OCR with support for more than 30 langues, probably with the best performance for English.
170+
Easy OCR is available on Apache based license. It's general purpose OCR with support for more than 30 languages, probably with the best performance for English.
171171
172172
Enabled by default. Please do use the `strategy=easyocr` CLI and URL parameters to use it.
173173
174174
175175
### `minicpm-v`
176176
177-
MiniCPM-V is Apache based licenseed OCR strategy.
177+
MiniCPM-V is an Apache based licensed OCR strategy.
178178
179179
The usage of MiniCPM-o/V model weights must strictly follow [MiniCPM Model License.md](https://github.com/OpenBMB/MiniCPM/blob/main/MiniCPM%20Model%20License.md).
180180
181-
The models and weights of MiniCPM are completely free for academic research. after filling out a ["questionnaire"](https://modelbest.feishu.cn/share/base/form/shrcnpV5ZT9EJ6xYjh3Kx0J6v8g) for registration, are also available for free commercial use.
181+
The models and weights of MiniCPM are completely free for academic research. After filling out a ["questionnaire"](https://modelbest.feishu.cn/share/base/form/shrcnpV5ZT9EJ6xYjh3Kx0J6v8g) for registration, are also available for free commercial use.
182182
183183
Enabled by default. Please do use the `strategy=minicpm_v` CLI and URL parameters to use it.
184184
@@ -211,7 +211,7 @@ cd text-extract-api
211211
```
212212
213213
### Using `Makefile`
214-
You can use the `make install` and `make run` command to setup the Docker environment for `text-extract-api`. You can find the manual steps required to do so described below.
214+
You can use the `make install` and `make run` commands to set up the Docker environment for `text-extract-api`. You can find the manual steps required to do so described below.
215215
216216
217217
### Manual setup
@@ -243,9 +243,9 @@ OCR_URL=http://localhost:8000/ocr/upload
243243
OCR_UPLOAD_URL=http://localhost:8000/ocr/upload
244244
OCR_REQUEST_URL=http://localhost:8000/ocr/request
245245
RESULT_URL=http://localhost:8000/ocr/result/
246-
CLEAR_CACHE_URL=http://localhost:8000/ocr/clear_cach
246+
CLEAR_CACHE_URL=http://localhost:8000/ocr/clear_cache
247247
LLM_PULL_API_URL=http://localhost:8000/llm_pull
248-
LLM_GENEREATE_API_URL=http://localhost:8000/llm_generate
248+
LLM_GENERATE_API_URL=http://localhost:8000/llm_generate
249249
250250
CELERY_BROKER_URL=redis://localhost:6379/0
251251
CELERY_RESULT_BACKEND=redis://localhost:6379/0
@@ -254,7 +254,7 @@ APP_ENV=development # Default to development mode
254254
```
255255
256256
257-
**Note:** In order to properly save the output files you might need to modify `storage_profiles/default.yaml` to change the default storage path according to the volumes path defined in the `docker-compose.yml`
257+
**Note:** In order to properly save the output files, you might need to modify `storage_profiles/default.yaml` to change the default storage path according to the volumes path defined in the `docker-compose.yml`
258258
259259
### Build and Run the Docker Containers
260260
@@ -295,7 +295,7 @@ pip install -e . # install main project requirements
295295
```
296296
297297
298-
The project includes a CLI for interacting with the API. To make it work first run:
298+
The project includes a CLI for interacting with the API. To make it work, first run:
299299
300300
```bash
301301
cd client
@@ -334,7 +334,7 @@ The difference is just that the first call uses `ocr/upload` - multipart form da
334334
335335
**Important note:** To use LLM you must first run the **llm_pull** to get the specific model required by your requests.
336336
337-
For example you must run:
337+
For example, you must run:
338338
339339
```bash
340340
python client/cli.py llm_pull --model llama3.1
@@ -410,7 +410,7 @@ python llm_generate --prompt "Your prompt here"
410410
411411
## API Clients
412412
413-
You might want to use the decdicated API clients to use `text-extract-api`
413+
You might want to use the dedicated API clients to use `text-extract-api`.
414414
415415
### Typescript
416416
@@ -429,7 +429,7 @@ const formData = new FormData();
429429
formData.append('file', fileInput.files[0]);
430430
formData.append('prompt', 'Convert file to JSON and return only JSON'); // if not provided, no LLM transformation will gonna happen - just the OCR
431431
formData.append('strategy', 'llama_vision');
432-
formData.append('model', 'llama3.1')
432+
formData.append('model', 'llama3.1');
433433
formData.append('ocr_cache', 'true');
434434
435435
apiClient.uploadFile(formData).then(response => {

0 commit comments

Comments
 (0)