2929from utilities import my_cprint , get_model_native_precision , get_appropriate_dtype , supports_flash_attention
3030from constants import VECTOR_MODELS
3131
32- logging .basicConfig (level = logging .CRITICAL , force = True )
32+ logging .basicConfig (level = logging .INFO , force = True )
3333# logging.basicConfig(level=logging.DEBUG, force=True)
3434logger = logging .getLogger (__name__ )
3535
@@ -51,6 +51,7 @@ def prepare_encode_kwargs(self):
5151 def create (self ):
5252 prepared_kwargs = self .prepare_kwargs ()
5353 prepared_encode_kwargs = self .prepare_encode_kwargs ()
54+
5455 return HuggingFaceEmbeddings (
5556 model_name = self .model_name ,
5657 show_progress = not self .is_query ,
@@ -143,12 +144,42 @@ def prepare_kwargs(self):
143144 return stella_kwargs
144145
145146
147+ # class AlibabaEmbedding(BaseEmbeddingModel):
148+ # def prepare_kwargs(self):
149+ # ali_kwargs = deepcopy(self.model_kwargs)
150+ # compute_device = ali_kwargs.get("device", "").lower()
151+ # is_cuda = compute_device == "cuda"
152+ # use_xformers = is_cuda and supports_flash_attention()
153+ # ali_kwargs["tokenizer_kwargs"] = {
154+ # "padding": "longest",
155+ # "truncation": True,
156+ # "max_length": 8192
157+ # }
158+ # ali_kwargs["config_kwargs"] = {
159+ # "use_memory_efficient_attention": use_xformers,
160+ # "unpad_inputs": use_xformers,
161+ # "attn_implementation": "eager" if use_xformers else "sdpa"
162+ # }
163+ # return ali_kwargs
164+
165+ # def prepare_encode_kwargs(self):
166+ # encode_kwargs = super().prepare_encode_kwargs()
167+ # encode_kwargs.update({
168+ # "padding": True,
169+ # "truncation": True,
170+ # "max_length": 8192
171+ # })
172+ # return encode_kwargs
173+
174+
146175class AlibabaEmbedding (BaseEmbeddingModel ):
147176 def prepare_kwargs (self ):
148177 ali_kwargs = deepcopy (self .model_kwargs )
178+
149179 compute_device = ali_kwargs .get ("device" , "" ).lower ()
150180 is_cuda = compute_device == "cuda"
151181 use_xformers = is_cuda and supports_flash_attention ()
182+
152183 ali_kwargs ["tokenizer_kwargs" ] = {
153184 "padding" : "longest" ,
154185 "truncation" : True ,
@@ -171,6 +202,7 @@ def prepare_encode_kwargs(self):
171202 return encode_kwargs
172203
173204
205+
174206def create_vector_db_in_process (database_name ):
175207 create_vector_db = CreateVectorDB (database_name = database_name )
176208 create_vector_db .run ()
0 commit comments