|
116 | 116 |
|
117 | 117 | from copy import copy |
118 | 118 |
|
119 | | -from sage.all import AA, PolynomialRing, QQ, QQbar, SR, DifferentialWeylAlgebra, Ideal |
120 | | -from sage.all import ( |
121 | | - gcd, |
122 | | - prod, |
123 | | - pi, |
124 | | - matrix, |
125 | | - exp, |
126 | | - log, |
127 | | - I, |
128 | | - factorial, |
129 | | - srange, |
130 | | - shuffle, |
131 | | - vector, |
132 | | -) |
| 119 | +from sage.algebras.weyl_algebra import DifferentialWeylAlgebra |
| 120 | +from sage.arith.misc import gcd |
| 121 | +from sage.arith.srange import srange |
| 122 | +from sage.functions.log import log, exp |
| 123 | +from sage.functions.other import factorial |
| 124 | +from sage.matrix.constructor import matrix |
| 125 | +from sage.misc.misc_c import prod |
| 126 | +from sage.misc.prandom import shuffle |
| 127 | +from sage.modules.free_module_element import vector |
| 128 | +from sage.rings.asymptotic.asymptotic_ring import AsymptoticRing |
| 129 | +from sage.rings.ideal import Ideal |
| 130 | +from sage.rings.imaginary_unit import I |
| 131 | +from sage.rings.polynomial.polynomial_ring_constructor import PolynomialRing |
| 132 | +from sage.rings.qqbar import AA, QQbar |
| 133 | +from sage.rings.rational_field import QQ |
| 134 | +from sage.symbolic.constants import pi |
| 135 | +from sage.symbolic.ring import SR |
133 | 136 |
|
134 | 137 | from sage_acsv.kronecker import _kronecker_representation |
135 | 138 | from sage_acsv.helpers import ( |
@@ -337,8 +340,6 @@ def _diagonal_asymptotics_combinatorial_smooth( |
337 | 340 | result = sum([a**n * b * c * d for (a, b, c, d) in result]) |
338 | 341 |
|
339 | 342 | elif output_format == ACSVSettings.Output.ASYMPTOTIC: |
340 | | - from sage.all import AsymptoticRing |
341 | | - |
342 | 343 | AR = AsymptoticRing("QQbar^n * n^QQ", QQbar) |
343 | 344 | n = AR.gen() |
344 | 345 | result = sum( |
@@ -789,8 +790,6 @@ def diagonal_asymptotics_combinatorial( |
789 | 790 | result = sum([a**n * b * c * d for (a, b, c, d) in result]) |
790 | 791 |
|
791 | 792 | elif output_format == ACSVSettings.Output.ASYMPTOTIC: |
792 | | - from sage.all import AsymptoticRing |
793 | | - |
794 | 793 | AR = AsymptoticRing("QQbar^n * n^QQ", QQbar) |
795 | 794 | n = AR.gen() |
796 | 795 | result = sum( |
|
0 commit comments