|
| 1 | +# Copyright (c) Microsoft Corporation. All rights reserved. |
| 2 | +# Licensed under the MIT License. |
| 3 | + |
| 4 | +""" |
| 5 | +FILE: sample_multivariate_detect.py |
| 6 | +
|
| 7 | +DESCRIPTION: |
| 8 | + This sample demonstrates how to use multivariate dataset to train a model and use the model to detect anomalies. |
| 9 | +
|
| 10 | +Prerequisites: |
| 11 | + * The Anomaly Detector client library for Python |
| 12 | + * A valid data feed |
| 13 | +
|
| 14 | +USAGE: |
| 15 | + python sample_multivariate_detect.py |
| 16 | +
|
| 17 | + Set the environment variables with your own values before running the sample: |
| 18 | + 1) ANOMALY_DETECTOR_KEY - your source Form Anomaly Detector API key. |
| 19 | + 2) ANOMALY_DETECTOR_ENDPOINT - the endpoint to your source Anomaly Detector resource. |
| 20 | +""" |
| 21 | + |
| 22 | +import os |
| 23 | +import time |
| 24 | +from datetime import datetime |
| 25 | + |
| 26 | +from azure.ai.anomalydetector import AnomalyDetectorClient |
| 27 | +from azure.ai.anomalydetector.models import DetectionRequest, ModelInfo |
| 28 | +from azure.core.credentials import AzureKeyCredential |
| 29 | +from azure.core.exceptions import HttpResponseError |
| 30 | + |
| 31 | + |
| 32 | +class MultivariateSample(): |
| 33 | + |
| 34 | + def __init__(self, subscription_key, anomaly_detector_endpoint, data_source=None): |
| 35 | + self.sub_key = subscription_key |
| 36 | + self.end_point = anomaly_detector_endpoint |
| 37 | + |
| 38 | + # Create an Anomaly Detector client |
| 39 | + |
| 40 | + # <client> |
| 41 | + self.ad_client = AnomalyDetectorClient(AzureKeyCredential(self.sub_key), self.end_point) |
| 42 | + # </client> |
| 43 | + |
| 44 | + self.data_source = data_source |
| 45 | + |
| 46 | + def train(self, start_time, end_time, max_tryout=500): |
| 47 | + |
| 48 | + # Number of models available now |
| 49 | + model_list = list(self.ad_client.list_multivariate_model(skip=0, top=10000)) |
| 50 | + print("{:d} available models before training.".format(len(model_list))) |
| 51 | + |
| 52 | + # Use sample data to train the model |
| 53 | + print("Training new model...") |
| 54 | + data_feed = ModelInfo(start_time=start_time, end_time=end_time, source=self.data_source) |
| 55 | + response_header = \ |
| 56 | + self.ad_client.train_multivariate_model(data_feed, cls=lambda *args: [args[i] for i in range(len(args))])[ |
| 57 | + -1] |
| 58 | + trained_model_id = response_header['Location'].split("/")[-1] |
| 59 | + |
| 60 | + # Model list after training |
| 61 | + new_model_list = list(self.ad_client.list_multivariate_model(skip=0, top=10000)) |
| 62 | + |
| 63 | + # Wait until the model is ready. It usually takes several minutes |
| 64 | + model_status = None |
| 65 | + tryout_count = 0 |
| 66 | + while (tryout_count < max_tryout and model_status != "READY"): |
| 67 | + model_status = self.ad_client.get_multivariate_model(trained_model_id).model_info.status |
| 68 | + tryout_count += 1 |
| 69 | + time.sleep(2) |
| 70 | + |
| 71 | + assert model_status == "READY" |
| 72 | + |
| 73 | + print("Done.", "\n--------------------") |
| 74 | + print("{:d} available models after training.".format(len(new_model_list))) |
| 75 | + |
| 76 | + # Return the latest model id |
| 77 | + return trained_model_id |
| 78 | + |
| 79 | + def detect(self, model_id, start_time, end_time, max_tryout=500): |
| 80 | + |
| 81 | + # Detect anomaly in the same data source (but a different interval) |
| 82 | + try: |
| 83 | + detection_req = DetectionRequest(source=self.data_source, start_time=start_time, end_time=end_time) |
| 84 | + response_header = self.ad_client.detect_anomaly(model_id, detection_req, |
| 85 | + cls=lambda *args: [args[i] for i in range(len(args))])[-1] |
| 86 | + result_id = response_header['Location'].split("/")[-1] |
| 87 | + |
| 88 | + # Get results (may need a few seconds) |
| 89 | + r = self.ad_client.get_detection_result(result_id) |
| 90 | + tryout_count = 0 |
| 91 | + while r.summary.status != "READY" and tryout_count < max_tryout: |
| 92 | + time.sleep(1) |
| 93 | + r = self.ad_client.get_detection_result(result_id) |
| 94 | + tryout_count += 1 |
| 95 | + |
| 96 | + if r.summary.status != "READY": |
| 97 | + print("Request timeout after %d tryouts.".format(max_tryout)) |
| 98 | + return None |
| 99 | + |
| 100 | + except HttpResponseError as e: |
| 101 | + print('Error code: {}'.format(e.error.code), 'Error message: {}'.format(e.error.message)) |
| 102 | + except Exception as e: |
| 103 | + raise e |
| 104 | + |
| 105 | + return r |
| 106 | + |
| 107 | + def export_model(self, model_id, model_path="model.zip"): |
| 108 | + |
| 109 | + # Export the model |
| 110 | + model_stream_generator = self.ad_client.export_model(model_id) |
| 111 | + with open(model_path, "wb") as f_obj: |
| 112 | + while True: |
| 113 | + try: |
| 114 | + f_obj.write(next(model_stream_generator)) |
| 115 | + except StopIteration: |
| 116 | + break |
| 117 | + except Exception as e: |
| 118 | + raise e |
| 119 | + |
| 120 | + def delete_model(self, model_id): |
| 121 | + |
| 122 | + # Delete the mdoel |
| 123 | + self.ad_client.delete_multivariate_model(model_id) |
| 124 | + model_list_after_delete = list(self.ad_client.list_multivariate_model(skip=0, top=10000)) |
| 125 | + print("{:d} available models after deletion.".format(len(model_list_after_delete))) |
| 126 | + |
| 127 | + |
| 128 | +if __name__ == '__main__': |
| 129 | + SUBSCRIPTION_KEY = os.environ["ANOMALY_DETECTOR_KEY"] |
| 130 | + ANOMALY_DETECTOR_ENDPOINT = os.environ["ANOMALY_DETECTOR_ENDPOINT"] |
| 131 | + |
| 132 | + # ***************************** |
| 133 | + # Use your own data source here |
| 134 | + # ***************************** |
| 135 | + data_source = "<YOUR OWN DATA SOURCE>" |
| 136 | + |
| 137 | + # Create a new sample and client |
| 138 | + sample = MultivariateSample(SUBSCRIPTION_KEY, ANOMALY_DETECTOR_ENDPOINT, data_source) |
| 139 | + |
| 140 | + # Train a new model |
| 141 | + model_id = sample.train(datetime(2021, 1, 1, 0, 0, 0), datetime(2021, 1, 2, 12, 0, 0)) |
| 142 | + |
| 143 | + # Reference |
| 144 | + result = sample.detect(model_id, datetime(2021, 1, 2, 12, 0, 0), datetime(2021, 1, 3, 0, 0, 0)) |
| 145 | + print("Result ID:\t", result.result_id) |
| 146 | + print("Result summary:\t", result.summary) |
| 147 | + print("Result length:\t", len(result.results)) |
| 148 | + |
| 149 | + # Export model |
| 150 | + sample.export_model(model_id, "model.zip") |
| 151 | + |
| 152 | + # Delete model |
| 153 | + sample.delete_model(model_id) |
0 commit comments